
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/83531

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16167994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/83531

Logical Formalisation and Analysis
of the M ifare Classic Card in P V S

Bart Jacobs and Ronny Wichers Schreur
In s titu te for C om puting and Inform ation Sciences, R adboud U niversity Nijmegen

Heijendaalseweg 135, 6525AJ Nijmegen, T he N etherlands
{ b a r t ,ro n n y } @ c s .ru .n l

A b str a c t T he way th a t M ifare Classic sm art cards work has been un
covered recently [2,4] and several vulnerabilities and exploits have emerged.
This paper gives a precise logical form alisation of the essentials of the
Mifare Classic card, in the language of a theorem prover (PVS). The
form alisation covers the LFSR, the filter function and (parts of) the
au then tication protocol, thus serving as precise docum entation of the
card 's ingredients and the ir properties. Additionally, the m athem atics is
described th a t makes two key-retrieval attacks from [2] work.

1 Introduction
Theorem provers provide machine support for the formalisation and verification
of systems and their properties. They are used both for hardware and for soft
ware. A theorem prover may be seen as a sceptical colleague that checks and
documents all individual proof steps and helps with tedious details. There are
several sophisticated interactive theorem provers around, such as Isabelle [3,7],
Coq [6], NQTHM [1] and PVS [5,9].

In this paper we (happen to) use PVS. But we do not rely on any special
property or power of PVS. We shall try to abstract away from the specifics of
PVS, and formulate results in the language of (dependently) typed higher-order
logic, using a certain level of pretty printing. The point we wish to make is that
using a theorem prover is useful (also) in the area of computer security, for a
precise description and analysis of one’s system. As such it may be used as part
of precise documentation, or even as part of a certification procedure. As will
be illustrated, this works well for relatively unsophisticated systems, like smart
cards with low-level operations. The PVS formalisation is available on the web
1.

The formalisation presented in this paper is specific to the Mifare Classic card
and so it does not carry over to other systems. There is little or no uniformity
in (proprietory) cryptographic systems, and hence there can be no uniformity
in their formalisations. In a broader context this paper sets out to show that
formalisations contribute to the documentation and analysis of low-level security
protocols. The method as such does apply to other systems.
1 h ttp : //w w w .c s .ru .n l /~ ro n n y /m ifa re -p v s

http://www.cs.ru.nl/~ronny/mifare-pvs

The Mifare Classic is a contactless (RFID) smart card, sold by NXP (formerly
Philips Semiconductors), that is heavily used in access control and public trans
port (like in London’s Oyster card, Boston’s Charlie card, and the Dutch OV-
chipkaart). It is estimated that over 1 billion copies have been sold worldwide.
The design goes back to the early nineties, predating Common Criteria evalu
ation practices in the smart-card area. The card (and Mifare readers) contains
a proprietary encryption algorithm, called Cryptol. It uses a 48-bit linear feed
back shift register (LFSR), a device that is well-studied in the literature (see
e.g., [8, 10]), together with a special filter function that produces the keystream
bits.

The security of the card relies partly on the secrecy of this algorithm. Details
of Cryptol have emerged, first after hardware analysis [4]2, and a bit later3 after
a cryptanalysis [2]. The latter reference presents a mathematical model of the
card, together with several attack scenarios for key retrieval. The current paper
builds on [2] and elaborates certain mathematical (logical) details of this model
and these attacks. It does not add new (cryptographic) results, but provides
further clarity about the card. In doing so it points out where design flaws reside
and how they can be exploited.

The paper is organised as follows. It first describes some general properties of
LFSRs and filter functions, focusing on what is relevant here, and not developing
much meta-theory. Subsequently, Section 3 gives the crucial ingredients that
model the stream cipher Cryptol of the Mifare Classic card, and Section 4
shows how these operations can be rolled back. Section 5 illustrates how the
definitions and results from Section 3 establish (part of) the correctness of the
mutual authentication protocol between a card and a reader. Finally, Section 6
elaborates the mathematical properties underlying two attacks from [2], namely
the “two-table” and “odd-from-even” attacks.

2 Shift registers, generally
This section describes the formalisation of shift registers in PVS, together with
some basic properties. The feedback function will at this stage be a parameter.
A concrete version will be provided in Section 3.

The formalisation uses the PVS type bvec [N] of bit vectors of length N:nat.
The natural number N is thus a parameter. The type may be instantiated con
cretely as bvec [10], which yields the type of bit vectors of length 10. The type
bvec [N] is defined as the type of functions from natural numbers below N to
the type b i t = bool, with true and false as (only) inhabitants. One writes
f i l l [N] (b) :bvec [N] for the constant bit vector filled with b :b it at every posi
tion.

The logical description of LFSRs at this stage contains two parameters,
namely their length L fsrS ize:p osn at (a positive natural number) and a feed
back function feedback: [bvec [L fsrS ize] ^ b i t] that maps a bit vector of length
2 M ade public in a p resen tation a t the Chaos C om puter C lub, Berlin, 27/12 /07 .
3 In a le tte r of th e D utch Interio r M inister to P arliam ent of 12 /3 /08 .

L fsrS ize to a bit. For convenience we abbreviate this type of bit vectors as
‘s t a t e ’ in a PVS type definition:

s t a te : type = bvec [L fsr S iz e]
Then we can define the basic “left shift” function that captures the operation
of an LFSR. It is called s h i f t 1 in because it takes one bit and puts it into the
LFSR on the right, while shifting the whole LFSR one position to the left.

s h i f t 1 in : [s t a t e , b i t ^ s t a t e] =
A (r :s ta t e , b :b it) : A (i:b e lo w (L fsrS ize)) :

i f i < L fsrS ize - 1
THEN r (i+ 1) % shift left
e l s e b XOR feedback(r) % p u t new value a t i = LfsrSize - 1
ENDIF

A picture of a concrete LFSR appears in Figure 1 in Section 3. Notice that
the leftmost bit at position 0 is dropped, and that a new bit is inserted at the
rightmost position L fsrS ize-1 . Via recursion an “N-ary” version is defined in a
straightforward manner:

sh iftN in : [s t a t e , N :nat, b v :b vec[N] ^ s t a t e] = . . .
One can then prove basic properties, like:

s h if t N in (r , N, b v) (i) = r(i+N)
s h if tN in (s h if tN in (r , N1, bv1) , N2, bv2) = s h if t N in (r , N1+N2, bv1 o bv2)

where i < L fsrS ize-N and o is concatenation of bit vectors.
During initialisation a Mifare card and reader each feed certain (nonce) data

into their LFSRs, see Section 5; afterwards they use their LFSR to produce a
keystream by feeding it with 0s. This is captured by a special ‘advance’ function
in PVS that has the number n:n at of inserted zeros as argument:

advance : [s t a t e , nat ^ s t a t e] =
A (r :s ta t e , n :n at) : s h i f t N in (r , n , f i l l [n] (false))

It forms an action with respect to the monoid of natural numbers since it satisfies:
advance(r, 0) = r advance(r, n+m) = advance(advance(r , n) , m)

2.1 A d d in g a filter fu n ction p aram eter
We remain a bit longer within the generic setting of LFSRs. We now add another
parameter, namely a function f i l f u n : [s t a t e ^ b i t] that produces an output bit
for an arbitrary state. A basic (single) step in the Mifare initialisation phase of
card and reader involves processing one input bit while producing one (encryp
ted) output bit that is sent to the other side. There it is processed in a dual way,
as described by the following two functions.

s h if t in s e n d 1 : [[s t a t e , b i t] ^ [s t a t e ,b i t]] =
A (r :s ta t e , b :b it) : (s h i f t 1 i n (r , b) , b x o r f i l f u n (r))

r e c e iv e s h if t in 1 : [[s t a t e , b i t] ^ s t a t e] =
A (r :s ta t e , b :b it) : s h i f t 1 i n (r , b x o r f i l f u n (r))

These two functions satisfy the following “correctness” result.
V (r : s ta t e , b :b it) :

l e t (r 1 , b1) = s h if t in s e n d 1 (r , b) %b1 is transmitted, encrypted
in r e c e iv e s h if t in 1 (r ,b1) = r 1

This basic result requires some explanation: assume the two sides (card and
reader) are in the same state r before performing these operations. Assume:

— one side (actually the reader) performs s h if t in s e n d 1 and shifts one bit b
into its state (leading to successor state r 1), while transferring the encrypted
version b 1 = b x o r f i l f u n (r) of b to the other side;

— the other side (the card) performs r e c e iv e s h if t in 1 and receives this en
crypted bit b1 , decrypts it via b1 x o r f i l f u n (r) and shifts it into its own
state (which we assume to be equal r).

Then: both sides are again in the same post state, namely r 1 . Hence by per
forming these operations card and reader transfer data and remain in sync. In
this way they communicate like via one-time pads, except that the keystream
has cycles.

Also N-ary versions of the functions s h if t in s e n d 1 and r e c e iv e s h if t in 1 are
defined, with appropriate properties. They are used in the following two functions

load_and_send_reader_nonce : [[s t a t e , nonce] ^ [s t a t e , nonce]] =
A (r :s ta t e , p la in :n on ce) : sh ift in se n d N (r , NonceSize, p la in)

receive_reader_nonce : [s t a t e , nonce ^ s t a t e] =
A (r :s ta t e , cipher:nonce) : r e c e iv e s h if t in N (r , N onceSize, cipher)

which will be used in the explanation of the Mifare authentication protocol in
Section 5.

Of course, many more definitions and properties may be introduced for such
abstract LFSRs. We confine ourselves to what is needed in our logical theory
of the Mifare Classic. It includes a function to generate keystream bits, in the
following way.

stream : [s t a t e , n :n at ^ b i t] =
A (r :s ta t e , n :n at) : f i lfu n (a d v a n c e (r , n))

It is used in a similar function cipher that not only produces keystream, but
also the resulting state. It is defined with a dependent product type in:

cipher : [s t a t e , n :n at ^ [s t a t e , b v ec [n]]] =
A (r :s ta t e , n :n at) : (advance(r,n) , A (i:b elow (n)) : stream (r, i))

It is well behaved, in the sense that it satisfies:
c ip h e r (r , n+m) =

l e t (r 1 , c 1) = c ip h e r (r ,n) , (r2 , c2) = c ip h e r (r 1 ,m) in (r2 , c2 o c 1)

3 T he M ifare LFSR and filter function
The parameters (like L fsrS ize , feedback and f i l f u n) that were used in the
previous section are now turned into the specific values that they have in the
Mifare Classic.

The sizes are easy:
L fsrS ize : nat = 48 NonceSize : nat = 32

The Mifare feedback function, described as a generating polynomial, like in [4,2],
is g(x) = x48 + x 43 + x 39 + x38 + x 36 + x34 + x 33 + x 31 + x 29 + x 24

+ x 23 + x 21 + x 19 + x 13 + x 9 + x 7 + x 6 + x5 + 1 .

| 0 | i | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |1 0 |i i |1 2 |1 3 |1 4 |1 5 |1 6 |1 7 |1 8 |1 9 |2 0 |2 1 |2 2 |2 3 |2 4 |2 5 |2 6 |2 7 |2 8 |2 9 |3 0 |3 1 |3 2 |3 3 |3 4 |3 5 |3 6 |3 7 |3 8 |3 9 |4 0 |4 1 |4 2 |4 3 |4 4 |4 5 |4 6 |4 7 1

F ig u re 1. M ifare Classic LFSR.

In PVS this becomes, due to a reverse listing of entries:
MfCfeedback : [b v ec [L fsr S iz e] ^ b i t] =

A (r:b vec[L fsr S iz e]) :
r (0) xor r (5) xor r (9) xor r (1 0) xor r (1 2) xor r (1 4) xor
r(1 5) xor r (1 7) xor r (1 9) xor r (2 4) xor r (2 5) xor r (2 7) xor
r(2 9) xor r (3 5) xor r (3 9) xor r (4 1) xor r (4 2) xor r (4 3)

Notice that x 1 corresponds to r [4 8 - i]. The representation that we have chosen
is the one that is most convenient in formulating definitions and properties. Now
we can properly instantiate the theory of the previous section and obtain the
type for “Mifare Classic LFSR” as:

M fClfsr : type = s t a t e [L fs r S iz e , MfCfeedback]
We turn to the filter function for the Mifare Classic. It is constructed in

several steps, via two auxiliary functions MfCfilfunA and MfCfilfunB that each
produce one bit out of a 4-bit input. Such functions are usually described by 4
hexadecimal digits, capturing the conjunctive normal form. In this case we have
MfCfilfunA = 0x26C7 and MfCfilfunB = 0x0DD3, which can be simplified to a
disjunctive normal form:

M fCfilfunA(b3, b2 , b 1 , b 0 :b it) : b i t =
((—b3 A—b2 A—b1) V (b3 A -b1 Ab0) V (-b2 Ab1 A -b0) V (-b3 Ab2 Ab1))

M fCfilfunB(b3, b2 , b 1 , b 0 :b it) : b i t =
((b3 A—b2 A -b0) V (-b3 A b2 A -b0) V (b3 A -b2 A b1)

V (—b3 Ab2 Ab1) V (-b3 A -b2 A -b1))

The LFSR and filter function of the Mifare Classic can now be depicted in
Figure 2.

|4 8 |4 9 |5 0 |5 l |5 2 |5 3 |5 4 |5 5 |5 6 |5 7 |5 8 |5 9 |6 0 |6 l |6 2 |6 3 |6 4 |6 5 |6 6 |6 7 |6 8 |6 9 |7 0 |7 l |7 2 |7 3 |7 4 |7 5 |7 6 |7 7 |7 8 |7 9 |8 0 |8 l |8 2 |8 3 |8 4 |8 5 |8 6 |8 7 |8 8 |8 9 |9 0 |9 i |9 2 |9 3 |9 4 |9 5 l
.............................. ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^

I f a = 0x0dd3 | I f b = 0x 2 6 c7 | | f h = 0x26c7 | | f a = 0x0dd3 | | f h = 0x26c7 |
^ ^ ^ ^ ^

r f c = 0x44 5 7c 3b 3 \
^ 1
k e y s t r e a m

F ig u re 2. Crypto1.

One can then prove in PVS that these descriptions correspond to the conjunct
ive normal form given by the hexadecimal descriptions, but also to a “shift”
description with the above values 0x26C7 and 0x0DD3: for a bit vector b of length
4,

M fC filfunA (b(3), b (2) , b (1) , b (0))
= r ig h t_ s h if t(b v 2 n a t(b) , h2 o h6 o hC o h 7)(0)

M fC filfunB (b(3), b (2) , b (l) , b (0))
= r ig h t_ s h if t(b v 2 n a t(b) , h0 o hD o hD o h 3)(0)

where bv2nat(b) gives the numerical value of the bit vector b, r ig h t_ s h if t
performs a number of shifts, as described by its first argument, and h2 etc. is the
hexadecimal number 2, as bit vector of length 4 (with o describing concatenation,
as before).

Two of these “A” and three “B” functions are combined into a new function
that takes 20 bits input:

M fC filfun20(b:bvec[20]) : b i t =
MfCfilfunC(M fCfilfunA(b(0) , b (1) , b (2) , b (3)) ,

M fCfilfunB(b(4) , b (ô) , b (ô) , b (7)) ,
M fC filfunB (b(s), b (9) , b (1 0), b (1 1)) ,
M fC filfunA (b(12), b (1 3), b (1 4) , b (1 5)) ,
M fCfilfunB(b (1 ô), b (1 7) , b (1 s) , b (1 9)))

where MfCfilfunC = 0x4457C3B3. Finally, the Mifare Classic filter function is
described, following [2], as:

M fC filfun(r:M fC lfsr) : b i t = M fC filfun20(A (i:below (20)) : r (9 + 2 * i))
Important to note is the regularity of its application: on all odd positions 9, 11,
13, . . . , 47. This regularity is one of the weaknesses of the Mifare Classic, which
can be exploited in various ways as we shall see in Section 6.

Finally, here are some test results that are proven in PVS simply by a single
proof command “grind” .

MfCfilfun(hA o hE o hA o h6 o h1 o hC o h9 o hC o h1 o hB o hF o h0) = 1
M fCfilfun(h7 o hD o hA o h8 o h8 o h0 o h1 o h8 o h8 o h6 o h1 o h5) = 0

4 Rollback results
In this section we explore the structure described in the previous section, where
we focus on the possibility of rolling back left shifts of the Mifare Classic register.

A first step is that we can recover the leftmost bit that is dropped in a single
left shift step, if we know what the input bit is, via the following function.

le ftm o st : [M fC lfsr, b i t ^ b i t] = A (r:M fC lfsr, b :b it) :
r(4 7) x o r b x o r %plus previous X O R s, shifted one position
r (4) x o r r (8) x o r r (9) x o r r (1 1) x o r r (1 3) x o r r(1 4) x o r
r(1 6) x o r r (1 8) x o r r(2 3) x o r r (2 4) x o r r (2 6) x o r r (2 8) x o r
r(3 4) x o r r (3 s) x o r r(4 0) x o r r (4 1) x o r r(4 2)

so that we can define an inverse of the s h i f t 1 in function from Section 2 as:
sh ift1 o u t : [M fC lfsr, b i t ^ M fClfsr] =

A (r:M fC lfsr, b :b it) : A (i:b e lo w (L fsrS ize)) :
IF i > 0
THEN r (i - 1)
e l s e le f tm o s t (r ,b) % at position i = 0
ENDIF

and prove that they are indeed each other’s inverses:
s h i f t 1 o u t (s h i f t 1 i n (r , b) , b) = r s h i f t 1 i n (s h i f t 1 o u t (r , b) , b) = r

This shifting-out extends to an N-ary version, which is then inverse to N-ary
shifting-in. Interestingly, the earlier advance function can now be extended from
natural numbers to integers as:

Advance : [M fC lfsr, in t ^ M fClfsr] = A (r:M fC lfsr, n : in t) :
i f n > 0
then advance(r, n)
else sh if tN o u t(r , - n , f i l l [- n] (false))
ENDIF

We now get an action with respect to the monoid of integers:
Advance(r, 0) = r Advance(r, i + j) = Advance(Advance(r, i) , j)

where i , j : in t . This allows us to sm oothly compute a keystream not only in
forward but also in backward direction.

4.1 R o llin g back com m u n ication
So far we have concentrated on rolling back the LFSR. Since the Mifare Classic
filter function M fCfilfun does not use the bit at position 0 it can also be recon
structed after a shift-left. This is another design error. We proceed as follows.

sh iftou t_M fC filfu n (r:M fC lfsr) : b i t =
M fC filfun20(A (i:below (20)) : r (8 + 2 * i))

sh iftou tsen d 1 : [[M fC lfsr, b i t] ^ [M fC lfsr,b i t]] =
A (r1:M fC lfsr, b 1 :b it) : let b = b1 xor sh iftou t_M fC filfu n (r1)

in (s h i f t 1 o u t(r 1 , b) , b)
Then we obtain an inverse to the basic step of the card from Subsection 2.1:

sh ifto u tse n d 1 (s h if t in s e n d 1 (r , b)) = (r , b)
s h if t in s e n d 1 (sh if to u tse n d 1 (r , b)) = (r , b)

This can be done multiple times.

5 T he M ifare Classic authentication protocol
When a card reader wants to access the information on a Mifare Card it must
prove that it is allowed to do so. Conversely the card must prove that is a
authentic card. Both security goals are accomplished by a mutual-authentication
mechanism based on a symmetric-key cipher. Figure 3 pictures in detail how an
authentication proceeds.

Card Reader
0 anti-c(uid)
1 auth(block)
2 S1 — Kblock S1 — Kblock3 picks nc4 S2 — shiftinN(Si, uid ©nc)5 nc
6 S2 — shiftinN(Si uid ©nc)7 picks nR
8 (S3, {nR}) — send_reader_nonce(S2, nR)9 {nR}

10 S3 — receive_reader_nonce(S2, {n^})
11 (S4, ks2) — cipher(S3)
12 suc2 (nc) © ks2
13 (S4, ks2) — cipher(S3)14 verify suc2 (nc)15 (S5, ks3) — cipher(S4)16 suc3 (nc) © ks3
17 (S5, ks3) — cipher(S4)18 verify suc3(nc)

F ig u re 3. M ifare Classic A uthen tication Protocol.

Because Mifare Classic cards operate through radio waves, it is possible that
more than one card is within range of a reader. To distinguish different cards,
each card has a unique id that is send to the reader (step 0). This 32-bit uid also
plays a role in the cipher.

The information on the Mifare Classic is divided into blocks. The reader
starts an authentication session for a specific memory block (step 1). Each block
is protected by a different 48-bit key that is known by both the card and the
reader. Card and reader initialise their shift registers with this key Kbiock (step
2).

The card subsequently chooses a 32-bit challenge or card nonce (nC). This
card nonce is added (®) to the uid and the result is fed into the LFSR. Also the
card nonce is send to the reader in the clear, which then also feeds n C ® uid into
its LFSR.

Then it is up to the reader to pick a 32-bit reader nonce n R. This nonce is
also fed into the LFSR. After each bit the output of the filter function is collected
in the encrypted reader nonce {n R} (send_reader_nonce in step 8).

Upon reception of the encrypted reader nonce {n R} the card performs the
inverse operation of send_reader_nonce, that is receive_reader_nonce.

At this moment (after step 10) the cipher is initialised. The keystream now
consists of the output of the filter function after each shift of the LFSR. All
further communication is encrypted by adding the keystream to the clear text.
Decryption is simply adding the keystream to the cipher text.

The reader responds to the card’s challenge by sending the encrypted card
nonce n C, or rather the encryption of the expression suc2(nC). The function suc
is actually computed by another 16-bit LFSR that is used to generate the card
nonces. The card can decrypt the reader’s response and verify that it corresponds
to the expected result. This establishes that the reader can correctly encrypt the
challenge, which presumably means that the reader has knowledge of Kbiock and
thus is allowed to access that block.

To complete the mutual authentication, the card returns the encryption of
suc3 (nC). The reader can verify that the card’s response is properly encrypted,
which implicitly established the authenticity of the card.

To show that a reader and a card can perform a successful mutual authen
tication, we can show that after each step they are both in the same state. In
Figure 3 this means that every S n on the card side is equal to the S n on the
reader side. For most steps this is easy, since the card and the reader perform
identical operations. Only when the reader nonce is processed, do the card and
reader operate differently. The following PVS theorem states the correctness
property of this step.

V (s2 : s t a t e , plain_reader_nonce : nonce) :
LET

(r s 3 , encrypted_reader_nonce)
= load_and_send_reader_nonce(s2 , p la in_reader_nonce),

cs3
= receive_read er_n on ce(s2 , encrypted_reader_nonce)

IN
cs3 = rs3

6 Form alising attacks
This section formalises the essentials of two attacks from [2]. They form a post
hoc justification of the (C-code) implementation that underlies [2]. One can
justifiably ask: what is the point of such a formalisation? After all, the attack in
C can be executed and thus shows if it works or not. It does not need to work
all the time, under all circumstances and only needs to work as a prototype4, to
show the feasibility of exploiting certain card vulnerabilities.

Our answer is that the formalisation explains the details— including assump
tions and side-conditions— of the attacks and thus clearly demonstrates the pre
cise vulnerabilities on which the attacks are built. This clarity may help to
prevent or counter such vulnerabilities in similar situations.

6.1 T h e tw o-ta b le a ttack
The first attack that will be formalised comes from [2, §§6.3]. It exploits the fact
that the filter function M fCfilfun acts on only twenty LFSR positions, which
are all at regular, odd positions (9, 11, . . . , 47). Hence after shifting the LFSR
two positions the filter functions gets very similar input.

This attack proceeds as follows. Assume we have a certain amount of key-
stream (at least 12 bits long). The aim is to find “solutions” , namely LFSR
states that produces this keystream, via the filter function. The first step is to
define appropriate types for this setting:

keystream : type =
[# le n : {n:posnat | even ?(n)A n > 1 2 } , b i t s : b v e c [le n] #]

so lu tio n s (k s : keystream) : pred[M fC lfsr] =
{ r : M fClfsr | V (i:b e lo w (le n (k s))) : stream (r, i) = b i t s (k s) (i) }

The notation [# . . #] is used for labelled-product types. The length le n (k s)
of a keystream ks:keystream is thus even and bigger than 1 2 , with a bit vector
b it s (k s) of this length.

For both the evenly and oddly numbered bits of keystream, we can look at
the 20 bits of filter-function input that produce them. These will be described
as even or odd “subsolutions”, like in:

su b so lu tion s_even (k s) : pr e d [b v e c [le n (k s) /2 + 19]] =
{ s : b v e c [le n (k s)/2 + 19] | V (sh iftn r :b e lo w (le n (k s)/2)) :

M fC filfun20(A (i:below (20)) : s (s h i f tn r + i))
= b i t s (k s) (2* sh iftn r) }

sub solu tions_od d(ks) : p red [b v ec[le n (k s) /2 + 19]] =
{ t : b v e c [le n (k s)/2 + 19] | V (sh iftn r :b e lo w (le n (k s)/2)) :

M fC filfun20(A (i:below (20)) : t (s h i f t n r + i))
= b i t s (k s) (2* sh iftn r + 1) }

4 Unless one has m alicious intentions.

One sees that this formalisation makes the boundaries involved clearly visible.
In a next step we use the feedback function of the Mifare Classic LFSR to

relate these two subsolutions. In order to do so we need to split the original
feedback function, described in Section 3 as MfCfeedback, into two parts:

feedback_even(bv:bvec[24]) : b i t =
bv(0) xor bv(5) xor b v (6) xor bv(7) xor bv(12) xor bv(21)

feedback_odd(bv:bvec[24]) : b i t =
bv(2) xor bv(4) xor bv(7) xor b v (8) xor bv(9) xor bv(12) xor
bv(13) xor bv(14) xor bv(17) xor bv(19) xor bv(20) xor bv(21)

in such a way that the original feedback is obtained as:
MfCfeedback(r) = (feedback_even(A (i:below (24)) : r (2 * i))

xor feedback_odd(A (i:below (24)) : r (2 * i+ 1)))
The match that we seek between even and odd subsolutions is expressed by the
following relation between two bit vectors.

sh ift2m atch ?(eb v:b vec[25], obv:bvec[25]) : bool =
feedback_even(A (i:below (24)) : e b v (i))

= (ebv(24) xor feedback_odd(A (i:below (24)) : o b v (i)))
A feedback_even(A (i:below (24)) : o b v (i))

= (obv(24) xor feedback_odd(A (i:below (24)) : eb v (i+ 1)))
It is used to define matching subsolutions for a given keystream:

su b so lu tio n s(k s) =
{ (s : (su b so lu tio n s_ ev en (k s)) , t : (su b so lu tion s_od d (k s))) |

V (sh iftn r :b e lo w (le n (k s)/2 - 5)) :
sh ift2m atch ?(A (i:b elow (25)) : s (i+ s h i f t n r),

A (i:b elow (25)) : t (i+ s h i f t n r)) }
The main result then says:

V (st : (su b so lu tio n s (k s)) , sh iftn r :b e lo w (le n (k s))) :
M fC filfun(A dvance(m erge(ks)(st) , s h i f tn r -9)) = b i t s (k s) (s h i f t n r)

where the merge function yields an LFSR state:
m erg e(k s)(st) : M fClfsr = A (i:b e lo w (L fsrS ize)) :

if ev en ? (i) then p r o j _ 1 (s t) (i / 2) else p r o j _ 2 (s t) (i /2 - 1) endif

The main result expresses a correctness property: the bits of a keystream
can be obtained by applying the filter function to a merge of matching (even
and odd) subsolutions. As sketched in [2, §§6.3], the set of such subsolutions can
be calculated efficiently, from which a merged LFSR state results. The above
correctness result shows that this process can be seen as an inverse to the filter
function of the Mifare Classic card.

6.2 T h e od d -from -even attack
It is possible to improve upon the two-table attack when sufficiently many bits
of the keystream are known. In the previous section we saw that subsolutions
of even bits of the LFSR can be computed from the even bits of the keystream.
Suppose we have an even subsolution of 48 bits. The following property specifies
that a subsolution of 48 even bits corresponds to a given LFSR state.

StateAndEvens(r:M fC lfsr, e :b v e c [L fsr S iz e]) : bool
= V (i:b e low (H alfL fsrS ize)) :

e (i) = r (2 * i)A e (H a lfL fs r S iz e + i) = advance(r, L fs r S iz e) (2 * i)
Given such a even subsolution, we can algebraically obtain the odd bits of the
LFSR.

Consider as illustration the 4-bits LFSR with generating polynomial x 4 +
x 1 + 1. If the bits of advance(r, L fsrS ize) are named r4..r7, we can express
these in terms of initial LFSR bits r0..r3:

r4 = r0 © r3;
r5 = r1 © r4 = r0 © n © r3;
r6 = r2 © r5 = r0 © r1 © r2 © r3;
r7 = r3 © r6 = r0 © r1 © r2.

For an even subsolution the even variables r0, r2, r4 and r6 are known. This
leaves us with a system of four linear equations in four unknowns (the odd
variables r1, r3, r5 and r7). Solving the system gives

r1 = r2 © r4 © r6;
r3 = r0 © r4;
r5 = r2 © r6;
r7 = r0 © r4 © r6.

In particular, we now have expressed the missing odd bits of the initial LFSR
(r1 and r3) in terms of the bits of the even subsolution.

This computation can also be performed for the Mifare Classic LFSR. For
example the first odd bit equals e1 © e2 © e6 © e11 © e 13 © e19 © e21 © e22 © e23 ©
e25 © e28 © e30 © e32 © e34 © e36 © e37 © e38 © e39 © e41 © e42. The equations for the
value of the odd bits in terms of the even bits were obtained with an external
program, but their correctness can readily be verified within PVS.

V (r:M fC lfsr, e :b v e c [L fsr S iz e]) :
StateAndEvens(r, e) im plies (

(r (1) = (e (1) xor e (2) xor e (6) xor e (1 1) xor e (1 3) xor
e(1 9) xor e (21) xor e (2 2) xor e (23) xor e (2 5) xor
e(2 8) xor e (30) xor e (3 2) xor e (34) xor e (3 6) xor
e(3 7) xor e (38) xor e (3 9) xor e (41) xor e (4 2)))

AND
% sim ilarly fo r r(3), r(5) .. r(47)

These observations lead to the following efficient attack. Suppose we have
58 bits of keystream, that is we have 29 bits of even and odd keystream each.
Using the 29 bits of even keystream we do a depth-first search to find the even
subsolutions of 48 bits using the extension method of Section 6.1. For each even
subsolution we can compute the odd bits of the LFSR. These in turn determine
the odd bits of the keystream, which can be matched against the observed odd
keystream.

This attack is more efficient, because the odd subsolution is obtained directly
from the even subsolutions (an O(1) operation) whereas in the two-table attack
each even subsolution has to be matched against each odd subsolution (O (n2)
when done naively, O (n log(n)) using a sorting operation on the feedback values).

C onclusions
We have described the basic logical details of the Mifare Classic card, focussing
on its vulnerabilities and on two exploits. In the theorem prover PVS we have
proved essential correctness results, while abstracting away from for instance
matters of efficiency.

Many of the details of the formalisation are inherently specific to the Mifare
Classic card and its weaknesses. However, this work does show that formalisa
tions are relatively easy to do and can be both precise and readable. This makes
them a solid base for the documentation and analysis of cryptographic systems.
Thus, this paper suggests to card producers that they do such formalisations
themselves, before bringing a card onto the market.

A cknow ledgm ents
The reverse engineering and cryptanalysis of the Mifare Classic chip was very
much a team effort and we thank the other members of the Mifare team for their
hard work. Peter van Rossum in particular is acknowledged for his contributions
to this paper.

R eferences
1. T he Boyer-M oore theorem prover. w w w .co m p u ta tio n a llo g ic .co m /so ftw are /n q th m /.
2. F. G arcia, G. de Koning Gans, R. M uijrers, P. van Rossum , R. V erdult, R. W ichers

Schreur, and B. Jacobs. D ism antling M IFA RE Classic. In S. Ja jo d ia and J. Lopez,
editors, Com puter Security - E SO R IC S 2008, num ber 5283 in Lect. Notes Comp.
Sci., pages 97-114. Springer, Berlin, 2008.

3. T . Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/H O L — A Proof A ssistan t
fo r Higher-Order Logic. N um ber 2283 in Lect. N otes Comp. Sci. Springer, Berlin,
2002.

4. K. Nohl, D. Evans, S tarbug, and H. P lotz. Reverse-engineering a cryptographic
R FID tag. In 17th U SE N IX Security Sym posium , pages 185-194, San Jose, CA,
USA, 2004.

http://www.computationallogic.com/software/nqthm/

5. S. Owre, S. R ajan , J.M . Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and m odel checking. In R. A lur and T .A . Henzinger,
editors, C om puter A ided Verification, num ber 1102 in Lect. Notes Comp. Sci.,
pages 411-414. Springer, Berlin, 1996.

6. T he Coq proof assistant. h t t p : / / c o q . i n r i a . f r .
7. T he Isabelle p roof assistant. h t t p : / / i s a b e l l e . i n . t u m . d e .
8. W .G . Solomon. Shift register sequences. Aegean P ark Press, Laguna Hills, Ca.,

1982.
9. T he PVS Specification and Verification System. h t t p : / / p v s . c s l . s r i . c o m .

10. H.C.A. van T ilborg. Fundam entals o f Cryptology: a professional reference and,
interactive tutorial. Kluwer Academ ic Publishers, 2000.

http://coq.inria.fr
http://isabelle.in.tum.de
http://pvs.csl.sri.com

