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Abstract. We address the problem of computing the information leakageof a
system in an efficient way. We propose two methods: one based on reducing
the problem to reachability, and the other based on techniques from quantitative
counterexample generation. The second approach can be usedeither for exact or
approximate computation, and provides feedback for debugging. These methods
can be applied also in the case in which the input distribution is unknown. We then
consider the interactive case and we point out that the definition of associated
channel proposed in literature is not sound. We show howeverthat the leakage
can still be defined consistently, and that our methods extend smoothly.

1 Introduction
By information hiding, we refer generally to the problem of constructing protocols or
programs that protect sensitive information from being deduced by some adversary. In
anonymity protocols[4], for example, the concern is to design mechanisms to prevent
an observer of network traffic from deducing who is communicating. In secure infor-
mation flow[17], the concern is to prevent programs from leaking their secret input to
an observer of their public output. Such leakage could be accidental or malicious.

Recently, there has been particular interest in approaching these issuesquantita-
tively, using concepts of information theory. See for example [13,5, 10, 6, 4]. The secret
input S and the observable outputO of an information-hiding system are modeled as
random variables related by achannel matrix, whose(s, o) entry specifiesP (o|s), the
conditional probability of observing outputo given inputs. If we define thevulnera-
bility of S as the probability that the adversary could correctly guessthe value ofS in
one try, then it is natural to measure the information leakage by comparing thea priori
vulnerability ofS with thea posteriorivulnerability ofS after observingO. This leads
us to consider two measures of leakage:additive, that is the difference between thea
posteriorianda priori vulnerabilities; andmultiplicative, that is their quotient [19, 3].

We thus view a protocol or program as anoisy channel, and we calculate the leakage
from the channel matrix and thea priori distribution onS. But, given an operational
specification of a protocol or program, how do we calculate the parameters of the noisy
channel: the sets of inputs and outputs, thea priori distribution, the channel matrix, and
the associated leakage? These are the main questions we address in this paper. We focus
onprobabilistic automata, whose transitions are labeled with probabilities andactions,
each of which is classified as secret, observable, or internal.



We first consider the simple case in which the secret inputs take place at the begin-
ning of runs, and their probability is fixed. The interpretation in terms of noisy channel
of this kind of systems is well understood in literature. Theframework of probabilistic
automata, however, allows to represent more general situations. Thanks to the nonde-
terministic choice, indeed, we can model the case in which the input distribution is
unknown, or variable. We show that the definition of channel matrix extends smoothly
also to this case. Finally, we turn our attention to the interactive scenario in which in-
puts can occur again after outputs. This case has also been considered in literature, and
there has been an attempt to define the channel matrix in termsof the probabilities of
traces [11]. However it turns out that the notion of channel is unsound. Fortunately the
leakage is still well defined, and it can be obtained in the same way as the simple case.

We consider two different approaches to computing the channel matrix. One uses a
system of linear equations as in reachability computations. With this system of equa-
tions one can compute thejoint matrix, the matrix of probabilities of observing boths
ando; the channel matrix is trivially derived from this joint matrix. The other approach
starts with a0 channel matrix, which we call apartial matrixat this point. We iteratively
add the contributions in conditional probabilities of complete paths to this partial ma-
trix, obtaining, in the limit, the channel matrix itself. Wethen group paths with the same
secret and the same observable together using ideas from quantitative counterexample
generation, namely by using regular expressions and strongly connected component
analysis. In this way, we can add the contribution of (infinitely) many paths at the same
time to the partial matrices. This second approach also makes it possible to identify
which parts of a protocol contribute most to the leakage, which is useful for debugging.

Looking ahead, after reviewing some preliminaries (Section 2) we present restric-
tions on probabilistic automata to ensure that they have well-defined, finite channel
matrices (Section 3). This is followed by the techniques to calculate the channel ma-
trix efficiently (Section 4 and Section 5). We then turn our attention to extensions of
our information-hiding system model. We use nondeterministic choice to model the
situation where thea priori distribution on the secret is unknown (Section 6). Finally,
we consider interactive systems, in which secret actions and observable actions can be
interleaved arbitrarily (Section 7).

2 Preliminaries

2.1 Probabilistic automata

This section recalls some basic notions on probabilistic automata. More details can be
found in [18]. A functionµ : Q → [0, 1] is adiscrete probability distributionon a setQ
if the support ofµ is countable and

∑

q∈Q µ(q) = 1. The set of all discrete probability
distributions onQ is denoted byD(Q).

A probabilistic automatonis a quadrupleM = (Q, Σ, q̂, α) whereQ is a countable
set ofstates, Σ a finite set ofactions, q̂ the initial state, andα a transition function
α : Q → ℘f (D(Σ × Q)). Here℘f (X) is the set of all finite subsets ofX . If α(q) = ∅
thenq is a terminal state. We writeq→µ for µ ∈ α(q), q ∈ Q. Moreover, we write
q

a
→r for q, r ∈ Q wheneverq→µ andµ(a, r) > 0. A fully probabilistic automatonis

a probabilistic automaton satisfying|α(q)| ≤ 1 for all states. In caseα(q) 6= ∅ we will
overload notation and useα(q) to denote the distribution outgoing fromq.
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A path in a probabilistic automaton is a sequenceσ = q0
a1→ q1

a2→ · · · where
qi ∈ Q, ai ∈ Σ andqi

ai+1

→ qi+1. A path can befinite in which case it ends with a state. A
path iscompleteif it is either infinite or finite ending in a terminal state. Given a pathσ,
first(σ) denotes its first state, and ifσ is finite thenlast(σ) denotes its last state. Acycle
is a pathσ such thatlast(σ) = first(σ). We denote the set of actions occurring in a cycle
asCyclesA(M). Let Pathsq(M) denote the set of all paths,Paths⋆

q(M) the set of all
finite paths, andCPathsq(M) the set of all complete paths of an automatonM , starting
from the stateq. We will omit q if q = q̂. Paths are ordered by the prefix relation, which
we denote by≤. Thetraceof a path is the sequence of actions inΣ∗∪Σ∞ obtained by
removing the states, hence for the aboveσ we havetrace(σ) = a1a2 . . .. If Σ′ ⊆ Σ,
thentraceΣ′(σ) is the projection oftrace(σ) on the elements ofΣ′. The lengthof a
finite pathσ, denoted by|σ|, is the number of actions in its trace.

Let M(Q, Σ, q̂, α) be a (fully) probabilistic automaton,q ∈ Q a state, and letσ ∈
Paths⋆

q(M) be a finite path starting inq. Theconegenerated byσ is the set of complete
paths〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic automaton
M = (Q, Σ, q̂, α) and a stateq, we can calculate theprobability value, denoted by
Pq(σ), of any finite pathσ starting inq as follows:Pq(q) = 1 andPq(σ

a
→ q′) =

Pq(σ) µ(a, q′), where last(σ) → µ.

Let Ωq , CPathsq(M) be the sample space, and letFq be the smallestσ-algebra
generated by the cones. ThenP induces a uniqueprobability measureonFq (which we
will also denote byPq) such thatPq(〈σ〉) = Pq(σ) for every finite pathσ starting in
q. Forq = q̂ we writeP instead ofPq̂.

Given a probability space(Ω,F , P ) and two eventsA, B ∈ F with P (B) > 0, the
conditional probabilityof A givenB, P (A | B), is defined asP (A ∩ B)/P (B).

2.2 Noisy Channels

This section briefly recalls the notion of noisy channels from Information Theory [7].
A noisy channelis a tupleC , (X ,Y,P (·|·)) whereX = {x1, x2, . . . , xn} is a

finite set ofinput values, modeling thesecretsof the channel, andY = {y1, y2, . . . , ym}
is a finite set ofoutput values, theobservablesof the channel. Forxi ∈ X andyj ∈ Y,
P(yj |xi) is the conditional probability of obtaining the outputyj given that the input
is xi. These conditional probabilities constitute the so calledchannel matrix, where
P(yj |xi) is the element at the intersection of thei-th row and thej-th column. For any
input distributionPX onX , PX and the channel matrix determine a joint probabilityP∧

onX × Y, and the corresponding marginal probabilityPY onY (and hence a random
variableY ). PX is also calleda priori distribution and it is often denoted byπ. The
probability of the input given the output is calleda posteriori distribution.

2.3 Information leakage

We recall here the definitions ofmultiplicative leakageproposed in [19], andadditive
leakageproposed in [3]1. We assume given a noisy channelC = (X ,Y,P (·|·)) and a
random variableX onX . Thea priori vulnerabilityof the secrets inX is the probability

1 The notion proposed by Smith in [19] was given in a (equivalent) logarithmic form, and called
simply leakage. For uniformity sake we use here the terminology and formulation of [3].
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of guessing the right secret, defined asV(X) , maxx∈X PX(x). The rationale behind
this definition is that the adversary’s best bet is on the secret with highest probability.

The a posteriori vulnerabilityof the secrets inX is the probability of guessing
the right secret, after the output has been observed, averaged over the probabilities of
the observables. The formal definition isV(X |Y) ,

∑

y∈Y PY (y)maxx∈X P (x | y).
Again, this definition is based on the principle that the adversary will choose the secret
with the highest a posteriori probability.

Note that, using Bayes theorem, we can write the a posteriorivulnerability in terms
of the channel matrix and the a priori distribution, or in terms of the joint probability:

V(X |Y) =
∑

y∈Y

max
x∈X

(P (y |x)PX(x)) =
∑

y∈Y

max
x∈X

P∧(x, y). (1)

Themultiplicativeandadditiveleakage are defined, respectively, asL×(C, PX) ,
V(X|Y)
V(X) andL+(C, PX) , V(X|Y) − V(X).

3 Information Hiding Systems
To formally analyze the information-hiding properties of protocols and programs, we
propose to model them as a particular kind of probabilistic automata, which we call
Information-Hiding Systems(IHS). Intuitively, an IHS is a probabilistic automaton in
which the actions are divided in three (disjoint) categories: those which are supposed
to remain secret (to an external observer), those which are visible, and those which are
internal to the protocol.

First we consider only the case in which the choice of the secret takes place entirely
at the beginning, and is based on a known distribution. Furthermore we focus on fully
probabilistic automata. Later in the paper we will relax these constraints.

Definition 3.1 (Information-Hiding System). An information-hiding system (IHS) is
a quadrupleI = (M, ΣS , ΣO, Στ ) whereM = (Q, Σ, q̂, α) is a fully probabilistic
automaton,Σ = ΣS ∪ ΣO ∪ Στ whereΣS , ΣO, andΣτ are pairwise disjoint sets of
secret, observable, and internal actions, andα satisfies the following restrictions:

1. α(q̂) ∈ D(ΣS × Q),
2. ∀s ∈ ΣS ∃!q . α(q̂)(s, q) 6= 0,
3. α(q) ∈ D(ΣO ∪ Στ × Q) for q 6= q̂,
4. ∀a ∈ (ΣS ∪ ΣO) . a 6∈ CyclesA(M),
5. P(CPaths(M) ∩ Paths⋆(M)) = 1.

The first two restrictions are on the initial state and mean that only secret actions
can happen there (1) and each of those actions must have non null probability andoccur
only once (2), Restriction3 forbids secret actions to happen in the rest of the automaton,
and Restriction4 ensures that the channel associated to the IHS has finitely many inputs
and outputs. Finally, Restriction5 means that infinite computations have probability0
and therefore we can ignore them.

We now show how to interpret an IHS as a noisy channel. We calltraceΣS
(σ)

andtraceΣO
(σ) the secretandobservabletraces ofσ, respectively. Fors ∈ Σ∗

S , we
define[s] , {σ ∈ CPaths(M) | traceΣS

(σ) = s}; similarly for o ∈ Σ∗
O, we define

[o] , {σ ∈ CPaths(M) | traceΣO
(σ) = o}.
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Definition 3.2. Given an IHSI = (M, ΣS , ΣO, Στ ), its noisy channel is(S,O,P ),
whereS , ΣS , O , traceΣO

(CPaths(M)), andP(o | s) , P([o] | [s]). The a priori
distributionπ ∈ D(S) of I is defined byπ(s) , α(q̂)(s, ·). If C is the noisy channel of
I, the multiplicative and additive leakage ofI are naturally defined as

L×(I) , L×(C, π) and L+(I) , L+(C, π).

Example 3.3. Crowds [16] is a well-known anonymity protocol, in which a user
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Fig. 1: Crowds Protocol

(called theinitiator) wants to send a message to a web
server without revealing his identity. To achieve this, he
routes the message through a crowd of users participat-
ing in the protocol. Routing is as follows. In the begin-
ning, the initiator randomly selects a user (called afor-
warder), possibly himself, and forwards the request to
him. A forwarder performs a probabilistic choice. With
probabilityp (a parameter of the protocol) he selects a
new user and again forwards the message. With proba-
bility 1−p he sends the message directly to the server.
One or more users can becorruptedand collaborate with
each other to try to find the identity of the initiator.

We now show how to model Crowds as anIHS for 2
honest and1 corrupted user. We assume that the corrupted user immediately forwards
messages to the server, as there is no further information tobe gained for him by bounc-
ing the message back.

Figure 1 shows the automaton2. Actionsa andb are secret and represent who initi-
ates the protocol; actionsA, B, andU are observable;A andB represent who forwards
the message to the corrupted user;U represents the fact that the message arrives at the
server undetected by the corrupted user. We assumeU to be observable to represent the
possibility that the message is made publically available at the server’s site.

The channel associated to this IHS hasS = {a, b}, O = {A, B, U}, and a priori
distributionπ(a) = 1

3 , π(b) = 2
3 . Its channel matrix is computed in the next section.

4 Reachability analysis approach
This section presents a method to compute the matrix of jointprobabilitiesP∧ associ-
ated to anIHS, defined as

P∧(s, o) , P([s] ∩ [o]) for all s ∈ S ando ∈ O.

We omit the subscript∧ when no confusion arises. FromP∧ we can derive the channel
matrix by dividingP∧(s, o) by π(s). The leakage can be computed directly fromP∧,
using the second form of the a posteriori vulnerability in (1).

We write xλ
q for the probability of the set of paths with traceλ ∈ (ΣS ∪ ΣO)⋆

starting from the stateq of M :
xλ

q , Pq([λ]q),

2 For the sake of simplicity, we allow the initiator of the protocol to send the message to the
server also in the first step of the protocol.
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where[λ]q , {σ ∈ CPathsq(M) | traceΣS∪ΣO
(σ) = λ}. The following key lemma

shows the linear relation between thexλ
q ’s. We assume, w.l.o.g., that theIHS has a

unique final stateqf .

Lemma 4.1. Let I = (M, ΣS , ΣO, Στ ) be anIHS. For all λ ∈ (ΣS ∪ ΣO)⋆ and
q ∈ Q we have

xǫ
qf

= 1,

xλ
qf

= 0 for λ 6= ǫ,

xǫ
q =

∑

h∈Στ

∑

q′∈succ(q) α(q)(h, q′) · xǫ
q′ for q 6= qf ,

xλ
q =

∑

q′∈succ(q) α(q)(first(λ), q′) · x
tail(λ)
q′

+
∑

h∈Στ
α(q)(h, q′) · xλ

q′ for λ 6= ǫ andq 6= qf .

Furthermore, fors ∈ S ando ∈ O we haveP([s] ∩ [o]) = xso
q̂ .

Using this lemma, one can compute joint probabilities by solving the system of lin-
ear equations in the variablesxλ

q ’s. It is possible that the system has multiple solutions;
in that case the required solution is the minimal one.

Example 4.2. Continuing with the Crowds example, we show how to compute joint
probabilities. Note thatqf = S. The linear equations from Lemma 4.1 are

xaA
init = 1

3 · xA
qa

, xA
qa

= p
3 · xA

qa
+ p

3 · xA
qb

+ p
3 · xǫ

corr, xA
corr = xA

S ,

xbA
init = 2

3 · xA
qb

, xA
qb

= p
3 · xA

qa
+ p

3 · xA
qb

+ p
3 · xA

corr, xA
S = 0,

xaB
init = 1

3 · xB
qa

, xB
qa

= p
3 · xB

qa
+ p

3 · xB
qb

+ p
3 · xB

corr, xB
corr = xB

S ,

xbB
init = 2

3 · xB
qb

, xB
qb

= p
3 · xB

qa
+ p

3 · xB
qb

+ p
3 · xǫ

corr, xB
S = 0,

xaU
init = 1

3 · xU
qa

, xU
qa

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xǫ
S, xǫ

corr = xǫ
S,

xbU
init = 2

3 · xU
qb

, xU
qb

= p
3 · xU

qa
+ p

3 · xU
qb

+ (1−p) · xǫ
S, xǫ

S = 1.

4.1 Complexity Analysis

We now analyze the computational complexity for the computation of the channel ma-
trix of a simpleIHS. Note that the only variables (from the system of equations in
Lemma 4.1) that are relevant for the computation of the channel matrix are thosexλ

q

for which it is possible to get the traceλ starting from stateq. As a rough overestimate,
for each stateq, there are at most|S| · |O| λ’s possible: in the initial state one can have
every secret and every observable, in the other states no secret is possible and only a
suffix of an observable can occur. This gives at most|Q| · |S| · |O| variables. Therefore,
we can straightforwardly obtain the desired set of values inO((|Q| · |S| · |O|)3) time
(using Gaussian Elimination). Note that using Strassen’s methods the exponent reduces
to 2.807, this consideration applies to similar results in the rest of the paper as well.

Because secret actions can happen only at the beginning, thesystem of equations
has a special form. The variables of the formxso

q̂ only depend on variables of the form
xo

q (with varyingo andq 6= q̂) and not on each other. Hence, we can first solve for all
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variables of the formxo
q and then compute the remaining few of the formxso

q̂ . Required
time for the first step isO((|O| · |Q|)3) and the time for the second step can be ignored.

Finally, in some cases not only do the secret actions happen only at the beginning
of the protocol, but the observable actions happen only at the end of the protocol, i.e.,
after taking a transition with an observable action, the protocol only performs internal
actions (this is, for instance, the case for our model of Crowds). In this case, one might
as well enter a unique terminal stateqf after an observable action happens. Then the
only relevant variables are of the formxso

q̂ , xo
q, andxǫ

qf
; thexso

q̂ only depends on thexo
q,

thexo
q only depend onxo

q′ (with the sameo, but varyingq’s) and onxǫ
qf

andxǫ
qf

= 1.
Again ignoring the variablesxso

q̂ for complexity purposes, the system of equations has
a block form with|O| blocks of (at most)|Q| variables each. Hence the complexity in
this case decreases toO(|O| · |Q|3).

5 The Iterative Approach
We now propose a different approach to compute channel matrices and leakage. The
idea is to iteratively construct the channel matrix of a system by adding probabilities of
sets of paths containing paths with the same observable traceo and secret traces to the
(o|s) entry of the matrix.

One reason for this approach is that it allows us to borrow techniques from quan-
titative counterexample generation. This includes the possibility of using or extending
counterexample generation tools to compute channel matrices or leakage. Another rea-
son for this approach is the relationship with debugging. Ifa (specification of a) system
has a high leakage, the iterative approach allows us to determine which parts of the
system contribute most to the high leakage, possibly pointing out flaws of the protocol.
Finally, if the system under consideration is very large, the iterative approach allows us
to only approximate the leakage (by not considering all paths, but only the most relevant
ones) under strict guarantees about the accuracy of the approximation. We will focus
on the multiplicative leakage; similar results can be obtained for the additive case.

5.1 Partial matrices

We start by defining a sequence of matrices converging to the channel matrix by adding
the probability of complete paths one by one. We also define partial version of the a
posteriori vulnerability and the leakage. Later, we show how to use techniques from
quantitative counterexample generation to add probabilities of many (maybe infinitely
many) complete paths all at once.

Definition 5.1. Let I = (M, ΣS , ΣO, Στ ) be anIHS, π its a priori distribution, and
σ1, σ2, . . . an enumeration of the set of complete paths ofM . We define thepartial
matricesPk : S ×O → [0, 1] as follows

P
0(o|s) , 0, P

k+1(o|s) ,











P
k(o|s) +

P(〈σk+1〉)
π(s) if traceΣO

(σk+1) = o

and traceΣS
(σk+1) = s,

P
k(o|s) otherwise.

We define thepartial vulnerability Vk
S,O as

∑

o maxs P
k(o|s) · π(s), and thepartial

multiplicative leakageLk
×(I) asV k

S,O/maxs π(s).
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The following lemma states that partial matrices, a posteriori vulnerability, and leak-
age converge to the correct values.

Lemma 5.2. LetI = (M, ΣS , ΣO, Στ ) be anIHS. Then

1. P
k(o|s) ≤ P

k+1(o|s), andlimk→∞ P
k(o|s) = P(o|s),

2. V k
S,O ≤ V k+1

S,O , andlimk→∞ V k
S,O = V(S|O),

3. Lk
×(I) ≤ Lk+1

× (I), andlimk→∞ Lk
×(I) = L×(I).

Since rows must sum up to1, this technique allow us to compute matrices up to
given errorǫ. We now show how to estimate the error in the approximation ofthe
multiplicative leakage.

Proposition 5.3. Let (M, ΣS , ΣO, Στ ) be anIHS. Then we have

Lk
×(I) ≤ L×(I) ≤ Lk

×(I) +

|S|
∑

i=1

(1 − pk
i ),

wherepk
i denotes the mass probability of thei-th row ofPk, i.e.pk

i ,
∑

o P
k(o|si).

5.2 On the computation of partial matrices.

After showing how partial matrices can be used to approximate channel matrices and
leakage we now turn our attention to accelerating the convergence. Adding most likely
paths first is an obvious way to increase the convergence rate. However, since automata
with cycles have infinitely many paths, this (still) gives aninfinite amount of path to
process. Processing many paths at once (all having the same observable and secret trace)
tackles both issues at the same time: it increases the rate ofconvergence and can deal
with infinitely many paths at the same time,

Interestingly enough, these issues also appear inquantitative counterexample gen-
eration. In that area, several techniques have already been provided to meet the chal-
lenges; we show how to apply those techniques in the current context. We consider two
techniques: one is to group paths together using regular expression, the other is to group
path together using strongly connected component analysis.

Regular expressions.In [9], regular expressions containing probability valuesare used
to reason about traces in Markov Chains. This idea is used in [8] in the context of
counterexample generation to group together paths with thesame observable behaviour.
The regular expression there are over pairs〈p, q〉 with p a probability value andq a
state, to be able to track both probabilities and observables. We now use the same idea
to group together paths with the same secret action and the same observable actions.

We consider regular expressions over triples of the form〈a, p, q〉 with p ∈ [0, 1]
a probability value,a ∈ Σ an action label andq ∈ Q a state. Regular expressions
represent sets of paths as in [8]. We also take the probability value of such a regular
expression from that paper.

Definition 5.4. The functionval : R(Σ) → R evaluates regular expressions:

val(ǫ) , 1, val(r · r′) , val(r) × val(r′),

val(〈a, p, q〉) , p, val (r∗) , 1 if val(r) = 1,

val (r + r′) , val(r) + val(r′), val (r∗) , 1
1−val(r) if val (r) 6= 1.
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The idea is to obtain regular expressions representing setsof paths ofM , each reg-
ular expression will contribute in the approximation of thechannel matrix and leakage.
Several algorithms to translate automata into regular expressions have been proposed
(see [14]). Finally, each term of the regular expression obtained can be processed sepa-
rately by adding the corresponding probabilities [9] to thepartial matrix.

As mentioned before, all paths represented by the regular expression should have
the same observable and secret trace in order to be able to addits probability to a single
element of the matrix. To ensure that condition we request the regular expression to be
normal, i.e., of the formr1 + · · · + rn with theri containing no+’s.

For space reasons, instead of showing technical details we only show an example.

Example 5.5. We used JFLAP7.0 [12] to obtain the regular expressionr , r1 + r2 +
· · · + r10 equivalent to the automaton in Figure 1.

r1 , 〈b, 2
3 , qb〉 · r̂

⋆ · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r2 , 〈b, 2
3 , qb〉 · r̂

⋆ · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉
⋆ · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r3 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈A, 0.3, corr〉 · 〈τ, 1, S〉,

r4 , 〈b, 2
3 , qb〉 · r̂

⋆ · 〈U, 0.1, S〉,

r5 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈τ, 0.3, qb〉 · r̂
⋆ · 〈B, 0.3, corr〉 · 〈τ, 1, S〉,

r6 , 〈b, 2
3 , qb〉 · r̂

⋆ · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉
⋆ · 〈U, 0.1, S〉,

r7 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈U, 0.1, S〉,

r8 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈τ, 0.3, qb〉 · r̂
⋆ · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉

⋆·

〈A, 0.3, corr〉 · 〈τ, 1, S〉,
r9 , 〈a, 1

3 , qa〉 · 〈τ, 0.3, qa〉
⋆ · 〈τ, 0.3, qb〉 · r̂

⋆ · 〈U, 0.1, S〉,

r10 , 〈a, 1
3 , qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈τ, 0.3, qb〉 · r̂
⋆ · 〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈U, 0.1, S〉,

wherer̂ , (〈τ, 0.3, qb〉
⋆ · (〈τ, 0.3, qa〉 · 〈τ, 0.3, qa〉

⋆ · 〈τ, 0.3, qb〉)
⋆). We also note

val(r1) = 7
20 (b, B), val (r2) = 3

20 (b, A), val(r3) = 1
7 (a, A), val(r4) = 7

60 (b, U),

val(r5) = 3
40 (a, B), val (r6) = 1

20 (b, U), val(r7) = 1
21 (a, U), val(r8) = 9

280 (a, A),

val(r9) = 1
40 (a, U), val (r10) = 3

280 (a, U),

where the symbols between brackets denote the secret and observable traces of each
regular expression.

Now we have all the ingredients needed to define partial matrices using regular
expressions.

Definition 5.6. Let I = (M, ΣS , ΣO, Στ ) be anIHS, π its a priori distribution, and
r = r1 + r2 + · · ·+ rn a regular expression equivalent toM in normal form. We define
for k = 0, 1, . . . , n the matricesPk : S× O → [0, 1] as follows

P
k(o|s) =



















0 if k = 0,

P
k−1(o|s) + val(rk)

π(s) if k 6= 0 and traceΣO
(rk) = o

and traceΣS
(rk) = s,

P
k−1(o|s) otherwise.

9



Note that in the context of Definition 5.6, we havePn = P .

SCC analysis approach. In [2], paths that only differ in the way they traverse strongly
connected components (SCC’s) are grouped together. Note that in our case, such paths
have the same secret and observable trace since secret and observable actions cannot
occur on cycles. Following [2], we first abstract away theSCC’s, leaving only proba-
bilistic transitions that go immediately from an entry point of the SCC to an exit point
(called input and output states in [2]). This abstraction happens in such a way that the
observable behaviour of the automaton does not change.

Again, instead of going into technical details (which also involves translating the
work [2] from Markov chains to fully probabilistic automata), we show an example.

init

qa qb

corr

S

A

21

40

B

9

40

1

4
U

A

9

40

B

21

40

U 1

4

1

3

a

2

3

b

1

Fig. 2: Crowds after
theSCC analysis

Example 5.7. Figure 2 shows the automaton obtained after ab-
stractingSCC. In the following we show the set of complete
paths of the automaton, together with their corresponding prob-
abilities and traces

σ1 , init
a

−→ qa

A
−→ corr

τ
−→ S, P(σ1) = 7

40 , (a, A),

σ2 , init
b

−→ qb

B
−→ corr

τ
−→ S, P(σ2) = 7

20 , (b, B),

σ3 , init
a

−→ qa

U
−→ S, P(σ3) = 1

12 , (a, U),

σ4 , init
b

−→ qb

U
−→ S, P(σ4) = 1

6 , (b, U),

σ5 , init
a

−→ qa

B
−→ corr

τ
−→ S, P(σ5) = 3

40 , (a, B),

σ6 , init
b

−→ qb

A
−→ corr

τ
−→ S, P(σ6) = 3

20 , (b, A).

The partial matrices obtained from the acyclic automaton are shown in the Appendix.

Note that theSCC analysis approach groups more paths together (for instanceσ1

group together the same paths than the regular expressionsr3 andr8 in the examples
of this section), as a result channel matrix and leakage are obtained faster. On the other
hand, regular expressions are more informative providing more precise feedback.

5.3 Identifying high-leakage sources

We now describe how to use the techniques presented in this section to identify sources
of high leakage of the system. Remember that the a posteriorivulnerability can be
expressed in terms of joint probabilities

V(S | O) =
∑

o

max
s

P([s] ∩ [o]).

This suggests that, in case we want to identify parts of the system generating high leak-
age, we should look at the sets of paths[o1]∩ [s1], . . . , [on]∩ [sn] where{o1, . . . on} =
O andsi ∈ arg (maxs P([oi] ∩ [s])). In fact, the multiplicative leakage is given divid-
ing V(S | O) by V(S), but sinceV(S) is a constant value (i.e., it does not depend on the
row) it does not play a role here. Similarly for the additive case.

The techniques presented in this section allow us to obtain such sets and, further-
more, to partition them in a convenient way with the purpose of identifying states/parts

10



of the system that contribute the most to its high probability. Indeed, this is the aim of
the counterexamples generation techniques previously presented. For further details on
how to debug sets of paths and why these techniques meet that purpose we refer to [1,
8, 2].

Example 5.8. To illustrate these ideas, consider the pathσ1 of the previous example;
this path has maximum probability for the observableA. By inspecting the path we find

the transition with high probabilityqa

A
→ corr. This suggests to the debugger that the

corrupted user has an excessively high probability of intercepting a message from user
a in case he is the initiator.

In case the debugger requires further information on how corrupted users can in-
tercept messages, the regular expression approach provides further/more-detailed infor-
mation. For instance, we obtain further information by looking at regular expressions
r3 andr8 instead of pathσ1 (in particular it is possible to visualize the different ways
the corrupted user can intercept the message of usera when he is the generator of the
message).

6 Information Hiding Systems with Variable a Priori
In Section 3 we introduced a notion ofIHS in which the distribution over secrets is
fixed. However, when reasoning about security protocols this is often not the case. In
general we may assume that an adversary knows the distribution over secrets in each
particular instance, but the protocol should not depend on it. In such scenario we want
the protocol to be secure, i.e. ensuring low enough leakage,for every possible distribu-
tion over secrets. This leads to the definition of maximum leakage.

Definition 6.1 ([19, 3]). Given a noisy channelC = (S,O,P ), we define the maximum
multiplicative and additive leakage (respectively) as

ML×(C) , max
π∈D(S)

L×(C, π), and ML+(C) , max
π∈D(S)

L+(C, π).

In order to model this new scenario where the distribution over secrets may change, the
selection of the secret is modeled asnondeterministic choice. In this way such a distri-
bution remains undefined in the protocol/automaton. We still assume that the choice of
the secret happens at the beginning, and that we have only onesecret per run. We call
such automaton anIHS with variable a priori.

Definition 6.2. An IHS with variable a priori is a quadrupleI = (M, ΣS , ΣO, Στ )
whereM = (Q, Σ, q̂, α) is a probabilistic automaton,Σ = ΣS ∪ΣO ∪Στ whereΣS ,
ΣO, andΣτ are pairwise disjoint sets of secret, observable, and internal actions, andα
satisfies the following restrictions:

1. α(q̂) ⊆ D(ΣS × Q),
2. |α(q̂)| = |S| ∧ ∀s ∈ ΣS . ∃! q . π(s, q) = 1, for someπ ∈ α(q̂),
3. α(q) ⊆ D(ΣO ∪ Στ × Q) and|α(q)| ≤ 1, for all q 6= q̂,
4. ∀a ∈ (ΣS ∪ ΣO) . a 6∈ CyclesA(M),
5. ∀q, s ∀π∈α(q̂) . (π(s, q) = 1 ⇒ P(CPathsq(M) ∩ Paths∗q(M)) = 1).
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Restrictions1, 2 and3 imply that the secret choice is non deterministic and happens
only at the beginning. Additionally,3 means that all the other choices are probabilistic.
Restriction4 ensures that the channel associated to theIHS has finitely many inputs
and outputs. Finally,5 implies that, after we have chosen a secret, every computation
terminates except for a set with null probability.

Given anIHS with variable a priori, by fixing the a priori distribution wecan obtain
a standardIHS in the obvious way:

Definition 6.3. Let I = ((Q, Σ, q̂, α), ΣS , ΣO, Στ ) be anIHS with variable a priori
andπ a distribution overS. We define theIHS associated to(I, π) asIπ = ((Q, Σ,
q̂, α′), ΣS , ΣO, Στ ) with α′(q) = α(q) for all q 6= q̂ andα′(q̂)(s, ·) = π(s).

The following result says that the conditional probabilities associated to anIHS
with variable a priori areinvariant with respect to the a priori distribution. This is fun-
damental in order to interpret theIHS as a channel.

Proposition 6.4. Let I be anIHS with variable a priori. Then for allπ, π′ ∈ D(S)
such thatπ(s) 6= 0 andπ′(s) 6= 0 for all s ∈ S we have thatPIπ

= PIπ′
.

Proof. The secrets appears only once in the tree and only at the beginning of paths,
henceP([s] ∩ [o]) = α′(q̂)(s, ·)Pqs

([o]) andP([s]) = α′(q̂)(s, ·). ThereforeP([o] |
[s]) = Pqs

([o]), whereqs is the state after performings. Whileα′(q̂)(s, ·) is different in
Iπ andIπ′ , Pqs

([o]) is the same, because it only depends on the parts of the paths after
the choice of the secret.

Note that, although in the previous proposition we exclude input distributions with
zeros, the concepts of vulnerability and leakage also make sense for these distributions3.

This result implies that we can define the channel matrix of anIHS I with variable
a priori as the channel matrix ofIπ for anyπ, and we can compute it, or approximate
it, using the same techniques of previous sectionsSimilarly we can compute or approx-
imate the leakage for any givenπ.

We now turn the attention to the computation of the maximum leakage. The follow-
ing result from the literature is crucial for our purposes.

Proposition 6.5([3]). Given a channelC, arg maxπ∈D(S) L×(C, π) is the uniform dis-
tribution, andargmaxπ∈D(S) L+(C, π) is acorner pointdistribution, i.e. a distribution
π such thatπ(s) = 1

κ
onκ elements ofS, andπ(s) = 0 on all the other elements.

As an obvious consequence, we obtain:

Corollary 6.6. Given anIHS I with variable a priori, we haveML×(I) = L×(Iπ),
whereπ is the uniform distribution, andML+(I) = L+(Iπ′), whereπ′ is a corner
point distribution.

Corollary 6.6 gives us a method to compute the maxima leakages ofI. In the mul-
tiplicative case the complexity is the same as for computingthe leakage4. In the addi-
tive case we need to find the right corner point, which can be done by computing the

3 We assume that conditional probabilities are extended by continuity on such distributions.
4 Actually we can compute it even faster using an observation from [19] which says that the

leakage on the uniform distribution can be obtained simply by summing up the maximum
elements of each column of the channel matrix.
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leakages for all corner points and then comparing them. Thismethod has exponential
complexity (in|S|) as the size of the set of corner points is2|S|. We conjecture that this
complexity is intrinsic, i.e. that the problem is NP-hard.

7 Interactive Information Hiding Systems
We now consider extending the framework to interactive systems, namely to IHS’s in
which the secrets and the observables can alternate in an arbitrary way. The secret part
of a run is then an element ofΣ∗

S , like the observable part is an element ofΣ∗
O. The idea

is that such system models an interactive play between a source of secret information,
and a protocol or program that may produce, each time, some observable in response.
Since each choice is associated to one player of this “game”,it seems natural to impose
that in a choice the actions are either secret or observable/hidden, but not both.

The main novelty and challenge of this extension is that partof the secrets come
after observable events, and may depend on them.

Definition 7.1. InteractiveIHS’s are defined asIHS’s (Definition 3.1), except that Re-
strictions1 to 3 are replaced byα(q) ∈ D(ΣS × Q) ∪ D(Σ − ΣS × Q).

Example 7.2. Consider an Ebay-like auction protocol with one seller and two possible
buyers, one rich and one poor. The seller first publishes the item he wants to sell, which
can be either cheap or expensive. Then the two buyers start bidding. At the end, the
seller looks at the profile of the bid winner and decides whether to sell the item or
cancel the transaction. Figure 7 illustrates the automatonrepresenting the protocol, for
certain given probability distributions.

0

1 2

3 4 5 6

7 8 9 10 11 12 13 14

cheap expensive

poor rich poor rich

sell cancel sell cancel sell cancel sell cancel

2

3

1

3

3

5

2

5

1

5

4

5

4

5

1

5

3

4

1

4

3

5

2

5

19

20

1

20

Fig. 3: Ebay Protocol

We assume that the identities of the buy-
ers are secret, while the price of the item
and the seller’s decision are observable. We ig-
nore for simplicity the hidden actions which
are performed during the bidding phase. Hence
ΣO = {cheap, expensive, sell, cancel}, Στ =
∅, S = ΣS = {poor, rich}, and O =
{cheap, expensive}×{sell, cancel}. The distri-
butions onS andO are defined as usual. For in-
stance we haveP([cheap sell]) = P({q0

cheap
−→ q1

poor
−→ q3

sell
−→ q7, q0

cheap
−→ q1

rich
−→

q3
sell
−→ q7}) = 2

3 · 3
5 · 4

5 + 2
3 · 2

5 · 3
4 = 13

25 .
Let us now consider how to model the protocol in terms of a noisy channel. It would

seem natural to define the channel associated to the protocolas the triple(S,O,P )

whereP(o | s) = P([o] | [s]) = P([s]∩[o])
P([s]) . This is, indeed, the approach taken in [11].

For instance, with the protocol of Example 7.2, we would have:

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 3

5 · 4
5

2
3 · 3

5 + 1
3 · 1

5

=
24

35
. (2)

However, it turns out that in the interactive case (in particular when the secrets are not
in the initial phase), it does not make sense to model the protocol in terms of a channel.
At least, not a channel with inputS. In fact, the matrix of a channel is supposed to
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be invariant with respect to the input distribution (like in the case of the IHS’s with
variable a priori considered in previous section), and thisis not the case here. The
following is a counterexample.

Example 7.3. Consider the same protocol as in Example 7.2, but assume now that the
distribution over the choice of the buyer is uniform, i.e.α(q1)(poor, q3) = α(q1)(rich, q4)
= α(q2)(poor, q5) = α(q2)(rich, q6) = 1

2 . Then the conditional probabilities are dif-
ferent than those for Example 7.2. In particular, in contrast to (2), we have

P([cheap sell] | [poor]) =
P([poor] ∩ [cheap sell])

P([poor])
=

2
3 · 1

2 · 4
5

2
3 · 1

2 + 1
3 · 1

2

=
8

15
.

The above observation, i.e. the fact that the conditional probabilities depend on the
input distribution, makes it unsound to reason about certain information-theoretic con-
cepts in the standard way. For instance, thecapacityis defined as the maximum mutual
information over all possible input distributions, and thetraditional algorithms to com-
pute it are based on the assumption that the channel matrix remains the same while the
input distribution variates. This does not make sense anymore in the interactive setting.

However, when the input distribution is fixed, the matrix of the joint probabilities is
well defined asP∧(s, o) = P([s] ∩ [o]), and can be computed or approximated using
the same methods as for simpleIHS’s. The a priori probability and the channel matrix
can then be derived in the standard way:

π(s) =
∑

o

P∧(s, o), P(o | s) =
P∧(s, o)

π(s)
.

Thanks to the formulation (1) of the a posteriori vulnerability, the leakage can be
computed directly using the joint probabilities.

Example 7.4. Consider the Ebay protocolI presented in Example 7.2. The matrix of
the joint probabilitiesP∧(s, o) is:

cheap sell cheap cancel expensive sell expensive cancel

poor 8
25

2
25

1
25

2
75

rich 1
5

1
15

19
75

1
75

Furthermoreπ(poor) = 7
15 and π(rich) = 8

15 . Hence we haveL×(I) = 51
40 and

L+(I) = 11
75 .

We note that our techniques to compute channel matrices and leakage extend smoothly
to the case where secrets are not required to happen at the beginning. However, no as-
sumptions can be made about the occurrences of secrets (theydo not need to occur at
the beginning anymore). This increases the complexity of the reachability technique to
O((|S| · |O| · |Q|)3). On the other hand, complexity bounds for the iterative approach
remain the same.
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8 Related Work

To the best of our knowledge, this is the first work dealing with the efficient com-
putation of channel matrices and leakage. However, for the simple scenario, channel
matrices can be computed using standard model checking techniques. Chatzikokolakis
et al. [4] have used Prism [15] to model Crowds as a Markov Chain and compute its
channel matrix. Each conditional probabilityP(o|s) is computed as the probability of
reaching a state whereo holds starting fromthestate wheres holds. Since for the simple
version ofIHS’s secrets occur only once and before observables (as in Crowds), such a
reachability probability equalsP(o|s). This procedure leads toO(|S| · |O| · |Q|3) time
complexity to compute the channel matrix, whereQ is the space state of the Markov
Chain.

Note that the complexity is expressed in terms of the space state of a Markov Chain
instead of automaton. Since Markov Chains do not carry information in transitions

a b

ac ae bc be

a b

c e

Fig. 4: Automaton vs
Markov Chain

they have a larger state space than an equivalent automaton.
Figure 8 illustrates this: to model the automaton (left hand
side) we need to encode the information in its transitions
into states of the Markov Chain (right hand side). Therefore,
the probability of seeing observationa and thenc in the
automaton can be computed as the probability of reaching
the stateac. The Markov Chain used for modeling Crowds
(in our two honest and one corrupted user configuration) has
27 states. (See Appendix.)

For this reason we conjecture that our complexity
O(|O| · |Q|3) is a considerable improvement over the one
on Markov ChainsO(|S| · |O| · |Q|3).

With respect to the interactive scenario, standard model checking techniques do not
extend because multiple occurrences of the same secret are allowed (for instance in our
Ebay example,P(cheap sell|rich) cannot be derived from reachability probabilities
from the two different states of the automaton whererich holds).

9 Conclusion and Future Work

In this paper we have addressed the problem of computing the information leakage of a
system in an efficient way. We have proposed two methods: one based on reachability
techniques; the other based on quantitative counterexample generation.

We plan to use tools developed for counterexamples generation (in particular the
Prism implementation of both techniques presented in Section 5) in order to com-
pute/approximate leakage of large scale protocols. We alsointend to investigate in more
depth how the results obtained from those tools can be used toidentify flaws of the pro-
tocol causing high leakage.

In Section 7 we have shown that when the automaton is interactive we cannot define
its channel in the standard way. An intriguing problem is howto extend the notion of
channel so to capture the dynamic nature of interaction. Oneidea is to use channels with
history and/or feedback. Another idea is to lift the inputs from secrets to schedulers on
secrets, i.e. to functions from paths to distributions oversecrets.
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