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“There is nothing like looking, if you want to find something. You certainly usually find
something, if you look, but it is not always quite the something you were after.”

– J.R.R. Tolkien

iv



Abstract

With three million people worldwide (three hundred thousand people in the United States
alone) experiencing sudden cardiac arrest per year, it is one of the most common causes of
death in developed countries. Ventricular fibrillation, a dysfunction of the heart characterized
by a highly chaotic spatio-temporal wave dynamics, is the main cause for sudden cardiac arrest.
The application of a high-energy defibrillation shock, as the current medical treatment to restore
the sinus rhythm, comes along with severe side-effects, among others additional damage of the
heart. Furthermore, patients with an ICD (implantable cardioverter-defibrillator) in particular
suffer from posttraumatic stress symptoms.
The goal of this thesis is to investigate the dynamics of the heart (and in particular the nature
of cardiac arrhythmias (specifically ventricular fibrillation)) using concepts and perceptions
from the dynamical systems theory. On the basis of the interdisciplinary interplay between
mathematical approaches and interaction with experimental and clinical knowledge and results,
two general scientific objectives are addressed:

• Derive an enhanced understanding of the dynamics during episodes of ventricular fibrilla-
tion, including the development of concepts for the improvement of current defibrillation
techniques and suggestions for completely new strategies which may find their way into
the clinical application.

• Obtain novel insights into the fundamental dynamics of complex, nonlinear systems (thus
excitable systems and beyond).

These objectives are addressed using numerical simulations, which constitute the main tool to
investigate specific research questions. The results of this thesis are organized in four chapters,
each focusing on one specific question:

• The first results chapter is dealing with the mechanism of spontaneous termination of
ventricular fibrillation. We investigate the transient behavior of spiral and scroll wave
dynamics using different cell models. The observed transients can be classified into the
group of so called type-II supertransients. We find, that in 3D simulations, a critical
thickness of the medium plays an essential role. Basic features of the simulations agree
with general observations of clinicians, e.g. that larger heart muscle volumes increase the
risk of cardiac arrhythmias.

• In the second results chapter, we address the question whether a self-termination of a
chaotic episode can be predicted. By applying small but finite perturbations to specific
trajectories of chaotic spiral wave dynamics we find that the state space structure close to
the “exits” of the chaotic regime changes significantly. We could verify this effect also in
low-dimensional maps. This analysis shows, that although the upcoming self-termination
is not visible in conventional variables, it should in principle be possible to derive such a
quantity.
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• In the third results chapter, we investigate complexity fluctuations of the chaotic spatio-
temporal dynamics in simulations using realistic heart geometries. We show, that the
level of organization of the spatio-temporal dynamics can be estimated by analyzing the
time series of a multi-electrode setup.

• In the last results chapter, we discuss whether a successful termination of chaotic spiral
wave dynamics is possible using a minimal interaction with the system. We show, that
since the underlying topological object which determines the chaotic dynamics is a chaotic
saddle, one can terminate the dynamics (as a proof of concept) by the application of a
specific but very small perturbation.

We hope that the insights provided by this thesis contribute to the general understanding of
cardiac arrhythmias and the nonlinear dynamics of complex systems. The results suggest that
an improved medical treatment of cardiac arrhythmias can benefit from:

• A more detailed state analysis of the dynamics during spatio-temporal chaos, incorpo-
rating diverse measure techniques (e.g. multiple-ECG measurements, CT scans, MRI
scans).

• An intervention strategy which should adapt to individual patients and the respective
dynamical state of the heart.

A variety of new experimental approaches will be available which may help to achieve these
goals and to improve the understanding of the phenomena investigated in this thesis:
Filament identification in the bulk tissue during experiments using sophisticated ultra sound
techniques, inverse ECG measurements for the reconstruction of spatio-temporal wave dynamics
or using techniques from optogenetics for the stimulation of cardiac tissue via light pulses are
promising candidates which can have a significant impact on the field of cardiac dynamics.
This technological progress in combination with novel data analysis techniques from the fields
of machine learning or data assimilation and sophisticated simulations of the complex dynamics
has great potential to develop advanced and efficient strategies for a patient specific medical
treatment.
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Chapter 1

Introduction

Research in physics advances in three broad domains: The first and foremost, astronomy
and relativity, concerning the infinitely big; quantum mechanics and particle physics,
dealing with the infinitely small; and the domain of infinitely complex encompassing the
Physics of Biological and Complex Systems (PBCS). Third Infinity focuses on the third
infinite domain of science inspired by the well-known chaotic double pendulum problem to
understand life processes at a quantitative and molecular level.

Motto of the (biannual) “Third Infinity Conference on Physics of Biological
and Complex Systems”a, in Göttingen.

aOrganized by PhD students. Last conference: October 9-11 2017.

In the second part of the 20th century, the role of interdisciplinarity in natural sciences
increased significantly. Where previously specific theories, models, and methods were often
developed for one particular field only (e.g. physics, chemistry, biology), one profits nowa-
days more and more from a fruitful exchange of concepts and ideas. In today’s research,
clear boundaries between formerly separated disciplines are often smeared out: methods or
strategies developed in e.g. mathematical physics are also used in more applied fields (like
medicine, ecology or environmental sciences).

The aim of this thesis is to extend the general understanding of the functionality of the
heart, in particular to elucidate the underlying mechanisms of cardiac arrhythmias, by
using concepts and methods from physics and mathematics. Referring to the citation at
the beginning of this chapter, this interaction of disciplines is maybe the only solution to
achieve a broad and thorough understanding of a system which is as complex as the heart.

1.1 How Does the Heart Work?

The heart is an essential organ of humans and many animals, which pumps the blood
through the body and provides in this way the supply of oxygen and nutrients for the cells
of the organism. In the human body, the blood circulation is divided into the pulmonary
circuit and the systemic circuit (Fig. 1.1), also called the peripheral circulation and the
greater circulation. The first one is related to (and driven by) the right atrium and ventricle
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Chapter 1. Introduction

Figure 1.1: The circulation system in the human body. The oxygen-poor blood is pumped
from the right ventricle through the pulmonary arteries to the lungs where the gas exchanges
happens. The oxygen-rich blood returns to the heart by the pulmonary veins and enters
the left atrium of the heart pulmonary circuit. The systemic circuit is responsible for the
transportation of the oxygen-rich blood from the heart (left ventricle) through the aorta
and its branches to the tissue of the body. The oxygen-poor blood returns subsequently
through the venae cavae back to the heart (right atrium). Reprinted from [1] by permission
of Pearson Education, Inc., New York, New York.

of the heart, whereas the left atrium and ventricle pump the blood through the systemic
circuit.
The main purpose of the pulmonary circuit is to transport the blood to the lungs, in order
to release carbon dioxide from the blood and to absorb oxygen. Subsequently, the systemic
circuit delivers the blood (with a high oxygen concentration) to the rest of the body, and
also returns the blood with a larger concentration of carbon dioxide back to the heart (where
it enters the pulmonary circuit, and so on). The heart is the organ which drives this circuit
constantly by its pumping function as long as the body is alive.
One distinguishes between the left and right part of the heart: the blood enters the left and
right atria through the pulmonary veins (left) and the inferior and superior venae cavae
(right), before it is pumped to the left and right ventricle (Fig. 1.2), respectively. The mitral
valve (left) and the tricuspid valve (right) prevent that blood flows back from the respective
ventricles into the atria. Finally, the blood leaves the ventricles, passing the aortic valve
(left) and the pulmonary valve (right) and entering the aorta (systemic circuit) and the
pulmonary artery (pulmonary circuit), respectively.

2



1.1. How Does the Heart Work?

Figure 1.2: The anatomy of the heart. The heart is composed of the right and left atrium,
as well as the corresponding right and left ventricle. The blood flow between the atria and
the ventricles is controlled by the tricuspid valve, and the mitral valve, respectively for the
right and left part. The blood leaves the right ventricle through the pulmonary artery and
enters the right atrium via the venae cavae. The corresponding blood vessels for the left
part of the heart are the pulmonary veins (entering the left atrium) and the aorta (leaving
the left ventricle). Image reprinted from Wikimedia Commons [2].

The wall thickness differs in humans considerably between atria (1 mm to 2 mm) [3] and
the ventricles (5 mm to 6 mm, end diastolic) [4], which are separated by the interventric-
ular septum. Furthermore, one distinguishes three layers of the heart, the endocardium
(innermost layer), the middle myocardium (the cardiac muscle) and the epicardium (outer
layer). During a contraction the muscle tissue expands, whereas the total volume of the
heart remains approximately constant. Thus, the expansion is directed to the inside, and in
this way the blood is pumped out of the heart (Fig. 1.3). Since the systemic circuit is more
demanding in terms of the pumping performance, the ventricles are not symmetric, but the
left ventricle is usually larger (in terms of wall thickness), and the right ventricle is aligned
around the more central left ventricle.
The normal, periodic contraction of the heart is also called sinus rhythm. The actual
mechanical contraction is triggered by an electrical signal, which propagates through the
tissue (details about the mechanism and the electro-mechanical coupling will be discussed
later).

Separation of Electrical and Mechanical Dynamics
A general assumption which is also used in this thesis exploits the approximately unidi-
rectional relation between the electrical signal and the subsequent mechanical contraction.
The basic idea is, when studying the dynamics of the heart, specifically in the case of a

3



Chapter 1. Introduction

Figure 1.3: The contraction of the heart muscle. The figure sketches the qualitative
differences of the muscle volume of the ventricles between the relaxed state (a) and the
contracted state (b). Image reproduced from [5].

failing heart function, it is enough to understand and control the electrical dynamics, since
it directly triggers the mechanical contraction. This concept is used in experiments (e.g. in
many cases the mechanics is uncoupled from the electrical dynamics, in order to facilitate
the analysis of the electrical wave dynamics) and also in numerics, where often only the elec-
trical wave propagation is simulated. Actually, also medical treatments like the application
of a defibrillation shock, relates to the electrical properties of the system.
Although, a coupling in the other direction (from mechanics to electric) is possible (due to
stretch activated channels [6]), we neglect this effect in all studies of this thesis and assume
that the mechanical contraction of the cells is a passive property of the tissue, which is
triggered by the electrical signal.

1.2 Cardiac Arrhythmias

Conditions of the heart where the heart beat deviates from the usual sinus rhythm (faster,
slower or irregular), are called arrhythmias. These abnormalities can have various causes, for
example anatomical changes of the heart (e.g. scar tissue, induced by a myocardial infarc-
tion), or other disorders of the electrical conduction system (e.g. Wolff–Parkinson–White
syndrome [7]). These arrhythmias deviate in their level of impairment of the proper pumping
function and the directly related health risk.
Ventricular fibrillation is the most dangerous cardiac arrhythmia, characterized by an unor-
ganized electrical and therefore also mechanically irregular dynamics of the heart, instead
of an organized periodic contraction (as during sinus rhythm). In this state the pumping
function is significantly reduced, leading after a few minutes to sudden cardiac death. In the
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1.2. Cardiac Arrhythmias

Figure 1.4: The difference of the spatio-temporal dynamics between sinus rhythm and
ventricular fibrillation and the principle of defibrillation. The usual sinus contraction can
be associated with a plane wave ((a), excited tissue is depicted in green) propagating from
the bottom to the top of the heart. Instead, the dynamics during ventricular fibrillation is
determined by scroll waves (b), which overdrive the slower sinus rhythm. In order to restore
the sinus rhythm, an electrical field is applied (c), which aims at terminating the chaotic
spatio-temporal dynamics inside the heart (details about the governing processes here will
be discussed in 2.1.5 on page 22). In practice, the electrodes which generate the electrical
field are arranged differently (e.g. electrode patches attached to the skin of the body in the
case of external defibrillation). Simulation by Sebastian Stein.

next section, the dynamics during ventricular fibrillation is described in more detail, before
risk factors are discussed and the standard medical treatment (application of a defibrillation
shock) is depicted including its side-effects.
The lack of understanding of the underlying mechanism driving ventricular fibrillation and
the search for alternative therapies with significant improvements of today’s medical treat-
ment (specifically a reduction of the severe side-effects) provide the main motivation for this
thesis.

1.2.1 Ventricular Fibrillation

With three million people worldwide (three hundred thousand people in the United States
alone) experiencing sudden cardiac arrest per year, it is one of the most common causes
of death in developed countries. Actually, more people in the United States die from sud-
den cardiac arrest than from AIDS, breast cancer, lung cancer and stroke combined [8].
Ventricular fibrillation is the main cause for sudden cardiac arrest [7].
The electrical dynamics which governs the mechanical contraction of the heart deteriorates
from a periodic and organized pattern, to spatio-temporal chaos1 determined by spiral or
scroll waves (Fig. 1.4). These waves represent the main building blocks of the dynamics and
their frequency is faster (' 5 Hz) than the usual sinus rhythm (∼ 1 Hz). For this reason,
the common stimulation which initiates the sinus rhythm is overdriven by the much faster
frequency of the chaotic dynamics.

1In this thesis, chaos is used in the sense of deterministic chaotic behavior, which is characterized by
a sensitive dependence on initial conditions, exponential divergence of initially close trajectories and the
resulting incapability of reliable long-term predictions.
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Figure 1.5: The transition from sinus rhythm to ventricular fibrillation recorded by an
electrocardiogram. The figure depicts an electrocardiogram (ECG) of a male patient (43
years old). The shape of the ECG changes over time from the typical shape associated
with sinus rhythm (up to 4 s) to a chaotic signal (from 8 s) corresponding to ventricular
fibrillation. ECG time series data taken from [14].

In many cases, the transition from sinus rhythm to ventricular fibrillation is not direct
but an intermediate state, called ventricular tachycardia, can be identified. This state is
characterized by a still periodic dynamics, but in comparison to the sinus rhythm it exhibits
a significantly increased frequency (greater than 2 Hz [9]). The heart can remain in this
state, but may also decay into ventricular fibrillation. Although alternans2 is a reasonable
mechanism which could explain the dynamical transition from ventricular tachycardia to
ventricular fibrillation [10, 11, 12, 13], the exact mechanisms responsible for the onset and
perpetuation of ventricular fibrillation remain unclear.
The transition from sinus rhythm to ventricular fibrillation is also measurable in the elec-
trocardiogram (ECG) (Fig. 1.5), as a change from a periodic to a chaotic signal.

1.2.2 The Risk of Ventricular Fibrillation

In clinical studies, the risk for the occurrence of ventricular fibrillation has been statistically
related to other diseases or measurable biomarkers. Among others, the following risk factors
have been identified [15]:

• Coronary artery disease

• Heart failure and/or decreased left ventricular ejection fraction

• Previous events of sudden cardiac arrest

• Hypertrophic cardiomyopathies

• Long QT syndrome
2Alternans describes a phenomenon where the electrical activity of the heart and the resulting strength

of the mechanical contraction undergo a periodic beat-to-beat oscillation.
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1.2. Cardiac Arrhythmias

Figure 1.6: An implantable cardioverter-defibrillator (ICD). The ICD device is implanted
under the skin of the patient. Here, the electrodes which generate the electrical field
(Fig. 1.4(c)) are the defibrillation lead (typically located inside the right ventricle) and
the ICD device itself. Image taken from [16], Copyright Medmovie.

Studies indicate, that a combination of any three of the listed factors increases significantly
the risk for a sudden cardiac arrest [15].

1.2.3 Defibrillation of the Heart

The conventional method to terminate ventricular fibrillation and restoring the sinus rhythm
is to apply an electrical far field defibrillation shock to the heart (Fig. 1.4(c)).
This procedure can be performed by an external defibrillator (electrodes are located outside
the body), or by a device implanted inside the body, an implantable cardioverter-defibrillator
(ICD). ICDs are in particular used in patients with an increased risk for ventricular fibril-
lation [7]. The ICD itself serves as one electrode, whereas the second electrode is usually
located inside the right ventricle (Fig. 1.6).
A successful defibrillation attempt terminates the chaotic wave dynamics inside the heart,
and the electrical conduction system can re-initiate the sinus rhythm. Statistically, the
success rate of a shock attempt is proportional to the electrical field strength (and thus to
the energy). The detailed mechanism underlying this behavior will be discussed in detail in
section 2.1.5. However, the clinical requirement for a success rate close to 100 % is using the
conventional techniques only accessible with huge field strengths (corresponding to around
200 J to 300 J). The resulting currents which are induced by the electrical field are mainly
responsible for the severe side-effects of this technique:

• The large electrical field strength causes extreme pain [17].

• Induced electrical currents additionally damage the cardiac cells, and in that way
increase the risk for further arrhythmias [18, 19].

• Specifically, patients with an ICD suffer from posttraumatic stress symptoms [17, 20].

7
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Although current approaches achieve a reasonable energy reduction by using a sequence of
low-energy pulses as S. Luther and F. H. Fenton et al. [21] or a multiple-step protocol [22],
significant improvements of theses techniques are still needed. As stated at the beginning
of this chapter, reducing the severe side-effects provides the long term goal of this thesis.

1.3 Dynamical Systems and Nonlinear Dynamics

Using a term like nonlinear science is like referring to the bulk of zoology as the study of
non-elephant animals.

– Stanislaw Ulam

Apart from the medical and biological understanding, the dynamics of the heart can from
a point of view of a physicist also be interpreted as a trajectory in the state space of the
system. The mathematical field which describes the dynamics of these complex systems is
called the dynamical systems theory. The embedding of the dynamics of the heart as a
complex biological system into this mathematical framework is closely tied to the process of
modeling. For example, a specific state of the heart has to be parametrized by information
like the geometrical position, the shape or the structure of the heart, ion concentrations of the
cells and other quantities in order to contain all relevant information3. This parametrization
defines at the same time the state space, where each state is associated to specific values of
the parameters. The subject of how to model a complex system will be discussed in detail
in section 2.3.
Additionally, for the description of the underlying processes (e.g. the spread of excitation
waves in an excitable medium) the theory of nonlinear dynamics is required. The theories
of dynamical systems and nonlinear dynamics provides many concepts and tools, which
can be used to analyze and evaluate the complex dynamics of cardiac arrhythmias from an
extended point of view. Using these mathematical techniques for the purpose of improving a
medical therapy in the end, may sound ambitious but also may be rather odd. That is, why
this approach can only be successful if there is a close connection to experimental results
and an ongoing exchange of experiences with clinicians. Only then, this interdisciplinary
strategy can be fruitful and provides both, a deeper insight into the fundamental dynamics
of chaotic systems, and also valuable knowledge for the improvement of current defibrillation
strategies and development of completely new therapies.

3A perfect description and simulation of a real heart and its dynamical processes is basically impossible
in practice. The selection of the relevant quantities to describe the system is a key element of the process of
modeling.
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1.4. The Scope of this Thesis

1.4 The Scope of this Thesis

As discussed in the previous section, the goal of this thesis is to investigate the dynamics
of the heart (and in particular the nature of cardiac arrhythmias) using concepts and per-
ceptions from the dynamical systems theory. On the basis of the interdisciplinary interplay
between mathematical approaches and interaction with experimental and clinical knowledge
and results, two scientific objectives are addressed:

• Derive an enhanced understanding of the dynamics during episodes of ventricular
fibrillation, including the development of concepts for the improvement of current
defibrillation techniques and suggestions for completely new strategies which may find
their way into the clinical application.

• Obtain novel insights into the fundamental dynamics of complex, nonlinear systems
(thus excitable systems and beyond).

These objectives shall be achieved using numerical simulations, which are in this thesis the
main tool to investigate specific research questions.
The thesis is structured as follows: In the second chapter, an extensive overview is given over
the biological backgrounds of the dynamics of the heart (section 2.1) and the mathematical
concepts and tools used in the studies (section 2.2). Since the conclusions of this thesis
are mainly based on the results obtained from diverse numerical simulations, the role of
simulations in the general context of scientific research and specifically in the field of complex
biological systems is discussed in section 2.3.
Furthermore, in section 2.4 the governing differential equations are derived, and the numer-
ical implementation concerning all features of the simulations is presented.
The third chapter comprises four studies, whose objectives are mainly motivated from exper-
imental observations and results. The first three of the four studies are based on manuscripts
which are currently at different stages of the publication process in peer reviewed journals
(published, submitted and under revision). Therefore, each study is accompanied by a
paragraph which states the current status of the manuscript (at the submission date of this
thesis) and the individual contributions of the authors.
Furthermore, each study is introduced and concluded by a short paragraph which illustrates
the respective scientific objective of the study and interprets the results concerning the initial
question at the end. Although the individual research questions are related and build on
one another, each study can therefore also stand on its own, and the interested reader
could therefore also jump to a specific study, with occasional excursions to chapter 2 for
background information and details about the used methods and tools.
The scientific objectives of the studies presented in this thesis are formulated in the following:

• What is the mechanism of spontaneous termination of ventricular fibrillation? In-
vestigating the transient nature of chaotic dynamics in excitable media of spatially
extended systems (section 3.1 on page 68).
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Chapter 1. Introduction

• Is a prediction of the end of a chaotic episode possible? Characterizing the final phase
of transient chaos (section 3.2 on page 76).

• What is the underlying mechanism for complexity fluctuations in the electrocardio-
gram during an episode of ventricular fibrillation? Correlation between fluctuations
in the spatio-temporal dynamics using time series from multiple electrocardiogram
electrodes (section 3.3 on page 102).

• What is the least possible interaction for the successful control and termination of
ventricular fibrillation? Concepts for minimal energy defibrillation (section 3.4 on
page 117).

In the last chapter, the results obtained in the studies are summarized and discussed (section
4.1).

10



Chapter 2

Methods

This chapter provides the scientific foundations for the studies presented in this thesis. First,
the major governing mechanisms of the heart are described (section 2.1), followed by the
embedding of the dynamics into the mathematical context (section 2.2). In the third section
2.3, the role of numerical simulations (in particular in relation to experimental results) is
discussed. Finally, in section 2.4 the governing equations are derived, the relevant features of
the simulations are explained, and the numerical implementation of these features, including
the used analyzing tools, is presented.

2.1 Complexity of the Heart

The basic anatomy and functionality of the heart was already described in section 1.1.
However, for the implementation of sophisticated simulations of the dynamics of cardiac
tissue a broad understanding of the underlying biochemical processes (up to a reasonable
level of detail) and more details about diverse components of the cardiac substrate are
required. These aspects will be revisited in section 2.4.2, where the modeling of the governing
processes which are relevant for this thesis will be described. From a medical point of view,
as well as under biophysical and biochemical considerations, the heart is a highly complex
organ, exhibiting various mechanisms and processes on different length and time scales,
which in total provide the proper pumping function. In this section, we describe and explain
the most prevalent and governing processes and features that play a role for the dynamics
of cardiac tissue. In doing so, we systematically go from a small scale (the dynamics of one
cell) to larger scales (cell coupling, propagation of the electrical signal) and end up with
explanations about the measurement of cardiac functionality (electrocardiogram) and the
principles of the underlying processes during defibrillation (virtual electrodes, defibrillation
threshold).

2.1.1 Single Cell Dynamics – Cardiac Tissue as an Excitable Medium

In this section we want to understand how the membrane potential of a cell (more precisely
the voltage between the inside and the outside of a cell) is composed and what happens
during an action potential on a cellular level. The electrical potential inside and outside of
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Chapter 2. Methods

Figure 2.1: The ion channels which are mainly responsible for the resting potential V rest
m .

In (a) the leak channels are depicted, which allow a steady transmembrane current of sodium
and potassium channels. In addition, the Na+−K+ pump provides for an exchange of three
sodium ions from the inside to the outside, and at the same time a propagation of two
potassium ions from the outside to the inside of the cell. This figure was published in [24],
Copyright Elsevier (2018).

a cardiac cell is determined by ion concentrations of specific ions (e.g. sodium (Na+), potas-
sium (K+), chloride (Cl−) or calcium (Ca2+)). The membrane, which separates the inside
from the outside of the cell, is permeable for these ions under the consideration of different
mechanisms. Goldman derived already in 1943 an expression for the membrane potential Vm

depending on ion concentrations [23] (denoted by square brackets [x]i/o for concentrations
inside and outside the cell, respectively) and specific ion permeabilities (denoted by Px),
called the Goldman equation:

Vm = RT

F
· PNa · [Na+]o + PK · [K+]o + PCl · [Cl−]i
PNa · [Na+]i + PK · [K+]i + PCl · [Cl−]o

, (2.1)

where R is the ideal gas constant, T is the temperature and F is Faraday’s constant.

Resting Potential

The resting membrane potential is mainly determined by the sodium and potassium con-
centrations, other ions and proteins do only play a minor role here. The actual resting
potential is primarily composed by two effects: leak channels of the cell allow the diffusion
of sodium and potassium due to a non-zero concentration gradient of the ions (Fig. 2.1(a)).
In addition, the sodium–potassium pump, also called Na+/K+-ATPase is an enzyme which
pumps three sodium ions from the inside to the outside and at the same time two potassium
ions from the outside to the inside of the cell (Fig. 2.1(b)). These two effects combined
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2.1. Complexity of the Heart

provide a resting potential of about V rest
m ≈ −90 mV.1

Action Potential

When an excitation wave travels through the tissue (which subsequently triggers the me-
chanical contraction (see section 2.1.3 on page 20)), the local membrane potential Vm differs
from the resting potential V rest

m and one can observe an action potential (Fig. 2.2(a)), which
is characterized by a rapid depolarization of the membrane potential (ii) from the resting
potential V rest

m ≈ −90 mV (i) to approximately 20 mV (upstroke), followed by a relatively
stable plateau, which determines the length of the action potential (iii). Subsequently, the
membrane potential repolarizes (iv) back to the initial resting potential (v). The whole
dynamics during this process is determined by the sophisticated behavior of voltage gated
ion channels. By going step by step through the stages (i)-(v) in Fig. 2.2, we examine the
respective underlying dynamics in each part.
Initially, the action potential is in the resting state ((i) in Fig. 2.2). The action potential
is then triggered by a slight increase of the membrane potential Vm over the excitation
threshold of about V th

m ≈ −70 mV (vertical orange line in Fig. 2.2(a)) by nearby cells (details
about the propagation of the electrical signal are given in section 2.1.2 on page 17). This
causes the opening of specific voltage gated sodium channels.
Figure 2.3 sketches the dynamics of these ion channels for sodium (a) and potassium (b).
The voltage gated sodium channels have two gates, an activation gate and an inactivation
gate. During the resting state, the activation gate is closed, whereas the inactivation gate is
open. When the membrane potential exceeds the excitation threshold, the activation gate
opens and sodium ions pour (due to a concentration gradient) from the outside to the inside
(sketched in Fig. 2.2(b), by definition a current from the outside to the inside is positive, the
other way negative). This abrupt change in the ion concentrations leads to the upstroke of
the membrane potential (phase (ii) in Fig. 2.2(a)). The inactivation gate is also triggered by
the initial increase of the membrane potential, but it closes a few 10000ths of a second later
than the opening of the activation gate. This mechanism leads to a temporal limitation of
the sodium current. In contrast to the fast reaction of the sodium channels to a voltage
change (therefore also denoted as “fast” channels), the voltage gated potassium channels
(Fig. 2.3(b)) open a bit later, approximately at the same time as the sodium channels close.
Potassium ions can then propagate from the inside to the outside of the cell (sketched in
Fig. 2.2(b), the negative sign is due to the definition of the direction of the flow). This effect
alone would cause a continuous decrease of the membrane potential, which can also be
observed in many other types of cells, e.g. in nerve fibers. However, in cardiac muscle cells,
the membrane potential remains relatively constant after the upstroke ((iii) in Fig. 2.2(a)),
due to additional voltage gated calcium channels. These “slow” channels, allow calcium
ions to propagate from the outside to the inside of the cell (Fig. 2.2(b)), and therefore
counteract the decrease of the membrane potential caused by the propagation of potassium

1By definition, the membrane potential is counted from the inside (more negative) to the outside of the
cell. This causes the negative sign of the resting potential.
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Figure 2.2: The action potential and its underlying mechanism. Subfigure (a) shows a
generic action potential of cardiac muscle with a typical action potential duration of about
250 ms and a voltage threshold of about V th

m ≈ −70 mV. The evolution of the membrane po-
tential Vm can be subdivided into the initial resting state (i), the upstroke (ii), the following
approximately constant plateau (iii), the repolarization (iv) and the return to the resting
state (v). In (b), the transmembrane ionic currents are schematically depicted, which mainly
determine the underlying dynamics of the action potential. The initial increase of Vm over
the excitation threshold causes the voltage gated sodium channels to open for a short time
(Fig. 2.3), resulting in the upstroke of Vm (ii). The “slow” potassium and calcium channels
open later, and allow the propagation of calcium ions from the outside to the inside (blue
curve) and potassium ions from the inside to the outside of the cell (green dashed curve).
The direction of the flow is clarified by the negative sign of the potassium current. The
two currents approximately annihilate each other (in terms of an effective change of Vm)
and determine the plateau of the action potential (iii). Eventually, the calcium channels
close earlier than the potassium channels (iv), thus the potassium current predominates and
causes the repolarization of the membrane potential back to the resting state (v).
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2.1. Complexity of the Heart

Figure 2.3: A basic description of the mechanism of voltage gated ion channels. In (a) three
stages of voltage gated sodium channels are shown, respective to different states during an
action potential. During the resting state, the activation gate is closed and the inactivation
gate is open (left). When the membrane potential of the cell exceeds the excitation threshold,
the activation gate opens and allows sodium ions to propagate (due to a concentration
gradient) from the outside to the inside of the cell (middle). After less than a millisecond,
the inactivation gate closes (right). The channel returns to the initial state (left) only, when
the membrane voltage reaches the resting state again. The voltage gated potassium channels
(b) behave similar, despite the fact that they possess only one gate. This gate opens and
closes also triggered by the membrane potential, but this process happens much slower than
the voltage gated sodium channels. This figure was published in [24], Copyright Elsevier
(2018).
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ions. Finally, the calcium channels slowly close and the potassium channels predominate,
leading to the repolarization of the membrane potential (iv) back to the resting state (v).
The resulting action potential can be characterized by a certain action potential duration
(APD) (Fig. 2.2(a)) of about APD ≈ 200 ms to 300 ms. Due to the heterogeneous substrate
of the heart, the exact lengths and durations and related details of the respective ion channel
dynamics can vary from region to region (e.g. endocardium, epicardium, pacemaker cells).
Another distinctive feature of the dynamics is the existence of a refractory period, an amount
of time (subsequently to the upstroke of the action potential, and of comparable length as
the action potential duration), where the cell cannot be excited again. The inactivation
gates of the voltage gated sodium channels do not open again, if the membrane potential
returns to (or almost to) the resting potential of approximately −90 mV, even if a second
signal arrives from another cell. This behavior stabilizes the proper dynamics of the heart
and impedes disorganized contraction patterns. With the existence of a resting state, an
excited state, and a refractory state, cardiac tissue can be recognized as an excitable medium.
As a remark, the ion channel dynamics discussed here is mainly responsible for the action
potential, but also other kinds of ion channel dynamics contributes to the final shape of the
action potential (e.g. chloride ions or “fast” potassium channels [25]). The desired level of
detail describing the actual dynamics is, however, in particular essential for the process of
modeling (for the role of models in numerical simulations see section 2.3 on page 40).
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2.1. Complexity of the Heart

Figure 2.4: The anatomy of cardiac muscle fibers. The lower part of the figure shows a
schematic drawing of cardiac muscle fibers and its constituents. Magnified sketches of the
gap junctions (left plot of the upper part) and the desmosomes (right plot of the upper part)
are depicted. Reprinted by permission of Pearson Education, Inc., New York, New York [1].

2.1.2 Signal Propagation on Different Scales

In the previous section we discussed how an action potential arises. Now we want to under-
stand, how the electrical signal propagates through the tissue. For this purpose, we describe
here the anatomical structure of cardiac muscle fibers.

Cell to Cell Coupling

The lower part of Fig. 2.4 shows a schematic picture of cardiac fibers, which are encased by
the sarcolemma. The cardiac cells possess a nucleus and they are separated by intercalated
discs (also shown in a photomicrograph of cardiac muscle in the upper left part). The in-
tercalated discs consist of gap junctions, that actually allow the propagation of ions from
one cell to a neighboring cell and desmosomes, which bind the cells together and ensure
in this way the mechanical contraction of the whole muscle. Furthermore, the large mito-
chondria (around 25% to 35% of the volume in cardiac cells, whereas in comparison ≈ 2%
in skeletal muscle) provide the adenosine triphosphate (ATP) supply of the cell, and make
the cardiac cells resistant to fatigue. The myofibrils (the parts of the cell which provide the
actual mechanical contraction) constitute most of the remaining space of the cell. The elec-
trical signal is propagating intracellular (from cell to cell) as well as extracellular along the
sarcolemma. The t-tubules are basically (transverse) invaginations of the sarcolemma, and
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Figure 2.5: The arrangement of cardiac fibers in the heart. The subfigure (a) depicts
a sketch of the fiber alignment in atria and ventricular muscle. Blue arrows indicate the
defined direction, corresponding to the conductivities σ` and σp for one exemplary point of
the tissue. Reprinted by permission of Pearson Education, Inc., New York, New York[1].
The rotation of fiber sheets from the epicardium to the endocardium is shown in (b). As in
(a), blue arrows indicate the conductivities which correspond to the longitudinal direction
along the fibers (σ`), the perpendicular direction, orthogonal to the fiber direction but within
the fiber sheet (σp) and the transverse direction, orthogonal to the first two directions, with
a transmural direction (σt). Reprinted from [26], with the permission of AIP Publishing.

allow the quick propagation of the extracellular signal into the inner part of the cell. Here,
the electrical signal can enter the intracellular domain by a large number of ion channels.
The last constituent of the cardiac cell depicted here is the sarcoplasmic reticulum, basically
a huge storage of calcium, which is essential for the mechanical contraction of the cell (see
section 2.1.3 on page 20).

Arrangement of Cardiac Fibers

After discussing how an action potential propagates from cell to cell, we now want to clarify
how the electrical signal spreads on a global scale, thus in the whole organ. In particular,
the question arises: does the propagation of the electrical signal occur homogeneous and/or
isotropic? In fact, cardiac muscle fibers are arranged in such a way, that the pumping
function is optimized in a highly efficient way.
In Fig. 2.5(a) the direction of the fibers is sketched. The sophisticated structure and ar-
rangement causes a screw-like contraction, which pushes the blood out of the heart. In
detail, (tube-like) cardiac cells are arranged in layers or sheets, parallel to the surface of the
heart. Three distinct directions can be defined at every point of the tissue (also marked in
Fig. 2.5(a) and (b)): the direction within the layer and along the fibers (longitudinal direc-
tion), the direction perpendicular to the fiber, but within the layer (perpendicular direction)
and the direction which is orthogonal to the first two directions, and thus transverse to the
layer (transverse direction). Since the sheets of tissue are aligned parallel to the surface
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2.1. Complexity of the Heart

Figure 2.6: The conduction system of the heart. The pathway of the electrical signal is ini-
tiated by the sinoatrial node (1). It propagates through the atria (causing their contraction)
and along the internodal pathway to the atrioventricular node (2). After a delay of about
0.1 s, the signal continues to travel in the atrioventricular bundle (3), which splits up into
the left and right bundle branches (4). At the end, the electrical signal propagates through
the Purkinje fibers (5), where it connects to the cardiac cells and initiates the contraction
of the ventricles. Reprinted by permission of Pearson Education, Inc., New York, New York
[1].

of the heart (except e.g. in the septum), the transverse direction gives in general also the
transmural direction. Furthermore, neighboring layers of tissue are rotated against each
other in such a way, that the fiber direction (longitudinal direction) rotates monotonously
120◦ from the outside (epicardium) to the inside of the heart (endocardium) (Fig. 2.5(b)).
Due to the anatomical heterogeneity of the tissue, the electrical conductivities in these three
directions (σ`, σp and σt) can differ significantly in their magnitude from each other and
additionally can depend on the region of the heart, too.

Electrical Conduction System of the Heart

The frequency of contractions of the heart muscle is determined by the autonomic nervous
system. In particular, the sympathetic and the parasympathetic nervous system may in-
crease or decrease the heart rate, respectively, depending on the actual condition and need
of the whole body. The actual process of a mechanical contraction, however, is triggered by
the heart itself.
The heart initiates intrinsically the contraction from the sinoatrial (SA) node (an au-
tonomous pacemaker, see Fig. 2.6) and the electrical signal is then distributed inside the
heart muscle, using a sophisticated electrical conduction system. From the SA node, the
electrical activity spreads throughout the atria, causing a contraction here and travels along
the internodal pathway to the atrioventricular (AV) node. The propagation of the electrical
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Figure 2.7: The structure of a moyofibril. Myofibrils are composed of sarcomeres, which
are separated by Z discs. The sarcomeres consist mainly of thin (actin) filaments, and
thick (myosin) filaments. In the case of a contraction of the muscle, the actin filaments
are moving (with the Z discs) towards the myosin filaments (thus in the direction of the H
zone). Reprinted by permission of Pearson Education, Inc., New York, New York [1].

signal is delayed here for around 0.1 s, which allows the atria to complete the contraction.
The atrioventricular node is (in the case of a healthy heart) the only electrical connection
between the atria and the ventricles. From here, the impulse travels along the atrioventricu-
lar bundle inside the septum of the heart, and splitting then up into the left and right bundle
branches, heading to the apex of the heart. The Purkinje fibers represent the final part of
the conduction system. Only here, the electrical signal connects to the cardiac muscle and
induces the mechanical contraction of the ventricles.

2.1.3 Mechanical Contraction

The main task of the heart is its mechanical contraction which pumps the blood through the
body. The electrical signal initiates the actual process of contraction2, which occurs inside
the myofibrils (Fig. 2.4). The myofibrils can be divided into sarcomeres, single contracting
units, which are separated by Z discs (Fig. 2.7).
The sarcomeres are a compound of thin and thick filaments, where the thin filaments mainly
consist of actin, coiled by nebulin and the thick filaments consist of myosin, which are held
in place by titin filaments. A mechanical contraction is triggered by an electrical signal,
which initiates a huge calcium release by the sarcoplasmic reticulum (see section 2.1.2).
These calcium ions diffuse between the actin and myosin filaments. This leads to a force,
that pulls the actin filaments towards the middle of the sarcomere (H zone), until they
overlap with the myosin filaments. The result is a contraction of the sarcomere, and since
the cardiac cells are electrically connected, the whole heart muscle contracts in an organized
way.

2As described in section 1.1, we concentrate in this thesis on the electrical excitation patterns, and assume
that the mechanical contraction is unidirectionally determined by the electrical signal.
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Figure 2.8: Schematic representation of a usual ECG during sinus rhythm. Different stages
of the mechanical contraction of the heart, can be associated to subsequent sections of the
ECG (P wave, PR segment, QRS complex, ST segment, T wave and the U wave). Image
reprinted from Wikimedia Commons [27].

2.1.4 The Electrocardiogram

The rhythmical contraction of the heart can also be measured from outside the body (non-
invasively) using electrocardiogram (ECG) electrodes. This technique provides valuable
insight into the underlying dynamics of the heart. In particular, the ECG electrodes do not
measure directly the mechanical motion of the heart, but rather the electrical excitation
patterns. During the usual sinus rhythm, the electrocardiogram provides a characteristic
signal (schematic representation in Fig. 2.8), where each part can be associated to different
stages of the contraction.
The mechanical contraction starts with the depolarization of the atria, which can be asso-
ciated with the P wave in the electrocardiogram, followed by the PR segment (propagation
of the signal through the atrioventricular bundle) which lasts until the ECG drops, defin-
ing the start of the QRS complex (for comparison to the electrical conduction system, see
section 2.1.2 on page 17). After the signal has passed the atrioventricular bundle, the inter-
ventricular septum depolarizes, inducing a drop of the ECG signal (Q wave), followed by the
depolarization of the remaining ventricular muscle (R wave). Afterwards, the repolarization
of the ventricles is reflected in the ST segment, the T wave and the U wave. Since the dif-
ferent parts of the ECG (at least partially) refer to distinct regions of the heart, physicians
can deduce (possibly pathological) anatomical variations of the heart from alterations of the
normal shape of the ECG. In the conventional way, the ECG is mainly used for analyses
of the sinus rhythm, and related heart diseases. In the study of section 3.3 on page 102 we
extend this concept, by introducing a multiple electrode measurement during ventricular
fibrillation, and derive statements about the spatio-temporal state of the heart during the
chaotic dynamics.
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2.1.5 Defibrillation of the Heart

Defibrillation describes a process that terminates cardiac arrhythmias (e.g. ventricular
fibrillation), via the application of electrical high-energy far field shocks to the heart. This
procedure, and in particular the significant side effects of current standard defibrillation
technique provide the main motivation of this thesis. The purpose of a defibrillation attempt
is, to terminate chaotic excitation patterns present in the heart, and to restore sinus rhythm.
In the following, the underlying mechanism of the application of high-energy far field shocks,
and their effect on cardiac tissue is discussed.

Virtual Electrodes
The concept of virtual electrodes is fundamental for the understanding of the underlying
mechanisms of defibrillation [28, 29]: The cardiac muscle is not a homogeneous substrate
but heterogeneities of various size and structure are present in the tissue. Essential for the
mechanism here are changes in the conductivities which emerge for example due to blood
vessels, or discontinuities between bundles and sheets of fibers [30], but also the inner and
outer boundary of the muscle (endocardium and epicardium, respectively) are crucial from
this point of view. When an electrical field is applied for a certain amount of time (“far field
shock”), the ions present in the tissue experience the Lorentz force. These charged particles
are slightly shifted due to the force and accumulate at heterogeneities (or more precisely,
at regions of a varying conductivity). Since the conductivities are different in the intra-
and extracellular space, the membrane potential exceeds the excitation threshold at specific
locations, which then triggers an action potential there. In this way, heterogeneities can be
denoted as “virtual electrodes”, since excitation waves induced by an external electrical field
are created here. The process of creating an excitation wave (using an external electrical
field) at a certain heterogeneity is also termed “recruiting” the heterogeneity.
Quantitatively, the actual field strength plays an important role for the defibrillation pro-
cess. Studies indicate, that a certain field strength of the external electrical field, can only
“recruit” heterogeneities down to a specific size or shape [28, 29, 31]. That means, with a
lower field strength, excitation waves are created only at some heterogeneities. For exam-
ple, P. Bittihn et al. showed [31], that the curvature of the heterogeneity is essential for the
recruiting process (Fig. 2.9). Boundaries with a negative curvature (convex) can be excited
with significantly lower field strengths, whereas heterogeneities with a flat or positive cur-
vature (concave), are recruited only with high field strengths. That means, with an increase
of the field strength, more and more heterogeneities can be recruited, and thus the regions
of the heart where excitation waves are created grows monotonously.
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Figure 2.9: Recruiting of excitation sites in cardiac tissue dependent on the field strength.
Results of numerical simulations using the Fenton-Karma model, based on a micro-CT
(computed tomography) scan of the left ventricle of a rabbit heart. Excitation waves are
depicted, which were created by the application of an electrical field for 5 ms with a varying
field strength E. The plots show snapshots of the excitation patterns at different points in
time (from left to right) and with different field strengths ((a) 0.2 V/cm, (b) 0.4 V/cm, and
(c) 1.0 V/cm, respectively). Reprinted from [31] under the terms of the Creative Commons
Attribution 3.0 License.
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Figure 2.10: The dose response curve. In a defibrillation study [32] with 23 Langendorff-
perfused rabbit hearts, the defibrillation success rate (dose response curve) was determined
statistically in 273 shock episodes. The sigmoid-like behavior of the success rate reflects
the underlying mechanism of the defibrillation, which is based on the (energy dependent)
recruitment of virtual electrodes. Reprinted from [32], with permission from Wolters Kluwer
Health, Inc. .

The Dose Response Curve
In this picture, the standard defibrillation procedure (one high-energy shock) uses such a
huge field strength, that it excites basically the whole tissue at once. In this way, the
excitation waves which perpetuate the current arrhythmia cannot further propagate, the
whole tissue is excited and decays then globally in the refractory state. Afterwards, the
conduction system can restart the sinus rhythm and the ordered contraction of the heart.
Using such a high energy/field strength ensures (in most cases) the termination of the
cardiac arrhythmia, but comes along with significant side effects (discussed in section 1.2
on page 4), which are often related to the resulting electrical currents.

In comparison, using lower field strengths decreases the number of recruited heterogeneities.
That means, the electrical field does not excite the whole tissue, but only parts of it. How-
ever, with a certain probability, the induced excitation waves can still terminate the present
dynamics of the arrhythmia. Naturally, this probability is (in general) proportional to the
field strength (and thus the number of excitation sites) [21]. The dose response curve (DRC),
which gives the statistically determined success rate of a defibrillation shock dependent on
the electrical field strength, reflects this behavior (Fig. 2.10).

Apparently, using a lower field strength/energy for defibrillation significantly reduces the
probability for the termination of the arrhythmia (which is not acceptable regarding a
clinical application). That is, why low energy defibrillation protocols (e.g. [21]) need to
adjust parameters like the number, frequency or timing of the shock(s) in order to guarantee
a reasonably high success rate.

24



2.2. Mathematical Embedding

2.2 Mathematical Embedding

After the discussion of the governing principles and mechanisms which play a role in the
dynamics of the heart, this chapter provides the mathematical framework of the simulation
studies of this thesis. The dynamics of the heart is set into the context of the theory of
dynamical systems, and important concepts and tools are described which will be used
to interpret the numerical results. In particular, the phenomenon of chaotic transients is
discussed in detail in section 2.2.3, since it plays a major role in this thesis.

2.2.1 The Heart as a Dynamical System

The embedding of the dynamics of cardiac arrhythmias into the theory of dynamical sys-
tems provides the scientific foundation for the numerical simulations and their subsequent
interpretation presented in the studies of this thesis. The investigation of cardiac dynamics
from this rather mathematical point of view allows the use of various methods and tools
which are commonly used in nonlinear dynamics, and in particular enables the transfer of
an episode of cardiac arrhythmia to a trajectory in state space. For this purpose the rele-
vant quantities and concepts of the theory of dynamical systems which are needed for the
discussion of the obtained results of this thesis are introduced in this section.
Mathematically, a dynamical system is defined by a tuple (T,X,Φ), where T is a set repre-
senting time, X is the state space and Φ is a function which maps an element from T and
X to X, thus evolves a state through the state space: Φ : T × X → X. For the sake of
convenience, we will discuss in the following the main principles using the specific example
of cardiac dynamics.
At the beginning, the state of the heart at time t shall be described by a vector x(t), which
includes all relevant information necessary to describe the state of the heart. Actually, the
question which kind of information is sufficient for a full characterization of the status of the
heart is essential and highly related to the scientific objectives of the respective study. It is
clear, that in practice a state vector of finite length can only describe a small amount of the
full information of the entire organ. This crucial process of modeling is further discussed
in section 2.3 on page 40. Here, we can assume that for a specific study x(t) contains the
membrane potential and the ion concentrations of specific ions3. The temporal evolution of
the state vector in time is then described by the function f(x(t), t):

∂x(t)
∂t

= f(x(t), t) . (2.2)

Equation (2.2) can be solved (analytically or numerically) using an initial condition x0 =
x(t0), which yields the trajectory γx0 concerning the initial condition. Thus, γx0 is a set
of state vectors which are passed during the evolution of the initial condition through the
state space X (Fig. 2.11).

3Further information could include e.g. the mechanical contraction of the heart, thus the spatial position
and shape of cells.
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Figure 2.11: A sketch of a trajectory in state space. The (two-dimensional) state space is
characterized by the parameters x1 and x2. The trajectory γx0 corresponding to the initial
condition x0 depicts the temporal evolution of the state vector through the state space.

The aim of this thesis is to study these trajectories in state space, specifically the trajectories
which correspond to the dynamics of episodes of cardiac arrhythmias. In particular, we
are interested in possible structures or patterns of the state space. In a first step, we
want to investigate whether topological structures which are commonly used to describe
the state space of a system (e.g. attractors, repellers, saddles) can also be found in cardiac
dynamics. After the identification of those objects one can then discuss how the results need
to be interpreted concerning cardiac dynamics, in particular the implications for cardiac
arrhythmias, and how the gained knowledge can be exploited for possible applications.
As already mentioned, for this purpose topological structures of the state space which are
commonly found in nonlinear systems are described in the next section.

2.2.2 Structures of the State Space

In the following, typical topological objects of the state space are discussed. In many cases,
the dynamics of a system is determined by the coexistence of more than one of these objects.

Attractor

An attractor of a system is a subset of the state space X, which tends to have an attracting
effect on trajectories. The subset A of the state space is called an attractor of the system if
it fulfills three properties:

• When x(t1) is an element of A, then it will remain in A ∀t (A is an invariant set).

• For each attractor A there exists the basin of attraction, a neighborhood of A, called
B(A). The basin is defined by the set of all points, which will asymptotically converge
to the attractor in the limit t→∞.

• No non-empty subset of A exists, which fulfills the first two properties.
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Figure 2.12: The sinus rhythm in state space. The rhythmical contraction of the heart
(sinus rhythm) can be interpreted as a trajectory in state space and is here shown schemat-
ically. The resting state (fixed point), where the membrane potential everywhere in the
heart is equal to the resting potential (section 2.1.1 on page 11) is in the figure marked by
(1). The beginning of the contraction cycle initiated by an excitation of the av node can
be interpreted as a perturbation from the resting state (2). As the plane wave propagates
through the tissue, the state of the system travels through the state space ((3), (4) and (5)),
until the plane wave has passed through the whole heart, and the system returns again to
the resting state (1). (Simulation by Sebastian Stein).

Fixed Point

A stable fixed point is a special case of an attractor, where the attractor itself is given
by a single point in the state space. By definition, the fixed point maps to itself. In many
cases, the stability of the fixed point, thus the robustness against infinitesimal perturbations,
and its basin are of interest. Actually, the principle of the basin of a fixed point can be
found in cardiac dynamics as a practical example, in particular during the cycle of a usual
(sinus rhythm) contraction. Here, the resting state between two contractions, defined by
the absence of electrical waves, can be interpreted as a stable fixed point (marked by (1) in
Fig. 2.12).
The fixed point is stable against small local perturbations of the membrane potential, which
do not exceed the excitation threshold. However, if the perturbation is big enough (green
arrow in Fig. 2.12), an action potential is induced. The external stimulus (which starts the
cycle) is initiated by the sinus node and is forwarded by the electrical conduction system
(section 2.1.2 on page 17). While the electrical wave propagates through the tissue ((3),(4)
and (5)) the state of the system forms a trajectory in the state space. Since the system
returns to its fixed point (1), the state in state space which corresponds to the initial
perturbation (2) is thus also part of the basin of the fixed point.
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As a remark, the aim of the above interpretation is to illustrate the general concept of a
basin of attraction and should not provide an exact mathematical example. Actually, it is
questionable if the resting state can be interpreted as a fixed point (with measure of zero)
or should rather be modeled as an extended attractor4. Furthermore, strictly speaking the
discussed resting state is not stable under biological considerations, since cardiac muscle cells
will initiate excitation waves by themselves if the external stimulation by the sinus rhythm
is missing due to some reason. However, the state space sketched in Fig. 2.12 provides a
basic picture, which will be used to illustrate the scientific objective, the main concepts, and
the obtained results of each study of this thesis.

Chaotic Attractor

Similar to the fixed point, the chaotic attractor (also called strange attractor) is a special
case of a general attractor, too. The dynamics of a trajectory inside the attractor is chaotic,
which manifests in the sensitivity of initial conditions. This behavior can be quantified by
the calculation of the leading Lyapunov exponents (section 2.2.4). A chaotic attractor is the
topological object which is responsible for a permanent chaotic dynamics (in comparison
to transient chaos, see below). It has a fractal structure, which can be estimated by e.g.
the Kaplan-Yorke dimension (section 2.2.4). A specific trajectory comes arbitrarily close to
each point of the attractor. As an example, a chaotic attractor can be found in the two-
dimensional Hénon map [33] in a specific parameter regime. The Hénon map is discussed
extensively in the study of section 3.2 on page 76.

Repeller

A repeller is similar to an attractor, whereas it has a repelling effect on neighboring tra-
jectories. In some cases, a chaotic repeller can be responsible for chaotic transients, thus
chaotic dynamics with a finite duration, followed by a non-chaotic behavior, governed by
e.g. another attractor.

Chaotic Saddle

Chaotic saddles are invariant sets of the state space, which are besides chaotic repellers
responsible for the occurrence of chaotic transients. They can be characterized by their
influence on neighboring trajectories. In contrast to chaotic repellers which repel all close
trajectories, chaotic saddles do have both, attracting and repelling directions. These direc-
tions are actually hypersurfaces in the state space and are denoted as the stable manifold
and the unstable manifold. The stable manifold of a fixed point x∗ is defined as all points
x which will approach x∗ as t→∞, whereas the unstable manifold is defined as the points
x which will approach x∗ as t → −∞. They are exemplary denoted in Fig. 2.13 in orange
(stable manifold) and green (unstable manifold), respectively.

4The main question here, is how the state of the system should be parametrized by the model, since this
parametrization defines the state space at the end.
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Figure 2.13: A saddle point in the state space. The saddle point is defined by the intersec-
tion of the stable manifold (orange) and the unstable manifold (green) of the fixed point. In
this sketch, the saddle point coexists with a sink (stable fixed point) and a source (unstable
fixed point), as well as a stable limit cycle. Republished with permission of Royal Society,
from [34]; permission conveyed through Copyright Clearance Center, Inc.

A chaotic saddle is defined by the intersections of the stable and unstable manifold [35].
This behavior is depicted in Fig. 2.14. If the stable manifold and the unstable manifold
intersect at one point, they must do so infinitely many times, since if one point is part
of both manifolds, also the image and the preimage of the point have to be part of both
manifolds. This results in a complex intertwined structure of both manifolds.

Figure 2.14: The intersection of the stable and the unstable manifold of a fixed point.
The stable (orange) and unstable manifold (green) of a fixed point x∗ are shown. The
intersections of both manifolds (black circles) define the chaotic saddle.

In contrast to the transient chaotic dynamics governed by a repeller, long-living trajectories
can in the case of a chaotic saddle initiate far away from the saddle. If they start in the
proximity of the stable manifold, they are first attracted to the saddle. Since the repeller
only has nonattracting directions, long-living episodes can only originate from the vicinity of
the repeller. However, although a chaotic saddle has also attracting directions, the repeller
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and the chaotic saddle are both globally non-attracting sets, since all typical trajectories will
depart after a finite transient time. Mathematically, the chaotic saddle itself is an invariant
set with a corresponding infinite lifetime, but since its measure is zero, one will in practice,
for example in numerical simulations, never reach such a trajectory with sustained chaos.
Thus, although the chaotic saddle is the set which governs the dynamics, typical trajectories
will in practice never reach the set itself, and the influence on the dynamics is mainly due
to the attracting and non-attracting effect on neighboring trajectories.
Beside chaotic repellers, chaotic saddles are the sets in state space which are responsible for
transient chaotic dynamics. They typically coexist with other topological objects in the state
space, as for example an attractor or a limit cycle (as sketched in Fig. 2.13). Trajectories
starting in the proximity of the saddle typically show chaotic dynamics for a transient time,
until they reach these objects and as a consequence finish the chaotic dynamics. The length
of the chaotic episode also depends sensitively on the initial condition. Chaotic transients
play a major role in studies of this thesis (e.g. section 3.1 on page 68 or section 3.2 on
page 76). That is why the phenomenon of transient chaos will be discussed in more detail
in the next section.

2.2.3 Transient Chaos

In the previous section, it was shown that repellers and chaotic saddles are the underlying
structures which are responsible for the occurrence of transient chaos. With this observation,
one can define transient chaos in particular in contrast to sustained chaotic dynamics as the
form of chaos which is governed by nonattracting chaotic sets.
Transient chaotic dynamics can appear in many different systems, like turbulence [36],
ecology [37], or neural networks [38, 39, 40]. The end of a chaotic episode is from here on
denoted as the collapse or self-termination of the dynamics. A first distinction between
permanent and transient chaos can be made referring to the lifetime T of the dynamics,
which is infinite for sustained chaos and has a finite duration in the latter case. In practice,
this differentiation is not trivial, since the observation time of the dynamics is always finite.
Thus, when observing a chaotic time series extracted from experimental data, one can
technically not exclude that chaos is transient here, although during the observation time
the dynamics is permanently chaotic [41].

Properties of Chaotic Transients
Ying-Cheng Lai and Tamás Tél characterize transient chaos by the following properties [41]:

1. The dynamics of an exemplary initial condition shows chaotic behavior, until a certain
point in time where the dynamics switches to another quantitative behavior in many
cases non-chaotic. The lifetime of a specific trajectory depends due to the chaotic
properties sensitively on the initial condition.

2. There exists a smooth probability distribution to find an initial condition correspond-
ing to a lifetime larger than T , P (T ). This distribution converges to 0, for T →∞.
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Figure 2.15: Sustained chaotic dynamics of the logistic map. The trajectory of an exem-
plary trajectory (x0 = 0.1) is shown in a Coweb Plot (a) for r = 3.9. The corresponding
time series is shown in (b). With rc ≤ 4 the chaotic dynamics is persistent.

3. Theoretically, there exist trajectories with an infinite lifetime (associated with the
saddle itself). Since the Lebesgue measure of the set of these initial conditions is zero,
in practice the transient lifetime of a randomly chosen initial condition is always finite.

4. In comparison to the dynamics governed by a chaotic attractor (where an arbitrary
small perturbation of the parameters can lead the system into a periodic attractor),
transient chaos is in this sense robust against small parameter perturbations.

Although chaotic transients in spatially extended high-dimensional systems play the major
role in the studies of this thesis, possible underlying mechanisms can be studied more easily
in simple systems like low-dimensional maps. As an example, the transition from persistent
chaotic dynamics to transient chaos is presented in the following for the logistic map.

From Sustained to Transient Chaos: The Logistic Map
The logistic map is a simple one-dimensional map, where basic principles can be studied. It
is defined by:

xn+1 = rxn(1− xn) , (2.3)

where xn is a number between 0 and 1, and r is the only parameter of the map.
With r = 3.9, the system exhibits persistent chaotic dynamics as shown for an exemplary
initial condition x0 = 0.1 in a Coweb plot, together with the corresponding time series
(Fig. 2.15(a) and (b), respectively). If r exceeds rc = 4, an “exit” of the chaotic regime
is created, and thus the chaotic dynamics becomes transient. In Fig. 2.16 this behavior is
depicted for the same initial condition as in Fig. 2.15. When the trajectory “hits” the exit
window (around xn = 0.5) it leaves the chaotic regime and diverges to −∞ (highlighted in
red).
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Figure 2.16: Transient chaotic dynamics of the logistic map. The trajectory of an exem-
plary trajectory (x0 = 0.1) is shown in a Coweb Plot (a) for r = 4.1. The corresponding
time series is shown in (b). With rc > 4 the chaotic dynamics is transient, since points
which map into a window around xn = 0.5 diverge. The final part of the trajectory where
it passes this window is depicted in orange in (a).

Although the specific mechanisms which govern the end of chaotic episodes in low-dimensional
systems like the logistic map can not be generalized to high-dimensional systems, investi-
gating these simple maps allows the study of basic effects which may also play a role in the
complex systems.
More generally apart from the identification of individual mechanisms which lead to the col-
lapse of the dynamics, chaotic transients can, in a first step, be described and characterized
by other, more descriptive properties.

Characterizing Chaotic Transients
In high-dimensional systems, the investigation of a single trajectory provides usually only
limited insight into the dynamics of the underlying objects (non-attracting sets). For a
global qualitative description, a larger number of initial conditions is more appropriate in
order to achieve a dense sampling of the relevant regions in the state space. Hence, from a
large statistics averaged quantities can be derived, which characterize the dynamics.
A useful quantity is the escape rate κ [42], the averaged rate at which trajectories leave the
region of the state space which governs the chaotic dynamics. Assuming a certain number
of initial conditions NCh(t0) in the state space which exhibit chaotic dynamics. As time
goes on, the number of these trajectories NCh(t) which are still chaotic at a point in time
t (thus the number of trajectories which have not yet collapsed) decreases. In general, for
large t an exponential decay can be observed:

NCh(t) ∼ exp(−κt) . (2.4)

In practice, the created initial conditions are not necessarily uncorrelated. These correlations
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of initial conditions can possibly cause a spoiling of the exponential shape of Eq. (2.4) for
small t. For a reasonable estimate of κ, a transient evolution time should therefore be
discarded. In chaotic systems, the inverse of the biggest Lyapunov exponent (introduced
in the next section) can be used to estimate a lower limit for this transient time, since the
biggest Lyapunov exponent determines how fast two trajectories depart from each other.
This consideration is also relevant for the determination of the average lifetime 〈T 〉 of the
transient chaotic dynamics. Instead of calculating 〈T 〉 from averaging over the single life-
times of the initial conditions, the average lifetime is approximately proportional to the
inverse of the escape rate

〈T 〉 ≈ 1
κ
. (2.5)

The average lifetime of a chaotic system can be highly relevant for practical implications of
the specific system (for example in the study of section 3.1 on page 68).
Finally, it is noteworthy that in high-dimensional systems it is very difficult or often prac-
tically impossible to determine whether the dynamics is governed by only one saddle and a
corresponding escape rate, or by plenty of non-attracting sets. In the case of, for example,
two coexistent saddles the global escape rate is composed by two escape rates, which are
associated to the two saddles.

Supertransients
Supertransients appear in spatially-extended systems and can be characterized by a rapid
growth of the average lifetime 〈T 〉 with the system size. Two subgroups can be distinguished
with the following properties [41, 43]:

• Type-I: Characterized by a continuous decrease of the number of “defects”5. The
dynamics is denoted nonstationary for this reason, since the state of the dynamics
can be read off the number of these “defects”. The scaling of the average lifetime
dependent on the system size L is determined by

〈T 〉 ∼ Lβ , (2.6)

where β is a positive parameter.

• Type-II: In systems of this group, the number of “defects” fluctuates during the
chaotic episode. The collapse of the dynamics is therefore spontaneous and the dy-
namics is called quasi-stationary. In contrast to the power law scaling of type-I super-
transients, the average lifetime increases exponentially with the system size here:

5The exact meaning of a “defect” needs to be specified by the corresponding dynamics of the system. In
the case of cardiac dynamics, the number of spiral waves in two-dimensional systems could for example be
considered as “defects”.
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〈T 〉 ∼ exp(aLγ) , (2.7)

with γ a positive exponent and a a system specific parameter.

In two studies of this thesis we identify type-II supertransients, investigate in detail the
underlying mechanisms (section 3.1 on page 68), and extend the general understanding of
the final phase before the collapse of the dynamics in these systems (section 3.2 on page 76).

2.2.4 Analyzing Chaotic Dynamics

A characteristic feature of chaotic systems is the exponentially fast separation of (initially
close) trajectories. The theory of Lyapunov exponents and their corresponding Lyapunov
vectors quantifies this behavior and reveals details about the topological structure of the
state space. Broadly speaking, Lyapunov exponents describe the growth rates of (initially
small) perturbations applied to a generic trajectory of the dynamical system. Calculating
the Lyapunov exponents of a dynamical system is a powerful and one of the most common
tools in nonlinear dynamics which can be applied to a broad class of systems. In this
section the mathematical foundation of Lyapunov exponents is presented, whereas details
about their numerical computation is discussed in section 2.4.5 on page 60.
For the following considerations, a dynamical system described by an ordinary differential
equation

∂x(t)
∂t

= f(x(t), t) , (2.8)

is assumed, where x ∈ Rm denotes an m-dimensional state vector which characterizes the
state of the system, and f(x(t), t) describes the dynamical evolution, which can depend also
explicitly on time, in addition to the time dependent state vector.

The largest Lyapunov Exponent
The largest Lyapunov exponent can intuitively be understood by applying a small pertur-
bation δx0 to a generic initial condition x(t0) (Eq. (2.9)):

x(t0)→ x∗(t0) = x(t0) + δx(t0) , (2.9)

δx(t) = x∗(t)− x(t) . (2.10)

The temporal evolution of the perturbation δx(t) (Eq. (2.10)) can then provide indications,
whether the dynamics is chaotic or not6:

6Actually, a positive Lyapunov exponent alone is in general not sufficient for the identification of chaos.
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Figure 2.17: Perturbation of a trajectory in state space. A perturbation δx0 is applied
to a trajectory at a specific point in time x(t0). The length of the perturbation x(t) (the
difference between the unperturbed and the perturbed trajectory) can grow (blue), shrink
(green), or stay constant in time (red).

|δx(t)|
|δx0|

≈ eλt . (2.11)

In Eq. (2.11) λ is called the (largest) Lyapunov exponent, which is used to quantify the
growth rate of the perturbation. In a first analysis, one can roughly distinguish between
a positive, a negative, and an exponent equal to zero. In Fig. 2.17, these three cases are
schematically shown: Decreasing perturbations (green trajectory) yield a negative Lyapunov
exponent, whereas a positive exponent describes trajectories which separate from each other
(blue trajectory). An exponent equal to zero describes a trajectory which has a constant
distance to the unperturbed one.7

The expression from Eq. (2.11) can be generalized to the definition of the largest Lyapunov
exponent λ, using an infinitely small perturbation and an infinite evolution time:

λ = lim
t→∞

lim
|δx(t0)|→0

1
t

ln |δx(t)|
|δx(t0)| . (2.12)

Oseledets theorem [44] justifies that the exponent in Eq. (2.12) is not time dependent,
and thus it is a quantity describing the whole system and not just a specific trajectory.
Furthermore, it guarantees that Eq. (2.12) holds for almost all initial conditions x(t0).

Lyapunov Vectors
Later in this section we will see, that not only one Lyapunov exponent λ can be determined,

7Note that one of the Lyapunov exponents (not necessarily the largest one) is always zero, since it belongs
to a perturbation heading into the direction of the evolution of the unperturbed trajectory. In this sense,
the perturbation shifts the original trajectory only in time. The perturbed trajectory is in the following
evolution a finite amount of time (and thus space) ahead of the original one, but never separates from it.
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but there exists a whole spectrum of exponents λi. Furthermore, Lyapunov vectors can
be associated with each Lyapunov exponent. These vectors are time dependent, and can
be understood as specific perturbations of the trajectory, which will grow or shrink with a
corresponding Lyapunov exponent (see Eq. (2.11)). They provide an orthonormal basis in
the tangent space, the space of infinitesimal perturbations. The dimension of the tangent
space and thus the number of Lyapunov exponents and Lyapunov vectors is equal to the
dimension of the system itself. One can show, that with the help of the Lyapunov vectors
one can define specific subspaces of the tangent space. Perturbations which belong to these
subspaces will grow/shrink with the corresponding Lyapunov exponent. We will see later
in this section, that almost every perturbation will grow/shrink with the largest Lyapunov
exponent, that means the subspace corresponding to the largest Lyapunov exponent has
a measure of Rm [45]. This is the reason why in practice, Eq. (2.12) can be used for the
calculation of the largest Lyapunov exponent using basically any kind of perturbation.

The Lyapunov Spectrum
As discussed in the previous section, the Lyapunov exponents of a system λi correspond to
Lyapunov vectors, which are located in the tangent space, describing the perturbations which
then grow with the corresponding exponent. In order to specify the Lyapunov vectors and
the related subspaces of the tangent space, the temporal evolution of perturbation vectors
needs to be derived. Equation (2.13) presents a Taylor expansion of Eq. (2.8), where a
differential equation for small perturbations δx(t) can be approximated (Eq. (2.14)) using
the Jacobi matrix Jf of f :

∂(x(t) + δx(t))
∂t

= f(x(t) + δx(t)) = f(x(t)) + Jf δx(t) +O(δx2) , (2.13)

⇒ ∂δx(t)
∂t

≈ Jf δx(t) . (2.14)

The fundamental matrix M is then defined by the equation

∂M
∂t

= JfM , (2.15)

where the initial condition M(0) = 1 can be used. With the help of M the linear propagator
F(t1, t2) can be defined by

F(t1, t2) = M(t2)M(t1)−1 , (2.16)

which evolves perturbations from time t1 to t2 in tangent space:

δx(t2) = F(t1, t2)δx(t1) . (2.17)
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Using Eq. (2.17), the growth of the Euclidean norm of perturbation vectors δx(t1) is given by
F(t1, t2)TF(t1, t2), where F(t1, t2)T is the transposed of F(t1, t2). The Lyapunov exponents
are only defined in the large time limit (see Eq. (2.12)). Therefore it is reasonable to define
the far-future operator [45]:

W(t) = lim
t2→∞

(
F(t, t2)TF(t, t2)

)1/(2(t2−t))
, (2.18)

whose eigenvectors ϕi(t) are denoted as Lyapunov vectors8. The Lyapunov vectors form
an orthonormal basis of the tangent space. Furthermore, the Lyapunov exponents λi are
obtained by taking the logarithm of the eigenvalues of W(t). Note, that the Lyapunov
vectors depend like W(t) on time, whereas the Lyapunov exponents do not [44], which means
that they are invariant. A possible degeneracy of the Lyapunov exponents is neglected here,
since we focus on the general understanding. For more details see [45].
With the definition of the Lyapunov vectors, we can derive an expression for the Lyapunov
exponents which is essential for the numerical computation in the end. For this purpose,
subspaces Sj(t) of the tangent space can be defined using the span of the (orthonormal)
Lyapunov vectors by the following properties:

Sj(t) = span{ϕλi
|i = j, j + 1, ...,m} , (2.19)

Ss+1(t) = ∅ , (2.20)

Ss(t) ⊂ Ss−1(t) ⊂ ... ⊂ S1(t) = Rm , (2.21)

where the subspace Sj(t) is defined by the span of all but the first j − 1 Lyapunov vectors.
By specifying the subspace for possible perturbations δx(t), one can then formulate an
expression for the Lyapunov exponents using the linear propagator:

λi = lim
t2→∞

1
t2 − t1

ln ||F(t1, t2)δx(t1)|| δx(t1) ∈ Sj(t1) \ Sj+1(t1) . (2.22)

The construction of the proper subspace Sj(t1) \Sj+1(t1) for the determination of a certain
Lyapunov exponent λi is quite intuitive. This decomposing of the perturbation space into
proper subspaces is called Oseledec splitting [44, 46]. As an example, let us assume the
calculation of a specific Lyapunov exponent λk with λ1 > λ2 > · · · > λk > · · · > λm

9.
First of all, Sk(t) excludes all perturbation vectors which have components belonging to
larger Lyapunov exponents which would then grow corresponding to the larger Lyapunov
exponents. In Fig. 2.18 Sk is sketched as the hyperplane in the tangent space, spanned by
the Lyapunov vectors ϕl with l > k − 1 (in the sketch, only ϕk and ϕk+1 are shown).
Then, for the determination of the proper subspace Sk \ Sk+1(t1) corresponding to λk,

8In particular, they are denoted as forward Lyapunov vectors, since the far-future operator considers the
evolution into the future (forward direction). For more details, see [45].

9Also here, for the sake of clarity we neglect degeneracy.
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Figure 2.18: Lyapunov Vectors in tangent space. Three Lyapunov vectors are sketched
here ϕk−1, ϕk and ϕk+1, where the latter ones form the subspace Sk, sketched as a hyper-
surface here. Note, that naturally only three dimensions are shown in the sketch, whereas
in most cases the perturbation space can be very high-dimensional.

directions which are orthogonal to ϕk, and thus have no component into the direction of
ϕk, need to be extracted. In the sketch, the subspace into the direction of ϕk+1 needs to
be subtracted, for example and also all the directions corresponding to ϕl with l > k + 1,
not plotted here. Practically that means, almost every perturbation vector in the subspace
Sk (sketched in Fig. 2.18 as the hypersurface) has a component of ϕk and will therefore
grow/shrink with λk.
In the specific case of λ1, the subspace S1(t1) \ S2(t1) consists of Rm, but excluding the
subspace which is orthogonal to ϕ1.10 Actually, this excluded subspace has a measure of
zero, which means that in practice, almost every perturbation vector will grow with the
largest Lyapunov exponent.
The fact that the perturbation vectors, which grow with a Lyapunov exponent which is not
equal to the largest one, have to be orthogonal to all Lyapunov vectors corresponding to
larger exponents is crucial for the numerical implementation.

Lyapunov Exponents in Systems with Discrete Time
Equation (2.22) provides an expression for the calculation of the Lyapunov spectrum. In
the case of systems with a discrete time with the time step dt11 the linear propagator can
be rewritten by the Jacobi matrix Jf , as proposed by Benettin et al. [46]:

F(t1, t2) =
k∏
i=1

Jf , (2.23)

where k is determined by the number of discrete time steps:

10Remember that the Lyapunov vectors ϕi are orthonormal.
11In practice, this includes also continuous systems, described by differential equations which are solved

using a numerical scheme. Thus they are quasi discrete.
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k = t2 − t1
dt

. (2.24)

Since all studies of this thesis present the results of numerical simulations using a discrete
time stepping scheme, Eq. (2.22) can be used in combination with Eq. (2.23) for the calcu-
lation of Lyapunov exponents, only by the knowledge of the Jacobi matrix. The numerical
implementation of the algorithm for computing the Lyapunov exponents in numerical sim-
ulations is discussed in section 2.4.5 on page 60.
Although Lyapunov exponents are defined in the infinite time limit, they can in most cases
also be used to characterize the chaotic properties of chaotic transients. The main criterion
for the proper application is, that the chaotic episodes last long enough to allow the Lya-
punov exponents to converge. This rather technical issue is discussed in section 2.4.5 on
page 60 in detail.

The Kaplan-Yorke Dimension

The geometrical structure of chaotic attractors can be very complex (e.g. fractal) and hard
to describe. However, measures are needed, in order to compare geometrical quantities of
different attractors, like for example their dimension. In the following, the Kaplan-Yorke
dimension is presented, which can be calculated based on the Lyapunov spectrum. It was
introduced by James L. Kaplan and James A. Yorke [47], who claimed that it is equal to
the information dimension12 for typical systems (this is shown for two-dimensional maps in
[49] and [50]).
The Kaplan-Yorke dimension is defined as

DKY = k +
k∑
i=1

λi
|λk+1|

, (2.25)

with k chosen such that

k∑
i=1

λi ≥ 0 and
k+1∑
i=1

λi < 0 . (2.26)

12The information dimension is another approach to estimate the dimension of an attractor [48]. The state
space is separated into small boxes with the size ε. Then, the information dimension can be thought of the
number of boxes which are needed to cover the attractor (in addition, each box is weighted by the frequency
that the points in the box are visited), in the limit of ε → 0.
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Although counter examples have been found [51], the Kaplan-Yorke dimension is a reason-
able approximation for the information dimension in most cases. One remarkable feature
of the Kaplan-Yorke dimension is that it relates the Lyapunov spectrum of a system, which
is a property derived from the dynamics, to geometrical characteristics. Furthermore, in
non-attracting chaotic sets, the Kapan-Yorke dimension is related to the average transient
lifetime of the system [52, 53]. This feature will also be shown in the study of section 3.1
on page 68.

2.3 The Role of Numerical Simulations

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann

Utilizing numerical algorithms in the field of nonlinear dynamics is in most cases inevitable,
since the underlying equations which describe the dynamics of the system can usually not
be solved analytically. For example, simple generic systems (e.g. low-dimensional maps) are
often used, to study basic dynamics and effects. Here, the equations or maps themselves
are the objects of interest. In other cases, differential equations are derived on the basis of
experimental observations, in order to model the real system (e.g. the Lorenz system [54]
describing atmospheric convection).

2.3.1 Interplay of Experiments and Numerical Simulations

In the field of cardiac dynamics numerical simulations play a significant role concerning the
understanding of basic mechanisms and features of the dynamics of the cardiac muscle. The
strong demand for simulation studies has different reasons: Current methods and techniques
used in ex-vivo animal heart experiments are able to highlight the electrical wave dynamics
on the surface of the heart. The optical mapping technique uses for this purpose fluorescent
dyes which are sensitive to voltage or the local calcium concentration [55]. However, the
electrical activity in the bulk of the cardiac muscle remains mostly unknown. Also, in the
experiment different hearts can exhibit distinct varieties e.g in terms of anatomical sizes or
the ability to induce ventricular fibrillation. For ethical reasons the number of experiments
involving the sacrifice of an animal should be as low as possible. Thus, experiments using the
heart of an animal can also be considered as probing or sampling a very high-dimensional
(parameter) space with very limited data points. Still, for the validation of a scientific
hypothesis, an adequate number of measurements is needed. Hence, numerical simulations
are the ideal environment to test first ideas and hypothesis, which can later be validated in
experiments.
Compared with the experimental limitations, in numerical simulations the quantity of results
is mainly limited by the computational power. Here, the full information about the state
of the system is available at any time, and the exact same simulation can be reproduced if
this is desired. In addition, the researcher can interact with the system in a way which is
perhaps not (yet) possible in the real world, thus new methods can be tested here.
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The overwhelming13 complexity of a real heart can be broken down to the main governing
processes. The governing features, mechanisms and their interaction can be studied sepa-
rately (e.g. geometrical effects, the influence of heterogeneities or the role of diseases), and
specific regions in the parameter space can be (quasi continuously) analyzed.
However, in order to ensure that the performed simulations reproduce to some extent the
dynamics of a real heart, two key features are essential:

• The interaction with the experiments (and with the experimentalists) is crucial: In
most cases the motivation for a simulation study originates from experimental results.
In addition, each simulation should provide quantities which can be linked (or gauged)
to corresponding observables from the experiment (e.g. length/time scales of action
potential durations or equivalent numbers of spiral waves in the simulation domain
and inside the heart). Only this connection justifies a possible validity of the numerical
results.

• As already stated before, different mechanisms can be investigated separately in simu-
lations. The process which simplifies the original complexity to its key features which
should be investigated is called modeling. This process is essential for the significance
of a simulation study, and will be discussed explicitly in the next section.

2.3.2 The Process of Modeling

Creating a model means, to simplify the full complexity and diversity of functionalities of
the real (biological) system, while reproducing essential features and dynamics. That means,
the model can describe the real system at different levels of details, as illustrated by the
lithographs Der Stier by Pablo Picasso (Fig. 2.19).14

How the dynamics of the heart can be modeled will be discussed in the next sections, includ-
ing for example the underlying differential equations describing the excitation wave propa-
gation, but also the choice of the simulation domain (two-dimensional, three-dimensional,
rectangular, realistic geometry, etc.). Today, there exist a variety of models of different
levels of complexity, which aim at modeling the diverse mechanisms and dynamics of the
heart. In theory, a numerical study could therefore take all the most sophisticated models
present into account in order to create a simulation as realistic as possible. The upper limit
for the complexity of the simulation is the computer power which is available.
However, we know from experiments that various hearts can be very different in their
anatomical size and their dynamic behavior. Hence, modeling a specific real heart in every
detail in simulations does not ensure that the obtained results are generally applicable (thus
are valid for every heart). Rather, the scientific objective is often to find and investigate
robust phenomena, which play a relevant role in most clinical cases. For this reason, sim-
ulations need to be performed, which cover a broad range of parameters. Concerning the
limitation due to the computational cost it is therefore (in most cases) reasonable to perform

13At least for a physicist.
14Inspired by a talk of Peter Kohl at the 26th of January 2016, in the colloquium of the SFB 937 with the

title Systems Biology of the Heart: Model or Muddle?.
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Figure 2.19: Pablo Picasso: Der Stier, Zustand I-XI, Lithographien, 1945-46. c© Succes-
sion Picasso/VG Bild-Kunst, Bonn 2018, [56]. The differences between each drawing can
be viewed as the process of modeling various levels of details of a complex object.

simulations including models of moderate levels of complexity but with varying parameters
instead of very few realistic simulations.15

The governing question is, which dynamical models and features the simulation should com-
prise. The answer to this question is essential for the general field of numerical simulations
of complex (biological) systems:

• The ingredients (the choice of the main features and models) of a numerical simulation
should always be determined by the scientific objective of the study.

The above statement involves, that a numerical study with the purpose of investigating
a certain scientific hypothesis should comprise primarily those dynamics and features (in
particular the corresponding models) which are presumably relevant for the investigation of
the objective.

2.3.3 Designing a Simulation

The conclusion from the previous section, that a numerical study should comprise those
features which are relevant for the respective scientific objective, leads to the issue how to
actually evaluate the relevance of a specific feature (e.g. whether to use a simple cell model,
or a more sophisticated ionic model).

15In case of, for example, patient specific studies, this is of course not the case.
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The range of possible “ingredients” for a numerical simulation is broad. Potential features
may, for example, be:

The Simulation Domain
Two-dimensional or three-dimensional domains. Realistic geometry or “generic” rectangu-
lar/cubic domain.

The Cell Dynamics Model
Simple (low-dimensional) models, or complex ionic cell models with various specific ion
channel dynamics included.

The Substrate’s Heterogeneity and Anisotropy
Homogeneous or heterogeneous tissue (e.g. inclusion of heterogeneities like Purkinje fibers).
Isotropic or anisotropic properties. Spatial dependent parameters (like conductivity or re-
fractory behavior).

The Spatial Resolution of the Intracellular and Extracellular Domain
Bidomain or monodomain description of the substrate.

The Electro-Mechanical Coupling
Possible decoupling of the mechanical and electrical dynamics.

The framework of a concrete simulation can be composed of the relevant ingredients of the
above list. For example, when studying general features of spiral-spiral interaction, a simple
cell model as the Fenton-Karma model (section 2.4.2 on page 48) can be used. Details about
special ion channel dynamics could be negligible in this case.
However, the choice of the right ingredients to address a scientific objective is also always
based on experimental experience. Motivated by the above considerations, a short justifi-
cation for the used models and features is given for each study of this thesis, respectively
(given in the introduction of each study).

2.4 Numerical Simulations

How the evolution of a complex biological system like the heart can be described mathe-
matically was introduced in section 2.2 on page 25 using the theory of dynamical systems.
Also, the significant role of the process of modeling was elucidated (section 2.3 on page 40).
Now in this section, the concrete differential equations of the underlying models used in this
thesis are derived. Furthermore, the numerical methods used to solve the equations and
the numerical implementation of all other features of the simulations performed (including
tools used for analyzing the numerical data) are shown.
The central element of all studies of this thesis is the simulation of the electrical wave
propagation in cardiac tissue as an excitable medium. As discussed in section 2.1 on page 11,
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this electrical signal triggers subsequently the mechanical contraction of the tissue, thus, by
controlling the electrical domain also the mechanical behavior is determined. However, the
direction of this causality is not purely unidirectional: stretch-activated ion channels (also
called mechano-sensitive channels) can trigger an electrical action potential, induced by
mechanical stretch [6]. Nevertheless, in this thesis this effect is neglected and we concentrate
also for reasons of a reduced complexity on the electrical dynamics of the system. However,
the actual role of stretch-activated channels during cardiac arrhythmias remains unclear
[57].
As a remark, the major part of the studies of this thesis present the simulation results of
excitable media. In the study of section 3.2 on page 76, also other models are investigated in
order to apply the findings on a more general class of systems. However, since these models
are only relevant for this specific study, they are introduced and described there.

2.4.1 From Bidomain to Monodomain Model

As a generalization of the cable equation [58], the bidomain model is a widely used model
for simulations of the action potential propagation in cardiac tissue. As its name already
suggests, the model describes two domains, the extracellular domain, and the intracellular
domain of the tissue, separated by the cell membrane (section 2.1 on page 11). In particular,
the underlying equations determine the evolution of the intra- and extracellular potentials,
Vi and Ve, respectively. For the sake of completeness, we consider here the case of cardiac
tissue (denoted from now on by T) surrounded by another medium (e.g. a surrounding
tissue or bath), denoted from now on with M. Hence, the variable V0 describes the electri-
cal potential in the surrounding medium. We first derive the general bidomain equations
including boundary conditions here, simplify the equations to the monodomain approach
and discuss under which conditions this reduction is valid.

The Bidomain Model

Inside the tissue, Vi and Ve represent the electrical potential at each point of the domain.16

The electrical field Ei/e in each domain is then given by

Ei = −
⇀

∇Vi , (2.27)

Ee = −
⇀

∇Ve . (2.28)

By introducing the conductivity tensor Σi/e, Ohm’s law provides the expression for the
current density Ji/e by

16Actually these and other variables are position and time dependent, thus the exact notation is Vi(t, r),
and Ve(t, r), respectively. However, for the sake of clarity we do not write this dependencies explicitly, if it
is apparent from the context.
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Ji = Σi ·Ei = −Σi ·
⇀

∇Vi, (2.29)

Je = Σe ·Ee = −Σe ·
⇀

∇Ve. (2.30)

Since electrical charge is a conserved quantity, it can either propagate along the domain
or in the transmembrane direction, that means towards the other domain. The continuity
equation for the electrical charges including both domains reads therefore

⇀

∇ ·Σi
⇀

∇Vi +
⇀

∇ ·Σe
⇀

∇Ve = 0 . (2.31)

The physical meaning of Eq. (2.31) is, that if electrical charge leaves one domain, it enters
the other domain and vice versa. This transmembrane current is effectively a change of the
charge density of the domains ∂qi

∂t =
⇀

∇ ·Σi
⇀

∇Vi = −
⇀

∇ ·Σe
⇀

∇Ve = −∂qe
∂t and can be modeled

by

∂qi
∂t

= χ

(
Cm

∂(Vi − Ve)
∂t

+ IIon

)
, (2.32)

where χ is the membrane surface to volume ratio of the tissue, Cm is the electrical capaci-
tance of the membrane per surface area of the membrane and IIon specifies the currents due
to the ion channel dynamics.
Outside the cardiac tissue in the surrounding medium, one can also define a conductivity
tensor Σ0 and since charge conservation is also valid here, the continuity equation for the
surrounding medium reads

⇀

∇ ·Σ0
⇀

∇V0 = 0 . (2.33)

Thus, the differential equations can be summed up by introducing the membrane potential
Vm = Vi − Ve:

⇀

∇ ·Σi
⇀

∇Vm +
⇀

∇ · (Σe + Σi)
⇀

∇Ve = 0 ∀r ∈ T, (2.34)
⇀

∇ ·Σi
⇀

∇Vm +
⇀

∇ ·Σi
⇀

∇Ve = χ

(
Cm

∂Vm
∂t

+ IIon

)
∀r ∈ T , (2.35)

⇀

∇ ·Σ0
⇀

∇V0 = 0 ∀r ∈M . (2.36)

Note that Eqs. (2.34) - (2.35) hold inside the tissue (T), whereas Eq. (2.36) describes the
diffusive dynamics in the surrounding medium (M).
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The system of Eqs. (2.34) - (2.36) can only be solved with boundary conditions. Let us
first assume that the surrounding medium is electrically isolated from the outside (∂M).
Furthermore, at the boundary between the tissue and the surrounding medium (∂T) the
intracellular domain is not electrically connected to the medium, thus n ·Σi

⇀

∇Vi = 0, where
n is a normalized vector perpendicular to the boundary. However, the extracellular domain
couples to the surrounding domain. Summarizing this (using Vm = Vi − Ve) reads

n ·Σ0
⇀

∇V0 = 0 ∀r ∈ ∂M, (2.37)

n ·Σi
⇀

∇Vm + n ·Σi
⇀

∇Ve = 0 ∀r ∈ ∂T, (2.38)

n ·Σ0
⇀

∇V0 = n ·Σe
⇀

∇Ve ∀r ∈ ∂T, (2.39)

Ve = V0 ∀r ∈ ∂T . (2.40)

Equations (2.37) - (2.40) together with the boundary conditions in Eqs. (2.34) - (2.36)
provide a closed system of equations which can be solved.

The Monodomain model

The bidomain model describes the dynamics by considering two domains. Although this is
an intuitive approach for describing the action potential propagation, in practice numerical
simulations of this model are computationally demanding. In each simulation step, after
solving Eq. (2.35), Ve needs to be determined by Eq. (2.34), which numerically results in
inverting a matrix. This is already for a moderate size of the matrix (mainly determined
by the size of the simulation domain) quite expensive. However, under certain conditions
the bidomain equations can be simplified, which significantly reduces the computation time.
In the case that the intra- and extracellular conductivities differ only by a constant factor
Σe = ηΣi (“equal anisotropy ratio”), Eq. (2.34) can be rewritten to

1
1 + η

⇀

∇ ·Σi
⇀

∇Vm = −
⇀

∇ ·Σi
⇀

∇Ve , (2.41)

which can then be inserted in Eq. (2.35) in order get rid of Ve:

η

1 + η

⇀

∇ ·Σi
⇀

∇Vm = χ

(
Cm

∂Vm
∂t

+ IIon

)
∀r ∈ T . (2.42)

This can be rewritten, by introducing the diffusion tensor (rescaled conductivity) D = η
1+η

1
χCm

Σi

to the typical form of a partial differential equation:

∂Vm
∂t

=
⇀

∇ ·D
⇀

∇Vm −
IIon
Cm

. (2.43)
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By combining Eq. (2.38) and (2.39) using n ·Σe
⇀

∇Ve = n · ηΣi
⇀

∇Ve the boundary condition
for the monodomain approach can be formulated as n · ηΣi

⇀

∇Vm = −n ·Σ0
⇀

∇V0.
Thus, the membrane potential Vm couples at the boundary ∂T to the potential of the
surrounding medium V0. In this thesis however, we assume that the heart is basically
decoupled from the surrounding medium. This common assumption reduces the complexity
of the simulations, but is not true in the general case e.g. of a heart inside the body. However,
numerical and experimental studies indicate [59, 60] that in the case of an isolated heart
there are no significant differences in the excitation patterns inside the heart in comparison
to a conducting boundary between the heart and the surrounding medium. That means,
in practice in most cases the (realistic) property of a non-zero conduction through the
outer boundary of the heart is mainly relevant in numerical studies which investigate the
propagation of the electrical signal outside the heart (e.g. simulations with the objective
to calculate a realistic electrocardiogram [61]). For all simulations in this thesis we assume
n ·Σi

⇀

∇Vm = 0. However, for reasons of completeness, we mention at this point that in the
case of the application of a high energy shock (an external electrical field), the gradient of
the potential outside the medium is not negligible −

⇀

∇V0 = Eext and the boundary effects
play a major role [62, 63]:

n · ηΣi︸︷︷︸
=Σe

⇀

∇Vm = n ·Σ0Eext . (2.44)

However, in the absence of an external electrical field Eext, Eq. (2.44) reduces to a no-flux
boundary condition (which is used in all studies of this thesis).
Finally, the system of equations for the monodomain approximation reads:

∂Vm
∂t

=
⇀

∇ ·D
⇀

∇Vm −
IIon
Cm

∀r ∈ T , (2.45)

n ·Σe
⇀

∇Vm = 0 ∀⇀
r ∈ ∂T . (2.46)

Validation of the “Equal Anisotropy Ratio” Assumption
The monodomain equations Eqs. (2.45) - (2.46) in comparison to the bidomain equations
Eqs. (2.37) - (2.40) provide a significant reduction of complexity and computational cost.
Still, this simplification is associated with the assumption of an “equal anisotropy ratio”
(Σe = ηΣi). We want to clarify, to which extent this assumption is valid, and therefore how
accurate the monodomain approximation is in numerical simulations.
As discussed in section 2.1.2 on page 17, the conductivity at a specific point inside the
cardiac tissue is not isotropic but there exist distinct directions due to the local fiber ori-
entation. That is, why in the most general case, conductivity in our equations has the
mathematical form of a tensor. One distinguishes between three orthogonal directions and
their conductivities: the longitudinal direction, aligned parallel to the fiber and along the
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Table 2.1: An overview of experimental measurements (comprising three studies) of the
longitudinal and perpendicular conductivity σ` and σp, respectively, in the extra- and in-
tracellular domain of cardiac tissue. In addition, the ratios σe

`/σ
i
` and σe

p/σ
i
p are shown.

σi
` σi

p σe
` σe

p σe
`/σ

i
` σe

p/σ
i
p

Reference [ S
m ] [ S

m ] [ S
m ] [ S

m ]

[64] 0.17 0.019 0.62 0.24 3.65 12.63
[65] 0.28 0.026 0.22 0.13 0.79 5.00
[66] 0.34 0.060 0.12 0.080 0.35 1.33

fiber sheet (with the conductivity σ`), the direction perpendicular to the fiber and still along
the fiber sheet (σp), and the direction transversal to the first two directions, thus, orthogonal
to the sheets of fiber (σt) (see for example 2.5 on page 18). The conductivities in these di-
rections are furthermore different for the intra- and extracellular domain (e.g. σi/e

` ).17 Since
these local conductivities eventually determine the specific form of the conductivity tensors
Σi/e = Σi/e(σ

i/e
p , σ

i/e
t , σ

i/e
` ) in Eqs. (2.34) - (2.35), the assumption of an “equal anisotropy

ratio” used for the derivation of the monodomain model can be broken down to the local
conductivities.
Table 2.1 shows results of three studies, aiming at measuring the conductivities in the
longitudinal direction, and perpendicular to the fiber along the fiber sheet direction [64,
65, 66]. In addition, the ratios σi

`/σ
i
p and σe

`/σ
e
p are determined. These studies indicate,

that a precise measurement of the conductivities is experimentally difficult and that the
assumption of an “equal anisotropy ratio” can hardly be justified.
That is, why diverse studies investigated the qualitative differences of the bidomain and the
monodomain model. They show, that the monodomain approximation has only negligible
effects on quantities like the propagation velocities [67] or activation times [68]. However,
in the case of the application of external electrical fields, differences in the shape of the
resulting excitation patterns (induced by virtual electrodes, see section 2.1.5 on page 22)
have been observed [69, 70]. The studies of this thesis do not rely on the realistic simulation
of excitation patterns caused by electrical fields. That is, why the monodomain model is a
good approximation and it is used for all simulations of this thesis.

2.4.2 Models of Local Cell Dynamics

Equations (2.34) - (2.36) and (2.45) - (2.46) are denoted as “reaction-diffusion equations”,
since they contain both, a diffusive part, and a local reaction part. In order to solve
Eq. (2.45) or Eq. (2.35), the ion channel dynamics is still needed (IIon), which results in
additional differential equations. Here we discuss models which describe the local ion chan-
nel dynamics on a cellular level. As described in section 2.1.1 on page 11 the membrane
potential Vm of a cell is composed of ion concentrations of different types (e.g. sodium,
calcium or potassium). These concentrations change due to diverse mechanisms, like leak
channels, the Na+/K+-ATPase or voltage gated ion channels.

17The conductivities are also spatially dependent, thus they are actually local variables (σ = σ(r)).
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The models discussed here aim to describe these underlying mechanisms on a more or less
detailed and realistic level (depending on the actual model), in order to reproduce the
characteristic behavior of a single cell. Various features of the cell dynamics that shall be
reproduced by the models are the upstroke, duration, and refractory period of an action
potential, for example.
Sets of coupled differential equations are used for this purpose. From a mathematical point
of view it turns out, that for modeling basic features like the refractory behavior more, at
least two dynamical variables and two equations are necessary. That means, additionally
to the diffusive Eqs. (2.35) or Eq. (2.45), respectively, which describe the local dynamics
and the diffusive behavior of the membrane potential Vm, at least one additional equation is
needed, describing the evolution of at least one additional variable. The need for additional
variables can be explained by the refractive property of the tissue which demands some kind
of memory of the past. Accordingly, the simplest models which describe excitable media are
two-dimensional (the membrane potential Vm and one additional variable).
Simple models which are commonly used to describe excitable media (also apart from cardiac
tissue) are for example the Barkley model [71] (three parameters) or the Aliev-Panfilov
model [72] (five parameters), which provide only basic features of excitable media, but
are extremely fast to compute. However, more underlying equations and variables can be
included into the models, in order to be more realistic and to reproduce more details of the
dynamics of actual cardiac tissue. With this gain of realism and level of detail, also the
computational cost increases. The class of “ionic models” comprises individual equations
and variables for single ion channels and specific ion concentrations. The Luo-Rudy II
model [73] (fifteen dynamical variables) is an example for such a rather detailed model. The
choice of the proper cardiac cell model used for a numerical study or, more general, for
the respective scientific objective is discussed in section 2.3 on page 40. In the following,
the Aliev-Panfilov model and the Fenton-Karma model [26] are presented as examples for a
rather simple model and a model with moderate level of complexity, respectively, in order
to elucidate the general form of the underlying equations.

Aliev-Panfilov Model

Equations (2.47)-(2.49) depict the Aliev-Panfilov model, here used in the context of the
monodomain approach:

∂Vm
∂t

= ∇ ·D∇Vm − kVm(Vm − 1)(Vm − a)− Vmv , (2.47)
∂v

∂t
= ε(Vm, v)(−v − kVm(Vm − a− 1)) . (2.48)

Thus, Eq. (2.47) corresponds to Eq. (2.45), where the first term still describes the diffusion
of the first membrane potential, but the local reaction part (second and third term) is now
specifically given by the Aliev-Panfilov model. The evolution of the second variable v is
furthermore described in Eq. (2.48), and the expression for ε(Vm, v) reads
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Figure 2.20: A representative action potential using the Aliev-Panfilov model, with the
parameters a = 0.05, ε0 = 0.002, µ1 = 0.2, µ2 = 0.3 and k = 8. The membrane potential
Vm (black) and the second dynamical variable v (green) are shown. The action potential
was triggered by an external increase of the membrane potential from zero to Vm = 0.1 a.u.
at t = 20 a.u. exceeding the excitation threshold (a = 0.05).

ε(Vm, v) = ε0 + µ1v

Vm + µ2
. (2.49)

These simple models have also the advantage (beyond their fast computation time), that
some of the parameters have a direct physical meaning. In this case, parameter a is the
excitation threshold and parameter k determines the excitability (excitation threshold) of
the cell (see section 2.1.1 on page 11) . However, the other parameters µ1, µ2 and ε0 are
used to fit the shape of the cardiac action potential. In Fig. 2.20 a representative action
potential is shown, with both dynamical variables Vm and v.18

Fenton-Karma Model

The Fenton-Karma model (or 3V-model) [26] is a cardiac cell model with a moderate level of
complexity (three dynamical variables and thirteen parameters) but still offers a reasonable
computational demand. It describes the transmembrane current IIon in Eq. (2.45) by three
distinct current densities: the fast inward current Ifi, the slow outward current Iso and the
slow inward current Isi in Eq. (2.53):

18This action potential is already computed numerically. Details about the numerical algorithms used to
solve the underlying differential equations will be given later.
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Figure 2.21: A representative action potential using the Fenton-Karma model, with the
the parameter set FK1 (see A.2 in the Appendix A on page 131). The membrane potential
Vm (black) and the two other dynamical variables v (green) and w (orange) are shown. The
action potential was triggered by an external increase of the membrane potential from zero
to Vm = 0.1 a.u. at t = 100 a.u..

Ifi(Vm, v) = − v

τd
Θ(Vm − uc)(1− Vm)(Vm − uc) , (2.50)

Iso(Vm) = Vm
τ0

Θ(uc − Vm) + 1
τr

Θ(Vm − uc) , (2.51)

Isi(Vm, w) = − w

2τsi

(
1 + tanh

[
k(Vm − usi

c )
])

. (2.52)

These currents aim to model the most prevalent dynamics of sodium, potassium and calcium
(discussed in section 2.1.1 on page 11) and are explicitly given in Eqs. (2.50)-(2.52). The
evolution of two additional dynamical variables (v, w) is shown in Eqs. (2.54)-(2.55):

∂Vm
∂t

= ∇ ·D∇Vm + [Ifi(Vm, v)− Iso(Vm)− Isi(Vm, w)]/Cm , (2.53)

∂v

∂t
= Θ(uc − Vm)(1− v)

(
Θ(Vm − uv)

τ−v1
+ Θ(uv − Vm)

τ−v2

)
−Θ(Vm − uc)

v

τ+
v
, (2.54)

∂w

∂t
= Θ(uc − Vm)1− w

τ−w
−Θ(Vm − uc)

w

τ+
w
. (2.55)

In Fig. 2.21, a representative action potential is shown, with all three dynamical variables
(Vm, v, and w).

All sets of parameters, and further cardiac cell models used in this thesis are presented in
the Appendix A on page 131.
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Impact of the Choice of Parameters

Every cardiac cell models has a specific set of parameters which needs to be chosen before
a simulation. It is important to understand, that the choice of parameters determines the
local dynamics of the cell, thus the shape and properties of an action potential, but beyond
also has a huge impact onto the dynamical behavior of spiral or scroll waves. The break-up
mechanism, propagation behavior and filament tension of scroll waves [26] are for example
important features, which are mainly determined by the local parameters. Fenton et al., for
example, performed for that reason a single study only to investigate this dependence by
testing ten different parameter sets for the Fenton-Karma model [74].
With properties or rules which are defined only locally but determine the dynamics on
a global scale, this feature on the one hand illustrates in an interesting way the nature
of complex systems. However, the sensitive dependence of parameters stresses also their
significance concerning the design of proper numerical simulations which aim to address a
specific scientific objective. The Fenton-Karma model combines a reasonable computation
time, with a moderate level of complexity (thirteen parameters), which allows to reproduce
diverse dynamics of spiral/scroll waves. That is, why this model was used for many studies
of this thesis. More details about the choice of the cardiac cell model and its parameters
are given in section 2.3 on page 40.

2.4.3 Discretization and Stability

In the previous sections we derived and discussed the underlying systems of equations which
we use to model cardiac tissue. In general, no analytical solutions are known for these
equations. At this level of complexity, currently the only way to investigate the dynamics
of these equations (on a non-trivial spatio-temporal level) is to use concepts from numerical
mathematics. Thus, we need to discretize the equations (in space and time) and then
determine the dynamical variables of the equations at these discrete points. In the following
we present the actual discretization in space and time and discuss the related question of
stability and accuracy of the numerical solution. We use here the finite-differences method
(FDM), in order to approximate the actual equations with difference equations. As an
example of application, we discuss the monodomain equation Eq. (2.45), since this is also
the most relevant equation in this thesis

∂Vm
∂t

=
⇀

∇ ·D
⇀

∇Vm −
IIon(Vm,v)

Cm
, (2.56)

where we assume that the local reaction term IIon depends on the membrane potential Vm

and a (not specified) number of secondary variables v (see section 2.4.2 on page 48).

Discretization in Time

As stated before, a general analytical solution for Eq. (2.56) is not known. For this reason, we
solved the equation in this thesis using numerical algorithms, specifically a first order Runge-
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Kutta method, also known as explicit Euler method [75]. It is the simplest approach to solve
a differential equation numerically, but, however, is not very accurate or stable in comparison
to other more sophisticated methods. Still, this method is used in the studies of this thesis,
since a significant property of valid numerical results concerning their applicability to real
cardiac dynamics is their robustness to small parameter changes. In particular, results
should not depend sensitively on the accuracy of the solutions of the underlying equations.
More details about the role of numerical simulations are given in section 2.3 on page 40.

As a first step, we want to discuss the principles of this method considering a single point
in space. The correlation and interaction between different locations in the full spatio-
temporal space will be discussed in the next section. The explicit Euler method makes use
of a Taylor expansion, in order to determine the evolution of a dynamical variable. Assuming
an exemplary differential equation

∂x

∂t
= f(x, y) . (2.57)

We want to know the evolution of the dynamical variable x from time t0 (thus x(t0) is
known) to time t0 + dt, with the temporal step dt. Performing a Taylor expansion of x at
time t0 and using dt as the expansion parameter gives

x(t0 + dt) = x(t0) + dt
∂x

∂t
+ dt2

∂2x

∂t2
+O(dt3) . (2.58)

By neglecting terms of the order O(dt2) and recognizing the first derivative ∂x
∂t Eq. (2.58)

which is already given by Eq. (2.57), one calculation step can be formulated as

x(t0 + dt) ≈ x(t0) + dtf(x, y) . (2.59)

For the monodomain equation Eq. (2.56), this means

Vm(t0 + dt) ≈ Vm(t0) + dt

[
⇀

∇ ·
⇀
⇀

D
⇀

∇Vm(t0)− IIon(Vm(t0), ~v(t0))
Cm

]
. (2.60)

From Eq. (2.58) one can read that the error made in a single step (also called local truncation
error ELocal) is approximately proportional to dt2 (for small dt). It can be shown, that the
global truncation error EGlobal (the error made when performing the evolution from t0 to t
with a certain number of steps made, thus an accumulated error) grows approximately with
EGlobal ∼ dt · C · (eL(t−t0) − 1), where L and C are constants [76].

53



Chapter 2. Methods

(a) (b) (c)

Figure 2.22: Discretization grids in different dimensions. A linear domain with length L is
shown in subplot (a), subdivided in segments of length h (spacing constant). The grid nodes
(red dots) represent the respective cell, and the dynamical variables of the underlying equa-
tions are solved representatively at these nodes. In two and three dimensions (subplots (b)
and (c)) the corresponding objects are two-dimensional cells and three-dimensional cubes,
respectively. In general, the spacing constants in different directions (hx, hy, hz) can have
individual values. The length of the domain in each direction is given by Li = Ni ·hi, where
Ni is the number of grid nodes.

Discretization in Space

The underlying equations discussed in the previous sections can be used for numerical sim-
ulations of a point (0-dimensional), linear regimes (one-dimensional) and two- or three-
dimensional simulation domains. In all cases, except the first one, a spatially discretization
(additionally to the discrete time) of the simulation domain is needed. Thus, the space where
the simulations shall be performed is reduced to a (in our case regular) grid, with fixed grid
points. By this procedure, linear segments (one-dimensional), cells (two-dimensional) or
cubes (three-dimensional) are defined, with a corresponding grid point (Fig. 2.22).
The grid points represent in this approach the whole segment/cell/cube, and dynamical
variables (e.g. Vm) are defined only at the grid points, representing a spatially averaged
value. Crucial for the subsequent calculations of the differential equations on a designed
grid is the choice of the spacing constant h (or hx, hy and hz, respectively for different
directions). The multiplication of the number of grid nodes in a specific direction Ni with
the spacing constant yields the size of the simulation domain Li = Ni · hi.
From a computational point of view, the essential question is where the spatial discretization
of the simulation domain enters the governing differential equations. First of all, as already
mentioned before, the equations are not solved at all spatial positions of the simulation
domain, but just at specific points, the grid nodes. Furthermore, the local reaction part of
the equations (second term in Eq. (2.56)) and also the underlying equations concerning the
cell dynamics of the simulation ( 2.4.2 on page 48) are solved only locally at the respective
grid points. The diffusive part of the monodomain equation (first term in Eq. (2.56)),
however, comprises the interaction between different positions in space (and thus between
different grid points). In all simulations of this thesis, a constant diffusion (D = D) is
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assumed. Thus, the diffusion term (first term on the right hand side of Eq. (2.56)) which
needs to be discretized simplifies to the Laplace operator:

⇀

∇ ·D
⇀

∇Vm = D∆Vm . (2.61)

In one dimension, a simple discretization of Eq. (2.61) can be found intuitively using the
central differences method. The diffusive contribution for the membrane potential at the
grid point coordinate denoted with x yields then ∆V x

m ≈
V x−1

m −2V x
m+V x+1

m
h2

x
. In the more

general case of two- and three dimensions, also other neighboring grid points contribute
to the diffusive term of V x,y,z

m , with specific weighting coefficients. Thus, by including the
next neighbors, the (discretized) approximation of the diffusive term can be formulated
(assuming equal spacing constants in each direction (hx = hy = hz)) using a coefficient
matrix, or kernel αi,j,k [77]:

D∆V x,y,z
m ≈ D

h2
∑

i,j,k∈{−1,0,1}
αi,j,kV

x+i,y+j,z+k
m . (2.62)

A straightforward generalization of the one dimensional case using the central differences
method to three dimensions yields the coefficients:

αi,j,k = D

h2 ·


−6 for i = j = k = 0

1 for |i|+ |j|+ |k| = 1

0 for |i|+ |j|+ |k| = 2

, (2.63)

which can be transformed to two dimensions by a summation over the third dimension
α2D
i,j = ∑

k αi,j,k. This can be presented in a matrix form, where the coefficients of the
matrix α2D

i,j run from −1 to 1:

α2D
i,j = D

h2


0 1 0
1 −4 1
.0 1 0

 (2.64)

α2D
i,j is commonly known as the “five-point stencil”, due to five contributing points. It

can be shown, that the error of this approximation is of the order of O(h2). Taking more
neighboring points into account, another kernel can be formulated as:
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∼
αi,j,k = D

30h2 ·



−128 for i = j = k = 0

14 for |i|+ |j|+ |k| = 1

3 for |i|+ |j|+ |k| = 2

1 for |i|+ |j|+ |k| = 3

. (2.65)

In comparison to αi,j,k (Eq. (2.63)), the error of the approximation using the more complex
“27-point stencil” ∼αi,j,k is also of the order of O(h2). However, its rotational symmetry
is more accurate than αi,j,k, and in practice concerning actual numerical simulations of
excitation patterns on a regular grid, this results in less numerical distortions related to the
rectangular topology of the grid nodes [77].
The two-dimensional representation can be obtained by the same procedure as above, and
is denoted as the “nine-point stencil” [78]:

∼
α

2D
i,j = D

6h2


1 4 1
4 −20 4
1 4 1

 (2.66)

In all numerical simulations of excitable media in this thesis, the “nine-point stencil” (in two-
dimensional simulations) and the “27-point stencil” (in three-dimensional simulations) were
used to model the diffusive part of the reaction-diffusion equations. Only in one dimensional
simulations of specific non-cardiac models (section 3.2 on page 76), the central difference
approximation (linear example from the beginning of this section) is used.

Accuracy and Stability of Equations

For actual simulations, discretization parameters need to be determined (in particular the
time stepping parameter dt and the spacing constant h). The choice of these parameters
is crucial for the stability, accuracy and the computation time. In detail, a small value for
dt will (in most cases) increase the accuracy of the numerical solution of the differential
equations, while a larger value reduces the computation time (smaller number of compu-
tation steps for the same amount of simulated time), but is less accurate and if dt is too
large the numerical solution of the underlying equations will not be stable, and thus will
give unphysical values (e.g. diverge). This provides a natural upper limit for the choice
of dt. Similarly, a small spacing constant h increases the spatial resolution, and thus the
spatial accuracy. However, reducing the value of h increases the number of grid points when
the size of the simulation domain should be kept constant (Lx = h · Nx), and that means
the same simulation takes a longer computation time (due to the increased number of grid
points).
In practice, a reasonable compromise between accuracy and computation time has to be
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found. In addition, stability of the numerical solution needs to be ensured. From a physical
point of view, the problem itself (that means the topology of the simulated dynamics), spec-
ifies reasonable numbers or limits for dt and h: The choice of the discretization parameters
must enable a sufficient resolution of the central object: the action potential. Specifically,
the rapid upstroke of the action potential needs to be resolved adequately (thus, dt has
to be smaller than the typical time scale of the upstroke dt ≤ τupstroke) [77]. In addition,
instabilities can also emerge from the diffusive dynamics in the underlying equations. A
“von Neumann stability analysis” of the discretized version of the Laplace operator using
Eq. (2.63) provides the stability condition [77]:

D
dt

h2 ≤
1
d
, (2.67)

where d is the dimension and D is the diffusion constant.

2.4.4 Boundary Conditions

In section 2.4.1 on page 44 the underlying equations were derived, including boundary
conditions for the boundaries between the cardiac tissue and an outer medium (e.g. a
bath). In the absence of an external electrical field, a Neumann boundary condition (no-
flux) was derived for the membrane potential Vm (Eq. (2.46)). Since secondary variables
of the ionic cell model are not diffusive (they are only local), the boundary condition only
needs to be specified for the membrane potential. In the following, we present how the
no-flux boundary condition for the membrane potential is implemented for two cases. In
the first part we discuss how it is defined for the outer boundary of the simulation grid,
which is used when the simulated cardiac tissue occupies the whole simulation domain.
Furthermore, when we consider cardiac tissue of a non-trivial geometry embedded into a
bath, we use the so called “phase field method”, in order to establish the no-flux boundary
condition between the arbitrarily shaped cardiac tissue and the surrounding bath. While
numerical simulations of arbitrarily shaped simulation domains can be solved in a more
straightforward way with “finite element methods” (FEM), the implementation demands
a more sophisticated approach in the case of finite differences. The phase field method is
shown in the second part.

Outer Boundaries of the simulation grid

The calculation of the diffusive part, using e.g. the nine-point stencil (Eq. (2.66)) from the
previous section, can not be performed in the conventional way at the grid nodes at the
edges of the grid, since no neighboring points are available here which are required for the
application of the stencil. Here, additional information need to be included, which specify
the type of boundary conditions. For the desired no-flux boundary condition required for
the membrane potential Vm, so called “ghost points” are used, which are (imaginary) added
at the edges of the grid. Figure 2.23 depicts this technique for the one-dimensional case.
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Figure 2.23: The use of “ghost points” in the context of the numerical realization of no-
flux boundary conditions. In the (exemplary) one-dimensional case, a ghost point with a
new grid node is added at the edge of the grid. The virtual membrane potential of this node
is denoted by V 0

m. In the case of a no-flux boundary condition V 0
m takes the value of V 2

m, in
order to preserve a derivative of zero at V 1

m.

For the calculation of the diffusive part of the underlying equations for the membrane
potential at the edge of the grid, denoted by V 1

m, a ghost point is added, which comprises
an additional grid node with the virtual membrane potential at this point V 0

m. In case of
the no-flux boundary condition, the value of V 0

m is obtained by mirroring Vm along the edge,
thus, V 0

m = V 2
m. In this way, the no-flux boundary condition can be achieved by a derivative

of zero at the grid point V 1
m. Thus, at the edges of the simulation grid the general expression

for the diffusive term in one dimension ∆V x
m ≈

V x−1
m −2V x

m+V x+1
m

h2
x

reduces to

∆V 1
m ≈

V 0
m − 2V 1

m + V 2
m

h2
x

= 2V 2
m − 2V 1

m
h2
x

. (2.68)

The subsequent generalization of this technique to two or three dimensional simulation
domains is straightforward.

Inner Boundaries Using the Phase Field Method

When simulating arbitrarily shaped pieces of cardiac tissue (e.g. a whole heart in a sur-
rounding bath), the use of ghost points is not feasible, due to the complex shape of the
boundary. For this objective, the use of the “Phase Field method” is a very elegant way,
to implement no-flux boundary conditions while keeping the finite difference scheme. The
central object of this method is a phase field φ(r), which is defined at every grid node of
the simulation domain, and has values between zero and one. In the simulations of this the-
sis, the phase field distinguishes between cardiac tissue (φ = 1) and the surrounding bath
(φ = 0), and interpolates smoothly the boundaries between the two domains, with a certain
transition zone with the width ξ. X. Li et al. showed, that if this phase field is included
into the differential equations in a specific way, the desired no-flux boundary condition is
automatically (approximately) fulfilled [79]. In the simulations performed in this thesis, the
phase field enters the monodomain equation in the following way:

φ
∂Vm
∂t

=
⇀

∇ ·Dφ
⇀

∇Vm − φ
IIon
Cm

. (2.69)

Flavio H. Fenton et al. demonstrated how this approach can be used for modeling electri-
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Figure 2.24: The Phase Field method. Subplot(a) shows an exemplary phase field along a
cross section of a realistic heart geometry shown in (b). The section of the phase field shown
in (a), corresponds to a cross section through the ventricular wall, marked by a red line in
(b). Subplot (c) explains how the width of the transition zone between cardiac tissue and
bath can be determined by the choice of the ξ parameter (ξ = 0.075 (diamonds), ξ = 0.05
(circles) and ξ = 0.075 (stars), respectively). Reprinted from [80], with the permission of
AIP Publishing.

cal wave propagation in realistic heart geometries [80] and used the following differential
equation for the creation of the phase field:

∂φ

∂t
= ξ2∆φ− ∂G(φ)

∂φ
, (2.70)

G(φ) = −(2φ− 1)2

4 + (2φ− 1)4

8 . (2.71)

Figure 2.24 shows an example of how the phase field method is applied using a realistic heart
geometry. The phase field is shown in subplot (a), where the smoothing procedure (solving
Eq. (2.70)) has already been performed. The representative section shown in (a) is marked
by a red line in (b), which shows a cross section of the heart geometry, with the left and
right ventricle. That means, the value around zero at x = 0 cm is located outside the tissue.
When passing the epicardium, the phase field increases smoothly to one, before afterwards
going back to zero, when leaving the ventricular wall. Subplot (c) shows a magnification
of the transition zone. The phase field is plotted here using different values for ξ, which
clarifies how the width of the transition zone can be modulated with the choice of ξ.

In practice, the phase field φ is initialized with the value zero (surrounding bath) and one
(cardiac tissue). Using this initial field, Eq. (2.70) is solved numerically, (with the diffusive
term modeled as described in the previous section). In the study of this thesis, where the
phase field method was used (section 3.3 on page 102), Eq. (2.69) was solved with the
parameters dt = 0.1, h = 0.5 and ξ = 0.5.
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2.4.5 Analyzing Tools

The data obtained from numerical simulations in this thesis is in general high-dimensional
and exhibits in most cases complex spatio-temporal patterns. In each single study which is
presented in this thesis, the data needed to be analyzed concerning the respective scientific
objective of the study. For this purpose, tools from various fields were used (e.g. nonlinear
dynamics) that extracted relevant quantities and in this way enabled the interpretation of
the results. In this section, the methods and their numerical implementation are presented.

Determination of Phase Singularities

Spiral waves (in two dimensions) and scroll waves (three dimensions), are the central objects
which determine the spatio-temporal dynamics of excitation patterns in cardiac tissue. A
central quantity used to describes the dynamics is the overall number of those spiral waves
and scroll waves. With the method presented here, it is possible based on data of the
membrane potential Vm to identify the tips of the spiral waves, that means the organizing
centers, using a mathematical procedure. In general, the spiral tips correspond to so called
phase singularities in the phase representation of the data. Since the number of spiral tips
corresponds one to one to the actual number of spiral waves, this method can be used to
measure the total number of rotors in a system.

In order to analyze huge amounts of numerical (and also experimental) data, a two step
protocol is commonly used, which exploits the periodic excitation dynamics of the tissue (the
cycle of an action potential) [81, 82]. In a first step, one can associate a phase to the (one
dimensional) time series of the membrane potential x(t) extracted from each single point
of the simulation domain (or e.g. video data of experimental results, showing excitation
patterns) [83]. This can be performed using different methods e.g. a delay embedding. In
the studies of this thesis we used the Hilbert transformation H{x(t)} [84]:

H{x}(τ) = 1
π

∫ ∞
−∞

x(t)
τ − t

dt = A(τ)eiθ(τ) , (2.72)

where the phase θ can be extracted from the complex result of the Hilbert transformation.

Figure 2.25 depicts the general functional principle of this method. A representative episode
of two-dimensional chaotic dynamics in excitable media (simulation data taken from the
study in section 3.1 on page 68) is shown in (a). An exemplary time series (of the grid point
with the coordinates (x, y) = (50, 50)) of the membrane potential is shown in subplot (c),
along with the phase θ extracted using the Hilbert transform. This analysis was done for
all grid points, resulting in the phase representation shown in subplot (b).

In a second step, phase singularities are determined at each point in time. The phase
singularities correspond to the tips of the spiral waves and can be identified by a loop
integral:
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Figure 2.25: Determination of phase singularities using the Hilbert transformation. Sub-
plot (a) shows a snapshot of the excitation pattern of spatio-temporal chaos in a two-
dimensional simulation using the Fenton-Karma model. The computed phase of the same
snapshot is depicted in (b), where in both subplots white circles indicate the position of
phase singularities. In subplot (c), the membrane potential Vm (black) and the correspond-
ing phase θ (green) is plotted for the whole episode, for a representative grid node with the
coordinates (x, y) = (50, 50) of the example shown in (a) and (b).

nt = 1
2π

∮
C

⇀

∇θ · d
⇀

l . (2.73)

If no phase singularity is located inside the integration zone C, the integral will yield zero.
Otherwise, it provides the number of topological charges nt (defined in [85, 86]), thus the
sign of the charge is determined by the rotational direction of the spiral wave. Accordingly,
in practice the integration zone of the line integral needs to be sufficiently small, to ensure
that only one spiral tip fits into the integration zone. With this method, phase singularities
(and that means spiral tips) can be identified, which are marked in Fig. 2.25(a) and (b) by
white circles.
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Figure 2.26: Reduction of a scroll wave to its filament. In subplot (a) the excitation
pattern of a scroll wave is shown in green, whereas the corresponding filament (organizing
center of the scroll wave) is depicted in (b) (red).

Determination of Filaments

The corresponding object to a two-dimensional spiral wave is a scroll wave in three dimen-
sions, which can be thought of stacked spiral waves [26]. The zero dimensional spiral tip
extends to a one dimensional curve, which is called the filament of the scroll wave. Sim-
ilarly to the tips of a spiral wave, the number of scroll waves present in a system can be
determined by the number of filaments. Furthermore, the usually very high-dimensional
dynamics can be significantly reduced by the consideration of the filaments. Figure 2.26
shows the reduction of a scroll wave (a) to its filament (b). In particular in the study of
section 3.3 on page 102, the number of filaments is used as a measure for the complexity of
the spatio-temporal state of the system.
Since filaments are the three-dimensional generalization of spiral tips (or phase singularities),
the determination in numerical data is based on the concepts for the calculation of a phase
singularity (previous section). At first, phase singularities are detected considering each
of the three dimensions of the simulation domain separately. In a subsequent step, close
phase singularities are assigned to the same filament. The assumption here is, that phase
singularities from other filaments do not come closer then neighboring phase singularities of
the same filament. The local cell dynamics (determines the propagation of scroll waves), the
spacing constant h and other parameters have an impact onto the validity of this assumption
and need to be taken into account before a study.

Calculation of Lyapunov Exponents

The theoretical background of the computation of Lyapunov exponents was discussed in
section 2.2.4 on page 34. Here, the numerical implementation of the algorithm proposed by
Benettin et al. [46] is presented, which is used in studies of this thesis in order to determine
Lyapunov exponents in extended (high-dimensional) systems. The linear propagator of the
dynamics (Eq. (2.16)) can be approximated in systems with a discrete time by the Jacobi
matrix (Eq. (2.23)). In the following each step of the algorithm is described in detail.
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1. Linearization:
The Jacobi matrix Jf of the underlying equations is needed for the evolution of perturbations
in the tangent space (see Eqs. (2.13) - (2.14)). For this purpose, the differential equations
which determine the dynamical system need to be linearized, in particular the monodomain
equation which includes the local cell dynamics (for example using the Fenton-Karma model
Eqs. (2.53) - (2.55)).19 Since the Jacobi matrix acts on each node of the system (with m

nodes), it has the dimension m×m in the end.

2. Initialization:
Orthonormal perturbation vectors have to be initialized randomly, which will then be evolved
in time (in addition to the actual trajectory). The number k of vectors should be equal to the
number of desired Lyapunov exponents20. Since the perturbation vectors have the dimension
m of the state vector x, a perturbation matrix QInit can be created by the collection of the
perturbation vectors. Hence the matrix including the perturbations has the dimension m×k.

3. Evolution:
In parallel to the usual evolution of the state vector x (actual simulation trajectory), the per-
turbation matrix QInit is evolved by multiplication with the Jacobi matrix21 Jif , concerning
the underlying differential equations f :

Q∗i+1 = JifQi , (2.74)

where the index i denotes the simulation step (thus numerical time step). In comparison to
Q, the notation of Q∗ takes care for the fact, that in practice due to numerical inaccuracies
the perturbation vectors of the evolved state Q∗i+1 are not orthogonal anymore. The next
step of this algorithm takes care for this issue. However, with Eq. (2.74) the system of
perturbation vectors is carried along the actual simulation.

4. Decomposition:
After a specific number of simulation steps nsteps (the actual choice of nsteps will be discussed
later), the perturbation matrix is decomposed by a QR decomposition into an orthogonal
matrix Q and an upper triangular matrix R: Q∗i = QiRi. This decomposition is essential
for the whole algorithm in many ways.

• The logarithms of the diagonal elements of Ri provide the local (thus during the time
defined by the nsteps simulation steps) growth rates corresponding to the perturbation

19The linearization of the local cell model is straightforward by taking partial derivatives. Actually, the
discrete version of the Laplace operator (diffusion) is linear already (see section 2.4.3 on page 52), thus it
can be used in its original form.

20With this method, the largest k Lyapunov exponents are determined, since a perturbation will always
grow with the largest Lyapunov exponent corresponding to the associated subspace of the perturbation (see
section 2.2.4 on page 34).

21Since the Jacobi matrix depends on the system state x it needs to be determined explicitly before each
simulation step.
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vectors. They need to be extracted and stored. Based on these local growth rates, the
final finite time Lyapunov exponents can be extracted.

• Since in numerical simulations the perturbation vectors are not orthogonal from the
beginning in an analytical sense, their (numerical) orthogonal alignment deteriorates.
Numerically, the vectors are not perfectly orthogonal specifically concerning the first
vector, which grows with the largest Lyapunov exponent. That is, why perturbations
corresponding to Lyapunov vectors of higher orders also start to grow (and rotate)
concerning the largest Lyapunov exponent. Here, the QR decomposition restores the
orthogonality of the perturbation vectors and suppresses the alignment of all vectors
along the Lyapunov vector which corresponds to the largest exponent.

The perturbation vectors Q∗i which are now orthogonal again (in a numerical sense), need
to be renormalized and are then used for the following calculations.

5. Repetition:
Steps 3. and 4. are repeated as long as the Lyapunov spectrum needs to be calculated.

6. Averaging:
After the simulation, the extracted logarithms of the diagonal elements of Ri are weighted
to the length of the corresponding time interval (nsteps · dt), and averaged over the total
length of the calculation time. By this procedure, the finite time Lyapunov exponents are
determined:

λAv
i = 1

NOrtho

NOrtho∑
k=1

λ
(k)
i

nsteps dt
. (2.75)

The above procedure presents the steps of the algorithm, while in the following we give
further details about the calculation:

• The QR decompositions do not need to be performed after each simulation step. In
order to increase the speed of simulations, one can choose a certain number of steps
nsteps between two decompositions. However, the longer this interval is, the less the
orthogonality of the perturbation vectors is guaranteed, due to numerical inaccuracy.
That means, the number of steps nsteps needs to be adjusted to this effect. The
maximum of the non-diagonal entries of Ri provides a quantity, which can here be
used to estimate how non-orthogonal the perturbations are.

• The perturbation vectors are initialized randomly. In order to provide a finite amount
of time for the alignment of the initial perturbation vectors (they converge to the
Lyapunov vectors for t→∞, see section 2.2.4 on page 34 for details), it is convenient
to discard a fixed amount of time at the beginning of the calculation, where the
logarithms of the diagonal elements of Ri are not taken into account concerning the
final average.
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2.4. Numerical Simulations

• In theory, Lyapunov exponents are defined by an infinite time limit. In numerical
simulations, only finite amounts of calculations are feasible. A suitable length of the
simulation depends on the respective dynamics of the dynamical system (in the case of
a chaotic attractor, the trajectory needs to sample the whole attractor) or the choice
of model parameters. In practice, the calculation can be finished, when the average
Lyapunov exponents do not change significantly anymore22.

Calculation of the Electrocardiogram

The electrocardiogram (ECG) can be measured experimentally (shown e.g. in Fig. 1.5
on page 6) and also computed numerically on the basis of excitation pattern distributions
of the heart. That is, why the ECG represents a highly important quantity, connecting
the experiment to numerical simulations. There are different model approaches for the
calculation of an ECG from numerical data. In this thesis, we use the integrated mean of
the membrane potential in two-dimensional simulations

ECGMean = 1
A

∫
A
Vm(~r ′) d2r′ , (2.76)

and a more sophisticated version, which is based on the volume conductor approach [87]:

ECGSim (~r) =
∫
V
D
∇Vm(~r ′) · (~r ′ − ~r)

|~r ′ − ~r|3
d3r′ , (2.77)

where D is the diffusion constant. Equation (2.77) is used in the study of section 3.3 on
page 102, where a more realistic calculation of the electrocardiogram is essential for the
respective scientific objective of the study. Figure 2.27 shows an exemplary excerpt of an
electrocardiogram time series of an episode of simulated spatio-temporal chaos from that
study.

2.4.6 Software Package MediaSim

The majority of numerical simulations which are part of this thesis were conducted using the
software package “MediaSim” (written in the C++ programming language), was developed
in the “Research Group Biomedical Physics”. It is a module based tool, with the general
purpose of (numerically) solving different kinds of partial differential equations on spatially
extended domains (one- two- and three-dimensional). The module based setup is one of
the main strengths of the software: In practice, various modules can be chosen from a
large amount of available tools. These modules are grouped in e.g. “states” (provides the
full information about the state of the system at a specific time), “updaters” (modifies the
state due to the choice of the underlying differential equations) or “analyzers” (extracts the

22In practice, the calculation is finished, when the computed estimates of Lyapunov exponents do not
change significantly anymore, i.e. when the obtained values do not exhibit any drift (anymore) and their
fluctuations are below some given threshold.
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Chapter 2. Methods
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Figure 2.27: Example of the pseudo ECGSim (Eq. (2.77)) based on numerical data ob-
tained from simulations using the Fenton-Karma model. For more details of the underlying
simulation, see section 3.3 on page 102 and the corresponding study.

relevant quantities and information of the simulation, which are crucial for the scientific
objective of the study). Due to the structure of the differential equations, additive terms
can be included or removed from the dynamics, just by including or removing an updater
(e.g. the diffusion, or the local cell dynamics in Eq. (2.45)). For example, the exchange of
the local cell model in an already existing simulation framework reduces to the exchange of
the “updater” which is responsible for the local cell dynamics, without changing the rest of
the simulation code. In this way, I benefited from the already existent software framework,
and could extend and enhance the software package.

2.4.7 The Hardware

All simulations presented in this thesis were conducted on a computer cluster. It contains
of four front end nodes (each 500 GB RAM and 32 cores) and 96 back end nodes (each
64 GB RAM and 16 cores). With this hardware setup it was possible to perform a large
amount of simulations with a moderate level of complexity and size at the same time (total
number of cores of the back end: 1536), but also a reasonable number of more sophisticated
simulations at the same time using parallel computing.
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Chapter 3

Results

In this section, the results of four studies are presented. Each study is introduced by stating
the respective scientific objective and a short summary about the simulation features and
models used. Furthermore, the research question is additionally depicted in a schematic
drawing of the state space, which is originally based on Fig. 2.12, where the sinus rhythm
was set into the context of the state space. After formulating the scientific objective in each
study (e.g. in Fig. 3.1 in the first section of this chapter), the respective result of each study
is summed up at the end of each study as a conclusion and also sketched in the state space
(e.g. in Fig. 3.2).
Subsequently, the objective of the next results section is formulated in the “updated” state
space. Although the sketches are far away from depicting an accurate state space, this
procedure should demonstrate the relation of the studies among each other, aims at creating
an overall picture of the dynamics and in this way improves the general understanding of
the complex dynamics studied in this thesis.
The first three of the four studies are based on manuscripts which are currently at different
stages of the publication process in peer reviewed journals (published, submitted and under
revision). For this reason, each study is accompanied by a paragraph which states the
current status of the manuscript (at the submission date of this thesis) and the individual
contributions of the authors.
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Chapter 3. Results

3.1 Features of Chaotic Transients in Excitable Media

Status of the manuscript

This manuscript was published in the journal Physical Review Letters on the 4th of August
2017 (Volume 119, Issue 5) [88].

Author Contributions

• Thomas Lilienkamp designed the research, performed all numerical simulations, ana-
lyzed the data and wrote the manuscript.

• Jan Christoph provided a numerical algorithm to identify phase singularities and fil-
aments from excitation data.

• Ulrich Parlitz designed the research and wrote the manuscript.

Scientific Objective

The aim of this work is to investigate basic properties of spatio-temporal chaos in excitable
media. Inspired by the observation that in ev-vivo heart experiments [55] induced ventric-
ular fibrillation terminated by itself, without any interaction (e.g. a defibrillation attempt)
from outside, we want to investigate whether this behavior is reproducible in numerical
simulations. From the perspective of nonlinear dynamics the equivalent question is whether
chaos is persistent or transient in these systems (the phenomenon of transient chaos was
discussed in detail in section 2.2.3 on page 30). Although one could imagine in the first
place that this difference is rather subtle and more of theoretical nature, it is a first step of
understanding the governing mechanism which is responsible for the perpetuation of the dy-
namics. These investigations are inevitable in order to understand and control the complex
dynamics we observe in simulations and experiments.
Concerning the state space of cardiac dynamics, we already interpreted the sinus rhythm
using terms from nonlinear dynamics (e.g. the fixed point (resting state) and its basin of
attraction) in Fig. 2.12. Using this conception as a starting point, we now want to investigate
typical trajectories which describe spatio-temporal chaos and thus enter a different region
of the state space (Fig. 3.1).

Numerical Models

This study is a fundamental investigation of the dynamics of spiral and scroll waves as the
main building blocks of the spatio-temporal dynamics and in particular their interaction
among each other. For this reason, numerical simulations are performed on generic rectan-
gular (cubic) domains in two (three) dimensions. Interactions with non-trivial boundaries
(e.g. the realistic geometry of a heart) are neglected in order to separate different effects and
to focus on the pure dynamics and interaction of spiral and scroll waves. However, in order
to exclude that results are only valid for a specific cell model, two models are investigated,
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3.1. Features of Chaotic Transients in Excitable Media
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Figure 3.1: The (schematic) state space, formulating the scientific objective concerning
the study “Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll
Waves”. The sinus rhythm is already included: The start of a contraction cycle is initialized
by the stimulus propagating from the av node (section 2.1.2 on page 17). This “perturbs”
the system out of the resting state (1) and the electrical excitation wave propagates through
the tissue (see Fig. 2.12 for details). When the excitation wave travels through the heart
((2) and (3)) it can either return to the resting state (4) or, enter another region of the
state space (5), which exhibits chaotic dynamics. We associate this region of the state space
with ventricular fibrillation. In the following study, we want to investigate this dynamics, in
order to understand what the governing mechanisms for the perpetuation of the dynamics
in this part of the state space (6).

the Aliev-Panfilov model and the Fenton-Karma model. The use of two models and three
parameter sets in total (AP1 (with the spacing constant h = 0.8, time stepping dt = 0.2
and diffusion constant D = 0.2), FK1 with (h = 1.0, dt = 0.2, D = 0.2) and FK2 (h = 1.5,
dt = 0.1, D = 0.2)) strengthens the robustness of the obtained results. Both models can be
considered as models with a moderate level of complexity (in particular they are not ionic
models, see section 2.4.2 on page 48) which is however sufficient for different forms of wave
breakup, resulting in creation and annihilation of spiral and scroll waves, one of the main
mechanisms of spatio-temporal chaos in excitable media.
The Supplemental Material to this study can be found in section B.1 on page 135.
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Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves

Thomas Lilienkamp,1,2,* Jan Christoph,1 and Ulrich Parlitz1,2
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In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but
transient. Using extensive simulations employing different mathematical models we identify a specific
type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an
investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D,
simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness.
Finally, potential implications for understanding cardiac arrhythmias are discussed.

DOI: 10.1103/PhysRevLett.119.054101

Chaotic behavior of dynamical systems is a widespread
and well-studied phenomenon. It can be observed in a large
diversity of systems from simple low-dimensional regimes
up to complex and high-dimensional dynamics. However, in
many cases it is of great interestwhether the observed chaotic
dynamics (both in theoretical models and experiments) are
persistent or temporary. From a nonlinear dynamics point of
view, the dynamics of the latter one is usually determined by
chaotic saddles or repellers, whereas persistent chaos is
governed by a chaotic attractor. In practice, chaotic transients
occur invarious fields like ecology [1], particle advection [2],
or chemical reactions [3]. In fact, the difference between
transient and persistent chaos can be vital in medicine:
In cardiology, cardiac arrhythmias (like ventricular fibrilla-
tion) can be associated with highly chaotic spatiotemporal
wave dynamics inside the heart [4–7], which is lethal in
many cases due to the dysfunctional pumping function.
Distinguishing between persistent and transient arrhythmias
is thus essential, and it may, in the future, have an impact on
the medical treatment and risk assessment of cardiac
arrhythmias.
In this work we investigate chaotic transients in extended

reaction-diffusion systems of excitable media using two
different numerical models that describe the action poten-
tial propagation in cardiac tissue: The Aliev-Panfilov model
[8] is a two-variable model (five parameters) for cardiac
excitation, described by the equations

∂u
∂t ¼ ∇ ·D∇u − kuð1 − uÞða − uÞ − uv; ð1Þ

∂v
∂t ¼ ϵðu; vÞ½−v − kuðu − a − 1Þ�; ð2Þ

ϵðu; vÞ ¼ ϵ0 þ
μ1v

uþ μ2
: ð3Þ

The Fenton-Karma model [9] [Eqs. (4)–(5)] is a three
variable model with fourteen parameters, which comprises

an approach for modeling the ion channel dynamics of a
cell:

∂u
∂t ¼ ∇D∇u − Iionðu;hÞ=Cm; ð4Þ

∂h
∂t ¼ gðu;hÞ: ð5Þ

The detailed equations that describe the ionic currents
Iion in Eq. (4), and the evolution equations for the gating
variables h ¼ ðv; wÞ [Eq. (5)], can be found in the
Supplemental Material [10].
In both models, the first term in Eqs. (1) and (4),

respectively, describes the diffusive part of the dynamic
system. In our simulations, a scalar and homogeneous
diffusion tensor was chosen (D ¼ D ¼ 0.2). The differ-
ential equations, Eqs. (1)–(3) and Eqs. (4)–(5), were solved
on a spatial grid (with a model specific spacing constant h)
using an explicit Euler scheme with no-flux boundary
conditions.
Different choices of parameters cause diverse behavior

of spiral or scroll waves (concerning, for example, breakup
mechanisms or spiral tip trajectories) [11]. In order to
investigate whether properties related to the transient nature
of the chaotic dynamics are robust under a change of the
local cell dynamic model, and also under a change of
parameters, we investigate three distinct cell dynamics: the
Aliev-Panfilov model [Eqs. (1)–(3)] from now on abbre-
viated with AP (solved using a spacing constant h ¼ 0.8
and dt ¼ 0.2), and the Fenton-Karma model [Eqs. (4)–(5)],
using two different parameter sets (all simulation
parameters can be found in the Supplemental Material
[10]), from now on abbreviated with FK1 (with h ¼ 1.0
and dt ¼ 0.2) and FK2 (with h ¼ 1.5 and dt ¼ 0.1),
respectively. Both sets of parameters (FK1 and FK2)
were investigated in [11] and create a spiral wave breakup
by different mechanisms [biphasic action potential duration
(APD) restitution curve, and supernormal conduction
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velocity, respectively]. Figure 1 shows snapshots of the
chaotic dynamics (variable u) of the discussed models (AP,
FK1, and FK2) in a rectangular two-dimensional domain.
The escape rate κ is the quantity that measures how fast

random initial conditions (which are governed by the
chaotic dynamics) escape the chaotic saddle and reach
the final (nonchaotic) state. By generating many initial
conditions and determining the fraction that still shows
chaotic dynamics at time t, NChðtÞ, the escape rate κ can be
extracted, since this quantity typically decreases exponen-
tially in time with NChðtÞ ∼ expð−κtÞ [12].
As a first step, we investigated the role of the system size

in 2D simulations. In [13] two types of supertransients
(systems where the escape rate decreases rapidly with the
system size) are distinguished. In systems of type-I super-
transients (nonstationary transients), the number of objects
which are essential for the chaotic dynamics (e.g., “defects”
or “regions of turbulence”) decreases in time, and the
dynamics converge over time to the final state. For this
class of systems, the dependence of the escape rate κ on the
system size L can usually be described by a power law
[Eq. (6), with β > 0]. In systems that show transients of
type-II in comparison, the transition to the final attractor is
abrupt, and cannot usually be predicted by quantities like
time series. The escape rate κ increases exponentially with
the system size L [Eq. (7), with the parameters a > 0 and
γ > 0],

κðLÞ ∼ L−β; ð6Þ

κðLÞ ∼ expð−aLγÞ: ð7Þ
Instead of the escape rate κ in the following the inverse

escape rate is considered, which is an estimate for the
average transient lifetime hTi ≈ 1=κ [12].
In 2D simulations on a rectangular domain, the

average transient lifetime was determined for various
sizes of the 2D simulation area. While keeping the grid
spacing h constant for each model, the simulation
domain Lx × Ly ¼ ðNxhÞ × ðNyhÞ was increased by
changing the number of grid points (Nx×Ny∈
½80×80;90×90;100×100;110×110;120×120;130×130�).
For each domain size, 3000 initial conditions were

created (details about the induction protocol can be
found in the Supplemental Material [10]). Self-termination
of a simulation was declared when the overall excita-
tion (dynamic variable u) came below a threshold
(ð1=Lx × LyÞ

P
i;juij < 0.001). For the determination of

hTi from NChðtÞ an initial amount of time, which is equal to
10 spiral periods, was discarded. The average transient
lifetime was determined for all three models (AP, FK1,
FK2) for the different domain sizes.
Figure 2(a) shows NChðtÞ exemplary for FK1 and a

domain size of Lx × Ly ¼ 100 × 100. An exponential
scaling of the average transient lifetime with the domain
size (area ¼ Lx × Ly) in 2D was confirmed in all three
models [Fig. 2(b) for FK2 and AP, and Fig. 2(d) for FK1,
respectively]. In fact, supertransients of type-II were
identified with coefficients γAP ¼ 1.3843� 4.2 × 10−3,
γFK1¼1.2274�6.9×10−4, γFK2 ¼ 0.8813� 2.8 × 10−2,
aAP¼4.5851×10−6�8.6×10−11, aFK1 ¼ 4.4123 × 10−5�
1.3 × 10−10 and aFK2 ¼ 7.1151 × 10−4 � 1.5 × 10−6. It is
noteworthy, that the actual scaling parameter γ is not only
determined by the choice of the cell model (Aliev-Panfilov,
Fenton-Karma) but also sensitively depends on the choice
of model parameters.
The identification of supertransients of type-II can

also be confirmed in the underlying dynamics of the
investigated excitable systems: The chaotic dynamics are

(a) (b) (c)

FIG. 1. Snapshots of the spatiotemporal dynamics for the three
investigated systemsAP (a), FK1 (b), and FK2 (c) (domain sizes
Lx × Ly of 80 × 80, 100 × 100 and 150 × 150, respectively).
(White) circles indicate the phase singularities (organizing
centers) of the spiral waves.

(a) (b)

(c) (d)

FIG. 2. Chaotic transients and the average lifetime in 2D
simulations. In subplot (a) NChðtÞ is shown over time [measured
in spiral rotations (Tsp)] for an exemplary domain size of
Lx × Ly ¼ 100 × 100 using the FK1 model. The average tran-
sient lifetime hTi ≈ 1=κ can be extracted by fitting the exponen-
tial decay [(red) dashed line]. In (b) the average transient lifetimes
are plotted for various system sizes for both models: AP (open
square) and FK2 (right pointed triangle). For FK1, the lifetime
distribution of phase singularities for a simulation domain of
Lx × Ly ¼ 100 × 100 was determined (c) as well as the mean
number of phase singularities NPS (filled square) and the average
transient lifetime hTi (open circle) for various area sizes (d).
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mainly determined by spiral waves in two-dimensional
(2D) systems or scroll waves in three-dimensional (3D)
systems. The number of the organizing centers of these
waves fluctuates during a chaotic episode due to pairwise
creation or annihilation of phase singularities (tips of the
spirals), wave breakup, or collisions with the boundary.
The dynamics terminate (without any impact from out-
side), if at some point in time every spiral wave annihilates
with another spiral wave or the boundary. Only plane
waves remain without any phase singularity and the
excitation dies out; thus, the chaotic episode has finished
and the system remains in the (stable) attractor given by a
nonexcited medium (see the Supplemental Material for
the course of such a self termination [14]). During such
an episode, the number of spiral waves, or their corre-
sponding phase singularities (which play the role of the
“defect” here), does not decrease over time, but fluctuates
due to the creation and annihilation mechanisms. The
lifetime distribution of a single phase singularity for
FK1 and a simulation domain of Lx × Ly ¼ 100 × 100
is shown in Fig. 2(c), indicating that the dynamics are not
dominated by single long-living spiral waves but char-
acterized by a constant production and annihilation of
relatively short-living phase singularities. As already
noted by Strain and Greenside [15], the final collapse
of the system occurs then, abruptly, and no obvious
indications for the upcoming termination can be found.
For exemplary time series of the number of phase
singularities NPS and the pseudo ECG before the collapse
of the dynamics, as well as details of the detection of the
phase singularities, see [10].
When the simulation area is extended, the mean

number of phase singularities (and thus the number of
spiral waves) increases linearly [Fig. 2(d)], which is in
accordance with the findings that spiral waves occupy finite
amounts of the area, also called “tiles” [5,16]. The lifetime
distribution of single spirals does not change with the
system size (mean lifetime of spiral waves hTPSi ¼
4.49; 4.37; 4.48; 4.45; 4.54; 4.53 Tsp for Lx ¼ 80, 90,
100, 110, 120, 130). Using a Markovian approach for
the dynamics (each state characterized by the number of
phase singularities), and assuming that the transition
probability to a state with no spiral waves is decreasing
exponentially with the number of spiral waves (which
grows linearly with the system size), one can reasonably
deduce the exponential scaling of the transient lifetime with
the system size here [17]. From this point of view, the
scaling parameters a and γ can be related to the lifetime of
the spiral waves and the number or the size of single spiral
waves compared to the domain size.
Apart from the average transient lifetime, which is a

characteristic feature of the transient nature, we focus in the
following on the chaotic properties of the dynamics. In
systems which exhibit chaotic transients, an initial con-
dition after a finite amount of time will end up in another
attractor (which actually can also be chaotic). However,

dynamic invariants that are used for “classical” (persistent)
chaotic systems can, in some cases, also be used for
characterizing the transients. For example, Lyapunov
exponents can, in practice, also be calculated in systems
with finite chaotic episodes. Because Lyapunov exponents
are mathematically defined on an infinite time scale,
we refer to “finite time Lyapunov exponents” when we
speak of Lyapunov exponents of chaotic transients [12].
Technically, there is no difference in the calculation
scheme, except that the calculation stops before the self
termination of the dynamics. However, in practice this is
only meaningful if the transients provide enough time for
the convergence of the estimates of the exponents.
The Lyapunov spectrum provides information about how

chaotic the dynamics are before self termination. We
investigated how these properties of the dynamics change
with an increasing system size (details can be found in
the Supplemental Material [10]). Figure 3(a) depicts the
Lyapunov density ([12,18]) (jth Lyapunov exponent versus
j divided by system size N ¼ Nx × Ny). The Lyapunov
exponents for different system sizes clearly align with each
other, which implies that the number of positive or negative
Lyapunov exponents scales with the system size (exten-
sive chaos).
Furthermore, in order to assess the chaotic dynamics,

the Kaplan-Yorke dimension DKY was calculated for
various system sizes based on the Lyapunov spectrum
[19]. Figure 3(b) shows that the Kaplan-Yorke dimension
DKY grows linearly with the system size (triangles). Since
the number of phase singularities (equivalent to the
number of spiral waves) also grows linearly [Fig. 2(d)],
we can identify a mean DKY per spiral wave of
≈7.77� 0.12. Although studies indicate that parts of
the degrees of dynamic freedom in spatiotemporal chaos
in excitable media are not related to the defects (spiral
cores) [20], we can conclude that the degree of chaos

(a)

(b) (c)

FIG. 3. The chaotic features of the dynamics using FK1.
Analysis of the Lyapunov density for various system sizes (a),
Kaplan-Yorke dimension DKY (filled triangles) versus the system
size (b) and DKY versus NPS (c).
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(Kaplan-Yorke dimension) can be estimated by the num-
ber of spiral waves permitted by the respective system size
[see Fig. 3(c)].
Similarly to [21], we also found that noise has an impact

on the average lifetime. Details regarding the results can be
found in the Supplemental Material [10].
As a next step, the average transient lifetime was also

determined in 3D domains. In three dimensions, spiral
waves correspond to scroll waves, whereas the former
pointlike phase singularities that mark the tip of a spiral
wave correspond to filamentlike one-dimensional curves in
3D. Scroll waves can be considered as “stacked spiral
waves,” where the curvature and the meandering behavior
of the filament are essential for the dynamics. In particular,
we are interested in how the average transient lifetime
changes when extending the 2D dimensional domain step
by step to 3D. For this purpose, the initial 2D simulations
with Lx × Ly ¼ ð80hÞ × ð80hÞ were gradually extended
in the third dimension Lz (from now on denoted as
“thickness”). As in [22], in all three models, a critical
thickness in the third dimension could be established up to
which the average transient lifetime remains approximately
constant (see Fig. 4). Above this threshold, the average
transient lifetime increases exponentially.
In order to find the dynamic origin for this critical

thickness, the filaments (the organizing centers) of the
scroll waves were also detected. Details about the detection
of the filaments can be found in the Supplemental Material
[10]. In Figs. 4(a), 4(c), and 4(e) the average transient
lifetime hTi is compared to the average number of filaments,
Nfila, for each thickness of the domain. In all three models,
the critical thickness in the average transient lifetime is also
pronounced in terms of the number of filaments NFila. In
addition, the average length of the filaments per thickness
(ALF=Lz) was also determined. In the case of straight
filaments only aligned along the third dimension of the
system, this quantity is equal to one. Thus, deviations from a
constant value provide information about deviating filament
alignment. In “thin” systems, the domain only provides
enough space for filaments aligning along the third dimen-
sion (thus, the system is quasi-2D). The approximately
constant ratio ALF=Lz for lower thicknesses indicates that
most filaments are aligned along the third dimension
[crosses in Fig. 4(b) (AP), 4(d) (FK1), and 4(f) (FK2)].
In larger domains, for AP and FK1, the critical thickness
can also be recognized by ALF=Lz (smeared out for FK2).
However, for bigger systems, ALF=Lz saturates in all three
models (or even slightly decreases for AP and FK1),
indicating that the maximum (average) filament length is
(model dependent) confined. The presence of the critical
thickness in both quantities (Nfila and ALF=Lz) suggests
that above the critical thickness, filaments break up (due to a
negative filament tension in all models [9,23]). This
transition from vertically arranged filaments to actual scroll
wave turbulence above a critical thickness of the substrate

was also observed by Dierckx et al. [24]. However, the
saturation of ALF=Lz leads to the conclusion that the
increase of the average transient lifetime is mainly based
on the pure number of filaments (equivalent to the number
of spiral waves in 2D) and does not depend significantly on
the length of the filaments. In order to investigate finite size
effects, all simulations were repeated in the case of FK1
with a doubled resolution [h → h=2, small circles and
crosses in Figs. 4(c) and 4(d)]. Quantitative differences in
the absolute numbers (e.g., Nfila) are visible, but the main
qualitative findings (in particular the critical thickness) are
robust under a doubling of the spatial resolution.
We have shown that chaotic transients are a robust

phenomenon in excitable media and occur similarly in
different numerical models (Aliev-Panfilov model and
Fenton-Karma model) of excitable systems with different
underlying mechanisms for spiral wave breakup. The
average lifetimes of chaotic transients depend on the
system size, in both two and three dimensions, and are
influenced by the addition of low amplitude noise. We
found in the investigated excitable systems, that spiral or
scroll waves, and their corresponding phase singularities or
filaments, are the main topological objects that promote the
duration of chaotic episodes.

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Chaotic transients in 3D domains. A critical thickness in
the third dimension of the simulation grids exists in all three
models, below which the average transient lifetime remains
approximately constant [AP: (square) in (a) and (b), FK1: (circle)
(small circles for simulations using the doubled resolutions) in (c)
and (d) and FK2: (right-pointing triangle) in (e) and (f)]. The
dynamic origin of the critical thickness concerning the average
transient lifetime can be identified with the average number of
filaments (Nfila) in the system, which is rapidly increasing above
the critical thickness [(crosses) in (a) (AP), (c) (FK1, small
crosses for simulations using doubled resolutions) and (e) (FK2)].
The average length of the filaments divided by the thickness
(ALF=Lz) also exhibits the critical thickness, but saturates for
larger domains [(crosses) in (b) (AP), (d) (FK1, small crosses for
simulations using the doubled resolutions) and (f) (FK2)].
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Our findings agree with the general notion that larger
heart muscle volumes increase the risk of cardiac arrhyth-
mias and related morbidity and mortality [25–27]. Our
results suggest that larger volumes can possibly contain a
larger number of phase singularities, and therefore, not only
increase the transient lifetimes, but also enhances the
spatiotemporal complexity of the chaotic dynamics, which
may have an impact on the success rates of defibrillation
attempts [28,29]. In particular, the role of the critical
thickness investigated in the 3D simulations may be of
further interest in this context. Cardiac hypertrophy, for
instance, is accompanied by an increase in heart muscle
volume. Even though the overall number of cardiac cells
does not change in hypertrophic hearts, other factors, such
as altered excitation thresholds and conduction velocities,
may lead to an effective scaling of the size of the excitable
system with respect to the sizes of dynamic structures like
spiral or scroll waves present in the system. In fact, from this
point of view, the administration of certain antiarrhythmic
agents could be interpreted as a change of properties of the
cardiac tissue in order to promote early self-termination of
cardiac arrhythmias [30].With respect to transient lifetimes,
phenomenological modeling could provide a generalized
framework for investigating the influence of cardiac sub-
strate changes onto the persistence of cardiac arrhythmias.
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3.1. Features of Chaotic Transients in Excitable Media

Summary of Results

In each model, the investigated chaotic dynamics governed by spiral and scroll waves is
transient. We can conclude that the underlying object in the state space is most likely not a
chaotic attractor, but a chaotic saddle. Thus, we obtained a first insight into the structure
of the region of the state space, which exhibits spatio-temporal chaos. Due to the transient
nature of the dynamics, a typical (chaotic) trajectory will return to the resting state at some
point in time (Fig. 3.2).

Figure 3.2: The (schematic) state space, depicting the conclusion of the study “Features of
Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves”. The finding
of this study, that the spatio-temporal chaotic dynamics of the investigated systems is
transient, is demonstrated by an exemplary trajectory (red). The chaotic episode starts
at some point, where the dynamics deviates from the usual sinus rhythm (1). Subsequent,
the trajectory enters another region of the state space, where the dynamics is chaotic (2).
Nevertheless, after a certain duration (the lifetime of the episode) the trajectory returns to
the resting state (3) at some point.

This includes, that similar to the trajectory of the sinus rhythm (discussed in section 2.2.2),
also the chaotic trajectory is located inside the basin of attraction of the resting state.
However, the structure in the corresponding region of the state space is significantly different
from the region in the proximity of the trajectory representing the sinus rhythm. This results
in a different transient lifetime in comparison to the regular dynamics of the sinus rhythm1.
Due to the chaotic dynamics determined by the chaotic saddle, also the lifetime of two typi-
cal chaotic trajectories is different due to the sensitivity of initial conditions. For this reason,
the average lifetime 〈T 〉 (averaged over many trajectories) was determined, which charac-
terizes the dynamic. We investigated the scaling behavior of 〈T 〉 concerning the domain
size in two and three dimensions, and could characterize the transient chaotic dynamics of
spatially extended systems as type-II supertransients [43]. Furthermore, we investigated the
underlying mechanism, explaining the transient nature of the dynamics, and related them
to quantities from the nonlinear dynamics (Kaplan-Yorke dimension [47]).

1The time from the induction of the sinus rhythm by the av node back to the resting state (equivalent to
a whole contraction cycle of the heart) is approximately constant.
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3.2 Terminal Transient Phase of Chaotic Transients

Status of the manuscript

The following section is based on a submission of a manuscript.

Author Contributions

• Thomas Lilienkamp designed the research, performed all numerical simulations, ana-
lyzed the data and wrote the manuscript.

• Ulrich Parlitz designed the research and wrote the manuscript.

Scientific Objective

In the previous study, the transient nature of spatio-temporal chaos in excitable media was
investigated. The average transient lifetime 〈T 〉 is the quantity which is highly relevant for
the clinical application: the duration of an episode of ventricular fibrillation can make the
difference between life and death.
Another key feature of the transient dynamics is the actual process of self-termination, the
transition from chaos to the resting state. So far, the collapse of the dynamics appears to be
spontaneous, and is not easily recognizable in quantities like e.g. the number of spiral waves,
or the pseudo ECG (see for example Fig. 3 of the Supplemental Material of the previous
study in section B.1 on page 135). In this study, we quantify the collapse of the chaotic
dynamics and the return to the (non-chaotic) attractor. In particular, we investigate whether
a “transition phase” between the chaotic dynamics and the resting state exists (Fig. 3.3).
Such a transition zone would provide then the general basis for possible observables which
could predict a self-termination of a chaotic episode.
We probe the state space by using small perturbations, applied to trajectories which are close
to their self-termination. With the analysis of the lifetimes of those perturbed trajectories,
we gain information about its structure.
Apart from cardiac models, we consider also further models of spatially extended systems
of the field of neuroscience and chemical reactions in order to validate our results to a broad
class of systems. Furthermore, we investigate the final phase before self-termination also in
low-dimensional maps, where the governing processes which also might be relevant for the
more complex and high-dimensional systems, can be studied in detail.

Numerical Models

In order to validate that our findings are not only applicable for models of cardiac dynamics
but constitute a rather fundamental effect of transient chaos in general, we investigated
several models from various scientific fields. The investigated systems are:

• The Fenton-Karma Model: A model for cardiac electrical wave propagation in
cardiac dynamics (using the parameter set FK1 (section A.2 on page 132), with
D=0.2, h=1.0, dt=0.2).
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3.2. Terminal Transient Phase of Chaotic Transients

1

2

Figure 3.3: The (schematic) state space, formulating the scientific objective concerning
the study “Terminal Transient Phase of Chaotic Transients”. In the previous study we
investigated the transient nature of the spatio-temporal dynamics. In the state space this
means, that an exemplary chaotic trajectory (1) will return to the resting state at some
point in time. In this study, we are interested in the final phase of these episodes (2). That
means, we quantify the state space structure in the proximity of occurring self-termination
events of trajectories.

• The Bueno-Orovio-Cherry-Fenton Model: A model for cardiac electrical wave
propagation in cardiac dynamics (using the parameter set BOCF1 (section A.5 on
page 134), with D=0.2, h=1.0, dt=0.1).

• Morris-Lecar Neuronal Ring Network: A model for the firing activity of neurons
(parameters specified in the study).

• The Gray-Scott Model: A model for a chemical reaction of the species U, V and
P: U + 2V → 3V, V → P (parameters specified in the study).

• The Tent Map: A simple one-dimensional map, which can exhibit sustained as well
as transient chaos.

• The Hénon Map: A two-dimensional invertible map, where the transition from
persistent to transient chaos appears via a boundary crises bifurcation.

The number of different models from various fields of nonlinear dynamics should underline
the significance of the obtained results, and strengthen the general applicability of the our
findings.
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Chapter 3. Results

Abstract
Transient chaos in spatially extended systems can be characterized by the length of the
transient phase, which typically grows quickly with the system size (supertransients). For a
large class of these systems, so-called type-II-supertransients, the chaotic phase terminates
abruptly, without any obvious precursors in commonly used observables. We investigate
transient spatio-temporal chaos in four different models of this class. By probing the state
space using perturbed trajectories we show the existence of a ”Terminal Transient Phase”
which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact
of perturbations is significantly different from the earlier transient and particular patterns of
(non-)susceptible regions in state space occur close to the chaotic trajectories. We therefore
hypothesize that even without perturbations proper precursors for the collapse of type-II-
supertransients exist which might be highly relevant for coping with spatio-temporal chaos
in cardiac arrhythmias or brain functionality, for example.

3.2.1 Introduction

Transient chaos can be observed in diverse systems [41], e.g. in ecology [37], turbulence
[36], neural networks [38, 39, 40] or statistical physics [89]. Chaotic transients in spatially
extended systems are denoted as “supertransients” if the average transient lifetime increases
rapidly with the system size [41]. Based on the scaling behavior and the underlying mech-
anism Crutchfield and Kaneko [43] distinguish between two qualitatively different groups
of supertransients: The dynamical evolution of type-I-supertransients is determined by a
continuous decrease of “defects” (nonstationary) and an increase of the transient lifetime
with the system size by a power-law. In the case of type-II-supertransients, the dynamics
can be described as quasi-stationary and the collapse of the chaotic transient (transition to
an attractor) is sudden. The average duration of the transients can be characterized here
by an exponential scaling with the system size.
In this study we consider four different models which show distinct dynamics described
by systems of partial differential equations. Each model exhibits transient spatio-temporal
chaos in certain parameter regimes. The Fenton-Karma model [26] and the Bueno-Orovio-
Cherry-Fenton model (BOCF) [90] are two examples of models of excitable media which can
be used to describe the action potential propagation in cardiac tissue (Exemplary snapshots
of chaotic dynamics are shown in Fig. 3.4(a) and (b), respectively). The Morris-Lecar
neuron model is a reduction of the Hodkin-Huxley neuron model [91] and describes the
ion currents of the barnacle giant muscle fiber (a transient episode of chaotic dynamics
is depicted in Fig. 3.4(c)), whereas the Gray-Scott model (Supplemental Material) can be
used to simulate chemical reactions [92]. Type-II supertransients can be characterized by an
exponential scaling of the average lifetime depending on the system size. Concerning these
features, the investigated systems belong to the group of type-II supertransients in the case
of extended excitable media [88, 93, 94] as well as the Morris-Lecar neuron model [95] and
the Gray-Scott model [96].
The sudden collapse of the dynamics in these systems is abrupt and can so far not be pre-
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Figure 3.4: Spatio-temporal chaos in the Fenton-Karma model (a), the Bueno-Orovio-
Cherry-Fenton model (BOCF) (b), and the Morris-Lecar neuron model (c), respectively. In
the first two cases, a snapshot of the variable u is shown. Here, the dynamics is governed
by spiral waves, where white circles indicate phase singularities, which correspond to the
tips of the spiral waves. Subplot (c) presents an exemplary episode of (transient) spatio-
temporal chaos modeled by the Morris-Lecar neuron model, which ends at t = 172.38 s.
The membrane potential Vi of i = 1, . . . of N = 100 neurons is shown here. The white bar
depicts the length of the Terminal Transient Phase (TTP), which is discussed in the results
section.

dicted [96, 41, 94]. However, by probing the state space using small but finite perturbations
of single trajectories we show the existence of a finite time interval before the actual col-
lapse where the coming breakdown is already visible. This period of time is called Terminal
Transient Phase (TTP) in the following. The existence of the TTP indicates in contrast to
previous conception, that the self-termination of the chaotic dynamics is not fully abrupt
and uncorrelated, but the end of a chaotic episode is a process with a finite duration.

3.2.2 Methods

For simulations of excitable media, the monodomain approach [97] was used, which describes
the evolution of the membrane potential u, due to diffusion and the local cell dynamics
(first and second term in Eq. (3.1), respectively). In both cardiac models used in this study
(Fenton-Karma [26] and Bueno-Orovio-Cherry-Fenton [90]), the cell dynamics is character-
ized by three currents, which describe the fast inward current Ifi, the slow outward current
Iso and the slow inward current Isi. The actual behavior of the currents and the evolution
equations of the slow variables h (Eq. (3.2)) are model specific.
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∂u

∂t
= ∇ ·D∇u− (Ifi + Iso + Isi)/Cm, (3.1)

∂h
∂t

= g(u,h). (3.2)

Fenton-Karma Model

The Fenton-Karma model is a three variable model (12 parameters) for generic cardiac
action potentials. The expressions for the transmembrane currents Ifi, Iso and Isi, as well
as the evolution equations of the gating variables h = (v, w) can be found in section 2.4.2
on page 48 (Eqs. (2.50) - (2.52), and Eqs. (2.54) - (2.55), respectively).

We assume an isotropic and homogeneous diffusion, thus the diffusive part can be written as
∇·D∇u = D∆u with the diffusion constant D=0.2. The simulations of the Fenton-Karme
model were performed on a rectangular two-dimensional domain with a size of Nx×Ny =
100×100 grid points (spacing constant h= 1.0 and time step dt= 0.2). No-flux boundary
conditions were used. The parameters used for this model can be found in section A on
page 131 in Tab. A.2.

Bueno-Orovio-Cherry-Fenton Model

The second model is the Bueno-Orovio-Cherry-Fenton model [90], which is still not too
complex (four variables, 28 parameters), but can be used to simulate action potentials
of human ventricular tissue. Equations (A.1) - (A.3) in section A on page 131 show the
expressions for the local currents Ifi, Iso and Isi. The evolution equations of the gating
variables h = (v, w, s) can also be found there (Eqs. (A.4)-(A.13)).

We assume a constant diffusion constant of D = 0.2. The two-dimensional rectangular
simulation domain has a size of Nx × Ny = 300 × 300 grid points. A spacing constant of
h = 1.0, a time step of dt = 0.1, and no-flux boundary conditions were used. The parameters
used for this model can be found in Tab. A.5.

Morris-Lecar neuronal ring network

The Morris-Lecar neuronal ring network [91] is a model for the firing activity of neurons and
was investigated in terms of the interspike interval variability [98], central pattern generators
for asymmetric traveling waves [99]. Furthermore, also the chaotic dynamics was studied
[100]. Equation (3.3) describes the evolution of the membrane potential Vi of neuron i,
which changes due to the local ion concentrations (first term) and by diffusive coupling
(second term). Furthermore, the evolution of the number of open potassium channels ni is
given by Eq. (3.4).
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∂Vi
∂t

= I − IL(Vi)− ICa(Vi)− IK(Vi)
C

+D∆Vi, (3.3)

∂ni
∂t

= nss(Vi)− ni
τn(Vi)

. (3.4)

The underlying equations describing the ion currents and the gating variables as well as
the parameter set used are given in the Supplemental Material in section B.2 on page 139
(Eqs. (B.1) - (B.6) and Tab. B.1, respectively). Simulations of a one dimensional ring
of Morris-Lecar elements were performed using N = 100 neurons, a diffusion constant of
D = 0.05, a spacing constant of h = 1 and a time constant of dt = 0.2, where periodic
boundary conditions were used. With the parameters chosen here, the chaotic dynamics
can either collapse to the rest state or (due to the periodic boundary conditions) to a state
of pulse propagation. Since we concentrate here on the end of the chaotic regime, we consider
both cases as the end of the chaotic dynamics.

Tent Map

The tent map is a simple one-dimensional map, described by

xn+1 =

axn forx < 1
2

a(1− xn) forx ≥ 1
2 .

(3.5)

Hénon Map

The Hénon map is defined by the following equations

xn+1 = a+ byn − x2
n , (3.6)

yn+1 = xn . (3.7)

In this study, we use b = 0.3 and varied the parameter a in order to achieve transient chaos.

3.2.3 Results

In the next section the transient features of the spatio-temporal dynamics are shown and
the average lifetime 〈T〉 of those transients is determined. Subsequently we investigate the
structure of the state space, by perturbing single trajectories of spatio-temporal chaos and
analyze how the lifetime of those perturbed trajectories changes. Eventually, we investigate
how the lifetime of perturbed trajectories changes, when the perturbation is located close
(in time) to the self-termination of the original trajectory. The change of the lifetime
distributions of the perturbed trajectories close to the collapse is discussed, as well as the
spatial structures of the perturbation space before self-termination. In order to elucidate
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possible mechanisms underlying the TTP, we investigate two low-dimensional maps (tent
map and the Hénon map), where the TTP also occurs and can be derived analytically (tent
map) or deduced geometrically (Hénon map), respectively. All results are finally discussed
in the last section.

Transient Chaos

As a first step we investigate the transient behavior of the systems we are dealing with.
In particular we are interested in the average lifetime 〈T〉 of the chaotic transients in each
system. For this purpose, we created 3000 initial conditions for each model (the creation of
the respective initial conditions is explained in the Supplemental Material in section B.2 on
page 139).
In order to estimate the average lifetime of the chaotic transients, for each trajectory the
time until self-termination of the dynamics was measured (the criteria for self-termination for
each model are described in the Supplemental Material in section B.2 on page 139). By this
procedure, we determined the amount of initial conditions NCh(t) which still exhibit chaotic
dynamics at time t. In transient systems, this quantity typically decreases exponentially
NCh(t) ≈ exp(−κt) where κ is denoted as the escape rate of the system [41]. The exponential
decay the escape rate κ can be extracted, which is approximately inversely proportional to
the average lifetime 〈T〉 ≈ 1

κ of the chaotic dynamics [41]. As an example, NCh(t) is shown
in Fig. 3.5 for simulations of the Fenton-Karma model, where the time t is given in spiral
periods TSp. The period of a spiral wave was estimated by an average over single long
living (up to ten spiral rotations) spiral waves. In the case of the Fenton-Karma model and
the BOCF model, time is given in spiral rotations (TSp), since the spiral rotation is the
relevant time scale here. One spiral rotation corresponds to TSp ≈ 105 time units for the
Fenton-Karma model and TSp ≈ 350 time units for the BOCF model, respectively. In the
following, we denote the average lifetime discussed above as 〈T〉IC in order to make clear
that this quantity is determined based on different initial conditions (IC).
By the procedure discussed above, 〈T〉IC was determined for each model by an exponential
fit of NCh(t). In order to exclude effects due to possible correlations of the initial conditions
(caused by the process of the creation of the initial conditions), an amount of time was
discarded for the fit. The respective offsets are given in the Supplemental Material. Finally,
the average lifetime 〈T〉IC of each system is given in Tab. 3.1.

Table 3.1: The average lifetime 〈T〉IC determined by a fit of the exponential decay of
NCh(t) for each investigated model.

Model 〈T〉IC
Fenton-Karma Model 195.83 ± 0.002 TSp
BOCF Model 38.65 ± 0.006 TSp
Morris-Lecar neuronal ring network 96.41 ± 0.10 s
Gray-Scott Model (Supplemental Material) 2215.71± 1.57 a.u.
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Figure 3.5: The number NCh(t) of initial conditions which still show chaotic dynamics
at time t is shown over time (in spiral periods), exemplary for the Fenton-Karma model.
The exponential decay is characterized by the escape rate κ of the system. By fitting the
exponential decay ((red) dashed line) the escape rate can be extracted.

The Local Vicinity of Single Trajectories

In this section, we probe the structure of the state space concerning the lifetime of the
chaotic transients. Allexandre and Otani showed, that small perturbations in the case of
simulations of spiral waves can have a huge impact on the dynamics [101]. The systems
are high dimensional (number of grid points of the simulation domain, times the number
of dynamical variables (from N × NVar = 100 × 2 = 200 (Morris-Lecar network) up to
Nx ×Ny ×NVar = 300× 300× 4 ≈ 105 (BOCF)). We are interested in the vicinity of single
trajectories (thus, states or trajectories which are close in state space). For this purpose,
we pick individual initial conditions and perturb these trajectories at specific points in time
in diverse “spatial” directions. In detail, we perturb only the first dynamical variable in
each model (u in the case of the Fenton-Karma model and the BOCF model, Vi in the
case of the Morris-Lecar network and ai in the case of the Gray-Scott model (Supplemental
Material)). In the latter case, the variable we perturb represents the concentration of the first
chemical specie, whereas in the other cases we modify the membrane potential. Technically,
perturbing the other variables is also possible, however, we concentrate in this study on the
mentioned variables, since they are (in practice) the most accessible quantities.
In the two-dimensional simulations, perturbations were applied at specific positions which
are located on a coarse grained grid size of 50× 50. Figure 3.6 depicts the positions of the
perturbations with white dots for exemplary snapshots of the Fenton-Karma model (a) and
the BOCF model (b), respectively.
In the case of the Fenton-Karma model, we applied local stimuli at a single pixel, whereas
for simulations of the Bueno-Orovio-Cherry-Fenton model 2 × 2 pixels were perturbed. In
the case of the Morris-Lecar network and the Gray-Scott model, perturbations were applied
at each single node. We applied finite perturbations of various strengths. With this method,
we do not focus on the local approach using linearized equations, but we can look at a small
but finite vicinity of the trajectories, similar to Menck et al. [102]. It is noteworthy that
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Figure 3.6: Outline of the application of the perturbations, added at specific points in
time to the initial trajectory. In (a) and (b), exemplary snapshots of the Fenton-Karma
model and the BOCF model, respectively, are shown. The white dots indicate the positions
of possible perturbations. Only one perturbation at once was applied to the system.

only one perturbation at a time was applied, thus, by this procedure a new trajectory is
created by every single perturbation. For these new trajectories the transient lifetime was
determined, beginning with the point in time when the perturbation was applied.
In Fig. 3.7 a sketch of the procedure is shown: The initial trajectory (solid black line) reaches
the desired attractor (red cross) at some point. Before, small perturbations are applied to the
trajectory (blue arrows), which lead to new trajectories (dashed gray lines). These perturbed
trajectories also reach the desired attractor, but require distinct lifetimes (the new lifetimes
of the perturbed trajectories are measured from the moment of the perturbation). That
means, if we apply the perturbations and measure the lifetime corresponding to the new
trajectory, we can assign a transient lifetime to every perturbation (perturbed trajectory),
thus to the specific position where the perturbation was applied.

Original Trajectory

Perturbed Trajectory

Figure 3.7: Schematic sketch of the procedure of the application of small perturbations:
The initial condition (solid black line) reaches the desired attractor (red cross) without any
perturbations. At some point in time, small perturbations (small blue arrows) are applied
to the initial condition. This leads to new perturbed trajectories, which also reach the
attractor.

As a first example, we choose a typical trajectory for each model, respectively, and apply
the perturbations discussed above at a random point in time which is, however, far from
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the self-termination of the system (this case will be discussed in the following sections).
In Fig. 3.8 snapshots of the respective first variables are shown at the point in time, when the
perturbations were applied (Fenton-Karma model (a), Bueno-Orovio-Cherry-Fenton model
(c), Morris-Lecar network (black curve in (e))). In addition, a representation of the transient
lifetimes of the trajectories which belong to perturbations applied at the corresponding
location is depicted (Fenton-Karma model (b), Bueno-Orovio-Cherry-Fenton model (d),
Morris-Lecar network (blue curve in (e))). In the case of the Morris-Lecar network, the
strength of the perturbation is ∆ = 1.0 mV, whereas in the other cases it is ∆ = 0.1 a.u.,
respectively, in order to achieve a comparable perturbation to signal amplitude ratio.
The distributions of the transient lifetimes of the perturbed trajectories TPert show a ran-
dom structure, without any clustering or correlation to the actual state of the original
system. However, the mean lifetime averaged over the new “perturbed” trajectories 〈T〉Pert,
corresponds approximately to the quantity derived in the previous section for the average
lifetime 〈T〉IC based on different independent initial conditions (e.g. Fenton-Karma model:
〈T〉Pert = 213.37 TSp). Since the perturbations were applied at a point in time far away from
the collapse of the system, due to the chaotic features of the dynamics the perturbed trajec-
tories depart from each other exponentially fast and distribute over the whole state space.
That is, why the quantity 〈T〉Pert provides similar results as 〈T〉IC, if the perturbations are
applied far from the collapse.

Transient Lifetime Distributions before self-termination

In the previous section, exemplary trajectories were perturbed, at points in time which are
far away from self-termination of the unperturbed dynamics. Here we want to investigate
the impact of perturbations applied close to the collapse of the system. For this purpose,
the system was perturbed at equidistant time intervals before the collapse.
Figures 3.9 and 3.10 present the analysis of this study for the Fenton-Karma model and
the Bueno-Orovio-Cherry-Fenton model, respectively. For the respective subplots (a), a
representative trajectory was chosen. The x-axis represents the time (in spiral periods TSp)
and the black arrow indicates the moment when the chaotic dynamics of the unperturbed
trajectory terminates. Perturbations of various strengths (0.001, 0.01, 0.1 and 1.0) were
applied before this time as described in the previous section and the mean lifetime averaged
over the new “perturbed” trajectories (〈T〉Pert = ∑

k Tk, where k runs over all perturbed
trajectories) was calculated (e.g. 50 × 50 = 2500 in the case of the Fenton-Karma model).
Since we want to investigate the vicinity of single trajectories and in particular the lifetime
of trajectories close to the original one, Tk is measured, starting from the point in time,
when the perturbation was applied. At times which are sufficiently far away from the
collapse of the system, the transient lifetimes averaged over perturbed trajectories 〈T〉Pert

are approximately equal to 〈T〉IC, calculated in the previous sections. Still, fluctuations of
〈T〉Pert from 〈T〉IC can appear for single trajectories (decrease of 〈T〉Pert in Fig. 3.10(a) at
around t = 65 TSp).
At times closer to the collapse, 〈T〉Pert drops, indicating that a decreasing amount of per-
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Figure 3.8: The impact of the perturbations applied to typical trajectories. The snapshots
of the first variable at the point in time when the perturbations were applied are depicted
in (a) for the Fenton-Karma model, (c) for the Bueno-Orovio-Cherry-Fenton model and as
the black curve in (e) for the Morris-Lecar network, respectively. A perturbation applied at
a specific position results in a new trajectory with its own transient lifetime. This lifetime
TPert corresponding to the position of the perturbation is plotted color-coded for the Fenton-
Karma model in subplot (b) and for the BOCF model in subplot (d). In both cases, solid
white curves represent the contour of u = 0.5 of the corresponding snapshots in (a) and (b).
In subplot (e), TPert is shown as the blue curve, for the Morris-Lecar network. In general,
the transient lifetimes do not seem to show any correlation with the structure of the state
at which the perturbations were applied.
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Figure 3.9: Temporal correlation of 〈T〉Pert and the self-termination for the Fenton-
Karma model. In subplot (a), a single trajectory was chosen, which terminates at around t =
242 TSp (black arrow). 〈T〉Pert is plotted for various perturbation strengths (in color: [0.001,
0.01, 0.1, 1.00]). It drops (differently for each strength) already at a finite amount of time
before the actual collapse of the system, indicating that fewer perturbations can actually
change the evolution with respect to the unperturbed trajectory, significantly. However,
stronger perturbations have a better chance of preventing the upcoming collapse. The self-
termination is not visible in the pseudo Electrocardiogram (ECG, dashed gray line) or the
number of phase singularities (NPS, solid black line) only instantly before the collapse, shown
in the lower part of (a). For a perturbation strength of ∆ = 0.1, 〈T〉Pert was averaged over
twenty trajectories ((b), time axis is normalized such that self-termination occurs at t = 0),
indicating a TTPFK ≈ 20− 25 TSp.
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Figure 3.10: Temporal correlation of 〈T〉Pert and the self-termination for the Bueno-
Orovio-Cherry-Fenton model. In subplot (a), a single trajectory was chosen, which ter-
minates at around t = 93 TSp (black arrow). 〈T〉Pert is plotted for various perturbation
strengths (in color: [0.001, 0.01, 0.1, 1.00]). It drops already at a finite amount of time
before the actual collapse of the system, indicating that fewer perturbations can actually
change the evolution with respect to the unperturbed trajectory, significantly. In contrast to
the case using the Fenton-Karma model (Fig. 3.9), perturbations of different strengths seem
not to have a different impact on 〈T〉Pert. The self-termination is not visible in the pseudo
Electrocardiogram (ECG, dashed gray line) or the number of phase singularities (NPS, solid
black line) only instantly before the collapse, shown in the lower part of (a). For a pertur-
bation strength of ∆ = 0.1, 〈T〉Pert was averaged over twenty trajectories ((b), time axis is
normalized such that self-termination occurs at t = 0), indicating a TTPBOCF ≈ 15−20 TSp.
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turbations is able to prevent the self-termination of the system (Figs. 3.9(a) and 3.10(a)).
In Fig. 3.9(a) (Fenton-Karma model), stronger perturbations show a higher 〈T〉Pert, because
perturbations with a larger amplitude can shift the initial trajectory over a larger distance
in the state space, which results in a higher chance of preventing the collapse. However, in
the Bueno-Orovio-Cherry-Fenton model (Fig. 3.10(a)) this is not the case, and the strength
of the perturbations does not seem to have an influence here.
Independently of the strength of the perturbations, in both models we can identify a finite
time window before self-termination, indicating that the structure of the state space changes
significantly in the vicinity of the self-termination of the trajectory (characterized by the
drop of 〈T〉Pert in comparison to 〈T〉IC). From now on we denote this interval as the
Terminal Transient Phase (TTP). An exemplary video showing the episode investigated in
Fig. 3.9(a) including the evolution of 〈T〉Pert for a perturbation strength of 0.1 can be found
in the Supplemental Material.
The analysis of simulations of the Morris-Lecar network is shown in Fig. 3.11 (the corre-
sponding analysis of the Gray-Scott model is presented in Fig. B.5 of the Supplemental
Material). As for the other models, a single trajectory is chosen (a), where perturbations
were applied with various strengths. The influence of the strength of the perturbations
seems to be moderate here.
In general, the existence of this finite amount of time, where the trajectory propagates
before the collapse through a qualitatively different region of the state space (in comparison
to the preceding dynamics), significantly extends the general understanding of the collapse
in spatially extended systems [43, 94, 103]. Actually, the upcoming self-termination is
not visible in commonly used observables like the pseudo Electrocardiogram (ECG, mean
excitation integrated over the whole simulation domain: 1

Nx×Ny

∑
i,j uij) or the number of

phase singularities (NPS) (Fenton-Karma model and Bueno-Orovio-Cherry-Fenton model)
shown for the first two models in the lower part of Figs. 3.9(a) and 3.10(a), respectively.
Also in the Morris-Lecar network, quantities like the mean value of the membrane potential
Vi averaged over all neurons do not provide at first sight information about the collapse of
the dynamics (lower subplot in Fig. 3.11(a)).
Nevertheless, the analysis of 〈T〉Pert shows that the structure of the state space already
changes a finite amount of time (TTP) before the actual collapse. In order to estimate the
approximate duration of the TTP, 〈T〉Pert was averaged over twenty different trajectories
for each model (Figs. 3.9(b), 3.10(b), 3.11(b)). In each model a perturbation strength of
∆=0.1 was used except for the case of the Morris-Lecar network (∆=1.0), in order to use a
ratio of perturbation strength to signal amplitude which is of the same order of magnitude.
Based on the average over twenty trajectories, an approximate value of the TTP for each
model was determined (see Tab. 3.2).
In the case of the Fenton-Karma model and the BOCF model the length of the TTP is given
in terms of spiral rotations. This is the main time scale of the creation and annihilation of
spiral waves and thus the underlying mechanism which leads to the collapse of the dynamics.
In the case of the Morris-Lecar network the length of the TTP is additionally depicted for
the exemplary trajectory in Fig. 3.4(c), as a white bar in order to illustrate the length of
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Figure 3.11: Temporal correlation of 〈T〉Pert and the self-termination for the Morris-
Lecar network. In subplot (a), a single trajectory was chosen, which terminates at around
t = 172.3 s (black arrow). 〈T〉Pert is plotted for various perturbation strengths (in color:
[0.001, 0.01, 0.1, 1.00]). Varying perturbation strengths seem to have a moderate impact on
〈T〉Pert. The upcoming collapse is not visible in quantities like the mean (averaged over all
neurons) of the membrane potential (〈V 〉i, lower subplot of (a)). For a perturbation strength
of ∆ = 1.0, 〈T〉Pert was averaged over twenty trajectories ((b), time axis is normalized such
that self-termination occurs at t = 0), indicating a TTPML ≈ 1.5 s.
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Table 3.2: The approximate length of the Terminal Transient Phases for each investigated
model.

Model TTP
Fenton-Karma Model 20-25 TSp
Bueno-Orovio-Cherry-Fenton Model 15-20 TSp
Morris-Lecar neuronal ring network 1.5 s
Gray-Scott Model (Supplemental Material) 60 a.u.

the TTP in relation to the actual dynamics.

Spatial structure of perturbations before self-termination

We found in the previous section the existence of a finite TTP before self-termination
of the dynamics. Now we want to study, what this decrease of the transient lifetime of
the perturbed trajectories distribution looks like in the state space, thus we investigate
whether we find spatial structures in the space of perturbations during the TTP. For this
purpose, maps of the transient lifetimes corresponding to the position of the respective
perturbation (similar as in Fig. 3.8) were determined during the TTP of the examples
discussed in Figs. 3.9(a), 3.10(a), 3.11(a) and B.5(a). Figure 3.12(a), (c) and (e) (Fenton-
Karma model) as well as Fig. 3.13(a), (c) and (e) (Bueno-Orovio-Cherry-Fenton model)
show the snapshots of the membrane potential u at three different points in time during
the TTP (additionally marked in Figs. 3.9(a) and 3.10(a) by solid vertical lines (t1, t2, and
t3)).
Hence, the subplots in the right column of Figs. 3.12 and 3.13 show the maps of the transient
lifetimes of the perturbed trajectories, for perturbations with a strength of ∆ = 0.1. In both
models, connected regions or clusters can be recognized where perturbations can significantly
change the (unperturbed) reference trajectory and generate diverse transient times. In the
remaining regions, perturbations can not prevent the termination of the initial dynamics.
The closer the system is to the collapse, the smaller the regions with significantly different
transient lifetimes become (comparison of Fig. 3.12(b), (d) and (f), and Fig. 3.13(b), (d)
and (f), respectively).
The analysis of the Morris-Lecar network provides similar results: Figure 3.14 shows snap-
shots of the first variable (black curves in (a), (b) and (c)) at three points in time (t1, t2 and
t3) which correspond to the vertical black lines in Fig. 3.11(a). In addition, the lifetimes
of the perturbed trajectories TPert are shown in blue. Comparably to the previous results,
clusters of nodes are visible (e.g. around node 65 and 85 in Fig. 3.14(a)), where perturba-
tions can not prevent the collapse anymore. These clusters grow in time (t1 < t2 < t3) until
only perturbations at specific nodes can prevent the system from the close collapse.
Thus, the dimensionality of the vector space of perturbations which can inhibit the collapse
becomes smaller and smaller, that means, also nearby trajectories reach the attractor of
the system, motivating the picture of high dimensional tube like structures which leave
the chaotic regime. Comparable tube- or channel-like structures in the state space were
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Figure 3.12: Spatial structure of the lifetime of perturbed trajectories using the Fenton-
Karma model. The subplots (a), (c) and (e) show snapshots of the membrane potential u
during a TTP, at points in time which correspond to the black lines in Fig. 3.9(a) marked
by t1, t2 and t3, respectively. The subplots (b), (d) and (e) show the map of transient
times, corresponding to the trajectories which were perturbed at the specific position. The
solid white curves represent the contour of u = 0.5 of the corresponding snapshots on the
left hand side. The locations of perturbations which can significantly change the transient
time (with respect to the original, unperturbed trajectory) are clustered, and their number
decreases as the system gets closer to the collapse of the (unperturbed) reference trajectory.
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Figure 3.13: Spatial structure of the lifetime of perturbed trajectories using the Bueno-
Orovio-Cherry-Fenton model. The subplots (a), (c) and (e) show snapshots of the membrane
potential u during a TTP, at points in time which correspond to the black lines in Fig. 3.10(a)
marked by t1, t2 and t3, respectively. The subplots (b), (d) and (e) show the map of transient
times, corresponding to the trajectories which were perturbed at the specific position. The
solid white curves represent the contour of u = 0.5 of the corresponding snapshots on the
left hand side. The locations of perturbations which can significantly change the transient
time (with respect to the original, unperturbed trajectory) are clustered, and their number
decreases as the system gets closer to the collapse of the (unperturbed) reference trajectory.
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Figure 3.14: Snapshots of the first variable of the Morris-Lecar network (black) and
the lifetimes TPert(i) of trajectories which resulted of a perturbation at node i applied at
the time the snapshot was taken (blue) concerning the exemplary trajectory discussed in
Fig. 3.11(a). The subplots (a), (b) and (c) correspond to three points in time t1, t2 and t3,
respectively, which are also marked by vertical black lines in Fig. 3.11(a). Regions where
perturbations can not change the average lifetime significantly (with respect to the original,
unperturbed trajectory) grow in time.

also found in other systems, for example in coupled FitzHugh-Nagumo oscillators [104] or
neuronal circuits [105], where in the latter case, however, the chaotic dynamics observed is
“stable chaos” [106] (no positive Lyapunov exponents).
The accurate characterization and the detailed understanding of the dynamics during the
TTP in the investigated systems is rather difficult, due to the huge dimensionality of the
systems. That is, why in the next section, we study the underlying mechanisms of the TTP in
low-dimensional maps, in order to understand the phenomenon at least in simple systems.
Furthermore, this analysis provides suggestions, what the dynamics in high-dimensional
systems might be.

Terminal Transient Phase in Low Dimensional Maps

We also found the TTP in low-dimensional maps, which are not comparable (or general-
izable) in many aspects to the high-dimensional systems we investigated before, but still
provide the advantage that possible mechanisms can be studied here in more detail. We
consider the tent map and the Hénon map, which show chaotic transients in certain param-
eter regimes. In both maps, the transient chaotic dynamics can be achieved by a bifurcation
which leads to a collapse between a former chaotic attractor and its own basin. This behav-
ior has not been reported to our knowledge for any of the other systems discussed in this
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study, which makes a transfer of results concerning governing mechanisms difficult. How-
ever, the investigation of the Hénon map and the tent map: (i) shows that the TTP also
exists in simple low-dimensional systems, (ii) provides an intuitive sketch of a mechanism
potentially also underlying TTP in high dimensional systems and (iii) offers examples of
what observables, which predict the collapse or give information about the structure of the
state space, may look like.

Tent Map
Transient chaotic dynamics can be generated in the tent map (Eq. (3.5)) by extending the
value of the parameter a above 1.0 and creating in this way an “exit” from the chaotic
regime. Figure 3.15(a) shows a Cobweb plot for a representative initial condition x0 = 0.13
and a = 2.2. The trajectory leaves the chaotic regime after fifteen iterations through the
“exit window” around x = 0.5.

For a = 2.001, (positive) perturbations of various strengths were applied to 1000 initial
conditions. Details about the creation of the initial conditions and the definition of self-
termination are given in the Supplemental Material. Comparable to the more complex
systems discussed before, a drop of 〈T〉Pert occurs also here at a specific number of iterations
before the collapse (Fig. 3.15(c)).

For the tent map, these curves can actually be understood in a semi-analytical way: the
(one dimensional) domains in state space, which lead to a collapse in n iterations can be
calculated. Figure 3.15(b) presents these domains (for a = 2.2, for reasons of presentability),
where a negative n is used, since n denotes the number of steps before the collapse (at
n = 0). The number of the domains grows with 21−n and their length L(n) can be calculated
analytically

L(n) =
(
a− 2
a

)−n
. (3.8)

The probability that a trajectory which is located inside such a domain will be kicked out of
this domain by a perturbation of strength p can hence be given geometrically by the ratio
of the length of the domain and the strength of the perturbation p

L(n) . In Fig. 3.15(b) this
is sketched using a representative perturbation (gray arrow). For n = −1, the perturbation
has a small probability to shift a trajectory out of the domain (only those trajectories which
are located at the right edge of the domain). In all other cases, the perturbation only moves
the trajectory in between the domain, which does not prevent the collapse in n = −1 steps.
In the case of n = −2, this probability has increased, since the length of the domain has
decreased. The number of the domains does actually not play a role here. For n = −3,
the perturbation is larger than the whole size of the domain, and will therefore kick all
trajectories out of the domain. With these considerations, 〈T〉Pert can be given analytically,
depending on the number of steps before the collapse n and the perturbation strength p
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Figure 3.15: The Terminal Transient Phase in the tent map. Subplot (a) shows a Cobweb
plot for a representative initial condition x0 = 0.13 and a = 2.2. In (b), the domains of
the state space are shown, which will lead to self-termination in n steps (n = 0 means
self-termination). For n = −1 the domain corresponds to the exit-like window in subplot
(a) (between the two intersections of the green dashed line (xn+1 = 1) and the black line
(tent map)). The grey arrows indicate a representative perturbation. The ratio between the
perturbation strength (length of the arrow) and the domain sizes increases when departing
from the collapse (n = 0) backward in time. In subplot (c), 〈T〉Pert is shown for various
perturbation strengths (colored lines), and also the theoretical approximation (Eq. (3.9)) is
plotted for each perturbation strength (black dotted lines).
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〈T〉Pert(n, p) = 〈T〉IC ·
p

L(n) (3.9)

where 〈T〉IC is the average lifetime calculated based on the lifetimes of the (unperturbed)
the initial conditions. This theoretical expression is additionally plotted in Fig. 3.15(c) using
black dashed lines, for each perturbation strength, respectively, and coincides well with the
numerical results.

Hénon Map
The Hénon map [33] is a two-dimensional invertible map, defined by Eqs. (3.6) and (3.7)
[107]. Hinke M. Osinga showed, how a boundary crisis bifurcation leads to transient chaos
in this system [107], where in a certain parameter regime, the chaotic attractor collides
with its own boundary. Figures 3.16(a) and (b) depict such a transition. In subplot (a) for
a = 1.4, the chaotic attractor (red) can be determined by the unstable manifold of a fixed
point P1 (blue dot in (a)), whereas the basin of the attractor (green) is given by the stable
manifold of a second fixed point P2.
With a parameter value of a = 1.428, the boundary crisis has taken place (Fig. 3.16(b))
and the unstable manifold of P1 touches the stable manifold of P2 at infinitely many points.
Similar to the investigations before, 5000 initial conditions were homogeneously distributed
inside the (former) basin and perturbations were applied. Details about the creation of the
initial conditions and the definition of the self-termination can be found in Supplemental
Material. The perturbations are two-dimensional (x, y), in random directions, but with
a constant perturbation strength. In Fig. 3.16(c) 〈T〉Pert is shown for different perturba-
tion strengths and the TTP occurs again in this model. Furthermore, we found that all
trajectories are passing relatively small areas in the state space before their termination.
These regions of the state space (marked by (i)-(iv) in subplot (b)) are explicitly shown
in subplot(d). Trajectories pass these regions 9 (i), 8 (ii), 6 (iii) and 1 (iv) steps before
self-termination, respectively (also marked as vertical dashed lines in subplot (c)). In the
enlarged maps of the state space (subplot (d)), the distribution of the 5000 trajectories
is depicted in black. Furthermore we found, that although the chaotic attractor does not
exist anymore here, the stable manifold of the fixed point P2 still determines the bound-
ary between chaotic (grey shaded) and non-chaotic domains of the state space. The area
colored in orange gives the region where the trajectories are distributed after a perturba-
tion of strength 0.01 (orange curve in subplot (c)). In the previous case of the tent map,
〈T〉Pert could also be determined analytically. Here, the drop of 〈T〉Pert can be understood
at least using an intuitive geometrical picture: The overlap of the orange area (perturbed
trajectories) and the grey shaded region of the state space (chaotic regime) is a good ap-
proximation for the amount of trajectories which remain in the chaotic regime (prevention
of the collapse). Using this perspective, one can explain the drop of 〈T〉Pert. This is in
particular plausible for the case n = −1 ((iv), thus trajectories which are one step away
from collapsing), where only few trajectories can be perturbed to the chaotic regime (corre-
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Figure 3.16: The Terminal Transient Phase in the Hénon map. Subplots (a) and (b)
depict the boundary crisis bifurcation which causes the transient dynamics. In (a) (a = 1.4),
the attractor of the system (red) is described by the unstable manifold of the fixed point
P1, whereas its basin is determined by the stable manifold of the fixed point P2. In (b)
(a = 1.428), the attractor has collided with its own basin. 〈T〉Pert is shown in (c) for various
perturbation strengths. Specific regions of the state space (marked by (i)-(iv) in (b)) are
magnified in subplot (d), each plot with a size of (0.1, 0.1). Trajectories pass these regions
before the self-termination (see also (c)). The distribution of the 5000 trajectories before the
application of a perturbation are marked in black in subplot (d), whereas the distribution
after the application of a perturbation of strength 0.01 (orange curve in (c)) is marked in
orange. The grey shaded region denotes here the chaotic regime of the state space. That
means, trajectories which are perturbed into the grey region stay chaotic, whereas they
collapse if they are perturbed into the white region. Thus, by geometrically considerations,
the overlap of the grey and the orange domains does roughly estimate the probability, that
an arbitrary perturbation can prevent the trajectory from the collapse.
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sponds to 〈T〉Pert ≈ 15.8 a.u. (orange curve in (c))). Also the difference of 〈T〉Pert between
different perturbation strengths at n = −9 ((i), thus trajectories which will collapse in nine
steps) is reasonable in this picture when referring to subplot (d)(i): smaller perturbations
as 0.01 (orange curve) cannot shift most of the trajectories back to the chaotic regime (grey
shaded region), due to the distance of most of the trajectories (black) to the (former) basin
boundary (green).
The existence of the TTP in the tent map and the Hénon map underlines the robustness of
this phenomenon. The drop of 〈T〉Pert can be understood analytically (tent map) or using
the geometrical picture (Hénon map).
In addition, these examples show that an observable which can predict the collapse or give
information about the state space exists (at least in these low-dimensional systems): in
both maps we characterized domains of the state space, where trajectories are located that
collapse in the near future. Knowing the location of the current state relative to these
domains, we can therefore predict the collapse of the trajectory. Furthermore, the dynamics
of an arbitrary trajectory can be modified by the application of perturbations, which aim at
pushing the trajectory into the abovementioned domains of the state space, and thus forcing
the collapse of the chaotic dynamics.

3.2.4 Conclusion

In numerical simulations of six systems we have shown the transient nature of chaotic
dynamics in spatially extended systems and low-dimensional maps. We investigated two
models which are used to simulate action potential propagation of cardiac tissue (Fenton-
Karma model and the Bueno-Orovio-Cherry-Fenton model), a ring network of Morris-Lecar
elements which models neuron activity and a one dimensional system of the Gray-Scott
model which simulates a chemical reaction of two species. Furthermore, we extended our
simulations to the tent map (one-dimensional) and the Hénon map (two-dimensional), which
provide, due to their low dimensionality, a more direct access.
We determined the average transient lifetime 〈T〉IC of the dynamics by a large number of
initial conditions for each model. Since this is a quantity based on the whole chaotic regime
of the state space, we investigated (the vicinity of) single trajectories by small but finite
perturbations in order to probe the local structure of the state space. In each model we
could identify a Terminal Transient Phase (TTP) characterized by a decreasing transient
lifetime averaged over all perturbed trajectories 〈T〉Pert. This indicates, that trajectories
propagate before self-termination through a qualitatively different (concerning the preced-
ing dynamics) region of the state space, although this is not visible in “common” observables
(e.g. the pseudo ECG or the number of phase singularities). The typical duration for trajec-
tories to travel through this “transition zone” is significant with respect to the intrinsic time
scale governing the dynamics (e.g the length of a spiral rotation) (TTPFK ≈ 20 − 25 TSp

(Fenton-Karma model), TTPBOCF ≈ 15 − 20 TSp (Bueno-Orovio-Cherry-Fenton model),
TTPML ≈ 1.5 s (Morris-Lecar network) and TTPGS ≈ 60 a.u. (Gray-Scott model)). Fur-
thermore we showed, that the drop of 〈T〉Pert is related to spatial clusters of perturbations
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which do not change the initial trajectory anymore, indicating that if the system is close
to the collapse, only perturbations into specific directions can prevent the system from self-
termination. Simulations of the tent map and the Hénon map provide an intuitive insight
into the underlying mechanism in low-dimensional systems. We could determine the drop
of 〈T〉Pert analytically for the tent map and found a geometrical representation in the case
of the Hénon map. This provides an idea of what the dynamics and the state space may
look like during the TTP in high-dimensional systems.
With this study we investigated the temporal and spatial structure (concerning the lifetime)
of the transition from a chaotic regime to the (non-chaotic) attractor of the system. It is
noteworthy to emphasize that the transition from the chaotic regime to the attractor can not
be understood as the entering of the basin of attraction of the attractor. Typical trajectories
are the whole time located inside the basin of attraction, since they will definitely reach the
attractor at some point. However, since the information of the collapse is already present in
the system some time before upcoming the collapse (TTP), it should be possible, in principle,
to identify an observable precursor for predicting temporally close self-termination (despite
the fact that type-II-supertransients are characterized by an abrupt termination). In the
low-dimensional systems this can already be done (e.g. determining the (former) basin of
attraction in the case of the Hénon map). To devise suitable precursors of the collapse in
high-dimensional systems one might employ data assimilation or machine learning methods,
to exploit the fact that during the TTP trajectories are (partially) robust with respect to
small perturbations.
The Terminal Transient Phase occurs in each model investigated here, low-dimensional
maps, spatially extended one- and two-dimensional systems, with no-flux or periodic bound-
ary conditions and one or two diffusive variables. In the future, it may be of interest whether
a finite TTP and corresponding clustering effects in the perturbation space also exist in other
systems (e.g. fluid dynamics [36]).
The existence of a TTP extends the general understanding of type-II-supertransients and
also may open up new possibilities for applications. For example, in cardiac dynamics
where occurring arrhythmias can be life-threatening and the standard defibrillation tech-
nique comes along with severe side effects like additional tissue damage and considerable
pain [18, 108, 19]. Since self-termination of such arrhythmias like ventricular fibrillation
has been observed frequently [109], an observable precursor could improve the control of
such arrhythmias. Possible applications could be heading in two directions: (i) a prediction
of a close self-termination of e.g. ventricular fibrillation could prevent the submission of
a defibrillation shock at all and reduce in this way the side-effects, and (ii) the energy of
electrical pulses applied for defibrillation could be reduced by exploiting the state space
structure. Either by detecting states where successful defibrillation can be achieved using a
lower energy, or using a two step protocol and first reaching these states before defibrillating.
Last but not least, transient dynamics also play a role in the functionality of the brain (e.g.
information processing) [110], and thus studying these processes could benefit from taking
the Terminal Transient Phase into account.
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Summary of Results

In this study, we reveal the existence of a transition zone in the state space between the
chaotic dynamics and the non-chaotic attractor, that means before the self-termination of
the dynamics, called the Terminal Transient Phase (TTP). We show in each of the six
investigated models, that the region of the state space which corresponds to the TTP has
a qualitatively different structure than the state space region which is governed by the
previous chaotic dynamics. That means, the state space before the collapse of the chaotic
dynamics is different then before, (Fig. 3.17), and it should therefore in principle be possible
to develop proper observables which can predict the upcoming self-termination.

"Terminal Transient Phase"

Figure 3.17: The (schematic) state space, depicting the conclusion of the study “Terminal
Transient Phase of Chaotic Transients”. The difference of the state space structure between
the Terminal Transient Phase (TTP) and the chaotic dynamics before the TTP is illustrated
here by the red and blue color of an exemplary trajectory.

Since the TTP occurs in systems with very distinct dynamics, we believe that it is a general
feature of transient dynamics. Hence, the existence of the transition zone significantly
extends the general understanding of chaotic transients in the field of nonlinear dynamics.
Furthermore, the obtained results can also be relevant for possible applications, e.g. in
the field of cardiac dynamics. An extended discussion of the results, including possible
implications for applications can be found in the section “Discussion and Outlook” 4.1 on
page 125.
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3.3 Complexity Fluctuations during Ventricular Fibrillation

Status of the manuscript

This manuscript is currently under revision.
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Scientific Objective

In the previous study, the process of self-termination of (transient) episodes of chaotic
dynamics in spatially-extended systems was investigated. It was shown, that the state
space of the terminal phase before the collapse of the dynamics has a qualitatively different
structure then the previous chaotic dynamics.
In this study, we focus on the chaotic episode itself, excluding the final phase before self-
termination. The experimental observation was made, that during an episode of ventricular
fibrillation the irregularity of the ECG signal was not homogeneous but fluctuated in time.
This feature motivated the question, whether these fluctuations are related to variations
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of the spatio-temporal dynamics of the chaotic electrical wave patterns. The scientific
objective of this study is, whether the level of complexity of the spatio-temporal dynamics
during ventricular fibrillation is constant or whether it fluctuates (Fig. 3.18).

Figure 3.18: The (schematic) state space, formulating the scientific objective concerning
the study “Unveiling Spatio-Temporal Complexity Fluctuations in Cardiac Arrhythmia Us-
ing Permutation Entropy of ECG Time Series”. Here, we focus on the dynamics during
the chaotic episode. In particular, we study the level of complexity of the spatio-temporal
dynamics, and investigate whether measurable fluctuations of the organization of the scroll
wave dynamics can be verified.

In three-dimensional simulations using a realistic rabbit heart geometry, the availability
of the full information in numerical simulations is exploited in order to investigate the
correlation between the spatio-temporal dynamics and ECG time series.

Numerical Models

Numerical simulations have been performed on a realistic rabbit heart geometry, obtained
from a computed tomography scan (CT-scan). The use of a realistic heart geometry is es-
sential for this study, since the geometrical arrangement of ECG electrodes in relation to the
positions of the scroll waves is essential for the reproduction of realistic ECG signals. Also,
anatomical properties of the heart (e.g. the difference in thickness between the right and
left ventricular wall) are taken into account, which may have an influence on the dynamics
of the scroll waves.
For the implementation of the Phase Field method ( 2.4.4 on page 57), Eqs. (2.69) and (2.70)
have been used with dt = 0.1, h = 0.5 and ξ = 0.5. The Fenton-Karma model was used for
modeling the ion channel dynamics, with the parameter set FK3 (Tab. A.4) and D = 0.9,
h = 2.0, dt = 0.1. Since this study does not need to e.g. adapt specific ion concentrations,
the Fenton-Karma model is a reasonable estimate.
Furthermore, the governing mechanism was also reproduced in two-dimensional simulations
of the Fenton-Karma model (performed by Sebastian Berg) and the Luo-Rudy model [111]
(performed by Edda Boccia).
The Supplemental Material to this study can be found in section B.3 on page 147.
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Abstract
During cardiac arrhythmias, self-organized spatio-temporal complexity in the heart is asso-
ciated with the dynamics of vortex-like rotating waves and their nonlinear interaction with
each other and with the heterogeneous multicellular substrate. However, the detailed mecha-
nisms underlying the onset and perpetuation of cardiac arrhythmias remain largely elusive.
Here we show that characteristic intermittent fluctuations in spatio-temporal complexity
during cardiac arrhythmia can be deduced from electrocardiogram (ECG) time series using
permutation entropy. Using (multiple) ECG time series of different species, optical mapping
data from Langendorff-perfused intact rabbit hearts, and numerical simulations, we demon-
strate that intermittency of complexity fluctuations of the electrocardiogram are associated
with characteristic density fluctuations of phase singularities and filaments, being the or-
ganizing centers of fibrillation. Our findings elucidate the role of electrode position for a
correct detection and may open the path for future applications for an effective classification
and improved defibrillation of cardiac arrhythmias.

3.3.1 Introduction

Ventricular fibrillation (VF) is a dangerous arrhythmia which leads to death after short
periods of time. Reentrant electrical activity [112] causes the muscle to contract at a much
higher frequency, more irregularly and therefore less efficiently than during sinus rhythm.
The state of the heart is most prevalently observed using electrocardiograms (ECGs) which
measure a projection of the electrical activity of the heart using electrodes placed on the skin.
During normal heart beat, the ECG signal shows very distinct periodic patterns known as
QRS complexes while during VF a very irregular aperiodic signal appears (see next section
for examples). During VF the time series shows patterns at different temporal scales which
makes a clear definition of distinct “states” difficult. One perspective that has long been
known [113] differentiates between “coarse VF” and “fine VF”. Coarse VF is defined [114]
as having an amplitude greater than 0.2 mV.
The following observations have frequently been associated with the notion of coarse and
fine VF [115]: coarse VF seems to be easier to be defibrillated, which manifests itself in a
higher success rate. After a prolonged VF episode, fine VF seems to be much more prevalent
than in the beginning.
Already in the early studies of coarse and fine VF the relation between these fluctuations
and the electrical activity have been discussed. For example, in [115] the relation to syn-
chronization of myocardial activation was investigated which lead to the result that coarse
VF is not linked to a lower standard deviation in activation times.
Relying solely on the amplitude of the ECG can be expected to cause many problems,
including a strong dependency on the subject [114]. Therefore many different methods to
analyze the VF waveform have been introduced. For example, wavelet transforms have been
suggested in [116] to quantify the temporal development of patterns in the ECG of a VF
which reveal structures characteristic for different time scales.
In this article we demonstrate in a first step the application of permutation entropy (PE)
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Figure 3.19: A sketch of the experimental setup showing the heart in the perfusion system
with an attached ECG electrode (a). The cameras record simultaneously videos of the
excitation patterns which are made visible using voltage sensitive dye. A snapshot of such
a video is shown in (b). Lighter colors correspond to the excited areas.

[117, 118, 119], also called order pattern entropy, to ECG time series of ventricular fibril-
lation. We show that PE is able to identify periods of different complexity while using a
completely different type of information than the amplitude. We observe these complexity
variations in ECGs from ex-vivo experiments (Fig. 3.19) with rabbit and pig hearts. For
comparison the application of PE to human ECGs from Physionet is shown (Supplemental
Material in the Appendix in section B.3 on page 147).
Using numerical simulations of cardiac fibrillation in realistic geometries we show, that
this phenomenon can be reproduced and appears not to be model-specific. In particular,
we observe a relation between the spatio-temporal dynamics underlying the ECG and the
PE-based complexity measure.
It is noteworthy that both, the fluctuations in the ECG and the complexity variations in
the spatio-temporal dynamics can be interpreted from a more mathematical point of view
as intermittency or intermittent phases of a nonlinear dynamical system. This perspective
has also been adopted in other fields before like turbulence [120, 121], coupled map lattices
[122], or coupled rings of ferrofluidic spikes [123].

3.3.2 Methods

Animal Models and Preparation

All animal procedures were performed in accordance with applicable local animal welfare
regulations. For this study we used two New Zealand White rabbit (3.5 kg and 3.0 kg).
The rabbit was injected with heparin (at least 500 UI kg) and euthanized with sodium
thiopental (at least 30 mg/kg). Immediately after death, a high-potassium solution (40 ml
to 100 ml, 16 mm as described in [124]) was injected intravenously to arrest the heart and
induce a plegic state. The heart was excised and kept in ice-cold cardioplegia solution
until final preparation and connection to the perfusion. To suppress mechanical activity
Blebbistatin was given leading to a total concentration of 2.1 µm to 3.8 µm. In addition the
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first dataset used two cryoablation zones of 8 mm diameter with a small isthmus in between
were created on the ventricle near the posterior branch of the coronary arteries [125] in order
to facilitate the induction of VF [126] as well as flecainide (1.5 µm).

Heart Perfusion, Recording Setup and Induction

Our experimental setup has been described previously [55]. In the setup, the heart is
immersed in warm (36.8 ◦C) oxygenated Tyrode solution and retrogradely perfused with
the same solution coming from a reservoir at 30 mmHg to 60 mmHg.
Temperature and pressure are continuously monitored and the pH is periodically checked.
The electrical activity on the heart is made visible using a potentiometric dye (Di-4-
ANEPPS, excited using cyan (505 nm) and green (530 nm) LEDs) and recorded by four
EMCCD Cameras (Photometrics Evolve 128 using 610 nm longpass filters). In addition
four measurement electrodes in the bath are used to record two ECG signals. For the sec-
ond setup used for the last results section a custom-built eight lead electrode ECG was used
(see the Supplemental Material). Ventricular fibrillation was induced either by local burst
pacing (50 Hz) or by far field shocks.

Numerical Simulations

Ventricular Fibrillation was simulated, where the electrical wave propagation was modeled
using the monodomain equations

∂Vm
∂t

= ∇ ·D∇Vm − Iion(Vm,h)/Cm (3.10)
∂h
∂t

= H(Vm,h), (3.11)

where Vm is the membrane potential and Cm is the capacitance per unit area. The first
term on the right hand side of Eq. (3.10) describes the diffusive part, where D = σ/(βCm)
is the diffusion tensor which is proportional to the conductivity tensor σ. β is the area to
volume ratio of the cells.
The second term consists of the contribution from the the local cell dynamics to the mem-
brane potential and does depend on the gating variables h (in addition to the membrane
potential Vm itself). For the description of the behavior of the gating variables, given by
Eq. (3.11), a cell model needs to be chosen. Details about the used cell model (3V-SIM,
also known as Fenton-Karma model [26]) can be found in section 2.4.2 on page 48. For
simulations of the Fenton-Karma model, parameter set in Tab. A.4 has been used.

Permutation Entropy

We use permutation entropy (PE) [117, 118, 119] to quantify the complexity of ECG time
series. Details can be found in the Supplemental Material.
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Filament Tracking

Details about the determination of the filaments can be found in the Supplemental Material.

Phase Synchronization Index

Details about the determination of the phase synchronization can be found in the Supple-
mental Material.

3.3.3 Results

The results section is divided into four parts:

• The first part shows the phenomenon of varying complexity in the ECG during VF of a
rabbit heart, its quantification by PE and the reproduction of the effect via numerical
simulations on a realistic rabbit heart geometry.

• In the second part we show how changes in the simulated spatio-temporal dynamics
(quantified by the number of filaments (NFIL)) are visible in the (position dependent)
ECGs and the respective PEs.

• We transfer the acquired knowledge of the numerical results to the experiment and
show that experimental data obtained by an eight electrode setup provides PE patterns
similar to the simulated results.

• The number of filaments can so far not be measured in the experimental setup. In
order to strengthen our findings that the complexity of the spatio-temporal dynamics
in the bulk of the tissue can be estimated by ECG time series we show that the
complexity of the PE (bulk tissue) coincides with the synchronization of excitation
patterns on the surface of the heart (obtained by optical mapping technique).

ECG Fluctuations in Experiments and Simulations Quantified by Permu-
tation Entropy

We show that complexity fluctuations in the ECG during VF occur both in experiments and
in numerical simulations. This variation of the regularity can be quantified by PE, where
a low/high entropy corresponds to time periods in the ECG with a more regular/irregular
variation, respectively. A regular variation in the time series promotes the existence of
specific order patterns while a more irregular variation leads in general to a more uniform
order pattern distribution. Figure 3.20 shows an excerpt from the ECG (a) along with the
PE time series (b) of an episode of VF for an ex-vivo rabbit heart experiment. The time
window for the computation of the entropy values is indicated by a shaded rectangle and has
a length of 0.5 s. Periods of more irregular variation often seem to coincide with a smaller
amplitude in the ECG, although this observation cannot be generalized (a counterexample
is given in the Supplemental Material in the Appendix in section B.3 on page 147 for the
Luo-Rudy Model).
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Figure 3.20: ECG (a) recorded by the attached ECG electrode (see Fig. 3.19) and PE (b)
for a VF episode of a rabbit. The shaded rectangle visualizes an exemplary time window
from which the corresponding PE is calculated (green line in (b)).

Further examples of complexity fluctuations during VF are shown for ECGs of human and
pig (Figs. B.12 and B.13 in the Appendix in section B.3 on page 147).

From the experimental findings the question arises, whether these fluctuations are correlated
with different spatio-temporal dynamics of the cardiac muscle. The idea that phases of a
more regular ECG might reflect a more organized spatio-temporal excitation pattern or a
better synchronization among the individual heart muscle cells had already been mentioned
in first publications related to that phenomenon [115]. However, for the quantification of
the dynamics of the heart, the ECG signal is not sufficient and information about the full
state of the heart is desirable. Although optical mapping [55] can be used to extract the
electrical excitation patterns on the surface of the heart, detailed information about the
electrical wave propagation inside the tissue can so far only be obtained from numerical
simulations.

In order to reproduce the observed behavior for closer investigations, we performed numerical
simulations of VF (using the Fenton-Karma model [26]) on a realistic rabbit heart geometry
to compare the spatio-temporal excitation patterns with the complexity of the computed
pseudo ECGSim [127] (calculated by Eq. (2.77)).

Figure 3.21 shows an exemplary ECGSim times series (a)(exemplary observation angle of
ϕ = 150 degree, for comparison see Figs. B.7 and B.8) of a simulated episode of VF and
the corresponding PE (b). Similar to the experimental results, fluctuations in the regularity
of the ECG can be observed.
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Figure 3.21: Pseudo ECG (a) computed from a simulated episode of VF using a realis-
tic rabbit heart geometry. The ECG was determined by Eq. (2.77) (exemplary position of
ECG electrode: ϕ = 150 degree (see Figs. B.7 and B.8)). Subplot (b) depicts the corre-
sponding PE. The shaded rectangle (a) visualizes an exemplary time window from which
the corresponding PE is calculated (green line in (b)).

c) d)b)a)

Figure 3.22: Example of how the dynamics of a scroll wave (a) is reduced to the cor-
responding filament (b). Subplots (c) and (d) present examples of a laminar state (time
step 1085 in Fig. 3.23) and a complex state (time step 2140 in Fig. 3.23), respectively.

Correlations between the Spatio-Temporal Dynamics and Angle Depen-
dent ECGs

Exploiting the knowledge about the full state of the system in numerical simulations, the
spatio-temporal origin of the discussed fluctuations can now be further investigated. In
order to quantify the spatio-temporal complexity of the system, we determined the number
of filaments (NFIL) during the episodes of simulated VF, which is directly related to the
number of scroll waves inside the heart (Fig. 3.22).
In addition, the ECG was calculated for various ECG electrode positions. For this purpose,
we used the infinite volume conductor approach, which provides a position sensitive and
dipole source based ECGSim (Eq. (2.77)). We positioned the ECG electrode midventricular
around 4 cm away from the epicardium, and rotated under the angle ϕ around the heart
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Figure 3.23: This figure compares the Permutation Entropy as a complexity measure of
the position dependent ECG signals with the number of filaments (NFIL) as a measure of
the complexity of the spatio-temporal state during an episode of simulated VF. Each point
in (a) is the color-coded value of the PE (calculated based on the position sensitive ECGSim
(Eq. (2.77))) at a specific point in time and corresponds to the ECG signal measured under a
specific angle. Subplot (b) shows NFIL over time (the raw number is black and a smoothed
number is plotted in red). The horizontal yellow (gray) dashed line in (a) at 299 degrees (84
degrees) depicts the angle, where the corresponding PE exhibits the maximum (minimum)
correlation of C = 0.81 (C = −0.33) for the whole time series. In order to illustrate this
correlation, the actual PE is additionally plotted in subplot (c) as the black (light gray)
curve, together with the smoothed version of NFIL (red line).

(Figs. B.7 and B.8 in section B.3 on page 147).
In Fig. 3.23 we present the analysis of an episode of simulated VF with a distinct phase of low
complexity (low number of NFIL): In subplot (a) the PE of the pseudo ECGSim recorded
under the observation angle ϕ is sketched color coded, whereas the number of filaments
NFIL is shown in (b) (in black, smoothed curve in red). The number of filaments, and
thus scroll waves, is fluctuating during the episode, and reaches low values e.g. at around
time step 1100 or time step 3000, indicating a phase of low spatio-temporal complexity.
Snapshots of the spatio-temporal dynamic state of the heart characterized by the filaments
are given in Fig. 3.22 for two exemplary states: a “laminar state” (corresponding to a low
NFIL and thus a low level of complexity) is shown in (c), taken at time step 1085 and a
“complex state” (corresponding to a high NFIL and thus a high level of complexity), taken
at time step 2140 (d).
These fluctuations are also visible in the PE spectrum, where the actual correlation de-
pends on the observation angle of the corresponding ECG. The yellow (gray) horizontal line
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Figure 3.24: The dependency between the angle of the ECG electrode and the correlation
coefficient calculated from NFIL and PE (for the episode of VF discussed in this section).
Two vertical black lines indicate the highest (lowest) correlation at an angle of 299 degree
(84 degree). Their corresponding PEs are plotted explicitly in Fig. 3.23(c) as the black
(gray) line, respectively. The correlation coefficient for each angle is calculated on the basis
of the whole time series (5000 frames).

in Fig. 3.23(a) indicates the PE with the highest (lowest) correlation with NFIL. Both PE
are additionally plotted together with the smoothed NFIL in (c) as the black (highest cor-
relation, C = 0.81) and light gray (lowest correlation, C = −0.33) curves. The correlation
coefficient between the PE and NFIL is also shown in Fig. 3.24 for each observation angle
of the corresponding ECG. The reason for the varying correlation coefficient is the limited
“range” of a single ECG electrode: primarily the excitation patterns in the proximity of an
ECG electrode contribute to the signal measured at a specific position (thus, at a particular
observation angle) (∼ 1

r2 in Eq. (2.77)). That means, the time series of a single ECG elec-
trode provides information only about a (nearby) section of the whole heart. The “laminar”
phase around time step 3000 reflects this mechanism: Most ECG electrodes do not observe
a complex dynamics (low PE in Fig. 3.23(a)). However, the (low number of) scroll waves
which are still present in the system cause a high PE in a small range of observation angles
(around ϕ ∼ 80 degree) which are close to the organizing center of the remaining scroll
wave.
From the above analysis we draw two conclusions: A single (spatially fixed) ECG electrode
is not enough to evaluate the spatio-temporal state of the system, since it only measures a
projected signal (under the respective observation angle) from the overall excitation pattern.
Furthermore, a perfect correlation is not possible, even when all electrodes are taken into
account, since e.g. in a laminar phase, some of them will detect the remaining scroll waves of
the system and therefore provide a high PE. Regarding potential applications, it is of great
interest which number and geometry of electrodes is appropriate in order to make a reliable
statement about the spatio-temporal complexity of the heart. For this purpose we chose
different numbers of equally spaced electrodes and calculated the average correlation between
NFIL and the PE concerning all electrodes used. Figure 3.25 shows the average correlation
coefficient and standard deviation for different numbers of equally spaced electrodes (for
a fixed number of electrodes averaged in one degree steps over all possible arrangements)
for the initial condition discussed in this section. The average correlation saturates at
approximately CSat ≈ 0.78, and already the use of five equally spaced electrodes provides a
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Figure 3.25: This figure shows the correlation between NFIL and the mean of PEs (con-
cerning selected electrodes) for different numbers of equally spaced electrodes for the initial
condition discussed in this section.

mean correlation of C5 ≈ 0.74±0.04. In total eighteen episodes of VF were simulated (each
episode containing of 5000 time steps). The saturated correlation and the value for five
electrodes for all eighteen initial conditions investigated in this study are shown in Tab. 3.3.
The average over all initial conditions is CMean

Sat ≈ 0.64± 0.15 and CMean
5 ≈ 0.59± 0.15.

This analysis indicates that a relatively low number of electrodes can be sufficient to make
a reliable statement about the spatio-temporal complexity of the heart based on ECG time
series.

Experimental Results Using an Eight-Electrode Setup

We showed in the previous section that in numerical simulations one can (to some degree)
estimate the complexity of the spatio-temporal dynamics of the heart using a finite amount
of ECG electrodes. Now we want to verify these findings in an experimental setup. For this
purpose, an eight-electrode setup was used in an ex-vivo rabbit heart experiment in order
to measure position dependent ECG signals during episodes of VF. A sketch of the setup
can be found in the Supplemental Material (Fig. B.10).
Figure 3.26 presents the analysis of an episode of VF of about 10 s in an ex-vivo rabbit heart
experiment. Subplot (a) shows the color coded PE (based on the eight ECG electrodes). In
the time window between 2 s and 4 s a similar structure as in Fig. 3.23(a) can be observed
(only one ECG electrode with a high PE), indicating a “laminar” phase, with a low number
of scroll waves.

Estimation of Surface Synchronization from PE

The PE data obtained from the ECGs of the eight-electrode setup yielded similar patterns
than the ones we found in numerical simulations. In the experimental setup, however, we
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Table 3.3: This table shows the saturated correlation CSat between NFIL and PE using
different numbers of equally spaced electrodes for 18 initial conditions in addition to the
average correlation using five electrodes C5 (averaged over all possible arrangements of the
respective electrodes). The initial condition concerning Simulation ID 4 is discussed in the
results section.

Simulation ID C5 CSat Simulation ID C5 CSat

1 0.78 0.83 10 0.48 0.54
2 0.65 0.71 11 0.68 0.72
3 0.61 0.66 12 0.48 0.54

4 (Fig. 3.23) 0.74 0.78 13 0.78 0.84
5 0.27 0.33 14 0.74 0.79
6 0.54 0.59 15 0.61 0.66
7 0.70 0.75 16 0.39 0.45
8 0.64 0.70 17 0.74 0.81
9 0.34 0.37 18 0.45 0.51

can so far not detect the number of scroll waves or the related number of filaments as we did
in the simulation study. In order to strengthen the observed relation between the spatio-
temporal dynamics and the PE in the experimental case, we compare in this section the PE
based on the eight-electrode setup with the electrical excitation patterns on the surface of
the heart, using the optical mapping approach. In detail, we compare the fluctuations of the
PE with the level of synchronization of the electrical excitation patterns, calculated by the
Phase Synchronization Index (PSI, for details see the Supplemental Material). Essential for
this analysis is that in general the dynamics observed on the surface (measured by optical
mapping) contains only limited information about the full 3D dynamics of the bulk tissue.
In particular, a high level of complexity of the spatio-temporal dynamics of the bulk does
not necessarily generate complex excitation patterns on the surface. However, in the other
direction, an organized spatio-temporal state will also cause a high level of synchronization
on the surface.
We verify this assumption by calculating the error of a nearest neighbor prediction (similar
to the approach described in [128]) that predicts the value of PSI using PE information
obtained from the eight electrodes of the ECG. Let y

(
tj
)

= {PE1
(
tj
)
, . . . ,PE8

(
tj
)
} be

the vector of PE from eight electrodes at discrete times tj (j ∈ {1, . . . , N}). By randomly
selecting half of the possible j we generate a training set Ya = {y

(
tk1

)
, . . . , y

(
tkN/2

)
} with

associated values of PSI Pa = {PSI
(
tk1

)
, . . . ,PSI

(
tkN/2

)
}. The remaining values form the

test sets Yb and Pb accordingly. For each element of Yb with t = tkm , m ∈ {N/2 + 1, . . . , N}
the nearest neighbor in Ya with t = tl(km) is found. The prediction error for PSI can then
be estimated by computing the RMSD (root mean squared deviation) as follows:

RMSD =

√√√√√ 2
N

N∑
m=N/2+1

(
PSI

(
tl(km)

)
− PSI

(
tkm

))2
(3.12)
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Figure 3.26: Analysis of complexity fluctuations during an episode of VF in a rabbit heart
using an eight-electrode setup. Subplot (a) shows the (color coded) PE calculated based
on the eight ECG electrodes used in the experimental setup. Between 2 s and 4 s the PE
of all ECG electrodes is low except one (ECG channel 4), indicating a laminar phase. For
comparison, the PSI (based on data obtained from optical mapping) is shown in (b). During
the phase of only one high PE, also the PSI indicates a relatively high synchronization on
the surface of the heart.

In order to estimate the significance of the RMSD obtained with Eq. (3.12) a surrogate
procedure is used: 1000 surrogates are generated by shuffling the order of the PSI values
and therefore destroying the association between the PE vectors y and the PSI values. The
distribution of RMSD for the surrogates can then be computed with Eq. (3.12). To avoid
unwanted correlations between the data points a subsampling of two points per second has
been used.
We applied this procedure to a dataset consisting of 34 VF episodes from a single rabbit
heart with a total duration of 917 s. The result is shown in Fig. 3.27. The blue line
on the left marks the RMSD with the correct association of PE vectors y and PSI. The
distribution of RMSD for the surrogates can be seen on the right. As the real RMSD
and the distribution of RMSD for the surrogates are clearly separated we can assume that
the association between PE and PSI contains additional information which can be used to
predict PSI from PE obtained from eight-electrode ECG measurements. This means that
the ECG measurements contain and provide relevant information about the complexity of
the underlying spatio-temporal process.

3.3.4 Conclusion

We have shown that permutation entropy can be used to identify phases of different com-
plexity in the ECG during VF of several species. Using numerical simulations we were able
to establish a link between these fluctuations and changes in the spatio-temporal dynamics,
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Figure 3.27: Comparison of the Real RMSD (defined by Eq. (3.12)) with the RMSD dis-
tribution based on 1000 surrogates. The clear separation of the real value and the surrogates
indicates a robust correlation of the PE calculated by the eight-electrode ECG setup, and
the spatio-temporal synchronization of excitation patterns on the surface of the heart.

which we quantified by the number of filaments. We found that the correlation between the
number of filaments and the PE depends on the position of the corresponding ECG electrode
and thus in a laminar phase, some ECG electrodes still indicate a high level of complexity
since due to their spatial proximity they detect the dynamics of the remaining scroll waves
(whose number is, however, globally low). Taking this effect into account, we conclude that
a perfect correlation is therefore not possible. However, five equidistant electrodes can on
the one hand in average provide a reliable statement about the global level complexity of
the dynamics inside the heart in simulations. Yet, in laminar phases, they even provide
more detailed information about the localization of the remaining scroll wave(s).
Using an eight-electrode setup in ex-vivo experiments of a rabbit heart, we found similar
patterns of the permutation entropy as in the simulation study. The comparison of the PE
and the level of synchronization (determined by the Phase Synchronization Index) of the
excitation patterns on the surface of the heart (obtained by the optical mapping technique)
supports our hypothesis that a statement about the level of complexity during episodes of
VF can be obtained by a many-electrode setup also in the experimental case. Being able to
identify phases of different complexity in the ECG can have implications for the classification
of cardiac arrhythmias. Furthermore, this knowledge may be exploited for improvements
of defibrillation techniques [21], concerning a complexity dependent defibrillation technique
[129].
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Summary of Results

In this study, we could verify a fluctuating number of filaments, which are used here as a
measure for the level of spatio-temporal complexity of the dynamics (Fig. 3.28). Actually,
the fluctuating number of filaments represents the ongoing creation and annihilation of
scroll waves. That means, these fluctuations represent also the underlying mechanism for
the process of self-termination, studied in the previous studies.

Level of Complexity

1

Figure 3.28: The (schematic) state space, depicting the conclusion of the study “Unveil-
ing Spatio-Temporal Complexity Fluctuations in Cardiac Arrhythmia Using Permutation
Entropy of ECG Time Series”. The main result is sketched using an exemplary trajectory,
which represents a typical chaotic episode of ventricular fibrillation (1). Different levels
of spatio-temporal complexity are illustrated here color coded (transition between red and
green).

Furthermore, the fluctuating number of scroll waves is measurable also in ECG time series.
The level of complexity of multiple ECG time series, determined by the calculation of
Permutation Entropy (by Alexander Schlemmer), correlates with the number of filaments.
We showed furthermore, that the number and position of the ECG electrodes is essential
for a reliable estimate of the spatio-temporal level of complexity. These findings were then
also verified in the experimental setup (performed by Tariq Baig, Sebastian Berg, Rabea
Hinkel, Daniel Horning and Claudia Richter) using a multiple ECG electrode setup, built
by Laura Diaz Rodriguez.
The discussion of the results and the implications for possible applications can be found in
the section “Discussion and Outlook” 4.1 on page 125.
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3.4. Termination via Perturbation

3.4 Termination via Perturbation

In the previous studies, the state space of spatio-temporal chaos was investigated and char-
acterized. After these rather descriptive analyses, we now want to exploit the obtained
knowledge and actively interact with the system. In particular, similar to the study of
section 3.2 on page 76 perturbations are used to modify trajectories.

Scientific Objective

The governing question of this study is directly related to the main motivation of this
thesis how the side-effects of the conventional defibrillation technique can be reduced. The
objective is how the chaotic spatio-temporal dynamics in excitable media can be efficiently
terminated with the lowest strength of interaction possible. The strength of interaction
is in this sense evaluated by the resulting side-effects of the interaction with the system.
Concerning the application of a far field shock, reducing the electrical field strength of the
shock reduces the induced currents, and in this way the side-effects. But, using a low
field strength results also in a decreasing number of virtual electrodes (see section 2.1.5 on
page 22), and a lower success rate (see for example the dose response curve in Fig. 2.10).
In the previous study of section 3.2 on page 76 the structure of the state space was investi-
gated. In particular, related to the transient nature of the dynamics, the fractal properties
have been revealed, concerning the transient lifetime of perturbed trajectories (e.g. Fig.
5(b) in the study of section 3.2 on page 76). This observation can be interpreted in the
following way: Assume a typical trajectory at a point x in state space, with a specific
transient lifetime of T1 (measured from x). Then, there exist in the neighborhood of x a
close trajectory x∗, which can be reached by small perturbations, and which has a transient
lifetime T2 which is significantly shorter than T1.2

From these consideration, the scientific objective of this study can be formulated: The task
is, to find perturbations as small as possible, applied to trajectories, leading to perturbed
trajectories with transient lifetimes which are as short as possible. Subsequently, a transient
lifetime which is short enough (what “short enough” means needs to be adjusted and refers
to relevant time scales of the applied system) can be considered then as termination. This
strategy can also be illustrated in the state space (Fig. 3.29), where the mechanisms of
the conventional defibrillation (blue arrow) and the (low impact) perturbation approach are
significantly different.
The process of recruiting virtual electrodes is essential for the understanding of the main
mechanisms which play a role during a defibrillation event. When considering the recruit-
ment of virtual electrodes as perturbing the system, space of possible perturbations is very
limited due to the spatial distribution of the virtual electrodes. In fact, inducing, for ex-
ample, excitation only at a specific spot of the tissue is in most cases not possible via the
application of an external electrical field. That means, the presented method where the
system is perturbed (excited) at specific positions is not directly applicable in practice.

2Actually, there exists also nearby states with a lifetime larger than T1. However, since we are interested
in terminating the dynamics, a short lifetime is desired.
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Figure 3.29: The (schematic) state space, formulating the scientific objective concerning
the study “Termination Via Perturbation”. The concept of conventional defibrillation, inter-
preted as a perturbation of the trajectory in the state space is depicted as blue arrows. The
defibrillation shock is applied at specific points in time (two exemplary states are denoted
by (1)). The strength of the electrical field recruits virtual electrodes on all scales, and the
shock excites the whole tissue. That means, the conventional defibrillation method perturbs
the system always to a specific state (2), where the whole tissue is excited at the same time.
Then, the whole tissue repolarizes at the same time, thus going back to the resting state
(3). In contrast to the conventional defibrillation, a possible low-energy approach interacts
less with the system (red arrows). This technique perturbs the state to a nearby state (5).
From here, the system also evolves to the resting state. Since these nearby states are state
specific, the system returns back to the resting state on different paths ((6) and (7)). This
is a central feature which is in contrast to the case of conventional defibrillation, where the
defibrillation shock brings the system always in the unique state of global excitation (2),
before it returns to the resting state (3).

However, the goal of this study is to terminate the chaotic dynamics in numerical simulations
in the most efficient way, as a proof of principle. In a second step, the results need to be
analyzed, general laws, dependencies, and mechanisms have to be identified, which can then
influence and motivate the development of novel defibrillation concepts.

3.4.1 General Concept

Due to the high-dimensionality of the investigated systems, there are extremely many pos-
sible perturbations which can be applied to trajectories. S. P. Cornelius et al. developed
a general algorithm, how in numerical simulations of high-dimensional networks a desired
state can be achieved by the application of a final perturbation which is composed of many
small perturbations [130]. For the purpose of clarity, we denote from now on these small con-
stituents just as perturbations, whereas the final collective “push”, composed of the small
perturbations as the directed shift. For the application, the knowledge of the underlying
equations or mapping rules of the dynamics are required. This algorithm is used in this
study, to identify directed shifts which lead to a fast termination of the perturbed trajec-
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Desired state

Shortest distance

Figure 3.30: The principle of the network control problem, shown for a specific example
of spatio-temporal chaos in excitable media. Perturbations p1 . . . pk are applied to the point
in state space x0, leading to k new perturbed trajectories. Subsequently, the perturbation
which corresponds to the trajectory which comes closest to the desired state during TDev is
chosen for the next iteration of the algorithm.

tory (preferably short transient time). In the following, we give a broad outline of the
algorithm:

1. Choose a specific trajectory, and a specific point in time (x0 in Fig. 3.30) when the
directed shift should be applied (thus a specific point in the state space).

2. Apply all possible perturbations one by one (denoted by p1 . . . pk), and let the system
evolve for a certain amount of time TDev (which is a parameter of this algorithm).
Only one perturbation at once is applied, thus with k possible perturbations, this
procedure results in k new perturbed trajectories.

3. If the trajectory which corresponds to a specific perturbation reaches the desired state
during the time interval, the algorithm is finished. If not, one needs to determine
which of the perturbed trajectories comes closest to the desired state during TDev. A
metric has to be chosen here, which determines the distance between different states
in state space.

4. The perturbation which corresponds to the trajectory which comes closest to the
desired state (p2 in Fig. 3.30) will be kept, all other perturbations are ignored.

5. The old state x0 together with the chosen perturbation p2 is the new starting point
in state space. That means, all kinds of perturbations are applied again at this new
point (→ 2.). The algorithm goes on, until so many perturbations are collected, that
the sum of them perturbs the original trajectory in such a way, that the new trajectory
reaches the desired state.
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Desired state

Figure 3.31: The principle of the network control problem, shown for a specific example
of spatio-temporal chaos in excitable media. At the end of the algorithm, the directed shift
(black arrow) which is composed of small perturbations shifts the original state (x0) to a
nearby state (x3) which will end up in the desired state during the evolution time TDev.

In this way, the algorithm creates a final perturbation vector (directed shift), which is
composed by many small perturbations. These perturbations shift the original trajectory
in such a way, that it reaches the desired point in state space during TDev (Fig. 3.31).

• In order to understand the procedure of the algorithm it noteworthy to mention that
the purpose of performing many simulations of perturbed trajectories is, to find the
proper combination of perturbations. Although during the algorithm proper pertur-
bations add up iteratively, at the end all collected perturbations are applied simulta-
neously.

This algorithm is a powerful tool to determine a proper combination of single perturbations
(out of the extremely high-dimensional space of possible composed perturbations), which
terminates the dynamics within TDev. However, this method follows a greedy strategy and
does not provide the certainty that a particular combination of perturbations is the best
possible choice in terms of the lowest number of perturbations. Still, the algorithm provides
the useful possibility to “navigate” systematically in the high-dimensional space of possible
shifts.

3.4.2 Implementation of the Algorithm

Since this study relates to the previous study of section 3.2 on page 76, the system we
investigate here is a two-dimensional simulation of excitable media (Lx × Ly = 100 × 100)
using the Fenton-Karma model for the local cell dynamics (parameter set FK1 (Tab. A.2
on page 132), with D = 0.2, h = 1.0, dt = 0.02). 206 episodes of spatio-temporal chaos were
created (with the same protocol as used in section 3.2) which exhibit chaotic dynamics for
at least 100 spiral periods.
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Perturbations were modeled as a local external electrical current. That means, any per-
turbation locally increased the membrane potential. The current was applied at circular
areas with a radius of rPert = 1, corresponding to five pixels of the simulation grid, during
one arbitrary time unit (equal to 50 simulation step). The strength of the perturbation is
equivalent to a change of the membrane potential Vm of approximately 300 mV. Due to the
strong influence of diffusion in the simulations, this did not lead to significantly unphysical
values of the membrane potential Vm.
The set of possible perturbations is constrained to the membrane potential. Furthermore,
possible positions of the perturbations were fixed to a grid of 50× 50 points, also illustrated
in Fig. 3(a) of the study of section 3.2 on page 76. That means, in total 2500 different
perturbations can be applied. The distance between two states in the state space is de-
termined by the Euclidean metric, applied to the state vectors of the membrane potential
Vm. The desired state for all simulations is the resting state, that means the absence of
any excitation patterns. Furthermore, after each iteration of the algorithm, the number of
phase singularities, and consequently the number of spiral waves was determined. When no
spiral wave was left in the system, the algorithm was successful and finished.
An example of an application is shown in Fig. 3.32, where a specific state x0 (membrane
potential Vm is shown in (a)) is considered. Phase singularities are determined and depicted
as white dots. The evolution time is in this example TDev = 500 time units, which corre-
sponds to approximately 5 spiral rotations. Without any perturbation, the system evolves
to y0 (b). After the first iteration of the algorithm, the best perturbation has been de-
termined (marked by the green circle (c)). The perturbed trajectory evolves and exhibits
a less chaotic dynamics (d) than without the perturbation (b). The second perturbation
(e) further reduces the number of spiral waves at the end of the evolution time (f) and by
adding the third perturbation (g) no phase singularity is left (h). Note that for the purpose
of visibility, green circles which illustrate the perturbations are larger than the actual area
of perturbed cells.
In the selected example shown in Fig. 3.32 a remarkable phenomenon can be observed,
which occurred in many of the investigated cases: When comparing the final states of the
system y1, y2, and the “Desired State”, excitation patterns are not completely different, but
it seems that the newly added perturbations act only on a spatially constrained part of the
domain. Specifically, new perturbations terminate spiral waves in specific regions, but have
no impact on other locations. This gives rise to the hypothesis, that the whole domain can
be divided into smaller parts or “tiles” as proposed by Byrne et al. [131] and for a successful
termination of the dynamics each part needs to be controlled independently.

3.4.3 Results

In total, 206 independent trajectories were investigated and the parameter TDev was var-
ied between 100 to 1000 time units, which is equivalent to approximately 1 to 10 spiral
periods. A maximal amount of 15 perturbations were applied. In a proof of principle,
we demonstrated that the chaotic dynamics in the investigated high-dimensional system
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Figure 3.32: Selected snapshots of a specific example of spatio-temporal chaos, illustrat-
ing the principle of the network control algorithm. The membrane potential Vm is shown,
whereas white circles indicate phase singularities and green circles depict the positions of
the applied perturbations. In (a), the state x0 is shown where the perturbations are ap-
plied. Subplot (b) depicts the evolved state (after TDev). The first perturbation which is
determined by the algorithm is depicted in (c) as the green circle and the evolution of the
perturbed state in (d). Adding another perturbation to the initial state (e), reduces the
number of spiral waves significantly (f), and three perturbations (g) are in this example
enough to expel all spiral waves (h). Consequently, the three perturbations define the final
directed shift in this example.
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Figure 3.33: The averaged number of perturbations needed to terminate the dynamics
within a given evolution time. With the algorithm discussed in this section, the number
of required perturbations NPert to terminate the spatio-temporal dynamics was determined
for all 206 chaotic episodes. In general, the longer the evolution time TDev is, the less
perturbations are needed. The statistical standard variation is sketched in light blue.

can be terminated with a minimal intervention using spatially confined perturbations of
the membrane potential. 84% of the 206 episodes could be terminated with less than 10
perturbations within TDev = 500 time units, which corresponds to around 5 spiral rotation.
The number of single perturbations which is required to terminate the dynamics depends
on the evolution time. With a larger duration between the application of the directed shift
and the point in time of the desired termination, less perturbations are needed (Fig. 3.33).
So far, the obtained results and analyses did not provide a sufficient understanding of the
underlying mechanism of this minimal intervention approach.

Summary

In this study we investigated in two-dimensional numerical simulations of excitable media
the chaotic spatio-temporal dynamics governed by spiral waves. Although we are dealing
with a very high-dimensional system and the observed dynamics is highly chaotic with in
average around seven spiral waves and a Kaplan-Yorke dimension of DKY > 60 (Fig. 2(d)
of the study in section 3.1 on page 68), we demonstrate that the termination of the chaotic
dynamics is feasible by the application of few spatially localized perturbations to the mem-
brane potential (directed shift). Using the algorithm developed by S. P. Cornelius et al.
[130], it was possible to identify proper directions in the high-dimensional state space, where
corresponding perturbations lead the trajectories to a fast self-termination.
The number of required perturbations decreased with an increasing temporal duration be-
tween the application of the directed shift and the moment of the desired termination of the
dynamics. Furthermore, we observed in many examples that single perturbations influence
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only a spatially limited region of the domain, which is visible in the final states during the al-
gorithm (e.g. Fig. 3.32). This provides further information about the state space structure,
and suggests to introduce a concept for the velocity information propagation concerning
small scale perturbations in excitable media.
Finally, more investigations are needed in order to improve the understanding of the under-
lying mechanisms of this minimal intervention approach.
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Conclusion

4.1 Discussion and Outlook

In this section, we summarize and discuss the main findings and results. At the beginning
of the thesis, we emphasized that the main motivation for this work has its origins in the
field of cardiac dynamics (section 1.4 on page 9). Also, we were interested to understand
general features like transient dynamics in a broader and more general class of systems than
the specific case of excitable media. That is, why two scientific objectives were formulated:
Besides the longterm goal to benefit from a deeper insight into the governing mechanisms of
ventricular fibrillation in order to develop improved clinical treatments for cardiac arrhyth-
mias and in particular reduce the significant side-effects of current methods, the second
objective aims at enhancing the understanding of chaotic transients in complex nonlinear
systems on a more fundamental level.
In the following discussion, we therefore interpret the obtained results in two manners: We
evaluate its significance concerning a possible influence on experimental studies and clinical
applications of cardiac arrhythmias, and also highlight the role of the obtained knowledge
for the general understanding of the dynamics in nonlinear systems.

Features of Chaotic Transients

We investigated diverse features of chaotic transients in excitable media in the study of
section 3.1. The observation of chaotic dynamics with a finite duration in two models and
using different sets of parameters underlines the robustness of the transient property. The
average lifetime 〈T 〉 is a characteristic quantity of the transient dynamics, which, interpreted
as the length of cardiac arrhythmias, can also be highly relevant in practice.
With the exponential scaling of 〈T 〉 with the system size in two dimensions, we could
assign the chaotic transients in the investigated excitable systems to the group of type-II
supertransients, which are characterized by an abrupt collapse of the chaotic dynamics.
With the detailed investigation of the statistics of spiral waves in the system, we could show
that the average number of spiral waves which fit into a simulation domain of a certain
size determines the average transient duration. The permanent creation and annihilation
of spiral waves could be identified as the underlying mechanism, and thus the dynamics
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of the system concerning the number of present spiral waves can be modeled as a Markov
chain. From this point of view, the system has a certain probability to reach the state of
zero spiral waves present, which is equivalent to self-termination. These insights into the
governing processes extend the understanding of chaotic spiral wave dynamics and provide
the basis for further investigations of transient dynamics in nonlinear systems.
Regarding spatio-temporal chaos during cardiac arrhythmias, the distinction between sus-
tained and transient dynamics may be crucial. The average lifetime of chaotic episodes 〈T 〉
needs to be compared to the time span τSurvive a patient can survive while suffering e.g. ven-
tricular fibrillation. Taking into account that irregularities of the heart dynamics do appear
also in “healthy” hearts [132], the difference between a heart which promotes the occurrence
of long living ventricular fibrillation, and a “healthy” heart is the individual average lifetime
of chaotic episodes of the respective heart. Whereas, in the latter case, chaotic episodes are
mostly too short to be perceptible, in “diseased” hearts 〈T 〉 is of the order of τSurvive. An
increased average lifetime of chaotic dynamics can hence be related to anatomical changes of
the heart muscle. In fact, this interpretation agrees with studies which indicate that larger
heart muscle volumes increase the risk of cardiac arrhythmias [133, 134, 135].
This study provides just the fundamental basis for such considerations. In a next step,
the average lifetime should be determined in three-dimensional simulations using realistic
geometries in order to investigate how anatomical changes (e.g. an increase of the thickness
of the ventricular wall, or regions of infarct tissue) influence the average transient lifetime.
Also, anisotropy features of the electrical conductivity should be taken into account here.
The interpretation of the results opens the path for novel techniques for a patient specific risk
stratification. This could be based on, for example, computed tomography scans (CT scans)
or magnetic resonance imaging (MRI) for detailed geometrical information. Furthermore,
diffusion tensor magnetic resonance imaging (DTMRI) could be used to extract knowledge
about the fiber direction of the patient’s heart. Here, the impact of anatomical changes of
the cardiac substrate onto the lifetime of cardiac arrhythmias can be investigated. Also,
numerical simulations based on patient specific heart geometries could provide valuable
information about the average lifetime of chaotic transients, and thus the danger for long-
living fibrillation. The critical thickness of 〈T 〉 found in three-dimensional simulations could
actually play a major role here.
Furthermore, the administration of certain antiarrhythmic agents are in agreement with
these considerations: antiarrhythmic agents of class-III, for example, prolong the repolar-
ization and in this way extend the action potential duration. With an increase of the action
potential duration, the average number of spiral waves in a domain of a fixed size is re-
duced, which can be interpreted as an effective reduction of the domain size and results in
a significantly reduced transient lifetime [136].

The Terminal Transient Phase of Chaotic Transients

The actual process of self-termination as the end of chaotic episodes was the research object
in the study of section 3.2.
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We characterized the structure of the state space concerning the average lifetime in six
systems from different scientific fields (cardiac dynamics, neuronal firing activity, chemi-
cal reactions, low-dimensional maps) which exhibited diverse dynamics of various levels of
complexity. The state space was probed using small but finite perturbations of typical tra-
jectories, and the subsequent determination of the lifetimes of the perturbed trajectories.
Averaging the lifetimes of the perturbed trajectories, which originate from the neighborhood
of the reference trajectory, provided information about a small state space volume around
the perturbed state.
With this method, we could verify the existence of a transition zone in the state space
between the chaotic dynamics and the final attractor (resting state), which exhibits a qual-
itatively different structure in the state space in comparison to the chaotic dynamics far
away from self-termination. This transition zone has been verified in each system, and
quantified by the duration which typical trajectories need to propagate through this zone,
called Terminal Transient Phase (TTP). In all investigated systems, the TTP is significant
in relation to the intrinsic time scale of the underlying dynamics (e.g. a spiral period).
The mechanism for this behavior could be identified by the emergence of subspaces in the
space of possible perturbations, where perturbing the original trajectory in the correspond-
ing direction does not cause an exponential separation from the reference trajectory, as
expected in a chaotic system. Furthermore, the perturbed trajectory follows the original
one to the upcoming self-termination. We found, that the directions in the subspace of
perturbations form connected clusters which grow in time. This behavior motivates the
picture of high-dimensional tube-like structures which guide trajectories out of the chaotic
dynamics.
With the detection of the transition zone quantified by the Terminal Transient Phase, we
significantly extend the general understanding of transient chaos. In particular, this contra-
dicts the previous view that specifically in type-II supertransients the collapse of transient
chaotic dynamics is abrupt and can not be predicted. In fact, with this study we show that
in principle precursors should exist which, based on the different properties of the state space
structure of the transition zone, could indicate the upcoming collapse. We already verified
the existence of such observables in the investigated low-dimensional maps. For complex,
high-dimensional systems, this remains as a major task for future studies, which could em-
ploy techniques from machine learning and data assimilation, since we actually showed in
our study that trajectories are, before self-termination, robust to small perturbations which
is an essential advantage for a reliable prediction of chaotic dynamics.
In the field of cardiac arrhythmias such an observable could predict a possible upcoming self-
termination, and thus it could prevent the application of an unnecessary defibrillation shock
and its side-effects. Also, a characterization of the states which collapse in a reasonable
amount of time could be valuable here. One can think of a defibrillation protocol which
perturbs the system to these states, and achieve in this way the (self-)termination of the
arrhythmia.
Since transient chaotic dynamics also plays a role in other fields e.g. in the information
processing of the brain (neuronal activity [110]) or in fluid dynamics [36], the existence of
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a Terminal Transient Phase could improve the understanding and control of the dynamics
also there.

Complexity Fluctuations During Cardiac Arrhythmia

Clinical observations of fluctuations of the complexity or regularity of the signal from an
electrocardiogram (ECG) during episodes of ventricular fibrillation provided the main mo-
tivation for the study of section 3.3.
We quantified the complexity fluctuations of experimentally measured ECGs by determining
the Permutation Entropy [119] (by Alexander Schlemmer). These fluctuations could in a first
approach be reproduced by performing numerical simulations of ventricular fibrillation in a
realistic rabbit heart geometry. We exploited the advantage of simulations, that the full state
of the system is accessible, unlike it is the case in, for example, ex-vivo experiments of animal
hearts, where the excitation patterns are mainly measurable on the surface of the heart only.
By exploiting the full information available in simulations, we could demonstrate that the
variations of the regularity in the measured ECG is caused by complexity fluctuations of the
spatio-temporal dynamics, quantified by the number of scroll waves. We could characterize
“laminar” states of the heart, where the dynamic is more organized (less scroll waves) and
“complex” states, governed by a larger number of scroll waves.
After illustrating how the complexity fluctuations in the spatio-temporal dynamics causes
specific patterns in the ECG time series, we investigated whether a prediction of the level of
complexity of the spatio-temporal dynamics is possible, based on the ECG time series. We
showed, that a single ECG electrode is not sufficient in order to make a reliable statement
concerning the global spatio-temporal state, but already five electrodes provide a reasonable
correlation.
Furthermore, in experimental studies (performed by Tariq Baig, Sebastian Berg, Rabea
Hinkel, Daniel Hornung and Claudia Richter) using an eight-electrode setup (developed by
Laura Diaz Rodriguez) we could observe similar Permutation Entropy patterns as we did
in the numerical study, indicating that the hypothesis that a statement about the spatio-
temporal level of complexity of the bulk of the tissue can be made using multiple ECG time
series is also valid in experiments.
Since there are indications, that regarding the termination of ventricular fibrillation the
defibrillation threshold (thus the required energy for a successful defibrillation) depends
on the spatio-temporal level of complexity [129], the obtained knowledge of this study can
provide the basis for a significant reduction of the defibrillation energy. For example, the
timing of the defibrillation shock could be adjusted to a “laminar” phase (determined by a
multiple-ECG measurement), where a successful termination can possibly be achieved by
using less energy.
Furthermore, since it is known that defibrillation energies required for a successful cardiover-
sion are particularly different between tachycardia and ventricular fibrillation [137], it is of
great interest whether a “laminar” phase during fibrillation is dynamically comparable to
monomorphic or polymorphic tachycardia.
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Also, our study revealed that with a multiple-ECG setup one can not only estimate the
global level of complexity of the heart. The multiple time series provide even information
about the spatial localization of scroll waves. This knowledge opens the path for a state
specific defibrillation scheme, where, for example, different defibrillation vectors (thus the
direction of the electrical field vector) could be used, each for specific dynamical states and
distributions of scroll waves.

These considerations demand extensive numerical and experimental studies in the future.
However, with the identification and characterization of the fundamental mechanism, namely
the correlation between the spatio-temporal dynamics and multiple-ECG time series, we
establish the basis for ongoing studies.

Termination via Perturbation

Based on the obtained knowledge about the structure of the state space in previous studies,
the study of section 3.4 deals with the active termination of chaotic dynamics. The obtained
results represent mainly a proof of concept of a novel approach to terminate high-dimensional
spatio-temporal chaos using minimal intervention.

We showed that the investigated complex chaotic dynamics in high-dimensional systems can
be terminated by the application of state specific arrangements of small and spatially limited
perturbations. A termination with such a minimal interference with the system is possible
only with the proper set of perturbations which add up to a “directed shift” which pushes
the trajectory to the collapse of the dynamics. In order to find the proper combination
of local perturbations in the high-dimensional space of possible perturbations, we used the
algorithm developed by S. P. Cornelius et al. [130].

During the algorithm it is striking that by adding new single perturbations to the “directed
shift” does not cause a total change of the final state. Rather, in many cases one can
observe that adding a single perturbation terminates particular spiral waves in the final state
without changing the rest of the state. This observation needs to be investigated intensively
in the future, but already emphasizes that a state specific defibrillation technique should be
taken into account for the development of novel defibrillation techniques. Furthermore, this
behavior is also an indication that the complex spatio-temporal dynamics of the investigated
systems can be described by spatially extended and temporally only weakly interacting
“tiles”, defined by the spiral waves as proposed by Byrne et al. [131].

Furthermore, the algorithm for the determination of the directed shift is extremely elaborate,
and demanding in terms of computational time. Thus it is desirable to develop a simple
and robust “recipe” for the proper arrangement of single perturbations on the basis of the
present results. This concept could furthermore be tested in three-dimensional simulations,
also under the constraint that in a realistic geometry, for example, only the outer surface can
be perturbed. Such a hypothetical concept could then also influence ideas for completely
novel experimental and clinical defibrillation techniques.
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4.2 Concluding Remarks

As a general conclusion, we hope that the insights provided by this thesis contribute to
the general understanding of cardiac arrhythmias and the nonlinear dynamics of complex
systems. The results suggest that an improved medical treatment of cardiac arrhythmias
can benefit from:

• A more detailed state analysis of the dynamics during spatio-temporal chaos, incorpo-
rating diverse measure techniques (e.g. multiple-ECG measurements, CT scans, MRI
scans).

• An intervention strategy which should adapt to individual patients and the respective
dynamical state of the heart.

A variety of new experimental approaches will be available which may help to achieve these
goals and to improve the understanding of the phenomena investigated in this thesis: Fil-
ament identification in the bulk tissue during experiments using sophisticated ultra sound
techniques, inverse ECG measurements for the reconstruction of spatio-temporal wave dy-
namics or using techniques from optogenetics for the stimulation of cardiac tissue via light
pulses are promising candidates which can have a significant impact on the field of cardiac
dynamics.
This technological progress in combination with novel data analysis techniques from the
fields of machine learning or data assimilation and sophisticated simulations of the com-
plex dynamics has great potential to develop advanced and efficient strategies for a patient
specific medical treatment.
This thesis shows how concepts from nonlinear dynamics can provide valuable insights into
fields like cardiac dynamics. For this reason also fundamental and rather mathematical
considerations, which do not have direct practical implications, can contribute to the un-
derstanding of complex biological systems on the long-term.
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Appendix A

Models of Cardiac Cell Dynamics

A.1 Aliev-Panfilov Model

Parameter Sets

Table A.1 presents the parameters used for simulations of Aliev-Panfilov model.

Table A.1: The parameter set AP1, used for simulations with the Aliev-Panfilov model.

Value [a.u.] Value [a.u.]
k 8 µ1 0.2
a 0.05 µ2 0.3
ε0 0.002
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A.2 Fenton-Karma Model

Parameter Sets

Table A.2 - A.4 present the parameters used for simulations of Fentom-Karma model (taken
from [74]).

Table A.2: The parameter set FK1, used for simulations with the Fenton-Karma model.

Value [a.u.] Value [a.u.]
τv+ 13.03 τ0 12.5
τ−v1 19.6 τr 33.25
τ−v2 1250 τsi 29
τ+

w 800 uc 0.13
τ−w 40 usi

c 0.85
τd 0.45 uv 0.04
Cm 1 k 500

Table A.3: The parameter set FK2, used for simulations with the Fenton-Karma model.

Value [a.u.] Value [a.u.]
τv+ 3.33 τ0 12.5
τ−v1 15 τr 28
τ−v2 2 τsi 29
τ+

w 670 uc 0.13
τ−w 61 usi

c 0.45
τd 0.25 uv 0.05
Cm 1 k 500

Table A.4: The parameter set FK3, used for simulations with the Fenton-Karma model.

Value [a.u.] Value [a.u.]
τv+ 3.33 τ0 9
τ−v1 15.6 τr 34
τ−v2 5 τsi 26.5
τ+

w 350 uc 0.15
τ−w 80 usi

c 0.45
τd 0.25 uv 0.04
Cm 1 k 500
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A.3. Bueno-Orovio-Cherry-Fenton Model

A.3 Bueno-Orovio-Cherry-Fenton Model

Differential Equations

The equations for the ionic currents can be found in Eq. (A.1) - (A.3). Equations (A.4) -
(A.6) show the evolution equations of the gating variables v, w and s of the Bueno-Orovio-
Cherry-Fenton model, whereas Eqs. (A.7) - (A.13) display additional definitions and expres-
sions used in the model:

Ifi(u, v) = − v

τfi
Θ(u− θv)(u− θv)(uu − u), (A.1)

Iso(u) = u− u0
τo

(1−Θ(u− θw)) + Θ(u− θw)
τso

, (A.2)

Isi(u,w, s) = −ws
τsi

Θ(u− θw). (A.3)

∂v

∂t
=
[
1−Θ(Vm − θv)

](v∞ − v)
τ−v

−Θ(Vm − θv)
v

τ+
v
, (A.4)

∂w

∂t
=
[
1−Θ(Vm − θw)

](w∞ − w)
τ−w

−Θ(Vm − θw) w
τ+
w
, (A.5)

∂s

∂t
=
(1 + tanh

[
ks(Vm − us)]
2 − s

)/
τs , (A.6)

τ−v =
[
1−Θ(Vm − θ−v )

]
τ−v1 + Θ(Vm − θ−v )τ−v2, (A.7)

τ−w = τ−w1 + τ−w2 − τ
−
w1

2

[
1 + tanh

(
k−w (Vm − u−w)

)]
, (A.8)

τso = τso1 + τso2 − τso1
2

[
1 + tanh(kso(Vm − uso))

]
, (A.9)

τs =
[
1−Θ(Vm − θw)

]
τs1 + Θ(Vm − θw)τs2, (A.10)

τo =
[
1−Θ(Vm − θo)

]
τo1 + Θ(Vm − θo)τo2, (A.11)

v∞ =

1, Vm < θ−v

0, Vm ≥ θ−v
, (A.12)

w∞ =
(

1−Θ(Vm − θo)
)(

1− Vm
τw∞

)
+ Θ(Vm − θo)w∗∞ . (A.13)
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Parameter Sets

Table A.5 presents the parameters used for simulations of the Bueno-Orovio-Cherry-Fenton
model (taken from [90]).

Table A.5: The parameter set BOCF1, used for simulations of the Bueno-Orovio-Cherry-
Fenton model.

Value [a.u.] Value [a.u.] Value [a.u.]
u0 0 τfi 0.11 uu 1.58
τo1 6 θv 0.3 τo2 6
θw 0.015 τso1 43 θ−v 0.015
τso2 0.2 θo 0.006 kso 2
τ−v1 60 uso 0.65 τ−v2 1150
τs1 2.7342 τ+

v 1.4506 τs2 3
τ−w1 70 ks 2.0994 τ−w2 20
us 0.9087 k−w 65 τsi 2.8723
u−w 0.03 τw∞ 0.07 τ+

w 280
w∗∞ 0.94
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Appendix B

Supplemental Material

B.1 Supplemental Material 1: Features of Chaotic Transients
in Excitable Media

In this section, Supplemental Material for the study “Features of Chaotic Transients in
Excitable Media Governed by Spiral and Scroll Waves” are given.
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DETAILED EQUATIONS OF THE FENTON-KARMA MODEL

The equations (1) - (2) describe the evolution of the variables v and w of the Fenton-Karma model.

∂v

∂t
= Θ(uc − u)(1− v)

(
Θ(u− uv)

τ−v1
+

Θ(uv − u)

τ−v2

)
−Θ(u− uc)

v

τ+v
, (1)

∂w

∂t
= Θ(uc − u)

1− w
τ−w

−Θ(u− uc)
w

τ+w
. (2)

The term for the ionic currents IIon (Eq. (3)) in the Fenton-Karma model has three contributions: the fast inward
current Jfi, the slow outward current Jso and the slow inward current Jsi. They are shown in Eqs. (4) - (6).

IIon(u, v, w) = −Jfi(u, v)− Jso(u)− Jsi(u,w), (3)

Jfi(u, v) = − v

τd
Θ(u− uc)(1− u)(u− uc), (4)

Jso(u) =
u

τ0
Θ(uc − u) +

1

τr
Θ(u− uc), (5)

Jsi(u,w) = − w

2τsi

(
1 + tanh

[
k(u− usic )

])
. (6)

PARAMETER SETS

Table I and Table II show the parameter sets used for
simulations using the Aliev-Panfilov model (AP) and the
Fenton-Karma model (FK1 and FK2), respectively.

TABLE I. Parameter set used for simulations with the Aliev-
Panfilov model: (AP).

Value [a.u.] Value [a.u.]
k 8 µ1 0.2
a 0.05 µ2 0.3
ε0 0.002

TABLE II. Two parameter sets used for the simulations with
the Fenton-Karma model: parameter set 1 (FK1) and pa-
rameter set 2 (FK2).

FK1 FK2 FK1 FK2
τv+ 13.03 3.33 τ0 12.5 12.5
τ−v1 19.6 15 τr 33.25 28
τ−v2 1250 2 τsi 29 29
τ+w 800 670 uc 0.13 0.13
τ−w 40 61 usi

c 0.85 0.45
τd 0.45 0.25 uv 0.04 0.05
Cm 1 1

THE INDUCTION OF CHAOTIC DYANMICS

Chaotic dynamics was induced in all simulations by
giving several local stimuli along the boundary of one
edge of the grid, synchronized with the wave tail of a
plane wave which propagates perpendicular to this edge.
Due to differences in the initial timing of these additional
pulses, distinct initial conditions were created. Due to
the chaotic nature of the dynamics (positive Lyapunov
exponents), initial conditions which were created by stim-
uli only separated by a small amount of time, separated
from each other exponentially fast. Figure 1 depicts
the course of such an induction process exemplary for a
simulation using the FK1 parameter set (Fenton-Karma
model).

THE DETECTION OF PHASE SINGULARITIES
AND FILAMENTS

Phase singularities and filaments were detected in all
simulations by first calculating the phase by a pointwise
Hilbert transformation. Phase singularities were then
identified, by performing a closed line integral (surface
integral in 3D) of the phase at every point of the simu-
lation domain. In 2D, this resulted in a certain number
of phase singularities, which can be associated with the
spiral waves. In three dimensional simulations, the cor-
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FIG. 1. Snapshots of the membrane potential variable u at
different instances of time during an exemplary induction pro-
cess using the Fenton-Karma model and parameter set FK1.
Initially, plane waves are induced at one edge of the tissue
((a), propagating from left to right). Local stimuli were then
given at the edge perpendicular to the propagation direction
of the initial plane wave (lower part in (b)). By the addi-
tional stimuli, spiral waves were created and additional wave
breakups lead to spatio-temporal chaos ((c) and (d)). Time
is given in spiral rotations (TSp).

responding objects which describe the core of a scroll
wave are one dimensional curve like filaments. In order
to merge related phase singularities to the corresponding
filament, they were identified with the same filament if
the euclidean distance was below 2×

√
2 grid points.

RESULTS CONCERNING THE IMPACT OF
NOISE ON THE LIFETIME OF CHAOTIC

TRANSIENTS

We also investigated the effect of noise and applied
gaussian white noise to the diffusive dynamical variable
of the systems. This was done by adding σWt to the evo-
lution equation of the membrane potential variable u at
every node of the domain. In Eq. (7), f(u) denotes the lo-
cal cell dynamics (Aliev-Panfilov model or Fenton-Karma
model, respectively), whereas σ is the noise amplitude
and Wt standard normal distributed random numbers.

∂u

∂t
= ∇ ·D∇u+ f(u) + σWt. (7)

If the noise amplitude is above a certain level, excita-
tion waves are generated because noise induced fluctua-
tions are strong enough to locally exceed the excitation
threshold. Hence, with a high noise amplitude, the sys-
tem does not terminate by itself anymore. Here, we want

to study how noise changes the spatio-temporal dynam-
ics without additional noise induced excitations, thus we
want to stay in a low noise amplitude regime, where noise
induced bursts of not excited tissue can be neglected. In
a first study, noise was added to not excited tissue (in all
three models) for a simulation time equivalent to 50.000
spiral rotations. For various noise amplitudes, the num-
ber of noise induced excitation spikes during this interval
was counted. Since a local spike causes a global excita-
tion wave, a spike was identified when the overall sum
of excitations of the whole tissue exceeded an excitation
threshold of ( 1

Lx×Ly

∑
i,j uij > 0.5). We found that in an

amplitude range of σ < 0.02 the abovementioned effect
of noise induced bursts is not present and does not affect
our investigations (Fig. 2(a)).

Figure 2(b) shows that noise can have different im-
pacts on the average transient lifetime: although the life-
time increases generally with increasing noise amplitude
in a low amplitude regime, the behavior is not necessar-
ily monotone. Also, noise affects the increase in lifetime
differently in each cell model or for each parameter set.
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FIG. 2. The impact of the addition of gaussian white noise to
the system. In subplot (a) the number of excitation spikes is
plotted depending on the noise amplitude σ for AP (2), FK1
(◦) and FK2 (.). Subplot (b) shows the impact of noise of
increasing amplitude σ on the average transient lifetime 〈T 〉
for AP (2), FK1 (◦) and FK2 (.)).

The addition of noise could be interpreted here as a
model for cell variability. Noise changes effectively the
propagation of phase singularities and has an influence
on the creation and annihilation of spiral waves, the main
governing mechanisms of the self termination of the dy-
namics. Furthermore in terms of the control of chaotic
transients, the result shows that the application of a
generic (thus not state specific) signal can not decrease
the average transient lifetime (at least in the used mod-
els and white noise). Concerning applications like car-
diac arrhythmias this means that finding such a generic
signal which leads to a significant reduction of transient
lifetimes, whereas letting the usual, desired dynamics un-
touched (ordinary pumping function), could be a relevant
and valuable objective in the future.



3

DETAILS DETERMINATION OF THE
LYAPUNOV SPECTRUM

The Lyapunov spectrum was determined in 2D simu-
lations (local cell parameters from FK1 with h = 1.0
and dt = 0.5), carrying along initially small but finite
perturbations, and extracting the local Lyapunov expo-
nents every 5 time units. The calculation was stopped
around 5 spiral rotations before self termination. This
analysis was done for various domain sizes. From 100
initial conditions, those with a transient longer than 30
spiral rotations were used in order to calculate the mean
Lyapunov exponents for each domain size respectively (in
order to make sure that the estimates of the Lyapunov
exponents converged sufficiently).

TIME SERIES OF EXEMPLARY QUANTITIES
BEFORE SELF TERMINATION

We found that self termination of the spatio-temporal
chaotic dynamics in the simulations comes abrupt rather
than being a continuous process which can be detected
already a long time before the actual collapse. As an
example, Fig. 3 shows time series of two quantities com-
monly used to describe the development of such a system
for an exemplary simulation using the FK1 model on a
two dimensional Lx×Ly = 100×100 domain. Figure 3(a)

depicts the pseudo ECG (Electrocardiogram) before the
self termination (around t ≈ 125 TSp), which was deter-
mined as the mean excitability integrated over the sim-
ulation domain (ECG ≈ 1

Lx×Ly

∑
i,j uij). The number

of phase singularities (thus, the number of spiral waves)
NPS is depicted in Fig. 3(b). Both quantities fluctuate
during the chaotic episode, but the upcoming collapse is
not obvious.
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FIG. 3. Pseudo ECG and the number of phase singulari-
ties NPS for an exemplary episode of spatio-temporal chaotic
dynamics using the FK1 on a two dimensional Lx × Ly =
100× 100 domain. The chaotic episode ends by self termina-
tion at around t ≈ 125 TSp.
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Figure B.1: Creation of an exemplary chaotic initial condition of simulations using the
Fenton-Karma model. Snapshots of the membrane potential variable u are shown at three
points in time. Stimuli along the left boundary of the simulation domain create a plane
wave propagating to the right boundary of the domain (a). Afterwards, local stimuli at the
lower boundary create spiral waves (b) and initiate spatio-temporal chaos which spreads
finally over the whole domain (c).

B.2 Supplemental Material 2: Terminal Transient Phase of
Chaotic Transients

B.2.1 Fenton-Karma Model

Creation of Chaos and Detection of Termination

Chaotic dynamics was induced by a cross pacing protocol. Initially, several local stimuli were
given along one edge of the two-dimensional simulation domain, resulting in plane waves
(Fig. B.1). Afterwards, stimuli along the edge perpendicular to the propagation direction of
the initial plane wave creates spiral waves which then govern the spatio-temporal dynamics.
With a different timing of the second stimuli, 3000 initial conditions were created.
Figure B.2 sketches the process in the two-dimensional simulations, showing snapshots of the
variable u of an exemplary initial condition using the Fenton-Karma model. The difference
in time between the snapshots is equivalent to half of a spiral period (TSp).
The collapse of the spatio-temporal dynamics was defined at that point in time when the
mean of the membrane potential (variable u, integrated over the domain) came below a
certain threshold 1

Nx×Ny

∑
i,j uij < 0.001).

For the determination of 〈T〉IC, the amount of time equal to 50 spiral rotations was discarded
at the beginning.

B.2.2 Bueno-Orovio-Cherry-Fenton Model

Creation of Chaos and Detection of Termination

The creation of the initial conditions was done with a cross pacing protocol, similarly to
simulations of the Fenton-Karma model (see previous section). The collapse of the chaotic
dynamics was determined by a drop of the overall mean of the membrane potential (u
variable) below a certain threshold 1

Nx×Ny

∑
i,j uij < 0.001. For the determination of 〈T〉IC,

the amount of time equal to 50 spiral rotations was discarded.
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Figure B.2: An exemplary episode of self-termination of spatio-temporal chaos governed
by spiral waves using the Fenton-Karma model. Snapshots of the membrane potential vari-
able u are shown at different instances of time. In subplot (a) at t1 many phase singularities
(marked by white circles) are present in the system (some phase singularities can not directly
be identified as the tips of spiral waves at this instant of time. However, taking the temporal
evolution into account, these phase singularities can be associated with e.g. the creation or
termination process of spiral waves, or represent very short-living spiral wavelets). At time
t2 (b) some of the phase singularities have already vanished. After another time span of
half a spiral period ((c), t3), only one double spiral wave has survived (marked by the two
white circles). Eventually the two arms of the spiral waves collide with each other ((d), t4),
annihilate and only plane waves are left over.

B.2.3 Morris-Lecar neuronal ring network

Parameters

The additional equations of the Morris-Lecar neuronal ring network are given by Eqs. (B.1) -
(B.6):
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Table B.1: The set of parameters used for simulations with the Morris-Lecar network.

Value Value Value

C 20 µF
cm2 I 30 µA

cm2 ϕ 1/15 Hz
gL 2 mS

cm2 gK 8 mS
cm2 gCa 4 mS

cm2

VK −80 mV VCa 120 mV VL −60 mV
V1 −1.2 mV V2 18 mV V3 14.95 mV
V4 17.4 mV

IL(Vi) = gL(Vi − VL), (B.1)

ICa(Vi) = gCamss(Vi − VCa), (B.2)

IK(Vi, ni) = gK n(Vi − VK), (B.3)

mss(Vi) = 1
2

1 + tanh
[
Vi − V1
V2

] , (B.4)

nss(Vi) = 1
2

1 + tanh
[
Vi − Vr
V4

] , (B.5)

τn(Vi) = 1
ϕ cosh

[
Vi−V3

2V4

] . (B.6)

Parameters

In Tab. B.1, the parameters used for simulations of the Morris-Lecar network are presented.

Creation of Chaos and Detection of Termination

Initially, the V variable was set to −40 mV, while n was set to 0. Chaotic dynamics was
initialized by setting V of ten randomly chosen neurons to −10 mV. In simulations of the
Morris-Lecar network, the chaotic dynamics did not only collapse to the rest state, but also
to a period pulsed state. In order to recognize if the chaotic dynamics has finished, we
defined the end of the chaotic dyanmics here when the mean membrane potential (variable
V ) was below a threshold of V thr = −39 mV for at least 1 s. For the determination of 〈T〉IC,
the amount of time equal to 1 s was discarded at the beginning.

B.2.4 Gray-Scott Model

The Gray-Scott model [92] is a simple system of partial differential equations which models
a chemical reaction of the species U, V and P: U +2V → 3V , V → P . It can exhibit diverse
irregular spatio-temporal patterns [138] and features of transient chaos have been studied by
Wackerbauer et al. [95]. The model equations describe the evolution of the concentrations
of the chemical species U and V (Eqs. (B.7) and (B.8)), where both variables are diffusive
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Figure B.3: A (transient) episode of spatio-temporal chaos using the Gray-Scott model.
Variable ai is plotted color coded for the final part of the episode, just before the self-
termination. The dynamics is mainly periodically (with a period of around 5-6 a.u.) in-
terrupted by areas of high concentration of ai. The white bar depicts the length of the
Terminal Transient Phase.

Table B.2: The set of parameters used for simulations of the Gray-Scott model.

Value [a.u.] Value [a.u.] Value [a.u.]
µ 33.7 Φ 2.8 b 0

(first terms, respectively).

∂ai
∂t

= D∆ai + 1− ai − µaib2i , (B.7)
∂bi
∂t

= D∆bi + b0 − Φbi + µaib
2
i . (B.8)

Our simulations were performed on a one-dimensional ring with N = 120 elements, using a
diffusion constant of D = 16, a spacing constant of h = 1 and a time constant of dt = 0.005,
where periodic boundary conditions were used. The parameters used for these simulations
can be found in Tab. B.2. An example of a chaotic episode and the following self-termination
of the dynamics is shown in Fig. B.3. A periodic dynamic can be observed (with a period
of around 5-6 a.u.) interrupted by areas of various sizes of a high concentration (e.g around
t = 4760) which after their appearance decrease in size and disappear.

Parameters

Table B.2 presents the parameters used for simulations using the Gray-Scott model.

Creation of Chaos and Detection of Termination

The one-dimensional simulation domain was initialized with a = 1 and b = 0. Chaotic
dynamics was then induced by setting the b variable at three blocks of each three nodes
to one. The three blocks had a minimal distance of 18 nodes. The collapse of the chaotic
dynamics was defined when the mean of the variable a, averaged over the whole simulation
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Figure B.4: The impact of the perturbations applied to typical trajectories is shown for
the Gray-Scott model. The snapshots of the first variable at the point in time when the
perturbations were applied are depicted as the black curve. A perturbation applied at a
specific position results in a new trajectory with its own transient lifetime. This lifetime
TPert corresponding to the position of the perturbation (of strength ∆ = 0.1) is shown as
the blue curve. In general, the transient lifetimes do not seem to show any correlation with
the structure of the state at which the perturbations were applied.

domain was above a threshold 1
N

∑
i ai > 0.99. For the determination of 〈T〉IC, the amount

of time equal to 500 time units was discarded.

Results

Episodes of spatio-temporal chaos simulated by the Gray-Scott model were investigated us-
ing small but finite perturbations. As we found in the other models of the main manuscript,
the lifetimes TPert which correspond to perturbed trajectories do not correlate to the actual
state (Fig. B.4).

Furthermore, also in the Gray-Scott model we can identify a finite TTP in the final phase,
before the self-termination. Figure B.5(a) depicts the analysis of a single trajectory. The
magnitude of the perturbation strength has a huge impact on 〈T〉Pert here.

The chemical concentration ai averaged over all nodes does not provide information about
the collapse of the dynamics (lower subplot in Fig. B.5(a)). In order to estimate the length of
the TTP, 〈T〉Pert was averaged over twenty different trajectories for each model (Fig B.5(b)),
resulting in an approximate TTPGS ≈ 60 a.u., which corresponds to approximately 10 peri-
ods of the characterizing patterns of the chaotic dynamic (additionally depicted in Fig. B.3
as the white bar in order to illustrate the length of the TTP corresponding to the actual
dynamics).

The underlying dynamics of the TTP can also be detected in the state space. Figure B.6
shows snapshots of the first variable (black curves in (a), (b) and (c)) at three points in
time (t1, t2 and t3) which correspond to the vertical black lines in Fig. B.5(a). In addition,
the lifetimes of the perturbed trajectories TPert are shown in blue. Comparably to the
previous results, clusters of nodes are visible, where perturbations can not prevent the
collapse anymore. These clusters grow in time (t1 < t2 < t3) until only perturbations at
specific nodes can prevent the system from the close collapse.
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Figure B.5: Temporal correlation of 〈T〉Pert and the self-termination for the Gray-Scott
model. In subplot (a), a single trajectory was chosen, which terminates at around t = 4927
a.u. (black arrow). 〈T〉Pert is plotted for various perturbation strengths (in color: [0.001,
0.01, 0.1, 1.00]). Varying perturbation strengths seem to have a huge impact on 〈T〉Pert.
The upcoming collapse is not visible in quantities like the mean (averaged over all nodes)
of the variable a (lower subplot of (a)). For a perturbation strength of ∆ = 0.1, 〈T〉Pert was
averaged over twenty trajectories ((b), time axis is normalized such that self-termination
occurs at t = 0), indicating a TTPGS ≈ 60 a.u. .

B.2.5 Tent Map

Creation of Chaos and Detection of Termination

The initial conditions were created by a homogeneous randomized distribution of values
between 0 and 1. Termination was defined, when x exceeded a critical value of xc = 1.0.

144



B.2. Supplemental Material 2

0.1

0.5

0.9
(a)

(b)

(c)

t1:

0.1

0.5

0.9

a
i
[a
.u
.]

t2:

10 30 50 70 90 110

i

0.1

0.5

0.9

t3:

0.0

0.5

1.0

×104

0.0

0.5

1.0

T
P
e
rt
(i
)
[a
.u
.]×104

0.0

0.5

1.0

×104

Figure B.6: Snapshots of the first variable of the Gray-Scott model (black) and the
lifetimes TPert(i) of trajectories which resulted of a perturbation at node i applied at the time
the snapshot was taken (blue) concerning the exemplary trajectory discussed in Fig. B.5(a).
The subplots (a), (b) and (c) correspond to three points in time t1, t2 and t3, respectively,
which are also marked by vertical black lines in Fig. B.5(a). Regions where perturbations
can not change the average lifetime significantly (with respect to the original, unperturbed
trajectory) grow in time.

B.2.6 Hénon Map

Creation of Chaos and Detection of Termination

The initial conditions (x0, y0) were created by a homogeneous randomized distribution on
the two-dimensional domain −3 < x < 3 and −3 < y < 3. As stated in the main text,
trajectories which leave the chaotic regime run through specific regions in the state space.
After passing a small domain around (x, y) ≈ (−1.91, 1.8) (Fig. 3.16(d)(iii)), the trajectories
diverge to negative infinity (Fig. 3.16(d)(iv)). Thus, the range in time when trajectories
terminated could in a first step be identified, when they pass the mentioned regions in state
space. The exact definition of the point of termination was then chosen as the beginning of
the divergence to negative infinity (one step after passing (x, y) ≈ (−1.91, 1.8)).
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B.3 Supplemental Material 3: Complexity Fluctuations dur-
ing Ventricular Fibrillation

B.3.1 3D Simulations

There are many different cell models from two up to more than thirty dynamical variables.
The latter ones aim at describing the cell dynamics on a more realistic electrophysiological
level, but are far more computationally demanding. For the 3D simulations we use the
three-variable simplified model (3V-SIM, also known as Fenton-Karma model) [26] since this
model already provides the dominant features which are relevant for our scientific objectives
like wave break-up and spiral wave meandering which lead to creation and annihilation of
spiral or scroll waves.

Fenton-Karma Model

These PDEs (partial differential equations) were solved using an explicit Euler scheme on
a regular grid with the grid size (Nx, Ny, Nz) = (151, 165, 130). A spacing of hx = hy =
hz = 2.0 and dt = 0.1 were used. In general the diffusion constant D in Eq. 3.10 is
a spatially dependent second-order tensor since conductivity depends on the local fiber
direction. However, we used a homogeneous and isotropic diffusion, thus D = D = 0.9.
The diffusive part of the PDEs was solved using a 27 point Laplace stencil.
Although the Fenton-Karma model is a relatively simple cell model, different choices of
the thirteen parameters of the model already provide a variety of dynamics (e.g. diverse
action potentials, wave breakup mechanisms or spiral tip trajectories) [74]. The choice of
parameters shows an alternans induced wave breakup far from the tip and a meandering
spiral tip (Tab. A.4).

Domain

It was shown, that the topology of the simulation domain may be essential for the filament
dynamics [139]. Length scales like the wave length of a spiral wave or wall thicknesses
and their interaction may play an important role concerning the lifetime, production and
annihilation rate of filaments. We simulated the electrical wave propagation on a realistic
rabbit heart geometry obtained from a CT (Computed Tomography) scan of an animal used
in experiments, where only the ventricles were used. Thus, 1.2 million of the 3.2 million
voxel of the whole rectangular grid belong effectively to cardiac tissue.
The phase field method yields no-flux boundaries at the irregular boundaries between the
cardiac tissue and the surrounding bath or the ventricles[79]. This approach was already
used in the same context before [80].

Protocol

The sinus rhythm was simulated by giving local stimuli at the apex of the rabbit heart
geometry. VF was induced by giving a far field shock in the proper phase of the sinus
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Figure B.7: Exemplary position of the ECG electrode (red star).

Figure B.8: Exemplary position of the ECG electrode (red star) (view from top on the
basis of the heart). The offset of the angle ϕ was chosen arbitrarily.

wave, which leads to symmetry breaking and the creation of scroll waves. Due to different
timings of the induction shocks, we created 14 different initial conditions, thus 14 episodes
of persistent VF. Local sinus rhythm stimuli were continued during VF.

Electrode Position

In the third part of the results section, the impact of the electrode position on the measured
pseudo ECG was investigated. For this purpose, electrodes were positioned midventricular
around 4 cm away from the epicardium (red star as an exemplary position of the ECG
electrode in Fig. B.7). The position of the electrode followed then a circular orbit around
the heart (dotted line in Fig. B.8 marks the ”orbit” of ECG positions), where the angle ϕ
provides the observation angle of the respective electrode.

Filament and Phase Singularity Tracking in Numerical Simulations

In 3D simulations the organizing centers of the scroll waves, the filaments, where determined
via first calculating the pointwise Hilbert transform and subsequent identification of phase
singularities by a line integral. Adjacent phase singularities are in a next step identified as
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filaments.

B.3.2 2D Simulations

2D Fenton-Karma

The two dimensional Fenton-Karma simulations were performed using the same parameters
as in 3D (Tab. A.4) and a nine point Laplace stencil. A grid size of (Nx, Ny) = (400, 400)
grid points and a grid spacing of hx = hy = 1.0 with no-flux boundary conditions have
been used. All other parameters were the same as in 3D. A single spiral wave was initialized,
which induces a chaotic state by wave breakup. A transient period in the beginning of the
simulation has been discarded.

Luo-Rudy Model

In addition to the Fenton-Karma model, simulations were performed using the phase I of
the Luo-Rudy action potential (LR I) model [111]. The aim was to observe and investigate
the described phenomena with a more realistic approach from the electrophysiological point
of view, keeping still a reasonable level of computational load.
In the LR I model the ionic term introduced in Eq. 3.10 is described by six ionic currents,
i.e.

Iion(Vm,h) =− INa(Vm,m, h, j)− ICa(Vm, d, f)

− IK(Vm, X,Xi)− IK1(Vm)

− IKp(Vm)− Ib(Vm)

(B.9)

where INa is the fast sodium current, Isi the slow inward calcium current, IK the time-
dependent potassium current, IK1 the time-independent potassium current, IKp the plateau
potassium current and Ib the background current. The gating variables h express the
probability for ionic channels to be open or closed depending on membrane voltage Vm and
are the solutions of the system of nonlinear ordinary differential equations (ODE) introduced
by Eq. 3.11. The diffusion tensor, D, introduced in Eq. (3.10) is considered to be constant
and scalar and set to 0.001 cm2/s. Other parameters are the same as in the original LR I
model. Further details on the equations describing the evolution of the currents and the
gating variables are reported in [111]. The simulations were implemented in a 10 cm× 10 cm
sheet of myocardial tissue. No-flux boundary conditions were imposed, with a fixed spacing
of hx = hy = 0.025 cm (resulting in a grid size of (Nx, Ny) = (400, 400) grid points) and
dt = 0.0025 ms for the diffusive part and dt = 0.01 ms for the local model. Diffusion was
performed as in the 2D Fenton-Karma model using a nine point Laplace stencil.
Since the unmodified ventricular model was used, it was not possible to obtain maintained
spiral wave breakup and meandering, as it was already reported in literature for many other
simulations using standard models [140, 141, 142, 143, 144, 145]. Therefore, maintenance
of reentrant electrical activity was achieved by introducing heterogeneities in the tissue.
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Figure B.9: Snapshots taken from the two dimensional simulations. (a) and (b) show
exemplary snapshots of simulations using the Fenton-Karma model : (a) at time step 175
the system is in a less complex state than in (b) at time step 725. (c) and (d) show
snapshots from simulations using the Luo-Rudy action potential model: a “laminar” phase
(c) at time 2.8 s and a “complex” phase (d) at time 3.75 s.

In particular, the myocardium was supposed to be affected by acute ischemia and the
LR I model was modified accordingly. Ischemic heterogeneities were modelled as regions
with reduced conduction properties: conditions of hyperkalemia and acidosis arising at
the cellular level were taken into account. In this perspective, the extracellular potassium
concentration, [K+]o, was increased from 5.4 to 14 mmol/L [146]; acidosis exerted its effects
on the sodium and L-type calcium channel specific conductances, gNa and gCa (both chosen
according to [111]) and were reduced by 25% [147]. Two ischemic heterogeneities having a
radius of 0.75 cm and 1.25 cm played the role of obstacles to wave propagation.
The tissue was periodically and locally paced in the left hand row of elements of the sheet.
The interval between pulses was held constant and set to 120 ms. Stimuli were current pulses
of 2 ms duration and 300 µAcm−2 amplitude, delivered for 2 s. Afterwards, the dynamics of
the system evolved without any further stimulation until the end of the simulation (12 s).

Camera and ECG

For the third part of the results section, two four-electrode custom-built ECGs were used to
obtain position dependent ECG time series. In this ex-vivo setup for rabbit hearts, the eight
electrodes were arranged approximately equidistant and midventricular around the heart.
The four electrodes of each ECG are used to build a Wilson’s central terminal which is then
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Figure B.10: This sketch shows the experimental setup of ex-vivo experiments. The four
cameras used to obtain to obtain the excitation patterns on the surface (optical mapping)
are shown, in addition to the position of the eight ECG electrodes (blue dots). “RV” and
“LV” denote the right and left ventricle of the heart, respectively.

used as a reference. In the last part the optical mapping approach was used to obtain the
electrical excitation patterns on the surface of the heart. For this purpose four cameras
where used. Figure B.10 shows the arrangement of the eight ECG electrodes (blue dots)
and the four cameras.

B.3.3 Complexity Measures

The complexity of the system (both in experiments and numerical simulations) was inves-
tigated in two ways: the complexity of the ECG was quantified by using the permutation
entropy, whereas the spatio-temporal dynamical state (of data from numerical simulations
and experimental optical mapping) was analyzed by determining the phase singularities or
the filaments of the system, respectively. Details about the calculation procedure can be
found in this section.

Permutation Entropy

Starting from a time series x1, x2, . . . , xN of length N a series of words of length D is
extracted: wi = {xi, xi+1, . . . , xi+D−1} =

{
wi,1, wi,2 . . .

}
. A symbol number is then assigned

to each word which uniquely identifies the relative ordering of its constituting values. The
symbol number is computed using the permutation index which is based on a number system
with factorial base:
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ŵi =
D−1∑
j=1

(D − j)!λj (B.10)

λj =
D∑

k=j+1

 1 if wj < wk

0 else
(B.11)

This leads to a series of integer numbers ŵi ∈
{
0 ≤ κj ≤ D!− 1

}
. From this series the

relative frequencies p
(
κj
)

of the order pattern can be computed which are then used in the
calculation of the permutation entropy:

H = −
D!−1∑
i=0

p (κi) log2 p
(
κj
)

(B.12)

In order to be able to operate on different timescales we use a time delay L for the construc-
tion of the words which leads to the slightly modified formula: wi =

{
xi, xi+L, . . . , xi+L(D−1)

}
.

The permutation indices are then calculated accordingly.

For our analysis we use a windowed version of the PE (window size of 0.5 s in experiments
and 250 frames in numerical simulations). That means that instead of calculating the PE
once for the whole length of the signal, we use successive overlapping windows of length
M < N , calculate the PE Hm as described above for each window m and create a time
series out of Hm values which is displayed in the results section. For the calculation, a
pattern length of 4 frames and a lag of 4 ms has been used. These parameters have been
selected based on previous investigations [148].

Phase Synchronization Index

The phase synchronization index (also called Phase Locking Index [149]) is used to measure
the level of synchronization of the electrical patterns on the surface of the heart. For this
purpose, the signal (obtained from the optical mapping technique) was extracted at several
points on the surface of the heart (see Fig. B.11).

The raw camera signal at these points is filtered using a bandpass filter (0.2 Hz - 30 Hz),
Gaussian smoothing and a point wise normalization. The phase θi of the extracted time
series (at point i) is then determined by detecting action potential upstrokes and interpolat-
ing between them from 0 to 2π. The phase synchronization index between two points based
on a time window with the window length LWin = 0.5 s (same window size as used for the
calculation of the PE) is then given by Eq. B.13, where the phase difference is averaged over
the whole time window. The final phase synchronization index is averaged over all pairs
(Eq. B.14).
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Figure B.11: The distribution of points, used for the calculation of the Phase Synchroniza-
tion Index. The four parts of the plot show the calculated phase distribution (color coded)
based on the data from optical mapping obtained by the four cameras. Blue dots indicate
the locations, from where the calculated phase was taken into account for the determination
of the PSI.

PSIi,j =
∣∣∣∣ 1
LWin

〈
ei(θi(t)−θj(t))

〉
Win

∣∣∣∣ , (B.13)

PSI =
〈

PSIi,j
〉

pairs
. (B.14)

B.3.4 Results of ECG Fluctuations in Human and Pig hearts

In order to demonstrate that complexity fluctuations of the ECG during VF is not a phe-
nomenon specific to the species of rabbits, we show in Figs. B.12 and B.13, respectively,
excerpts of human (taken from the sudden cardiac death holter database from Physionet
[150, 151]) and pig VF episodes along with its permutation entropy. The window size is
the same as in the examples for the VF episode of rabbit. Due to a lower sampling rate of
250 Hz for the human ECG time series instead of 500 Hz for the animal experiments, some
binning artifacts become visible in Fig. B.12, but the difference between the low complexity
and high complexity periods are clearly visible in both examples.

Human ECG

Pig Experiments ECG

The heart of a Göttingen minipig (48.6 kg) was used. An equivalent sacrifice and heart
extraction procedure was used as for the rabbit heart (500 IU kg) heparin, deep anaesthesia
with pentobarbital, 1 mmol/kg KCl and 400 ml high-potassium cardioplegia solution).
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Figure B.12: ECG (a) and PE (b) for a VF episode of human (ECG taken from Phy-
sionet [151]). The shaded rectangle visualizes an exemplary time window from which the
corresponding PE is calculated (green line in (b)).

A myocardial infarction (MI) [152] was induced in the pig by an occlusion of the second
branch of the left anterior descending artery (LAD) as described previously [153] approxi-
mately one hour before euthanasia. Figure B.13 shows, that the phenomenon of complexity
fluctuations in the ECG also occurs in diseased hearts with MI.
Figure B.13 shows a typical ECG time series (a) and the corresponding PE (b).

B.3.5 Results 2D Simulations

In addition to the three dimensional simulations in a realistic geometry, simulations on two
dimensional rectangular grids have been performed. The local cell dynamics was modeled
by the Fenton-Karma and the Luo-Rudy model [111]. The number of phase singularities
NPS was used as a measure for the spatio-temporal complexity. We determined the pseudo
ECGVol by the mean value of the overall excitation of the cells (Eq. 2.76). As in the three
dimensional case, PE was calculated based on this pseudo ECG.

Fenton-Karma Model

In two dimensional simulations using the Fenton-Karma model, the volumetric ECGVol

again exhibits regular and irregular phases, which are quantified using PE (Fig. B.14a
and b). Additionally, the number of phase singularities NPS changed during the episode
(Fig. B.14c). Exemplary snapshots for a “laminar” (time step: 175) and a “complex” phase
(time step: 725) are given in Fig. B.9a and b, respectively. During this episode the cross
correlation between PE and NPS was C = 0.57 (both plotted in Fig. B.14b).

Luo-Rudy Model

In order to show that the discussed correlation between fluctuations in the spatio-temporal
state and the PE applied to the ECG is also visible in more sophisticated ionic cell models,
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Figure B.13: ECG (see Fig. 3.19) recorded by the attached ECG electrode (see Fig. 3.19)
(a) and PE (b) for a VF episode of a pig. The shaded rectangle visualizes an exemplary
time window from which the corresponding PE is calculated (green line in (b)).

two dimensional simulations were performed using the Luo-Rudy model [111]. Figure B.15
shows the volumetric ECGVol (Fig. B.15a), the calculated PE (black curve in Fig. B.15b)
and the number of phase singularities (black curve in Fig. B.15c). The smoothed version of
NPS (red curve in Fig. B.15c) was then replotted in Fig. B.15b as the red dotted line. The
cross correlation between PE and NPS in this episode is C = 0.36.
This analysis shows, that also in two dimensional simulations, the spatio-temporal complex-
ity is visible in the ECG like signal and can be revealed by applying PE.
One interesting fact in this case is, that although the laminar phase can be identified in the
PE time series in (b), it is very difficult to see it in the ECGVol in (a) based on amplitude
fluctuations. This is a hint that PE might be a more robust measure for quantifying ECG
complexity fluctuations than mere amplitude fluctuations.

155



Appendix B. Supplemental Material

0.0

0.2

0.4

0.6

0.8

E
C

G
V

o
l 
[a

.u
.]

a)

b)

c)
2.0

2.5

3.0

P
E

 [
b

it
]

0 500 1000 1500 2000 2500 3000
Time [frame]

0

10

20

30

N
P

S

Laminar Complex
0

5

10

15

20

N
P

S

Figure B.14: Investigation of the two dimensional simulation using the Fenton-Karma
model. Snapshots of the excitation pattern of a “laminar” phase at time step 175 and a
“complex” phase at time step 725 (both marked by blue dotted lines in (b) and (c)) are shown
in Fig B.9a) and b), respectively. The ECGVol and PE are plotted in (a) and (b) (black
curve), respectively. In addition, the number of phase singularities NPS was determined
and plotted in (c) (black line). The smoothed signal of NPS (red curve in (c)) is replotted
in (b)(red dotted line).
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Figure B.15: This figure shows the investigation of a two dimensional simulation using
the Luo-Rudy model. Snapshots of the excitation pattern of a “laminar” phase at 2.8 s and
a “complex” phase at 3.75 s (both marked by blue dotted lines in (b) and (c)) are shown in
Fig B.9c) and d), respectively. The ECGVol and PE is plotted in (a) and (b) (black curve),
respectively. In addition, the number of phase singularities NPS was determined and plotted
in (c) (black line). The smoothed signal of NPS (red curve in (c)) is replotted in (b) as a
red dotted line.
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