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1 Introduction
In a series of recent papers [1, 2] we have started to study the problem of 
resolving the fixed points [3, 4, 5] in simple current [6, 7, 8, 9] extensions of 
permutation orbifold [10, 11] conformal field theories [12]. The aim of this 
paper is to give a general solution to this problem, going much beyond the 
specific examples discussed previously.

Simple currents J  are special fields: those with simple fusion rules with any 
other field in the theory. They are very im portant ingredients of a CFT, since 
they allow to modify the theory in a well-controlled way by projecting out some 
fields and re-organizing the remaining into new ones. In practice, what one 
does is: compute the monodromy charge of any field i with respect to (w.r.t.) 
J ,  Q j ( i ); project out those fields which have non-integer monodromy charge; 
organize the surviving fields into orbits under J .

In this paper we will mostly look at order-two simple currents, i.e. those 
with J 2 =  1, for which the J —orbits can have length equal to one or two at 
most. The normal (and easy to handle) fields are those with length two: (*, J-i).  
More special are those orbits with length one: J  • ƒ =  ƒ. A field ƒ satisfying 
this property is called a fixed point of the current J . Fixed points can arise only 
when the current J  has integer or half-integer spin, given by its weight hj.  In 
the extension, they give rise to more than one field, whose number is equal to 
the order of the current. In this paper then every fixed points will split into two 
fields in the extended theory.

In any CFT, two of the most im portant objects are the modular S  and T  
matrices. T  is a diagonal m atrix of phases and contains information about the
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weights of the fields in the theory; S  is symmetric and unitary and allows to

series) between two representations via the Verlinde formula [13]. W ithout fixed 
points, there is no difficulty in deriving the S  m atrix of the extended theory 
sometimes denoted by S, from the S  m atrix of the unextended CFT. On the 
contrary when fixed points are present, not only the extended S  matrix is 
problematic to derive but also it is affected by an intrinsic ambiguity related to 
the freedom tha t we have in choosing the order of the splitted fields coming from 
the same fixed point. This issue has already been addressed in the past [3] and 
the outcome was tha t we can write the m atrix S  in terms of a set of matrices 
S J , one for each simple current J , and hence the problem of resolving the fixed 
points is re-formulated as the problem of determining those S J matrices.

Using the formalism developed in [3], we can trade our ignorance about S  
with a set of matrices S J , one for every simple current J , according to the

These S^b}s are non-zero only if both a and b are fixed points. This equation can

prefactor is a group theoretical factor acting as a normalization and the ^ j ( J ) ’s 
are the group characters acting as phases. U nitarity and modular invariance of 
S  implies unitarity and modular invariance of the S J,s [3]:

In this way, the problem of finding S  is equivalent to the problem of finding the 
set of matrices S J.

The unextended theory th a t we can consider before the extension can be any 
CFT A.  It can be also a tensor product of different C FT ’s, *4.i<8>- • or even
a coset theory of the form G/H .  All these cases have already been considered 
in the past and their S J matrices are known by now. In fact, these matrices 
have been found for all WZW models [3, 14], their simple current extensions 
[4] and for coset conformal field theories [5]. In this paper we will consider the 
permutation orbifold as the unextended CFT, for which the S J matrices are in 
general not known yet. We restrict ourselves to the case of Z2 orbifolds [10, 11], 
where we mod out by the cyclic perm utation tha t exchanges the two factors:

Larger orbifolds would be possible [15, 16], but they are much more involved 
and we will not trea t them here.

The matrices S J are restricted not only by modular invariance and unitarity, 
but also by the condition tha t the full m atrix <S'(ajj)(6ij) acts on a set of characters 
with positive integer coefficients, th a t the Verlinde formula yields non-negative 
integer coefficients and tha t there is a corresponding set of fusing and braiding 
matrices tha t satisfy all hexagon and pentagon identities. In other words, all the 
usual conditions of rational conformal field theory should be satisfied. However, 
all these additional constraints are very hard to check, and modular invariance 
and unitarity are very restrictive already. Experience so far suggests tha t for 
generic formulas (i.e. formulas valid for an entire class, as opposed to special

compute the fusion coefficients (conceptually analogous to the Clebsch-Gordan

formula

J E G

^ ^ ( j ) ^ - ( j r ,  (1 .1 )

be viewed as a Fourier transform and the S J,s as Fourier coefficients of S. The

S J ■ (S'J )t =  1 (SJ - T Jf  =  (SJ)2 . (1.2)

‘-perm — A  x A / Z2 . (1.3)
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solutions valid only for a single RCFT) this is sufficient. We do not know any 
general results concerning the uniqueness of the solutions to (1.2), but there is at 
least one obvious, and irrelevant ambiguity. If S J satisfies (1.2), clearly U<iS JU 
satisfies it for any unitary matrix U tha t commutes with T.  Since we are aiming 
for a generic solution, we may assume th a t T  is non-degenerate; accidental 
degeneracies in specific cases cannot affect a generic formula. This reduces U 
to a diagonal m atrix of phases. The m atrix <S'(a i)(6j) must be symmetric, and 
this has implications for the symmetry of the m atrix S J. In particular, if J  is 
of order 2 (the case considered here), the matrix S J must be symmetric itself 
[3]. This requirement reduces U to a diagonal m atrix of signs. These signs 
are irrelevant: they simply correspond to a relabeling of the two components 
of each resolved fixed point field. Note tha t the matrix S  itself also satisfies 
(1.2), but here there is no such ambiguity: S  acts on positive characters, and 
any non-trivial sign choice would affect the positivity of So*. However, S J acts 
on differences of characters, and hence satisfies no such restrictions.

For WZW models it was possible to obtain an explicit character representa
tion of S J in terms of so-called “twining characters” [14]. In the present case, 
however, we resort to the strategy of obtaining an ansatz for S J based on its 
modular properties, along the lines of [5]. To arrive at this ansatz we make use 
of the following pieces of information:

• The m atrix S  of the unextended Z 2 orbifold, derived in [11]. This is the 
m atrix S J for the special case J  =  0, which fixes all fields in the CFT. We 
will denote it by S BHS.

• The m atrix S J for the anti-symmetric component of the identity [1]. This 
m atrix could be derived because this simple current undoes the perm uta
tion orbifold and gives back the original tensor product.

• The m atrix S J for some cases where J  has spin 1 [1]. Here we used the fact 
tha t the simple current extension can be identified with a known WZW 
model. This allowed us to determine S J for the vector current of SO(N)  
level 1.

• Using triality in S O (8) this could be generalized to the spinor currents of 
S O (8) level 1, and from there to all spinor currents of SO(2n)  level 1 [2], 
which have very similar modular properties.

Here we will use these previous works as “stepping stones” towards a general 
ansatz, which includes all the aforementioned results as special cases, and has 
a far larger range of validity. In particular, the results of our foregoing work 
[1, 2], were limited to low levels, such as in the permutation orbifold of B(n) 1 , 
D(n)  1 and A(\)k  (completely for k =  2 and k odd, partially for k even). By an 
educated guess, one could very well suspect th a t this formula would depend on 
a few quantities of the original or mother CFT A,  such as its S  matrix, its P  
matrix, the weight hj  of the simple current J , etc. This is the problem tha t we 
address and solve in this paper. The formula which we obtain is valid for any 
order two simple current J  of any order two permutation orbifold. In particular, 
this extends the foregoing results for B(n), D(2n) and A(l )  to  arbitrary level, 
but it also includes permutation orbifolds of many other WZW models such as 
C(n), E (7), as well as the perm utation orbifolds of many coset C FT ’s, such as 
the N  =  0 and N  =  1 minimal superconformal models and some of the currents
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of the N  =  2 minimal superconformal models. Not included are fixed points 
of simple currents of orders larger than two, which occur for example in the 
permutation orbifolds of A(2) level 3k, or D(2n +  1) for even level.

The plan of this paper is as follows.
In order to make this paper as self-contained as possible and to fix our notation, 
we start by reviewing the construction of the permutation or bifold, its SBHS 
m atrix [11], together with its simple current and fixed point structure [1].
In section 3, we give an ansatz for the simplified case when the mother theory 
has no fixed points. This restriction is suggested by the fact tha t some orbifold 
fixed points are not present, hence it is much easier to guess the ansatz. We 
prove th a t the simplified ansatz is unitary and modular invariant.
In section 4, we extend the ansatz to all cases and comment about its unitarity 
and modular invariance.
The complete proof tha t our ansatz is actually unitary and modular invariant 
is relegated to the appendix.

2 T he perm utation  orbifold
In this section we review a few facts tha t will be relevant about permutation 
orbifolds. A Z2 — permutation orbifold of a given CFT A  is defined as:

vAperm =  A  X * 4 /2 ^ 2  . ( 2 - 1 )

Moding out by Z 2 means tha t the spectrum must contain fields tha t are symmet
ric under the interchange of the two factors. This theory admits an untwisted 
and a twisted sector. The untwisted fields are those combinations of the origi
nal tensor product fields th a t are invariant under this flipping symmetry. Their 
weights are simply given by the sum of the two weights of each single factor. 
There are two kinds of untwisted fields:

• diagonal, denoted by (i ,x),  with x  =  0, 1, corresponding to the combina
tion </>i <8></>i +  ( — l ) x</>'(g></>i, where </>' denotes the first non-vanishing descen
dant of the A —field </>j, (corresponding to symmetric and anti-symmetric 
representations), with weight

2 hi -\- ' ^^,1 : (2*2)

• off-diagonal, denoted by (m n), w ith to < n, corresponding to  the combi
nation  <t>m <g> 4>n +  4>n <S> 4>m, w ith Weight

^(mn) =  hn . (^-3)

Twisted fields are required by modular invariance [10]. In general, for any field 
4>i in A,  there are two twisted fields in the orbifold theory, labelled by x  =  0,1. 
We denote twisted fields by (*, x)- Their weights were derived in [10] and are 
given by

hi c (A2 — 1) y .
t e  =  y  +  24 A  ̂ ~2 ’ (2'4)

where hi =  h(j>i and c is the central charge of A.  Here, A =  2.
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The S  m atrix of *4perm is known from [11]. We will call it S BHS and it is 
given by

q^ (mn)(pq) $mp $nq $mq $np (2.5a)

m n ) ( p , x ) =  0 (2.5b)

(̂p,4>)(q,x)
— 1 27Ti(0+x)/2 p
— 2  %p (2.5c)

=  2  ^  ^ (2.5d)
q Sim Sin (2.5e)

i,4>)(p,x)
— 1 „27Ti0/2 o
— 2 5 (2.5f)

where the P  m atrix (introduced in [17]) is defined by P  =  V T S T 2 S y /T .
If there is any integer or half-integer spin simple current in A,  it gives rise to 

an integer spin simple current in *4perm, which can be used to extend the orbifold 
CFT itself. We can denote the extended permutation orbifold by *4perm- In the 
extension, some fields are projected out while the remaining organize themselves 
into orbits of the current. Typically untwisted and twisted fields do not mix 
among themselves. As far as the new spectrum is concerned, we do know that 
these orbits become the new fields of *4perm, but we do not normally know the 
new S  matrix, S.

As already mentioned, the problem of finding S  is equivalent to the problem 
of finding the set of matrices S J , one for each simple current J . As a starting 
point, it will be useful to know what are the simple currents arising in the 
extended perm utation orbifold. From the sufficient and necessary condition 
S jq13 =  SooHS [I®], it is straightforward to discover tha t they correspond to the 
symmetric (tp =  0) and anti-symmetric (tp =  1) representations (hence diagonal 
fields) of the simple currents in the mother theory A  [1]. It will then make sense 
to denote simple currents of the permutation orbifolds as (J,ip), being J  the 
corresponding simple current in the mother theory. There are no other possible 
combinations of A — fields th a t become simple currents in the orbifold. Hence, 
one simple current in A  generates two simple currents in *4perm-

Another useful piece of information is the fixed point structure arising in 
*4Perm- By studying the fusion coefficients one can show tha t [1]:

• diagonal fields: (*, </>) is a fixed point of (J, tp) if tp =  0 and if i is a fixed 
point of J , i.e. Ji =  i;

• off-diagonal fields: (rati) is a fixed point of (J, tp)

— either if to and n are both fixed points of J , i.e. Jm =  m and Jn =  n,
— or if to and n are in the same J —orbit, i.e. Jm  =  n;

• twisted fields: (p , <j>) is a fixed point of (J, ip) if Qj(p) =  y  +  2 hj  mod Z, 
independently of (p.

For the twisted fixed points, see the proof1 in the appendix, formula (A.2). 
Observe th a t for (half-)integer spin simple currents we can drop the additional

In [1] we considered only (half-)integer h j .  In th is  paper we will have to  look a t  curren ts 
w ith h j  €  j  as well, since th ey  give rise to  half-integer spin curren ts in th e  orbifold and
those can have fixed points.
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2hj  from the monodromy charge.
Also note th a t there exist diagonal fixed points only for the symmetric repre

sentation of the simple current and tha t the twisted fixed points are determined 
by Qj(p),  the monodromy charge of p  w.r.t. J . Moreover, we will often have to 
distinguish between the two types of fixed points coming from the off-diagonal 
sector: for obvious reasons, we will call them  fixed-point-like off-diagonal fields 
and orbit-like off-diagonal fields respectively in the two cases.

3 Sim plified version o f the ansatz
In this section we give an ansatz for the S J m atrix of a (J, V0—'extended permu
tation orbifold in the case where the mother theory does not have fixed points 
and hence we can forget about orbifold diagonal fields [1], Since fixed points 
arise only for (half-)integer spin simple currents, examples when this happens 
are all those mother theories which admit simple currents with hj  G j Z 0(jd and 
tha t generate half-integer spin currents in the permutation orbifold.

This is our ansatz for the (J, -0)-extended Z 2-perm utation orbifold when the 
mother theory has no fixed points of the current J .

S g n U  =  0 (3-l a )

=  A - S mp (3.1b)(mn) (p,x)

___ =  B -  ei7r®j(m) PJ m „ ei7r(̂ +x) (3.1c)
(m » (p ,X ) 2 " ‘ ’P  K >

where A  and B  are phases tha t will be constrained by modular invariance to be 
equal to

A =  ei7r hj & B =  { - \ y i  e3™hj (3.2)

We will prove this in the next subsection. Actually, the phase A  is determined 
up to a sign: here we have made the choice of taking the positive sign. These 
sign choices are a remnant of the sign ambiguities one has in general in matrices 
S J. Most of the relative sign choices are fixed within blocks of the matrix, 
because we write it in terms of S  and P , but one off-diagonal choice between 
two blocks remains.

The notation in the ansatz is as follows. We denote by Qj(m)  the combina
tion of weights Qj(m) =  h j  +  hm — h j .m, while Qj (m )  is the monodromy charge 
of the field to w.r.t. the current J  in the mother theory which gives rise to the 
current (J, ip) in the perm utation orbifold (independently of its symmetric or 
anti-symmetric representation). These two quantities are obviously related by 
Qj{m) =  Qj(m )  mod Z.

This ansatz more or less interpolates our previous results [1, 2], up to some 
sign related to the ambiguities one has in choosing the order of the splitted 
fixed points. The phase in the twisted-twisted sector containing the hatted 
monodromy charge is necessary in order to make S J symmetric2 as it should

2 In fact one can check th a t
iirQj(m) p  _  iirQj(p) p  —  a

e r  Jm,p  — e r  m ,Jp  — -rt-mp

with
A rnp =  e i7ThJ V r rnm  ( e 2™ « - '«  S m lT ^ S lp )  V T PP
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be for order-two currents, since in general S£b =  Sba [3]. We need to put a 
hat on Q j  in order to avoid ambiguities deriving from having the monodromy 
charge in the exponent, since it is defined only modulo integers. Similarly to 
what happens in the BHS formula [11], the P  m atrix enters the twisted-twisted 
sector.

Observation: in [1] we derived an explicit formula for which was

q(J,'<P)=(0A) _ q  q  _  q  q  (o q \
(mn){pq) —  m P nq ¡Jmq&np- \ 0 - ° )

In the first line of our ansatz (3.1), instead, we have put S(mn)(pq) =  How 
can we combine these two apparently different formulas? Actually, this ansatz 
does not apply to the identity field “0” since it does have fixed points, namely 
all the fields of the mother theory. That might be the reason why the first 
line looks exceptional. However, it is very tem pting to guess th a t the ansatz 
should be something like S(mn)(pq) =  &nq ~ &mq &np f°r the general case 
when J  has fixed points in the mother theory, since it looks very much like 
our first expression and, moreover, it reduces to s =  0 when J  has no1 ‘ ‘ (_mn)(pq)
fixed points. We will see later tha t this is indeed the case, provided we make a 
■0—dependent sign change in our guess. Of course tha t still leaves the diagonal 
fields to worry about.

In order to give a flavor to the reader of the genre of calculations we have to 
perform to check the correctness of our ansatz, in the next two subsections we 
prove unitarity and modular invariance of These calculation are easy in
this simplified case and for this reason we will do it here. They become more 
lengthy in the general situation, where a few tricks are necessary, and we will 
do it in the appendix.

3.1 U n itarity  o f th e  sim plified ansatz

In this subsection we prove th a t the ansatz (3.1) gives a unitary S matrix. 
For this we need to compute three matrix elements. Since the current J  has 
no fixed points in the mother theory, the off-diagonal fields are only orbit-like. 
The calculation is pretty  straightforward, up to a few aside results th a t we will 
refer to as Corollary 1 and Corollary 2, proven in the appendix (see (B.6) and 
(B.12)). We recall them  here:
C orollary 1.

] T  Sip s;0 = 1 Sy + ( - 1 ) ^ \ S j i j  . (3.4) 

p  s-t- ( p , x )  f-p- of (J,V 0  

C orollary 2.

'y^, Pp,Ja Pja,q =  &pq (3-5)
a  s . t .  ( a , x )  f -P -  o f  (Ji ' tp)

(we have in mind the situation when p  and q give rise to twisted fields in the 
extension of the perm utation orbifold, i.e. Qj(q)  =  -f +  2hj).

and A mp  is sym m etric.
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Note tha t the sums are over a selection of fields and not over all the fields 
of the mother theory, hence we can solve it using a suitably defined projector 
operator (see (B.3)):

u (p ) =  ~ e2ilrn(-Qj(-p)- ^ - 2hj) . (3.6)2
n = 0

It is easy to see that

TTY n't -  J 1 i f  =  i + 2 h J  (m o d  (o 7 \
0 if Qj(p) ±  t  +  2hj  (mod ^

Now the strategy to show unitarity is to compute the quantity • S'WVOt
and prove tha t it is equal to the unit matrix.
i) Off-diagonal-Off-diagonal

c(J>) o(J» t  ,
2^1 (m n ) ( a b ) (a b ) ( pq ) +  2 -^ t (m „ ) ( a 7 )  U 
(ab) ( i i)

1
0 + E  E  SmaS-ap

^a,(a,£) f.p.of (J,ift)

2 ^  Sma S*p =  2
a,(a,£) f.p.of (Jjip)

\ s mp + { - l f +Ahj^ 5 j m . &m p  •

We have used the fact tha t Sjm}P =  0, since m < n and p < q. The term  within 
squared brackets comes from Corollary 1. 
ii) Off-diagonal-Twisted

( S W )  ■ S U'W ),  , =

=  s ^ i =Z_/ (mn){ab) (ab){p,X) (mn)(a,£) (a,£)(p,x)
(ab) (a, £)

1 1 
=  0 +  A B * J 2  E  2 e^ Qj{a) PJ-,p gi" (i+X) =  0 •

 ̂a, (a,£) f.p.of (J,ip)

The last sum vanishes because of e™̂  =  0.

9



in) Twisted-Twisted

K ' {p , x ) { q , 4>)

= V  __ + V  ___Sl(d^}I__ =
(P , x ) { m n ) ( mn){q,<p) ( p , x ) ( a , £ )  (a ,£ ) (g ,0 )

(m n > (a,  £)

=  Spm Smq +
(m n )

1 _ 1 1 -
_ i _ V ^  _ e i n Q j ( a ) p  e ™ { x + £ )  _  e ~ i n Q j ( a )  P *  e ^ ( f + 0 )
~  /  v /  v 2  2  Ja , q

a,  (a ,£ ) f.p .o f ( J,ift)

E Q  Q *  i I « ^ ( x + 0 )  p  T p *  _
J m g T  ^  c  /  v r P , J a  r  J a , q  ~

-  S  S* 4- 1 a  — 1 A + 1  P™-(x+0) A — A s M
2  /  V ^ P m  m q  ' c  2  ^  _  2  2  _  *

m
In the last lines we have replaced ^2(mn\ =  \  exploited unitarity of the

( m n ) , n = J m  0 _ f p  o f

i  ] T  Spm S*mq +  \ s pq =  \  Spq +  \

=  i  y
' { m n )  2 ¿—«m

original and used Corollary 2.
Together, i), ii) and in)  say tha t S is unitary.

3.2 M odular invariance o f th e  sim plified  ansatz
In order to check modular invariance, we will use the relation (<S'(j >1W t(j >'!W)3 =  
(S'W1/1))2, but rewritten as

y (J > )_1<5 '(J> )y(J>)_1 _  gWVOyWVOgWVO ("3 g)

This is a much more convenient expression since involves no sums on the l.h.s. 
and only one sum on the r.h.s. We will have to prove this identity sector by 
sector. It will be useful to recall here equation (C.7) for the P  m atrix with one 
J —translated index:

P j p,q =  V f p ] T  e2i^ ( ™ )  Spm T l  Smq V f q , (3.9)
m

where Qj(p) =  hj  +  hp — hjp. We will use the notation T -̂ =  Tj Sij for the 
(diagonal) T  matrix.

i) Off-diagonal-Off-diagonal 
l.h.s.:

V J{mn){pq) {mn) (mn^  {vq)
r.h.s.:

( g{J,1p)rp{J,Ip) g{J, Ip)
( m n ) ( p q )

( m n ) ( a b )  ( ab) ( ab){pq) 1“  ( m n ) ( i i )  ( i i )  ( i i ) ( pq )
i ab) ( i i )

1
0 +  5 3  E  A 2 S maV r a ei^ S ap = 0.

^ a , ( a ,£ )  f.p .o f ( J,ift)
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The last equality comes from =  0- Hence:

fg(J,1p)rp(J,1p)g(J,1p)\ _   ̂ (3.10)
V / (rnn)(jpq)  V / (rnn) (pq)

ii) Off-diagonal-Twisted 
l.h.s.:

i'ji(J,ip) 1 c(J,'tp)rr(J,'tp) =  rr(J,'lP) 1 giJrf1)
V / ( m n ) ( p j c )  (mn)(p,x) (p(mn) (mn)(i3T) (P-X)

T ~ 1 T ~ 1 A  <? \ / T  e ~ i7I'Xm n ^ v p c
r.h.s.:

< g{J,Ip) rp{J,Ip) g{J,Ip)
(mn){p,x)

=  r p ( J , t p ) s ( J , i p)___  , g W V O _____t M ) s ( J s P)_____  =
Z - /  (m n ) ( a b ) (ab ) ( ab ) ( p , x )  J  (m n ) ( a ,£) (a,£) ( a !^ ) ( p !x )
(ab) ( i i)

 ̂ 1 - 
=  0 +  5 3  E  A S m a V r a B  -  PJa,p eiw« +*> =

f.p .o f ( J,ift)

= A B  5 3  Sm a V f a ei7rhj V f a 5 3 e2-Q^(0 S al i f  S lp V f p e*
a,  (a ,£ ) f.p .o f ( J,ift) ^

(
A  B  ei7Thj 5 3 53 S«1 I e2i*Qj{l) T? Slp V f p ei7r* .

\ a ,  (a ,£ ) f.p .o f (Jjip)

We used (C.7) in the third line. The sum within round brackets in the last 
line can be further simplified by using the projector as in (B.3) and the relation 
T ~ 1S T ~ 1 =  S T S  for the S  and T  matrices of the original theory: in fact,

5 3  SmaTa Sal =  ^2u(a, )  SmaTa Sal =
a, (a,£) f.p.of (Ĵ ip)

= Y . \ Y . e2i*k{Qj{a)~i ~2hj) S™T-S-1 =
a k = 0

=  \  5 3 e - 2- fc( i  + 2̂ )  Y ^ S j ^ a T a S a t  =
k = 0 a

=  \  5 3  s ma Ta Sal +  i  ( -1  f + 4hJ 5 3  Sna Ta Sal =
a a

=  i  [(S T S ) ml +  ( -1  f +4hj(STS)nl] =

=  1 [ ( T - K S T - X a  +  i - l f ^ n ^ T - K S T - 1)^] .
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Then, going back to our main expression and recalling tha t S j i j  =  e2m(^J '̂) Sij 
[8], we have:

_  . . .  _
/  (mn)(p,x)

=  A B  ei7rhj I Y P ™  S™i T r 1 +  ( ~ l f +4hj T - 1 Snl Tt~ x] T 2 Slp V f p e
I

=  A B  ei7rhj \ Y , \ T ml SJmJ T,-1 +  ( - l f + 4h  ̂T ^ 1 SJnJ T f 1] T 2 Slp V f p e =
I

=  A B  ei^hj i  [Tml (S T S V f ) np +  (_1)^+4^  y - 1 (S T S V f ) mp] ei7r* =

=  A B  e™hj 1 [ T - 1 T - 1 Snp V T ; 1 +  ( - l f + 4^  T - 1 T “ 1 Smp V f ^ }  =

=  A B  ei7rhj 1 Tmx T - 1 (Snp +  ( - 1  f + 4hj Smp) V T ^  e =

=  A B  ( - i f +4hj e™hj T'-1 T - 1 Smp ei7r* .

We have continuously used the relation T ~ 1S T ~ 1 =  S T S  here. Hence

f g ( J , 1 p ) r p ( J , 1 p ) g ( J , 1 p ) \  ___  _   ̂ (3 -11 )
V / (mn)(p,x) V ' (mn)(p,x)

provided
B =  ( - l f + 4hJ e-™hj =  ( - i f  e3™hj . (3.12)

in) Twisted-Twisted 
l.h.s.:

V / IvJAla^A p (p,4>)(q,x) *-(p̂ >)(<hx) {p,4>){q,x)
1 r 1 v 1T i~) * (m\ I m  ̂ r . / m ^
2

r.h.s.:

' (p,4>)(q,x)

f—' (P,4>)(ab) (afe) (ab)(q,X) (P>0)(“>£) (“.?) (“,£)(?,x)
( ab ) ( a ,5)

=  Y J A 2 Spa Ta TbSaq +
(ab)

1 1 1
+  2 e i7rQ j(a) P i> ,^  e i7r(0+^  \ /~Ta -  e “ ^ Q j(a )  P Ja?g

^ a, (a ,£ ) f.p .o f ( J,lft)

=  ¿ a 2 Y , S PaTa T j a Saq +  0.
a

The contribution from the twisted-twisted sector vanishes due to =  0-
Moreover, we can re-express T j a in terms of Ta using T j a =  Ta e2m(hJ-Qj(a)) ̂
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Hence:

f <5 '(J> )y(J>)<5'(J>)Aj _  . . .  _
'  '  (jp,<t>){q,x)

_  }_ a2 \  '  a  m 2  2 i i r ( h j  — Q j ( a ) )  q  _
—  2 /  / Pa ± a t' J aq —

a

=  \ A 2 e2i7Thj ] T  e2i" Qj(a) Spa T 2 Saq =
a

=  l A 2 e ™ h j  V T p 1 P Jptq V T ^ 1 (3 .1 3 )

We have also used the freedom to replace —Q j ( a ) with Qj(a)  in the phase ex
ponent appearing in the sum over a, which is allowed since both these quantities 
are either integer of half-integer and differ only by integer numbers. In the last 
line we have used (C.7) to rewrite the sum over a in terms of the P  matrix. 
Then, by comparison we get:

f  g(J ,1p) rp(J , 1p)  g ( j , 1 p ) r j i ( j , i p ) - 1'\ ___  ___  (3 .1 4 )
'  '  (p , 4>)(q, x)  '  H p , < P ) ( q , x )

provided
B =  A 2 e™hj ==> A 2 =  ( - i f  e2ilrhj . (3 .1 5 )

Together, *), i i )  and H i )  say tha t is modular invariant. In addition,
this calculation fully fixes the phase B , while A  is fixed up to a sign. For future 
convenience, we recall their values here:

A 2 =  ( - i f  e2i7rhj & B =  ( - i f  e3i7Thj . (3 .1 6 )

4 T he general ansatz
Here we extend our ansatz to the most general case, including when the simple 
currents of the mother theory admit fixed points, giving rise to the diagonal 
sector in the permutation orbifold. The most general ansatz is:

(m n ) ( p q )
_  q j  q j  _i_ f _ l  q J  Q J

m p  n q  ' v / m q  n p (4.1a)

gW VO___
(■mn)(p,x)

j  0  if J  • TO =  TO
1 A Smp if J  • t o  =  n

(4.1b)

___
(p,<P)(q,x)

=  R — e™Qj(p) p  g*7r(0+x) 
2 ■JPi'i (4.1c)

q ( J >V0
a {%m,x)

_ 1 q j  q J
—  ^  Jij Jij (4-ld)

o ( J > )
( i ,<p)(mn)

_ q  J  q j
irri i n (4-le)

gWVO___
(i,<P)(p,x)

=  C^e^Sip. ( 4 - I f )

Using modular invariance, we show in the appendix tha t these phases satisfy 
the following relations:

B =  ( - i  f  eSi7Thj , A 2 =  C 2 =  ( - i f  e2i7rhj , (4.2)
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hj  being the weight of the simple current, which might depend on the central 
charge, rank and level of the original CFT. These relations comes from modular 
invariance: so, we can see tha t B  is fully fixed, while A  and C  are fixed up 
to a sign. We could also have inserted a phase E  also in the matrix element 

\ ■ Modular invariance would then constrain it to E 2 =  1, hence E  would 
have been just a sign. As before in the simplified ansatz, these sign ambiguities 
are completely understood in terms of the general sign ambiguities of fixed point 
resolution matrices. W ithin the three blocks (diagonal, off-diagonal, twisted) 
they are fixed because we write all m atrix elements in terms of S J, S  and P , 
but this still leaves three relative signs between the blocks. These signs are fixed 
by requiring tha t the result should recover the BHS matrix. The latter has no 
free signs, because it is defined by a character representation. This therefore 
defines a convenient canonical choice for the signs. The special case of the BHS 
formula corresponds to hj  =  tp =  0 for the identity, hence B =  1, while A  and 
C  are just signs, tha t must be taken positive. However, we emphasize tha t any 
other sign choice for A, C  or E  is equally valid; it is analogous to a gauge choice. 
Note th a t some of the matrices presented in our earlier work [1] [2] use different 
sign conventions.

A comment about the matrix element ----  is in order. We can actually
(■m n ) ( p , x )

prove tha t the quantity Smp vanishes when J  ■ m =  m  and ip =  1 and use the 
second line of the ansatz also in this case. In fact, first of all, in order for a 
fixed point of J  to  exist hj  must be (half-)integer and as a consequence we can 
drop the 2hj  addend from the monodromy of p>, Qj(p) =  y ; secondly, using 
S j m,p =  e2i’nQj^  Smp [8], we have:

Smp =  SJm,p =  e2i^ ^  Smp =  e2i* i  Smp , (4.3)

implying tha t the non-identically-to-zero option of S ----  actually also van-
(■m n ) ( p , x )

ishes when J  ■ m =  m  and tp =  I. So in our ansatz we are claiming that
----  vanishes also for ip =  0 when (to«.) is fixed-point-like. We also recall

(■m n ) ( p , x )
tha t for orbit-like off-diagonal fields there exists a similar relation between Smp 
and Snp:

Snp =  SJm,p =  e2i^ ^  Smp =  e2i* i  Smp, (4.4)

but we cannot infer much from here. It is crucial in these manipulations that 
the field p  gives rise to a twisted field in the extended orbifold.

4.1 U n itarity  and m odular invariance
Unitarity and modular invariance of the ansatz are referred to the appendix. 
The calculation is cumbersome and some machinery needs to be developed. 
Nevertheless, we would like to stress a few facts about the calculation.

In order to prove unitarity, we show that

. ^(J.vOt =  i (4.5)

The calculation is lengthy, but interesting since we are able to derive a few 
non-trivial aside identities tha t are collected in two corollaries (already stated 
before) having to do with projected sums of selected elements of the unitary
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matrices S  and P  of the original theory. The result is non-trivial but in the end 
simple.

Modular invariance is the statem ent tha t (S'(J’̂ ))2 =  (S where 
y ( J>) is the T  m atrix of the perm utation orbifold restricted to the fixed points 
of (J, ip). Using this relation to prove modular invariance would be computa
tionally heavy due to the double sum arising in the cube. Instead we re-write 
the constraint as

_  g W V O y W V O (4  0 )

which is simpler since it involves only one sum on the r.h.s. and no sums at 
all on the l.h.s. Surprisingly enough, we find th a t the phases in the ansatz do 
not depend explicitly on the central charge c of the mother CFT (the central 
charge of the permutation orbifold is c =  2c). The reason for this is tha t the T  
matrices of the orbifold theory re-arrange themselves into suitable functions of 
T  matrices of the original theory. Explicitly (recall T  is diagonal: =  Tj Sij):

T ( J > )  = T T  T ( W )  =  T 2 t GW )  =  e i K X  ^
(ran) rn n ’ (̂ ,0) 1 (p x) P v '

hence the central charge gets always re-absorbed in T.  The phases A, B  and 
C  will be constrained by this calculation to be equal to the expressions given 
earlier.

4.2 Checks
Although we have an explicit proof tha t our results satisfy the conditions of 
modular invariance, we do not have a general proof tha t all other RCFT condi
tions are satisfied, although the simplicity and generality of the answer suggests 
tha t this is indeed the right answer. The next issue one could check is the fusion 
rules of the extended CFT. Currents of order two th a t have fixed points must 
have integer or half-integer spin. In the latter case there is no extension, but one 
may consider instead the tensor product with an Ising model, extended with an 
integer spin product of currents. Indeed, also for integer spin currents one can 
consider arbitrarily complicated tensor products and any integer spin product 
current. All of these should give sensible fusion rules. We have built (4.1) into 
the program kac [19], which computes fusion rules for simple current extended 
WZW models and coset C FT ’s, and this gives us access to a huge number of 
explicit examples. We have checked many simple extensions, and also combi
nations of perm utation orbifolds. For example, denote by X  the permutation 
orbifold of (7(3)2. It has 85 primaries and four simple currents, the identity, 
the anti-symmetric component of the latter (which has spin 1) and two spin 3 
currents K  and L originating from symmetric and anti-symmetric product of 
the simple current of (7(3)2. We can now tensor X  with itself, and extend the 
result with (K , K ) or (K,L)  or (L,L).  This gives three distinct C FT ’s with 
2578, 2284 and 2102 primaries respectively. Checking all their fusion rules is 
very time-consuming, so we have just checked a large sample. The fusion rules 
we have checked in these cases, and many others, are indeed correct. Note that 
our formalism allows us to consider also the perm utation orbifold of X  x X ,  and 
the simple current extensions thereof. For all these C FT ’s the fusion rules are 
now explicitly available. Furthermore, for all these cases we can compute the
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boundary and crosscap coefficients as well as the annulus, Moebius and Klein 
bottle amplitudes using the formalism of [20] (generalizing earlier works, such 
as [21, 22, 23], and references cited in this paper).

A general proof of fusion rule integrality is beyond the scope of this paper, 
but may be doable. The essential ingredient should be the observation at the 
basis of BHS, relating permutation orbifolds to orientifolds. Indeed, this is evi
dent from the appearance of the P  m atrix in the twisted field m atrix elements. 
The proof of integrality is therefore presumably similar to the proof of (annu- 
lus+Moebius) integrality in the case of orientifolds, as was argued in [11] for the 
identity current. In [24] such a proof was given for the orientifold formalism of 
[20] for all possible simple current extensions. It is very likely th a t this proof 
can be adapted to cover the case of extensions of permutation orbifolds.

5 C onclusion
In this paper we have addressed the problem of fixed point resolution in (exten
sions of) permutation orbifolds or equivalently the problem of finding the S J 
matrices for those classes of theories.

The S J matrices appear in many places both in conformal field theory and 
string theory. They are im portant in their own right as a tool in conformal field 
theory, in connection with the problem of resolving the fixed points in simple 
currents extensions of a given CFT. Via formula (1.1), they provide us with the
S m atrix of the extended theory, which in turn  gives the fusion coefficients of 
the product of two representations via the Verlinde formula.

In string theory (and in boundary CFT), they also appear in several con
texts. An example is the connection between the S J matrices with branes and 
boundary coefficients [20]. The most im portant application in string theory is 
probably when projections are involved (e.g. GSO or SUSY constraints): in 
fact, al sorts of projections are powerfully realized by simple current extensions 
of a given theory, hence the knowledge of the S J matrices becomes relevant.

This particular kind of orbifold tha t we are considering here might be inter
esting for phenomenological applications, especially in view of Gepner models. 
Gepner models [25, 26] are built out of (extensions of) tensor products of N  =  2 
minimal models. A minimal model is a product of parafermionic theories [27] 
SU(2)k/U(l)  and a S O (2) factor. In case (at least) two of the factor groups 
are the same, we can then consider the permutation orbifold arising from this 
Z2 symmetry tha t switches the factors around and extensions thereof.

The results of this paper allow us to make extensions of perm utation orb
ifolds. We propose an ansatz for the S J matrices valid in the general case of 
simple currents of order 2. We have also shown how to get back the BHS formula 
when we extend the perm utation orbifold by the identity current (J, ip) =  (0, 0). 
This ansatz is unitary and modular invariant. Moreover, unlike our previous 
results [1] and [2], it does not depend on any explicit details of the particular 
CFT used in the mother theory, other than its modular properties. It depends 
only on the weight hj  of the current used in the extension (via phases) and on 
the matrices S  and P  (or, equivalently, T) of the mother theory. This implies 
tha t it can be used freely in any sequence of extensions and Z2 permutations of 
C FT ’s, thus leading to a huge set of possible applications.

There are still further generalizations possible: the extension of this result
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to higher order permutations and the extension to higher order currents, and 
the combination of both.
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A T w isted  fixed points

In [1] we showed tha t twisted fixed points (p, £) of the current (J, ip) have mon- 
odromy charge Qj(p) =  y  (mod Z) when the simple current J  has (half-)integer 
spin hj.  In this appendix we will show th a t for simple currents with spin 
hj  =  |  Z0dd twisted fixed points have monodromy charge Qj(p) =  (mod 
Z).

The starting point is the constraint (3.29) of [1], which reads:

Sj„ Ppn Pi.Pn  n p '

s<On
(A.l)

On the l.h.s. we can use Sj^n =  e2mQj(n) Sin (which applies also to the case
I =  0, i.e. the identity) and expand the P  m atrix using P  =  a/T  S T 2 S  a/T. So 
we can write:

l.h.s. ei ^  e2 i V t p Spl T 2 sln V r n • Vr*n s*nm T * i  s*mp, Vr*p
n , l , m

eW  £  V t p Spl T 2 ■ 5 j l }m ■ T * l  S*mp, V r p, =
l , m

ei ^  £  V t p Spl T 2 T*2Jt S*J i y  Vr*p, =

s % P> v r p, =

02 - n i { h j - Q j { l ) ) S*jiy V T p,

= ^  [e2™ fcj] 2 £  V t p spl s x P, Vt *p, =
I

=  ei ^  [e2*ihj j 2 j 2  e- 27TiQj^'^V fp s pl sfp, Vt*p, =
I

=  e i ^  [e 2 * i h j j 2 e - 2 ■*iQj{p’ ) ^ f p  . 6 p p , . =

=  e™'  ̂ [e2lrihj] 2 e~2lTiQj(p) §pp,

Here we have removed the phase involving Qj(p)  within squared brackets, since 
it is always (half-)integer for order-2 simple currents, so its square is one, but 
we have retained hj  since it gives a non-trivial phase when hj  G | Z 0dd, while 
it is negligible when hj  is (half-)integer. Hence our constraint (A.l) becomes:

e 2 n i Q j (P ) =  e i ^  [ ¿ 2 * i h j j 2 ^  Q j ^  =  ±  +  2 h j  ( m o d  Z ) _ ( A . 2 )

This is equivalent to say that

Q j {p ) =
y  for hj  G Z or hj  G Z +  ^

^  f o r f e j G ^ d d
(A.3)
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B U nitarity
In this section we prove unitarity of the ansatz via the relation S ■S WVOt =  1. 
Before doing this we will need a few preliminary results tha t will be useful in 
the proof.

B .l  U sefu l corollaries
At some point we will need to  compute

E  s^ svo- (R1)
P s .t .  ( p , x )  f-p. o f {J,ip)

We will mostly consider (half-)integer spin simple currents J , for which (p , x) is 
a fixed point of (J,ip) when Qj(p) =  y . The generalization to the case where 
hj  £ |  Z0dd is achieved by the shift

tp ^  tp +  Ahj ++ { - i f  -► ?

but the current J  has no fixed points in this situation.
L em m a.
We restrict ourselves to order-two simple currents, for which the monodromy 
charge of every field is either integer or half-integer. Define the projector'.

I!(p) =  -  5 3  e2ilrn(-Qj(-p)- i - 2hj) . (B.2)2
n = 0

It is easy to see that

1 if Qj(p) =  t  +  2hj  (mod
^  ’ 0 if Qj(p)  ^  f  +  2hj  (mod Z) (B'3)

Since there are only two possibilities for the monodromy charge of order-two
f  +  2hj  (mod Z) or Qj{p) =  1 -  fsimple currents, we have either Qj(p)  =  -f +  2hj  (mod Z) or Qj(p) =  1 — y  —

2hj  (mod Z).
In order to simplify the notation, we will consider (half-)integer spin simple 

currents, which is equivalent to say tha t we will drop the additional contribution
2 hj  in our calculations, restoring it when necessary.
C orollary 1.
We assume now tha t either i or j  (not necessarily both) is a fixed point. For 
definiteness we take i to be a fixed point of J . This would give rise to the 
diagonal field (*, </>) in the perm utation orbifold as fixed point of the current
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(J, ip =  0). Compute:

E  s *ps Pj =  E n ( p ) ^ s P
P s .t .  (p ,x ) f-p. of (J, ip) P

E  I  E  e2i^ ^ - ^ s ips ; j =
p 71= 0

E § E ^2"n| s> « sh =
p n=0 '

1 £  e-2̂ „ |  . £  ^  5*. = 1 (1 + (_ 1}̂  5ij
71= 0 p

So we have found

E  Sip^Pi =  | ( 1  + ( - 1 ) ^ ) ^ - ,  (B.4)
p s-t. (p,x) f-p- °f WVO

when either * or j  is fixed point of J .
W hat happens when neither i nor j  is a fixed point of J?  Using a similar 

reasoning we have:

E  ^ ^ P i  =  E n w ^ ^  =
P s-t. (p ,x ) f-P- of (J, ip) P

=  E  \  E  e2i™ & ^ ) - $ ) Sip S*pj =
p  n = 0

=  ¿ E  [SipS^ +  i - i y K s j ^ s ; ^  =
p

=  +  (B.5)

The generalized formula, valid also when hj  £ ^ ZQdd is

E  S*  SPi =  \  ^  +  ( - l ^ e 4- ^  <5^-]. (B.6)
p  s. t .  ( p , x )  f-p- of (J, ip)

Observe tha t in case either i or j  is a fixed point3 of J , formula (B.6) reduces 
to (B.4). Diagonal fixed points in the extended perm utation orbifold arise from 
fixed points of the original theory when tp =  0: in this case this formula gives a 
Dirac delta

5 3  s ip Spj =  Sij , (Ji =  i & 'tp =  0).
p  s .t .  ( p , x )  f-p- of {J,ip)

3In order for i  to  be  a  fixed po in t of J ,  h j  m ust be  (half-)integer.
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On the contrary, when tb =  1, Y' ,— , . . , SiV S*4 =  0. Actually, even
J1 T 7 ¿—'p  s .t .  (p , x ) f-P- of ( J, tp) y  P3 J1

more strongly, one can prove th a t each term  in the sum vanishes separately:

Sip =  0 if Ji =  i rtp =  I . (B.7)

The proof is in the following identity:

Sip =  Sji,p =  e2i^ ^  Sip =  e2i^  Sip (B.8)

hence, for tp =  1, Sip =  0.
As consequence of this result, we have another relation tha t will also be 

useful:

C orollary 2.
We want to compute:

E  Pp,JaPja,q ■ (B.9)
a  s .t.  ( a ,x )  f-P- of

It will be useful in particular to consider the case when p  and/or q give rise to 
twisted fields in the extended orbifold. For (half-)integer spin simple currents 
this is the same as computing

E  (R1°)
a  s .t .  ( a ,x )  f-P- of

since if (a, x) is a fixed point, then also (Ja , x) is such, due to the monodromy 
charge conservation Qj(Ja)  =  Q j (J )  +  Qj(a).  Now, expand P  in terms of S  
and T  (the sum over repeated indices is understood):

P p , J a  =  VTpp Spm T 2im Smj a V T  J a , J a  (B. l la)

P j a , q  =  J a , J a  S j a,n Tnn SnqV T qq) . (B. l lb)

Then

' y  '  p , j a  -  J a , q

■ s.t.  ( a , x )  f-P- of  (J/tp)

E  Sm,JaS*ja,n \T2n*S*nqVTqq
\ a  s .t .  ( a , x )  f-P- of ( J,ift)

— 53 53 'fPPpSpmP-n
m  n

=  E E ^  SP™ 1 mm ( ^ m n  +  (-1 )^  ^nn S*q V T \ q .
m  ir> '  '

In going from the second line to the third line we have used the freedom to 
re-shuffle the fields in the sum Y' ,— , r Sm j a S*T„ „, which is thena s .t .  ( a ,x )  f-P- of ( J ,t/>) J a , n ?

equal to the sum J2Ja s.t . (j ^ )  f.p. of (J>) s m,a S*a n̂ for (half-)integer spin cur
rents. After a few simplifications, the first term  gives a half Dirac delta, while 
the second term  contains a factor Spm S*Jm =  e- 2mQj (.q)Smq. The latter 
delta allows us to make some extra simplifications. Moreover, if q gives rise to
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2 i r i Qj ( m)  - 2 i r i Q j ( n )  
m a  a n  1 c  c

the twisted field (q,x) in the (J, V0—1extended permutation orbifold, the power 
e- 2vnQj{q) canceis phase ( — 1)^. In this latter case, we have

5 3  P p , J a  P j a , q  =  2  ^ P I  +  2  ^vq  =  ^P1  ’ ( ^ - 1 2 )

a s .t .  ( a , x )  f-P- of (Ji'tp)

with _  je2i7r(Qj(m)-ft.j)j2 _  ^  coming from the fact
tha t hj  is (half-)integer and Qj (m )  is also (half-)integer for order-two simple 
currents.

For simple currents with hj  G |  Z,0dd this reasoning is not valid anymore,
since it is no longer true tha t if (a, x) is a fixed point of (J, ip) then also (Ja , x) is 
such. In this situation we need to do the calculation again, but the final answer 
will be still the same. In fact, in general we have

E  sm,Jas*Jat n =
a s .t .  ( a ,x )  f-P- of 

(

53 s ^ s t
\^a s.t. ( a , x )  f-P- o f (J/tp)

=  \ s mn +  ( - l f +4hj^ e - ^ ihJ5Jm,n =

=  -^5mn -\- { — i f , 

where we have used Sm Ja =  e2*iQj(m) Sma; moreover, the phase come from the 
fact th a t Q j(J m )  =  Q j (J )  +  Qj (m)  and Q j(J )  =  2hj.  Hence:

53 P p , J a  P j a , q  =

a s .t .  ( a ,x )  f-P- of

= E  E  ̂ PPSpmTl 53 sm,Ja T„2* s;iqVrq =
m  n  y a  s.t. (a ,x )  f-P- ° f  J

= E E ^ ^ » t» i \ 5̂  + (-i)^<w) T2*s*nq vrq =
m  n  '  '

= \sPq + E  s p-  t ™t j™ s j m,q vt; =
m

=  \ s pq +  l- { - l f e - ^ hJ 53 e - ™ Q M V r p Spm S*mq v r q =

— - X  I____ ( p - ^ i h j  - 2 m Q j { q )  <:
~  o Pi o ' > Pi ~  vpqi

where we have used the fact tha t Qj{q) =  \  +  2hj  and (TmT}m)2 =  e~ivthJ_ 
Both these corollaries will be useful in checking unitarity and this we will do 

now.
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B .2  P ro o f

The strategy here to prove unitarity of the ansatz (4.1) is to look at each sector 
separately and show tha t • gWVOt =  1 .

D iagonal-diagonal

First of all, we have to recall tha t diagonal fields exists only for the symmetric 
representation of the current, namely (J, ip =  0) and they come from fixed points
i in the mother theory, J  ■ i =  i.

Now compute:

( s w j . s w )  t)(, 0)O. x) =

-  c(J>) o(J» t  ,
2-̂ 1 (i,4>)(a,Z) (a,Z)(j,x) 2- t̂ (i,<f>)(mn) (mn)(j,X) +  2^i (i,4>){p£j (p£)ti,x) 
(“.?) (mn) ( i i)

= E  E  l(si)2\(s jar)2 +
£= 0 a,  J a = a

I \  A q J  q J  q j k  q j k  _i_
' /  j  i m  i n  j m  j n  '

(mn),m<n

1 i i
i _  q .  piKip _  q *  p - i ^ x  —

+  2_  ̂ 2-̂ < 2 2 pj ~
i = 0  P, (p,Z) f-P-of  {J,1p)

=  I  ( q J \ 2 ( o . J k \ 2 _| q J * q J * _i i s . . p w t f + x )2 /  v W ia J  W a j / ^  v v ^  j m  j n  ' ^  3
a , J a = a  m , J m = m  n , J n = n , n > m

In the last equality we have used the fact tha t S£b is non-zero only when both 
a and b are fixed points of J . The Kronecker delta comes from the third piece 
after using our previous Corollary 1 in the form of eq. (B.4). We have stressed 
the fact tha t in the off-diagonal fields (to, n) m < n. This is im portant since 
the first and second piece can add up to give ^ <%• In fact, consider

-  k j  =  -  2 2
ST- q J q/  j ^im ,

J  k  
m j

2
__ \  A q J  q J *  q J  q J k

2  /  j  i m  m j  i n  n j  
m . n

-  (  S ^  4- 4- V 1 I2 I /  j  ' /  j  ' /  j  j i m  m j  i n  n j  
\ m < n  m = n  m > n /

\ (2E  + E  ) ^mS^sis,
\  m < n  m = n /

J k
n j

E q J  Q.Jk q J  Q.Jk i ^ \  A Q.J Q.Jk q J  Q 
i m  m j  i n  n j  T  -  /  ^ j g ^ g j

Ĵk 
ycij

m<n

which is exactly the term  appearing in the first two contributions above. Hence 

(S W ) . S<J» t ) (îi0)O. x) =  I  +  I  =  SySto ,

as it should be in order for S to be unitary.
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D iagonal-off-diagonal

Again we consider here tjj =  0 in order for diagonal fields to exist.
Compute:

( S ^ )  • ^ (J> )t)(i,0)(m„) =
-  V '  c(J» t  , V '  c(J» t  , V '  c(J» t

2 -^ t ( * , 0 ) ( j , 5 ) ( j , i ) ( m n )  ' 2 ^  (i,<p)(ab) ( a b ) ( m n ) +  2 -^ t ( j  d , ) { fT )  T p T ) ( m n )
(¿5) (“fe) ( ii)

1 _ 1
E \  A ( q J  \  2 q J *  q J *  _i_

O ^ i p  ‘5i">‘5in +25=o j, Jj=j

(ab)

1

J  A * . 
6m /

£  C l- S ipe ^ - { °  

i = % ,  0 , 5 )  f-p-of ( J > )

2 - . p -  'j if Jm =  n

Now we have to distinguish two situations:
i) (m n) orbit-like, with n =  J m ;
ii) (mn) fixed-point-like, with to and n fixed points of J .
We will see th a t in both cases the answer is zero, as it should be by unitarity.

i) The first two lines give zero, since S J vanishes with one index equal to to 
or n; from the third line we get

(S{J^) ■ ^ (J> )t)(i,0)(m„) =  c A * ] T  SipS&p =  0,
p,  0 , 5 )  f-p-of {J,ip)
'---------------V---------------'

=  dim  by  C oro l la ry  1

since the field i =  Ji  can never be equal to the field m ^  Jm.
ii) The third line is now zero by the ansatz, while the other two give:

( S ^ )  ■ ^ (J> )t)(i,0)(m„) =

E , q J  \2 q j *  q J *  _i_ \  A q J  q J  ( q J  q J  _i_ q J  q J  \ *  _
\ & i j )  ^ j m  j n  ' /  j  i a  ib \  a m  bn ' a n  b m )

j ,  J j = j  ( ab) , a<b

E ,  q J  \2 qj~k  qJ -k  _i_ \  A q J  q J  q J k  q J k  __
\ & i j )  ^ j m  j n  ' /  j  i a  ib a m  bn

3,  J j = j  «7

Now consider the following equalities:

SimSin =  S/m Sil ^  E  1 E  Sii Si™ S i  St
3 I \ j = l 3 ^ 1  J

E q J  q J k  q J  q J k  , \  A q J  q J k  q J  q J k
i j  j m  i j  j m  ' /  j  i j  j m  i l  I m  •

3 3 ^ 1
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Hence we can rewrite:

( S ^  ■ S ^ % M m n ) --

S i m  S i n  ~  S i j  S j m  S i l  S l 

3̂ 1

J~k
In

\  A q J  q J  o J - k  a  
/  ,  D ia ib a m  D l

,a^b

J~k
bn

D iagonal-tw isted

Com pute:

( 5 ( ^ ) . 5 W W )  _  =

Z ^  (¿,0 )0 ,5) ( j ,t) (^ )  z ^  (
0 , 5 )

1
( m n )

gWvot
( i , <f >) ( mn)  ( m n ) g ^ T )

E E i<Si)2C*5S:
5 = o  j ,  J j = j

0
A* 5*

E qJ qJ
i m  i n

( m n )

■t _£  -2
^ 0 q, (9,5) f-p-of ( J > )

= 0 +  0 +  0 =  0,

J *  - ¿ 7 t5 
JP

if J m  =  to 
if J to  =  n

V  5 (-^  fi
(ql)

( i , <P) (q , 0  ( q , Q ( p , x )

C  -  S iq ei7rtf’ B*  ^  e- i7r®j(m) P jq :p ei7r(«+x)

as it should be for unitarity . The first and th ird  lines vanish because =
0. In the second line, the sum  over all off-diagonal fields m ust be replaced by 
the sum  over those diagonal fields w ith to and n  fixed points, since otherwise 
S J vanishes; hence from the ansatz S'WVOt__

( m. n ) ( p , x )
0.

O ff-diagonal-off diagonal

Com pute:

{S M )  . S ^ ) {mn){pq) 
=  ^  s (J »  c (J» t

(ab)
E s ,
K 5)

I \  ' ___ g
yun VhS/VPq/ Z__ / ymnj^uv)  '  ■ ■" '

(¿,5)

1
q J  q J  q J *  q

/  j  ^ m i  n i  i p  i 
£=0 i ,  J i = i

+ £($L, sib + (-i f s i b sia){sJap s(q + (-i f s i q s(py +
( a b )

ƒ 0 if J m  = m  ƒ 0 ii  Jp  = p  
___^  { A S ma if J m  = n  \  A k S*p if Jp  = q

^  a , ( a , £ )  f . p . o f  ( J , t p )

( j » tg y - J t V j  i , \  '  g(J, ' <P)t
H W )  (* ,5 ) (p ? )  Z ^ -  ( m n ) { a b )  (ab){pq) • ‘ ( a ,£ )(p q )

iq
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We have to  consider three cases:
i) (m n ) and (pq) are orbit-like;
i i )  (m n ) is orbit-like, (pq) fixed-point-like;
H i )  (mn)  and (pq) are fixed-point-like.
*)

(S(W)  . S (W ) t ) (mn)(pg) =

=  0 +  0 +  2 ] T  S m a S*ap = 2 (^ômp + ( - l f+ 4h4 / j m,p̂  =
a , ( a , £ )  f .p .o f  (Jjip)

$ m p  i

consistently w ith unitarity . The first two contributions vanish, since S J van
ishes, in the th ird  term  we have used C orollary 1. The 'ip—dependent piece 
w ithin brackets does not contribute since (5jm p =  0, being m  < n  and  p  < q.
i i )  

(■s (J>) ' S<J’̂ ) {mn){pq) =
=  0 +  0 +  0 =  0.

This is in agreem ent w ith unitarity . The first two zeroes come from the S J =  0 
for non-fixed points, the th ird  from the ansatz.
H i )  

. q { J , i >) t v  , ,  , —
W  ^  ) ( m n ) ( p q )  —

__ r\ r  \  A q J  q J  Qj -k  Qj -k  I
£  Oxp,0 /  u &m i  ^ n i  i p  ^ i q  '

i , J i = i

+ E  (sL s i b + ( - i f s i bs ia) (sJaps(q + ( - i f s i qs(pf  + q.
(a6),a<6

Recall th a t  the first contribution  is actually  present only for tp =  0. The last 
contribution vanishes by the ansatz. The rest organizes in such a way to  produce 
a delta:

( q ( J >V0 . c'W VOt'i, ,, , —^  ^  ) ( m n ) ( p q )  —

__ r\ r \  A q J  q J  o J k  q J k  ,
^   ̂ & m i  ^ n i  ^ i p  iq '

i , J i = i

I \  A q J  q J  o J k  o J k  i f  1 \ lp \  A q J  q J  o J k  o J k  
' /  j  ^ m a  ^ n b  ^ a p  ^ b q  ' \  -*-/ /  u ^ m a  ^ n b  ^ a q  ^ b p  •

a ^ b  a ^ b

In fact, consider the following equalities:

r r __ \  A \  A n J  q J k  q J  q J k  __
° m p ° n q  =  /  j  /  j  ^ m i ^ i y  ^ n j ^ j q

; 3

E q J  Q J k  q J  Q J k  I \  A q J  Q J k  q J  Q J k
m i  ip  n i  iq ' /  j  m i  i p  n j  j q  '

i
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We can insert this into our expression and get 

. s W ) t ) (mn)(pg) =

=  2 fy.O ^ m p  ¿n, -  E  S '// S^- +

I \  A C*j q j ~ k  q J  q j ~ k  i f  1 \ lp \  A C*j C*j C*J*
rna ap  n b  bq T   ̂ J J  ™a D aq D nb  D bp •

a^6 a^6

It is useful to  consider the  two cases -0 =  0 and -0 =  1 separately. L e t’s s ta rt 
w ith rtp =  0. Then

. q { J , i >) t v  , ,  , —W  ^  ) ( m n ) ( p q )  —

__ r\ r  r  i \  A (  q J  q J *  q J  q J *  q J  q J k  q J  q J * \
Z  0 m p  0 n q ~\~ j  ^ v ^ m a  ^ a q  ^ n b  ^ b p  ^ r n a  ^ a p  ^ n b  ^ b q  )  •

a ^ b

Here we can rew rite the  sum  as J2a^ b = J2a b — $^a=6: the  first contribution  is 
a p roduct of two Dirac deltas while the second cancels out in the  difference of 
the  sum m ands. Hence we have

(SWVO . S(J’̂ ) {mn){pq) =  2 Smp Snq +  Smq Snp -  Smp Snq =  Smp Snq ,

since the o ther delta  product vanishes, being m  < n  and p < q. This agrees 
w ith unitarity.

L e t’s do the same calculation for tp =  1.

( S W  ■ sV’M)(mn)(pq) =

E (  q J  q J *  q J  q J *  q J  q J *  q J  q J * \
K ^ m a  ap D n b  D bq D m a  D aq D n b  D bp )  •

a ^ b

We can again replace J2a^b by J2a b, since the sum  over a =  b cancels out in the 
difference, obtain ing a product of Dirac deltas. Moreover, we recall th a t  m  < n  
and p  < q, so we can drop term s like 5mq and  Snp. Hence we have

( S ' ( J ’1/i) • 5 '<' J,1/i') t ) (m n )(p g ) =  S m p  S n q  -  S m q  S n p  =  S m p  S n q  .

This is in agreem ent w ith unitarity.
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O ff-diagonal-tw isted

Compute:

(SUVO . s(«)t) — =
v J(mn)(p,x)

W ( i , i )  ( ¿ , £ ) ( ^ )  Z - ,  (m n ) (a b )  (o 6 ) ( ^ )  Z ^  (m n ) ( Ü )  ( Ü ) ( i ï )  
0?£) (a&) (q,£)

= E  E  sL sL c* \si

, \ ^ ( q J  qJ 1 ( _ 1  cJ q j  \ . f 0 if Ja a
^  /  j  \ u m a  u nb  ' v L ) u m b  u n a )  j J ^ k  g *  j ^  =

(a,b) ^ ap

I V  ƒ 0 if Jm  =  TO B * l e -iirQj(q)p* ei7T(H+x)
I  A Smq if Jm = n 2 Jq,p

i = 0  q, (q,i) f-p-of (J,tp)
=  0 +  0 +  0 =  0,

as it should be by unitarity . The first and th ird  lines vanish because =
0. The second line vanishes when (mn) has orbit-like form, because of S J =  0, 
b u t also if to and  n are fixed points of J  by the ansatz.

T w isted -tw isted

Compute:

v ' (p,<t>)(q,x)
=  s s ^ t }  s ^ t } ___

(¿^X^x) ,2“^, (P ,0)H ) (™,n)(q,x) (v,<!>){a,£) Ca )̂C Q,x)
M )  (mn) (0 ,0

= E  E  ^ Fiê s '* e--« +
£=0 i , J i = i

E i 0 if Jm  =  m j  0 if J m  =  m
1 A S pm if Jm  =  n 1 A* S * if Jm =  n

( m n )

1 1 1i _ e i n Q j ( a ) p T e^(0+f) _  e - i n Q j ( a )  p *  i i r (£ +x )  —
~  /  v /  j 2  J a , p  2  J a , q

^ ~ ® a , ( a , i ; )  f.p.of (Jj'fp)

= \ E  +
i , J i = i

+ E  +
( m n ) , n = J m

+ ]T Pj*,pPja,q-
a ,  (a,£) f.p.of (J’,'0)

Here we have retained the second line of the off-diagonal-twisted ansatz, since 
only the off-diagonal fields with orbit-like form (to, n  =  Jm)  contribute. We
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can rew rite the sum  in the second line as

53 ^Pm ^mq =  2 5 3 ^mQ ^P,Jm Sjm,q) =  53 ^pm ’
( m n ) , n = J m  m  W m , J m ^ m

since SPyj m = e2t7rQj (p)spm and S j mq = e-'2l^Qj (q)Smq, w ith p  and q having 
the same m onodrom y charge and hence dropping out in the  product. This 
combines then  w ith the first line, while we can use our C orollary 2 in the th ird  
line. Hence:

(p,4>)(q,x)

J 2 SPiStq+  E  SP ^ Sn i _  J ^ ( < P + x )  
+  2 _ E

a,  (a ,£ ) f.p .o f (Jj ip)

P r  p *r  J a , p  r  Ja. i

- - { S - S* ) p q = 5 p

-  S 4 -  -  <=i7rO + x )  S — S 5a.2 pq 2  — ’

as needed for unitarity .
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C M odular invariance
In this section we prove unitarity of the ansatz via the relation

_  gWVOyWVOgWVO (c  ^

tha t must be checked sector by sector. Before doing this let us collect a few facts 
about Z2 permutation orbifolds tha t we will need in the calculation. The cen
tral charge c and the weights {/i(mn), ^(¿,0 ), are related to the analogous 
quantities of the mother CFT as

(C.2) 
(C.3)

W  (C.4)

|  ■ (C.5)

Moreover, in the mother theory the S J m atrix is unitary and modular in
variant. Explicitly, the constraint (T ~ 1S JT ~ 1)im =  (S JT S J)im is

5 3  S(n e2i< h~ - ^  S 3nm = e- 2i7r( ^ - i i ) 5 '/m e- 2̂ ( ^ - i i )  (C.6)
n ,  J n = n

where of course i and j  are fixed points of J .
Another quantity tha t it will be useful to spell out is Pjp,q'-

Pjp,q =  V f p 5 3  e2-^ (™ )  spm T l  Smq V T q , (C.7)

where Qj(m) =  hj  +  hm — h jm. This comes from re-expressing T jp in terms of 
Tp as

c =  2c

run) — hm +  hn
=  2 hi +  Sit

/,__ _  hi c
2 16

TJp =  Tp ■ e^ ( h j - Q j ( P))

Now we are ready to check modular invariance. We will use the ansatz as 
given in (4.1), keeping only A, B  and C  as undetermined phases and having 
fixed the others to one.

D iagonal-diagonal

This m atrix element exists only when tjj =  0 and i and j  are fixed points of J . 
Compare the two expressions. On one side:

(rn{J,1p) ~ 1 q{J,1p)m{J,1p)~ __  rp(^J /tp)  ̂ o W V O  rp ( J}-tp)~^ __

v h i , m , x )  (i,0) u’x)

=  I  s J■ s J p^2i7r(/io.x)-A) =2 %3
__ rji  — 2 q J  q J  rji  — 2

~  2 3 3 i
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( Q {J , ip )m {J , ip )  q {J , ,1P ) \  —  \  '  I

V / ( i,4>)(j,x) ^  ( a . ? ) ( j . x )

(¿,0)(mn) (mn) (mn)(j,X) (¿ » ( if )  ( if)  (a£)(j,x)
O ” ) (if)

= E  E  ^/a^ae2iir(2fc“-^)i ^ ^  +
£= 0 a, J a = a

I \  '  e J  e J  2i-n(hm + h n - Y 2 )  *?J  *?J  4 -  "I-  /  v m  raj n j  '
(ran)

+ E  E  C’2̂ iaeî e2î ^+|-®)^OJ-eî .
^ a ! (a i£) f-P-Of (J,1p)

Now the last line vanishes, due to X^=o ei71̂  =  0- In the second line, 5^(mn) 
is restricted to m < n  with m and n  fixed points of J  and can be replaced 
by J2(mn) =  \  J2m,nm^ny while the first line completes the sum over m =  n, 
J2a —>■ J2m=n- Hence the first two lines combine to give:

g ( J , i p ) ' p ( J , i p ) g ( J , i p ) \  =  . . .  =

'  (i,<P)U,x)

__ f  \  \  q.J q j  q j  q j  Jli'K ( h m  +  h n — -r%) __

2 /  / /  / im m mj e
m  n

- I t i r ' s i J r f
after using (C.6). Hence:

f  g ( J ,1 p ) r p ( J , 1 p ) g ( J , 1 p ) \  _  f r p ( J , ' l p ) ~ l  g ( J , ' l p ) r j i ( J , ^ ) - l \  ( C 9 )

v h i , m , x )  V h i , m , x ) '

On the other side:

D iagonal-off-diagonal

This m atrix  elements only exists for -0 =  0. Moreover, it would be clear from the 
calculation th a t we need to  consider only the case when (m n) is fixed-point-like,
i.e. when m  and n  are fixed points of J . In the rem aining case when (m n) is 
orbit-like, m odular invariance is trivially  satisfied as 0 =  0, since in th a t case 
S J vanishes.

Consider first:

V /(¿,0)(mn) (*’0) (*»("“ )
__ —2i'K(2hi~Ŷ ) q .J q .J —2i7r(hm-\-hri — ̂ )  _

e îra ^in e
__ rji —  2 q J  q J  ^p— 1 rP ~  1

i im m m n
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Then, consider

o{J-,'<P)rr{J-,'<P) —  \  A q ( ^ ^ )  oi - j i ' ip)  _L
/(¡,fl(mn) ^  ^  (¿,0)(a,i) («,«) («,«)(») T 

(“>£)
, V ^ c . ( J > )  T (J,tp) q (J,tp) , o ( J ^ )  T (J,tp) q (J,tp) _

+  (¿ ,0 )(a 6 ) (ab) (a b )(m n )  +  Z _ ^  ( ¿ , 0 ) ( i f )  ( i f )  ( i f ) ( m n )
(ab) (if)

= E  E  ^/a^ae2iir(2fc“-*)SaJmSaJn +
£= 0  a,  J a = a

+ E ^  ̂ e2-(fc“+^-ft) (#m + (-i)^ i s6Jm) +
(ab)

+  V  V  C - S ' -  + . /  0 i f J m  =  m
+  Z ^  b 2 “  I A S m„ if Jm  =  n  •

£= 0  a ,  J a = a

Now, the last line vanishes by the ansatz if J m  =  m  and because of e™̂  =  0 
if Jm  =  n. The sum over (ab) is restricted to the fixed points of J  and to a < b. 
recalling tha t 1/1 =  0, the two terms in tha t sum allows us to rewrite it as a sum 
over all a and b with a ^ b ,  i.e.:

E q J  q J  rp rp (  q J  q J  I Q J  q J  \ __ \ A q J  q J  rp rp q J  q J
^ i a  ^ i b  -L a J-b y ^ a m  ^ b n  ' ^ a n  ^ b m )  /  u ^ i a  ^ i b  a -*-b ^ a m ,  ^ b n  •

(ab) a , b , a ^ b

Hence we can combine the first two lines and then use the constraint (C.6) to 
get:

<5,(J> )y (J> )<5'(J>)N\ _  . . .  _
/ (i,<p)(mn)

= E  E  e ^ + hb- ^  S/0 Si Sim SbJn =
a  b

_ r p —1 n j  rp ~  1 ^T1— 1 q J  r p —1
i  im  m  i in  n

Hence:

fg(J,1p)rp(J,1p)g(J,1p)\ _   ̂ (C.10)
V /  (i,<p)(m n) V /  (i,<p)(m n)

O ff-diagonal-off-diagonal

This m atrix  elements is always present in any extension of perm utation  orbifolds. 
In order to  check m odular invariance we need to  consider only fixed-point-like 
off-diagonal fields. In fact, since S J m atrices of the  original theory  are involved, 
the  constrain t (C.6) is trivially  satisfied, in the form 0 =  0, when a t least one 
off-diagonal field is orbit-like. However, in the sum  over all fields of the  extended 
perm utation  orbifolds, the diagonal fields appear only for tjj =  0.

Com pute:

(rn{J,1p)~ 1 _  y(J,'i/>) — 1 1 _
V ){mn){pq) {mn) (m” ^  (m)
=  e - 2i”(h" + h" - &  (S Jm pS Jnq +  ( - 1  f S Jm qS i p) e - W K + K - % )  =
__ r p  — 1 r p — 1 /  n j  n j  . / __1 \ t p  q J  q J  \  rP ~  1 rF ~  1

m  n  V m p nq ' v /  m q n p )  p q
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The analogous quantity is:

( s ^ T ^ S ^ A  =  (L, o V  , +V J(mn)(pq) ^  (.™n)(a,t) («,«) («,€)(??)
(“>£)

“T (mn)(ab) (ab) (ab)(pq) “r (mn)(7^) {¿¿) (a£)(pq)
iab) ( i i)

=  ^ , o E  E  ^ a ‘Snae2i’r(2'“* - ^ ) S 4 S aJ, +
£ = 0  a,  J a = a

+ ' E ( s L s i b + ( - i ) i’ s L s L )  ( S JapS Jbq + i - l f S JaqS Jbp) +
(ab)

+ t
^ ^ a,  (a ,£)  f . p .of  (J,ip)

0 if J m  = m  2*7^  + ! - ^ )  ƒ 0 if Jp =  qr 
A  S ma if J m  = n  y A  S ap if Jp  = q

The last line always vanishes, either when J m  = m  by the ansatz or when 
J m  = n  because of = 0- The second line can be splitted in two
pieces and rewritten as

E ( q j  q j  1 / _  1 \i/> q j  q j  \  2 m ( h a+ h b- f ^ )  ( q j  q J  , ( _  1 \4> q J  q J  \
\ ^ m a  ^ n b  ' \ -*-/ 'm 6  ^ n a )  ^  \ ^ a p  ^ b q  ' \ -*-/ ^ a q  ^ b p )

(ab)

E q J  q j  q j  q j  2i-n ( ha+ h b -  ) , ( _  i \ip \  '  q J  q J  q J  q j  „2i-ir(ha+ h b- ^ )  
^ m a  ^ n b  ^ a p  ^ b q  ^ ' \  *-) /  u ^ m b  ^ n a  ^ a p  ^ b q  ^

a ^ b  a ^ b

where now we can replace J2a^ b —>■ J2a J2b — J2a=b- This leave us with two 
sums over a and b plus three equal sums over a, one with a factor 2 <5̂ ,o in front, 
one with a factor —1 and one with — ( —1)^, whose combination vanishes:

( 2 ^ , o - l - (  — 1)^) • ] T  S i a S Jna S Jap S Jaq e2®71"*-2 h° ~ &  =  0

'  r 0  ̂ a

We can use (C.6) in the two remaining contributions and get:

g ( J , i p ) ' p ( J , i p )g ( J , i p ) \  =  . . .  =
/ (mn)(pq)

E q J  T 1 Q j  \  A q J  r p  q J  | /  -I \ i j j  \  A q J  r p  q J  \  A n j  r p  q J  __
^ m a  -*-a ^ a p  ' /  u ^ n b  -*-b &bq ' \ -*-/ /  u ^ n a  a  & a p  ‘ /  u ^ m b  b & bq

a b a b
__ r r 1—1 n j  r p — \  r p — \  n j  r p — \  , / __- \ \ ' l f j r p — \  o j  r p — \  r p  — \  n j  rF ~  1 ___m mp p n nq q ""Tv / n np p m ^mq q
__ r r 1—1 r j i — 1 /  n j  n j  . / __-i \t/) c* J  c* J  \  r r i— 1 r p — 1m n nq v / np mq) p q

f  g(J,1p)rp(J,1p) g ( J , 1p ) \  _  f rp( J , ' l p)~l  g ( J , ' l p ) r j i ( J , ^ ) - l \   ̂ ( C . l l )

V / (mn)(pq) V / (mn)(pq)

Hence:
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Compute:

T w is te d -tw is te d

1

_  rp(J,1p) g(J,1p) rp(J,1p) _ 
CpA>)(<hx) O,0)(9,x) *-q ,x ^

e - 2 i 7 r ( ^  +  f - ^ )  p  _  e i i r Q j ( p )  p  e *7r(0+x) g - 2 M r ( " f -  +  ï - j k )

On the other hand we have

(  g  ( J,tp ) y  ( J,tp ) g  (J,tp )A
O,0)(9,x)

r  \  '  q { - i , V )  rpy-J, V ) Q \
Oil) n  /  O .----------- . -L (  j  ------------ .

’ ^  O , 0 ) O , Ç )  («,Ç)(9,X)

/ 0>)(a6) (“6) (ab)(^T) ___
( a b ) ( a , £ )

(«,«)
'{JjV
O,0)(“,Ç) (“,?) (“,£)(?,x)

< W E  E
£ = 0  a ,  J a = a

o
A SpaE

(ab)

È
£ ^ a , ( a , £ )  f . p .of  (Jj'fp)

J a a _ p2i7r(fea + /i6-]%)
Ja  = b

0
A 5,aq

Ja  = a 
Ja  = b

1

Now the last line vanishes because ei7̂  =  0- we have

( g { J , I p )  rp{J, Ip) g { J , I p ) '

O,0)(9,X)

fy,o 5 3  5 3  A 2 SpaTa TJaS,
a, J a = a  a,  J a ^ a

(C.12)

aq

The two contributions combine nicely, provided we take A 2 = C 2. We will 
actually prove in a moment tha t this must be indeed the case (at least when 
t/> = 0). Since for a fixed point a, Q j(a) = h j ,  we can always either write or 
cancel a factor e2m(hJ-Q j(a)) in the sum over the fixed points. Moreover, in the 
second term  we can replace the sum over non-fixed-points with the sum over all 
the fields minus the sum over the fixed points:

a2 E =^2E-^2 E •
a, J a ^ a  a a,  J a = a

From the case 1/1 = 0, the prefactor A 2 will be set equal to C 2, while for t/> = 1 
all the unwanted contributions will cancel out.

e™{i+x)
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So we have 

(  g { J , Ip) rp{J,Ip) g { J , Ip)
(p,4>)(q,x)

0 5 3  C 2 Spa T 2 S aq +
a, J a = a

+  5 3  A2 SvaTl ^ h j -Q j ^ )) s aq-  5 3  A 2 Spa T 2 S aq
V a  a,  J a = a

C 2 -  A 2) 5 3  SpaT2 S aq + J 2 A 2 s p - Ta e2iHhj^ j{a))^
a, J a = a  a

aq

In the second contribution we can use (C.7), replacing —Qj(a)  by Qj(a)  in 
the exponent, since they differ only by integers and Qj(a)  is either 0 or

This will give agreement with (T 1 S ^ ’̂ T ^ 3’̂  ^ __ ___ _ Hence the first

contribution must vanish and indeed it does so, by requiring th a t C 2 — A 2 = 0 
for tp = 0, while for tp = 1 it vanishes automatically, since Spa = S aq = 0 for 
(half-)integer spin simple currents4, due to (B.7). In the end we are left with

g(J, ip)j ' (J, ip)  g(J,ip)

1
ip,4>)(q,x)

A2 e2i7rhj 5 3  e2i7tQj(a) Spa T 2 S aq

= I  A 2 e™hj V f p 1 P JpA V f q 1 .

Hence:

V J (p,4>)(q,x)
(C.13)

provided
B  = A 2 einhj and C = A (C.14)

Here an observation is in order. Strictly speaking, the equality C 2 = A 2 holds 
true only when tp = 0. When instead tp = 1, C 2 can in principle be different 
from A 2, since in this case we do not find any constraint on it. On the other side, 
however, when tp = 1 the value of C  is irrelevant, since C  enters the definition
of the matrix element S ^ ’̂ ---- but there are no diagonal fixed points (*, <p) in

(■i,<P)(p,X)
this case. Also note tha t we could have obtained this same result if we had 
replaced

e 2 £  = c 2 £ - e J £  ■
a, J a = a  a a,  J a ^ a

in the intermediate eq. (C.12).

4Strictly  speaking, th is  is not tru e  when h j  €  j ^odd- ,  since we would th en  naively have 
Spa =  ( — i) '0+ 4 /ij Spa,  b u t in th a t  case J  has no fixed points, hence th ere  is no such a  sum 
in th e  calculation.
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This matrix element exists again only if tp = 0, otherwise there would survive 
no diagonal fields in the extension. Moreover, h j  can be only (half-)integer, 
since for h j  G j  Z,0dd there are no fixed points in the mother theory.

Compute:

 ̂ g(J,1p) rji (J, Ip) _

=  - 2*̂ (2 hi- ^ ) c l s  2i7T(^  + f - * )  =
2 p

= \ c T r 2 S i p V f p 1 .

On the other hand we have

g(J,1p)rp(J,1p) Cj(J,1p)\ _  \  '  gWVO rp(J,1p) g(J,1p) ,
hi,<P)G~X) ^  (“.«) (a.Ofox)

(“>£)
+  y - s (W) T {J,Tp)s {Jrt) , T (J,tp)s (J,tp) =

(¿,0)(a6) (ab) ( a b ) f a x )  ( ¿ ,0 ) ( i f )  ( i f )  ( i f f e i )

(ab) (a,5)

= E  E  +

D ia g o n a l-tw is ted

2
£=0 a, J a = a

E q J  q J  2iir(ha + hb- ^ )
“  ib '1  AS„„ Ja  = b

(ab)

1

0 J a  =  a
ap

+ E  E  C, i s ' ioei7r0e2i7r(̂ L + 2 - i t ) s i e i7r<3j(a)P jOip ei7r(«+x).
^  ̂ a! (a!̂) f-P-Of (J,1p)

Now the first line vanishes because =  0- The second line vanishes as
well, either because of the ansatz if Ja  =  a or because S J =  0 if Ja  =  b. Only 
the third line survives. There we can use (C.7) and write

g ( J , i p ) ' p ( J , i p )g ( J , i p ) \ ___ =  ... =

'  (i,<P){p,X)

= l- B C  ] T  Sio V f a ei7Thj VT~a ] T  e2™QA™) Sam Smp y/ f p
a,  ( a , £ )  f . p . o f  (Jj ip)  m

= \ BC^ (0+x) E  E  T“ e™hJ e2i"Qj(m)Tlsmp Vfp.
m  \ a ,  ( “ ,5) f . p . o f  (J,ip) J

Consider the quantity within squared brackets. We can remove the projection 
over twisted fields only and extend the sum over all a by introducing the pro-
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‘ \
Y .  S iaTa S a m \ = Y U (a) S iaTa S am =

\ a ,  (o ,C ) f . p . o f  J  “

^  I  ^  ^ n i Q j i p ) - ^ )  S i a T a S a m  = \ Y  C ^ r 4  Y S ^ - T - S -

a n = 0  n = 0  a

\  A —fli 'K n %  \  A Q 'T  Q  __  ^  \  A q  rj! q  __
2  /  j  ^ /  j  ^ i a  -L a & a m  — ^  /  J & ia  -1- a & a m  —

n = 0  a a

jector (B.3) as done in the calculation for unitarity:

Y S ™ T“ =  (S T S )im = { T - 'S T -
i -i

where we have used the fact tha t i is a fixed point of J , J i  = i, and th a t tp = 0. 
The last equality follows from modular invariance of the S  matrix of the original 
theory. Going back to our main expression we have then

g(J,ip)'p(J,ip)g(J,ip)\ =  . . .  =
' (i,<P){p,X)

=  i  ei7rhj Y ( S T S )im e2i7rQj^  S mp V T p =
m

=  l s c ,ei^(0+x) ei*hj Y { T ^ l S T - l )im e2i'nQj^ T l S mp V f p =
m

—  1  R  r 7  J ^ h j  r p - l  q _  r p - 1  2 i ^ Q j ( m ) r p 2  q  / 7 p  _
—  2  /  v i  t m  m  e  ± m  0 r n n p  V  ±  p  —

m

= X- B C  e ^ + x )  e™hj Y  Sji ,m T% S mp V f p =
m

=  I e™ hj T - i  Y ( S im T mx T 2m S mp) V f p =
m

=  I  B C e " < ^ )  ei7rhj T r 1 (T ~ 1S T ~ 1)ip V f p =

=  I  B C e " < ^ )  ei7rhj T r 2 S ip V f ^ 1 .

Hence:

f  g (J,ip)ji(J,ip) s ( J,'tp)\ — (C 15)
V h i , < t >) ( p i x )  V h h < t > ) { p x )  ’

provided
B  = e-™hj = e3™hj . (C.16)

Recall tha t we have used here tp = 0 and h j  (half-)integer. Actually we will 
show in the next subsection tha t the correct expression for B  is

B  = ( — 1)^ eSi7Thj , (C.17)

valid for any value of tp and also when h j  £ j  Z,0dd-
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In the following calculation we will consider the off-diagonal field (to«.) to be 
orbit-like, i.e. J m  = n. In the other case, i.e. when to and n  are fixed points of 
J , the constraint reduces to the trivial identity 0 =  0.

In fact, if (m n ) is fixed-point-like, on one side we have

f j i ( J , ‘t p ) ~ 1 c ( J , ‘tp)'Ti(J,‘t p ) ~ 1\  _ r p ( J ^ ) ^ 1 a ( J , 1 p )___ r p ( J ^ ) z L ^  _  Q
V / ( m » ) Q  W (p .x ) (P’X) ’

O ff-d ia g o n a l-tw isted

(mn)(p,x) (mn)(p,x)

_ =  0 bv the ans;
(mn)(p,x)

since ----  =  0 by the ansatz. On the other side we have

V J ( m n ) { p , x )  (»")(».«) (».«) (a , t ) ( p , x )
(“>€)

+ s s ^ i _+ __ rpi^p)s (jjÿ__ =
Z _ ^  (m n ) ( a b ) (ab) (ab)(p,x)  (mn)(a,£) (a,£) (a !̂ ) (p !x )
(ab) (Ü)

= <W>E E  SLsLe2i”(2h°-&C±Sapei*e +
£ = 0  a,  J a = a

+ E  (SL  Sib + (-1 ŸSibSia) ê + ^ - û )  . | A° Jj aaZab +
(ab) aP

+0 =  0 ,

because each term  vanishes individually, being e*71̂  =  0 in the first con
tribution, either S ^ a =  0 (if (ab) is orbit-like) or S ^ '^ l—  =  0 (if (ab) is

(ab){p,x)

fixed-point-like) in the second, and S ----  =  0 by the ansatz in the third.(mn)(a,£)
Hence, from now on we can restrict ourselves to orbit-like off-diagonal fields 

(mn). Compute:

V J  (mn)(p~x)  ( mn )  (m n )(y , x )  *-p ,x )

e 2i-K(hm+hn- ^ ) A S  ei-KX e-2¿ir(nf+ i - * )

A  T ~ 1 T ~ 1 Smv VT]

’m p
-1

e11TX
Lm  -Ln  ^ m p  v p

Here we could trade Tn with Tm at the cost of introducing phases depending on
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( s ^ t ^ s ^ A  ___s ^ l  ___+V J(m n)(p ,x) ^  (“ ")(“.«) (“.«) (a,£)(P,x)
(“>£)

+ y ^  s s ^ i __+  y ^  ____y W ) ___ =
Z_^  (mn)(ab) (ab) (ab)(p,x) J  (m n)(a ,£) (a,£) (a!^)(p!x)

(ab) ( i i)

= V E  E  SJmaSJnae2î h«-^Cl-Sape^ +
£ = 0  a, J a = a

+ E  (S™ Sib + ( - ^ S ibSia) . | A° Jj aaZab +
(ab) aP

+ E  E  AS'm0e2i7r(̂ L+2-®)Biei7r<3j(a)Pj0ii) ei7r(«+*} .
^  ̂  a! (a!̂ ) f-P-Of (J,1p)

Now the first line vanishes because of =  0- The second line also
vanishes since S J = 0 for orbit fields. In the third line we can use (C.7). So we
get

g(J,ip)ji(J,tp)g(J,tp)̂
(mn)(p,x)

= A B  e ] T  S™ PJa,p =
a,  ( a , £ )  f . p . o f  (Jjip)

I

hj  and Qj(m) ,  but it will not be necessary. On the other side:

E  Sma Ta S al | e2i^ ( 0  T 2 S lp V f p .
\a, (a,£) f.p.of (Jjip)

Let us look more in detail at the quantity within brackets. In order to extend 
the sum over all fields we need to use the projector (B.3):

E  S ma Tg Sal =  n (a ) Sma Ta S al =
a, (a,£) f.p.of (Jjip) a

= E  \ E  e2i7rfc«J(a)-*-2fcj)sma Ta sal =
a k=0

=  E  \ e - 2i^ +2hj) E  1 “ ^  =
k = 0 a

=  I E  T“ S -1 + { - i f +Ahj \  E s ™ T“ S -1 =
a a

= i  (S T S ) ml + ( -1  f + 4hJ i  (S T S ) n l .

Going back to our main expression, we can interchange S T S  = T ~ 1S T ~ 1 and
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f  gWVOyWVOgWVO
(■m n ) ( p , x j

= A B  e™x ei^ hj ^  [(S T S U i  + ( ~ l f +4hj (S T S )nl\ e2i^ ( 0  T 2 Sip VTp =
I

= A B  e™x ei7rhj ^  ] T  S ™i + ( ~ l f +4hj T ^ 1 Snl T “ 1] e2- ^ ( 0  T 2 Sip V f p
I

= A B  e™x ei7rhj ^ [ T m‘ Sj„hl I f 1 +  ( -1 )^ + 4 ^  T - i  ^  Tj- i]  yp Sip VTp =
I

= A B e™ x e™hj ^  [Tmx (S T S V f ) np + (_1)^+4^  y - 1 (S'TS'v/T )mp] =

= A B  ei7tx ei7thj 1 [Tmx T “ 1 Snp V T ^  +  ( - 1 ) ^  T ^ 1 Tmx Smp V T ^ ]  =

= A B  ei7rx ei7rhj ± Tmx T “ 1 ( Snp +  ( - 1 ) ^ + ^  Smp) =

get

= A B  ei7rx ( -1 )^ + 4^  ei7r?lJ Tm x T^  Smp V f p 1 .

(-1 )*+ihJ s„

5m p v i p

Hence

V /  (mn)(p,x) V '  (mn)(p,x)

provided

C .l  Sum m ary o f phase relations
Before ending this appendix we think it is useful to summarize the phase rela
tions th a t we have found in the calculation for modular invariance.

Combining the results from the twisted-twisted, diagonal-twisted and off- 
diagonal-twisted sectors, one can see that

B  = ( -1 )^ ‘Si'Khj

A 2 = C 2 =  B  e - i7rhj =  ( -1 )^  e2i7rhj

There is no phase information coming from the off-diagonal-off-diagonal sector. 
As far as the remaining phases are concerned, it is straightforward to show (even 
if we have not reported it explicitly in this appendix) tha t the phase of S(mn)(pq) 

and x) are constrained to be equal to one, so tha t there is no additional

phase in these m atrix elements, while the square of the phase of must
be one as well, so tha t one cannot fix the sign of this m atrix entry by using 
modular invariance.

Let us remark a subtle point. From the expressions above we can see that 
B  is fixed while A  and C  are fixed up to a sign (we could in principle choose 
both signs for the square root). We have already remarked that the phase C  is 
relevant only for tjj = 0, since for tp = 1 there are no diagonal fixed points and
hence no m atrix element ---- ..

(■i,<P)(p,X)
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