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Bayesian Monte Carlo for the Global Optimization of 
Expensive Functions

P e r r y  G r o o t  and A d r i a n a  B i r l u t i u  and T o m  H e s k e s 1

Abstract. In the last decades enormous advances have been made 
possible for modelling complex (physical) systems by mathematical 
equations and computer algorithms. To deal with very long running 
times of such models a promising approach has been to replace them 
by stochastic approximations based on a few model evaluations. In 
this paper we focus on the often occuring case that the system mod
elled has two types of inputs x  =  ( x c , x e) with x c representing 
control variables and x e representing environmental variables. Typ
ically, x c needs to be optimised, whereas x e are uncontrollable but 
are assumed to adhere to some distribution. In this paper we use a 
Bayesian approach to address this problem: we specify a prior distri
bution on the underlying function using a Gaussian process and use 
Bayesian Monte Carlo to obtain the objective function by integrating 
out environmental variables. Furthermore, we empirically evaluate 
several active learning criteria that were developed for the determin
istic case (i.e., no environmental variables) and show that the ALC 
criterion appears significantly better than expected improvement and 
random selection.

1 I n t r o d u c t i o n

Optimisation of expensive functions is one of the core problems in 
many of the most challenging problems in computing. Mathemati
cal computer models are frequently used to explore the design space 
to reduce the need for expensive hardware prototypes, but are often 
hampered by very long running times. Much emphasis has therefore 
been on optimising a model using as few function evaluations as pos
sible. A very promising approach has been to develop a stochastic 
approximation of the expensive function to optimise -  a surrogate 
model -  and use that approximation as replacement in optimisation 
and to determine the next best function value to evaluate according 
to some criteria in model fitting. This approach is well known as re
sponse surface m odelling  [11, 9].

In this paper we consider a situation often observed in practice in 
which there are two types of input variables: x  =  (x c, x e) with x c a 
set of control variables and x e a set of environm ental variables. The 
control variables are the variables that we can control whereas the en
vironmental variables are assumed to have values governed by some 
distribution that we cannot manipulate. For example, in [3, 2] a hip 
prosthesis is designed where the control variables specify its shape 
and the environmental variables account for the variability in patient 
population like bone density and activity. In [29] a VLSI circuit is 
designed where the control variables are the widths of six transistors 
and the environmental variables are qualitative indicators. In [12] 
a compressor blade design is improved where the control variables
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specify the geometry of the blade and the environmental variables 
are manufacturing variations in chord, camber, and thickness.

In this article we focus on optimising a real-valued objective func
tion that only depends on the control variables, but its value for each 
setting of the control variables is the mean over the distribution of 
the environmental variables. Hence, we seek to optimise the control 
variables in order to obtain the best average response of the objective 
function over the distribution of environmental variables

x* =  a rg m a x ¿ (x c) =  argm ax  / f  ( x c , x e) p ( x e) d x e (1)
x c x c J x e

with f  some real-valued utility function and p(-) some known mea
sure over the environmental variables x e. In particular, we focus on 
the problem of active learning in this context -  how to choose the ith 
sample point as a function of the sample points seen so far in order 
to obtain a good prediction for x* using as few function evaluations 
of f  as possible.

Our contribution is a computational framework for optimising 
functions that depend on both control and environmental variables. 
We describe in detail how the problem can be addressed by integrat
ing Gaussian processes, Bayesian Monte Carlo, and active learning 
criteria. Additionally, we empirically validate several well-known ac
tive learning criteria on a cake mix case study and show that the ALC 
criterion appears significantly better than expected improvement and 
random selection.

The rest of the paper is structured as follows. Section 2 describes 
some background. Section 3 describes the framework we use to 
address the problem formulated in Eq. (1) step-by-step: integrating 
out environmental variables using Bayesian Monte Carlo to obtain 
a stochastic approximation to the objective function (Section 3.1), 
reformulating the optimisation problem in term of the stochas
tic approximation (Section 3.2), and active learning criteria for 
efficiently finding the maximum of the stochastic approximation 
(Section 3.3). Section 4 gives empirical results of our approach. 
Section 5 describes related work. Section 6 gives conclusions.

Notation. Boldface notation is used for vectors and matrices. Normal 
fonts and subscripts are used for the components of vectors and m a
trices or scalars. The notation N ( 0 \ p ,  S )  is used for a multivariate 
Gaussian with mean ^  and variance S .  The transpose of a matrix M  
is denoted by M T . The zero vector and identity matrix are denoted 
by 0 and I , respectively. We use f  to denote a function that depends 
on both control and environmental variables, and h  to denote a deter
ministic function, i.e., it only depends on control variables.
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2 Background variance [23]

Section 2.1 describes Gaussian process regression. Section 2.2 de
scribes Bayesian Monte Carlo, which is a Bayesian approach for 
evaluating integrals using a Gaussian process to specify a prior dis
tribution over functions.

2 .1  G a u s s i a n  p r o c e s s  r e g r e s s io n

To simplify notation, we don’t make a distinction between control 
and environmental variables at this point. Let x  e  R N be an input 
point, y e  R  an output point. Let D n =  { (x 1,y 1) , . . . ,  (x n ,y n )} 
be a set of n  input-output pairs. Let X  =  { x 1, . . . ,  x n } and let 
Y  =  {y1, . . . ,y n } be the set of inputs and outputs, respectively, 
occurring in D n . We assume that D n is generated by an unknown 
function h  : R N ^  R  and the goal is to learn h  given D n .

To learn h  we model h  using a zero mean Gaussian process (GP), 
h  ~  G P  (0, K ), which defines a prior distribution over functions. 
The covariance matrix K  is given by a kernel function k. For exam
ple, the quadratic exponential covariance function is defined as

H h v n (x )p (x )  dx

K i j  =  co v (h (* i) , h ( x j )) =  fc(*i, X j )

=  wo exp ^ -  2 ( x i  -  X j)T A - 1 (x i -  X j)^
(2)

with A  =  diag(w 2, . . . ,  w N ) and wi hyperparameters. Given a GP 
prior over functions h  ~  G P (0, K )  and a set of observations D n , 
a posterior distribution p (h \D n ) can computed that can be used to 
make predictions at new test points x , x '.  The standard predictive 
equations for GP regression are given by [24]:

hDn (x ) =  fc(x, X  ) Q - 1 Y 

covD n(h (x ) , h ( x 7)) =  k (x , x 7) — k ( x ,X ) Q - 1 k (X , x 7)
(3)

with Q  =  ( K  +  an  I ) the kernel matrix with a tiny constant added 
to its diagonal in order to improve numerical stability.

A 1-D illustration of GP regression is shown in Figure 1, left panel. 
The true function h (x ) =  sin(x) +  |  x  (dashed line) is approximated 
with a GP using four sample observations (dots). The solid line is the 
GP mean function h Dn and the two standard pointwise error bars are 
obtained from covDn (h) given in Eq. (3).

2 .2  B a y e s ia n  M o n t e  C a r l o

In practice, evaluating a function h  is often expensive, meaning that 
we are able to only obtain a small number of function evaluations. 
This leads to uncertainty about h  because of incomplete knowledge. 
Furthermore, oRften we are not interested in h, but in evaluating the 
integral H  =  f x  h (x )p (x )  d x  (with respect to some measure p (x )  
denoting the importance of the inputs). Because of the uncertainty in 
h , determining H  can be considered an inference problem [20].

The Bayesian Monte Carlo (BMC) method is a Bayesian approach 
for evaluating integrals [23]. BMC starts with defining a prior distri
bution over h  and updates this distribution using a set of n  obser
vations D n =  { (x i, y i)} i=1,...,n to obtain a posterior distribution 
p (h |D n ). When h  is modelled with a GP prior and the posterior 
p (h |D n ) is or can be approximated with an (infinite-dimensional 
joint) Gaussian, the distribution of H  has a Gaussian distribution, 
H  ~  N ( H ,  cov (H )), and is fully characterised by its mean and

cov(H ) =  /  /  cov(hDn (x ) ,h D n (x 7))p (x )p (x 7) d x  d x 7
J  x  J  x'

(4)

with h D n(x) and cov(hD n( x ) ,h D n(x ') )  the posterior mean and 
posterior variance, respectively, as given in Eq. (3). The integrals in 
Eq. (4) can be reformulated as follows

H  =  z Q - 1 Y, cov(H  ) =  c — z Q  1z T (5)

where we used the following integrals

c =  p (x )  / p (x 7)fc(x, x 7) d x  d x 7 
x  x ' 

zi =  p (x )fc(x , x ;) d x
x

(6)

with k  the kernel function and x i  e  X  the l-th input point in the data 
set. Both c and z l depend on the data as the kernel function k can 
have a number of hyperparameters that are optimised with respect to 
the data (cf. Eq. (2)).

In some cases these multi-dimensional integrals can be reduced 
to products of one dimensional integrals, which are usually easier to 
solve. If the density p (x )  and the kernel function are both Gaussian 
we obtain analytic expressions. In particular, when p (x )  ~  N (b, B )  
and when using the common quadratic exponential covariance func
tion in Eq. (2) we obtain the following analytical expressions [23]:

zi

c =  w o |2A - 1 B  +  1 1-1/2

w o |A - 1 B  + 1  r 1/2-

exP ( - 2 (x i  -  b )T (A  +  B )  1 (x i -  b)^

(7)

Some other choices that lead to analytical expressions are Gaussian 
mixtures for p (x )  and polynomial kernels.
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'

Figure 1. Left: Gaussian process regression. The GP mean prediction 
(solid line) of the function h(x)  =  sin(x) +  | x  (dashed line) with two 
standard error pointwise error bars after four observations (dots). Right: 

Bayesian Monte Carlo. The normal distribution representing 
Jx h(x )p(x )  dx with p(x)  ~  N (1, 1) and the true integral value 

represented by a dashed line.

A 1-D illustration of BMC is shown in Figure 1. On the left we 
have a GP fit of the function h (x ) =  sin (x) +  | x .  On the right 
we have the corresponding Gaussian distribution for f x h (x )p (x ) dx  
with p (x ) ~  N (1 ,1 ) calculated using BMC. True values are shown
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with a dashed line, approximations with a solid line. By obtaining 
more function evaluations for h, the GP fit will improve and the 
Gaussian predictive distribution for the integral will become more 
peaked and will converge to the true value.

3  F r a m e w o r k

Below we describe our approach step-by-step to address the problem 
formulated in Eq. (1).

3 .1  I n t e g r a t i n g  o u t  e n v i r o n m e n t a l  v a r i a b l e s

In the rest of the paper we reintroduce the distinction between con
trol and noise variables x  =  (x c, x e). We consider the case where 
we only integrate out x e from f  (x c, x e) using the BMC method de
scribed above. Because of uncertainty about f , we model f  ( x c, x e) 
with a Gaussian process (Section 2.1) and given data D n will write 
it as f  ( x c, x e \Dn ). Using BMC (Section 2.2) to integrate out x e 
from f  ( x c, x e\Dn ) we obtain a stochastic approximation L to our 
objective function ¿ (Eq. (1)). The stochastic objective function L  is 
described by a collection of random variables L ( x c):

L ( x c |D n ) — I ƒ  (x o  x e |D n )p (x e) d x e 
J  X e

(8)

for which we assume a Gaussian measure p ( x e) ~  N ( x e |b, B )  
on inputs x e. W hen we model ƒ  using a GP with a kernel function 
defined in Eq. (2) it follows from Eq. (5) that L  is a GP with a mean 
and covariance function defined by

L ( x c) =  z ( x c) Q - 1 Y 

c o v (L (x c), L(xC)) =  c (x c, x'c) -  z ( x c) Q - 1 z (x 'c)T
(9)

where we omitted the dependence on D n for readability and used the 
shorthand notation z ( x c)  =  w - 1fcc(x c, x c, i)zi  and c (x c, x'c) =  
w - 1kc( x c, x'c)c, which follows from Eq. (6) and the fact that the 
kernel function k factorises, i.e.,

fc((*c, * e), (*C, x'e)) =  w 0 1fcc(*c, l C ) t e( x e , x'e) (10)

with kc, ke the kernel function k restricted to the domain of x c and 
x e, respectively.

Figure 2. Left: GP mean prediction of the function
f  (xc, xe) =  sin(xe) +  3 x e +  sin(5xc) +  3 xc — 1 given a small number 

of observations (dots). Right: GP prediction of f x f  (xc,x e)p(xe) dxe 
with p(x) ~  N (x; 1, 1) and the true function shown by a dashed line 

computed using numerical integration.

A 2-D illustration of integrating out environmental variables using 
the BMC approach is shown in Figure 2. On the left we have the 
mean GP fit of ƒ  (x c, x e) =  s in (x e) +  3 x e +  sin (5xc) +  | x c — 1 
with 1 <  x c <  3 and —5 <  x e <  5. On the right we have the GP fit 
for f x ƒ  (x c, x e)p (x e) d x e using BMC. By obtaining more function 
evaluations for ƒ, the GP fit shown on the left and right will improve.

3 .2  O p t im i s a t i o n

So far, we have modelled our objective function I  with a Gaussian 
process L. The goal, however, is to find the value x* such that ¿(x*) 
is maximised (cf. Eq. (1)) as illustrated by the small cross in Figure 2, 
right panel. The idea is to request more information about the true 
objective function I  (through f ), update our stochastic approximation 
L, and use the resulting model to make a prediction:

x* =  argm ax L (x c|D n )
X c

=  a r g m a x /  ƒ  (x c, x e |D „ )p (x e) d x e. (11)
‘ c  J  X e

This problem formulation is quite different from earlier work on 
optimising expensive functions. Previous work is typically of the 
form shown in Figure 1, left panel. Our work is of the form shown 
in Figure 2, right panel. There are two key aspects that distinguishes 
our problem formulation from previous work. First, we do not opti
mise f ,  but the average that f  takes over a distribution of the envi
ronment variables (i.e., the difference between left and right panels 
in Figures 1 and 2). Second, our objective function L  is a collec
tion of stochastic variables which is only observed indirectly through 
f  ( x c, x e) whereas previous work almost exclusively focusses on op
timising a determ inistic  function h  that is directly observed through 
observations h (x )  (i.e., the difference between Figures 1 and 2).

Since f  is expensive to evaluate, we would like to select function 
evaluations of f  in such a way that the x* obtained in Eq. (11) re
sults in a value ¿(x*) that is close to the global optimum ¿(x*) using 
as few function evaluations as possible. This is known in the litera
ture as active learning or infill sampling criteria. Below we describe 
several active learning criteria.

3 .3  A c t iv e  l e a r n in g

Much work has already been done on optimising expensive functions 
by optimising a Gaussian process based surrogate model (see [28,15] 
for a detailed overview). Below we describe some well-known crite
ria for active learning that are applicable to our problem formulation 
before empirically validating them in Section 4. The criteria can be 
split into two categories: (1) criteria that are specifically geared to
wards finding a maximum of a function, but not necessarily a good 
global model fit, and (2) criteria that improve the global model fit and 
thereby indirectly also the predicted maximum value, which we de
scribe in Sections 3.3.1 and 3.3.2, respectively. Furthermore, in Sec
tion 3.3.3, we propose extensions of these criteria that are applicable 
to our problem formulation.

3.3.1 Criteria fo r  obtaining a maximum

Expected Improvement. One of the early influential papers is the 
work by Jones et al. [11] who studied the problem of finding a 
maximum of a determ inistic  function using a GP (i.e., finding the
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maximum of the true underlying function as shown in Figure 1, left 
panel, by a dashed line). Based on the currently best observed value 
ymax =  m a x { h (x 1) , . . . ,  h ( x n )} given n  observed function evalu
ations { h (x i )} i= 1,...,n Jones e t al. define the improvement I ( x )  at 
a new input x  as

I(X ) =  m ax{0 ,h (X ) -  ymax} (12)

Of course, this value cannot be computed as h  is unknown, but 
the expected improvement E [I(x )]  can be computed using the GP 
model for h. The expected improvement can be used as infill criteria 
by requesting a new observation at the location where the E [I(x )]  
obtains its maximum value. When compared with work on expected 
improvement, in our work the known value ymax is replaced by a 
probabilistic value obtained from L.

Generalised Expected Improvement. As the expected improve
ment criteria was found to often get stuck in local optima, a generali
sation was proposed in [26] that introduces a parameter that controls 
the local-global balance. Let Lmax =  m axXc{ L (x c |D n )} be the 
maximum (over the means) of the predicted values of our objective 
function given the n  data samples collected so far.2 As the objective 
function is a Gaussian process, the predictive distribution in a new 
point is Gaussian distributed, i.e., L (x c) ~  N ( m ( x c), s2(x c)). For 
readability the dependence on x c is left out, denoting m ( x c) as m  
and s 2 (x c) as s 2. The generalised improvement [26] over the current 
best value is defined as

I  (Xc)s (¿( x c ) — 
0

)gx) if ¿ (*c) >  Lm 
otherwise

(13)

with g a non-negative parameter controlling the local-global balance.
Analogously to the improvement function of Jones et al. (cf. Sec

tion 3.3), this value cannot be computed as ¿ is unknown, but the 
expectation of the generalised improvement can be computed by us
ing the GP predictive distribution at L (x c) for ¿ (x c). The expected 
generalised improvement can be shown to take the following form

E [ I  (Xc)g ]
É  ( g )k=Q \  /

( _ u ) 9-k  Tfc

with u  =  (Lmax _  m ) /s  and where

T q =  1 _  $ (u )  and T i =  0 (u )

(14)

(15)

with $  the standard normal cumulative distribution function and 0 
the standard normal probability density function. Each Tk for g >  1 
can be computed recursively from

Tk =  u  10 (u ) +  (g _  1)Tfc_2 (16)

Higher values of g result in more global search. The standard (ex
pected) improvement function uses g = 1 .

3.3.2 Criteria fo r  obtaining a global model fit

Variance reduction. We consider two other active learning criteria 
based on variance reduction. The first method denoted ALM, de
veloped by MacKay [16], maximises the expected information gain 
about parameter values of the model by selecting data where the pre
dictor has maximum variance. This is directly applicable to a Gaus
sian process as it provides a variance estimate for each test point (cf.

Eq. (3)). The second method denoted ALC, developed by Cohn [4], 
is motivated from the goal of minimising the generalisation error. It 
computes how the output variance of the predictor changes (averaged 
over a set of reference data points A) when a new test point x  would 
be added to the data set. Formally,

_2 , ^  ( K (X , A )K - 1 m  _  K (X , A))2
(X) =

K (X , X) _  m T K  1m
(17)

with m  =  K (X , x ), K -1  =  K ( X ,X ) - 1 ,and  A e  A. In [27], both 
methods are compared on the average variance and mean-squared 
error and ALC was found to consistently perform better (but much 
harder to evaluate) than ALM and random selection.

Latin Hypercube Sampling. A k-dimensional Latin Hypercube De
sign (LHD) [17, 8] is a design of n  points { x 1, . . . ,  x n } with 
x i =  (x i1, . . . ,  x ik) such that for each dimension j ,  1 <  j  <  k, all 
x ij , i  =  1 , . . .  ,n  are distinct. In the literature, LHDs are typically 
used to initialise the statistical model, before switching to an active 
learning criterion. Note that LHDs choose a design beforehand, with
out using any information about the acquired samples so far.

3.3.3 Combined criteria

The generalised expected improvement criterion will result in a new 
point x c, to be used to request more observations about the objective 
function ¿. Observations about ¿, however, can only be obtained by 
evaluating f  ( x c, x e). Hence, in the context of this paper, the gener
alised expected improvement criterion needs to be extended to obtain 
apa ir ( x c, x e) for the function f  to be evaluated at. In this paper, we 
combine the generalised improvement criterion with the ALC crite
rion of Section 3.3.2: we apply the generalised expected improve
ment on L (x c) to obtain x c followed by ALC on f  ( x c, x e), i.e., 
with x c fixed, to obtain x e.3 This extends the generalised expected 
improvement, which aims at finding a maximum, to our case of func
tions dependent on both control and environmental variables. Analo
gously, any of the global criteria of Section 3.3.2 can be used on the 
integrated objective function ¿ (x c) to obtain x c and then combined 
with another criterion on the function f  ( x c, x e) with fixed x c. In 
this paper, we only consider the ALC criterion combined with itself, 
denoted ALC-ALC. Thus, ALC uses Eq. (17) with the covariance 
function K  as defined in Eq. (2) whereas ALC-ALC uses Eq. (17) 
with the covariance function K  as defined in Eq. (9), resulting in a 
x c, followed by the ALC criterion on f  ( x c, x e).

4  E x p e r im e n t s

The following case study is taken from [1]. Suppose we were to in
troduce a new cake mix into the consumer market that we like to be 
robust against inaccurate settings of oven temperature (T) and bak
ing time (t). We would like to design experiments varying the control 
variables -  the amount of flour ( F ), the amount of sugar (S), and the 
amount of egg powder (E ) -  and environmental variables (oven tem
perature and baking time) to see if we could create a cake mix that is 
better with respect to the environmental variables than the standard 
recipe so far produced by the product development laboratory.

Given a number of data samples we fitted a Gaussian process and 
used its mean function as the true underlying model. We used the

2 In [26] the criteria is defined for a deterministic function and Lmax is de
fined to be the maximum over the known n  observed values.

3 In this paper we only combine with ALC as this criterion turned out to give 
better performance than the ALM and random criteria.



same hyperparameters of this model in the experiments. We set

p  ~  N (b ,  B ) ,  b = B
2 /3  —1/3 ' 

—1 /3  2 /3 (18)

based on the variance observed in the data and assuming a neg
ative correlation between oven temperature and baking time. We 
used the divided rectangles (DIRECT) algorithm [6, 10] as global 
optimiser and the maximum value of the corresponding function ¿ 
as defined in Eq. (1) was found to be 5.5330 and was obtained at 
x* =  (F * ,S * ,E * )  =  (1 .1852 ,-0 .7407 ,1 .1084 ), which implies 
an improved cake mix by using a higher amount of flour, a lower 
amount of sugar, and a higher amount of egg powder than the stan
dard recipe set at (0, 0, 0).

The goal of the various active learning criteria is to find the value 
xc* that maximises ¿ as quickly as possible using properties of the 
stochastic approximation L. Therefore, let x* be the value that max
imises L  the current mean GP estimate of ¿. We take as error measure 
e the distance between the true maximum value and the true value at 
the predicted location x* :4

| m a x ¿ (x c) — ¿ (x * ) |, x* =  a rgm ax  L (x c) (19)

We first evaluated the random, ALM, ALC, and LHD criterion 
on the cake mix case study. Besides LHD, we started for each active 
learning criteria from a random initial sample and iteratively selected 
new samples according to the criteria. At each iteration we updated 
the model and computed the error measure given in Eq. (19). We it
eratively selected up to 50 samples and averaged the results over 50 
runs. The set of random initial starting points were the same for each 
of the random, ALM, and ALC active learning criteria. Because of 
the computational complexity of the ALC criterion we limited the 
set A to 500 reference samples that were drawn according to the dis
tribution specified by p  on the environmental variables and uniform 
distribution on the control variables.

The results are shown in Figure 3 in which we plot the error mea
sure from Eq. (19) and the standard deviation of the mean over 50 
runs. Clearly, the ALM method performs is even worse than ran
dom sampling. The LHD approach performs better than ALM, but 
its performance is initially very similar to random sampling and af
ter about 25 samples it is even outperformed by random sampling. 
Although LHDs are typically used as initialisation method in the lit
erature these results suggest that an LHD is unnecessary and may 
lead to worse performance. Similar results for LHDs and determin
istic functions have also been reported recently in [15]. The ALC 
criterion performs very well on the cake mix study. The downside, 
however, is that ALC is computationally more challenging and tries 
to optimise the global model fit, but not specifically the predicted 
maximum of the objective function. The ALC-ALC criterion is a bit 
worse than the ALC criterion, but performs quite well. It has the ad
vantage that optimisation in a high dimensional space of both control 
and environmental variables can be split into two sequential optimi
sation steps in two lower dimensional spaces.

Besides evaluating the active learning criteria that are aimed at 
improving the global model fit we also evaluated the generalised ex
pected improvement criterion which aims at finding the maximum. 
As already mentioned in Section 3.3.1 we used the generalised ex
pected improvement to obtain an x c which was then kept fixed in 
one of the criteria that aim for a global fit to obtain a pair ( x c, x e)

4 Alternatively, if there is only one dominating global optimum, one can take
as error measure the distance ||x* — x* ||. In our case study, however, there 
are multiple local optima that are almost as good as the global optimum.
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Figure 3. For each active learning criteria we computed a sequence of 
samples and observations to be added. At each step we computed the 

distance between the true maximum value and the value at the location 
where we predict the maximum value to be. We computed the mean 

performance and standard deviation of the mean of each active learning 
criterion over 50 runs. The bottom right subfigure superimposes the means.
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Figure 4. The results of the generalised expectation criterion combined 
with the ALC variance reduction strategy. For each active learning criteria 
we computed a sequence of samples and observations to be added. At each 

step we computed the distance between the true maximum value and the 
value at the location where we predict the maximum value to be. We 

computed the mean performance and standard deviation of the mean of each 
active learning criteria over 50 runs. The bottom right subfigure 

superimposes the means.

for further evaluation. We only investigated the combination of the 
generalised expected improvement criterion with the ALC criterion 
as ALC clearly outperformed the random, ALM, and LHD criteria.

The results are shown in Figure 4. For the cake mix case study, the 
results of the generalised expected improvement criterion are pretty 
bad when compared to the results shown in Figure 3. In all cases 
evaluated, the generalised expected improvement criterion is outper
formed by random sampling. The generalised expected improvement 
criterion has originally been developed for deterministic functions 
and these results show that the criterion cannot easily be augmented 
to be used for the optimisation of functions that are dependent on 
both control variables and environmental variables.
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X X

2
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5 Related work

Optimisation of expensive d e te rm in is tic  functions (which may in
clude noisy observations) using response surfaces is an active field of 
research. Recently, further developments of the theory have appeared 
(e.g., multi-step lookahead, use of derivative information [21]) as 
well as some new domains of application (e.g., robotics [14, 13] and 
controllers [7]). Designing better infill criteria is also still an active 
topic, e.g., [26, 25, 22, 5].

Less work has been done in the area of optimizing functions de
pendent on both control and environmental variables. The earliest 
ideas can be contributed to Genichi Taguchi in the 1980s who coined 
the term robust p a ra m e te r  d e s ig n , but their inefficiency have often 
been criticised [18]. Recently, some progress has been made using 
response surfaces applied to integrated objective functions, but re
stricted to finite measures on the environmental variables [19, 30]. 
The current paper extends this work to Gaussian measures.

We showed that the well-known generalized expected improve
ment criterion performed badly on the case study investigated and 
that the ALC criterion performed quite well. Nevertheless, there is 
room for further improvement. The authors are unaware of active 
learning criteria specifically designed for the type of problems con
sidered in this paper.

6 Conclusions and future work

In this paper we demonstrated a step-by-step approach for optimising 
functions that depend on both control and environmental variables. 
We described in detail how the problem can be addressed by integrat
ing Gaussian processes, Bayesian Monte Carlo, and active learning 
criteria. Furthermore, we empirically validated several well-known 
active learning criteria on a cake mix case study.

An issue for further research is the design of better active learning 
criteria as the expected improvement criteria, which is often advo
cated in this field for deterministic functions, performed quite badly. 
For example, we could and probably should take into account the 
variance of Lmax in the generalised expected improvement criterion. 
Other issues wanting further investigation is the scalability of the ap
proach in terms of control and environmental input dimensions as 
well as the use of Gaussian mixtures as distributions over environ
mental variables.
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