
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/83230

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/83230


Allogeneic stem cell transplantation: 
exploration of new indications and strategies 
to exploit graft-versus-tumor immunity for 
cancer treatment

Henriette Levenga



Colofon

The research described in this thesis was performed at the Department of Hematology and 

Oncology and at the Central Hematology Laboratory of the Radboud University Nijmegen 

Medical Centre, Nijmegen, The Netherlands. The research was financially supported by the Dutch 

Cancer Foundation (KW F Kankerbestrijding) (grant 2001-2358).

Copyright © 2010 by Henriette Levenga. All rights reserved. No part of this thesis may be 

reproduced, stored in a retrieval system or transmitted in any form or by any means without 

the prior written permission of the author. The copyright of the publications remains with the 

publishers.

ISBN/EAN: 978-90-9025707-5 

Cover and lay-out

Karin Kuiper (www.muskunst.nl)

Printed by

PrintPartners Ipskamp, Enschede, The Netherlands, 2010

Publication of this thesis was financially supported by Celgene and Novartis Oncology.

http://www.muskunst.nl


Allogeneic stem cell transplantation: 
exploration of new indications and strategies 
to exploit graft-versus-tumor immunity for 

cancer treatment

Een wetenschappelijke proeve op het gebied van de 
Medische Wetenschappen

Proefschrift

ter verkrijging van de graad van doctor 

aan de Radboud Universiteit Nijmegen 

op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, 

volgens het besluit van het college van decanen 

in het openbaar te verdedigen op woensdag 1 december 2010 

om 10.30 uur precies

door

Tjakiena Henriette Levenga 
geboren op 23 maart 1970 

te Veendam



Promotores

Prof. dr. T.J.M. de Witte 

Prof. dr. C.J.A. Punt

Copromotores

Dr. H. Dolstra 

Dr. R.A.P. Raymakers 

Dr. N.P.M. Schaap

Manuscriptcommissie

Prof. dr. C.G. Figdor (voorzitter)

Prof. dr. P.M. Hoogerbrugge

Prof. dr. H.M. Lokhorst (Universitair Medisch Centrum Utrecht)



Contents

7 List of abbreviations

11 Chapter 1

General Introduction

43 Chapter 2

Dynamics in chimerism of T cells and dendritic cells in relapsed CML 

patients and the influence on the induction of alloreactivity following donor 

lymphocyte infusion

63 Chapter 3

Multiple myeloma patients receiving pre-emptive donor lymphocyte infusion 

after partial T cell-depleted allogeneic stem cell transplantation show a long 

progression-free survival

77 Chapter 4

Partial T cell-depleted allogeneic stem cell transplantation following reduced 

intensity conditioning creates a platform for immunotherapy with donor 

lymphocyte infusion and recipient dendritic cell vaccination in multiple 

myeloma

107 Chapter 5

Reduced intensity conditioning followed by partial T cell-depleted allogeneic 

SCT for relapsed or progressive transformed non-Hodgkins lymphoma, 

follicular lymphoma and CLL



131 Chapter 6

Aberrant expression of the hematopoietic-restricted minor histocompatibility 

antigen LRH-1 on solid tumors results in efficient cytotoxic T cell-mediated 

lysis

153 Chapter 7

Minor histocompatibility antigen-specific T cell responses after partial T cell- 

depleted reduced intensity stem cell transplantation and donor lymphocyte 

infusion in renal cell carcinoma

181 Chapter 8

Summary and general discussion

193 Chapter 9

Nederlandse samenvatting 

List of publications 

Curriculum Vitae 

Dankwoord 

Colour figures

6



List of abbreviations

7AAD 7-aminoactinomycin D

APC antigen presenting cell

ATG anti-thymocyte globulin

BM bone marrow

CCyR complete cytogenetic response

CFSE carboxyfluorescein diacetate succimidyl ester

CLL chronic lymphoid leukemia

CML chronic myeloid leukemia

CMolR complete molecular remission

CR complete remission

CCR continuous complete remission

CTL cytotoxic T lymphocyte

CsA cyclosporine A

CY cyclopho sphamide

DC dendritic cell

DLI donor lymphocyte infusion

DNA deoxyribonucleic acid

EBV Epstein-Barr virus

ELISA enzyme-linked immunosorbent assay

EFS event-free survival

FACS fluorescence activated cell sorting

FCS fetal calf serum

FISH fluorescent in situ hybridization

FITC fluorescein isothiocyanate

FL follicular lymphoma

7



Flu fludarabine

G-CSF granulocyte colony-stimulating factor

GM-CSF granulocyte-macrophage colony-stimulating factor

GVHD graft-versus-host disease

GVL graft-versus-leukemia

GVM graft-versus-myeloma

GVT graft-versus-tumor

HDM high-do se melphalan

HLA human leukocyte antigen

HS human serum

HMBS hydroxyl-methylbilane synthase

HSA human serum albumin

IFN interferon

IgH immunoglobulin heavy chain

IL interleukin

IMDM Iscoves modified Dulbecco’s medium

KLH keyhole limpet hemocyanin

LCL lymphoblastoid cell line

MA myelo ablative

MCL mantle cell lymphoma

MDC myeloid dendritic cell

MHC major histocompatibility antigen

MiHA minor histocompatibility antigen

MFI mean fluorescence intensity

MM multiple myeloma

MR minimal response

mRNA messenger ribonucleic acid

NHL non-Hodgkins lymphoma

NK natural killer

NST nonmyeloablative stem cell transplantation

OS overall survival

PB peripheral blood

PBMC peripheral blood mononuclear cells

PBS phosphate-buffered saline

PBSC peripheral blood stem cells



PCR polymerase chain reaction

PD progressive disease

PDC plasmacytoid dendritic cell

pDLI pre-emptive donor lymphocyte infusion

PE phycoerythrin

PFS progression free survival

PGE2 prostaglandin E2

PR partial remission

RCC renal cell carcinoma

RIC reduced intensity conditioning

RNA ribonucleic acid

RT reverse transcriptase

SCT stem cell transplantation

SNP single nucleotide polymorphism

TBI total body irradiation

TNF tumor necrosis factor

TRM transplantation-related mortality

tDLI therapeutic DLI

UPN unique patient number

VAD vincristine, adriamycin dexamethasone

VGPR very good partial remission



Chapterl

General Introduction





Chapter 1

General Introduction

Allogeneic stem cell transplantation is a potential curative treatment modality for 

hematopoietic malignancies. The therapeutic efficacy of myeloablative SCT is based 

on high dose chemotherapy often in combination with radiotherapy and alloreactivity 

of the donor immune system, referred to as the graft-versus-leukemia (GVL) 

reactivity Despite its powerful antitumor activity, myeloablative allogeneic SCT is 

unfortunately accompanied by a high treatment related morbidity and mortality 

due to infections and graft-versus-host disease (GVHD). As most complications of 

allogeneic SCT are related to GVHD and the favorable results are related to GVL, the 

key issue of SCT remains to separate GVL from GVHD.

The graft-versus-leukemia effect of allogeneic stem cell transplantation

Early in the era of allogeneic SCT it was already suggested that allogeneic SCT 

eliminates leukemic cells through immune-mediated effects. Weiden et al. reported 

in 1979 that patients developing acute GVHD had a decreased chance for leukemic 

relapse following allogeneic SCT from an HLA-identical sibling.1 This was confirmed 

one decade later by the study from Horowitz et al.2 showing that patients who did 

not develop GVHD following transplantation and patients transplanted with 

a T cell-depleted graft or stem cells from a syngeneic donor had a greater chance 

of relapse. These observations indicate that alloreactive donor T cells are at least 

partly responsible for this reaction, which is defined as the GVL effect since then. 

Because not only leukemia cells are susceptible to these immunocompetent T 

cells, this immune reactivity is also called graft-versus-malignancy or graft-versus- 

tumor (GVT) reactivity Another important observation from this study was that 

the susceptibility to GVL varies between different hematological diseases. Patients 

with chronic myeloid leukemia (CML) appeared most susceptible, while patients 

with acute myeloid leukemia (AML) showed intermediate susceptibility and patients
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with acute lymphoid leukemia (ALL) were least susceptible. Further proof of the 

important role of donor T cells in GVL reactivity came from the observation of 

disease responses after infusion of fresh lymphocytes from the original stem cell 

donor (DLI) in patients relapsed after allogeneic SCT. 3

Although donor T cell responses are strongly associated with GVL, also natural 

killer (NK) cells are capable in mediating anti-tumor effects. Especially in HLA- 

mismatched or haplo-identical SCT, alloreactive donor NK cells were found to 

play an important role in GVL reactivity.*5 Furthermore, also antibody responses 

developing after allogeneic SCT are thought to play a role in GVL and GVHD .69 This 

introduction and thesis will focus on the role of alloreactive donor T cells and their 

antigenic targets.

Role of minor histocompatibility antigens in GVT im munity

GVHD and GVL after genotypically major histocompatibility complex (MHC)- 

matched allogeneic SCT are immune responses directed at polymorphic loci outside 

the MHC, which are referred as minor histocompatibility antigens (MiHA). These 

MiHA are MHC-restricted peptides derived from intracellular proteins that differ 

in amino acid sequence between recipient and donor due to single nucleotide 

polymorphisms (SNP) in their encoding genes. They are presented by MHC class

I and II molecules on the cell surface of recipient cells and can be recognized by 

donor CD8+ and CD4+ T cells, respectively MiHA can be classified according the 

chromosomal location of the encoding gene (i.e. autosomal- or Y chromosome- 

restricted) or based on tissue distribution (i.e. ubiquitous versus hematopoietic- 

restricted expression pattern). Ubiquitous MiHA are broadly expressed by normal 

tissues and/or tumor cells and immune responses against these MiHA can result in 

both GVHD and G V T In contrast, MiHA selectively expressed on both normal and 

malignant hematopoietic cells of the recipient may induce GVT without GVHD. 

MiHA-specific donor T cell responses have no negative effect on normal blood cell 

formation since the patient hematopoietic system is replaced by donor hematopoiesis, 

referred to as complete donor chimerism. Although hematopoietic-restricted MiHA 

are not expressed by normal tissues, some of these MiHA are aberrantly expressed in 

non-hematopoietic solid malignancies.1043

T cell depletion as strategy to reduce GVHD

GVHD is a most harmful immunologic complication of allogeneic SCT, in many
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ways comparable with auto-immune diseases. GVHD is named acute GVHD if it 

develops within the first three months after SCT and affects mainly the skin, gastro­

intestinal tract and liver. Chronic GVHD per definition has a later onset and also 

mainly affects skin, gastro-intestinal tract and liver, and in addition other mucosal 

tissues such as the eyes and lung. GVHD may also be induced after DLL 

An important strategy to reduce the incidence and severity of GVHD is removal of 

T cells from the graft (i.e. T cell depletion). The major advantage of T cell-depleted 

allogeneic SCT is the reduced morbidity resulting in a much better quality of life after 

SCT and lower GVHD-related mortality However, earlier studies in myeloablative 

allogeneic SCT have shown that T cell depletion did not result in an improved 

overall survival due to higher rates of graft failure, relapses and Epstein-Barr virus- 

associated lymphoproliferative disorders (EBV-LPD).1446 Strategies to improve the 

results of T cell-depleted allogeneic SCT are partial T cell depletion by adding back a 

fixed number of T cells to the depleted graft or adoptive immunotherapy to enhance 

GVT reactivity after discontinuation of immunosuppression.

Several T cell depletion techniques have been described, either the positive selection 

of the stem and progenitor cells (CD34 selection) or the removal of T cells (CD3 

depletion), for example by immunomagnetic beads. Also in vivo T cell depletion is 

frequently applied, for example by the infusion of anti-thymocyte globulin (ATG) or 

Alemtuzumab. Alemtuzumab, eliminating CD54 positive cells is the most rigorous 

form of T cell depletion, removing also B cells and NK cells.

From myeloablative to reduced intensity conditioning: allogeneic SCT as im m uno­

therapy

The toxicity of the myeloablative conditioning regimens and the recognition of 

alloreactive T cell responses to be the predominant mechanism for tumor response 

resulted in the design of several reduced intensity conditioning regimens (RIC). 

Nowadays, RIC is the most frequently used form of allogeneic SCT The reduction 

in toxicity of the conditioning regimen made it possible to significantly enhance the 

age limit for allotransplant up to 65-70 years of age. The strategy of RIC-SCT differs 

for the different hematological malignancies. In most hematological malignancies 

immunosuppressive chemotherapy is only needed for transplant engraftment. But 

in some hematological malignancies, such as myelofibrosis, chemotherapy is still 

needed to reduce the tumor burden, making “space” in the marrow and get the new 

transplant accepted. In non-hematopoietic malignancies (metastatic solid tumors)
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the optimal conditioning regimen and the value of RIC conditioning are still under 

investigation.

Post-transplant im m unotherapy by Donor Lymphocyte Infusions

DLI are used after myeloablative allogeneic SCT to augment the GVT effect, at 

relapse or pre-emptive, mostly in a T cell-depleted setting. Also after RIC-SCT DLI 

is used to accelerate the conversion from mixed towards complete donor chimerism, 

supporting engraftment. The first studies on therapeutic immunotherapy with donor 

lymphocytes in relapsed leukemia after myeloablative allogeneic SCT were published 

in 1995 and demonstrated curative potential in CML and myeloid forms of acute 

leukemia.3 DLI is used in nearly all malignant diseases for which allogeneic SCT 

is performed. Main causes of treatment-related mortality after DLI are GVHD and 

marrow aplasia followed by infections. The rate of GVHD increases when higher 

T cell doses are infused, although the absolute doses may vary in siblings versus 

unrelated setting.1748

The application of DLI can be divided in two different strategies, i.e. the therapeutic 

or prophylactic setting. Therapeutic DLI (tDLI) is administered for the treatment of 

relapse or for the correction of incomplete donor chimerism. Whereas prophylactic 

or pre-emptive (pDLI) involves the planned administration of DLI after SCT often in 

the setting of (partial) T cell-depleted grafts.19

DLI in therapeutic setting

In patients relapsing from CML after SCT, complete molecular remissions have been 

obtained in 70-80% of patients.3 The response to DLI and probability of aplasia after 

DLI was dependent on the relapse status at time of lymphocyte infusion. Improved 

responses and less aplasias were observed in patients with molecular and cytogenetic 

relapse compared to hematological relapse, so related to the tumor burden. In 

AML or MDS, tDLI is significantly less effective. In a retrospective study the EBMT 

analyzed the role of DLI in the treatment of relapsed AML after allogeneic SCT.20 

At relapse, most patients received chemotherapy, but overall survival was higher (2 

year survival, 21% versus 9%) in those patients receiving DLL However, in AML still 

only a minority of the patients benefits of DLI, especially patients in remission, with 

more favorable karyotype and with a longer interval of relapse after transplant. Due 

the retrospective nature of this study both patient populations may be different and a 

selection bias in the DLI group may have occurred.
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The mechanisms responsible for the variation in DLI-mediated anti-tumor 

responses between the different disease types are still unclear. Differences in tumor 

characteristics such as growth rate, susceptibility to T cell-mediated cytotoxicity, 

secretion of immune-modulatory cytokines and variation in the expression of co­

signaling molecules as well as the possibility for antigen presentation may have a 

major impact on the response.21"24

DLI in prophylactic setting

Several studies have analyzed the value of pDLI to prevent tumor relapse after T cell- 

depleted myeloablative SCT.2531 Timing of pDLI and the T cell dose differed in these 

studies. In some studies, a fixed T cell dose was given, while other studies selected the 

T cell dose based on the risk for GVHD and relapse. Most studies were performed 

in patients with related donors, and only one study included unrelated donors.30 

Furthermore, one study compared the outcomes of patients treated with pDLI with 

those patients not treated with pDLI.26 Relapse rates were lower in the pDLI patient 

group. The 3-year probability of disease-free-survival was 77% in the pDLI patient 

group and 45% for the patients in the control-group. These groups included AML, 

ALL, CML and MM patients.

Prophylactic DLI might play an important role when combining T cell-depletion 

with RIC-SCT to enhance engraftment, reach complete donor chimerism and to 

boost GVT reactivity

Novel strategies

Several methods have been developed to improve the efficacy of DLI without 

induction of (severe) GVHD. One approach starts with a low dose of DLI followed 

by dose-escalation if the patient does not reach CR. This strategy is based on the 

assumption that T cell dose and the induction of alloreactivity differs between GVT 

and GVHD, and dose-escalation may separate these reactivities. Separation of GVT 

from GVHD was shown in some patients with CML receiving DLI more than one 

year after SCT.32 In a dose-finding study from Bacigalupo et al. with 10 patients, 

GVHD was observed in 1 patient at a dose of 2x106 T cells/kg and in 6 patients with 

2x107 T cells/kg.33 Retrospective comparison with patients treated with higher doses 

of DLI at the same institution showed that dose escalation reduced the incidence 

of severe GVHD and improved outcome. Peggs et al. studied the application of 

dose-escalated DLI following reduced intensity conditioning SCT in patients with
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lymphoid malignancies.34 In this study, separation of GVT from GVHD was achieved 

in only a minority of the patients.

Another approach is the transfer of subsets of donor lymphocytes, for example CD8- 

depleted DLL Because CD8+ T cells play a role in both GVT and GVHD and CD4+ 

T cells with NK cells are related to GVT without GVHD, infusion of specific subsets 

of cells may improve the efficacy of DLI without GVHD. Alyea et al. studied T cell- 

depleted allogeneic SCT followed by CD4+ DLI in MM patients.35 Only 58% of the 

patients actually received DLI, the other patients did not receive DLI because of SCT- 

related complications or early relapse. The 2 year PFS was somewhat higher in the 

DLI treated patients 65% versus 41% in the historical controls. The specific role of 

the CD4 T cell subset in this respect is not evaluable. In the study from Meyer et al., 

11 patients with high-risk hematological malignancies received a total of 21 CD8- 

depleted pDLIs.36 Two patients with HLA-C mismatched donors developed grade

II and III aGVHD followed by limited cGVHD. These prophylactic CD8-depleted 

DLIs accelerate immune reconstitution, but an effect on disease relapse rate has not 

yet been proven.

A different approach to control GVHD after DLI is the infusion of donor T cells 

transduced with the herpes simplex virus thymidine kinase suicide gene, which 

enables selective in vivo T cell depletion of activated T cells with the virostatic drug 

ganciclovir in case GVHD. This strategy has been explored in a group of 23 patients 

with relapsed disease after allogeneic SCT.37 Eleven patients developed disease 

response with three patients alive and in CR with a median follow-up of 471 days. 

Three of these 23 patients were successfully treated for GVHD with ganciclovir.

DLI has also been applied to reconstitute antiviral immunity, particularly in pediatric 

and haploidentical allogeneic SCT.3S;39 To reduce GVHD after DLI, protocols for 

physical depletion of alloreactive T cells have been investigated. The principle 

of these methods is stimulation of donor T cells with recipient-derived antigen 

presenting cells to activate the alloreactive T cells. Thereafter activated T cells are 

eliminated by antimetabolic drugs, photodepletion, immunotoxins or magnetic 

beads to target specific upregulated cell surface molecules. Several activation 

markers, which are upregulated on activated T cells, have been used to deplete 

alloreactive T cells, including CD6940, CD2541~44, CD13445 and CD137.46 Another 

approach to deplete alloreactive T cells is a photodepletion technique. This TH9402- 

based photodepletion technique targets activation-based changes in p-glycoprotein 

that results in an altered efflux of the photosentisizer TH9402. Initial clinical studies
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indicate that the concept of reconstitution antiviral immunity is feasible, however the 

role in antitumor immunity needs to be studied in more detail.47

Im pact of hematopoietic chimerism on GVT im munity

The term hematopoietic chimerism refers to the presence of hematopoietic cells 

of donor origin after allogeneic SCT. Complete donor chimerism is defined as the 

complete replacement of recipient hematopoietic cells by donor hematopoietic 

cells. Whereas mixed chimerism refers to the presence of both donor and recipient- 

derived hematopoietic cells post-transplantation. Development of mixed chimerism 

is observed more frequently after T cell-depleted SCT and RIC-SCT. Several studies 

have demonstrated an increased incidence of mixed chimerism in patients receiving 

less intensive conditioning regimens.48"51 Mixed chimerism is also observed after 

myeloablative SCT but the clinical relevance of mixed chimerism after myeloablative 

conditioning has been controversial. Some studies have observed high relapse rates 

in patients with mixed chimerism after T cell depleted SCT5254, however other studies 

did not show a correlation between mixed chimerism and relapse rate.55;56

Chimerism in clinical practice

Measurement of chimerism is important after nonmyeloablative or RIC-SCT 

and even more relevant after the combination of T cell depletion and reduced 

intensity conditioning. Monitoring of chimerism in time may influence decisions 

on discontinuation of immunosuppression and the indication of DLL Chimerism 

analysis can be performed in whole blood samples, in bone marrow samples or in 

subsets of cells (i.e. lineage-specific chimerism). Several techniques have been used 

to analyze chimerism after allogeneic SCT The most applied method for quantitative 

chimerism analysis is polymerase chain reaction (PCR)-based amplification of 

variable number tandem repeats or short tandem repeats (STRs).57 Another method 

is fluorescent in situ hybridization (FISH) with XY-chromosome specific probes; 

however this method is restricted to sex-mismatched donor-recipient combinations. 

A new method based on real-time quantitative PCR using single nucleotide 

polymorphisms (SNPs) as discriminating markers was developed in our transplant 

center.5S;59 The main advantage of this method is that very small percentages of 

recipient cells (0.1-0.0 1%) can be detected among donor cells and vice versa.5S;59
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Clinical significance of complete donor chimerism

After RIC-SCT, alloreactive T cell responses are of major importance to induce or 

maintain remissions. Most studies demonstrate that complete donor chimerism 

in T cells is required for full potential of the allo-immune response. For instance, 

Childs et al. have monitored T cell chimerism and myeloid cell chimerism after 

nonmyeloablative SCT in patients within a variety of hematological malignancies.60 

In this study, full donor T cell chimerism preceded donor myeloid engraftment, acute 

GVHD and disease regression. However, Mattsson et al. analyzed clinical outcome 

and chimerism in patients transplanted for CML and solid tumors and at the time 

of disease response six out of the 15 patients showed mixed chimerism in the T cell 

fraction.61

Baron et al.62 studied kinetics of donor engraftment among various peripheral 

blood cell subpopulations in 120 patients with hematological malignancies who 

received nonmyeloablative SCT. This study showed that early establishment of donor 

chimerism in NK cells was associated with improved PFS. Another study from 

Baron et al. examined the impact of early donor chimerism in T cells and NK cells 

in 282 patients who received allogeneic SCT after a minimal-intensity conditioning 

regimen of 2 Gy total body irradiation (TBI).63 This study indicated that high early 

donor T cell chimerism was significantly associated with acute GVHD. Conversely, 

high levels of donor chimerism in NK cells correlated with low risk of graft rejection, 

low risk of relapse, and high PFS, but not with aGVHD.

Not only chimerism in immune effector cells is important, also chimerism in 

professional antigen presenting cells (APC) at the time of DLI may play a role in 

the initiation of allo-immune responses. Murine studies have showed that recipient 

derived APC play a key role in the initiation of allogeneic CD8+ T cell-mediated 

GVH and GVL reactivity after MHC-matched SCT.24;64 In addition, in a MHC- 

mismatched mouse model it has been shown that DLI administration to mixed 

chimeras produced improved leukemia-free survival compared to administration 

of DLI to full donor chimeras.65 From these data it can be hypothesized that the 

presence of recipient APC may be an important factor for the induction of DLI- 

induced GVL reactivity.

The interpretation of chimerism results and the translation to clinical decisions such 

as discontinuation of immunosuppression or DLI remain difficult. Significance of 

persisting mixed chimerism after allogeneic SCT is related to the diagnosis, type of 

conditioning, T cell depletion and donor type.
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RIC-SCT in M ultiple myeloma

In patients with multiple myeloma (MM) a graft-versus-myeloma (GVM) effect 

has been observed, which in some patients even results in cure or very-long term 

remissions. The application of conventional myeloablative conditioning in MM has 

been abandoned due to a high transplantation-related mortality (TRM) which varied 

from 17% to 38%.66;67 Nonmyeloablative or RIC-SCT, following autologous SCT, has 

indeed reduced the TRM to 10-20% .68 In most studies the treatment starts with 

induction chemotherapy followed by high-dose melphalan (HDM) and autologous 

SCT. After recovery from the autologous SCT and in a state of remission or minimal 

residual disease RIC-SCT is scheduled 3-6 months after autologous SCT.

Three prospective trials comparing autologous transplantation followed by RIC-SCT 

versus double autologous SCT showed contradictory results in clinical outcome.69"71 

The study by Bruno et al. showed a superior overall survival (OS) for autologous SCT 

followed by allogeneic RIC-SCT.69 However, the results of the double autologous arm 

were less favorable than results from similar autologous trials published before. Rosinol 

et al. observed a trend towards a longer progression free survival (PFS) for patients 

treated with auto/RIC-SCT, but with no significant differences in event free survival 

(EFS) and OS.71 In contrast, the Intergroupe Francophone du Myelome observed no 

differences in EFS and OS comparing double autologous SCT versus auto/RIC-SCT, 

although this study was confined to high risk patients. The message from all these 

studies, either favorable or unfavorable to allogeneic SCT, is that improvement of the 

GVM effect to obtain long-term disease control, without the toxicity and morbidity 

of GVHD is a prerequisite to further establish this therapeutic approach. This has 

become even more important in an era in which new and highly effective drugs, 

like thalidomide, lenalidomide and bortezomib have greatly improved the PFS and 

OS of MM patients and newer targeted drug are under development.72 Key issues 

in the setting of non T cell-depleted RIC-SCT remain morbidity from GVHD and 

relapses after RIC-SCT, even despite severe GVHD. Better understanding of GVM 

resistance and escape mechanisms of tumor cells in this setting is needed to continue 

allogeneic therapy in MM. The role of upfront RIC-SCT in the treatment of MM has 

not been established and allogeneic SCT in MM should not be performed outside 

clinical trials.

RIC-SCT in Lymphoma and Chronic lymphocytic leukemia

In NHL and CLL the prognosis has significantly improved due to new treatment
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modalities, such as the monoclonal antibodies. However, despite these new treatment 

modalities, almost all patients with CLL and low grade NHL will relapse. For these 

patients high dose chemotherapy followed by autologous SCT, but also allogeneic 

SCT, are increasingly used. Relapse rates after allogeneic SCT are lower compared with 

those after autologous SCT which strongly suggests the existence of a graft-versus- 

lymphoma effect.73 Furthermore, GVHD is also associated with a reduced relapse 

rate, relapse rate is increased after T cell depletion and finally, patients with relapsed 

lymphoma respond to donor lymphocyte infusions. However, it is important to realize 

that not all types of lymphomas are equally sensitive to alloreactive T cells. Slowly 

proliferating diseases like follicular lymphoma and CLL are particular sensitive to 

alloreactive T cell responses while the outcome of SCT in aggressive B-cell lymphomas 

is much less favourable.74 The major obstacles of allogeneic SCT in lymphoma have 

been the higher median age at diagnosis, increasing number of alternative treatment 

options with long progression free and overall survival and earlier studies reporting 

high TRM after myeloablative SCT, comparable with the findings in MM. Earlier 

studies using myeloablative conditioning for low-grade NHL or aggressive NHL were 

associated with a TRM of 25% to 44% .75-79 RIC-SCT has offered the opportunity for 

SCT in patients with comorbidities and in older patients, which makes this approach 

applicable for more lymphoma patients even those who are heavily pre-treated. 

Outcomes of RIC-SCT for lymphoma show variable results. A retrospective analysis 

from EBMT on RIC-SCT for lymphoma reported an OS of 62% at one year but 

TRM still exceeded 30%.80 Three other studies on RIC-SCT for lymphoproliferative 

diseases, of which two used Alemtuzumab for in vivo T cell-depletion, showed a clear 

reduction of TRM of 11% to 16% with an OS of 68% to 88% at two-years.81-83 

RIC-SCT has lowered TRM in NHL, but relapse rates remain high, especially in 

aggressive B-cell lymphomas, heavily pretreated patients and chemotherapy-resistant 

NHL. Furthermore, the optimal conditioning regimen for allogeneic SCT in NHL is 

subject of research, especially since many patients have been heavily pre-treated. The 

optimal timing of allogeneic SCT is another subject to be studied, although it has 

become clear from all studies that chemotherapy refractory patients should probably 

be excluded from trials. Most published studies include small numbers of patients and 

included both aggressive and indolent lymphomas as well as CLL patients. Therefore 

prospective multicentre studies enrolling sufficient patients with distinct lymphomas 

are needed to define the optimal conditioning regimen and advance the field of RIC- 

SCT in lymphomas.
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Tablel: Reduced Intensity conditioning allogeneic SCT in fo llicular NHL

Number of 

patients

T cell depletion Conditioning

regimen

TRM Survival Relapse rate

Robinson et al80 52 Partly Various 31% (2 yrs) 65% (2 yrs) 21% (2 yrs)

Khouri et al81 47 No Flu/Cy +/- 

Rituximab

11% (2 yrs) 88% (2 yrs) 3% (2 yrs)

Morris et al82 41 in-vivo

Alemtuzumab

Flu/Mel 11% (3 yrs) 73% (3 yrs) 44% (5 yrs)

Faulkner et al83 28 in-vivo

Alemtuzumab

BEAM 16% (2 yrs) 74% (2 yrs) 10% (2 yrs)

Corradini et al84 53 No Flu/Cy/TT 18% (3 yrs) 66% (3 yrs) Nr

RIC-SCT in solid tumors

The first studies evaluating allogeneic SCT in solid tumors were performed in the 

mid 1990s.85-87 These studies analyzed myeloablative allogeneic SCT in patients with 

metastatic breast cancer. Although these trials documented a graft-versus-solid 

tumor effect, the treatment-related morbidity and mortality were the major drawback. 

Nonmyeloablative or RIC-SCT was first studied in patients with metastatic renal cell 

carcinoma (RCC), known to be sensitive to T cell-mediated immunotherapy. In 2000, 

Childs et al. reported the outcome of 19 patients with metastatic RCC after non­

myeloablative SCT.88;89 Ten out of the 19 patients showed regression of disease. This 

was due to a GVT effect since the responses typically occurred after the withdrawal 

of immunosuppression or the development of GVHD. Although this pioneer study 

showed promising results, response rates after allogeneic SCT for RCC in subsequent 

series have been highly variable ranging from 0%-57% and the rate of CR was low 

(Table 2):89-99 In a multi-institutional study investigating nonmyeloablative SCT in 

patients with advanced RCC no objective responses were observed.97 This study 

underscores the importance of careful patient selection for this type of treatment 

because responses after allogeneic SCT are typically delayed and restricted to tumors 

with clear cell histology.100

Nowadays, most patients with metastatic RCC receive initial treatment with VEGF- 

targetedtherapies including sunitinib, sorafinib orbevacizumabplusinterferon-a.101-103 

These treatments with VEGF receptor kinase inhibitors have provided a significant 

benefit to patients with metastatic RCC, but are not curative. Second-line strategies for 

patients progressing after VEGF-targeted therapies are inhibitors of the mammalian
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target of rapamycin (mTOR), such as everolimus.104 However, the magnitude of the 

clinical benefit is limited with an objective response rate of only 1% and a median PFS 

of 4.0 months. Since the introduction of these VEGF-targeted therapies and mTOR 

inhibitors, inclusion of RCC-patients in studies on allogeneic SCT has been almost 

stopped. Recently, Tykodi et al suggested combining allogeneic SCT with an mTOR 

inhibitor to delay post-transplant tumor progression and favoring a GVT response.105 

Nonmyeloablative and RIC-SCT have also been investigated in other metastatic solid 

tumors including metastatic breast cancer87, colorectal cancer106:107 , ovarian cancer108 

and melanoma.109 Ueno et al. evaluated the feasibility of RIC-SCT in 23 patients with 

solid tumors including 8 patients with metastatic breast cancer.99 The best responses 

in the 8 patients with breast cancer were 2 CRs and one mixed response. A conclusion 

regarding a survival benefit for patients with tumor response could not be made 

because of the low number of patients.

Carnevale et al. described 15 patients with metastatic colorectal carcinoma who 

underwent nonmyeloablative SCT.107 One patient experienced a partial remission and 

three patients stable disease. Although these four responses were encouraging, no 

long term remissions were reached.

Published data on nonmyeloablative allogeneic SCT in metastatic melanoma are 

limited to reports with small numbers of patients, two reports with four and two 

patients respectively.60̂ 09 In two patients, regression of metastatic disease was 

observed, compatible with a GVT response.

For hematological malignancies, it is obvious that GVT reactivity is mediated by 

donor T cells. Studies in patients with hematological malignancies have shown that 

allogeneic SCT using T cell-depleted grafts resulted in an increased relapse rate 110:111 

and patients with a relapse after SCT can successfully be treated with DLL3 For GVT 

reactivity against solid tumors, donor T cells are also considered to play an essential role 

and this is based on several observations. Regression of the tumor is typically delayed 

after SCT and occurs mainly after discontinuation of immunosuppression.89 In most 

studies, tumor responses are preceded by conversion from mixed to complete donor 

T cell chimerism.89 Only one study observed mixed chimerism in T cells at the time 

of disease response.61 Furthermore, the occurrence of GVHD is strongly associated 

with tumor responses89;112 and tumor responses are observed in patients treated with 

DLL112 An increased number of IFNy-producing CD8+ T-cells in peripheral blood 

after SCT correlates with tumor regression, however the specificity of these CD8+ T 

cells was not defined.113
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Table 2: Nonmyeloablative and reduced intensity conditioning allogeneic SCT in patients with 

metastatic renal cell carcinoma.

Study Year Patients aGVHD cGVHD TRM Response (CR 

and PR)

Childs et al89 2000 19 53% 21% 11% 53%

Rini et al114 

Artz et al90

2002

2005

18 22% 39% 14% 22%

Bregni et al93 2002 7 86% 71% 0% 57%

Pedrazolli et al96 2002 7 0% Na 29% 0%

Blaise et al92 2004 25 42% 60% 9% 8%

Nakagawa et al95 2004 9 33% 44% 0% 11%

Ueno et al99 2003 15 47% 27% 33% 27%

Henstchke et al94 2003 10 50% 30% 40% 0%

Massenkeil et al115 2004 7 29% 57% 14% 29%

Tykodi et al98 2004 8 50% 50% 13% 13%

Barkholt et al91 2006 124 40% 33% 16% 32%

Rini et al97 2006 22 32% 23% 9% 0%

Antigens involved in GVT reactivity

Although RIC-SCT significantly reduced TRM, GVHD and recurrence of the 

malignancy remain the major drawbacks of RIC-SCT. Therefore, strategies to boost 

GVT reactivity selectively are even more important in the reduced intensity setting 

than after myeloablative allogeneic SCT Identification of the target antigens of the 

GVT response is crucial to develop targeted T cell-mediated immunotherapy 

Studies analyzing immune responses after allogeneic MHC-matched SCT showed 

that MiHA expressed on recipient tumor cells are targets of donor T cells.13;116:117 

Furthermore, the T cell response associated with GVL is polyclonal, thus involving 

T cells with divers antigenic specificities.118 More than 35 MiHA involved in 

GVT responses have been identified and a subset of these MiHA are restricted to 

hematopoietic cells including leukemic cells/tumor cells but not on GVHD tissues. 

Especially these hematopoietic-restricted or tumor-restricted MiHA are interesting 

targets for the development of tumor-specific immunotherapy

MiHA with a potential for im m unotherapy in NHL and MM

Several hematopoietic-restricted MiHA have been discovered targeting alloreactive 

donor T cells towards lymphoid malignancies, and some of these MiHA have even a
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lymphoid or B-lineage restricted expression.

HA-1 is the first described hematopoietic-restricted MiHA. HA-1 was identified as an 

antigenic peptide encoded by the KIAA0223 gene and presented in HLA-A*0201.119 

Functional assays based on CTL-mediated lysis of tissue-derived cells demonstrated 

that expression of HA-1 is restricted to hematopoietic cells, including leukemic and 

progenitor cells.120 HA-1 is therefore an important MiHA for immunotherapy in 

NHL and MM.

LRH-1, a hematopoietic restricted MiHA which was identified analyzing cytotoxic 

T lymphocytes (CTL) from a patient with CML, was also evaluated for expression 

in lymphoid malignancies and MM .116 The hematopoietic restricted MiHA LRH- 

1 is encoded by the P2X5 gene and results from a single nucleotide frame-shift 

polymorphism between recipient and donor cells.116 Expression of the P2X5 gene 

has been demonstrated in peripheral blood T cells, B cells and NK cells as well in 

myeloid progenitor cells and lymphoid organs. P2X5 expression was not detected 

in GVHD-target tissues such as skin, liver, colon and small intestine.116 In a recent 

study, high P2X5 expression was demonstrated in malignant cells from all stages of 

lymphoid development.121 In vitro analysis showed LRH-1-specific CTL-mediated 

lysis of LRH-1 positive tumor cell lines and primary cell from patients with lymphoid 

malignancies. High P2X5 expression was also found in MM plasma cells and cell 

lines resulting in efficient lysis of these MM tumor cells by LRH-1-specific CTL. 

Recently, a typical B cell-restricted MiHA CD19L was identified, encoded by a SNP 

in the B cell lineage-specific CD 19 gene.122 This was the first reported MiHA with 

expression in HLA-class II molecules. CD19 is a B cell lineage-specific molecule 

with constitutive expression in acute and chronic B cell lymphoid leukemias, B 

cell lymphomas but without expression in pluripotent stem cells 123 and therefore 

considered as a most interesting target for immunotherapy of B cell malignancies. The 

CD4+ T cell clone, which was used to identify this MiHA produced significant levels 

of IFN-gamma when tested against malignant cells from several B-CLL patients.122 

Furthermore, this CD4+ T cell clone lysed HLA-matched and CD19L positive B-CLL 

samples.

Isolation of various CTL clones from a MM patient treated successfully with DLI for 

relapse has been described by Kloosterboer et al.124 One dominant CTL clone that 

recognized the malignant MM cells from the patient was studied more in detail.117 

The epitope recognized by this dominant CTL was designated LB-ADIR-1F. This 

epitope is encoded by a frequently occurring SNP in the human ATP-dependent

2 6



Chapter 1

interferon-responsive (ADIR) gene. LB-ADIR-lF-specific T cells recognized not 

only MM tumor cells, but also other hematological malignancies and solid tumor 

cell lines.117 Furthermore, the recognition of normal tissues was low under steady 

state conditions, but activation of the target cells with IFN resulted in enhanced 

recognition.

Another MiHA with a lymphoid-restricted expression pattern is HB-1.125;126 HB-1 

was identified using a CD8+ CTL clone derived from an allotransplanted patient 

with B-ALL. The first studies showed that H B-1 is expressed in tumor cells of all B 

cell-ALL subentities and Epstein-Barr virus (EBV) transformed B-lymphoblastoid 

cell lines (LCL).

PANE-1 is also a MiHA with a B-lineage restricted expression pattern.127 The PANE-1 

transcript that encodes the MiHA is expressed at high levels in resting CD 19+ B cells 

and B-CLL cells and at significantly lower levels in activated B cells.127 

Not only MiHA-specific T cell responses have been described after allogeneic SCT, 

but also donor T cell responses against recipient tumor-specific antigens have been 

found which may play a role in GVT reactivity.128 Examples of tumor specific antigens, 

such as antigens expressed by cancer-testis genes are often found in advanced, more 

dedifferentiated MM. T- and B-cell responses against these tumor-specific antigens 

have been detected mainly in MM patients treated with allogeneic SCT.129

In vivo characterization of alloreactiveT cell responses in patients with solid tumors

Alloreactive T cell responses have been analyzed in patients treated with allogeneic 

SCT for RCC98, ovarian carcinoma108, breast cancer130 and melanoma.109 However, 

the target antigens of these alloreactive T cells were molecularly identified in only two 

reports. In the first study, an HLA-A*0201 -restricted MiHA was identified, which 

was encoded by the C19orf48 gene located on chromosome 19ql3.131 This MiHA was 

identified using CTL clones from two patients with metastatic RCC who were treated 

with allogeneic SCT and achieved near complete response and stable disease with 

long term survival, respectively. Assays for gene expression showed that C19orf48- 

encoded peptide is widely expressed in renal tumors and tumor cell lines derived 

from AML, ALL, CLL, melanoma, ovarian carcinoma, breast carcinoma, prostate 

carcinoma, pancreatic carcinoma and colon carcinoma.

In a second study, a new tumor-associated RCC antigen was identified by using 

PBMCs obtained from a patient with disease regression and prolonged survival 

after allogeneic SCT for RCC .132 The target antigen is a 10-mer peptide encoded by
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genes from human endogenous retrovirus (HERV) type E. An earlier study showed 

that some HERVs have expression widely in normal tissues, but HERV-E genes are 

selectively expressed in RCC.

One study in patients with metastatic colorectal carcinoma (CRC) analyzed tumor- 

specific T cell activity after nonmyeloablative SCT focusing on T cell responses 

directed against carcinoembryonic antigen (CEA), a tumor-associated antigen over­

expressed by CRC cells.107 Induction of CEA-specific T cell-responses required the 

presence of GVHD and but also the presence of CEA-expressing tumor cells.

Hematopoietic-restricted MiHA expressed by solid tum or cells

Several MiHA have been described with expression restricted to hematopoietic cells 

and no expression in normal tissues. These MiHA are designated hematopoietic- 

restricted MiHA or tumor-associated MiHA and these MiHA may be useful for 

adoptive immunotherapy. Interestingly, some of these hematopoietic-restricted 

MiHA are also expressed in solid tumor cells (Table 3).

The first hematopoietic-restricted MiHA with aberrant expression in solid tumors 

was HA-1. HA-1 mRNA expression was shown in tumor cell lines from different types 

of carcinomas including breast, melanoma, lung, renal cell, colon and head and neck 

cancer.12 In vitro studies demonstrated that epithelial tumor cell lines were lysed by 

HA-1-specific CTL, whereas normal epithelial cells were not recognized.12 Moreover, 

an HA-1-specific CTL has been isolated from a RCC-patient with a partial response 

after SCT, and also the cytolytic activity of this HA-1-specific CTL against renal cell 

carcinoma tumor cell lines was demonstrated.98 These findings indicate that MiHA 

HA-1 is a suitable target for MiHA-based immunotherapy of both hematological 

malignancies and solid tumors.

LB-ECGF-1H was identified using tumor-reactive cytotoxic CD8+ T cell clones from 

a patient successfully treated with DLI for relapsed MM after allogeneic SCT.13 This 

MiHA is encoded by the angiogenic endothelial-cell growth factor-1 (ECGF-1) gene 

and is presented by HLA-B7. Significant LR-ECGF-1 mRNA levels were detected 

in hematological malignancies and solid tumor cell lines such as melanoma, breast 

carcinoma, colon carcinoma and ovarian carcinoma.

BCL2A1 is a gene that encodes for two MiHA, ACC-1 and ACC-2.10 The two CTL 

specific for these MiHA lyse both normal and malignant hematopoietic cells. 

Expression of BCL2A1 was recently demonstrated in melanoma cell lines and 

primary melanoma cells, with an expression comparable to that of hematopoietic
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cells.133 Melanoma cell lines were efficiently lysed by cytotoxic T lymphocytes specific 

for ACC-1 and ACC-2.

Furthermore, we have found aberrant jP2X5-expression in 30% of the solid tumor cell 

lines tested (including RCC, colorectal carcinoma, breast cancer and brain cancer) 

and lysis of LRH-1 positive tumor cell lines by the LRH-1 -specific CTL.134

Table 3: Hematopoietic-restricted Mi HA with expression on solid tumor cells

MiHA MHC

Restriction

Gene Chromosome Tissue-distribution

ACC-1 HLA-A*24 BCL2A1 15 Hematopoietic

ACC-2 HLA-B*4403 BCL2A1 15 Hematopoietic

HA-1 HLA-A*0201 KIAA0223 19 Hematopoietic

LB-ECGF-1 HLA-B*07 ECGF-1 22 Hematopoietic

LRH-1 HLA-B*0702 P2X5 17 Hematopoietic

Mi HA-based im munotherapy of hematopoietic malignancies and solid tumors

Identification of tumor-specific Mi HA is crucial for further development of specific 

GVT post-transplantation immunotherapy. Strategies to employ MiHA are based on 

vaccination strategies with peptides alone or loaded on dendritic cells or adoptive 

transfer of MiHA-specific T cells.

A doptive transfer o f M iHA-specificT cells

Two central questions regarding this therapeutic concept have been addressed by 

Hambach et al. in a murine model.135 Firstly, they show that CTLs directed against a 

single MiHA can eradicate human solid tumors in a highly MiHA-specific manner. 

Secondly, HA-1-specific CTL prevents in vivo human breast cancer metastases in 

immuno deficient mice. Mutis et al. showed that it is feasible to generate HA-1 and 

HA-2 specific CTLs from HA-1 and/or HA-2 negative donors using HA-1 and HA-2 

peptide-pulsed dendritic cells.136 These ex vivo-generated HA-1 and HA-2 specific 

CTL have specific cytotoxic activity against MiHA-positive target cells, including 

AML and ALL cells, but not against non-hematopoietic cells. Recently, Warren et al.
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published a study on the adoptive transfer of donor T cells that recognize recipient 

MiHA in seven patients with recurrent leukemia after MHC-matched allogeneic SCT. 

These CD8+ CTL clones recognized MiHA expressed in recipient hematopoietic 

cells but not recipient dermal fibroblasts. Five of the seven patients reached complete 

although transient remissions. However, three patients developed pulmonary toxicity, 

which correlated with expression of the MiHA-encoding genes in lung tissue.137 

This study demonstrates that MiHA-specific T cells can be isolated and expanded 

resulting in remissions, however the antileukemic effects did not persist possibly due 

to exhaustion of the T cells.138 Unfortunately, selecting T cells that recognize MiHA 

expressed on recipient hematopoietic cells and with no recognition of skin fibroblasts 

did not prevent pulmonary GVHD. Therefore the use of T cells against characterized 

MiHA might be safer and better predict separation GVT from GVHD.

Vaccination strategies

DCs are the professional APC of the immune system and have a great potential to 

initiate T cell responses. DCs can be loaded with antigens, such tumor associated 

antigens, and administered to patients which is called DC vaccination. Most clinical 

studies using DC vaccines have been performed in patients with non-hematological 

malignancies, for example melanoma and colorectal cancer patients.139;14° These 

studies have shown that DC vaccination is feasible and safe. However, several 

questions are still under investigation such as the optimal mode of DC preparation, 

method and timing of antigen loading, dose and interval of administration and the 

route of administration.141

DC vaccination after allogeneic SCT and DLI offers two new dimensions of this 

strategy. First, both recipient-derived DC and donor-derived DC can be applied and 

not only tumor associated antigens but also MiHA can be used as antigen. T cell 

responses after allogeneic SCT targeting MiHA on malignant cells of the recipient 

can be induced directly by recipient-derived DC and indirectly by donor-derived DC 

due to cross-presentation.142 In the setting of DC-vaccination as post-transplantation 

immunotherapy, two strategies can be applied. First, boosting GVT immunity by 

vaccination with donor-derived DC loaded with hematopoiesis-restricted or tumor- 

restricted MiHA, but this approach is hampered by the limited number of known 

MiHA and their HLA restriction. Another approach is vaccination with recipient DC, 

which are not loaded with specific antigens. Since recipient DC and hematopoietic 

tumor cells are both derived from the hematopoietic system, immune responses
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induced by recipient-derived DC may enhance GVT in hematopoietic malignancies. 

Several strategies have been studied to load DC with antigens, such as electroporation 

of in vitro transcribed mRNA into DC .143445 A recent study demonstrated that DC 

electroporated with MiHA LRH-1 encoding mRNA can efficiently stimulate CD8+ T 

cells, both early effector T cells and late memory T cells.146 Feasibility of MiHA-based 

DC vaccination strategies after allogeneic SCT will be further explored in clinical 

studies.

Scope of this thesis

The scope of this thesis is further exploration of allogeneic SCT as immunotherapy 

for hematological malignancies and solid tumors.

In chapter 2 we studied the role of recipient-derived professional APC in the 

development of GVT responses after tDLI for relapse CML. Exploration of the role 

of APC in inducing GVT immunity may help to develop more effective therapeutic 

interventions for patients with relapse after SCT. Early after transplant and when 

patients relapse, recipient-derived APC may be present and direct presentation 

of antigens co-expressed by recipient APC and malignant cells can enhance GVT 

reactivity. If the recipient hematopoiesis is completely replaced by donor-derived 

cells, recipient antigen presentation is taken over by donor-derived APC via cross­

presentation. The more sensitive real-time quantitative PCR method using SNP as 

markers was used to analyze chimerism in subsets of professional APC.

In chapter 3 we studied the outcome of pre-emptive DLI after partial T cell-depleted 

myeloablative allogeneic SCT in MM. These patients were treated according 

the HOVON-24 study147, however only patients transplanted in our centre 

received partially T cell-depleted transplants and pDLI. The high TRM has been 

a major obstacle for myeloablative allogeneic SCT in MM and nonmyeloablative 

conditioning or RIC regimens have been increasingly used since then. Based on 

the results described in chapter 3, we developed a new approach applying partial 

T cell-depleted SCT followed by pDLI in the RIC-setting. This study is described 

in chapter 4. Furthermore, as a new approach we incorporated recipient-derived 

dendritic cell vaccination as post-transplantation immunotherapy aiming at efficient 

direct antigen presentation to donor T cells. In chapter 5, we studied partial T cell- 

depleted RIC-SCT followed by pDLI in patients with relapsed lymphoma and CLL. 

Both patients with relapsed aggressive lymphomas (transformed lymphomas) and
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indolent lymphomas were included.

In the past years, allogeneic SCT has been studied as immunotherapy in patients with 

metastatic solid tumors. Although there are clear signs for GVT reactivity, these GVT 

responses are often accompanied by GVHD. Furthermore, most responses are partial 

and long-term complete remissions are rare. Further characterization of known 

MiHA or identification of new hematopoietic or tumor-restricted MiHA may play 

a role in the development of MiHA-targeted post-transplantation immunotherapy. 

In chapter 6 we studied the aberrant expression of P2X5, the gene encoding for the 

MiHA LRH-1, in solid tumor cells. Expression of the P2X5 gene was demonstrated 

before in cells of lymphoid origin and lymphoid tissues.116 High P2X5 expression was 

found in abroad range of lymphoid malignancies, including ALL, CLL, various types 

of B cell lymphoma and M M .121 Furthermore, P2X5 is not expressed in the GVHD- 

tissues such as skin, liver, colon and small intestine. Based on these observations the 

P2X5-encoded MiHA LRH-1 could be a suitable target for immunotherapy, also for 

allogeneic immunotherapy in patients with solid tumors. In chapter 7 we studied 

the feasibility of partial T cell-depleted RIC-SCT followed by pDLI in patients with 

metastatic RCC. This approach combined partial T cell depletion for the reduction 

of GVHD with pDLI to boost GVT responses in the RIC-setting. Furthermore, we 

aimed at the isolation of RCC-reactive cytotoxic CD8+ T cell clones from these 

patients and the discovery of a new MiHA.
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Chapter 2

Abstract

Donor lymphocyte infusion (DLI) after allogeneic SCT induces complete remissions 

in approximately 80% of patients with relapsed CML in chronic phase, but some 

patients do not respond to DLL We studied absolute numbers of dendritic cell (DC) 

subsets and chimerism in T cells and two subsets ofblood DCs (myeloid DCs (MDC) 

and plasmacytoid DCs (PDC)) in relation to DLI-induced alloreactivity. Based on T 

cell and DC chimerism, we identified three groups. Four patients were completely 

donor chimeric in T cells and DC subsets. These patients had an early stage of relapse, 

and three of the four patients attained complete molecular remission (CMolR) 

without significant GVHD. Six patients were complete donor in T cells and mixed 

chimeric in DC subsets. All patients entered CMolR, but this was associated with 

GVHD in four and cytopenia in three patients. Five patients had mixed chimerism in 

T cells and complete recipient chimerism in MDC; only two patients entered CMolR. 

Our data suggest that the combination of donor T cells and mixed chimerism in 

DC-subsets induces a potent graft-versus-leukemia (GVL) effect in association with 

GVHD. DLI in patients with an early relapse and donor chimerism in both T cells 

and DC-subsets results in GVL reactivity without GVHD.
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Introduction

Donor lymphocyte infusion (DLI) is used to boost graft-versus-leukemia (GVL) 

reactivity in patients with a relapse after allogeneic SCT. Following DLI, complete 

molecular remission (CMolR) has been obtained in 70-80% of patients with a relapse 

of CML in chronic phase.1 In contrast, patients with a CML in accelerated phase 

or blast crisis, patients with relapsed acute leukemia and patients with relapsed or 

persistent multiple myeloma (MM) respond in only 10-40% of cases.2 The mechanisms 

responsible for the different DLI-mediated anti-tumor responses between various 

disease types are still unclear. Differences in tumor characteristics such as growth 

rate, susceptibility to T cell-mediated cytotoxicity, secretion of immune-modulatory 

cytokines and expression of co-stimulatory molecules may have a major impact on 

the response.3 5 Another important factor that may contribute to the response rate is 

the chimerism in immune effector and professional antigen presenting cells (APC) 

at the time of DLL Murine studies showed that recipient APC play a key role in the 

initiation of allogeneic CD8+ T cell-mediated GVH and GVL reactivity after MHC- 

matched SCT.6;7 In addition, in an MHC-mismatched mouse model, it has been 

shown that DLI administration to mixed chimeras produced improved leukemia- 

free survival compared to administration of DLI to full donor chimeras.8 From these 

data, it can be hypothesized that the presence of recipient APC maybe an important 

factor for the induction of DLI-induced GVL reactivity.

Dendritic cells (DC) are the most potent bone marrow-derived APC that play a 

pivotal role in inducing primary immune responses. In human blood, DC precursors 

constitute less than 1% of lineage-negative human leukocyte antigen (HLA)-DR+ 

mononuclear cells, and are commonly divided into two distinct subsets, namely 

myeloid DC (MDC) and plasmacytoid DC (PDC). MDCs have a monocytoid 

appearance and express myeloid antigens such as C D llc , CD13 and CD33. In 

contrast, PDC lack myeloid markers, but express CD123 (interleukin-3 receptor-a), 

and have a plasma cell-like morphology.9;10 MDC and PDC can be distinguished in 

peripheral blood using the monoclonal antibodies BDCA-1 (CD lc) for MDC, and 

BDCA-2 and BDCA-4 for PDC .11 Emerging evidence suggests that MDC and PDC 

play an important role in alloimmune responses after SCT.12

In this study, we evaluated the absolute number and chimerism of peripheral blood T 

cells, MDC and PDC in patients with a relapse from CML before the administration 

of donor lymphocytes. Our hypothesis, based on animal models, is that the presence 

of recipient MDC and/or PDC is associated with the induction of a more efficient

4 6
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Patients and methods

Patients and donors

Chimerism of hematopoietic cell populations was studied in 15 CML patients with 

a relapse after partially T cell-depleted allogeneic SCT. In five patients (two with 

molecular relapse and three with cytogenetic relapse), remission after SCT was 

confirmed with a negative quantitative PCR for BCR-ABL. In five patients, PCR 

was performed, but not on a quantitative level. In five other patients, no PCR was 

performed between SCT and relapse.

These relapsed CML patients received DLI, and were selected on the availability of 

cryopreserved peripheral blood mononuclear cell (PBMC) samples obtained shortly 

before DLL DLIs were given in a period from January 1996 until November 2003. 

All patients were treated initially with allogeneic SCT for CML in first chronic phase. 

The median duration between diagnosis and SCT was 9 months (range=3-17). The 

median age of patients was 40 years (range=26-51) at the time of SCT. Stem cell 

donors were HLA-identical siblings in 11 of 15 patients. One patient received G-CSF 

mobilized PBSCs, and the other 14 patients received bone marrow stem cells. One 

patient received bone marrow stem cells from a one HLA class I locus-mismatched 

sibling. Two patients were transplanted with stem cells from HLA-identical unrelated 

donors and one patient received stem cells from a phenotypically identical father. 

The median age of the donors was 36 years (range= 19-70) at the time of stem cell 

donation. Clinical characteristics of patients and donors are shown in Table 1.

Conditioning regimen and GVHD prophylaxis

The standard conditioning consisted of cyclophosphamide 60 mg/kg body weight 

intravenously on each of two consecutive days followed by fractionated total body 

irradiation (TBI) in two equal fractions of 4.5 Gy on 2 days. In nine patients, the 

conditioning regimen was intensified with the addition of idarubicin to a total dose 

of 42 mg/m2 body surface given by continuous intravenous infusion. Two patients 

transplanted with stem cells from an unrelated donor received anti-thymocyte 

globulin (thymoglobulin, Genzyme Europe, Naarden, The Netherlands) 2 mg/kg 

intravenously on each of four consecutive days in addition to the standard regimen. 

In the patients receiving stem cells from a one locus-mismatched or a haplo-identical

GVL reaction.
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donor, the conditioning regimen consisted of cyclophosphamide, TBI plus total 

lymphoid irradiation 2 x 2  Gy on each of the two consecutive days. All patients 

received cyclosporine A for GVHD-prophylaxis. The grafts were partially depleted 

of T cells by counterflow centrifugation as described before.13 Further details on 

conditioning, T cell content and on the quality of the grafts are given in Table 1.

Table 1: Transplantation characteristics

CML (n=15)
Patients

Recipient male/female 7 / 8
Donor male /female 8 / 7
Median recipient age, years (range) 40 (26-51)
Median donor age, years (range) 36 (19-70)

Conditioning
Cyc, T B I 2

Cyc, T B I, Ida 9
Cyc, T B I, ATG 2

Cyc, T B I, TLI 2

Graft
Median C D 3+ cells infused x 106/kg (range) 0.7 (0.3-0.9)
Median CFU-GM  infused x 104/kg (range) 10.0  (2 .8-2 1 .2 )
Median C D 34+ cells infused x 106/kg (range) 1.6 (0.7-3.2)

Abbreviations: ATG, anti-thymocyte globulin; Cyc, cyclophosphamide; Ida, idarubicin; TBI, total body 

irradiation; TLI, Total lymphoid irradiation.

Infusion o f donor lym phocytes

DLI was performed as described before.14 Briefly, donor lymphocytes were obtained 

from the original stem cell donor by leukapheresis using the blood cell separator 

Baxter CS 3000 (Baxter, Deerfield, IL, USA) or the Fresenius AS 104 (Fresenius, 

Oberursel, Germany). Lymphocytes were administered to the patient within 3 

hours of completion of the leukapheresis procedure. No GVHD prophylaxis was 

administered after the infusion of the donor lymphocytes. If  a patient did not 

respond to the first DLI, a second or third DLI was given in escalating doses of T 

lymphocytes. The first dose ranged from 0.1 to 0.7 x 108 CD3+ cells/kg for patients
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with a hematological or cytogenetic relapse. The second dose ranged from 0.7 to 

1.0 x 108 CD3+ cells/kg. For patients with an unrelated donor, the first dose ranged 

from 0.05 to 0.1 x 108 CD3+ cells/kg. Median time between relapse and the first DLI 

was 1.4 months (range=0,2-39.1). There was a long interval of 39.1 months in the 

patient transplanted with stem cells from a phenotypically identical farther, because 

this patient had a history of acute and chronic GVHD and aspergillus infection at the 

time of relapse.

C ytogenetic analysis and quantifica tion  o f BCR-ABL-positive cells 

Chromosome studies on peripheral blood and bone marrow cells were performed 

after SCT and DLI as described before.15 In sex-mismatched donor-patient pairs, 

heterosome determination of 400 inter phases with fluorescence in situ hybridization 

(FISH) allowed additional differentiation between donor and recipient cells. If 

more than five autologous marrow interphases were found, bone marrow cells were 

analyzed for the presence of the Philadelphia chromosome using BCR-ABL probes. 

For quantification of BCR-ABL-positive cells, total RNA from peripheral blood cells was 

extracted using Trizol (Invitrogen, Carlsbad, CA, USA). Real-time PCR analysis was 

performed on an ABI/Prism 7700 system (Applied Biosystems, Foster City, Ca, USA) 

as described previously.16 Expression of the porphobilinogen deaminase (Pbgd) gene 

was used to normalize BCR-ABL expression. This normalized BCR-ABL expression in 

patient samples was related to a standard curve obtained from K562 cells diluted into 

normal bone marrow cells. The limit of detection of BCR-ABL PCR is lx l  O'5.

Q uantification of DC subsets

Blood samples were obtained from patients shortly before DLL PBMC were isolated 

by Ficoll-Paque (Pharmacia, Uppsala, Sweden), cryopreserved and stored in liquid 

nitrogen until use. DC subsets were enumerated using thawed PBMC by 3-color 

immunofluorescence analysis. The following mAbs were used: FITC-conjugated anti- 

CD45 (J33), anti-CD 14 (TUK4) (Beckman Coulter, Mijdrecht, The Netherlands), 

PE-conjugated anti-CD lc (BDCA-1, AD5-8E7), BDCA-2, BDCA-4 (AC144 and 

AD5-17F6, Miltenyi Biotech, Bergisch Gladbach, Germany), Cy5-conjugated anti- 

C D ^  (J4.119), and anti-CD45 (J33) (Beckman Coulter). PBMC were incubated 

with the appropriate concentration of mAb in phosphate-buffered saline (PBS) 

supplemented with 20% pooled human serum and 0.1% NaN3 (4°C  for 30 min). 

Cells were washed in PBS/1% bovine saline albumin and analyzed using a Coulter
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XL flow cytometer (Beckman Coulter, Fullerton, CA, USA). MDCs and PDCs were 

identified as CD45+BDCA-1+CD19- and CD45+BDCA-2/4+CD14- mononuclear 

cells, respectively. Absolute number was calculated by multiplying the percentage of 

MDC and PDC with the total number of mononuclear cells per liter.

Purification of PBMC subsets

PBMC subsets were isolated using a two-step flow cytometric cell-sorting procedure 

that allows purification of five different subsets. PBMC were labeled with a mixture 

of Cy5-conjugated mAb against the lineage markers CD2 (39C1.5), CD20 (B9E9), 

CD15 (80H5) (Beckman Coulter), and FITC-conjugated anti-C D llc (KB90, DAKO, 

Glostrup, Denmark) mAb. Labeled cells were sorted into three fractions, that is 

C D llc+L in-, C D llc-L in - and Lin+ cells, using the Coulter Epics Altra hypersort 

flow cytometer (Beckman Coulter). These pre-sorted cell fractions were subsequently 

stained with the appropriate concentration of PE, Cy5 and ECD-conjugated mAb and 

different subsets were sorted using the Coulter Epics Elite flow cytometer (Beckman 

Coulter). The Lin+ cell fraction was used to isolate CD3+ T cells (CD3-ECD, UCHT1, 

Beckman Coulter) and CD13.CD33+ myeloid cells (CD13-PE, SJ1D1 and CD33- 

PE, D3HL60.251, Beckman Coulter). MDC were isolated from the C D llc+L in - cell 

fraction based on expression of BDCA-1 (BDCA-1-PE, AD5-8E7, Miltenyi Biotec) 

and negativity for CD19 (CD19-Cy5, J4 .119, Beckman Coulter). PDCs were isolated 

from the C D llc-L in - cell fraction based on expression of BDCA-2 (BDCA-2-PE, 

AC144, Miltenyi Biotec) and BDCA-4 (BDCA-4-PE, AD5-17F6, Miltenyi Biotec) 

and negativity for CD 14 (CD14-Cy5, R M 052, Beckman Coulter). An aliquot of 

sorted cells was reanalyzed and purity was more than 95% in all cases.

Quantification of the percentage recipient and donor cells in PBMC subsets

Real-time quantitative PCR of single nucleotide polymorphisms (SNP) and/or the 

SMCY gene was used for the quantification of donor and recipient hematopoietic 

cells, as described previously.17'18 Briefly, recipient/donor pairs were screened for 

discriminating SNPs. Quantification is based on real-time PCR with allele-specific 

primers for DNA sequences containing the discriminating SNP and target DNA- 

specific probes. Quantitative analysis is performed by generating calibration 

functions from cycle thresholds (Ct) obtained by real-time PCR of DNA serially 

diluted in water. Detection limit for T cells was 0.1 -1  % and for DC subpopulations 

1 -  10%, depending on the number of isolated cells.
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Definitions

Complete donor chimerism in T cells, myeloid cells and monocytes was defined 

as < 1% recipient cells among donor cells, and complete recipient chimerism as 

<1% donor cells among recipient cells. For DC subpopulations, complete donor 

chimerism was defined as < 10% recipient cells among donor cells, and complete 

recipient chimerism as <10% donor cells among recipient cells. Mixed chimerism 

in T cells, myeloid cells and monocytes was defined as > 1% recipient cells and > 

1% donor cells. For DC subpopulations, mixed chimerism was defined as > 10% 

recipient cells and > 10% donor cells. Higher thresholds were chosen for DC-subsets 

because the amount of input DNA obtained from MDC and PDC was lower than 

from T cells, myeloid cells and monocytes. This lower input of DNA resulted in a 

lower A Ct, and for some samples the limit of detection was <10%.

Acute and chronic GVHD were classified grade I-IV  and limited or extensive, 

respectively, according to the criteria described by Glucksberg et al. and Shulman et 

al.19;2° GVHD after DLI was classified as acute GVHD for the first three months after 

DLL Cytopenia after DLI was defined as a white blood cell count of <1.0xl09/l and/or 

platelet counts of <15xl09/l, and/or a hemoglobin-level of <6.0 mmol/1. 

Hematological remission of CML was defined as disappearance of all signs and 

symptoms of disease and normalization ofblood cell counts and cellularity of the bone 

marrow. Complete cytogenetic response (CCyR) was defined as the disappearance of 

the Philadelphia chromosome in the bone marrow. Complete molecular remission 

(CMolR) was defined as a real-time PCR for the BCR-ABL fusion transcript under 

the detection level at > 2 consecutive points after DLL Accelerated phase was defined 

according to the WHO criteria.

Results

Response of CML following DLI

Nine of the 15 patients had a hematological relapse at the time of first DLI with 

a median interval of 15 months (range=6-64) after SCT (Table 2). Six of the nine 

patients attained CMolR after first DLI with a T cell dose ranging from 0.1 to 

0.7x10s/kg. Two patients (UPN 306 and UPN 389) did not respond to the first DLI 

(0.1x10s T cells/kg), but obtained CCyR after a second DLI (0.7 and 0.9x10s T cells/ 

kg, respectively). Only one patient (UPN 396) did not respond to DLI (0.7xl0s/kg and 

1,0x10s T cells /kg).
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Six patients were in an accelerated phase, including the non-responding patient and 

the two patients obtaining CCyR. In four patients, the presence of an accelerated phase 

is based only on cytogenetic abnormalities, however in three of these four patients we 

found del (13) which is typical for CML. One patient had 12% blasts in bone marrow 

and multiple structural cytogenetic abnormalities, and one patient presented with 

thrombocytosis unresponsive to therapy (treatment with hydroxyurea).

Four patients had a cytogenetic relapse at the time of first DLI with a median interval 

of 24 months (range= 10-37) after SCT. Two of these four patients attained CMolR 

after first DLI (Table 2). Patient UPN 522 did not respond to the first DLI (O.lxlO8 

T-cells/kg) and progressed to hematological relapse. But, this patient obtained CMolR 

after a second DLI (0.7x108/kg). Patient, UPN 336 achieved CCyR after the first DLI 

(0.1xl08/kg). This patient did not receive a second DLI because of comorbidity. One 

patient with a cytogenetic relapse had an additional deletion 18 in 3 of the 10 studied 

bone marrow cells, indicative of acceleration.

Two patients received DLI for a molecular relapse at 10 and 39 months after SCT. 

Patient UPN 489 did not respond to first DLI (O.lxlO8 T cells/kg), but obtained a 

CMolR after second DLI (0.7xl08T cells/kg). Patient UPN 681 obtained a CMolR 

after first DLI (0.05 x l0 8/kg).

Overall, 11 of 15 (73%) relapsed CML patients attained CMolR following DLL Eight 

patients showed symptoms of GVHD and six patients developed cytopenia. Blood 

counts normalized spontaneously between one week and 5 months (median=l 

month) in four patients, but two patients received a stem cell boost from the original 

stem cell donor. The three patients reaching CCyR only developed a second relapse 

of CML, 1 to 4 years after this CCyR.

GVHD following DLI

After DLI, 8 of 15 CML patients developed acute GVHD. Three patients developed 

grade III, one patient grade II and four patients grade I. Factors known to be 

associated with the occurrence of GVHD after DLI are T cell dose, donor type and 

time between SCT and DLI.21;22 The mean number of T cells/kg (first and eventually 

second DLI) did not differ between the group of patients with GVHD and without 

GVHD; 0.5x108/kg versus 0.4x108/kg. But, only one patient developed GVHD grade 

I after a DLI-dose of 0 .1xl08/kg. All patients with GVHD > grade I were treated with 

a high T cell dose. Mean number of T cells/kg in the group of patients with GVHD > 

grade I was 0.6x108/kg versus 0.4x108/kg in the patients with GVHD < 1 (calculated
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on the first and eventually second DLI).

The doses of the first DLI s were low in patients with an unrelated and haplo-identical 

donor, and these three patients did not develop GVHD. The patient receiving 

lymphocytes (0.7 x 108T cells/kg) from a one locus-mismatched donor developed 

grade III GVHD.

For the group with GVHD, the median time between SCT and DLI-1 was 17 months 

(range=9-37). For the patients without GVHD, the median time between SCT 

and DLI-1 was 24 months (range=9-64) months (no significant difference, P=0.41 

according to the Mann-Whitney test).

Table 2: Disease status at the time of first and second (in non-responding patients) DLI, interval SCT- 

DLI, T cell dose of DLI and response to DLI.

UPN Disease status at 
1st DLI

Donor Interval 
SCT-DLI (months)

DLI dose (xl08/kg) GVHD 
after DLI

Response to DLI

337 Hem Rel, acc HLA-id 13 0.4 2 CMoIR
354 Hem Rel, acc HLA-id 20 0.2 1 CMoIR
406 Hem Rel Mismatch 23 0.7 3 CMoIR
407 Hem Rel HLA-id 37 0.7 3 CMoIR
474 Hem Rel, acc VUD 22 0.1 0 CMoIR
306 Hem Rel Phen-id Father 64 0.1 0 no

68 0.9 0 CCyR
389 Hem Rel, acc HLA-id 10 0.1 0 no

12 0.7 1 CCyR
396 Hem Rel, acc HLA-id 9 0.7 0 no

11 1.0 0 no
387 Hem Rel, acc HLA-id 9 0.4 1 CMoIR
447 Cyt Rel, acc HLA-id 37 0.1 1 CMoIR
459 Cyt Rel HLA-id 10 0.7 3 CMoIR
522 Cyt Rel HLA-id 24 0.1 0 no

29 0.7 0 CMoIR
336 Cyt Rel HLA-id 26 0.1 0 CCyR
489 Mol Rel HLA-id 39 0.1 0 no

43 0.7 0 CMoIR
681 Mol Rel VUD 10 0.05 0 CMoIR

Abbreviations: UPN, unique patient number; Hem rel, hematological relapse; acc, accelerated phase; 

Cyt Rel, Cytogenetic relapse; Mol Rel, Molecular relapse; HLA-id, HLA-identical; Mismatch, one locus 

mismatched; VUD, voluntary unrelated donor; Phen. id, phenotypically-identical; Interval SCT-DLI, 

interval between SCT and DLI in months; DLI dose, number of CD3+ T cells x 108/kg; CMoIR, complete 

molecular remission; CCyR, complete cytogenetic remission.
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Pre-DLIT cell chimerism and disease response

Previously, we showed that the percentage of T cells from donor origin at the time 

of DLI correlates with response, and that the presence of significant numbers of 

recipient T cells is unfavorable.23 Therefore, we analyzed T cell chimerism in these 

15 CML patients.

Five patients had mixed T cell chimerism at the time of first or second DLI (Table 3) 
and only two attained CMolR (40%). The remaining 10 patients had complete T cell 

donor chimerism at the time of first or second DLI, and all but one obtained a CMolR 

(90%, P=0.07; Fishers exact test). These data suggest that in relapsed CML patients 

the presence of autologous T cells indicates reduced effectiveness of DLI.

Pre-DLI T cell and DC chimerism

To analyze the role of recipient-derived DC, we divided the patients with donor T 

cells in a group with donor chimerism in MDC and PDC (group 1) and a group with 

the presence of recipient DC (group 2) (table 3). The four patients in group 1 had 

either a molecular (n=2) or a cytogenetic relapse (n=2), indicating an early stage of 

relapse. Three of four patients entered CMolR after 1 or 2 DLIs and only one of these 

four patients developed GVHD grade I. None of these patients developed chronic 

GVHD nor cytopenia.

The six patients in group 2 were complete donor chimeric in T cells and mixed chimeric 

in MDC and/or PDC. One patient had a cytogenetic relapse and five patients had 

a hematological relapse. Despite the advanced stage of disease, all patients entered 

CMolR. However, four of these six patients (66%) developed aGVHD and three of 

six patients (50%) developed chronic GVHD. The combination of GVL with GVHD 

may indicate that the DLI-mediated alloreactivity is stronger in group 2 compared 

to group 1. Furthermore, three patients developed pancytopenia. The cytopenia may 

be explained by the eradication of the malignant clone and the slow recovery of the 

normal donor hematopoiesis. Moreover, cytopenia is indicative for the tumor load 

and a low number of donor hematopoietic cells.24

Interestingly, in one of the patients of group 2 (UPN 406), we could sort enough 

DC to perform FISH-analysis using probes for BCR-ABL. This patient had mixed 

chimerism in both MDC (68% recipient derived) and PDC (37% recipient derived). 

In the MDC subset, 8 of 43 cells (18%) were BCR-ABL positive and in the PDC subset 

39 of 164 cells (23%) were BCR-ABL positive, indicating that part of the recipient- 

derived MDC and PDC originates from malignant CML progenitor cells.
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Table 3: Chlmerlsm In T cells, DC-subsets and myeloid cells In the patients prior to first and second 

(In non-responding patients) DLL

UPN T cells MDC PDC Myeloid Abs MDC 
x 106/1

Abs PDC 
x 106/1

Response GVHD
Acute/
chronic

Cyto-
Penia

Relapse Interval
SCT
-DLI

T cell 
Dose

Group 1
681 D D D D 5,8 3,5 CMoIR 0/0 Mol Rel 10 0.05
489 D D D M 15,4 2,5 no 0/0 Mol Rel 39 0.1

D D D M 11,3 1.0 CMoIR 0/0 Mol Rel 43 0.7
336 D D D M 11,6 1,7 CCyR 0/0 Cyt Rel 26 0.1
447 D D D M 9,1 3,3 CMoIR 1/0 Acc Rel 37 0.1

Group 2

337 D D M M 4,4 1,4 CMoIR 2/E yes Acc Rel 13 0.4
522 D M M M 7.0 1,2 no 0/0 Cyt Rel 24 0.1

D M nc M 4,6 2,5 CMoIR 0/0 Hem Rel 29 0.7
354 D M M M 3,1 2,0 CMoIR 1/0 yes Acc Rel 20 0.2
406 D M M M 10,8 5,9 CMoIR 3/E Hem Rel 23 0.7
407 D M M M 6,9 5,3 CMoIR 3/L Hem Rel 37 0.7
474 D R R M 2,6 3,0 CMoIR 0/0 yes Acc Rel 22 0.1

Group 3

306 D R R R 5,8 9,9 no 0/0 Hem Rel 64 0.1
M nc R M 7,7 53 CCyR 0/0 yes Hem Rel 68 0.9

459 M D D M 3,1 4,6 CMoIR 3/L Cyt Rel 10 0.7
387 M R R R 0,7 0,7 CMoIR 1/0 yes Acc Rel 9 0.4
389 M nc D M 9,7 2,2 no 0/0 Acc Rel 10 0.1

M R D R 14,6 1,5 CCyR 1/L yes Acc Rel 12 0.7
396 M R nc R 4,2 1,4 no 0/0 Acc Rel 7 0.7

nc nc nc nc 0,7 0,7 no 0/0 Acc Rel 11 1.0

Abbreviations: UPN, unique patient number; MDC, myeloid dendritic cells; PDC, plasmacytold dendritic 

cells; Myeloid, myeloid cells; Abs MDC, absolute number of myeloid dendritic cells; Abs PDC, absolute 

number of plasmacytold dendritic cells; Interval SCT-DLI, Interval between SCT and DLI In months; T 

cell dose, number of CD3+ T cells x 108/kg; D, complete donor chlmerlsm; M, mixed chlmerlsm, R, 

complete recipient chlmerlsm; Hem rel, hematological relapse; Acc Rel, relapse In accelerated phase, 

Cyt Rel, Cytogenetic relapse; Mol Rel, Molecular relapse; CMoIR, complete molecular remission; CCyR, 

complete cytogenetic remission; nc, no cells.

The third group consists of five patients with mixed chimerism in the T cells at the 

time of the first or second DLI. The clinical presentation at the time of the first DLI
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was a cytogenetic relapse in one patient and a hematological relapse in four patients. 

Four patients were complete recipient chimeras in the MDC subpopulation. One 

patient had donor MDC in combination with mixed chimerism in T cells. Two of 

these five (40%) patients reached CMolR in combination with GVHD. One patient 

did not respond to DLI and two patients were temporary responders with a second 

relapse 1.5 and 4 years after the first DLI.
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Figure 1: Percentage and absolute number of MDC and PDC in peripheral blood at the time of first DLI 

in patients with and without GVHD. The median level is shown by the th ick line. GVHD, graft-versus- 

host disease; MDC, myeloid dendritic ceil; PDC, piasmacytoid dendritic cell.

Dendritic cell numbers at the time of DLI

To investigate the correlation between the absolute numbers of MDC and PDC and 

DLI-induced alloreactivity, we performed immunophenotyping analysis of PBMC 

samples obtained shortly before DLL The median number of MDC and PDC at
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the time of first DLI was 5.8x106/l (range=0.7-l 5.4x106/l) and 2.5x106/l (range=0.7- 

9.9xl06/l), respectively. The median numbers ofM DC and PDC did not differ between 

the patients with and without CMolR or with and without G VHD after DLI (Figure 1). 

The median number ofM D C was 10.6x106/l (range=5.8-15.4xl06/l) in patients with 

a molecular relapse, 8 .1xl06/l (range=3.1-l 1.6xl06/l) in patients with a cytogenetic 

relapse and 4.4xl06/l (range=0.7-10.8xl06/l) in patients with a hematological relapse. 

Median numbers of PDC did not differ between the groups based on the stage of 

relapse. These results suggest that absolute MDC numbers in relapsed CML patients 

may decrease with progression of disease.

The patient who did not respond to DLI (UPN 396) and two patients with a second 

relapse after the initial CCyR (UPN 336 and 389) ultimately progressed to an 

accelerated or blast phase. At the time of CML progression to an accelerated phase, 

MDC and PDC numbers were very low (<0.01%).

Discussion

Complete remission after DLI is strongly associated with the occurrence of GVHD, 

indicating that alloreactive T cells largely mediate GVT reactivity. Studies in MHC- 

identical murine transplantation models showed that recipient APC are absolutely 

required to initiate alloreactive CD8+ T cell responses mediating GVHD .6 But once 

initiated, GVHD can be intensified by donor-derived APC that are capable to cross­

present recipient antigens to the primed alloreactive CD8+ T cells.7 The same mouse 

model shows that donor APC do not contribute to the induction of CD8+ T cell- 

mediated GVT reactivity against chronic-phase CML .6;7 These studies clearly show 

the importance of recipient APC in the induction of allo-immune responses after 

transplantation. However, little is known about the initiation of alloreactive CD8+ 

T cell responses following DLI in the human setting. In a MHC-mismatched mouse 

model it has been demonstrated that DLI in mixed hematopoietic chimeras produced 

improved leukemia-free survival compared to DLI in full donor chimeras.8. This 

suggests that recipient APC present in mixed chimeras at time of DLI may exert 

more optimal presentation of recipient antigens leading to superior alloactivation 

of infused donor T cells, whereas absence of recipient APC in full donor chimeras 

may result in non-responsiveness. This lead to our hypothesis that the presence of 

peripheral blood MDC and PDC from recipient origin at the time of DLI is associated 

with the induction of an efficient GVL reaction.

Based on chimerism analysis, we identified three groups. Group 1 was complete
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donor chimeric in T cells and DC subsets. They had an early stage of the relapse 

and three of the four patients obtained CMolR after DLI without significant GVHD. 

Group 2 was complete donor chimeric in T cells and mixed chimeric in MDC and/or 

PDC. The six patients in the second group had a more advanced stage of relapse: five 

had a hematological relapse and one patient had a cytological relapse. All six patients 

entered CMolR. In this group, the GVL reactivity was associated with clinically overt 

GVHD in four patients. From these results we speculate that the combination of 

donor T cells with donor DC induces mild alloreactivity, which is sufficient for the 

eradication of early stage of relapse. In contrast, the combination of full donor T 

cell chimerism with host MDC and/or PDC induces stronger alloreactivity leading 

to potent GVL response associated with GVHD. The combination of mixed T cell 

chimerism with recipient-derived MDC is less favorable as shown in the third 

group. This suggests that in patients with an early relapse GVL can be separated 

from GVHD by DLI with low T cell dose in the presence of donor chimerism in T 

cells and DC subsets. Therefore, these data only partly support our initial hypothesis 

that recipient-derived DC are necessary for induction of a DLI-mediated immune 

response. However, the presence of recipient-derived DC subsets in patients with a 

cytogenetic or hematological CML relapse may be favorable to induce more potent 

GVL reactivity for the eradication of higher tumor loads. Further evolution of 

chimerism to mixed chimerism in T cells is unfavorable and only two of the five 

patients reach CMolR. Moreover, evolution of chimerism to mixed T cell chimerism 

is associated with declining absolute MDC numbers indicating that both are related 

with tumor load of the CML.

Our data suggest that the balance between T cells and DC subsets maybe important 

in the initiation of an alloimmune response after DLL However, chimerism of APC 

present in lymphoid tissue or GVHD target organs such as skin or gastro-intestinal 

tract may also play a role in the initial priming and intensification of the alloimmune 

response.25 Furthermore, recipient-derived monocytes and/or myeloid (progenitor) 

cells may exert antigen-presenting function.21 In all but one patient, the myeloid 

cell fraction was mixed chimeric or recipient derived, indicating that myelopoiesis 

had turned to host origin. Another factor is the sensitivity of the real-time PCR 

for chimerism determination and we might fail to identify minor populations of 

recipient-derived DC, which could be enough to induce an immune response. Finally, 

the presence of pro-inflammatory cytokines and the availability of TLR-ligands may 

influence the activation status of the DC-subsets.26
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Six patients developed cytopenia after DLL Five of these six patients received DLI 

in the accelerated phase of their disease. Keil et al.24 showed that a level of about 5% 

donor cells was enough to protect against critical aplasia after DLL We did not study 

chimerism in CD34+ cells, however, four patients with aplasia had > 94% recipient 

derived myeloid cells in peripheral blood at the time of DLI (data not shown). Two 

patients had about 60% recipient-derived myeloid cells, in one patient the duration 

of aplasia was 3 days during an episode with fever and one patient was pre-treated 

with hydroxyurea.

We showed that part of the recipient-derived MDC and PDC originate from 

the malignant CML progenitor cells. This situation is specific for CML and is not 

applicable for relapse of lymphoid malignancies or acute myeloid leukemias. 

Relapse of lymphoid malignancies or acute leukemias after allogeneic SCT probably 

show other dynamics of return of recipient cells. As the malignant clone in other 

malignancies does not produce MDC or PDC, return of recipient-derived DC 

subsets is less likely.

We performed this study to elucidate the mechanisms that determine the effectiveness 

of DLI in patients with relapsed CML in relation with DC-chimerism. Absolute 

numbers of MDC and PDC did not correlate with induction of alloreactivity, but 

median number of MDC was higher in the group of patients with an early relapse. 

The combination of donor chimerism in T cells and the presence of recipient DC 

subsets induces efficient GVL reactivity (all patients enter CMolR) in association 

with GVHD in 66% of the patients. However, in patients with a molecular relapse, 

low-dose DLI can induce mild alloreactivity, which is enough to reach CMolR 

without significant GVHD. This study confirms the importance of regular BCR-ABL 

measurements, for early identification of a molecular relapse. Further studies are 

needed for a better understanding of factors that influence the effectiveness of DLI 

and for the development of strategies to enhance the effectivity of DLI in patients 

with other malignancies than CML.
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Abstract

The purpose of this study was to determine the role of pre-emptive donor lymphocyte 
infusion (pDLI) after partial T cell-depleted allogeneic stem cell transplantation 

(SCT) in patients with multiple myeloma (MM).

A cohort of 24 MM patients was treated with partial T cell-depleted myeloablative 

SCT between December 1997 and April 2002. These patients were intended to receive 

pDLI after SCT. The overall response rate after SCT was 83% (20 of 24 patients) with 

10 patients (42%) in complete remission (CR). Transplant-related mortality within 

one year after SCT was 29%. Thirteen patients (54%) received pDLI and four patients 

in partial remission reached CR.

GVHD > grade I after pDLI developed in 4 out of 13 patients (30%). Four patients 

received therapeutic DLI, without preceding pDLI. Eleven patients (46%) are alive, 

with a median follow-up of 67 months (range, 48-100 months). Seven of these 

patients (29%) are in continuous CR (CCR), which was confirmed by a negative 

patient-specific IgH PCR in four patients. All seven patients in CCR received pDLI. 

Although myeloablative SCT in MM induces high toxicity, we show that the concept 

of T cell depletion followed by pDLI is promising and needs to be investigated in a 

reduced intensity conditioning setting.

6 5



Pre-emptive DLI in multiple myeloma

Introduction

Graft-versus-myeloma reactivity of donor lymphocyte infusion (DLI) for relapsed 

multiple myeloma (MM) after allogeneic stem cell transplantation (SCT) is well 

established. Response rates of 30% to 50% in relapsed MM patients have been 

reported .1:2 DLI can be given as treatment for clinical relapse or as pre-emptive 

therapy after T cell-depleted allogeneic SCT.3 In our center, all 24 patients transplanted 

upfront for MM in the period from December 1997 to April 2002 intended to receive 

pre-emptive DLI (pDLI) after discontinuation of immunosuppression and in the 

absence of GVHD. We analyzed response rates and toxicity in this cohort.

Patients and methods

Patients and treatment

Twenty-four patients were treated with an allogeneic SCT for MM between December 

1997 and April 2002 at the Radboud University Nijmegen Medical Centre, The 

Netherlands. All patients had MM stage II or III. All patients younger than 60 years 

and with an HLA-identical sibling were offered an allogeneic SCT, according to the 

HOVON 24 study. Eight patients were actually included in the HOVON 24 study, 

which is published, although only the Nijmegen patients received pDLI.4 Induction 

therapy included 2 to 6 VAD (vincristine, adriamycin and dexamethasone) courses. 

Four patients received an additional course of cyclophosphamide (used for stem cell 

collection in the HOVON 24 protocol) and 16 patients were treated with intermediate- 

dose melphalan (two times 70 mg/m2) before the transplantation. One patient 

received standard-dose melphalan-prednisone. Patient characteristics are shown in 

Table 1. At the time this study was performed, the prognostic factors such as beta-2 

microglobulin and cytogenetics were not routinely tested. In 14 of the 24 patients, 

conventional cytogenetic analysis of bone marrow was performed before SCT: two 

patients had multiple structural and numerical abnormalities and one patient showed 

loss of chromosome 22 . The conditioning regimen consisted of cyclophosphamide 

(total dose 120 mg/kg) and total body irradiation (9 Gy) in 23 patients, and in 5 

cases conditioning was intensified by the addition of idarubicin (total dose 42 mg/ 

m2). One patient with an unrelated donor received cyclophosphamide (120 mg/kg), 

TBI (9 Gy) and anti-thymocyte globulin (thymoglobulin, 8 mg/kg). Another patient 

was conditioned with cyclophosphamide (120 mg/kg) and busulphan (16 mg/kg) 

orally. The grafts were partially depleted of T cells by counterflow centrifugation
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as described before.5 The grafts for two patients were prepared by CD2 and CD 19 

depletion (Isolex, Nexell-Baxter, Irvine, CA, USA). The median numbers of CD3+ 

cells and CD34+ cells in the grafts were 0.7 x 106 (range, 0.3 x 106 - 1.03 x 106) and 2.4 

x 106 (range, 1.2 x 106 -  5.64 x 106) per kg body weight of the recipient, respectively. 

All patients received cyclosporine A as GVHD prophylaxis.

Tablel: Patient characteristics

Characteristic Number of patients (N=24)
Sex, no of male/female 14/10
Median age, years (range) 50 (33-58)
Median time diagnosis-SCT, months (range) 8(5-14)
WHO performance status

0 -1 19
2 -3 5

Beta-2-microglobulin (mg/1)
0 -3 8

>3 6

Unknown 10

Hemoglobin (g/1)
< 10 9

> 10 14
Unknown 1

Lactate dehydrogenase
Normal 16
Elevated 2

Unknown 6

M -protein heavy chain
IgA 2

IgG 17

IgD 1

Light -chain Normal 3
Non secreting 1

Bone marrow plasma cells (%)
<50 19

> 50 4
Unknown 1

Abbreviations: Ig = immunoglobulin; WHO = World Health Organization;
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Infusion of donor lymphocytes

pDLI was given on an intention-to-treat basis and was withheld in cases of preceding 

GVHD > grade I, active chronic GVHD (cGVHD) and in patients who were still 

on immunosuppressive therapy. DLI was performed as described before.6 Briefly, 

lymphocytes were obtained from the original stem cell donor by leukapheresis using 

the blood cell separator Baxter CS 3000 (Baxter, Deerfield, IL, USA) or the Fresenius 

AS 104 (Fresenius, Oberursel, Germany). Lymphocytes were administered to the 

patient within 3 hours of completion of the leukapheresis procedure. No GVHD 

prophylaxis was administered after the infusion of the donor lymphocytes. The 

first nine patients received 0.1 x 108 CD3+ cells/kg, but because of GVHD, the dose 

of lymphocytes was reduced to 0.05 x 108 CD3+ cells/kg in the next four patients. 

Therapeutic DLI (tDLI) was given for progression or relapse of MM and T cell dose 

varied from 0.05 x 108 to 0.7 x 108 CD3+cells/kg.

Response Criteria

Complete remission (CR) was defined as complete disappearance of M-protein from 

blood and/or urine by immunofixation and normalization of the bone marrow .7 

Partial remission (PR) was defined as a decrease of more than 50% of the M-protein 

in the peripheral blood and a decrease in urinary light-chain excretion of more 

than 90% or to less than 0.2 g/24h. Minimal response (MR) was defined as 25% or 

more decrease of monoclonal proteins in the peripheral blood and/or more than 

50% decrease in urinary light-chain excretion. Molecular remission was defined as 

a negative patient-specific polymerase chain reaction (PCR). The sensitivity of the 

PCR is 1x10 5.

End points and statistical analysis

The data were analyzed in April 2006. End points included response rate, overall 

survival (OS) and progression free survival (PFS).

PFS was determined from transplantation until progression, relapse or death, 

whichever came first. OS was calculated from transplantation until death. PFS and 

OS were estimated by the Kaplan-Meier method.

Multivariate analysis was performed using the Wilks Lambda test.
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Results

Outcome and toxicity of SCT

Twenty of 24 patients (83%) were in remission before transplantation, including 4 

patients in CR and 16 in PR. Three patients showed a minimal response and one was 

refractory to the chemotherapy before transplantation. Twenty-two patients were 

evaluable 3 to 6 months after transplantation. Two patients had died at this time, one 

from infection and one from progressive disease. The overall response rate (of all 24 

patients) after allogeneic stem cell transplantation was 83% (20 of 24 patients) with

10 patients (42%) in CR and 10 in PR.

Acute GVHD (aGVHD) occurred in 12 patients (50%): seven patients (29%) with 

grade I, three patients (13%) with GVHD grade I I  and two patients (8%) with 

grade III. Twenty-three patients were evaluable for cGVHD. Seven patients (30%) 

developed chronic GVHD, which was limited in five patients and extensive in two 

patients.

Table 2: Disease status after SCT, response after DLI and at last follow-up in 13 patiens treated with 

pDLI.

After SCT After pDLI Last follow-up PCR

5 patients in CR 5 remain in CR 3 CCR, 2 alive with 

relapse

2 CCR confirmed by 

a negative PCR

1 patient with 

VGPR

1 CCR 1 CCR Confirmed by 

negative PCR

4 patients in PR These 4 patients 

reach CR

3 CCR, 1 relapse 1 CCR is confirmed 

by a negative PCR

2 patients with no 

remission

PR in 1, PD ini Both died (1 of 

GVHD and 1 of PD)

1 patient is non­

secreting

1 non-secreting Died of relapse

Abbreviations: CR = complete remission; CCR = continuous CR; DLI = donor lymphocyte infusion; PCR 

= polymerase chain reaction; PR = partial remission; PD = progressive disease; VGPR = very good 

partial response.
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DLI after SCT

Thirteen of the 24 patients (54%) received pDLI after SCT. Median time from SCT to 

pDLI was 7.5 months (range, 3.5-13.3 months). Six patients (46%) developed GVHD 

after pDLI: grade I in two patients, grade II and III in one patient each and grade 

IV GVHD in two patients. Eleven of 24 patients did not receive pDLI, because of 

GVHD (n=5), rejection (n=l), rapid progressive disease (n=l), death (n=l), poor 

performance status (n=l) and donor related problems (n=2).

Four patients received tDLI for progressive disease, without previously having had 

pDLI. Median time to tDLI was 18.7 months (range, 13.6-47.2 months). Two patients 

developed GVHD after tDLI, and this was grade I and IV in each patient.

Outcome of DLI and overall survival

Disease status at the time of pDLI was CR in five patients, VGPR in one, PR in four, 

one patient was non-secreting and two patients were not in remission (table 2). 

Overall, 10 patients have reached a clinical CR after pDLI. Five patients were in CR 

before pDLI and the 5 patients with (VG)PR after SCT also reached a clinical CR 

after pDLI. Three patients relapsed later; two patients are alive and still receiving 

treatment for MM.

Nine out of 13 patients (69%) who received pDLI are alive at present and seven are in 

CCR. In four of the patients in CCR a patient-specific PCR for the immunoglobulin 

heavy-chain rearrangement was generated and all four patients are persistently PCR- 

negative.8 In two patients the PCR was negative prior to pDLI, in 1 patient the PCR 

was weakly positive and became negative after pDLI. In another patient, the PCR was 

not tested between SCT and pDLI. Overall, of the 7 patients in CCR, three were in 

clinical CR before pDLI. Four patients in CCR reached CR only after pDLI.

Four of the 13 patients who were given pDLI have died: both patients who were not 

in remission after SCT died, one from progressive disease and one from GVHD, 

respectively. The third patient responded to DLI, which was confirmed by a negative 

patient-specific PCR, but died of a relapsed MM 3.5 years after pDLI. Finally, the 

patient who was nonsecreting died of progressive disease. In all patients reaching 

CCR the M-protein was < 10 g/1 after SCT, indicating that tum or load at the time 

of DLI is related to the final outcome. Multivariate analysis was performed to study 

whether 6-2 microglobulin, M-protein level or percentage of plasma cells was 

correlated with CCR. None of these factors was significantly correlated with CCR, 

but patient numbers are too small to draw definite conclusions.
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Of the four patients who received tDLI, one patient died owing to GHVD, another 

achieved a complete remission, but relapsed and died from progressive disease. 

Two patients entered a partial response and are alive at 64 and 58 months after SCT, 

respectively.

Figures 1 and 2 show the overall survival and progression-free survival. Eleven out of 

24 patients (46%) are alive at present, with a median follow-up of 67 months (range, 

48-100 months) from SCT. Seven of these patients are in CCR; four patients relapsed 

or showed progressive disease. Thirteen patients died: seven patients (29%) owing to 

transplant related mortality (TRM) within 1 year after SCT and five patients (20%) 

owing to progressive disease. One patient died 18 months after SCT from GVHD 

after tDLI for progression of MM.

months

Figure 1: Overall survival from  allogeneic stem cell transp lan ta tion

Figure 2: Progression-free survival from  allogeneic stem cell transp lan ta tion
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Discussion

Since partial T cell depletion of the graft is associated with a higher risk of relapse, a 

cohort of 24 patients (transplanted from 1997-2002) was planned for pDLI to boost 

graft-versus-tumor reactivity. Since only 13 patients received pDLI, our results have 

to be interpreted with caution. Nevertheless, in our cohort, 7 of 24 patients (29%) are 

in CCR with a median follow-up of 67 months and all 7 had received pDLI. Eight 

of the 24 patients were also included in the Dutch HOVON 24 trial, and described 

before.4 However, pDLI was not given in the other centers participating in this study. 

In the HOVON 24 trial, only 3 of 53 patients (6%) were in CCR with a median 

follow-up of 20 months. This suggests that immunotherapy after T cell depleted SCT 

enhances the graft-versus-myeloma reactivity. In four patients with a clinical CCR, 

plasma cells were cryopreserved at diagnosis to set up a patient-specific IgH PCR and 

all four patients were in molecular remission. A recent study showed that molecular 

remission after SCT predicts a better relapse-free survival, although relapses after 

many years can occur.9

There is a strong association between graft-versus-myeloma reactivity and GVHD. 

The strongest predictors for response to DLI (therapeutic) in relapsed MM patients 

are the occurrence of aCVHD and cGVHD after DLI.1:1° In reduced intensity SCT, 

patients with cGVHD have a significantly longer median event-free survival than 

patients without cGVHD .11 In one multicentered study, patients with cGVHD had 

a more than two times less probability of relapse.12 It is striking that in our study no 

CCRs were reached among patients with GVHD after SCT and who did not receive 
pDLI for this reason. The mechanism behind this observation is unknown; however, 

we made a similar observation in other hematological malignancies.3 

The most serious toxicity of DLI is GVHD. Because two patients developed 

aGVHD grade IV after pDLI, the pre-emptive T cell dose was decreased from 0.1 

x 10s CD3+ cells/kg to 0.05 x 10s CD3+ cells /kg. Four patients received the low 

dose pDLI, and none of these patients developed GVHD more than grade I. A 

comparable strategy is to start with low-dose DLI, followed by dose escalation if the 

patient does not reach CR. Peggs et al. studied the application of dose-escalated DLI 

following reduced intensity SCT in patients with lymphoid malignancies.13 However, 

separation of graft-versus-malignancy from GVHD was achieved in only a minority 

of the patients. Another approach to reduce the incidence of GVHD after DLI is the 

transfer of CD8-depleted donor lymphocytes. In a recent study from Meyer et al,

11 patients with high-risk hematological malignancies received a total of 21 CD8-
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depleted pDLIs. Two patients with HLA-C mismatched donors developed grade II 

and III aGVHD followed by limited cGVHD .14 These prophylactic CD8 depleted 

DLIs accelerate immune reconstitution; however, the effect on disease relapse rate 

has to be studied. Combination therapy of low-dose thalidomide and DLI for MM is 

described by Kroger et al.15 In this study, patients with progressive or residual disease 

after allogeneic SCT receive low dose DLI (0.05 x 10SCD3+ cells/kg for patients with 

related donors) in combination with low dose thalidomide. Two patients developed 

aGVHD grade I of the skin and also two patients developed de novo cGVHD.

Only 54% of the patients were able to receive pDLI. This is comparable with the 

study of Alyea et al.16 In their study of T cell depleted (CD6 depleted) allogeneic SCT 

followed by CD4+ DLI, 58% of the patients actually received DLL The other patients 

did not receive DLI because of SCT-related complications or early relapse. In our 

study, patients actually receiving pDLI are the patients who had no complications 

from the SCT or rapidly progressive disease. Since pDLI was given relatively late (at 

a median of 7.5 months after SCT) the conclusion on the favorable effect of pDLI 

is skewed towards good prognosis patients. However, analysis of progression free 

survival and overall survival were made on intention-to-treat basis.

Despite the favorable outcome in patients receiving pDLI, TRM was high (29%). TRM 

in allogeneic SCT for MM prepared with myeloablative conditioning varies from 17% 

to 38%.17;1S Nonmyeloablative SCT significantly reduced TRM, even in patients with 

advanced age and comorbidity.19 However, in the setting of nonmyeloablative SCT 

with unmanipulated grafts, the incidence of cGVHD is high. The optimal procedure 
of performing allogeneic SCT in MM is still unknown.

An important question remains the place of upfront allogeneic SCT in patients with 

newly diagnosed MM, and which patients may benefit most. Results of a prospective 

multicenter trial comparing tandem autologous SCT and tandem autologous- 

allogeneic SCT were published recently.20 Patients with newly diagnosed MM and 

with two adverse prognostic factors were included. After four courses of VAD, these 

patients received high dose melphalan followed by autologous SCT. Then, depending 

on the availability of an HLA-identical sibling, these patients received either a RIC- 

allogeneic SCT or a second autologous SCT. There was no significant difference in EFS 

and OS between these two strategies. On the other hand, a recent prospective study 

of Bruno at al. showed a superior outcome for the tandem autologous-allogeneic 

approach compared with tandem autologous transplant.21

On the basis of the data in our study and the reduction in TRM after reduced
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conditioning, we are performing a pilot study in which patients receive an autologous 

SCT followed within 6 months by a partially T cell-depleted allogeneic SCT after 

reduced intensity conditioning with fludarabine (120 mg/m2) and cyclophosphamide 

(4800 mg/m2). From January 2006, 13 patients were transplanted according this 

regimen and all 13 patients engrafted. Currently, these patients receive low dose DLI 

after discontinuation of immunosuppressive therapy. Low dose DLI, with escalation, 

is given to patients not in CR (measured with PCR in the absence of M-protein) and 

in the absence of GVHD.

Further studies are needed for better immunomodulatory therapies after partially 

T cell-depleted allogeneic SCT for patients with MM. With reduced intensity 

conditioning regimens, the TRM after allogeneic SCT is significantly reduced; 

however, effectively boosting graft-versus-myeloma-reactivity without GVHD as 

side effect remains a dilemma in allogeneic SCT for MM.
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Abstract

Allogeneic stem cell transplantation (SCT) in multiple myeloma (MM) may induce 

a curative graft-versus-myeloma (GVM) effect. Major drawback in unmanipulated 

reduced intensity conditioning (RIC) SCT is the risk of severe and longstanding 

graft-versus-host-disease (GVHD). This study demonstrates that transplantation 

with a partial T cell-depleted graft creates a platform for boosting GVM immunity 

by pre-emptive donor lymphocyte infusion (DLI) and recipient dendritic cell (DC) 

vaccination, with limited GVHD. All twenty MM patients engrafted successfully. 

Chimerism analysis in 19 patients evaluable at three months revealed that 7 patients 

were complete donor, while 12 patients were mixed chimeric. Grade II acute GVHD 

occurred in 7 patients (35%) and only 4 patients (21%) developed chronic GVHD. 

Fourteen patients received posttransplantation immunotherapy, 8 pre-emptive DLI, 

5 patients both DLI and DC-vaccination and 1 patient DC-vaccination only. DC- 

vaccination was associated with limited toxicity and none of these patients developed 

GVHD. Importantly, overall treatment-related mortality at one year was low (10%). 

Moreover, the overall survival (OS) is 84% with median follow-up of 27 months, 

and none of the patients died from progressive disease. These findings illustrate that 

this novel approach is associated with limited GVHD and mortality, thus creating an 

ideal platform for adjuvant immunotherapy.
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Introduction

Allogeneic stem cell transplantation (SCT) may cure patients with multiple myeloma 

(MM) because of a graft-versus-myeloma (GVM) effect. Myeloablative (MA) 

conditioning has been limited by a high treatment-related mortality (TRM), and at 
present, reduced-intensity conditioning SCT (RIC-SCT) following autologous SCT 

seems a promising approach. Importantly, TRM following RIC-SCT is reduced from 

30 to 40% to 10 to 20%.' However, three prospective trials comparing autologous 

transplantation followed by RIC-SCT versus double autologous SCT showed 

contradictory results in clinical outcome.2"1 The study by Bruno et al.2 showed a 

superior overall survival (OS) for autologous SCT followed by allogeneic RIC-SCT. 

In line with this study, Rosinol et al.4 observed a trend towards a longer progression- 

free survival (PFS) for patients treated with auto/RIC-SCT, but no significant 

differences in event free survival (EFS) and OS. In contrast, the Intergroupe 

Francophone du Myelome (IFM) observed no differences in EFS and OS comparing 

double autologous SCT versus auto/RIC-SCT in high risk patients. Although these 

differences in outcome may be explained by different inclusion criteria and treatment 

schedules, they illustrate that improvement of the GVM effect, without the toxicity 

and morbidity of graft-versus-host disease (GVHD) after allogeneic RIC-SCT, is a 

prerequisite to further establish this therapeutic approach.

Previously, we showed that partial T cell-depleted allogeneic SCT followed by pre­

emptive donor lymphocyte infusion (DLI) resulted in long-term complete remission 

(CR) in about one third of MM patients.5 In this cohort of 24 patients, 1-year TRM 

after MA conditioning was 29%. But a continuous CR in seven MM patients after 

pre-emptive DLI with a median follow-up of 8.6 years encouraged us to investigate 

partial T cell-depleted allogeneic SCT in the RIC setting, combined with pre-emptive 

immunotherapy with DLL The major advantage of T cell-depleted grafts is reduction 

of severe and prolonged GVHD, but effective posttransplantation immunotherapy is 

essential to overcome the higher rate of relapse. As a novel approach we incorporated 

recipient-derived dendritic cell (DC) vaccination in the posttransplantation strategy 

for patients with residual disease after two pre-emptive DLI dosages.

DC are the professional antigen-presenting cells (APCs) of the immune system, 

and are essential for the induction of antigen-specific T cell immunity. In the 

setting of allogeneic SCT and DLI, alloreactive T cell responses targeting minor 

histocompatibility antigens (MiHA) on malignant cells of the recipient can be induced 

directly by recipient-derived DC and indirectly by donor-derived DC because of
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cross-presentation .6 Boosting GVM immunity by vaccination with donor-derived 

DC loaded with hematopoiesis-restricted MiHA seems most ideal, but this approach 

is hampered by the limited number of known MM-expressed MiHA. Studies in 

mouse models demonstrated that recipient DC play a pivotal role in the initiation 

of alloreactive CD8+ T cell-mediated immunity against leukemia.7;S Moreover, the 

presence of recipient DC in the setting of mixed chimerism has a positive impact on 

the effectiveness of DLL9 Because recipient DC and myeloma tumor cells are both 

derived from the hematopoietic system, immune responses induced by recipient- 

derived DC may enhance GVM with limited GVHD in other tissues, like mucosa, 

liver, and skin.

Here, we show the results of partial T cell-depleted RIC-SCT after autologous 

transplant for MM, with limited GVHD and a low 1-year TRM of 10%. Furthermore, 

we investigated the feasibility of generating mature recipient-derived DC from 

cryopreserved apheresis products, the immunogenicity of the vaccine, and the toxicity 

of recipient-derived DC-vaccination. Our study indicates that partial T cell-depleted 

RIC-SCT is feasible, results in excellent engraftment, and offers opportunities for 

posttransplantation cellular immunotherapy with DLI in some patients combined 

with DC vaccination. Importantly, our approach keeps open the treatment with novel 

agents (bortezomib and lenalidomide) in case of progressive or relapsed disease even 

in combination with DLL

Materials and Methods

Transplantation procedure

From January 2006 to May 2008, 20 patients have been included in a pilot study of 

partial T cell-depleted, allogeneic RIC-SCT for MM. All patients were pre-treated for 

symptomatic MM with induction chemotherapy and high-dose melphalan (HDM) 

followed by autologous SCT (conform HOVON-50 or HOVON-65 studies or standard 

induction scheme at that time).10 Patients <65 years with an HLA-identical sibling 

donor were offered upfront allogeneic RIC-SCT within 6 months after autologous 

transplant, regardless of risk factors or disease status. Before RIC-SCT, autologous 

PBMC were collected by apheresis, washed to deplete platelets, and cryopreserved 

for posttransplant DC vaccination (Figure 1). The conditioning regimen consisted of 

cyclophosphamide (Cy) 1200 mg/m 2 intravenously in combination with fludarabine 

(Flu) 30 mg/m 2 on each of four consecutive days (days -5, -4, -3, -2 before SCT).
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HDM followed by autologous SCT 

Aphaeresis and cryopreservation PBMC

Allogeneic RIC-SCT (within 6 months after ASCT) 

Fludarabine and cyclophosphamide, days -5,-4,-3 and -2 

T cell-depleted graft (0.5 x 106 T cells/kg) 

Cyclosporine-A during 12 weeks

No GVHD > gr II or cGVHD and 

>4 weeks without immunosuppression

DLI-1:1.0 x 10« T cells/kg

DLI-2:5.0 x1 06 T cells/kg

Vaccination with recipient DC, 1 cycle of 3 vaccinations

VaccinationwithrecipientDC + DLI-3:5.0x 106T cells/kg

In case of progression: 

Bortezomib and DLI 

Lenalidomide and DLI

Figure 1: Flow-chart of the tandem  autologous SCT followed by RIC-SCT and posttransplantation 

ce llu la r immunotherapy.

Donor stem cell grafts were depleted from T and B cells by anti-CD3 and anti-CD 19 

immunomagnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). Following 

depletion, CD3+ T cells were added back to generate a stem cell graft containing a 

fixed number of 0.5 x 106 T cells/kg body weight of recipient. GVHD prophylaxis 

consisted of Cyclosporine A (CsA) 3 mg/kg/day intravenously starting on day -1 

until CsA could be taken orally. CsA was administered orally at a dose of 6 mg/ 

kg/day until 8-10 weeks after SCT followed by a gradually tapering off in 4 weeks. 

Acute and chronic GVHD (aGVHD, cGVHD) were classified grade I-IV and limited 

or extensive, respectively, according to the criteria described by Glucksberg 11 and 

Shulman.12
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Evaluation of response and chimerism analysis

Responses were evaluated according to the response criteria for MM described 

by Durie et al. in 2006.13 Bone marrow (BM) aspirates during posttransplantation 

immunotherapy were performed in patients receiving DC vaccination. Lambda free 

light chains were measured using the serum free light chain (FLC) assay (Freelite, 

Birmingham, UK). For measuring kappa free light chains, we used the ELISA assay, 

as described by Lamers et al.14 This ELISA was shown to parallel FLC kappa assay, 

with lower absolute values. To define CR, the FLC ratio was measured with the 

Freelite assay for both lambda and kappa free light chains. The data were analyzed in 

December 2008.

Molecular remission was defined as a negative patient-specific IgH-polymerase chain 

reaction (PCR).15 The sensitivity of the PCR is lx lO 5. The patient-specific IgH-PCR 

did not play a role in the decision on the treatment schedule, because molecular 

analysis of disease load in BM was performed retrospectively.

Real-time quantitative PCR of single nucleotide polymorphisms (SNP) and/or the 

SMCY gene was used for chimerism analysis as described previously.1618 Briefly, 

recipient/donor pairs were screened for discriminating SNPs. Quantification was 

based on real-time PCR with allele-specific primers for DNA-sequences containing 

the discriminating SNP and target DNA-specific probes.

Posttransplantation immunotherapy: treatment schedule

Patients without aGVHD grade >11 and without cGVHD after RIC-SCT, were 

candidates for pre-emptive DLI4 weeks after discontinuation of immunosuppression. 

The first DLI-dose consisted of l.OxlO6 T cells/kg body weight and the second dose 

two months later of 5.0 xlO6 T cells/kg body weight (Figure 1). Patients with residual 

disease after two DLIs were eligible for recipient-derived DC vaccination. Exclusion 

criteria for vaccination were progressive disease (PD), extensive or uncontrolled 

GVHD, recent use of immunosuppressive drugs, and active infections. Vaccinations 

were administered three times at 2-week intervals. The DC dose was maximal 30 

xlO6 cells intravenously (i.v.) as a bolus injection and 15xl06 DCs intradermally (i.d.) 

in the upper leg near the inguinal lymph node region. If the yield of mature DC 

was too low, then only i.v. vaccination was given. Blood samples were taken from 

these patients before vaccination, on day 14 (after first vaccination), on day 28 (after 

second vaccination), on day 42 (after third vaccination) and on day 56 (28 days after 

the third vaccination). If no GVHD was induced, residual disease persisted and
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sufficient DC were cryopreserved, a second series of vaccinations was started using 
the combination of DC vaccination with DLI 5.0x106T cells/kg body weight.

The study was approved by the Local Ethics Committee of Radboud University 

Nijmegen Medical Centre.

Posttransplantation immunotherapy: generation of DC vaccine

DC vaccines were generated under good manufacturing practice conditions in a 

clean room facility. Before the conditioning for RIC-SCT, patient peripheral blood 

mononuclear cells (PBMCs) were collected by leukapheresis of 9 liters of blood 

using the Cobe Spectra aphaeresis system (Gambro BCT, Breda, The Netherlands). 
PBMC were washed with CliniMACS buffer containing 5% human serum albumin 

(HSA) to deplete from platelets, cryopreserved in HSA plus 10% DMSO and 

stored in liquid nitrogen until use. For culturing DC, PBMC were rapidly thawed 

at 37°C and resuspended in CliniMACS buffer containing 100 U/ml Pulmozyme 

(Roche, Woerden, The Netherlands), 3 mM MgCl2 and 5% HSA. After a 30-minute 

incubation, PBMC were centrifugated, washed, and resuspended in XVIVO-15 

medium (Cambrex Bio Sciences, Verviers, Belgium) plus 2% heat-inactivated virus- 

free hum an serum (HS). Monocytes were isolated by plastic adherence and cultured 
in XVIVO-15/2% HS supplemented with 800 U/ml GM-CSF and 500 U/ml IL-4 

(CellGenix, Freiburg, Germany). Cells were harvested at day 3, counted and cultured 

at 0.5x106 cells/ml in 6-well plates in XVIVO-15/2% HS containing GM-CSF (800 

U/ml), IL-4 (500 U/ml) and 50 |ig/ml keyhole limpet hemocyanin (KLH) subunits 

(Biosyn Arzneimittel GmbH, Fellbach, Germany). Two days before harvesting, KLH- 

loaded DC were maturated in XVIVO-15/2% HS containing GM-CSF (800 U/ml), 

IL-4 (500 U/ml), IL-1 (3 (5 ng/ml), IL-6 (15 ng/ml), TNF-a (20 ng/ml) (all CellGenix 

Freiburg, Germany) and prostaglandin E2 (PGE2; Pharmacia & Upjohn, Puurs, 

Belgium, 1 |jg/ml). Mature DC were harvested at day 9 and tested for microbial and 

phenotypic analysis. One third of the cells were used for immediate injection and 

remaining cells were cryopreserved for subsequent vaccinations.

Immunologic monitoring

T cell responses against KLH were measured using the 3H-thymidine incorporation 

assay with PBMC of the patient before and after vaccination. Briefly, PBMC were 

restimulated in vitro with 50 |ig/ml KLH subunits or 1 |ig/ml PHA plus 100 U/ml 

IL-2 (i.e. positive control). At day 7 of incubation, T cell proliferation was determined
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by 3H-thymidine incorporation. The stimulation index was calculated as the counts 

ratio between stimulated and nonstimulated PBMC. Antibodies against KLH were 

measured in the serum of vaccinated patients by ELISA as described by De Vries et 

al.19 A positive signal at a 400x dilution of the patient’s serum was considered positive. 

Alloreactive CD8+ T cell responses against recipient MiHA were determined by 

major histocompatibility complex (MHC) tetramer staining. Therefore, patients 

and donors were first genotyped for known MiHA-mismatches using allele-specific 

PCR assays as described previously.20;21 In case of MiHA mismatches, PBMCs were 

incubated with the appropriate phycoerythrin (PE)-labeled MHC tetramer complex 

for 20 minutes at room temperature. After washing with PBS/0.5% BSA, cells were 

labeled with the appropriate concentration anti-CD8-FITC (Prolmmune, Oxford, 

UK), anti-CD3-PECy7 and anti-CD45-ECD (Beckman Coulter, Fullerton, California) 

for 15 minutes at 4°C. After washing, cells were resuspended in PBS/0.5%BSA and 

7-amino-actinomycin D (7AAD; Sigma, St Louis, MO, USA) was added. Cells were 

analyzed using the Coulter FC500 flow cytometer (Beckman Coulter).

Results

Patient characteristics

Twenty MM patients received upfront allogeneic RIC-SCT after autologous SCT 

between January 2006 and May 2008 (Table 1). Median age of these patients was 

57 years (range: 39-64 years) at the time of RIC-SCT and of these 20 patients 11 

were male and 9 were female. Disease status following autologous SCT was complete 

response (CR) in seven patients (35%), very good partial response (VGPR) in two 

(10%), partial response (PR) in eight (40%), stable disease (SD) in two (10%) and 

progressive disease in one patient (5%). These results are comparable to the outcome 

after autologous SCT in other studies.4

RIC-SCT with partial T cell-depleted grafts resulted in successful engraftment with 

limited GVHD

All 20 patients received PB stem cell (PBSC) grafts from HLA-identical sibling 

donors. Median number of infused CD34+ cells was 8.3 xlO6 per kg body weight of 

the recipient (range: 4.3-12.8 xlO6). Median number of infused CD3+ T cells was 0.50 

x 106 per kg (range: 0.31 -0.77x106). Furthermore, median number of infused B cells 

was 0.22xl06 per kg (range: 0.05-0.75xl06) and median number of infused NK cells
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was 34.5 x 106 per kg (range: 7.9-97. lx l0 6). After RIC-SCT, median time to reach 

leukocyte counts >1.0xl09/l and platelet counts >20xl09/l was 13 days (range: 10-20 

days) and 9 days (range: 0-11 days), respectively In 3 patients platelet counts did not 

decline to below 20x 109/l.

Table 1: C haracteristics of MM patients

Characteristic number

Number of patients 20

Median age at transplantation , years (range) 57 (39-64)

Sex, no (%) 

Male 

Female

11 (55%) 

9 (45%)

Immunoglobulin class (% )

IgG 11 (55%)

IgA 3 (15%)

Light chain 6 (30%)

Cytogenetics 17

Karyotypic anal ysis

Normal 11

Deletion of chromosome 13

Hyperdiploid/complex

Interphase FISH

Deletion of chromosome 13

Beta2 -microglobulin

<3.5 mg/L

>3.5 mg/L and <5.5 mg/L

>5.5 mg/L

Not done 11

Induction chemotherapy

VAD

TAD

PAD

16

VAD indicates v incris tine , doxorub ic in, dexamethasone; TAD, tha lidom ide , doxorub icin, dexamethasone; 

PAD, Bortezom ib, doxorub ic in, dexamethasone; FISH, Fluorescent in s itu  hybrid ization; MM, m u ltip le  

myeloma.

*De le tion of chromosome 13 by metaphase cytogenetics
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Nineteen patients could be evaluated for PB cell chimerism at 3 months after 

RIC-SCT, and one patient died 2.2 months after RIC-SCT. All 19 patients showed 

successful donor engraftment and there was no secondary graft failure. At three 

months, seven patients were complete donor chimeric and 12 patients were mixed 

chimeric. In these 12 mixed chimeric patients, the median value of autologous PB 

cells was 7% (range: 2-27%). Two patients converted to complete donor chimerism 

after discontinuation of CsA at 5 and 6 months after RIC-SCT, respectively At the 

last follow-up, 16 of the 19 patients were complete donor chimeric, and 3 patients 

were still mixed chimeric. These 3 patients included one patient in which the donor 

was unavailable for donating lymphocytes and 2 patients treated with pre-emptive 

DLI shortly before or after the last follow-up.

Importantly, none of the patients developed grade III or IV aGVHD. Grade II 

aGVHD occurred in 7 out of 20 (35%) patients. Nineteen patients were evaluable for 

cGVHD, of whom only four (21%) developed cGVHD. The median duration of CsA 

treatment was 99 days (range: 58-230 days). In 9 patients, CsA could be discontinued 

within 100 days. Three patients with cGVHD received CsA for more than 5 months.

Clinical response after partial T cell-depleted RIC-SCT and pre-emptive DLI 

Nineteen patients could be evaluated for clinical response at three months after 

RIC-SCT. Eight patients (42%) were in CR, one (5%) patient in VGPR, seven (37%) 

patients in PR and three patients had stable disease after the auto/RIC-SCT tandem- 

procedure.

Twelve of the 19 patients (63%) received pre-emptive DLI of 1.0 x 106 T cells/kg 

after RIC-SCT, and seven of these patients also received a second dose-escalated pre­

emptive DLI of 5.0 x 106 T cells/kg. Details of these twelve patients are shown in Table 

2. Only one of the 12 patients developed GVHD grade I after pre-emptive DLL 

Two patients (UPN2 and UPN17) reached CR after pre-emptive DLI in a dose of 5.Ox 

106 T cells/kg (Figure 2A  and 2B ). For patient UPN2, a patient-specific IgH-PCR was 

developed and this PCR became negative after pre-emptive DLI indicating molecular 

remission. Furthermore, three patients (UPN1, UPN3 and UPN7) converted to 

complete donor chimerism after posttransplantation immunotherapy with DLI, 6, 

22 and 25 months after SCT, respectively

Seven of the 19 patients did not receive pre-emptive DLI, because of GVHD (n=4), 

infections (n=2) and donor unavailability in 1 patient.

8 7
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Table 2: Disease status and chimerism in patients receiving pre-emptive DLI after RIC-SCT

UPN M-

protein

Disease status 3 

months after 

RIC-SCT*

Chimerism 3 

months after 

RIC-SCT

Pre-emptive 

DLI: T cells/kg 

body weight

Outcome after pre-emptive 

DLI (after second DLI)

1. IgG-K CR 2.1% recipient 

cells

1.0 x 106 CR, complete donor chimerism, 

Guillain-B arre syndrome, died 

13 months after SCT from 

pneumonia

2. IgG-K PR 5.2% recipient 

cells

1.0 x 106 and

5.0 x 106

CR, complete donor chimerism, 

DC-vaccination

3. Light 

chain X

PR 26.7% recipient 

cells

1.0 x 106 and

5.0 x 106

VGPR, 6.7% recipient cells, 

DC-vaccination

4. IgG-K PR Complete donor 1.0 x 106 and

5.0 x 106

PR, ongoing decline of M- 

protein

5. IgG-K SD Complete donor 1.0 x 106 and

5.0 x 106

SD, DC-vaccination

7. Light 

chain X

CR 14.0% recipient 

cells

1.0 x 106 and

5.0 x 106

CR, 12.8% recipient cells, DC- 

vaccination

8. IgG-K CR Complete donor No pre-emptive, but 

therapeutic DLI

VGPR after therapeutic DLI for 

relapse, DC-vaccination

10. IgA-K PR 8.6% recipient 

cells

No DLI,

donor not available

Not applicable, DC-vaccination

12 . IgA-K PR Complete donor 1.0 x 106 and

5.0 x 106

Relapse

13. IgG- X PR Complete donor 1.0 x 106 and

5.0 x 106

PR, DC vaccine did not fulfill 

quality criteria

14. IgG-K SD 9.5% recipient 

cells

1.0 x 106 Relapse, 1.8% recipient cells

15. Light 

chain X

CR 2 .2% recipient 

cells

1.0 x 106 Relapse, 1.1% recipient cells

17. IgG- X PR 6.9% recipient 

cells

5.0 x 106 CR, 1.0% recipient cells

19. Light 

chain k

CR 5.5% recipient 

cells

1.0 x 106 CR, second pre-emptive DLI is 

planned

CR indicates com plete  rem ission; VGPR, very good partia l response; PR, partia l response; SD, stab le 

disease; RIC-SCT, reduced-in tensity  cond ition ing-stem  cell transp lan ta tion; DLI, donor lym phocyte 

in fusion; DC, d e nd ritic  cell.

* Response 3 m onths a fter RIC-SCT.
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g  Clinical course Patient UPN2

k  Clinical course Patient UPN17

Follow up (W0«K3)

Figure 2: C lin ica l course of pa tien t UPN2 (a) and pa tient UPN17 (b). The Y-axis on the  le ft shows 

disease load as measured by serum free ligh t cha ins or M -protein, and is shown w ith  the  green line. The 

Y-axis on the  righ t shows the  percentage rec ip ien t cells in peripheral blood and is shown w ith  a purple 

line. Triangle in blue indicates autologous SCT, triang le  in red indicates RIC-SCT, triang le  in orange 

ind ica te  DLI and trip le -tria ng le  in blue ind ica te  1 cycle of DC vaccinations.

Generation of recipient-derived DC vaccines

Following pre-emptive DLI, DC vaccines were generated for six patients as part of 

posttransplantation immunotherapy. Therefore, the cryopreserved apheresis product 

collected just prior RIC-SCT was thawed and used to generate mature monocyte- 

derived DC of recipient origin. Preclinical investigations showed that mature DC 

could be generated from cryopreserved apheresis products of MM patients that 

efficiently stimulated allogeneic T cell proliferation in vitro (Figure 3). The yield of
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PBMC and CD 14+ monocytes post-cryopreservation for the six patients was 45% to 

90% and 25 to 57%, respectively (Figure 4A). DC culture from cryopreserved PBMC 

resulted in sufficient DC yield in four patients (i.e. 9-16% from CD14+ monocytes), 

but for two patients only a limited number of DC could be obtained (yield <5% 

from CD 14+ monocytes). The final vaccine contained >95% viable DCs (Figure 

4A). Furthermore, DC vaccines had a very mature phenotype with >85% expression 

of CD83 and the co-stimulatory molecules CD80, CD86 and CD40 (Figure 4B). 

Moreover, 58% to 95% of the DC in the vaccines expressed the lymph-node migration 

receptor CCR7. For 1 patient, we did not obtain good quality mature DC and this 

vaccine was not administered (data not shown). Because of the variability in the yield 

of DC from thawed PBMC, the number of administered DC varied. Four patients 

received at least one maximum dose, 1 patient received three vaccinations each with 

total 10 x 106 cells (i.v. and i.d.) and 1 patient received three i.v. vaccinations each 

with 4 x 106 cells (Table 3).

Surface molecules PBMC:DC ratio

Figure 3: a. P reclin ica l study of characte ris tics of m ature DC generated from  cryopreserved apheresis 

products from  4 MM patients. Apheresis was performed after autologous SCT. Cultured DC had a 

mature phenotype w ith  high expression of CD83, CD80 and CD86.

b. In v itro  s tim u la tion  capacity of m ature DC generated from  cryopreserved apheresis products. DC 

from  pa tien t 1&2 and pa tient 3 & 4  were tested w ith  responder cells from  d iffe ren t healthy donors.
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table 3: immune responses and toxicity after recipient DC vaccination

UPN Number o f vaccinated DC* DLIf Induration Fever GVHD Anti-KLH response

Vac I Vac II Vac III T cell5 Ab'

3. 30/15 30/15 29/13 no yes yes no +++

6.5/3.5 6.5/3.5 5/2.5 DLI

(5.0 x 106 /kg)

no no no

5. 4/0 4/0 3/0 no na* no no +++
'

7. 30/15 33/15 34/17 no yes yes no +++

10. 28/14 27/13 27/13 no yes yes no +++
'

2. 7/3 7/3 6.5/3.5 no yes yes no ++

8. 30/15 18/9 18/9 DLI

(10.0 x 106 /kg)

no no no +

DLI indicates donor lym phocyte infusion; MM, m u ltip le  myeloma; GVHD, graft-versus-host disease; 

DC, de nd ritic  cell.

*Cell numbers are given in 106, in travenously/intraderm ally.

tTwo patients received the  com bination of DLI and DC-vaccination. UPN3 received a second cycle 

of vaccinations in com bination w ith  DLI on the  day of vaccination I. UPN 8 relapsed after RIC-SCT, 

and responded to the rapeutic  DLI. Because of relapsed MM, th is  pa tien t received DC-vaccination in 

com bination w ith  DLI. DLI was co-in fused w ith  DC-vaccination II 

t  Local induration was not app licab le  to th is  patient.

§KLH -specific  pro life ra tion of PBMC after vaccination is depicted as s tim u la tion  index (SI): + SI 

>2 < 10; ++ S l> 1 0 < 1 0 0 ; +++ S l> 100

HKLH-specific an tibody tite rs  in serum after vaccination: - no Ab or < 1 :4 00 ; + Ab tite r > 1 :4 00 . 

Vaccination with recipient-derived DC vaccines after RIC-SCT

Six MM patients were vaccinated with recipient-derived DC (Table 2 and 3). The 

median time from RIC-SCT to DC vaccination was 11.6 (range: 8.1-24.4) months. 

Median interval from last DLI to DC vaccination was 4.2 (range: 3.5-4.9) months. 

Four patients were vaccinated after 2 pre-emptive DLIs. In one patient, the donor
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post-cryo post-ctyo

100

20

CD14 CD83 CD80 CD86 CCR7 CD40

Figure 4: a. C haracteristics o f DC vaccine from thawed apheresis products. Post-cryopreservation, the 

y ie ld o f PBMC varied from 45 %  to 90 %  and yie ld o f C D 14+ monocytes varied from 25 %  to 57% . Yield 

o f m ature DC from CD 14+ cells was su ffic ie n t in 4  pa tients (9% -16% ), however less than 5%  in two 

patients. V iab ility  o f the  vaccination product was >90 %  for all adm inistered vaccines, 

b. DC vaccine phenotype. A ll adm inistered DC vaccines had a m ature phenotype w ith  high expression 

o f the  cell surface antigens CD83, CD80, CD86, and CCR7.

was no longer available for donating lymphocytes and she was treated with DC 

vaccination only as posttransplantation immunotherapy. The sixth patient was 

treated with DC vaccination following two therapeutic DLIs. None of these patients 

showed clinically active disease at the time of vaccination.

DC were loaded with the antigenic protein KLH as an adjuvant to provide CD4+ T 

cell help and for boosting of alloreactive CD8+ T cell responses as well as to analyze 

the induction of a primary immune response posttransplantation. All patients 

showed a PB T cell proliferative response against KLH that could already be detected
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Figure 5: a. KLH specific  T cell p ro life ra tion indica ted as s tim u la tion  index.

b. Regulatory T cells (CD25 brigh t+  cells w ith in  the CD3+CD4+ population) before and a fte r each DC 

vaccination in five pa tients treated w ith  DC vaccination.

after one single DC-vaccination (Table 3 and Figure 5). However, the anti-KLH T 

cell proliferative response in some patients decreased following subsequent DC- 

vaccinations (Figure 5A). Furthermore, antibody responses against KLH could not 

be detected (Table 3).

Five patients were evaluated for T cell recovery at the time of D C administration ( Table 

4). Median CD3+ T cell count was 0.7 x l0 9/L, median CD4 T cell count 0.3 x l0 9/L 

and median CD8+ T cell count was 0.4 x l0 9/L indicating a not completely recovered 

immune system, especially from the CD4+ T cells at the time of vaccination. Natural 

Killer (NK) cells were recovered to normal in four of the five patients with a median 

of 0.2 x l0 9/L CD3-CD16/56+ NK cells. CD4/CD8 ratios were still inversed in three 

of the five patients. Although CD4+ and CD 8+ T cell counts were not completely 

recovered to normal levels, all five patients showed a strong in vitro polyclonal T cell 

proliferative response upon stimulation with PHA and IL-2 (Table 4).

Impact of DC-vaccination on regulatory T cells has been studied before and after 

each DC vaccination. Regulatory T cells were studied as the percentage of CD25 

bright+ cells within the CD3+CD4+ population and are shown in figure 5B. There 

is no trend in increasing percentages of CD4+ CD25 bright+ cells in DC-vaccinated 

patients.
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Table 4 : T cell recovery at tim e  of DC vaccination

UPN Interval SCT- 

DC -vaccination 

(months)

CD3+

x l0 9/L

CD 3-CD16/56+

x109/L

CD19+

x 109/L

CD4+

x l0 9/L

CD 8+

x l0 9/L

PHA/IL2

response*

Normal

(5-95 percentile)

1.2 

(0.7-2.1)

0.3

(0.09-0.6)

0.2 

(0.1-0.5)

0.7 

(0.3-1.4)

0.4 

(0.3-1.4)

3. 11.8 0.7 0.23 0.2 0.4 0.3 +++

1.5 0.64 0.07 1.6 0.7

5. 11.3 0.8 0.2 0.0 0.2 0.5 ++++

7. 11.3 0.8 0.2 0.05 0.4 0.4 ++++

10 . 8.1 0.3 0.12 0.08 0.2 0.1 ++++

2. 14.4 0.7 0.06 0.22 0.2 0.6 ++++

DC indicates dend ritic  ce ll; SCT, stem cell transp lan ta tion.

*P H A /IL2  induced pro life ra tion of PBMC before vaccination is depicted as s tim u la tion  index (SI): + SI 

>2<  10; ++  S l> 1 0 < 1 0 0 ; +++  S l> 1 0 0 < 5 0 0 ; + + ++S I>5 00

Characterization ofT cell-responses

For all six patients who received DC vaccination, we performed genomic typing of 

twelve previously described MiHA. In two patients, a mismatch against a known 

MiHA was found with the immunogenic allele in the recipient. Patient UPN2 was 

mismatched for MiHA HY and patient UPN5 for HA-8. PB samples (before and after 

DLI as well as before and after DC vaccination) of patient UPN2 were analyzed with 

tetramers against HLA-A2 and HLA-B7 restricted epitopes in the male-specific SMCY 

protein. However, in these samples no SMCY-tetramer positive cells could be detected 

(data not shown). Samples of patients UPN5 (before DC-vaccination andafter each 

DC-vaccination) were analyzed with tetramers against the HLA-A2 restricted HA-8 

antigen. Also in this patient we found no HA-8 tetramer positive cells in peripheral 

blood samples (data not shown). Although we could not detect tetramer-positive T 

cells against known MiHA in DLI and DC-treated patients, this does not exclude the 

presence of MiHA-specific or tum or antigen-specific T cell responses in these patients.
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Clinical course patient UPN3

Follow up (weeks)

b Clinical course Patient UPN7

Follow ud (weeks)

Figure 6: C lin ica l course of pa tient UPN3 (a) and pa tient UPN7 (b). The Y-axis on the le ft shows 

disease load as measured by serum free ligh t cha ins or M -prote in, and is shown w ith the green line. The 

Y-axis on the right shows the percentage rec ip ien t cells in peripheral blood and is shown w ith  a purple 

line. Triangle in blue indica tes autologous SCT, triang le  in red indicates RIC-SCT, triang le  in orange 

ind ica te  DLI and trip le -tria ng le  in blue ind ica te  1 cycle of DC vaccinations.
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Recipient DC-vaccination did not induce severe toxicity and GVHD

Toxicity of recipient DC-vaccination was limited to flu-like symptoms with mild 

fever and local induration at the injection site (Table 3). Importantly, none of the 

six patients developed clinical signs of GVHD, but two patients developed discrete 

dermal changes with folliculitis and eosinophilia in PB.

At the time of the first DC-vaccination, three patients were complete donor chimeric 

and three patients had still mixed chimerism with 6.7%, 12.8% and 8.6% recipient 

cells respectively (Table 2). DC vaccination alone did not induce conversion to 

complete donor chimerism. Patient UPN3 converted to complete donor chimerism 

after a second cycle of vaccinations in combination with DLI (Figure 6A ). Patient 

UPN7 received a therapeutic DLI of 0.5 x 10s T cells/kg for increase of free light 

lambda chains, resulting in complete donor chimerism and GHVD gr II (Figure 6B).

Clinical outcome of DC-vaccination after RIC-SCT

Fourteen out of 20 patients were treated with posttransplantation immunotherapy 

(13 pre-emptive and 1 for relapse), including 8 patients with pre-emptive DLI alone,

5 patients received both DLI and DC vaccination and 1 patient DC vaccination only 

(Table 2).

DC vaccination in six patients did not result in induction of responses by itself. 

However, patient UPN3 showed a gradual decline of light chains after RIC-SCT 

during posttransplantation immunotherapy with DLI and DC-vaccinations (Figure 

6A ). Two years after RIC-SCT, light chains started rising again without clinical 

symptoms. An escalating dose of DLI was administered, but the serum free light 

chains continued to rise. Presently, this patient is treated with the combination of 

lenalidomide and DLL

Patient UPN7 showed a rise in FLC lambda eight months after completion of 

DC vaccination (Figure 6B). Although this rise did not fulfill the criteria for PD, 

immunotherapy was continued because in our experience rise of FLCs predicts 

clinical relapse. He was treated with therapeutic DLI (0.5 x 10s T cells/kg) and 

developed GVHD grade II in combination with stabilization of free light lambda 

chains. Patient UPN5 and UPN10 did not respond to DC-vaccination.

Patient UPN8 reached a VGPR after two therapeutic DLIs of 5.0 and 10.0 x 106 T cells/ 

kg for relapsed MM (Figure 7). Because of the relapse, DC-vaccination was combined 

with DLI in a dose of 10.0 x 106 T cells/kg. At the last follow-up immunofixation 

remains positive but the M-protein cannot be quantified.
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Clinical course Patient UPN8

F o llo w  up (w eeks)

Figure 7: C lin ica l course o f pa tient UPN8. The Y-axis on the le ft shows disease load as measured by 

serum free ligh t cha ins or M -prote ln, and Is shown w ith the green line. The Y-axis on the right shows 

the percentage rec ip ient cells In peripheral blood and Is shown w ith  a purple line. Triangle in blue 

indicates autologous SCT, triang le  In red indicates RIC-SCT, triang le  In orange indica te DLI and trip le - 

triang le  In blue Indicate 1 cycle o f DC vaccinations.

Overall and progression free survival after RIC-SCT

With a median follow-up for surviving patients of 27 months (range: 8.9-34.9 

months) the overall survival is 84% (Figure 8A ). TRM was 5% at 100 days, and 10% 

at 1 year. One patient died from sepsis and cardiac failure 2.2 months after RIC-SCT 

and one patient from pulmonary cCVHD 9 months after RIC-SCT One additional 

patient died in CR 13 months after RIC-SCT from the complications of pneumonia 

during recovery from a Guillain-Barre syndrome. None of the patients died from 

relapsed or progressive multiple myeloma.

At the last follow-up in December 2008, six patients were in CR, one patient reached 

a VGPR and two patients with PR were still receiving immunotherapy. Eight patients 

had started with systemic therapy (bortezomib, thalidomide, or lenalidomide) for 

PD after RIC-SCT (3 from stable disease, 2 from PR and 1 from VGPR) or relapse 

from CR (2 patients). The current PFS is shown in Figure 8B.
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a

months

b

Figure 8. a. Overall survival of 20  pa tients a fte r RIC-SCT w ith  a median fo llow -up of 27  months, 

b. Current progression-free survival of 20  patients a fte r RIC-SCT. Progression was noted when system ic 

therapy was started.

Discussion

Here, we report on the feasibility of fludarabine-cyclophosphamide RIC-SCT in 

combination with a partial T cell-depleted graft for MM patients following induction 

chemotherapy and autologous transplant with HDM. One-year TRM was reduced to 

10% in a cohort of 20 patients with a median follow-up of surviving patients of 27 

months. This TRM is in line with other studies using RIC-SCT for MM.W OS rate 

is comparable with other studies in patients undergoing autologous SCT followed 

by RIC-SCT. In our study OS was 84% at 2 years. In the ECOG-study the actuarial
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survival rate at 2 years was 78% and OS was 78% at 20 months in the study from 

Maloney et al.1;22 All patients showed donor engraftment and no late graft failures 

occurred. Im portantly aGVHD was limited to grade I and II, and could be managed 

with CsA and corticosteroids. The prevalence of cGVHD was 21%, including 1 

patient suffering from pulmonary disease, probably related to GVHD. The duration 

of immunosuppressive therapy with CsA was relatively short for a RIC-regimen with 

a median of 99 days, 3 patients were treated with CsA for more than 5 months due 

to cGVHD.

Pre-emptive DLI resulted in conversion from PR to CR in two patients. At the last 

follow-up, six of the seventeen evaluable patients were in CR and three of them have 

received pDLI. However, durability of these responses with a median follow-up of 

27 months has to be shown by a longer follow-up. DC-vaccination alone did not 

induce GVM-responses after RIC-SCT. However, this study was designed to analyze 

the feasibility, immunogenicity, and toxicity of recipient-derived DC-vaccination. 

Important questions concerning the optimal dose of DC, route of administration, 

and combination with DLI have not been studied yet in the setting of allogeneic SCT. 

Our data indicate that partial T cell-depleted RIC-SCT creates a platform for 

posttransplantation cellular immunotherapy with pre-emptive DLI and DC- 

vaccination, given the low incidence and severity of GVHD and the short duration 

of immunosuppressive therapy. DLI has proved to be effective in MM as pre-emptive 

immunotherapy, however the optimal dose and timing is not known .23 In this study, 

pre-emptive DLI started with a low dose of 1.0 x 106 T cell/kg four weeks after 

discontinuation of CsA followed by a second dose of 5.0 x 106 T cells/kg two months 

later. The lowest dose of 1.0 x 106 T cell/kg did not result in GVM reactivity, or in 

GVHD. Conversion of chimerism was observed in only 1 patient after this low-dose 

DLL The second dose of 5.0x 106 T cells/kg resulted in CR in two patients without 

GVHD. Therefore, we apply a starting DLI dose of 5.0 x 106 T cells/kg in the current 

protocols.

Repeated DLIs were only given if a patient did not reach CR. Importantly, most 

responses to DLI were seen after the first or second DLL Only one patient developed 

GVHD and decreasing FLCs after the third DLL Repeated DLIs were given to 

patients with relapsed MM after RIC-SCT who responded to systemic therapy with 

Bortezomib or Lenalidomide (data not shown). These repeated DLIs did not result 

in long term remissions. We consider most patients not responding to the first or 

second DLI resistant to DLL Prerequisites for the induction of a GVM effect by DLI
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are effective antigen presentation and co-stimulation in conjunction with sufficient 

inflammation. In this study, we have been focusing on the antigen presentation, and 

introduced DC vaccination as posttransplantation immunotherapy. Another strategy 

to further boost GVM immunity after DLI could be blockade of negative regulatory 

mechanisms. For example, strategies aimed at reducing regulatory T cells or blocking 

of the T cell inhibitory PD-1/PD-L1 pathway.

Although pre-emptive DLI is effective, other therapies are needed to further 

improve the GVM effect of RIC-SCT. Both regulatory T cells and host APCs have 

been implicated in GVHD and graft-versus-leukemia (GVL) reactivity after DLL 

The requirement of recipient APC for the induction of GVL has been clearly 

demonstrated by Mapara et al.9 Moreover, Xia et al.24 have shown that in long-term 

complete chimeras loss of DLI-induced GVL can be restored by infusion of host DC. 

In this study, we analyzed the feasibility of generating recipient-derived mature DC 

and the toxicity of vaccination with these DC.

To generate recipient-derived mature DC several months after allogeneic SCT, we 

used cryopreserved patient apheresis products obtained after autologous SCT and 

shortly before RIC-SCT. DC with a mature phenotype and sufficient CD80, CD83, 

CD86 and CCR7 expression could be generated from the cryopreserved PBMC from

6 out of 7 patients. The administered vaccine products all fulfilled the quality-criteria 

as described by Figdor et al.25 The generated DC of one patient did not have a mature 

phenotype. Comparative studies with immature and mature DC have demonstrated 

that only mature DC stimulate T cell in vivo and it has been shown that immature 

DC can silence immune responses.19 Therefore this not fully mature DC vaccine was 

not administered.

Induction of a primary immune response was measured by T cell responses against 

KLH. We showed that recipient-derived mature DCs loaded with KLH induce a 

potent primary T cell response after the first vaccination. However, the peripheral 

blood T cell proliferative response against KLH after the second and third DC 

injection decreased in most patients. DCs were not extra loaded with antigens 

because recipient-derived DCs are able to directly present recipient-specific MiHA 

to donor T cells. In this setting of using unloaded recipient-derived DC, we aimed at 

the induction of MiHA-specific donor T cell responses against known and unknown 

MiHA. Genotyping for known MiHA in the vaccinated recipients and their donors 

did identify MiHA-mismatches in some patients that could be involved in GVM and 

GVHD (data not shown). However, we were unable to detect antigen-specific T cells
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against known MiHA using tetramer staining. Currently, we are analyzing whether 

recipient-derived DC did boost or induce T cell responses against unknown MiHA 

by functional characterization of alloreactive T cell lines generated from vaccinated 

patients.

Toxicity of recipient-derived DC was limited to fever the evening after the second 

and third vaccination and local induration at the injection site. Such toxicity is 

known from other vaccination studies and is probably due to immune responses 

against KLH.26 None of the six patients developed GVHD after recipient-derived 

DC-vaccination, although two patients reported discrete skin changes.

This is the first study that applied recipient-derived DC vaccines after allogeneic SCT. 

One major limitation of recipient-derived DC vaccines after allogeneic SCT is the 

requisite to collect and to cryopreserve PBMC before SCT for generation of mature 

monocyte-derived DC several months later. Alternatively, donor DC loaded with 

recipient-specific MiHA may also induce alloreactive T cell responses after allogeneic 

SCT and the use of donor-derived DC for vaccination circumvents the obstacle of 

cryopreservation. To explore donor-derived DC vaccines for the induction ofMiHA- 

specific immune responses after SCT, a set of hematopoietic-restricted MiHA with 

expression on tum or cells must be available for loading of donor-derived DC. Until 

now, the number of identified hematopoietic-restricted MiHA with expression on 

MM tumor cells was limited, and therefore hampered the application of this strategy. 

However, the proof of principle may be explored clinically by using MiHA HA-1 and 

LRH-1, which have been shown to be functionally expressed by MM tumor cells.27;2S 

Vaccination with donor-derived DC, loaded with tumor lysate or tumor-associated 

antigens, after SCT has been published before in 3 reports. In the first report, DC 

were cultured from granulocyte colony-stimulating factor (G-CSF) mobilized PB 

stem cells from the donor.29 Donor-derived DC pulsed with irradiated tum or cells 

and primed T cells were injected in 4 patients with relapse after SCT. In the second 

report, DC cultured from PB cells from the donor and pulsed with tumor lysate were 

given to a patient transplanted for metastatic renal cell carcinoma.30 Vaccination with 

donor-derived DC appeared to be safe in this single patient but did not induce graft- 

versus-tumor reactivity. In the third report, a patient with relapsed acute myeloid 

leukemia (AML) after SCT was vaccinated with WT1 peptide and KLH-pulsed 

donor-derived DC .31 Immune responses were induced to the immunogenic antigen 

KLH, however T cell responses against WT1 were not detected and the relapsed 

leukemia did not respond.
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New options to salvage patients with relapse or PD after allogeneic SCT are 

thalidomide, bortezomib and lenalidomide. El-Cheikh et al.32 reported 37 patients 

treated with bortezomib as salvage treatment for relapse or progression following 

RIC-SCT. An objective disease response (including CR, VGPR and PR) was achieved 

in 27 patients (73%). Lenalidomide treatment for relapse MM was reported by 

M innema et al.33 Lenalidomide alone or in combination with dexamethasone 

resulted in a response rate of 87.5%. Importantly, some patients developed acute 

GVHD when lenalidomide was given as monotherapy within months after SCT or 

DLL These studies are performed in patients with relapsed or PD; however the role 

of new agents in combination with cell therapies for residual disease after RIC-SCT 

has not been explored yet.

In conclusion, partial T cell-depleted RIC-SCT has the advantage of a low one-year 

TRM of 10%, limited severe GVHD, and sustained GVM reactivity. This strategy 

opens the possibility for posttransplantation immunotherapy, alone or in combination 

with new agents. Due to the low incidence of acute and chronic GVHD, the quality 

of life in these patients remains good and consequently pre-emptive immunotherapy 

can be performed in a majority of patients.

Therefore, in the era of RIC-SCT for MM posttransplantation strategies have become 

more important than before. We show that vaccination with recipient-derived DC 

is feasible, safe, immunogenic and most importantly, does not induce GVHD. The 

potential of this approach to induce GVM reactivity is not yet fully exploited. Further 

studies on the coinfusion of donor lymphocytes with recipient-derived DC or MiHA- 

loaded donor-derived DC are needed.
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Abstract

This study analyzed the feasibility of partial T cell-depleted reduced intensity 
conditioning allogeneic stem cell transplantation (RIC-SCT) combined with pre­

emptive donor lymphocyte infusion (pDLI) for relapsed transformed non-Hodgkins 

lymphoma, follicular lymphoma, mantle cell lymphoma and chronic lymphocytic 

leukemia. In most patients, we applied a two-step approach with pretransplant host 

T cell-depletion followed by conditioning within three weeks. Twenty-nine patients 

were enrolled in this study and 27 received the scheduled RIC-SCT. Chimerism- 

analysis in 26 patients at three months revealed that thirteen patients were complete 

donor, while eleven were mixed chimeric. Two patients had complete autologous 

haematopoietic recovery; both received an unrelated donor transplant without 

additional host T cell-depletion before conditioning. Acute GVHD > II occurred in 

five patients (19%) and fifteen (64%) developed chronic GVHD which was extensive 

in three. Five patients received pDLI. Most complications were viral infections or 

EBV-associated lymphoproliferative disease. The non-relapse mortality at one-year 

and relapse rate are low (both 14%). W ith a median follow-up of 19 months, 2-years 

estimated overall survival and current lymphoma-free-survival are 83% and 74% 

respectively. This study indicates that partial T cell-depleted RIC-SCT combined 

with host T cell-depletion before start of conditioning results in good engraftment 

and high lymphoma-free-survival without invalidating GVHD.
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Introduction
Reduced intensity conditioning allogeneic stem cell transplantation (RIC-SCT) 

offers the opportunity for SCT in patients with comorbidities and in older patients. 

RIC-SCT induces durable engraftment with reduced toxicity but morbidity and late 

mortality related to graft-versus-host-disease (GVHD) is still considerable when 

undepleted grafts are utilized .1 In the myeloablative setting, the incidence of severe 

and longstanding GVHD can be reduced by removal of the T cells from the graft. 

However, T cell-depletion is associated with increased incidence of tum or relapse, 

post-transplant opportunistic infections and graft failure.

To reduce the incidence of tum or relapse after T cell-depleted SCT, the strategy of 

pre-emptive donor lymphocyte infusion (pDLI) for high-risk patients can be used .13 

Pre-emptive DLI in patients who had no significant GVHD after myelo-ablative 

partial T cell-depleted SCT has resulted in low relapse rates in patients at high risk 

for relapse.4 Also in animal models, it has been demonstrated that delayed T cell 

infusions after allogeneic SCT may maintain the antitumor efficacy of engrafted T 

cells with limited nonspecific alloreactivity.5

We applied the strategy of partial T cell-depleted SCT followed by pre-emptive 

DLI in the reduced intensity setting for patients with relapsed or progressive 

lymphoproliferative diseases. RIC-SCT often results in mixed chimerism and 

incidence of graft rejection is increased, particularly in patients who receive T cell- 

depleted allografts. Therefore we used a clinical protocol with an induction course to 

deplete host T cells prior to the administration of RIC as described by Bishop et al.6 

Here, we report the results of partial T cell-depleted RIC-SCT followed by pre-emptive 

DLI in patients with relapsed or progressive transformed non-Hodgkins lymphoma 

(NHL), indolent NHL and chronic lymphocytic leukemia (CLL). This study shows 

that partial T cell-depleted RIC-SCT is feasible, results in stable engraftment if host 

T cell-depletion is applied before the start of the conditioning regimen and offers 
opportunities for post-transplantation cellular immunotherapy with DLL

Methods
Patients

Between January 2003 and October 2008, 29 patients were enrolled in a study on 

partial T cell-depleted, allogeneic RIC-SCT followed by pre-emptive DLI for NHL 
and CLL. From January 2003 until January 2007, only patients with relapsed or
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progressive aggressive NHL (transformed or follicular NHL grade 3) and availability 
of an HLA-identical sibling donor were eligible for inclusion. From January 2007, 

inclusion criteria were extended to relapsed or progressive indolent lymphomas 

(follicular lymphoma grade 1 or 2 and lymphoplasmocytic lymphoma), relapsed 

mantle cell lymphoma after autologous transplant and progressive CLL/small 

lymphocytic lymphoma (SLL) and availability of an HLA-identical sibling or an 

HLA-compatible unrelated donor. All patients were required to have chemotherapy- 

sensitive disease. Before SCT, most patients were treated with fludarabine and 

cyclophosphamide to attain minimal residual disease. Further eligibility criteria 

included a WHO-performance score of 0-1, age 18-65 years and normal organ 

functions. Written informed consent was obtained from all patients. The study 

was reviewed and approved by the Local Ethics Committee of Radboud University 
Nijmegen Medical Center.

Conditioning regimen and GVHD-prophylaxis

All patients received partial T cell-depleted allogeneic RIC-SCT, with some 

modifications of the RIC-regimen. From January2003, RIC consisted of total lymphoid 

irradiation (TLI) on each of three consecutive days followed by cyclophosphamide 

50 mg/kg body weight intravenously on each of four consecutive days (total dose 

200 mg/kg bodyweight). TLI incorporated mantle field, inverted Y-fields including 

the spleen, the inguinal and femoral lymph node regions. A total dose of 12 Gy was 

delivered in 2 Gy fractions, twice a day, in an overall treatment time of three days. 

Four patients with NHL (two patients with transformed NHL and two patients with 

relapsed follicular NHL grade 3) received this conditioning regimen.

From January 2006, RIC for patients with an HLA-identical sibling donor consisted 

of induction chemotherapy with fludarabine and cyclophosphamide to deplete 

circulating host T-cells as described before by Bishop et al.6 If CD4+ count on day 17 

was <0.05 x 109/L, the conditioning regimen was started within three weeks (after day 

17). The conditioning consisted of cyclophosphamide 1200 mg/ m2 intravenously in 

combination with fludarabine 30 m g/m 2 on each of four consecutive days (days -5, 

-4, -3,-2 before SCT).

RIC for patients with an unrelated donor consisted of the same conditioning regimen 

with fludarabine, cyclophosphamide (days -8,-7,-6,-5) in combination with anti­

thymocyte globulin (ATG, Thymoglobulin, Genzyme, Europe) 2.0 mg/kg/day for 4 

consecutive days (days -4,-3,-2,-1) to reduce the risk of rejection. Our hypothesis was
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that in-vivo T cell-depletion by ATG would induce enough host T cell-depletion for 

engraftment. Because two patients with unrelated donors had a primary take failure 

with autologous repopulation, induction chemotherapy for host T cell-depletion was 

also incorporated in the conditioning strategy for patients with an unrelated donor. 

All allografts were depleted of T and B cells by anti-CD3 and anti-CD 19 

immunomagnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) or by CD34 

enrichment. After depletion or enrichment, T cells were added back to generate a graft 

with a fixed number of 0.5 x 106 T cells/kg body weight of recipient. For all patients 

GVHD-prophylaxis consisted of Cyclosporine a (CsA) 3 mg/kg/day intravenously 

starting on day -1 until CsA could be taken orally. CsA was administered orally at a dose 

of 6 mg/kg/day until 8-10 weeks after RIC-SCT followed by a gradually tapering off.

Pre-emptive DLI: treatment schedule

Patients without aGVHD grade >11 and without cGVHD after RIC-SCT, intended 

to receive pre-emptive DLI four weeks after discontinuation of immunosuppression. 

The first DLI-dose consisted of 1.0 x 106T cells/kg body weight. An escalated dose 

of 5.0 x 106 T cells/kg body weight was given two months later if there was persistent 

disease and no GVHD. Patients with a decrease of donor cells were treated with DLI 

with the goal to reach complete donor chimerism. Patients with relapse were eligible 

for therapeutic DLL The lymphocyte dose of therapeutic DLI depended on previous 

lymphocyte doses of DLI and previous GVHD, but in principle a lymphocyte dosage 

of 10 x 106/kg body weight was administered.

Evaluation of response, GVHD and chimerism

Responses were assessed using standard disease-specific criteria.7;S Acute and chronic 

GVHD were classified grade I -IV  and limited or extensive, respectively, according 

to the criteria described by Glucksberg et a l9 and by Shulman et al.10 

Chimerism analysis was performed on whole blood by real-time quantitative 

polymerase chain reaction (PCR) of polymorphisms as described previously.1144 

Briefly: recipient/donor pairs were screened for discriminating polymorphisms. 

Quantification of donor and recipient cells is based on real-time PCR with allele- 
specific primers for DNA-sequences containing the discriminating polymorphism 

and target DNA-specific probes.
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Supportive care and definition of infectious complications

Supportive care measures were the same in all patients. Anti-microbial prophylaxis 

consisted of 500 mg ciprofloxacin given twice daily and 500 mg valaciclovir given 

three times daily for two months. Fluconazole was given at a dose 200 mg/day orally 

only to those who were considered colonized by Candida albicans. No mould active 

antifungal prophylaxis was used. Patients received trimethoprim-sulphamethoxazole 
480 mg/day orally for three months, as prophylaxis against infections due to 

Pneumocystis jiroveci (PCP). In case of GVHD requiring immunosuppressive 

therapy, PCP prophylaxis was continued or restarted.

Early bloodstream infection (BSI) was defined as a BSI occurring in the first 30 days 

post SCT. A blood culture was considered positive if a microorganism was recovered 

from one or more bottles, with the exception of coagulase-negative staphylococci, 

for which two separate positive blood cultures with the same strain were required .15 

Invasive fungal disease (IFD) was defined according to the EORTC/MSG consensus 

statement.1647

Monitoring for Epstein-Barr virus (EBV) and Cytomegalovirus (CMV) load was 

performed by quantitative PCR twice weekly during hospitalization and weekly 

thereafter. CMV-infection (CMV-I) and CMV-disease (CMV-D) were defined 

according to current consensus.18 Patients with CMV-I received pre-emptive 

valganciclovir 900 mg bid. EBV-related lymphoproliferative disorder was defined 

according the W HO classification.19 The cut-off value of the DNA load defining EBV- 

reactivation was 1000 copies/mL.

Statistical Methods and definitions

Data were analyzed as of June 2009. The Kaplan-Meier method was performed to 

assess overall survival (OS) and current lymphoma-free-survival. OS was calculated 

from the date of stem cell infusion until death from any cause. One patient did not 

proceed after induction chemotherapy, the scheduled date of stem cell infusion was 

chosen for calculation of survival. Lymphoma free survival was calculated from 

transplantation until progression or death from any cause. Patients who achieved 

complete remission after therapeutic DLI for progression were included in current 

lymphoma free survival. All patients who started with chemotherapy for lymphocyte 

depletion were included in the analysis of overall survival and current lymphoma- 

free-survival. Engraftment, chimerism and GVHD were analyzed in 27 patients that 

actual received RIC-SCT.
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The risk score was calculated according the definitions of the European Group for 

Blood and Marrow Transplantation .20;21

Table 1: Patient characteristics

Characteristic
No of patients 29
Median age, y (range) 50 (37-65)
Sex, no (%)
Male 19(66)
Female 10 (34)

Histology
Aggressive lymphoma:

Transformed NHL 9
Follicular lymphoma grade 3 5
Mantle cell lymphoma 1

Indolent lymphoma:
Follicular lymphoma grade 1 and 2 5
Lymphoplasmocytic lymphoma 1

CLL/SLL 8
Prior no of chemotherapy regimens , median (range) 2 (1-6)

Prior Rituximab-chemotherapy combinations 22
Prior ProMaceCytaBom 8
Prior fludarabine/cyclophosphamide 16
Prior autologous transplant 2

Disease state at start of induction chemotherapy
Complete remission 9
Partial remission 18
Progressive disease/not evaluated 1/1

Donor characteristics, stem cell source and RIC -regimen
(n=27)

Sibling, HLA-identical (PBSC/marrow) 20 (18/2)
TLI/Cyclophosphamide 4
Induction and conditioning with Flu/Cy 16

Unrelated (PBSC/marrow) 7(6/1)
Flu/Cy/ATG 5
Induction Flu/Cy and conditioning with Flu/Cy/ATG 2

NHL indicates non-H odgkin ’s lymphoma; CLL/SLL indicates chron ic lym phocytic leukaem ia/ 

sm all lym phocytic lymphoma; ProMaceCytaBom indicates com bination chem otherapy w ith 

cyclophospham ide, adriam ycin , etoposide, prednisone, cytarabine, v incris tine , bleomycin and 

m ethotrexate; PBSC indicates peripheral blood stem cells; TLI indicates to ta l lymph node irradiation; 

Flu indicates fludarab ine; Cy indicates cyclophospham ide and ATG indicates anti thym ocyte g lobu lin .
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Results

Patient characteristics

Between January 2003 and October 2008, twenty-nine patients were enrolled in this 

study. Median age of these patients was 50 years (range, 37-65 years) at the time of 

SCT. Six patients were treated for relapsed indolent lymphoma (including follicular 

lymphoma grade 1 and 2 , and lymphoplasmocytic lymphoma), eight patients were 

transplanted for progressive CLL / SLL and 15 patients for aggressive lymphoma 

(including follicular lymphoma grade 3 (n=5), transformed lymphoma (n=9) and 

relapsed mantle cell lymphoma (n=l)). Transformation from indolent lymphoma 

(follicular or marginal zone) to diffuse large B cell lymphoma had occurred in 8 

patients and from follicular to blastoid lymphoma in 1 patient. Details on patients 

and disease characteristics are summarized in table 1.

The EBMT risk score was calculated for each patient and is shown in table 2.

Table 2: EBMT risk score

Risk Category
Age classes, y, no (%)

<20 0
20-40 4 (14%)
>40 25 (86%)

Disease stage, no (%)
Early 0
Intermediate 8 (28%)
Advanced 21 (72%)

Time interval, months, no. (%)
<12 0
>12 29 (100%)

Histocompatibility, no. (%)
HLA -identical sibling 22 (76%)
Unrelated donor 7 (24%)

Sex combination, no. (%)
Other 22 (76%)
Recipient male, donor female 7 (24%)

Risk score, no. (%)
0-3 0
4 9 (31%)
5 11 (38%)
6 7 (24%)
7 2 (7%)

1 1 5



Reduced intensity conditioning allogeneic SCTfor lymphoma

Pretransplant lymphocyte depletion by fludarabine and cyclophosphamide

Twenty patients received induction chemotherapy with the intention to deplete 

CD4+ counts to a level of <0.05 x 109/L (Figure 1). In seventeen patients the target 

level of CD4+ depletion was reached after one cycle of chemotherapy. Three patients 

did not reach the target level of CD4+ cells. Two patients received a second cycle of 

induction chemotherapy and proceeded to RIC-SCT. The third patient who did not 

reach the target level of CD4 developed an EBV-driven Richter s transformation of his 

B-CLL after the first course of induction chemotherapy. Treatment with Rituximab 

induced a complete remission and the patient received a conventional myeloablative 

allogeneic SCT (MAC-SCT).

Figure 1: Flow-diagram showing the condition ing regimen, ch im erism  evaluation and outcome of all 29 

patients enrolled in th is  study, one patient recieved myeloablative SCT (MAC-SCT) because of progression.
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Median time between start of the induction chemotherapy and infusion of allogeneic 

stem cells was 33 days (range, 16-39 days) for patients receiving one induction course. 

For two patients receiving two induction courses, time between first induction course 

and infusion of the stem cells was 68 and 75 days, respectively.

Nine patients did not receive pretransplant lymphocyte depletion by induction- 

chemotherapy; including five patients with an unrelated donor receiving ATG and 

four patients treated with TLI and cyclophosphamide as conditioning regimen. 

Median numbers of CD3+, CD4+ and CD8+ cells before start of the conditioning 

regimen in both groups, with and without pretransplant lymphocyte depletion, are 

shown in table 3.

Table 3: Median host T cell counts before start of cond ition ing  regimen

CD3+
xl09/L

CD4+
xl09/L

CD8+
xl09/L

CD4+/ 
CD8+ ratio

Normal
(5 - 95 percentile)

1.2
(0.7-2.1)

0.7
(0.3-1.4)

0.4
(0.3-1.4)

After treatment with induction 
chemotherapy to deplete host T 
cells (n=20)

0.06
(range,
0.00-2.12)

0.02
(range,
0.00-0.34)

0.04
(range,
0.00-1.68)

0.5

W ithout induction chemotherapy, 
in heavily pre-treated patients with 
NHL or CLL (n=8)

0.64
(range,
0.11-1.73)

0.27
(range,
0.04-0.53)

0.27
(range,
0.06-0.53)

1.04

Donors and graft composition

Twenty-seven patients received a partial T cell-depleted graft after RIC; one patient 

did not proceed after the induction regimen because of severe hypertension and one 

patient proceeded to MAC- SCT (Figure 1). Donors for twenty patients were HLA- 

identical siblings (18 grafts from peripheral blood stem cells (PBSC) and 2 grafts 

from bone marrow) and unrelated donors for seven patients (6 PBSC and 1 bone 

marrow). O f the seven unrelated donor transplants, two were mismatched for one 

HLA-class I molecule. Cytotoxic T lymphocyte precursor frenquency (CTLp) was 

7/106 for one patient and Helper T lymphocyte frequencies (HTLp) were <l/106for 

both patients.

Median number of infused CD34-positive cells was 5.6 (range, 0.6-11.6) x 106 per kg
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body weight of recipient. Median number of CD3-positive T cells infused was 0.55 

(range, 0.06-1.06) x 106 per kg.

Engraftment and chimerism

Median time to reach leukocytes >1.0 x 109/L was 12 days (range, 7-24) and median 

time to reach a number of platelets > 20 x 109/L was 10 days (range 0-19). In five 

patients platelets did not decline to levels < 20 x 109/L. Hematopoietic recovery in 

patients with an unrelated donor was more rapid than in patients with a sibling 

donor. In seven patients with an unrelated donor, median time to reach leukocytes 

>1.0 x 109/L and platelets>20 x 109/L were 11 and 3 days, respectively.

Twenty-five of these 27 (93%) patients had successful donor-engraftment. Two 

patients, transplanted with a graft from an unrelated donor, had complete autologous 

hematopoietic recovery. In both patients the percentage of donor cells was <1% 

measured from two months after RIC-SCT at different time-points. In both cases 

this was considered to be a primary take failure. Both patients with take failure were 

not pre-treated with induction therapy to reduce host T cells and CD4 counts in 

these two patients before start of the conditioning regimen were 0.26 x 109/L and 0.04 

x 109/L respectively. One patient with a take failure was transplanted with an allograft 

from a one-locus mismatched unrelated donor. Mismatch was both in graft-versus- 

host and host-versus-graft direction. The second patient was transplanted with bone 

marrow stem cells from HLA-identical unrelated donor.

Twenty-six of these 27 patients were evaluated for chimerism at three months after 

SCT (Figure 1). Thirteen patients were complete donor chimera (<1% recipient cells), 

eleven patients were mixed chimeric (>1% recipient cells), and two patients had 

complete autologous recovery. Median number of recipient cells in the eleven mixed 

chimeric patients was 10.4% (range l% -68%). Median number of recipient cells was 

higher in patients transplanted with an allograft from an unrelated donor (26%) 

than in patients with a sibling donor (8%). Figure 2 shows the time to reach donor 

chimerism (<5% recipient cells) in 25 patients with successful donor-engraftment. 

Nineteen of the twenty patients transplanted with a sibling-donor developed 

complete donor chimerism directly or after discontinuation of immunosuppression. 

Five engrafted patients transplanted with an unrelated donor remained mixed 

chimeric which converted to complete donor chimerism in two patients after pDLI. 

Three patients died before reaching complete donor chimerism and one patient is 

alive in mixed chimerism at last follow-up.
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Months

Figure 2: Time to  com plete donor ch im erism  in patients treated w ith  RIC-SCT and w ith  persisting donor 

engraftm ent (n=25).

GVHD and prophylaxis

Acute GVHD > grade II occurred in five of 27 patients (19%): only one of these five 

patients suffered from aGVHD gr III. Median time from RIC-SCT to the onset of 

acute GVHD (including grade I) was 37 days. Twenty-five patients were evaluable 

for chronic GVHD. Sixteen (64%) patients developed chronic GVHD, which was 

extensive in three patients. Chronic GVHD was not preceded by acute GVHD in 

three patients. None of the seven patients with an unrelated donor who received 

ATG in the conditioning regimen, developed acute GVHD or chronic GVHD after 

RIC-SCT. GVHD was manageable with CsA, corticosteroids and UVB-therapy in all 

patients.

Median duration of GVHD-prophylaxis with CsA was 107 days (range, 55-245 

days); only one patient was still using immunosuppression at last follow-up. Median 

duration of GVHD-prophylaxis was shorter for unrelated donor RIC-SCT than for 

patients transplanted with a sibling donor, 74 days and 138 days respectively.
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Pre-emptive and therapeutic DLI after SCT

Five of 27 (19%) patients received pre-emptive DLI after RIC-SCT: two patients 

transplanted with a sibling donor and three patients with an unrelated donor. Only 

one patient received a second dose-escalated DLI of 5.0xl06 T cells/kg. Both patients 

receiving DLI from a matched sibling donor were complete donor chimeric at the 

time of lymphocyte infusion and none of them developed GVHD. All three patients 

treated with pDLI and transplanted with an allograft from an unrelated donor were 

mixed chimeric at the time of DLI and two of these three patients developed GVHD 

after pre-emptive DLI (dose of l.OxlO6 T cells/kg), grade I and III respectively. 

Both patients with GVHD converted from mixed chimerism to complete donor 

chimerism. Notably, twenty-two patients did not receive pre-emptive DLI, because 

of chronic GVHD (n=15), acute GVHD (n=2), infection (n=l), death (n=2), and 

primary take failure in two patients.

Four patients relapsed after RIC-SCT. Both patients with primary take failure 

relapsed, 13 and 14 months after RIC-SCT, and are scheduled to receive MAC-SCT. 

One patient died from rapidly progressive relapsed aggressive NHL after unrelated 

donor RIC-SCT before therapeutic DLI could be arranged. The fourth patient was 

transplanted for transformed NHL and relapsed 18 months after RIC-SCT. This 

patient was treated with two therapeutic DLIs, lOxlO6 T cells/kg and 70xl06 T cell/kg 

respectively and responded favorably. Both DLIs resulted in graft-versus-lymphoma 

reactivity without GVHD. At the last follow-up, 79 months after RIC-SCT, this 

patient is still in remission.

Infectious complications of partial T cell-depleted RIC-SCT

As expected and documented before in RIC-SCT, the incidence of early bloodstream 

infections was low (10%) in our study. Furthermore, no cases of invasive fungal 

disease were diagnosed after RIC-SCT.

In contrast, viral infections were a major problem. Herpes zoster reactivations and 

infections occurred frequently (38%); with eight localized and three generalized 

infections. These infections occurred at a median of 195 days post-transplant (range 

139-394), and all occurred after cessation of valaciclovir prophylaxis. Therefore we 

adjusted the protocol and valaciclovir prophylaxis is now given for one year. Five 

of the 29 (14%) patients had a CMV infection (CMV-I) and none developed CMV 

disease. CMV-I was diagnosed at a median of 44 days post-transplant (range, 33- 

188 days) relatively early in comparison to other reports .18;22 CMV-I occurred
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predominantly in patients who were CMV positive and received CMV negative 

grafts (data not shown). One of the patients with CMV-I suffered from GVHD after 

pDLI and received immunosuppression. Recurrent upper and lower respiratory tract 

infections, probably of viral origin, occurred in approximately 30%, although not all 

infections were microbiologically confirmed. One case of respiratory syncytial virus 

(RSV) was diagnosed.

Three patients (11%) developed an EBV-related lymphoproliferative disease (LPD); 

two after SCT (being true PTLD) and one patient developed both EBV related 

LPD during fludarabine/cyclophosphamide induction prior to the SCT and EBV 

associated Hodgkins lymphoma after MAC-SCT.

Months

Figure 3: Estimated two-year OS of all 29  included patients was 83 % .

Survival

The median follow-up for all 29 patients was 19 months (range, 3.4-79.2 months). 

Estimated two-year overall survival is 83% (95% confidence interval, 69%-97%) 

(.Figure 3). Five patients have died after inclusion in this study (Figure 2). One patient
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died <100 days after RIC-SCT due to PTLD. Three other patients died after RIC- 

SCT, one patient from relapse of blastoid transformed lymphoma, another patient

Months

Figure 4: Estimated two-year lymphoma-free survival was 74% of all included patients.

from PTLD and one patient from infectious causes (pulmonary infection with RSV). 

One patient was treated with induction chemotherapy but did not proceed to RIC- 

SCT because of severe hypertension. This patient died 15 weeks after the induction 

course from infectious complications. Based on an intention-to-treat analysis, the 

non-relapse mortality at one year is 14%.

Twenty-four of 29 patients are alive at last evaluation in June 2009. Twenty-two 

patients are in complete remission at last follow-up. Both patients with a primary 

take failure relapsed and they are scheduled to receive MAC-SCT. Estimated two- 

year lymphoma-free-survival is 74% (95% confidence interval, 58%-91%) (Figure 4).
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Discussion

This study was initiated to address the feasibility of partial T cell-depleted grafts 

in the setting of reduced intensity conditioning followed by pre-emptive post­

transplantation immunotherapy with DLI for heavily pre-treated patients with 

aggressive lymphomas (transformed NHL and follicular lymphoma gr III) and 

indolent lymphoproliferative disorders (follicular NHL gr I/II and CLL). The 

application of RIC-SCT has resulted in reduced treatment-related mortality (TRM). 

Earlier studies using myeloablative conditioning for low-grade NHL were associated 

with a TRM of 26% to 40%.23"25 TRM of myeloablative conditioning for aggressive 

lymphoma was in the same range of 25% to 44%.26;27 Non-relapse mortality at one 

year in this study was 14%. Also, survival and current lymphoma-free-survival are 

favorable in our trial which were 83% and 74%, respectively. Other series reporting 

outcomes of RIC-SCT for lymphoma show variable results. The retrospective analysis 

from EBMT on RIC-SCT for lymphoma reported an OS of 62% at one year but 

TRM still exceeded 30%.28 Three other studies on RIC-SCT for lymphoproliferative 

diseases, of which two used Alemtuzumab for in vivo T cell-depletion, showed a 

clear reduction of TRM of 11% to 16% with an OS of 68% to 88% at two-years.29-31 

In this study partial T cell-depletion in vitro was performed to prevent severe acute 

and long-standing extensive chronic GVHD. The advantage from T cell depleted 

grafts consists of a better quality life due to less morbidity caused by GVHD. The 

incidence of acute GVHD > gr II was 19%, including one patient with gr III and no 

patients with grade IV. Chronic GVHD developed in 64% of the patients which was 

extensive in only three patients. All patients with GVHD could be managed with 

CsA and corticosteroids and none of these patients died from GVHD. Hardy et al. 

analyzed donor T cell engraftment and GVHD after the same two step-RIC regimen 

in both T cell-depleted and T cell-replete recipients.32 Interestingly, the overall 

incidence of acute GVHD was nearly identical (70%) in both groups. This can be 

explained by the rapid CsA tapering in their T cell-depleted group followed by early 

DLI-administration. In our study, the duration of CsA-treatment was longer and 

administration of DLI started if patients were 4 weeks without immunosuppression 

and without significant GVHD.

Pre-emptive DLI was part of our approach to boost GVL after partial T cell depleted 

RIC-SCT. Because 64% of the patients developed (predominantly limited) chronic 

GVHD, only 19% of the patients did receive pDLI. DLI was truly pre-emptive in 

two patients transplanted with a graft from a sibling donor. Three unrelated donor
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transplant recipients were treated with pDLI to prevent relapse and for the correction 

of incomplete donor chimerism. This resulted in complete donor chimerism in two 

patients however in association with GVHD.

Although fifteen of the 29 patients in our study had a high grade lymphoma, relapse 

rate was low The higher incidence of limited chronic GVHD in our study may explain 

the low relapse rate and is in line with the existence of a graft-versus-lymphoma 

(GVL) effect. Furthermore, GVL-reactivity may be more effective in transformed 

NHL than in other aggressive lymphomas, because of the underlying immune 

sensitive low-grade component.33

All patients had chemotherapy-sensitive disease and were at least in PR at the time 

of RIC-SCT. Previous analyses of nonmyeloablative and RIC-SCT in NHL-patients 

have shown that chemotherapy-resistance is an important prognostic factor on 

outcome. A recent analysis on the impact of the hematopoietic cell transplantation 

comorbidity index (HCT-CI) on outcomes of NHL patients treated with RIC-SCT 

underscores that response to chemotherapy pre-transplantation is an important 

predictor of overall transplantation outcome.34 Also an EBMT analysis from the 

Lymphoma Working Party identified chemotherapy-resistant disease as a predictor 

of poor response to RIC-SCT.28

Recently, the EBMT risk score which was developed for patients with CML, was shown 

to be predictive for hematological diseases in general.21 We calculated the EBMT risk 

score retrospectively to describe the pretransplant risk factors in our patient group, 

but did not use this tool for decision on treatment strategies. The majority of the 

patients (69%) in our study had a risk score of >5, indicating that this patient group 

was at high-risk for transplantation-related mortality and decreased survival. 

Infectious complications were modest especially considering the highly 

immunosuppressive nature of our approach with the use of fludarabine induction, 

ex-vivo partial T cell-depletion and in vivo T cell-depletion with ATG in 26% of 

patients. Due to the absence of severe tissue damage in RIC-SCT the incidence of 

early bacterial infections was limited, with only three cases of early bloodstream 

infections (10%), similar to previous studies.35 No cases of IFD were diagnosed 

after RIC-SCT despite the fact that no mould active prophylaxis was used. This is 

remarkable since incidences of IFD up to 10-15% have been documented before in 

RIC-SCT.35;36 Although in our institution the overall incidence of IFD is low even in 

MAC, this can be largely explained by the low incidence of GVHD requiring long 

term immunosuppressive therapy. This probably also explains the low incidence of
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CMV-D. The number of CMV infections was modest and most infections occurred 

predominantly in the first 100 days of SCT during CsA as GVHD-prophylaxis.

One concern is the occurrence of EBV related PTLD in three patients. The incidence 

of 10% (3/29) is high, but earlier reports have noticed an increase in PTLD after RIC- 

SCT up to 15%.37~39 Although no firm conclusions can be drawn regarding the specific 

risk factors for PTLD in our cohort, other studies have suggested that the profound 

immunosuppression and incomplete depletion of recipient B-cells contributed to the 
higher incidence of PTLD in RIC-SCT, especially when ATG was used.37 

Concerning the viral complications, strategies to support reconstitution of anti-viral 

immunity are important. Reconstitution of virus-specific T cells by using unmodified 

DLI will lead to GVHD in a significant number of patients. Two categories of new 

strategies have been developed to reconstitute virus-specific T cells post-transplant; 

(i) applying DLI which is depleted from alloreactive T cells or (ii) treatment with in 

vitro expanded virus-specific T cells.40 Both strategies are attractive as prophylaxis 

or as treatment; however the generation of these products is time consuming 

and is confined to centers with specialized Good Manufacturing Practice (GMP) 

laboratories.

A variety of different regimens, usually containing fludarabine, are currently used 
as conditioning for RIC-SCT. Host T cell-depletion by one or two courses induction 

chemotherapy with fludarabine and cyclophosphamide was added to the conditioning 

regimen as described before by Bishop et al.6 The extent of immunosuppression was 

assumed to be sufficient to facilitate donor-engraftment of a partial T cell-depleted 

graft. Two recipients of unrelated donors, who did not receive the induction course 

to deplete host T cells, developed a primary take failure. Therefore, in the setting of 

RIC-SCT with partial T cell-depleted grafts the use of an induction course for host T 

cell depletion appeared to be necessary Furthermore, patients transplanted with stem 

cells from an unrelated donor remained mixed chimeric and converted to complete 
donor chimerism only after pDLI. In this setting the combination of both in vitro 

and in vivo T cell depletion by ATG induces deep T cell depletion which reduces the 

risk of GVHD however increases the risk of mixed chimerism and rejection. 

Although our study shows favorable results regarding TRM, OS and relapse rate, 

there are limitations to this approach; (i) patient selection must be careful because the 

period of immunosuppression is long after the use of an induction course followed 

by the conditioning three weeks later in heavily pre-treated patients. Chemotherapy- 

responsiveness is therefore a prerequisite for this approach (ii) unrelated donors have
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to be willing to donate lymphocytes some months after stem cell donation for pDLI 

and (iii) incorporation of strategies to reconstitute viral immunity are needed to 

make further advances in this approach.

In sum m ary these results demonstrate that partial T cell-depleted RIC-SCT with 

pre-transplant host T cell-depletion results in fast and stable engraftment. All 

patients transplanted with stem cells from an HLA-identical sibling donor develop 

complete donor chimerism during follow-up. The induction course to deplete host 

T cells is essential, because omitting this induction course resulted in a primary 
take failure in two patients. Partial T cell-depletion in vitro in combination with 

a relatively short course of CsA resulted in acute GVHD grade >11 in 19% of the 

patients which is manageable with corticosteroids, CsA and UVB. No deaths were 

related to GVHD. Main complications were related to viral pathogens including 

varicella zoster infections and EBV-associated LPD. The rate of relapse was low, even 

in patients with high-grade NHL and despite the fact that only 19% of the patients 

received pDLI. Overall survival and current-lymphoma-free survival were favorable. 

Therefore, in the setting of partial T cell depleted RIC-SCT; additional improvement 

may be achieved by changing from unmodified pDLI for boosting GVL to transfer 

of lymphocytes for reconstitution of virus specific T cells.
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Aberrant expression of the hematopoietic- 
restricted minor histocompatibility antigen 
LRH-1 on solid tumors results in efficient 
cytotoxic T cell-mediated lysis
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Abstract

CD8+ T cells recognizing minor histocompatibility antigens (MiHA) on solid tumor 

cells may mediate effective graft-versus-tumor (GVT) reactivity after allogeneic 

stem cell transplantation (SCT). Previously, we identified LRH-1 as a hematopoietic- 

restricted MiHA encoded by the P2X5 gene. Here, we report that LRH-1 is aberrantly 

expressed on solid tum or cells. P2X5 mRNA expression is demonstrated in a 

significant portion of solid tumor cell lines, including renal cell carcinoma (RCC), 

melanoma, colorectal carcinoma, brain cancer and breast cancer. Importantly, P2X5 

gene expression was also detected in a subset of primary solid tum or specimens 

derived from RCC, brain cancer and breast cancer patients. Furthermore, P2X5 

expressing solid tum or cells can be effectively targeted by LRH-1-specific cytotoxic 

T lymphocytes under inflammatory conditions. The expression of HLA-B7 and 

CD54 on tumor cells increases upon cytokine stimulation resulting in improved T 

cell activation as observed by higher levels of degranulation and enhanced tumor 

cell lysis. Overall, hematopoietic-restricted MiHA LRH-1 is aberrantly expressed on 

solid tum or cells and may be used as target in GVT-specific immunotherapy after 

SCT.
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Introduction

Allogeneic hematopoietic stem cell transplantation (SCT) is an established curative 

treatment for patients with hematological malignancies and an experimental approach 

for solid tumors.1'2 Initial evidence for a beneficial graft-versus-tumor (GVT) effect 

in solid tumors was demonstrated in patients with metastatic breast cancer.3'4 

Subsequent studies investigated the feasibility and safety of nonmyeloablative stem 

cell transplantation (NST) in order to reduce treatment-related toxicity.5-8 In these 

nonmyeloablative regimens, immunosuppression allows donor engraftment but 
frequently results in mixed chimerism. Conversion to complete donor chimerism can 

be achieved by withdrawal of immunosuppression and adoptive immunotherapy by 

donor lymphocyte infusion (DLI).9 Several studies have demonstrated that treatment 

with NST and DLI can induce tum or regressions in some types of metastatic solid 

tum ors.5-8 However, this GVT effect is often accompanied by severe graft-versus- 

host disease (GVHD), which results in considerable morbidity and mortality 

Furthermore, most responses in patients with metastatic solid tumors are partial 

and the rate of complete remissions is limited. Therefore, further development of 

SCT-based allogeneic immunotherapy for solid tumors requires novel strategies to 

selectively boost GVT immunity in the absence of GVHD.

The GVT effect is predominantly mediated by donor-derived T cells recognizing 

minor histocompatibility antigens (MiHA) on malignant cells of the recipient. 
However, ubiquitously expressed MiHA often induce GVHD, resulting in T cell- 

mediated destruction of normal tissues such as skin, liver and gut. Therefore, it 

would be highly beneficial to direct donor T cell immunity towards MiHA that are 

selectively co-expressed on hematopoietic cells and solid tum or cells by vaccination 

or T cell therapy Only a few hematopoietic-restricted MiHA have been described 

that are aberrantly expressed on solid tumors, including HA-11W1, ECGF-112 and 

BCL2A1.13'14 Therefore, it is important to enlarge the panel of MiHA that can be used 

for immunotherapy of solid tumors.

Previously, we have identified a hematopoietic-restricted MiHA, designated LRH-

1, which elicits an HLA-B7-restricted cytotoxic T cell (CTL) response in leukemia 

patients treated with DLI.15 LRH-1 is encoded by the P2X5 gene and results from 

a single nucleotide frameshift polymorphism between recipient and donor cells.15 

P2X5 expression has been demonstrated in myeloid progenitor cells and peripheral 

blood T cells, B cells and NK cells as well as lymphoid organs. Furthermore, P2X5 

is expressed in a broad range of lymphoid malignancies resulting in effective LRH-
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1-specific CTL-mediated lysis.16 In contrast, P2X5 mRNA was not detected in 

primary cell cultures of non-hematopoietic origin such as fibroblasts, keratinocytes, 

melanocytes and proximal tubule renal epithelial cells. Moreover, P2X5 expression is 

not detected in prominent GVHD target tissues such as skin, liver, colon and small 

intestine.15

Here, we investigated whether the P2X5-encoded LRH-1 epitope is expressed on solid 

tumors in addition to hematopoietic cells. We revealed that P2X5 mRNA is aberrantly 

expressed in several types of solid tumors, including renal cell carcinoma (RCC), 

melanoma, colorectal carcinoma, brain cancer and breast cancer. Furthermore, we 

demonstrated that P2X5-expressing solid tumor cell lines are efficiently recognized 

and lysed by LRH-1-specific CTL. These findings illustrate that LRH-1 can be used 

as target in the development of MiHA-specific immunotherapy after allogeneic SCT 

for metastatic solid tumors.

Materials and methods 

Cell lines

The following solid tum or cell lines were used: RCC cell lines SKRC 1, 7, 10, 12, 17, 

18, 24, 33, 35, 52, and 59 were kindly provided by Dr. E. Oosterwijk (Department 

of Urology, Radboud University Nijmegen Medical Centre (RUNMC), Nijmegen, 

The Netherlands); melanoma cell lines BLM, FM3, MEL397, and 518A2 were 

kindly provided by Dr. J. de Vries (Department of Tumor Immunology, RUNMC, 

Nijmegen, The Netherlands); colorectal carcinoma cell lines HT29, KAT03, HCT15, 

HCT116, RKO, SW480, and SW620, and brain cancer cell lines BE(-2)C, CHP212, 

DAOY, D283med, PFSK-1, SK-N-DZ, SK-N-SH, SW1088, TE671, and U-87MG, and 

breast cancer cell lines BT549, CAMA-1, MCF-7, MDA-MB-134VI, MDA-MB-157, 

MDA-MB-175VII, MDA-MB-361, MDA-MB-436, SK-BR-3, and T47D were kindly 

provided by Dr. M. Schutte (Department of Medical Oncology, Josephine Nefkens 

Institute, Erasmus University Medical Center, Rotterdam, The Netherlands). Skin- 

derived fibroblasts were kindly provided by S. van der Velde-Visser (Department of 

Human Genetics, RUNMC, Nijmegen, The Netherlands). All cell lines were cultured 

in Iscove’s modified Dulbeccos medium (IMDM) (Invitrogen, Carlsbad, California) 

supplemented with 10% fetal calf serum (FCS). Prior to analysis solid tumor cell lines 

and fibroblasts and keratinocytes were cultured for 4 days in the absence or presence 

of inflammatory cytokines IFN"y (100 U/ml) and TNFa (10 ng/ml).
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Primary tumor specimens
mRNA from 42 primary solid tum or specimens was used for gene expression analysis. 

mRNA from 15 RCC samples, containing > 80% tum or cells, was kindly provided by 

Dr. E. Oosterwijk, (Department of Urology RUNMC, Nijmegen, The Netherlands), 

mRNA from 13 brain tumors (4 medulla blastomas and 9 gliomas), containing > 80% 

tum or cells 17, was kindly provided by H. Jacobs (Department of Pediatric Oncology 

RUNMC, Nijmegen, The Netherlands), and mRNA from 14 breast cancer samples, 

containing 70-90% tum or cells 18, was kindly provided by Dr. P. Span (Department of 

Chemical Endocrinology RUNMC, Nijmegen, The Netherlands).

CTL culture
CTL were cultured as previously described.15516 CTL RP1 recognizes the 9-mer epitope 

TPNQRQNVC in the context of HLA-B*0702. The HLA-B7-alloreactive CTL clone 

KOR18 was kindly provided by Prof. E. Goulmy (Department of Immunohematology, 

Leiden University Medical Center, The Netherlands).

Immunofluorescence analysis
Tumor cell lines were studied for surface expression of HLA-B7 and adhesion 

molecules by flow cytometry Cells were labeled with anti-HLA-B7 (clone BB7.1- 

PE; Chemicon Millipore, Billerica, Massachusetts), anti-CD54 (clone 84H10; 

Immunotech Beckman Coulter, Fullerton, California), or anti-CD58 (clone AICD58; 

Immunotech) and analyzed using the Coulter FC500 flow cytometer (Beckman 

Coulter, Fullerton, California). The fold induction in surface expression was 

calculated by dividing the mean fluorescence intensity (MFI) of cytokine-stimulated 

cells by the MFI of unstimulated cells.

Real-time quantitative RT-PCR of the P2X5 gene
P2X5 mRNA and CD45 mRNA expression were determined as previously 

described.15516 The hydroxymethylbilane synthase (H M BS) housekeeping gene 

was used to normalize expression. The following gene-specific primers and 

Taqman probes were used: P2X5; P2X5-F 5’-TCCTGGCGTACCTGGTCGT-3’, 

P2X5-R 5’-CTTCATTCTCAGCACAGACGTTC-3’ and P2X5-probe 

5 ’-(T E T )-T G G G T G T T C C T G A T A A A G A A G G G T T A C C A -(T A M R A )-3 ’, 

CD45; CD45-F 5’TTAGAAATGAGTCGCATAAGAATTGC-3’, CD45-R 

5’-CTCCAGGATAGTCTCCATTGTGAAA-3’ and CD45-probe 5’-(TET)-
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ATTTCCGTGTAAAAGATC-(TAMRA)-3’, and H M BS ; H M BS-F 

5’-GGCAATGCGGCTGCAA-3’, H M B S-R 5’-GGGTACCCACGCGAATCAC-3’ and 

H M BS-probe 5’-(VIC)-CTCATCTTTGGGCTGTTTTCTTCCGCC-(TAMRA)-3’. 
P2X5 mRNA expression was quantified by determining calibration functions using 

JVM-2 as reference cell line. The level of P2X5 expression was calculated relative to 

the P2X5 expression in the JVM-2 cell line, which is susceptible to lysis by LRH-1- 

specific CTL.

Table 1: Characteristics of the solid tumor cell lines used in flow cytometry-based cytotoxicity assays.

Cell line Tumor type P2X5
genotypeA

P2J
ex]

Ï5 mRNA 
pression8 HLA -B7 expression0

Control IFNy + TNF ac Type Control IFNy + TNF ac

DAOY Brain tumor C/C 0.88 0.70 endogenous 3.4 10.4
BLM Melanoma C/C 1.54 1.58 endogenous 1.5 5.1
SKRC33 RCC c/- 0.60 0.96 endogenous 3.9 15.1
SKRC18 RCC c /- 0.50 0.42 ectopic 6.5 6.8
FM3 Melanoma -/- 0.66 0.61 ectopic N/D N/D

LRH-1+ LCL N/A Cl- 2.8 N/D endogenous N/D N/D
LRH-l'LCL N/A -/- 2.5 N/D endogenous N/D N/D

N/A indicates not applicable 

N/D indicates not determined

A P2X5 genotyping was performed by PCR amplification of genomic DNA using allele-specific probes. 

B Normalized P2X5 mRNA expression was determined by real-time quantitative RT-PCR and expressed 

relative to the expression level in the B-cell prolymphocytic leukemia (B-PLL) JVM-2 cell line.

C Inflammatory conditions are mimicked by tumor cell culture in the presence of inflammatory 

cytokines IFNy and TNFa for 4 days.

D HLA-B7-cell lines were transduced with HLA-B7. Expression of HLA-B7 was measured by flow 

cytometry and expressed as mean fluorescence intensity (MFI). The MFI of the isotype control varied 

between 0.24-0.34.

P2X5 genotyping
P2X5 genotyping was performed as previously described.16 The following 

gene-specific primers and Taqman probes were used: P2X5; P2X5- 

EXON3-F 5 ’ - CC A A ATC A A ACCT C AGC AC AG AC- 3 ’ P2X5-EXON3-R
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5’-CTCAGTGCCTCTCTGGTTCCTTA-3; P2X5 5C allele-specific probe 5’-(FAM)- 

ATTGTGACCCCCAACCA-(MGB)-3’ and P2X5 4C allele-specific probe 5’-(VIC)- 

TGTGACCCCAACCAG-(MGB)-3’.

Renal cell Melanoma Colorectal Brain Breast cancer
carcinoma carcinoma cancer

Figure 1: P2X5 gene expression in solid tumor cells. P2X5 mRNA expression was determined by real­

time quantitative RT-PCR in 42 solid tumor cell lines. Cell lines from the following tumor types were 

analyzed: renal cell carcinoma (RCC; n=l 1), melanoma (n=4), colorectal carcinoma (n=7), brain cancer 

(n=10), and breast cancer (n=10). Expression is shown relative to the P2X5 expression measured in 

reference B-cell line JVM-2, which is susceptible to lysis by LRH-l-specific CTL. The housekeeping 

gene HM BS was used for normalization. Solid tumor cell lines with P2X5 expression higher than 0.4 

were considered positive and potential targets for LRH-l-specific CTL, based on previous expression 

and recognition studies. This arbitrary threshold is indicated with a dashed line.
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Flow cytometry-based cytotoxicity studies
Flow cytometry-based cytotoxicity assays were performed as previously described 

with minor adaptations.16519 Characteristics of the solid tum or cell lines used as 

targets are described in Table 1. Endogenous HLA-B7+ cell lines were labeled with 

2.5 [iM carboxyfluorescein diacetate succimidyl ester (CFSE; Molecular Probes 

Europe, Leiden, The Netherlands). Alternatively endogenously HLA-B7" cell lines 

were retrovirally transduced with LZRS-HLA-B*0702-IRES-EGFP as previously 

described15 and used as targets without CFSE-labeling. Target cells (1 x 104) were co­

cultured with unlabelled effector cells (3 x 104) at an E:T ratio of 3:1 in a total volume 

of 200 [A IMDM/10% FCS containing 25 U/ml IL-2 in 96-wells flat-bottom plates. 

For measurement of T cell degranulation at day 1, anti-CD107a (BD Biosciences, 

Franklin Lakes, New Jersey) was added to the T cells prior to co-culture. After 1 to 

3 days of co-culture, cells were harvested and 7-amino-actinomycin D (7AAD) was 

added. Numbers of viable target cells were quantified by flow cytometry

Results

Expression of the P2X5 gene in solid tumor cells
To define whether non-hematopoietic malignancies could be targets for LRH-1- 

specific CTL, we have analyzed P2X5 mRNA expression in solid tum or cell lines 

and primary tum or specimens by real-time quantitative RT-PCR. We tested a panel 

of 42 cell lines of various histological origin including RCC, melanoma, colorectal 

carcinoma, brain cancer and breast cancer. In addition, we analyzed primary tum or 

specimens derived from 15 patients with RCC, 13 patients with brain cancer, 

and 14 patients with breast cancer. Previously we found that EBV-transformed 

lymphoblastoid cell lines (EBV-LCL) that have a mean expression level of 2.7 

compared with the reference B cell line JVM-2 are significantly recognized by LRH- 

1-specific CTL.15 In contrast, monocytes and fibroblasts with a mean P2X5 mRNA 

expression level of 0.28 and 0.10, respectively are not susceptible to LRH-1 CTL- 

mediated lysis. Based on these observations, we used a cut-off P2X5 mRNA level 

of 0.4 to distinguish P2X5-positive from P2X5-negative cell types.15 Interestingly 

significant P2X5 mRNA expression was observed in 13 out of 42 (31%) solid tum or 

cell lines, covering all cancer types studied (Figure 1). We detected P2X5 transcripts 

in 3 out of 11 RCC cell lines, in 2 out of 4 melanoma cell lines, in 4 out of 7 colorectal 

carcinoma cell lines, in 3 out of 10 brain cancer cell lines, and in 1 out of 10 breast
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Table 2: P2X5 and CD45 gene expression in primary solid tumor cells.

Tumor type Sample P2X5 expression CD45 expression Ratio (P2X5/CD45)
Renal cell carcinoma 1 3.84 6.51 0.6

2 3.03 1.32 2.3
3 2.30 1.49 1.5
4 1.50 4.59 0.3
5 1.34 8.47 0.2
6 1.26 1.29 1.0
7 0.47 0.78 0.6
8 0.40 2.22 0.2
9 0.34 1.01 0.3
10 0.33 2.01 0.2
11 0.22 1.98 0.1
12 0.17 1.17 0.1
13 0.16 2.45 0.1
14 0.11 1.92 0.1
15 0.09 0.67 0.1

Brain cancer 1 1.11 1.56 0.7
2 1.06 0.36 2.9
3 0.70 0.24 2.9
4 0.35 1.57 0.2
5 0.23 0.90 0.3
6 0.19 0.07 2.7
7 0.13 0.07 1.7
8 0.10 1.95 0.1
9 0.08 1.09 0.1
10 0.02 0.16 0.1
11 0.02 0.79 <0.1
12 0.02 1.34 <0.1
13 0.01 0.09 0.2

Breast cancer 1 1.48 0.74 2.0
2 0.54 0.40 1.4
3 0.52 1.32 0.4
4 0.38 0.49 0.8
5 0.13 0.12 1.1
6 0.08 0.69 0.1
7 0.06 0.49 0.1
8 0.06 0.45 0.1
9 0.03 0.58 0.1
10 0.03 0.36 0.1
11 0.02 0.39 0.1
12 0.02 0.40 <0.1
13 0.01 0.17 0.1
14 0.01 0.17 0.1

Normalized P2X5 and CD45 mRNA expression was determined by real-time quantitative RT-PCR and 

expressed relative to the expression level in the B-cell prolymphocytic leukemia (B-PLL) JVM-2 cell line.
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cancer cell lines. In the prim ary tum or samples studied, we detected P2X5 mRNA 

levels of >0.4 in 8 out of 15 RCC samples, 4 out of 13 brain cancer samples, and 4 out 

of 14 breast cancer samples (Table 2). To determine whether P2X5 expression could be 

due to the presence of hematopoietic cells, we also analyzed expression of CD45. We 

calculated the ratio of P2X5/CD45  and considered that P2X5 expression in samples 

with a ratio <1.0 probably resulted from infiltrated hematopoietic cells. We observed 

that in at least 3 out of 15 RCC samples, 2 out of 13 brain cancer samples, and 2 out of 

14 breast cancer samples P2X5 mRNA levels of >0.4 with a P2X5/CD45  ratio of >1.0 

could be detected (Table 2 ). These findings corroborate with our results observed in 

solid tumor cell lines. Together, these data show that the LRH-1 -encoding P2X5 gene 

is significantly expressed in a subset of solid tumors.

P2X5-expressing solid tumor cells are efficiently lysed by LRH-1 -specific CTL
Target cell recognition by LRH-1-specific CTL is controlled by a single cytosine 

deletion polymorphism (rs5818907) in exon 3 of the P2X5 gene.15 Therefore, P2X5- 

expressing tum or cell lines were genotyped at rs5818907 by allele-specific PCR. Based 

on this P2X5 genotyping analysis, we have selected the homozygous (C/C genotype) 

or heterozygous (C/- genotype) LRH-1+ tum or cell lines DAOY (brain cancer), BLM 

(melanoma), SKRC33 and SKRC18 (both RCC) as targets for LRH-1-specific CTL 

in cytotoxicity assays (Table 1). For these experiments, we used a flow cytometry- 

based cytotoxicity assay, which facilitates determination of target cell proliferation 

and death by both rapid and more slowly T cell effector mechanisms.19 Moreover, 

the addition of low-dose IL-2 to the co-cultures prolongs CTL survival, which allows 

continuous exposure and serial killing of tum or cells by the CTL.

Using this in vitro assay, we have demonstrated that LRH-1-specific CTL efficiently 

lysed LRH-1+ EBV-LCL, whereas no cytotoxicity was observed against LRH-1- EBV- 

LCL (Figure 2a). Interestingly, regarding the solid tum or cell lines, we observed that 

the LRH-1+ brain cancer cell line DAOY could also be efficiently targeted by LRH-

1-specific CTL (Figure 2b). Microscopic analysis confirmed high susceptibility of 

DAOY for cytotoxicity by LRH-1-specific CTL (Figure 2c). LRH-1+ melanoma cell 

line BLM, which has a relative high P2X5 mRNA expression level of 1.5, was less 

efficiently lysed by LRH-1-specific CTL (Figure 3a).
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EBV-LCL Donor (LRH-1 ;2.5)

Time (days)

DAOY (LRH-1 +; 0.78)

Time (days)

DAOY (cytokine-stimulated; 0.91)

S
!

Time (days) Time (days)

Medium LRH-1-specific CTL HLA-B7-specific CTL

Figure 2: Cytotoxicity against solid tumor cell lines was determined after incubation with LRH-l-specific 

CTL (A), HLA-B7-specific CTL (▼; positive control) or medium only (♦). Survival of unstimulated and 

cytokine-stimulated target cells in the absence or presence of CTL at an E:T ratio of 3:1 is shown of an 

LRH-1+ and LRH-1“ EBV-LCL (a) and of LRH-1+ brain tumor cell line DAOY (b). P2X5 mRNA expression 

is shown between parentheses. Data are depicted as mean ± SD of triplicate wells, (c) Microscopic 

analysis of cytokine-stimulated DAOY cells at 40 hours of co-culture with CTL or medium.

However, stimulation of BLM with inflammatory cytokines IFN"y and TNFa strongly 

enhanced susceptibility to lysis by LRH-1 -specific CTL. Similar results were obtained 

with LRH-1+ RCC cell lines. Lysis of RCC cell line SKRC33 was significantly enhanced
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BLM (LRH-1 +; 1.54)

Time (days) Time (days)

FM3 (LRH-1 0.66) FM3 (cytokine-stimulated; 0.61)

Time (days)

Figure 3: Cytotoxicity against LRH-1+ melanoma cell line BLM (a) and LRH-1“ melanoma cell line FM3 

(b) was determined after Incubation with LRH-l-specltic CTL (A), HLA-B7-specltic CTL (▼; positive 

control) or medium only (♦). Survival of unstimulated and cytokine-stimulated target cells In the 

absence or presence of CTL at an E:T ratio of 3:1 Is shown. P2X5 mRNA expression Is shown between 

parentheses. Data are depicted as mean ± SD of triplicate wells.

upon pre-incubation with IFNy and TNFa (Figure 4a). In contrast, LRH-1 CTL- 

mediated lysis of SKRC18 could not be enhanced by inflammatory cytokines, which 

might be associated with the relative low P2X5 mRNA expression of 0.42 (Figure 4b). 

In addition, SKRC 18 did not endogenously express HLA-B7 and HLA-B7 expression 

could not be upregulated by cytokine pre-incubation (Figure 5a). The observation 

that exogenous loading of SKRC18 with LRH-1 peptide resulted in complete lysis 

indicated that the low responsiveness is most likely caused by low epitope density 

at the cell surface. No cytotoxicity was observed against HLA-B7-transduced LRH- 

L FM3 melanoma cells either unstimulated or pre-stimulated with inflammatory
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1 2 
Time (days)

SKRC18 (LRH-1 +;0.50)

Time (days)

1 2 
Time (days)

SKRC18 (cytokine-stimulated; 0.42)

Time (days)

SKRC18 (cytokine and peptide-stimulated)

Time (days) Time (days)

Figure 4: Cytotoxicity against LRH-1+ RCC cell lines SKRC33 (a) and SKRC18 (b) was determined after 

incubation with LRH-l-specific CTL (A), HLA-B7-specific CTL (▼; positive control) or medium only 

(♦). Survival of unstimulated and cytokine-stimulated target cells in the absence or presence of CTL at 

an E:T ratio of 3:1 is shown. P2X5 mRNA expression is shown between parentheses. Data are depicted 

as mean ± SD of triplicate wells, (c) LRH-l-peptide loading resulted in improved lysis of SKRC18.

cytokines (Figure 3b). Allo-HLA-B7-specific CTL lysed both LRH-1+ and LRH-1 

solid tum or cell lines (Figure 2, 3 and 4). Taken together, these data demonstrate that
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LRH-1+ solid tum or cell lines which have sufficient P2X5 expression levels can be 

effectively targeted by LRH-1 CTL, especially under inflammatory conditions.

□  Isotype control
■  CD54 (ICAM-1)
□  CD58 (LF A-3)
■  HLA-B7

DAOY BLM SKRC33 SKRC18

100
Degranulation of LRH-1-specific CTL

to 90 -

w  80 -

o jo -
’S 60 -
Sf 50 ~

X  40 -<u
IN  3 0  -

5 20 "
U  1 0  -

H  Not stimulated 
□  Cytokine-stimulated

I Jill
LRH-1 + LRH-1 

EBV -LCL EBV -LCL
DAOY BLM SKRC33 SKRC18 SKRC18

+ peptide

Figure 5: (a) The expression of adhesion and MHC molecules in epithelial cancer cell lines. Surface 

expression of HLA-B7, CD54 (ICAM-1) and CD58 (LFA-3) was determined by flow cytometry. Prior 

to analysis cells were cultured for 4 days in the absence or presence of inflammatory cytokines 

IFNy and TNFa. Data are depicted as fold induction of the mean fluorescence intensity (MFI) upon 

cytokine stimulation, (b) Cytokine stimulation of cancer cells results in improved degranulation of 

CTL. Anti-CD107-antibody was added to the co-cultures of flow cytometry-based cytotoxicity assays. 

Degranulation of LRH-l-specific CTL was measured after 1 day of co-culture with solid tumor cell lines 

and control EBV-LCL. Data are depicted as mean ± SD of triplicate measurements.
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Table 3: P2X5 gene expression in keratinocytes and fibroblasts.

Tissue type Sample P2X5 mRNA • Aexpression

Control IFNy + TNF aB

Keratinocytes 1 0.01 0.01

2 0.01 0.01

3 0.01 0.01

Fibroblasts 1 0.04 0.06

2 0.14 0.33

3 0.19 0.08

A Normalized P2X5 mRNA expression was determined by real-time quantitative RT-PCR and expressed 

relative to the expression level in the B-cell prolymphocytic leukemia (B-PLL) JVM-2 cell line 

B Inflammatory conditions are mimicked by cell culture in the presence of inflammatory cytokines IFNy 

and TNFa for 4 days prior to RNA isolation

Enhanced tumor cell lysis under inflammatory conditions is associated with higher 
levels of degranulation by LRH-1-specific CTL
To determine whether up-regulation of P2X5 mRNA could explain the increased 

tum or cell lysis upon stimulation with inflammatory cytokines, we measured P2X5 

mRNA levels of untreated and cytokine-treated solid tum or cell lines by real-time 

quantitative RT-PCR. However, no significant change in P2X5 mRNA expression 

was observed in the presence of cytokines (Table 1). In  addition, we observed that 

P2X5 expression remains undetectable in keratinocytes and very low in skin-derived 

fibroblasts in the presence of inflammatory cytokines (Table 3). On the other hand, 

flowcytometric analysis showed that expression of adhesion molecule CD54 (ICAM- 

1) increased 3.0 to 7.4-fold in solid tum or cell lines upon cytokine stimulation, 

whereas no significant changes were observed in expression of CD58 (LFA-3) (Figure 

5A). Furthermore, cytokine stimulation resulted in more than 3-fold increase of 

HLA-B7 expression in cell lines which are endogenously HLA-B7+ (Figure 5A).

Next, we determined whether up-regulation of HLA-B7 and CD54 expression on solid 

tum or cells resulted in increased activation of LRH-1-specific CTL. Therefore, we 

measured CTL degranulation by expression of CD 107a on the cell surface after 1 day
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of co-incubation with solid tum or cell lines and control EBV-LCL. The proportion of 

LRH-1-specific CTL expressing CD 107a following co-culture with LRH-1-positive 

and -negative EBV-LCL was 66% and 14%, respectively (Figure 5B). Consistent with 

the cytotoxicity data observed in the flow cytometry-based cytotoxicity assays, the 

percentage CD107a+ CTL was high after co-culture with LRH-1+ solid tum or cell 

lines DAOY (32%) and SKRC33 (39%), but relatively low for BLM (8%) and SKRC18 

(2%). In addition, when co-cultured with tum or cells pre-treated with inflammatory 

cytokines the proportion of CD107a+ LRH-1-specific CTL significantly increased to 

60% for DAOY and 32% for BLM. SKRC18 tum or cells stimulated 25% of LRH-1- 

specific CTL to degranulate only after pre-treatment with cytokines and loading with 

LRH-1 peptide. Elevated levels of CTL degranulation correlated with better lysis of 

tum or cells in cytotoxicity assays.

Together, these results suggest that inflammatory cytokines improve the formation 

of an immunological synapse by up-regulation of MHC class I and CD54, resulting 

in higher levels of granule exocytosis and enhanced CTL reactivity. The increased 

activation of CTL upon cytokine stimulation results in improved tum or cell lysis as 

observed in cytotoxicity assays.

Discussion
MiHA are considered to play an important role in GVT reactivity after allogeneic 

SCT for solid tum ors.13;14;20 Especially MiHA with tumor-restricted tissue distribution 

are promising targets to boost GVT reactivity selectively without enhancing GVHD. 

For further development of tumor-specific immunotherapy it is important to enlarge 

the spectrum of molecularly identified MiHA which are selectively expressed in 

solid tumors and possibly hematopoietic cells. Here, we analyzed the expression 

of the LRH-1-encoding P2X5 gene in a large panel of solid tum or cell lines and 

prim ary tum or specimens using real-time quantitative RT-PCR. Significant P2X5 

mRNA levels were detected in 31% of the solid tum or cell lines tested, including 

RCC, melanoma, colorectal carcinoma, brain cancer and breast cancer. Primary 

samples could be tested for RCC, brain cancer and breast cancer and showed similar 

numbers of P2X5 positive samples per tum or type. Therefore, LRH-1 belongs to the 

few hematopoietic-restricted MiHA that additionally show an aberrant expression 

on solid tum or cells. Expression on solid tum or cells was previously demonstrated 

for MiHA HA-110;11, ECGF-112, and BCL2A1.13;14 Enlargement of the panel of MiHA
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is essential for development of effective posttransplantation immunotherapy. We 

and others observed that only a part of the tested cell lines and patient samples are 

positive for MiHA expressed on solid tumors. In addition, the applicability of MiHA 

is dependent on the frequencies of the MiHA and presenting-HLA phenotypes. 

Therefore, identification of additional MiHA is essential for further improvement 

of tumor-specific immunotherapy. All currently molecularly described MiHA 

are identified from patients with hematological malignancies or aplastic anemia. 

Molecular identification of MiHA from patients transplanted for a metastatic solid 

tum or has not yet been reported. However, Tykodi et al.20 have described CD8+ CTL 

clones recognizing MiHA on RCC tumor cells that have been isolated from patients 

transplanted for metastatic RCC. They demonstrated that CTL clones from two 

different patients recognize the same MiHA. Though the gene encoding this MiHA 

was linked to chromosome 19q, they did not describe the molecular characterization 

of this MiHA yet. Dorrschuck et al.21 obtained RCC-reactive CTL from co-cultures 
of mixed lymphocytes with tum or cells. Using microcapillary liquid chromatography 

and MALDI-TOF spectrometry they identified an HLA-A*0301-associated non- 

polymorphic peptide, encoded by the ubiquitously expressed Eps-15 homology 

domain-containing 2 (EHD2) gene. Since EHD2 is broadly expressed in malignant 

and normal tissues, antigens encoded by this gene are no candidates for tumor- 

specific immunotherapy.

Recently, the first RCC-associated antigen, CT-RCC1, was identified using allogeneic 

T cells isolated from a patient treated with allogeneic SCT for metastatic RCC.22 The 

antigenic CT-RCC region is a part of the hum an endogenous retrovirus (HERV) 

type E locus. Interestingly, HERV-E is selectively expressed on RCC cells, but not on 

normal tissues including renal cells. However, CT-RCC is presented by HLA-A11 

which is only present in a minority of the population. Thus, until more solid tumor- 

associated antigens or solid tumor-specific MiHA are identified, hematopoietic 

restricted MiHA co-expressed on solid tumors represent very useful targets for 

immunotherapy.

Here, two different flow cytometry-based assays were used to study tum or cell 

recognition. Target cell death was determined with a cytotoxicity assay to study 

survival kinetics of tumor cells up to 3 days. Cytolytic activation of LRH-1-specific 

CTL was measured by levels of degranulation. We demonstrated that LRH-1+ cell 

lines were susceptible to LRH-1-specific CTL-mediated lysis. Especially, brain 

tum or cell line DAOY was very efficiently lysed by LRH-1-specific CTL. Lysis of
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melanoma cell line BLM and RCC cell line SKRC33 was significantly enhanced by 

pre-incubation of target cells with inflammatory cytokines IFNy and TNFa. P2X5 

mRNA expression was not up-regulated in response to inflammatory cytokines, 

as was previously demonstrated for MiHA BCL2A1 in non-hematopoietic cells.23 

However, cytokine stimulation generally resulted in an increase of HLA-B7 and CD54 

expression on tumor cells and higher levels of CD 107a expression on LRH-1-specific 

CTL. Therefore, these results suggest that presence of inflammatory cytokines results 

in an improved immunological synapse and better T cell activation, which leads to 

increased target cell lysis. Inflammatory cytokines are known to play a role in anti­

tum or immunity.24 The importance of an inflammatory environment was previously 

demonstrated in a GVT study in mice, in which secretion of IFNy was required for 

eradication of melanomas in vivo by MiHA-specific CTL. Release of IFNy resulted 

in inhibition of tum or angiogenesis and up-regulation of MHC class I expression on 

tum or cells.25 Importantly, we have demonstrated that P2X5 is selectively expressed 

in hematopoietic cells15 and a subset of solid tumor cells, but not in GVHD target 

tissues such as skin, liver and gut.15 In addition, here we show that cytokine treatment 

has an effect on improved lysis of solid tumor cells, whereas P2X5 expression remains 

undetectable in keratinocytes and very low in skin-derived fibroblasts in the presence 

of inflammatory cytokines.

Despite the lysis stimulating effect of inflammatory cytokines, partial lysis of RCC 

cell line SKRC18 could not be enhanced by cytokine pre-incubation. SKRC18 cells 

could only be efficiently lysed by LRH-1-specific CTL after exogenous loading with 

LRH-1 peptide. This may indicate that the P2X5 mRNA level, which was just above 

the threshold of 0.4 (Table 1), was not sufficient for complete lysis. In addition, 

SKRC 18 did not endogenously express HLA-B7 and HLA-B7 expression could not 

be up-regulated by cytokine pre-incubation. Another explanation may be a defect 
in intracellular antigen processing. Resistance to lysis due to defects in antigen- 

processing mechanisms was previously demonstrated for HA-1+ solid tum or cell 

lines.26 Miyazaki et al describe two HA-1H CTL-resistant cell lines, of which one cell 

line became susceptible to CTL-mediated lysis after cytokine treatment resulting 

in restoration of TAP-gene expression. Defects in antigen processing are important 

mechanisms for metastatic solid tumors to escape from immune-control and may 

limit the effectiveness of immunotherapy.27

In conclusion, our data show that the P2X5 gene, which encodes MiHA LRH-1, is 

aberrantly expressed in a subset of solid tum or cell lines and primary solid tumors.
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P2X5 expressing tumor types include RCC, melanoma, colorectal carcinoma, brain 

tum or and breast tumor. Notably, LRH-1+ tum or cells are susceptible to LRH-

1 CTL-mediated lysis as shown by flow cytometry-based cytotoxicity assays. This 

susceptibility may be strongly enhanced by the presence of inflammatory cytokines. 

Therefore, LRH-1 is an important addition to the panel of hematopoietic-restricted 

MiHA that are additionally expressed on solid tum or cells and can be exploited for 

post-transplantation GVT-specific immunotherapy.
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Abstract
Nonmyeloablative allogeneic stem cell transplantation (SCT) can induce remission 

in patients with renal cell carcinoma (RCC), but this graft-versus-tumor effect is of­

ten accompanied by graft-versus-host disease (GVHD). Here, we evaluated feasibil­

ity and minor histocompatibility antigen (MiHA)-specific T cell responses in four 

patients with metastatic RCC who were treated with reduced-intensity conditioning 

SCT (RIC-SCT) followed by donor lymphocyte infusion (DLI). Two of these patients 

did not develop GVHD and received DLI to boost graft-versus-tumor immunity. 

Interestingly, one patient had stable disease and the second patient experienced par­

tial regression of lung metastases. In the patient with stable disease, emergence of 

SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of tar­

geting SMCY-expressing RCC tum or cells. In the other patient with partial remis­

sion, a TCR-Vb4+CD8+ CTL clone emerged following DLI with the capability of 

targeting RCC cell lines. Functional analysis revealed that this CTL recognizes an 

HLA-B7-restricted MiHA, which is co-expressed by RCC as well as hematopoietic 

tum or cells. Furthermore, genotyping analysis for known HLA-B7 presented MiHA 

showed no mismatches, indicating that TCR-Vb4+CD8+ CTL recognizes a MiHA of 

yet unknown origin. These findings illustrate that partial T cell-depleted RIC-SCT 

can induce stable engraftment and MiHA-specific T cell responses in metastatic RCC 

patients. However, transplantation-related mortality and toxicity due to infections 

needs to be resolved before MiHA-based T cell immunity can be safely exploited for 

the benefit of patients with metastatic RCC.
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Introduction
Allogeneic stem cell transplantation (SCT) has become the treatment of choice for 

patients with various hematological malignancies and some studies have also shown 

that metastatic renal cell carcinoma (RCC) does respond to this therapy.1 Several 

studies have explored allogeneic SCT after nonmyeloablative or reduced intensity 

conditioning (RIC) with or without donor lymphocyte infusions (DLI) as curative 

treatment for metastatic RCC, and objective responses varied from 0% to 53%.2~5 

However, substantial transplantation-related mortality and toxicity due to graft- 

versus-host-disease (GVHD) have been observed in these trials. Therefore, further 

development of allogeneic SCT for solid tumors demands a more specific approach 

to selectively boost graft-versus-tumor (GVT) reactivity without enhancement of 

GVHD.

Minor histocompatibility antigens (MiHA) are the target antigens of the GVT re­

sponse, and expansion ofMiHA-specific cytotoxic T lymphocytes (CTL) usually pre­

cedes clinical remission of the malignancy in patients treated with DLI.6;7 However, 

alloreactive CTL responses induced upon DLI generally lack tumor specificity and 

are often accompanied by GVHD. Therefore, it would be highly beneficial to direct 

T cell immunity towards MiHA that are selectively expressed on solid tum or cells. 

Only a few tissue-restricted MiHA have been described that are aberrantly expressed 
on solid tumors, including HA-1S;9, ECGF-110, BCL2A111, LRH-1 and C19orf48.12 Of 

special interest is the HLA-A2-restricted MiHA C19orf48 since it was identified us­

ing CTL obtained from RCC patients with tum or regression after SCT.12 However, 

further characterization of the target antigens of alloreactive T cells on RCC tumor 

cells is of great importance for the development of specific post-transplant im m uno­

therapy for metastatic RCC.

Here, we report the clinical responses and MiHA-specific T cell responses in four 

patients with metastatic RCC treated with partial T cell-depleted RIC-SCT followed 

by DLL Presence of MiHA-specific CTL targeting RCC tumor cells in vitro could be 

demonstrated in two patients who experienced tumor regression or stable disease 

following RIC-SCT and DLI without clear evidence of GVHD. In one patient the 

T cell response was directed against the HLA-A2-restricted SCMY peptide FIDSY- 

ICQV, and in the other patient the response was directed against a yet unidentified 

HLA-B7-restricted MiHA. These results indicate that MiHA-specific T cell responses 

may occur after DLI without the induction of GVHD in RCC patients who are treat­

ed with partial T cell-depleted RIC-SCT.
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Materials and Methods
Patient eligibility
From December 2002 till August 2003, four consecutive patients with metastatic 

RCC have been included in a phase I feasibility study in which we studied im muno­

logic responses of partial T cell-depleted RIC-SCT followed by DLL The eligibility 

criteria for this study included histological proven, clinically progressive metastatic 

RCC, failure on earlier cytokine based systemic therapy and no other curative treat­

ment available. Further selection criteria were WHO performance status 0-1, avail­

ability of an HLA-identical sibling donor willing to serve as stem cell and lymphocyte 

donor, and normal organ functions. This study was approved by the Local Ethics 

Committee of Radboud University Nijmegen Medical Centre (RUNMC) and all pa­

tients gave written informed consent.

Conditioning regimen, GVHD prophylaxis and DLI
All patients received a partial T cell-depleted RIC-SCT. The conditioning regimen 

consisted of total lymph node irradiation (TLI) on each of three consecutive days 

followed by cyclophosphamide 50 mg/kg body weight intravenously on each of four 

consecutive days (total dose 200 mg/kg bodyweight). TLI consisted of mantle field, 

inverted Y-fields including the spleen and was given in an accelerated regimen. The 

inguinal and femoral lymph node regions were also irradiated. A total dose of 12 Gy 

was delivered in 2 Gy fractions, twice daily, on three consecutive days.

Donors were HLA-identical siblings. Three patients received bone marrow stem cells 

and one patient peripheral blood stem cells. For GVHD-prophylaxis, bone mar­

row grafts were depleted from T and B cells using an indirect method of anti-CD2 

and anti-CD 19 monoclonal antibodies combined with goat-anti-mouse magnetic 

beads in an Isolex 300i cell selection device (Nexell-Baxter, Irvine, CA, USA). One 

sibling donor donated peripheral blood stem cells and on this graft CD34 enrich­
ment with immunomagnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany) 

was performed. Following depletion or enrichment, CD3+ T cells were added back 

to generate a stem cell graft containing a fixed number of 0.5xl06 T cells/kg body 

weight of recipient. This procedure resulted in grafts containing a median number 

of 2.7xl06 CD34+ cells/kg and a median of 0.5xl06 T cells/kg. All patients received 

cyclosporine A (CsA) 3 mg/kg/day by continuous intravenous infusion from days -1 

to +14. Thereafter CsA dose was reduced to 2 mg/kg/day and continued until day 21. 

Beyond day 21, CsA was administered orally at a dose of 6 mg/kg/day for 8-10 weeks
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and tapered off thereafter.

Patients underwent CT-scan of abdomen and chest before, and every 3 months af­

ter RIC-SCT to assess disease response. Patients without acute GVHD grade >11, 

without chronic GVHD and with residual disease received DLI four weeks after dis­
continuation of immunosuppression. If no GVHD occurred and disease persisted, 

a second DLI was administered two months later. The first DLI dose was 0.1x10s T 

cell/kg bodyweight of the recipient, and the second DLI dose was 0.7 x 10s T cells/kg.

Isolation of PBMC subsets and chimerism analysis
Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque den­

sity gradient centrifugation (Pharmacia, Uppsala, Sweden). T cells, NK cells, myeloid 

blood dendritic cells (mDC), plasmacytoid blood DC (pDC) and monocytes were 

isolated from the PBMC as described before.13 Real-time quantitative PCR of single 

nucleotide polymorphisms (SNP) and/or the SMCY gene was used for the quantifi­

cation of donor and recipient hematopoietic cells as described previously.1446 Briefly; 

recipient/donor pairs were screened for discriminating SNPs. Quantification is based 

on real-time PCR with allele-specific primers for DNA-sequences containing the dis­

criminating SNP and target DNA-specific probes. The sensitivity of this method for 

the demonstration of a minor population is 0.1% to 0.5%, depending on the purity 

of the sorted population. Analysis of chimerism in T cells was performed in all four 

patients. Chimerism in other subsets of cells (i.e. NK cells, monocytes, mDC and 

pDC) was assessed in two RCC patients who were treated with DLL

Cell isolation and culture
CD8+ CTL lines H and B were isolated from PBMC obtained one and three months 
after DLI-1, respectively, by weekly stimulation with PBMC obtained before SCT 

in Iscove’s modified Dulbeccos medium (IMDM) (Invitrogen, Carlsbad, Califor­

nia) supplemented with 10% hum an serum (HS; Sanquin blood bank, Nijmegen, 

the Netherlands). After initial stimulation, CTL line H, CTL line B and the HLA- 

B7 alloreactive CTL K orl8 (kindly provided by Prof. dr. E. Goulmy, Department of 

Immunohematology, Leiden University Medical Center, The Netherlands) (0.5*106) 

were cultured in IMDM/10% HS containing irradiated (80 Gy) recipient EBV-LCL 

(0.5*106), irradiated (60 Gy) allogeneic PBMC (0.5*106) from two donors, 100 IU/ 

ml IL-2 (Chiron, Emeryville, CA) and 1 Hg/ml PHA-M (Boehringer, Alkmaar, the 

Netherlands). CTL lines were used in cytotoxicity and stimulation assays either 7
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days after stimulation or 1 day after thawing a frozen aliquot. All cell lines and prim a­

ry cells were cultured in IMDM/10% FCS. EBV-LCL from the CEPH families were 

provided by Dr. P. M artin (Department of Immunology Fred Hutchinson Cancer 
Research Center, Seattle, Washington, USA) or purchased from the Coriell Institute 

for Medical Research (Camden, NJ). SKRC cell lines were kindly provided by Dr. E. 

Oosterwijk (Department of Urology, RUNMC, The Netherlands).

IFNy secretion assay
IFNy producing CTLs were detected and isolated using the IFNy secretion assay 

(Miltenyi Biotec). Briefly, lxlO6 CTLs were incubated in a 24-well plate with lxlO 6 ir­

radiated (30 Gy) recipient EBV-LCL in a total volume of 2 mL IMDM/10% HS. After 

16 hours of incubation at 37°C, cells were harvested, washed with PBS plus 0.5% FCS 

and 5mM EDTA, and labeled at a concentration of 10s cells/ml with 50 |ig/ml Ab-Ab 

conjugates directed against CD45 and IFNy for 10 minutes on ice. Subsequently, cells 

were diluted with IMDM/10% FCS at 1x10s cells/ml and allowed to secrete IFNy for 

45 minutes at 37°C. After the cytokine-capturing period, cells were collected, resus­

pended at a concentration of 10s cells/ml in PBS/0.5% FCS/5 mM EDTA, and stained 

with 5 |ag/ml PE-conjugated anti-IFNy mAb and FITC-conjugated CD8 mAb for 20 

minutes at 4°C. Finally, cells were analyzed and isolated by cellsorting using an Epics 
Elite flow cytometer (Beckman Coulter, Fullerton, California).

Flow cytometry
CTL were phenotyped using a panel of TCR-Vb-specific, CD8 (LT8) (Proimmune, 

Oxford, UK) and CD3 (UCHT1) monoclonal antibodies (Beckman Coulter). After 

washing, cells were resuspended in PBS/0.5%BSA and analyzed using the Coulter 
FC500 flow cytometer (Beckman Coulter). PE- and APC-labeled SMCY.A2 tetram- 

ers containing HLA-A2-restricted peptide FIDSYICQV were produced as described 

previously.17. PE-labeled tetramers for the HLA-A2-restricted EBV peptide GLCTL- 

VAML were purchased from Beckman Coulter. PBMC or CTL lines were incubated 

with 20 |ag/ml tetramer for 15 min at room temperature. After washing with PBS/0.5% 

BSA, cells were labeled with AlexaFluor700-conjugated CD8 (Invitrogen) in combi­
nation with FITC-conjugated CD4, CD 14, CD 16 and CD 19 (Beckman Coulter) for 

30 min at 4°C. Finally, cells were washed and resuspended in PBS/0.5% BSA contain­
ing 0.2 |jM Sytox Blue marking dead cells and analyzed using the Cyan flow cytom­

eter (Beckman Coulter). Tetramer staining using both APC and PE showed double
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positive events, allowing to discriminate optimal between background staining and 

positive cells. All FITC-positive cells were gated into a dump channel and were ex­

cluded from further analysis.

Retroviral transduction of HLA-B*0702 in cell lines and CTL stimulation assay 
HLA-B*0702 cDNA (provided by Prof. dr. E. Goulmy) was subcloned in the LZRS- 

IRES-EGFP vector. The resulting LZRS-HLA-B*0702-IRES-EGFP vector was used 

to generate a stable producer cell line. Retroviral transduction was performed using 

non-tissue culture-treated 35-mm2 dishes (Becton Dickinson) coated with 10 |ig/ 

ml retronectin (Takara Biomedicals). In brief, 106 target cells were resuspended in

2 ml vims supernatant and transferred to retronectin-coated dishes. After 24 h of 

incubation, cells were collected and incubated with fresh virus supernatant. Finally, 

transduced cells were cultured for 5 additional days before use in CTL stimulation 

assays as described previously.18 Release of IFNy was determined by ELISA (Pierce 

Endogen, Rockford, IL).

Table 1: Patient characteristics

Patient Age/sex Histology Métastasés Previous therapy

UPN 651 57/M Clear cell Lung and mediastinum IFN-a

UPN 677 53/M Papillary Soft; tissue IL-2, G250 mAb and RT (2 

cycles )

UPN 705 60/M Clear cell Lung, lymph node, thyroid, 

soft tissue

IFN-a with 6 Retinoic acid 

and resection of métastasés

UPN 686 49/M Clear cell Lung IL-2, IFN-a, 5FU (2 cycles) 

and dendritic cell 

vaccination

IFN-a indicates interferon-a; IL-2 indicates interleukin-2, G250 mAb indicates monoclonal antibody 

against G250; RT indicates radiotherapy; 5FU indicates 5-fluorouraciI.

Flow cytometry-based cytotoxicity studies
Flow cytometry-based cytotoxicity assays were performed as previously described19 

with minor adaptations. HLA-B7+ cell lines were labeled with 2.5 |iM carboxyflu-
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orescein diacetate succimidyl ester (CFSE; Molecular Probes Europe, Leiden, The 

Netherlands). Alternatively, HLA-B7- cell lines were retrovirally transduced with 

LZRS-HLA-B*0702-IRES-EGFP as previously described and used as targets without 

CFSE-labeling. Target cells (lx lO 4) were co-cultured with unlabelled effector cells 

(3x l04) at an E:T ratio of 3:1 in a total volume of 200 |il IMDM/10% FCS containing 

25 U/ml IL-2 in 96-wells flat-bottom plates. After 1-3 days of co-culture, cells were 

harvested and 7-amino-actinomycin D (7AAD; Sigma-Aldrich, St Louis, MO) was 

added. Numbers of viable target cells were quantified by flow cytometry.

Results

Clinical description of transplanted RCC patients
Four patients with progressive metastatic RCC after treatment with at least one line 

of systemic therapy were treated with RIC-SCT (Table 1). Three patients had a clear 

cell and one patient had a papillary cell pathological subtype. The age of these four 

patients ranged from 49 to 60 years. All patients had undergone a tum or nefrectomy 

at a median of 4.9 years (range 2.8-11.1 years) before transplantation. No autologous 

RCC cell lines were available from the four included patients.

All four patients had donor-engraftment after RIC-SCT. The median time to reach 

leukocytes >1.0 x 109/L was 13 days (range 9-14 days), and the median time to reach a 

number of platelets > 20 x 109/L was 11 days (range 9-17 days), although one patient 

did not recover without transfusions. Only one patient (UPN 705) developed acute 

GVHD grade II after early discontinuation of CsA because of multi-organ failure 

including renal failure (Table 2). Furthermore, another patient (UPN 651) developed 

limited chronic GVHD. Two patients (UPN 677 and UPN 686) did not develop acute 

or chronic GVHD, and received DLI after discontinuation of immunosuppression 

with CsA. Patient UPN 677 was treated with two DLIs of 0.1 and 0.7xl08 T cells/kg, 

respectively, and UPN 686 received one DLI of 0.1 xlO8 T cells/kg.

The survival after RIC-SCT of these four patients was 1.3, 5.0, 8.5 and 8.8 months, 

respectively (Table 2). Our first patient (UPN 651) presented with cerebral metas- 

tases shortly after RIC-SCT, and was treated with dexamethasone and radiotherapy. 

This patient died five months after RIC-SCT from progressive meningo-encephalitis 

during treatment with corticosteroids because of chronic GVHD and cerebral metas- 

tases. Patient UPN 705 developed multi-organ failure shortly after allografting and 

died from this cause one m onth after RIC-SCT, before the first evaluation of disease
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response. The two patients who received DLI achieved a stable disease and a partial 

remission of pulmonary métastasés, respectively

Table 2: T cell Chimerism, GVHD, DLI and outcome

Patient T cell chimerism (% recipient cells ) GVHD

acute

GVHD

chronic
DLI(xl0a 
T cells/kg)

Outcome

d+30 d+60 d+90 Before
DLI

After
DLI

UPN 651 3% 1% 2% na na no limited No PD, died from 
meningo-encephalitis 
during dexamethasone 
(5 months)

UPN 677 6% 1% 1% 0% 0% no no 0.1
0.7

SD, died from CMV- 
pneumonitis 
(8.5 months)

UPN 705 0% na na na na gr II na No NE, died from multi­
organ failure (1.3 
months)

UPN 686 7% 47% 43% ne 0% no no 0.1 PR, died from invasive 
fungal infection (8.8 
months)

Abbreviations: GVHD, graft-versus-host-disease; DLI, donor lymphocyte infusion; PD, progressive dis­

ease, SD stable disease; NA, not applicable; NE, not evaluated; PR partial remission.

The first evaluation in patient UPN 677 at three months after RIC-SCT showed stable 

disease, which was paralleled by expansion of CD8+ T cells during tapering off CsA 

(figure la ). However, one month later this patient developed encephalopathy, which 

was attributed to EBV-reactivation. PCR for EBV was positive in peripheral blood 

(200 and 400 copies/ml) and liquor (2,000 copies/ml). CT-scans of chest, abdomen 

and cerebrum showed no lymphadenopathy. DLI (0.1 x 10s T cells/kg) was already 

scheduled and administered to reconstitute anti-viral T cell immunity at five months 
after RIC-SCT. Following this first DLI, circulating EBV-specific CD8+ T cells could
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be detected up to 11 weeks using tetramers against the GLCTLVAML epitope (Figure 

la). The patient recovered from the encephalopathy and EBV-PCR became nega­

tive. At seven months after RIC-SCT a second DLI (0.7x10s T cells/kg) was adminis­

tered and the tum or remained stable without occurrence of GVHD. However, at 8.5 

months after RIC-SCT, patient UPN 677 developed progressive dyspnoe and died 

from CMV-pneumonitis. Post-mortal examination showed CMV-pneumonitis, but 

no signs of GVHD.

Patient UPN 686 developed Candida blood stream infection 2 weeks after RIC-SCT, 

which recovered upon treatment with Fluconazole. Interestingly, evaluation of dis­

ease response 3 months after RIC-SCT showed regression of the three pulmonary 

metastases. This patient received DLI (0.1x10s T cells/kg) at 3 months after RIC-SCT 

(.Figure lb ). Three months later (i.e. 6 months after RIC-SCT) CT-scan evaluation 

showed stable disease. Unfortunately, this patient died from invasive fungal infection 

9 months after RIC-SCT despite treatment with Fluconazole and caspofungin. Post­

mortal examination showed multiple histological confirmed fungal lesions in lungs, 

liver, spleen and kidney. Furthermore, two lesions, each of 1 cm with vital tumor 

cells, were found in the lungs but no signs of GVHD.

Clinical evidence for alloreactivity towards host cells
All patients eventually achieved complete donor chimerism in the T cell fraction 

(Table 2). UPN 705 was complete donor chimera in T cells at 30 days after RIC- 

SCT, whereas UPN 651, 677 and 686 were mixed chimeric with only 3%, 6% and 7% 

recipient T cells, respectively. In patient UPN 677 the fraction recipient T cells fur­

ther declined and converted to complete donor T cell chimerism before DLI, which 

was given on day 141 (Figure la ). In contrast, myeloid DC and monocytes remained 

mixed chimeric with 25-75% recipient cells until conversion to complete donor at 

day 141 before DLI (Table 3). A different chimerism pattern was observed in patient 

UPN 686 (Table 2 and 3). This patient was mixed chimeric with around 45% recipi­

ent T cells at 60 and 90 days after RIC-SCT, while percentages of recipient myeloid 

DC and monocytes were only 8% and 6%, respectively. Interestingly, both T cells 

and APCs had converted to complete donor chimerism 3 months after DLL Fur­

thermore, the conversion to complete donor chimerism occurred in both patients 

without signs of GVHD.
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Figure 1: Longitudinal follow-up of CD8+ T cells in peripheral blood from metastatic RCC patients 

UPN 677 and 686 in relation to clinical outcome, (a) Patient UPN 677: the percentages of recipient T 

cells (right y axis) are compared with the CD8+ T cell count x lO 6 per liter peripheral blood (left y axis). 

Administration of SCT and DLI 1-2 are indicated by ▲  and ▼, respectively. Treatment interval with CsA 

is shown by the dotted line. Time points of confirmed EBV infection, occurrence of EBV-specific T cells 

(depicted as %  from total CD8+ T cell population) and death are indicated, (b) Patient UPN 686: the 

percentages of recipient T cells (right y axis) are compared with the CD8+ T cell count x lO 6 per liter 

peripheral blood (left y axis). Administration of SCT and DLI are indicated by ▲  and ▼, respectively. 

Treatment interval with CsA is shown by the dotted line. Time points of confirmed candidemia and 

death are indicated.

In parallel, reconstitution of lymphocyte subsets was studied in both RCC patients 

treated with DLI (i.e. UPN 677 and UPN 686). Total CD3+ T cells recovered to normal 

values at two months. However, the CD3+ T cell fraction consisted predominantly
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of CD8+ T cells, and CD4+ T cell counts did not recover to pre-transplantation val­

ues during follow-up (data not shown). Patient UPN 686 showed two expansions of 

CD8+ T cells after RIC-SCT (Figure lb ). The first expansion occurred during taper­

ing of CsA and before the first DLL This expansion correlated in time with regression 

of pulmonary metastases. The second CD8+ T cell expansion began 23 weeks after 

RIC-SCT and nine weeks after DLI, respectively. Patient UPN 677 also showed two 

expansions of CD8+ T cells after RIC-SCT (Figure la ). The first occurred 9 weeks 

after RIC-SCT also during tapering of CsA. A second expansion of CD8+ T cells 

was observed 28 weeks after RIC-SCT and eight weeks after DLL Collectively, the 

chimerism kinetics and expansions of CD8+ T cells were indicative for T cell allore- 

activity towards hematopoietic cells, but episodes with viral infections may interfere.

Table 3: Chimerism in myeloid dendritic cells and monocytes

Patient Myeloid dendritic cell chimerism 

(% recipient cells)

Monocyte chimerism 

(% recipient cells)

d+30 d+60 d+90 Before DLI After DLI d+30 d+60 d+90 Before DLI After

DLI

UPN 677 37% 31% 75% 1% 0% 25% 36% 40% 0% 0%

UPN 686 2% 8% nd nd 0% 2% 6% 7% nd 3%

Assessing for alloreactive MiHA-specific CD8+ CTL after transplantation
Because objective signs of T cell alloreactivity were present in RCC patients UPN 677 

and UPN 686, we investigated whether MiHA-specific CD8+ T cells targeting RCC 

tum or cells could be isolated from these patients. Therefore, we stimulated CD8+ T 

cells obtained 4 weeks and 12 weeks, respectively, after the first DLI with irradiated 

recipient PBMC obtained pre-SCT. After two restimulations in the presence of IL-

2, the specificity of the obtained T cell lines was tested in an IFNy secretion assay. 

We detected approximately 2% IFNy-secreting CD8+ T cells in both T cell cultures 

(Figure 2a). These IFNy+ CD8+ T cells were sorted by flow cytometry and weekly 

restimulated with irradiated recipient EBV-LCL. The resulting CD8+ T cell lines, 

termed CTL line H (from UPN 677) and CTL line B (from UPN 686), displayed 

significant IFNy production against recipient EBV-LCL, but not towards donor EBV-
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LCL, indicating the recognition of disparate MiHA (Figure 2b). These data indicate 

that MiHA-specific CD8+ T cells were present in vivo in RCC patients UPN 677 and 

UPN 686 following allogeneic RIC-SCT and DLL

Emergence of SMCY-specific CTLs in a RCC patient after DLI
Next, we determined whether CTL line H contained dominant T cell populations us­

ing TCR-Vb PCR and flow cytometry. This analysis revealed TCR-Vbl+CD8+ cells 

to be the dominant T cell population in CTL line H (data not shown). In parallel, we 

performed functional assays to determine HLA-restriction and phenotype frequency 

of the recognized MiHA. Specific IFNy production by CTL line H was substantially 

inhibited by anti-HLA class I and anti-HLA-A2 antibodies, but not by antibodies 

against anti-HLA-B/C and anti-HLA class II (Figure 3a). Furthermore, testing EBV- 

LCL from unrelated HLA-A2+ individuals revealed that 3 out of 9 individuals were 

recognized, which were all of male origin (Figure 3b). These observations suggest 

that the dominant TCR-Vb 1+CD8+ T cells in CTL line H recognize an HLA-A2- 

restricted HY antigen.

So far, only one HLA-A2-restricted Y chromosome-encoded MiHA has been identi­

fied, which is the SMCY.A2 epitope FIDSYICQV. Therefore, we stained CTL line 

H with PE- and APC-conjugated SMCY.A2 tetramers and found around 12.5% te- 

tramer+ CD8+ T cells (Figure 3c). These SMCY.A2 tetramer+ T cells confirmed to be 
TCR-Vbl+ by flow cytometry (data not shown). A greater than 95% pure population 

of SMCY.A2 tetramer+ CTLs was isolated by flow cytometry allowing further char­

acterization of its cytotoxic potential (Figure 3c). Flow cytometry-based cytotoxicity 

assays revealed that the TCR-Vb 1+ SMCY.A2 CTL induced high levels of cytotoxic­

ity against HLA-A2+ peptide-loaded HY- donor EBV-LCL as well as HY+ recipient 

EBV-LCL (Figure 3d).

To evaluate for SMCY.A2-reactive CD8+ T cells in vivo, PBMC of patient UPN 677 

collected post DLI-1 were stained with SMCY.A2 tetramers. This analysis showed 

that SMCY.A2-specific CD8+ T cells became detectable in the post-DLI setting (Fig­

ure 3e), constituting 3.6%, 2.1% and 2.4% of the CD3+CD8+ T cell population col­

lected at week +24, +28 and +31, respectively. Collectively, these data show that 

SMCY.A2 CD8+ T cells expanded in RCC patient UPN 677 after DLI with the poten­

tial of targeting SMCY-expressing RCC tumor cells in the absence of GVHD.
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Figure 2: Generation of M i H A-reactive CD8+ CTL lines from patients with RCC after allogeneic RIC- 

SCT. (a) Detection of IFNy-secretlng CD8+ T cells In T cell lines generated from patient UPN 677 and 

UPN 686 after co-culture with EBV-LCL of the recipient. Stimulated T cells were stained with PE-con- 

jugated IFNy detection reagent and FITC-conjugated antl-CD8 mAb, and analyzed by flow cytometry, 

(b) Production of IFNy by CTL lines FI and B upon stimulation with recipient (Rt) EBV-LCL, donor (Do) 

EBV-LCL or medium. Data are displayed as mean IFNy release ± SD of triplicate wells.

Expansion of TCR-Vb4+CD8+ cells targeting an HLA-B7-restricted MiHA after DLI
Similarly, we determined the dominant T cell populations in CTL line B using TCR 

receptor analysis. PCR and flow cytometry showed a predominant TCR-Vb4+CD8+ 

cells in CTL line B (data not shown). Subsequently, TCR-Vb4+CD8+ cells were sorted 

and cultured resulting in pure population of more than 95% (Figure 4a). This TCR- 

Vb4+CD8+ CTL, designated CTL Bl, mediated specific IFNy production against 

recipient EBV-LCL, but not towards donor EBV-LCL (Figure 4b). Release of IFNy 

could be completely inhibited by anti-HLA class I and anti-HLA-B/C antibodies, but 

not by antibodies against anti-HLA-A2 and anti-HLA class II (Figure 4b). Testing of 
EBV-LCL from unrelated individuals sharing expression of HLA-B7 with the recipi­

ent, and EBV-LCL from an HLA class I-mismatched individual that were transduced

1 6 7



RCC-reactiveT cell responses after stem cell transplant

with HLA-B*0702, revealed that CTL B1 recognizes an HLA-B7-restricted MiHA 

(.Figure 4c). Genotyping analysis of recipient UPN 686 and his transplant donor for 

known MiHA presented by HLA-B7 (i.e. LRH-1, ECGF, and UGT2B17) showed no 

mismatches, indicating that TCR-Vb4+CD8+ CTL B1 recognizes a novel HLA-B7- 

restricted MiHA.
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Figure 3: CD8+ T cells reactive with the SMCY.A2 peptide developed after DLI in RCC patient UPN 

677. (a) HLA-restrlction was determined by the production of IFNy released by CTL line FI upon stimu­

lation with recipient EBV-LCL in the presence of FI LA blocking antibodies. Data are displayed as mean 

IFNy release ± SD of triplicate wells, (b) Production of IFNy by CTL line FI stimulated with EBV-LCL of 

9 FILA-A2+ unrelated individuals, showing recognition of 3 out of 9 EBV-LCL of only male origin. Data 

are displayed as mean IFNy release ± SD of triplicate wells, (c) Flow cytometry analysis of CD8+ CTL 

line FI simultaneously stained PE- and APC-conjugated SMCY.A2 tetramer, CD8 AlexaFluor 700, CD4, 

CD14, CD16 and CD19 FITC and Sytox Blue. CD8+ T cells were gated on FITC- and Sytox Blue- cells. 

The percentage of SMCY.A2 tetramer-blnding cells among viable CD8+ T cells was 12.76%. These 

SMCY.A2 tetramer+ CD8+ T cells were sorted and expanded resulting In a >95% pure population, (d) 

Specific reactivity of SMCY.A2-speclfic CTL from patient UPN 677 against recipient (Rt) and donor 

(Do) EBV-LCL, and donor EBV-LCL pulsed with peptide FIDSYICQV. (e) Detection of SMCY.A2-speclfic 

CD8+ T cells In peripheral blood of RCC patient UPN 677. PBMC collected 167, 195 and 215 days 

post DLI-1 were simultaneously stained with PE- and APC-conjugated SMCY.A2 tetramer, CD8 Alex­

aFluor 700, CD4, CD14, CD16 and CD19 FITC and Sytox Blue. Subsequently, cell populations were 

analyzed by flow cytometry. Cells were gated on CD8+FITC-Sytox Blue- lymphocytes, and the percent­

age of tetramer-bindlng cells among CD8+ T cells Is depicted In the dot plots.

To investigate whether the MiHA targeted by CTL B1 is expressed by RCC tumor 

cells, we performed flow cytometry-based cytotoxicity assays, which facilitates deter­

mination of target cell proliferation and death by both rapid and more slowly T cell 

effector mechanisms.19 Using this in vitro assay, we observed that CTL B1 efficiently 

lysed recipient EBV-LCL, whereas no cytotoxicity was observed against donor EBV- 

LCL (Figure 5a). Interestingly, regarding the RCC tum or cell lines, we observed that 

CTL B1 significantly targets the HLA-B7+ RCC cell lines SKRC24 and SKRC33 (Fig­

ure 5b). In addition to these RCC cell lines, we also analyzed several cell lines from 

other tum or types. This analysis revealed that CTL B1 also recognizes and kills HLA- 

B7+ brain cancer cells (DAOY cell line), multiple myeloma cells (UM1 cell line) and 

AML cells (THP-1 cell line) (Figure 5c). Allo-HLA-B7-specific CTL lysed efficiently 

all solid and hematological tum or cell lines tested (Figure 5b and c). Finally, to evalu­

ate for TCR-Vb4+CD8+ CTL B1 in vivo, PBMC of patient UPN 686 collected up to 

20 weeks post-DLI were co-stained with anti-CD8 and anti-Vb4 antibodies. Flow 

cytometric analysis showed that TCR-Vb4+ CD8+ T cells could be detected at 2 ,4 ,9 , 

13 and 20 weeks post-DLI (Figure 6).
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These data show that TCR-Vb4+CD8+ CTL B1 emerged in RCC patient UPN 686 

following DLI with the capability of targeting RCC metastases in the absence of 

GVHD.

Figure 4: Detection of RCC-reactive CD8+ T cells in peripheral blood of RCC patient 686 after DLI.

(a) Flow cytometry analysis of CTL B1 showing a >95% pure population of CD8+TCR-Vb4+ T cells.

(b) HLA-restriction was determined by the production of IFNy released by CTL B1 upon stimulation 

with recipient EBV-LCL in the presence of FILA blocking antibodies. Data are displayed as mean IFNy 

release ± SD of triplicate wells, (c) Production of IFNy by CTL B1 stimulated with recipient EBV-LCL, 

EBV-LCL of an unrelated individual (#2) sharing FILA-B7 with the recipient, and an EBV-LCL of an 

FILA class l-mismatched individual (#3) that was transduced with FILA-B*0702. Data are displayed as 

mean IFNy release ± SD of triplicate wells.
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Figure 5: Cytotoxicity of CD8+TCR-Vb4+ CTL B1 against RCC and hematological tumor cell lines. 

Survival of target cell lines in flow cytometry-based cytotoxicity assays was determined after incubation 

with CTL B1 (■), allo-HLA-B7 CTL (▼; positive control) or medium only (• ) in the presence of 25 U/ 

ml IL-2. Survival of viable CFSE-labeled target cells is shown from (a) donor and recipient EBV-LCL, (b) 

the HLA-B7+ RCC cell lines SKRC24 and SKRC33, and (c) the HLA-B7+ brain tumor cell line DAOY, 

AML cell line THP-land multiple myeloma cell line UM1 in the absence or presence of CTLs at an E:T 

ratio of 3:1. Data are depicted as mean ± SD of triplicate wells.
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Discussion
This feasibility study evaluated the clinical and immunologic responses of patients 

with metastatic RCC treated with partial T cell-depleted RIC-SCT followed by DLL 

All four patients achieved complete donor engraftment that was preceded by mixed 

chimerism in two patients. One patient converted to complete donor chimerism after 

discontinuation of immunosuppression and one patient became complete donor chi­

meric after DLL Patterns of donor engraftment differed between these two patients, one 

patient showed first T cell-engraftment and the other patient rapid myeloid engraft­

ment. These differences may be related to the baseline level of immunosuppression. 

Chimerism analysis in patients treated with fludarabine-cyclophosphamide as con­

ditioning followed by non T cell-depleted grafts has demonstrated rapid T cell-en- 

graftment followed by more gradual myeloid engraftment.20

Figure 6: Detection of CD8+TCR-Vb4+ T cells in peripheral blood of RCC patient UPN 686. PBMC 

collected 2, 4, 9, 13 and 20 weeks post DLI were stained with anti-TCR-Vb4 PE, CD8 AlexaFluor 700, 

CD4, CD14, CD16 and CD19 FITC and Sytox Blue. Subsequently, cell populations were analyzed by 

flow cytometry. Cells were gated on CD8+FITC-Sytox Blue- lymphocytes, and the percentage of TCR- 

Vb4+ cells among CD8+ T cells is depicted in the dot plots.
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The occurrence of GVHD was limited in this pilot study. None of the patients de­

veloped aGVHD >grade II or extensive chronic GVHD. Earlier studies with T cell 

replete RIC-SCT have shown that approximately half of the patients develop grade

II-IV aGVHD .2;4;5;2125 Two patients without GVHD were treated with DLI without 

development of GVHD. One of these patients had stable disease and the second pa­

tient showed regression of pulmonary metastases. Response rates in earlier studies 

ranged from 0-53%.2;4;5;25 Although previous studies have shown promising results 

with complete responders, no objective responses were observed in a subsequent 

multicentre study.26 In our study, transplantation-related mortality was high despite 

the low incidence of GVHD. Two patients died from infectious complications and 

one patient died from multi-organ failure. A causative role in this unfavorable out­

come for the treatment with immune-modulating agents before and the tumor bur­

den at the time of RIC-SCT cannot be excluded.

It has been recognized that alloreactive T cell responses are essential in the GVL ef­

fect in hematological malignancies. Also for solid tumors, donor T cells are thought 

to play a crucial role in GVT immunity. In this study, we demonstrate emergence 

of SMCY.A2-specific CTL in RCC patient UPN 677 after DLI without the clinical 

manifestations of GVHD. Furthermore, flow cytometry-based cytotoxicity assays re­

vealed that the SMCY.A2 CTL induced high levels of cytotoxicity against HLA-A2+ 

HY+ target cells. Interestingly, Hambach et al. showed that SMCY.A2-specific CTL 

are capable to efficiently target solid tumor cells in a three-dimensional micro tumor 

model.27 Therefore, our clinical findings suggest that emergence of SMCY.A2 CTL 

may have played a role in the stabilization of tumor growth after allogeneic SCT and 

DLI in patient UPN 677. However, we did not study the quantitative contribution of 

this SMCY.A2 CTL in comparison to other MiHA-specific CTL in the conversion of 

chimerism and potential tum or stabilization. Several reports have shown that pa­

tients responding after allogeneic SCT contain tumor-reactive T cell clones directed 

against multiple MiHA .28;29 Interestingly, high numbers of SMCY.A2 CD8+ T cells 

up to 3.6% of the total CD8+ T cell population in patient UPH 677 did not induce 

clinical signs of GVHD to either skin, liver or gut. Earlier studies have shown that 

SMCY is ubiquitously expressed, and SMCY-specific CTL responses have been asso­

ciated with GVHD.30;31 However, GVHD is a multifactorial disease process to which 

many factors contribute, and we speculate that lack of other inflammatory triggers 

prevented the development of acute GVHD.

In addition, we isolated a TCR-Vb4+CD8+ CTL, designated CTL Bl, targeting a
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novel HLA-B7-restricted MiHA from RCC patient UPN 686. This CTL B1 emerged 

after DLI at the time of conversion of chimerism. Flow cytometry-based cytotoxic­

ity assays revealed that TCR-Vb4+CD8+ CTL B1 mediated efficient lysis of HLA- 

B7+ RCC cell lines. Unfortunately we could not test cytotoxicity against autologous 

RCC-tumor cells, since autologous tum or material was not available. In addition to 

recognition of allogeneic RCC cell lines, CTL B1 also mediated cytotoxicity against 

HLA-B7+ brain tumor, multiple myeloma and AML cell lines. These data indicate 

that the HLA-B7-restricted MiHA recognized by TCR-Vb4+CD8+ CTL B1 is co­

expressed by solid tumor and hematopoietic cell types. More detailed knowledge 

about the tissue distribution and specificity of this novel HLA-B7 presented MiHA 

awaits molecular identification of the encoding gene.

Furthermore, the discovery of antigenic targets of alloreactive T cells in transplant­

ed RCC patients may allow the development of tumor-specific posttransplantation 

strategies such as vaccination or adoptive T cell transfer. Two earlier studies have 

identified target antigens at the molecular level using CD8+ CTL isolated from pa­

tients with metastatic RCC treated with allogeneic SCT. Tykodi et al. identified an 

HLA-A*0201-restricted MiHA, which is encoded by the C19orf48 gene located on 

chromosome 19ql3.12 In addition, recognition of the HERV-E antigen by alloreac­

tive T cells was described by Takahashi et al. 32 Not only tumor-specific MiHA are 

interesting for these purposes, but also hematopoietic-restricted MiHA with aber­

rant expression in tumor cells may be useful for this strategy. Aberrant expression 

of hematopoietic-restricted MiHA by solid tumor cells has been observed for HA-1, 
ECGF-1, BCL2A1 and LRH-1.841 Interestingly, adoptive transfer of a single dose of 

HA-1 CTLs was effective in eradicating disseminated tumors in a mouse model.27 

The feasibility of adoptive immunotherapy with ex vivo-generated HA-1-specific 

CTLs has also been studied in patients with leukemia.33 Alternatively to adoptive 

transfer of MiHA-specific CTLs, patients could be vaccinated with peptides or DCs 

loaded with peptides or electroporated with MiHA-encoding mRNA. The use of 

mRNA-electroporated DC to stimulate MiHA-specific T cell responses ex vivo has 

been recently explored by us with LRH-1 encoding P2X5 mRNA.34 This study indi­

cated that in LRH-1 + patients transplanted with LRH-1- donors the GVT response 
can be enhanced with DC electroporated with LRH-1 encoding mRNA. However, the 

potency of MiHA-based immunotherapy has to be further explored in clinical trials. 

Currently, the role of allogeneic RIC-SCT for the treatment of metastatic RCC pa­

tients is still unclear. New developments in the treatment of metastatic RCC have
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significantly changed the treatment strategies for these patients.35 38 However, these 

novel drugs do not cure patients and the incidence of complete remissions is low. 

Therefore new strategies should continue to be explored, and adoptive cellular ther­

apy remains a promising option.

In conclusion, we describe the engraftment, clinical responses and T cell responses 

after partial T cell-depleted RIC-SCT followed by DLI in patients with metastatic 

RCC. Our transplant procedure resulted in stable engraftment, manageable GVHD 

and objective clinical responses in two patients. SMCY-specific CD8+ T cells were 

identified in a patient with stable disease, and CD8+ T cells targeting a novel HLA- 

B7-restricted MiHA in the second patient with partial regression. Although the role 

of allogeneic RIC-SCT in RCC may be limited in the near future, this study shows 

that the approach of partial T cell-depleted SCT followed by DLI induces MiHA- 

specific T cell responses potentially targeting RCC tum or cells. Furthermore, the 

identification of antigenic targets of alloreactive T cells remains most important for 

a further understanding of the GVT response and for development of strategies to 

target tumor cells selectively after allogeneic SCT.
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Chapter 8

Summary and general discussion
Allogeneic stem cell transplantation (SCT) is an established treatment modality for 

several hematologic malignancies. The curative effect of allogeneic SCT is mediated 

by the graft-versus-tumor (GVT) response, an immune reaction of donor-derived T 

cells recognizing minor histocompatibility antigens (MiHA) on malignant cells of 

the recipient. Unfortunately, this beneficial GVT response is often accompanied by 

graft-versus-host-disease (GVHD), which is an allo-immune reaction against skin, 

mucosa (gastro-intestinal tract, eyes and lung) and liver. Complete or partial deple­

tion of T cells from the stem cell graft is an effective method to reduce GVHD in the 

setting of myeloablative conditioning. Earlier studies have shown that partial T cell 
depletion followed by pre-emptive post-transplantation immunotherapy with donor 

lymphocyte infusion (DLI) is effective to prevent relapses after allogeneic myeloabla­

tive SCT in high risk patients.1 However, the efficacy of DLI varies among different 

hematological malignancies. DLI results in complete molecular remission in 70-80% 

of patients with a relapse of CML in chronic phase, but patients with relapsed leuke­

mia or MM respond in only 10-40% of cases. The mechanisms responsible for the 

different DLI-mediated anti-tumor responses between various disease types are still 

not completely understood and further identification of these mechanisms may help 

to develop new strategies of post-transplantation immunotherapy. Antigen present­

ing cells (APC) play an important role in the initiation of alloreactive CD8+ T cell 

responses following allogeneic SCT. Mouse models have shown that early after SCT, 

when there are residual recipient APC, direct presentation of antigens derived from 

genes co-expressed by recipient APC and malignant cells is sufficient to induce ef­

fective GVT reactivity.13 In a MHC-mismatched mouse-model, DLI administration 

to mixed chimeras produced an improved leukemia-free survival compared to DLI 

in complete donor chimeras.4 Strategies aiming at the APC component of the GVL 

response are for example vaccination with professional APC: dendritic cells. In this
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thesis, we studied the role of recipient-derived dendritic cells (DC) in GVT reactivity 

in CML patients, and started a feasibility study of recipient-derived DC-vaccination 

in MM patients with residual disease after reduced intensity conditioning (RIC)-SCT 

and DLL

The insight in the importance of the GVT response in the curative potential of allo­

geneic SCT has led to the development of conditioning strategies with reduced inten­

sity to reduce the toxicity of the chemotherapy and radiotherapy These conditioning 

regimens are more immunosuppressive than myeloablative and allow engraftment of 

the donor immune system. Although these strategies have reduced transplantation 

related mortality (TRM), GVHD remains a key issue affecting quality of life in the 

non T cell-depleted setting. Therefore, we studied a new approach of partial T cell- 

depleted transplantation followed by DLI in a RIC-setting in patients with malignant 

lymphoma, multiple myeloma (MM) and metastatic renal cell carcinoma (RCC). 

An additional step to improve immunotherapy after SCT is to separate GVT from 

GVHD with adoptive immunotherapy. Adoptive immunotherapy aims at targeting 

MiHA with expression limited to malignant cells. In case of hematological malignan­

cies, MiHA with expression on normal and malignant hematopoietic cells can be 

used, since after allogeneic SCT hematopoiesis will be of donor origin. To study the 

feasibility of this approach for metastatic solid tumors, we analyzed the aberrant ex­

pression of the hematopoietic-restricted MiHA LRH-1 in solid tum or cells and stud­

ied MiHA-specific CTL responses in two patients treated with RIC-SCT for RCC.

In chapter 2 we describe the study that was performed to elucidate the mechanisms 

that determine the effectiveness of DLI in patients with relapsed CML in relation to 

DC chimerism. We hypothesized that the presence of recipient APC may be an im­

portant factor for the induction of DLI-induced GVL reactivity. Absolute numbers 

of DC-subsets and chimerism in T cells and two subsets of DC (i.e. myeloid DC and 

plasmacytoid DC) were analyzed. Based on T cell and DC chimerism we identified 

three groups. Patients with a molecular relapse (n=4) who showed complete donor 

chimerism in T cells and DC subsets attained complete molecular remission without 

significant GVHD. The second group consisted of six patients with complete donor 

chimerism in T cells but mixed chimeric in DC subsets. Also these patients, a com­

plete molecular remission was achieved, but in this case associated with GVHD in 4 

out of 6 and cytopenias in 3 out of 6 patients. The third group (n=5) showed mixed 

chimerism in T cells and complete recipient chimerism in MDC, of whom only 2 out
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of 5 patients entered complete molecular remission. Absolute numbers of MDC and 

PDC did not correlate with induction of alloreactivity. Interestingly, the combina­

tion of donor chimerism in T cells and the presence of recipient DC subsets induces 

efficient GVL reactivity in patients with a cytogenetic or hematological relapse, in 

association with GVHD in 4/6 (66%) of the patients. In contrast, in patients with a 

molecular relapse low-dose DLI can induce mild alloreactivity, which is sufficient to 

induce complete molecular remission without significant GVHD. These data partly 

support our hypothesis on the important role of recipient-derived DC and suggests 

that the balance between T cell and DC chimerism maybe important in the initiation 

of an allo-immune response after DLI.

In Chapter 3, we describe a retrospective study on partial T cell-depleted myelo- 

ablative SCT in MM followed by pre-emptive DLI to boost graft-versus-myeloma 

(GVM) reactivity. From 1997 to 2001 relatively young MM patients (< 55 years of 

age) were offered an allogeneic SCT, in the case an HLA-identical sibling donor was 

available, in first line of treatment according to the HOVON-24 protocol. This study 

was performed to analyze the role of pre-emptive DLI as post-transplantation im­

munotherapy. Thirteen of the 24 patients actually received pDLI according to the 

protocol. With a median follow-up of 67 months, 7 of the 24 patients (29%) were 

in continuous complete remission (CCR) and all seven patients had received pDLI. 

Despite the favorable outcome in patients receiving pDLI, transplantation related 

mortality (TRM) of the myeloablative SCT was high (29%) as observed in all myelo- 

ablative studies in MM. The high TRM was a reason that myeloablative transplants 

are currently no longer performed. Nevertheless, this retrospective analysis was the 

basis of the development of a new approach of partial T cell-depleted allogeneic SCT 

in the RIC-setting, combined with pre-emptive immunotherapy, which is described 

in chapter 4.

In the studies described in chapter 4, the applicability of partial T cell-depleted RIC- 

SCT in MM followed by pDLI as post-transplantation immunotherapy was further 

explored. As a novel approach we incorporated recipient-derived DC vaccination in 

the post-transplantation strategy for patients with residual disease after two DLIs. 

Studies in mouse models demonstrated that recipient DC play a pivotal role in the 

initiation of alloreactive CD8+ T cell-mediated immunity against leukemia.3;5 More­

over, the presence of recipient DC in the setting of mixed chimerism has a positive
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impact on the effectiveness of DLL4 Since recipient DC and myeloma tumor cells are 
both derived from the patient hematopoietic system, immune responses induced by 
recipient-derived DC may enhance GVM. In this study, twenty MM patients received 
partial T cell-depleted RIC-SCT after autologous SCT after which they all engrafted 
successfully Fourteen patients received post-transplantation immunotherapy, of 
whom 8 patients received only pDLI, 5 patients both pDLI and DC-vaccination, 
and 1 patient only DC-vaccination because the donor was no longer available. DC- 
vaccination was associated with limited toxicity and none of these patients devel­
oped GVHD. TRM at one year was low (10%) and the overall survival was 84% with 
median follow-up of 27 months. Genotyping for known M iHA in the vaccinated 
recipients and their donors did identify MiHA-mismatches that could be involved 
in GVM  and GVHD, but specific T cells against these known M iHA using tetramer 
staining could not be detected. Importantly, this study demonstrated that partial T 
cell-depleted RIC-SCT is feasible with much lower TRM than myeloablative SCT. 
Furthermore, vaccination with recipient-derived DC was safe, immunogenic and did 
not induce GVHD. Early disease-free survival was promising but it is yet unclear 
whether DC vaccination played an essential role in the clinical outcome.

In Chapter 5, we present studies on the feasibility of partial T cell-depleted RIC-SCT 
combined with DLI for relapsed transformed non-Hodgkins lymphoma, follicular 
lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia. In contrast 
to the M M  study, with preceding autologous transplant that induces immunosup­
pression, in these patients we applied a two-step approach with pretransplant host 
T cell-depletion with cyclophosphamide and fludarabine followed by the transplant 
conditioning within three weeks. This study demonstrated that partial T cell-deplet- 
ed RIC-SCT with pre-transplant host T cell depletion results in fast and stable en- 
graftment. All patients transplanted with stem cells from an HLA-identical sibling 
donor developed complete donor chimerism during follow-up. The induction course 
to deplete host T cells seems essential, because omitting this induction course result­
ed in a primary take failure in two patients. Both patients received a transplant from 
an unrelated donor after conditioning with cyclophosphamide, fludarabine and anti­
thymocyte globulin (ATG) without host T cell depletion before conditioning. Partial 
T cell-depletion in vitro in combination with a relatively short course of cyclosporine 
A (CsA) resulted in aGVHD grade >11 in only 19% of the patients, which was man­
ageable with corticosteroids, CsA and ultraviolet B therapy for GVHD limited to
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the skin. Main complications were related to viral reactivations including varicella 
zoster infections and EBV-associated lymphoproliferative disease. The relapse rate 
was low, even in patients with transformed N HL and despite the fact that only 19% of 
the patients received pDLI. Overall survival and lymphoma-free survival were 83% 
and 74%, respectively. These findings indicate that partial T cell depleted RIC-SCT is 
feasible if host T cell depletion is applied before the conditioning. Because the main 
complications were viral-related and the relapse rate was low, additional improve­
ment maybe achieved by adding strategies aiming at immune reconstitution such as 
transfer of virus-specific lymphocytes.

The development of RIC  regimens has made it possible to explore the GVT effect in 
patients with metastatic solid tumors. Several reports have described partial or com­
plete remissions; however the ultimate success rate (complete remissions) is limited. 
Furthermore, in most patients responses are accompanied by severe GVHD, which 
impairs the quality of life. Also in solid tumors, the GVT effect is most probably 
mediated by donor T cells recognizing M iHA on the malignant cells of the recipient. 
Therefore, directing donor T cell immunity to M iHA that are selectively expressed 
on solid tumor cells or are expressed on hematopoietic cells with aberrant expression 
on solid tumor cells may be a good strategy to selectively boost GVT in the absence 
of GVHD. In 2005, our group identified a hematopoietic-restricted MiHA, desig­
nated LRH-1, which elicits an HLA-B7-restricted CTL-response in leukemia patients 
treated with DLL6 In chapter 6 we investigated whether the P2X5-encoded LRH-1 
epitope is expressed on solid tumor cell lines and primary solid tumor cells. Aberrant 
expression of P2X5 was observed in a significant portion of solid tumor cell lines and 
primary tumor cells, including RCC, melanoma, colorectal carcinoma, brain cancer 
and breast cancer. Furthermore, flow cytometry-based cytotoxicity assays showed 
that P2X5-expressing solid tumor cells are susceptible to LRH-1 CTL-mediated lysis. 
These data indicate that LRH-1 is an interesting hematopoietic-restricted M iHA that 
could be used in the development of MiHA-specific adoptive immunotherapy for 
solid tumors.

The strategy of partial T cell-depleted RIC-SCT followed by DLI was also studied by 
us in patients with metastatic RCC. In Chapter 7, we report the clinical and immu­
nological responses of this approach in four patients with metastatic RCC. All four 
patients achieved complete donor engraftment that was preceded by mixed chimer-
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ism in two patients. None of the patients developed aGVHD >grade II or extensive 
chronic GVHD. Two patients without GVHD were treated with DLI, which did not 
result in GVHD. Both patients responded, one patient had stable disease and one pa­
tient showed regression of pulmonary métastasés. Interestingly, MiHA-specific CTL 
targeting RCC tumor cells could be isolated from these two patients. In one patient 
with stable disease, the CTL response was directed against the HLA-A2-restricted 
SCMY peptide, which is a Y-chromosome encoded antigen. In the other patient 
with partial remission, the CTL response was directed against an HLA-B7-restricted 
M iHA of unknown origin. These results indicate that MiHA-specific T cell responses 
targeting RCC cells can be mounted by DLI without the induction of GVHD in RCC 
patients who are treated with partial T cell-depleted RIC-SCT followed by DLL

In conclusion, these studies describe strategies to enhance the beneficial GVT effect 
of allogeneic SCT while reducing GVHD, morbidity and mortality of the SCT. The 
combination of partial T cell-depleted RIC-SCT followed by DLI was most effec­
tive in patients with lymphoma and CLL. In our study, we included patients with 
chemotherapy-sensitive disease since all had reached at least PR before RIC-SCT. It 
is known from the literature that allogeneic SCT is much less effective in chemother­
apy refractory disease. Although partial T cell-depleted RIC-SCT after host T cell- 
depletion is a highly immunosuppressive approach, infectious complications in our 
transplanted cohort were comparable with other studies in the RIC-setting. Further 
improvement may be achieved by longer prophylaxis with valaciclovir to prevent 
varicella zoster reactivation and the transfer of virus-specific T cells for viral recon­
stitution. In MM, TRM decreased significantly after partial T cell-depleted RIC-SCT. 
However, relapse of MM still occurred in a substantial number of patients despite 
pDLI and recipient-derived DC-vaccination after two DLIs. We showed that recipi­
ent DC vaccination after RIC-SCT is feasible and safe; however MiHA-specific T cell 
responses have not yet been identified in DLI-responding patients. Although the use 
of recipient-derived DC is not completely investigated yet, a next step to enhance the 
antitumor effect is the vaccination with mature donor-derived DC electroporated 
with MiHA-encoding mRNA.
More challenging is the role of RIC-SCT in metastatic RCC. Four patients were 
treated with partial T cell-depleted RIC-SCT followed by DLI and these patients had 
progressive and non-chemotherapy responsive disease. In two patients, we showed 
MiHA-specific T cell-responses after DLL Also for this patient-group adoptive im­
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munotherapy targeting tumor-specific M iHA would be an interesting approach. In 
our pre-clinical study, aberrant P2X5-expression was observed in several solid tumor 
cell lines including RCC. However, new developments in treatment of RCC with ty- 
rosine-kinase inhibitors have significantly changed the treatment strategies for these 
patients. Currently the role of allogeneic SCT in this disease is unclear, but it still has 
the potential to contribute to the dismal prognosis that these patients continue to 
face.
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Chapter 9

Nederlandse samenvatting
Allogene stamceltransplantaties (SCT) vormen een belangrijke behandelingsop- 
tie voor verschillende hematologische maligniteiten. De mogelijkheid tot genezing 
door allogene SCT wordt toegeschreven aan het graft-versus-tumor (GVT) effect, 
een immunologische reactie van T cellen van de donor die middels minor histocom- 
patibiliteits antigenen (M iHA) de tumorcellen van de patiënt herkennen. Helaas gaat 
deze GVT reactie vaak ook gepaard met graft-versus-host-disease (GVHD), ofwel 
omgekeerde afstotingsziekte. Hierbij richt de immunologische reactie van het donor 
immuunsysteem zich tegen gezonde weefsels, met name de huid, slijmvliezen (trac- 
tus digestivus, ogen en longen) en de lever. Complete of gedeeltelijke verwijdering 
van T cellen (partiële T cel-depletie) uit het transplantaat is een effectieve methode 
om GVHD te verminderen, maar verhoogd tegelijkertijd de recidief kans. Eerdere 
studies tonen aan dat partieel T cel-gedepleteerde allogene SCT, gevolgd door pre- 
emptieve immuuntherapie met donorlymfocyten infusie (DLI), bij het van tevoren 
ontbreken van significante GVHD, een effectieve aanpak is in hoogrisico patiënten.1 

Het effect van DLI ter bestrijding van het terugkomen van de ziekte varieert voor 
de verschillende hematologische maligniteiten. In Chronische Myeloide Leukemie 
(CM L) leidt DLI in 70-80% van de patiënten met recidief CML in chronische fase 
tot een complete moleculaire remissie, maar bij patiënten met recidief Acute Leuke­
mie of Multipel Myeloom (M M ) is dit percentage slechts 10-40%. De mechanismen 
die verantwoordelijk zijn voor de DLI-gemedieerde anti-tumor activiteit tussen de 
verschillende maligniteiten zijn nog niet opgehelderd. Inzicht in deze mechanismen 
zijn belangrijk voor de ontwikkeling van betere posttransplantatie immuuntherapie. 
Antigeen presenterende cellen (APC) spelen een belangrijke rol bij het op gang bren­
gen van alloreactieve CD8+ T cel responsen na allogene SCT. In muizenmodellen 
is aangetoond dat vroeg na de SCT, wanneer er ook nog ontvanger APC aanwezig 
zijn, directe presentatie van hematopoietisch-specifieke M iHA op de APC aan donor

195



Nederlandse samenvatting, List of publications, Curriculum Vitae, Dankwoord, Colour figures

T cellen aanwezig is, hetgeen voldoende is om een effectieve GVT reactiviteit ten 
aanzien van normale en maligne hematopoietische cellen te induceren.13 Dit wordt 
ondersteund door onderzoek in muismodellen waarbij DLI in muizen met gemengd 
chimerisme resulteert in een betere leukemievrije overleving vergeleken met DLI 
in complete donor chimeren.4 Vaccinaties met professionele APC, de zogenaamde 
dendritische cellen (DCs), vormen een strategie gericht op de antigeenpresenterende 
component van de GVT respons.
In dit proefschrift hebben we de rol bestudeerd van DCs, afkomstig van de ontvanger, 
in de GVT reactiviteit in CML patiënten en zijn we een haalbaarheidsstudie gestart 
naar ontvanger DC-vaccinatie in MM patiënten met residuale ziekte na “reduced 
intensity conditioning” (RIC)-SCT en DLL
Het inzicht dat vooral de GVT respons verantwoordelijk is voor het curatieve ver­
mogen van allogene SCT, en niet de chemotherapie in de conditionering, heeft geleid 
tot de ontwikkeling van minder intensieve conditioneringstrategieën. Deze condi- 
tioneringschemas zijn vooral immuunsuppressief van aard met als belangrijkste doel 
dat de donorcellen worden geaccepteerd door de ontvanger. Door de vermindering 
in toxiciteit van de conditionering is de transplantatie gerelateerde mortaliteit (TRM) 
afgenomen, maar de mate en ernst van GVHD wordt hiermee niet beïnvloed en juist 
deze GVHD speelt een belangrijke rol in de kwaliteit van leven na transplantatie. Om 
deze reden hebben we bij het onderzoek beschreven in dit proefschrift gekozen voor 
een nieuwe benadering bestaande uit RIC  allogene SCT gecombineerd met partiële 
T cel depletie, gevolgd door DLI in patiënten met maligne lymfoom, MM en geme- 
tastaseerd niercelcarcinoom.
Een volgende stap is de posttransplantatie immuuntherapie meer specifiek te richten 
op tumorcellen (GVT) en hierbij de gezonde weefsels (GVHD) te sparen. Dit wordt 
getracht door immuuntherapie toe te passen die zich specifiek richt zich op M iHA 
die alleen maar op de tumorcellen voorkomen. In het geval van hematologische ma- 
ligniteiten maakt het niet uit of deze M iHA ook op normale hematopoietische cel­
len voorkomen, immers de hematopoiese wordt vervangen door donor cellen. Om 
de mogelijkheden van deze benadering te bestuderen bij gemetastaseerde solide 
tumoren hebben we expressie van het M iHA LRH-1, een antigeen dat op normale 
hematopoietische cellen voorkomt, bestudeerd op solide tumorcellen. Tevens wer­
den MiHA-specifieke cytotoxische T cel reacties bestudeerd in twee patiënten met 
gemetastaseerd niercelcarcinoom behandeld met RIC-SCT gevolgd door DLI, met 
als doel de geïsoleerde T cellen te gebruiken om de herkende M iHA te identificeren.
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In Hoofdstuk 2 beschrijven wij een studie naar de mechanismen van DLI in patiënten 
met een recidief CML door bepaling van het chimerisme in de dendritische cellen. 
Onze hypothese was dat aanwezigheid van DCs van de patiënt een belangrijke factor 
zou vormen voor de inductie van DLI geïnduceerde GVT reactiviteit. De absolute 
aantallen myeloide en plasmacytoide DC en hun chimerisme evenals het T cel chi­
merisme werden geanalyseerd. Op basis van het T cel chimerisme en DC chimerism 
identificeerden wij drie groepen. Patiënten met een moleculair recidief (n=4) had­
den compleet donor chimerisme in de T cellen en DC-subpopulaties en bereikten na 
DLI allen een complete moleculaire remissie zonder significante GVHD. De tweede 
groep bestond uit zes patiënten met compleet donor chimerisme in T cellen maar 
gemengd chimerisme in de DC-subpopulaties. Ook in deze 6 patiënten werden com­
plete moleculaire remissies bereikt, maar dit ging gepaard met duidelijke GVHD in 
4 van de 6 patiënten en cytopenieën in 3 van de 6. De derde groep (n=5) had een 
gemengd chimerisme in de T cellen en complete ontvanger (recipiënt) chimerisme in 
myeloide DC. In deze groep bereikten slechts 2 van de 5 patiënten een complete mo­
leculaire remissie. Deze resultaten toonden aan dat de combinatie van donor chimer­
isme in de T cellen en de aanwezigheid van recipiënt DC-subpopulaties kan leiden 
tot een efficiënte GVL reactiviteit, echter met GVHD in 4/6 (66%) van de patiënten. 
Terwijl lage dosis DLI in CML patiënten met een moleculair recidief kan leiden tot 
milde alloreactiviteit, welke echter voldoende is om een complete moleculaire re­
missie te bereiken en zonder GVHD. Deze data ondersteunen deels onze hypothese 
betreffende de belangrijke rol van ontvanger DCs en suggereren dat de balans tussen 
T cel- en DC chimerisme mogelijk van belang is in de initiatie van een allo-immuun 
response na DLL

H oofdstuk 3 betreft een retrospectieve studie naar partieel T cel-gedepleteerde 
myeloablatieve SCT in M M  gevolgd door pre-emptieve DLI met als doel de graft- 
versus-myeloma (GVM ) reactiviteit te versterken. Jonge MM patiënten (< 55 jaar) 
met een HLA-identieke familie donor, kwamen in de periode van 1997 tot 2001 in 
aanmerking voor een allogene SCT als eerstelijns behandeling in het kader van de 
HOVON-24 studie. Doel van onze studie was de bijdrage van pre-emptieve DLI te 
evalueren. Dertien van de 24 patiënten ontvingen daadwerkelijk pDLI als gepland in 
het protocol. Met een mediane follow-up van 67 maanden waren 7 van de 24 patiënt­
en (29%) in een continue complete remissie (CCR) en alle zeven behoorden tot de 
groep van 13 patiënten die pDLI ontvingen. Ondanks de gunstige uitkomsten voor
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de patiënten die behandeld werden met pDLI, was de transplantatie gerelateerde 
mortaliteit (TRM ) van de myeloablatieve SCT hoog (29%) zoals ook beschreven in 
andere myeloablatieve studies in MM. Om die reden zijn wij in 2001 gestopt met 
myeloablatieve transplantatie in MM. Wel vormde deze retrospectieve analyse de 
basis voor de ontwikkeling van een nieuwe benadering, partieel T cel-gedepleteerd 
allogene SCT in de RIC-setting gevolgd door pre-emptieve DLI en nieuwere vormen 
van immuuntherapie.

In hoofdstuk 4 beschrijven we de resultaten van bovengenoemde benadering, partieel 
T cel-gedepleteerd RIC-SCT in MM gevolgd door pre-emptieve DLL Als nieuwe post- 
transplantatie immuuntherapie hebben we ontvanger DC vaccinatie toegevoegd voor 
patiënten met nog aantoonbare ziekte na de stamceltransplantatie en twee maal DLL 
Zoals beschreven laten muizenmodellen zien dat ontvanger APC’s een sleutelrol spe­
len in de initiatie van alloreactieve CD8+ T cel-gemedieerde immuunresponsen tegen 
leukemie.3;5 Bovendien heeft de aanwezigheid van ontvanger DCs mogelijk een posi­
tieve bijdrage aan de effectiviteit van de DLL4 Omdat ontvanger DCs en multiple my- 
eloom plasmacellen beiden afkomstig zijn van het hematopoietische systeem van de 
patiënt, zouden tumor responsen geïnduceerd door ontvanger DCs tevens het GVM 
effect kunnen versterken. Twintig MM patiënten werden behandeld met een partieel 
T cel-gedepleteerde RIC-SCT na een voorafgaande inductie behandeling inclusief 
hoge dosis melfalan en een autologe SCT. In geen enkele patiënt trad rejectie van het 
transplantaat op. Veertien patiënten ontvingen posttransplantatie immuuntherapie, 
8 alleen pDLI, 5 patiënten zowel pDLI als een DC-vaccinatie, en 1 patiënt kreeg al­
leen een DC-vaccinatie, dit omdat de stamceldonor niet meer beschikbaar was. De 
toxiciteit van DC-vaccinatie was beperkt en er werd bij geen van de patiënten GVHD 
gezien. Tevens bleek DC-vaccinatie een T cel response te induceren tegen het con­
trole eiwit KLH  in de gevaccineerde patiënten. De transplantatie gerelateerde mortal­
iteit was laag ( 10%) vergeleken met de myelo-ablatieve benadering en de overleving 
na een mediane follow-up van 27 maanden was 84%. Of de posttransplantatie im­
muuntherapie met DC bijdraagt in de ziektevrije overleving is uit deze gegevens niet 
vast te stellen. Bij genotypering voor bekende M iHA in de gevaccineerde patiënten 
en hun donoren werden mismatches gevonden die betrokken zouden kunnen zijn 
bij het GVM effect en GVHD, maar specifieke T cellen tegen deze bekende MiHA- 
mismatches konden met het gebruik van tetrameren in het bloed niet worden aange­
toond. Deze studie laat zien dat partieel T cel-gedepleteerd RIC-SCT in de praktijk
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toepasbaar is met een veel lagere TRM dan myeloablatieve SCT. Tevens bleek dat 
vaccinatie met ontvanger DCs veilig en immunogeen is maar niet leidde tot GVHD. 
De vroege ziektevrije overleving lijkt goed maar het is onduidelijk in hoeverre DC 
vaccinatie daadwerkelijk een rol heeft gespeeld in deze klinische resultaten.

In hoofdstuk 5 is een vergelijkbare benadering van partieel T cel-gedepleteerd RIC- 
SCT gecombineerd met DLI toegepast bij patiënten met een recidief getransformeerd 
non-Hodgkin’s lymfoom, folliculair lymfoom, mantelcel lymfoom, en chronische 
lymfatische leukemie. In tegenstelling tot de studie in MM, waarbij voorafgaand 
een autologe transplantatie wordt uitgevoerd welke naast reductie van de ziekteac- 
tiviteit ook leidt tot immuunsuppressie, hebben we in deze patiënten een tweestaps 
benadering gekozen om rejectie van het transplantaat tegen te gaan. Voorafgaand 
aan de transplantatie werd het aantal T cellen in de patiënt gereduceerd door een 
kuur met cyclofosfamide en fludarabine. Indien er een reductie was in het aantal 
CD4 cellen tot minder dan 0,05x109/L, dan werd de behandeling binnen drie weken 
voortgezet met een hogere dosis fludarabine en cyclofosfamide als conditionering. 
Gebruikmakend van deze strategie zagen we een snelle en stabiele acceptatie van 
het transplantaat waarbij alle patiënten met een HLA-identieke sibling donor een 
compleet donor chimerisme ontwikkelden gedurende follow-up. De inductiekuur, 
met als doel de T cellen in de ontvanger te verminderen lijkt essentieel. Het weglat­
en van deze inductiekuur heeft in 2 patiënten met een onverwante donor geleid tot 
primaire rejectie, ondanks dat deze patiënten in vivo nog eens een extra T cel de- 
pletie ondergingen met anti-thymocyten globuline (ATG). Partiële T cel-depletie in 
vitro gevolgd door een relatief korte behandeling met cyclosporine A (CsA) leidde 
tot acute GVHD>graad 2 in slechts 19% van de patiënten. Deze acute GVHD kon 
in alle gevallen adequaat behandeld worden met corticosteroïden, CsA en ultravio­
let B therapie bij GVHD beperkt tot de huid. De belangrijkste complicaties werden 
veroorzaakt door virus reactivaties, met name varicella zoster infecties en EBV-geas- 
socieerde lymfoproliferatieve aandoeningen. Het aantal recidieven was laag, zelfs in 
de patiënten met een getransformeerd NHL en ondanks het feit dat slechts 19% van 
de patiënten uiteindelijk DLI hebben ontvangen. De totale overleving en lymfoom- 
vrije overleving waren 83% and 74%, respectievelijk bij een mediane follow-up van 
19 maanden. Deze bevindingen laten zien dat partieel T cel-gedepleteerd RIC-SCT 
toepasbaar is op voorwaarde dat voldoende host T cel-depletie wordt toegepast voor 
start van de uiteindelijke conditionering. Verbetering van de immuunreconstitutie
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na de RIC-SCT zoals transfer van virusspecifieke lymfocyten lijkt noodzakelijk, om­
dat de belangrijkste complicaties gerelateerd waren aan virale problematiek na de 
transplantatie.

De ontwikkeling van RIC  strategieën heeft het mogelijk gemaakt om het GVT ef­
fect ook te onderzoeken bij patiënten met gemetastaseerde solide tumoren. Diverse 
onderzoeken laten partiële of complete remissies zien alhoewel het uiteindelijke 
genezingspercentage toch nog beperkt is. Daarnaast gaat een eventuele respons tegen 
de ziekte in de meeste patiënten gepaard met ernstige GVHD, die vooral de kwaliteit 
van leven sterk negatief beïnvloedt. Ook bij solide tumoren wordt het GVT effect 
zeer waarschijnlijk gemedieerd door donor T cellen die M iHA herkennen op de tu­
morcellen van de recipiënt. Daarom zou het ook voor solide tumoren een interes­
sante strategie zijn om ter vermindering van de GVHD en verbetering van het GVT 
effect de donor T cel-reactiviteit te richten op M iHA die uitsluitend tot expressie 
komen op de tumorcellen of eventueel tegelijkertijd op de tumorcellen en de he- 
matopoietische cellen. In 2005 werd binnen ons laboratorium een hematopoietisch- 
gerestricteerde M iHA geïdentificeerd, LRH-1 genaamd. Deze M iHA leidt tot een 
HLA-B7-gerestricteerde CTL respons in leukemie patiënten behandeld met DLL6 

In hoofdstuk 6 hebben we onderzocht of het LRH-1 epitope, gecodeerd door het 
P2X5 gen, tot expressie komt op solide tumor cellijnen en primaire tumorcellen. We 
vonden afwijkende expressie van P2X5 in een significant deel van de tumor cellijnen 
en primaire tumorcellen, inclusief niercelcarcinoom, melanoom, colorectaal carci­
noom, hersentumoren en mammacarcinoom. Bovendien lieten flow cytometrische 
cytotoxiciteits assays zien dat cellen van solide tumoren die P2X5 tot expressie bren­
gen gelyseerd worden door de LRH-1 CTL. Deze data wijzen erop dat LRH-1 een 
interessante hematopoietisch-gerestricteerde M iHA is die ook gebruikt zou kunnen 
worden in de ontwikkeling van MiHA-specifieke adoptieve immuuntherapie gericht 
tegen solide tumoren.
De strategie van partieel T cel-gedepleteerd RIC-SCT gevolgd door DLI hebben we 
ook toegepast bij patiënten met gemetastaseerd niercelcarcinoom. In Hoofdstuk 7 be­
schrijven we de klinische en immunologische responsen in vier patiënten. Alle vier 
werden compleet donor chimeer voorafgegaan door gemengd chimerisme in twee 
patiënten. Geen van de patiënten ontwikkelde acute GVHD >graad II of uitgebreide 
chronische GVHD. Twee patiënten zonder GVHD werden vervolgens behandeld 
met DLI en ook dit leidde niet tot GVHD. Beide patiënten lieten een geringe anti-
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tumor respons zien; een patiënt had stabiele ziekte en een patiënt had regressie van 
longmetastasen. Van deze twee patiënten konden we MiHA-specifieke CTL isoleren 
die gericht waren tegen RCC tumorcellen. In de patiënt met stabiele ziekte was de 
CTL respons gericht tegen het HLA-A2-gerestricteerde SCMY peptide, wat een Y- 
chromosoom gecodeerd M iHA is. In de patiënt met een partiële remissie was de CTL 
response gericht tegen een nog onbekend HLA-B7-gerestricteerd M iHA, waarvan 
we de identiteit proberen te achterhalen. Deze resultaten wijzen erop dat in patiënten 
met een gemetastaseerd niercelcarcinoom die behandeld zijn met een partieel T cel- 
gedepleteerd RIC-SCT gevolgd door DLI, MiHA-specifieke T cel-responsen worden 
opgewekt waarbij RCC cellen herkend worden na DLI zonder dat er hierbij GVHD 
is opgetreden.

De studies in dit proefschrift beschrijven een aanpak om enerzijds het gewenste 
GVT effect van allogene SCT te versterken en anderzijds de GVHD, morbiditeit en 
mortaliteit van de SCT te reduceren. De combinatie van een partieel T cel-gede- 
pleteerd RIC-SCT gevolgd door DLI was het meest effectief in patiënten met lym- 
foom en CLL. In deze studie werden alleen patiënten met chemotherapiegevoelige 
ziekte geincludeerd waarbij alle patiënten tenminste een partiële remissie hadden 
bereikt voorafgaand aan de RIC-SCT. Het is bekend uit de literatuur dat allogene 
SCT veel minder effectief is in chemotherapierefractaire ziekte. In de studie met MM 
patiënten was de TRM duidelijk minder na een partieel T cel-gedepleteerde RIC- 
SCT. Echter een substantieel aantal patiënten ontwikkelde een recidiefMM ondanks 
pre-emptieve DLI en recipiënt DC-vaccinatie in combinatie met DLL We hebben 
laten zien dat ontvanger DC vaccinatie na RIC-SCT veilig is en haalbaar. Specifieke 
MiHA-specifieke T cel responsen hebben we tot nu toe nog niet kunnen aantonen, 
ook niet in patiënten die na DLI een klinische respons vertoonden. Hoewel het ge­
bruik van ontvanger afkomstige DC nog niet volledig is onderzocht, zou een vol­
gende stap kunnen zijn om het antitumor effect te versterken door vaccinatie met 
donor DC beladen met M iHA peptiden of geëlectroporeerd met MiHA-coderend 
mRNA. Dergelijke vaccins kunnen ook ingezet worden om het GVT effect te ver­
sterken in patiënten met acute leukemie, lymfoom en CLL.
Nog meer uitdagend is het verbeteren van de immuuntherapie na RIC-SCT in geme­
tastaseerd RCC. Vier patiënten met progressieve en niet-chemotherapie gevoelige 
ziekte werden behandeld met een partieel T cel-gedepleteerd RIC-SCT gevolgd door 
DLL In twee patiënten hebben we MiHA-specifieke T cel-responsen aangetoond na
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DLL Ook voor deze patiëntengroep zou posttransplantatie immuuntherapie gericht 
op tumorspecifieke M iHA een interessante benadering kunnen zijn. In onze pre­
klinische studie hebben we afwijkende P2X5-expressie gevonden in verschillende 
typen solide tumoren inclusief niercelcarcinoom. Nieuwe ontwikkelingen in de be­
handeling van het niercelcarcinoom met tyrosine-kinase remmers hebben de behan- 
delstrategieën voor deze patiënten significant veranderd, maar nog niet tot curatie 
geleid. Thans is de rol van allogene SCT in deze ziekte nog onduidelijk, maar heeft 
nog altijd de potentie om bij te dragen aan een verbetering van de sombere prognose 
waar deze patiënten uiteindelijk mee geconfronteerd worden.
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Clinical course Patient UPN2

Follow up (weeks)

Clinical course Patient UPN17

Follow up (weeks)

Chapter 4

Figure 2: Clinical course of patient UPN2 (a) and patient UPN17 (b). The Y-axis on the left shows 

disease load as measured by serum free light chains or M-protein, and is shown with the green line. The 

Y-axis on the right shows the percentage recipient cells in peripheral blood and is shown with a purple 

line. Triangle in blue indicates autologous SCT, triangle in red indicates RIC-SCT, triangle in orange 

indicate DLI and triple-triangle in blue indicate 1 cycle of DC vaccinations.
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Figure 6: Clinical course of patient UPN3 (a) and patient UPN7 (b). The Y-axis on the left shows 

disease load as measured by serum free light chains or M-protein, and is shown with the green line. The 

Y-axis on the right shows the percentage recipient cells in peripheral blood and is shown with a purple 

line. Triangle in blue indicates autologous SCT, triangle in red indicates RIC-SCT, triangle in orange 

indicate DLI and triple-triangle in blue indicate 1 cycle of DC vaccinations.
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Clinical course Patient UPN8

Follow up (weeks)
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Figure 7: Clinical course of patient UPN8. The Y-axis on the left shows disease load as measured by 

serum free light chains or M-protein, and is shown with the green line. The Y-axis on the right shows 

the percentage recipient cells in peripheral blood and is shown with a purple line. Triangle in blue 

indicates autologous SCT, triangle in red indicates RIC-SCT, triangle in orange indicate DLI and triple­

triangle in blue indicate 1 cycle of DC vaccinations.
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