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ABSTRACT 

Electrowetting on dielectrics (EWOD) is an electrically controllable wetting effect, that has 

been applied in diverse fields including optics, displays and lab on a chip systems. However, 

the further development of EWOD applications and the online electrical characterization of 

EWOD are hindered by one major bottleneck, the need for high operating voltages. Due to the 

importance of overcoming this critical obstacle and better understanding the EWOD effect, a 

low-voltage EWOD electrode was developed in this thesis. It is based on a dielectric bilayer 

consisting of an anodic tantalum pentoxide (Ta2O5) thin film with a high relative permittivity 

and a self-assembled hydrophobic silane monolayer. By means of this novel EWOD electrode, 

low-voltage EWOD was achieved. It shows a low voltage threshold of 2 V that enabled the 

integration of EWOD with electrical impedance spectroscopy (EIS). A further association with 

a high-speed imaging instrument facilitated the simultaneous EWOD excitation, optical 

imaging and impedimetric measurement using either frequency-domain EIS or dynamic EIS. 

This paved the way to online investigate the frequency dependence of EWOD on the 

application of alternating voltages as well as the non-linearity and dynamics of EWOD and 

dewetting. The EWOD configuration is an aqueous electrolyte droplet of µL volume on the 

low-voltage EWOD electrode in oil as the ambient medium. Between the droplet and the 

electrode, an oil layer of nm thickness is entrapped. Its thickness was determined during 

EWOD and dewetting. The frequency dependence of EWOD was studied with the focus on 

the Young-Lippmann equation, the fundamental equation of electrowetting theory, and its 

adaptions to account for the application of alternating voltages. The frequency dependence of 

the three EWOD-related variables in the equation was studied at various measurement 

conditions (applied voltage and salt concentration). The EWOD efficiency on the application 

of alternating voltages was assessed by a correlation coefficient introduced in the equation. 

Moreover, the non-linearity of EWOD and dewetting was characterized by the hysteresis in 

the deformation of the droplet and that of the entrapped oil layer. The characteristic time for 

the droplet deformation was determined to evaluate the dynamics of EWOD and dewetting. 

For the first time, both non-linearity and dynamics of EWOD and dewetting on the novel low-

voltage EWOD electrode were studied with dynamic EIS with the focus on the conversion 

efficiency of the electric potential energy in the deformation processes. 
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ZUSAMMENFASSUNG 

Die Elektrobenetzung auf Dielektrika („Electrowetting On Dielectrics“ – EWOD) ist ein 

elektrisch steuerbarer Benetzungseffekt, der seine Anwendung in verschiedenen Gebieten 

findet, von Optik, über Bildschirme bis hin zu Lab-on-a-Chip-Systemen. Allerdings werden die 

Weiterentwicklung der EWOD-basierten Anwendungen und die elektrische Online-

Untersuchungen der EWOD deutlich erschwert, weil hohe Betriebsspannungen für die EWOD 

notwendig sind. Aufgrund der Bedeutung der Überwindung der hohen Betriebsspannungen 

und des besseren Verständnisses des EWOD-Effektes wurde im Rahmen dieser Arbeit eine 

Niedrigspannungs-EWOD-Elektrode entwickelt. Sie basiert auf einer dielektrischen 

Doppelschicht aus einer anodischen Tantalpentoxid – (Ta2O5) – Dünnschicht mit einer hohen 

Dielektrizitätskonstante und einer selbst-assemblierten hydrophoben Silan-Monoschicht. 

Diese neuartige EWOD-Elektrode ist als Niedrigspannungs-Elektrode geeignet. Sie weist eine 

niedrige Schwellenspannung von 2 V auf, die ermöglichte, den EWOD-Effekt mit elektrischer 

Impedanzspektroskopie (EIS) zu kombinieren. Die Verbindung mit einem bildgebenden 

Instrument mit einer hohen Aufnahmegeschwindigkeit ermöglichte die zeitgleiche 

Durchführung verschiedener Prozesse: EWOD-Anregung, optischer Bildaufnahme und 

Impedanzmessung mittels EIS bei Frequenzvariation oder dynamischer EIS. Damit war es 

möglich, eine Online-Untersuchung der Frequenzabhängigkeit der EWOD bei Anwendung 

von Wechselspannungen sowie der Nichtlinearität und Dynamik der Elektrobe- und 

Entnetzung durchzuführen. Die EWOD-Anordnung besteht aus einem wässrigen 

Elektrolyttropfen in einem Volumen von µL auf der Elektrode in Öl als Umgebungsmedium. 

Zwischen dem Tropfen und der Elektrode ist eine Ölschicht in einer Dicke von nm 

eingeschlossen. Deren Schichtdicke wurde während der Elektrobe- und Entnetzung bestimmt. 

Die Frequenzabhängigkeit der EWOD wurde mit dem Fokus auf der Young-Lippmann-

Gleichung, der grundlegenden Gleichung in der Theorie der Elektrobenetzung, und deren 

Anpassungen an Wechselspannungsanwendungen untersucht. Die Frequenzabhängigkeit 

der drei EWOD-relevanten Variablen in der Gleichung wurde unter verschiedenen 

Messbedingungen (angewendete Spannung und Salzkonzentration) untersucht. Die EWOD-

Effizienz bei den Wechselspannungsanwendungen wurde anhand eines in die Gleichung 

eingeführten Korrelationskoeffizienten ausgewertet. Zudem wurde die Nichtlinearität der 

Elektrobe- und Entnetzung durch die Hysteresen in der Verformung des Tropfens und der 

eingeschlossenen Ölschicht charakterisiert. Die charakteristische Zeitkonstante der 

Tropfenverformung wurde ermittelt, um die Dynamik der Elektrobe- und Entnetzung zu 

evaluieren. Zum ersten Mal wurden sowohl die Nichtlinearität als auch die Dynamik der 

Elektrobe- und Entnetzung der neuartigen EWOD-Elektrode mittels dynamischer EIS mit dem 

Schwerpunkt auf dem Umwandlungswirkungsgrad der elektrischen Potentialenergie in den 

Verformungs-prozessen untersucht. 
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1. INTRODUCTION 

Wetting and dewetting are important and often encountered phenomena in nature and our 

daily life. Wetting is the spreading of a liquid on a solid surface and dewetting is the retraction 

of a fluid from a solid surface. Electrowetting, a voltage-dependent wetting effect, is the key 

subject of this doctoral research. In this opening section, the key development and applications 

of electrowetting are presented (Chapter 1.1) and followed by the motivation (Chapter 1.2) and 

the scope of this thesis (Chapter 1.3). 

1.1. Wetting, Dewetting and Electrowetting 

The “dew-collecting” Namib Desert beetles1-2 and the “self-cleaning” lotus leaves3-4 are the 

masterpieces of wetting and dewetting effect created by nature. In our daily life, wetting and 

dewetting of liquids on solid surfaces are phenomena of key importance as well. In inkjet 

printing5, painting and cosmetics, wetting or spreading play an essential role; while dewetting 

and non-wetting are important in the dewatering from motorways, self-cleaning windows6 and 

anti-fouling paints7. 

In these cases, the wetting and the dewetting effect are mainly determined by the surface 

chemistry and / or the surface topology. An alternative strategy to actively control and change 

the surface wettability is by applying electrical energy, known as electrowetting and further as 

electrowetting on dielectric (EWOD)8.  

The foundation of electrowetting was laid by Lippmann9 in 1875 with his elucidation of 

electrocapillary effect. In 1993, Berge8 set another milestone with the introduction of 

electrowetting on dielectric (EWOD). In this modern concept, an aqueous liquid drop is placed 

on an electrode with a thin hydrophobic insulating coating; by applying a voltage across the 

insulating layer, electric potential energy gets stored in the insulating layer and makes the 

surface more easily wettable by a liquid drop. 

EWOD is an interdisciplinary subject, where chemistry, physics and engineering meet and 

merge. EWOD behavior can be designed and programmed by means of multidisciplinary 

approaches, such as surface chemistry and interfacial interactions10, fluid hydrodynamics11, 

electrical stimuli and electrode architectures12-13.  

The advantageous feature of being dynamic has opened a wide and diverse application field 

for EWOD, which has covered optics, displays and laboratory miniaturizations14. 

The electrical control of drop shape parameters, such as curvature radius and wetting area, 

have led to EWOD finding application in liquid lenses15-16 with adjustable focus length and in 

electronic paper17-18 with inked droplets as individually addressable pixels.  
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Moreover, the electrically driven deformation and translocation of droplets in microliter or 

nanoliter sizes have made EWOD the key foundation for the digital microfluidics14, 19 with 

droplets as containers for reagents and samples being dispensed, moved, mixed, merged, and 

divided20-22. This technique leads to diverse lab-on-a-chip microsystems23-24 in food-related or 

medical analytics. 

 

1.2. Motivation 

The EWOD-based applications face challenging bottlenecks in their development. One critical 

obstacle is the high operating voltages25. DC voltages about 25 V or alternating voltages 

around 50 V are required at least21, 23, 26.  

This high voltage demand is responsible for diverse drawbacks: 

• It demands complicated electronics, materials with high electrical breakdown strength27 

and thus results in high costs. 

• High voltages can induce several side effects, such as irreversible electrowetting28, 

Ohmic warming and even electrolysis29. 

• The need for high voltages is a hurdle for combining EWOD and electrical analysis 

techniques. Commercial electroanalytical equipment and most electronic components 

generally have a lower operating voltage limit than 25 VDC or 50 VAC. The typical voltage 

range of potentiostats is around ± 10 V. The power supply for operational amplifiers is 

normally within ± 15 V. 

• The high voltage application raises signal-output-errors in electrical measurements due 

to limited slew rate and driving capability30. 

These high-voltage-related drawbacks hinder the EWOD effect from being thoroughly 

investigated by online electrical analysis. Furthermore, they are the limiting factors for 

combining EWOD actuation and electrical or electrochemical detection in developing 

integrated actuator – sensor systems. 

The motivation to overcome these drawbacks and to better understand the EWOD effect has 

led to the main aims of this thesis: 

• develop an approach to the low-voltage EWOD that facilitates the integration of EWOD 

with electrical impedance spectroscopy (EIS) 

• investigate EWOD online with a focus on its frequency dependence in alternating 

voltage applications  

• study the dynamics and non-linearity of EWOD and dewetting. 
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EIS31-32 is a non-invasive and widely used electrical analysis method. For this research, 

frequency-domain EIS is very suitable for investigating the frequency dependence of EWOD 

on application of alternating voltages. The high time resolution of dynamic EIS makes it an 

ideal measurement method for studying the dynamic and non-linear behavior of EWOD and 

dewetting. 

Concerning EWOD applications using alternating voltages, the influence of frequency on 

EWOD has not yet been thoroughly studied. This is of key importance, since alternating 

voltages are more commonly applied than direct voltages especially in the digital microfluidic 

platforms14, 33, where EWOD-based actuators are integrated as key components. Moreover, 

using alternating voltages can greatly benefit EWOD since the voltage alternation can reduce 

the contact angle hysteresis and can thus ease the droplet motion and further enhance the 

EWOD effect.34 

The dynamic behavior of EWOD and dewetting directly affects the actuation rate, which is a 

key performance feature of almost all EWOD applications in optics, displays and lab-on-a-chip 

systems14. The typical assessment of dynamics involves merely the optical detection of droplet 

deformation or translocation26. However, the dynamic behavior has not been studied with a 

further respect to the change of the electrical potential energy stored in the dielectric layer, 

which originates the EWOD and the dewetting. This is highly important to understand the 

dynamics and non-linearity of EWOD and the dewetting. 

 

1.3. Scope of the Thesis 

First, a low-voltage EWOD-EIS system was developed to fulfill the aims of the thesis. The 

centerpiece of the developed system was a novel EWOD electrode that was specially designed 

to require low voltages for inducing EWOD effect. In the low-voltage EWOD electrode, a 

dielectric bilayer coating was optimized according to the Young-Lippmann equation, the basis 

of the electrowetting theory. The dielectric bilayer was fabricated with the appropriately 

selected materials, tantalum pentoxide and silane, by electrochemical oxidation and by self-

assembled monolayer deposition respectively. 

With respect to the common EWOD applications in a surrounding oil35, the EWOD system in 

this study was configured as an aqueous µL-droplet on the EWOD electrode in oil. Between 

the droplet and the electrode, a thin oil layer was entrapped as a fluid dielectric layer36, which 

is deformable during electrowetting. This oil layer and the two solid dielectric layers in the 

electrode formed a multilayer dielectric stack (MDS). Diverse surface, layer and material 

properties of each dielectric layer were characterized using atomic force microscopy (AFM), 

ellipsometry, contact angle measurements, cyclic voltammetry (CV) and EIS. The 

experimentally not easily accessible key parameters, such as relative permittivity and oil layer 

thickness in the nanometer range were indirectly determined via physical correlations. 
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The low-voltage EWOD electrode was integrated in a low-voltage EWOD-EIS (LV-EWOD-EIS) 

system with associated high-speed optical imaging instrument in a modular setup. It enabled 

the online EWOD investigation with simultaneous EWOD excitation, EIS measurement and 

optical detection. For the EIS analysis, the object under study was described electrically using 

an equivalent circuit model and compared with a low-pass filter from electrical engineering. 

Second, the study focused on the frequency dependence of EWOD, the efficiency of EWOD 

on application of alternating voltages. The EWOD excitation was integrated with frequency-

domain EIS by using a single sinusoidal voltage signal with varied frequency and voltage. For 

droplets with salt concentrations in the physiologically relevant range, the frequency influence 

on the EWOD effect was characterized by using three EWOD-related variables in the Young-

Lippmann equation as indicators. They were simultaneously determined during electrowetting 

from its impedimetric response recorded by the LV-EWOD-EIS system and from the droplet 

deformation traced by high-speed imaging. The basic Young-Lippmann equation was adapted 

for alternating voltage by specifying the effective voltage drop across the MDS and by 

introducing a correlation coefficient that serves as an assessment parameter for the EWOD 

efficiency.  

Third, the non-linearity and the dynamics of EWOD and dewetting were studied with the focus 

on the origin of the EWOD effect, the electric potential energy stored in MDS per unit area. As 

a determining factor of the electrical potential energy, the MDS-capacitance, was determined 

by dynamic EIS using a staircase voltage signal integrated with square wave function. Using 

this signal with an ascending and a descending ramp, EWOD and dewetting were induced 

correspondingly. The non-linearity was characterized by the voltage threshold of EWOD and 

the hysteresis behavior between EWOD and dewetting. These features were analyzed on the 

deformation of the droplet and that of the oil layer between the droplet and electrode. The 

dynamic behaviour was investigated by determining the characteristic time of the droplet 

geometry change at each voltage jump in the staircase signal. The change of the droplet 

geometry, that is, its contact angle and contact area, was traced by high-speed imaging in 

parallel to dynamic EIS at high time resolution. The electrical energy conversion in the 

deformation of droplet and oil layer was assessed with respect to the possible dissipation. 
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2. PRINCIPLES AND CONCEPTS 

2.1. EWOD and EIS 

In this section, Chapter 2.1.1 focuses on the understanding of EWOD (electrowetting on 

dielectric) effect with a view of its theoretical principles. Chapter 2.1.2 is devoted to the 

principles of EIS (electrical impedance spectroscopy) and the integration of EWOD with 

frequency-domain EIS and with dynamic EIS. 

2.1.1. Electrowetting on Dielectric (EWOD) 

The phenomenon of interest, EWOD, is a wetting effect induced by electrical energy.35, 37 This 

means, the spreading of a liquid on a solid insulator surface in a fluid surrounding (air or 

immiscible liquid) can be enhanced electrically. A general EWOD system (Figure 2.1 a) 

consists of a conductive liquid droplet partially wetting a planar dielectric or insulating solid 

layer. The droplet and the solid layer are connected to a power supply. By applying a voltage 

(Figure 2.1 b), electrical energy causes the droplet to further spread on the solid surface. The 

change of the wetting state can be observed as the enlargement of the liquid-solid contact 

area and as the reduction of the contact angle from �� to �� on the intersection of the solid-

liquid interface and the liquid-ambient medium interface. 

 

Figure 2.1. Electrowetting on dielectric (EWOD) effect demonstrated by a conductive droplet 
(dark blue) resting on a dielectric solid layer (bright blue) associated with an electrode layer 
(yellow) on a substrate (gray). (a) Under zero voltage: resting or dewetted state of the droplet 

with the static contact angle, ��.  (b) Under voltage: wetting state of the droplet with the voltage-

dependent contact angle, ��.  

In a reversible EWOD process, dewetting occurs upon switching off the supply voltage: the 

spread liquid contracts and dewets the solid surface with the contact angle increase and the 

contact area reduction. Ideally, the liquid returns to its resting state with the contact angle �� 

and the initial contact area from Figure 2.1 (b) to (a). 

 

 

 

 

��
U ≠0 V

(a) (b)

��
U = 0 V
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2.1.1.1. Young’s Equation 

Without voltage application, the EWOD system is in a thermodynamic equilibrium state 

(Figure 2.2) with three interfacial tensions balanced on the contact line, the triple phase 

intersection. 

 

Figure 2.2. Equilibrium state of the three interfacial tensions on the triple-phase contact line. �: Static contact angle. ���: Solid-fluid interfacial tension. ���: Solid-liquid interfacial tension. ���: Liquid-fluid interfacial tension. 

This balance results in the droplet contact angle (��) and can be described with the Young’s 

equation38: 

	
��� = ��� − ������  2.1 

with the solid-fluid interfacial tension (���), the solid-liquid interfacial tension (���) and the liquid-

fluid interfacial tension (���). The interfacial tension is defined as the Gibbs free energy change 

upon the contact area change at constant temperature, pressure and without material 

exchange with the exterior.39-41 

Young’s equation is derived under the thermodynamic equilibrium condition, that the change 

of the Gibbs free energy equals zero. A detailed derivation can be found in the textbook by 

Professor Butt et al.39. To ensure the equilibrium condition and thus the validity of Young’s 

equation, the surrounding fluid phase in the EWOD system should be saturated with the 

liquid.39 In this study, an oil with a negligible solubility in water was used as the ambient medium 

for an aqueous droplet. In comparison to a liquid-air system, such a liquid-liquid system is more 

widely used in the EWOD-based applications, such as liquid lenses15, EWOD displays17 and 

digital microfluidic platforms14. 

Moreover, Young’s equation is the theoretical foundation for the contact angle measurement 

to investigate the surface hydrophobicity39, 41-43. In this study, the contact angle measurement 

was implemented (i) with a commercial device to characterize the fabricated dielectric layers 

in the EWOD electrode (Chapter 3.2.5, 4.1.3.1, 4.1.4.1) and (ii) with an integrated EWOD-EIS 

system (Chapter 3.3.1) to analyze the droplet geometry at its resting state as well as its 

deformed state during EWOD and dewetting (Chapter 4.2.4, 4.3.3). 
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2.1.1.2. Young-Lippmann Equation 

The EWOD effect can be quantitatively described by the electrowetting equation, namely 

Young-Lippmann equation (Eq. 2.2). It expresses how the contact angle of the droplet changes 

with the applied voltage: 

	
��� − 	
��� = ����� ∙ �� ∙ �� 2.2 

Here, �� and �� stand for the contact angles of a droplet with and without applied voltage 

respectively. ���  is the interfacial tension between the droplet liquid and its fluid surrounding. �/� means the capacitance per unit area of the droplet-electrode interface. � is the voltage 

drop across the droplet-electrode interface. 

In this doctoral research, the Young-Lippmann equation is the central theoretical foundation. 

It serves as a bridge between the EWOD-induced change of the droplet geometry (� and �) 

and the EWOD-required electric potential energy (
�� ∙ �� ∙ ��, Eq. 2.9), which correlates with the 

dielectric property of the insulating layer (�/�) as well as the applied voltage (�). The droplet 

geometry parameters can be studied by optical imaging (Chapter 3.3.1); in parallel, the 

capacitive and electric parameters can be investigated by online EIS of EWOD (Chapter 3.3.2, 

3.3.3) at diverse conditions. Based on Young-Lippmann equation and its modification adapted 

to the study conditions (Chapter 2.2.2.2), this research aims to provide a better understanding 

of the EWOD effect. 

 

2.1.1.3. Derivation of Young-Lippmann Equation 

As foundation of the electrowetting theory, the Young-Lippmann equation can be derived 

through diverse approaches, such as the interfacial thermodynamic approach35, 37, the energy 

minimization approach8, 35 and the electromechanical approach11, 44-46. The first approach is 

based on Lippmann’s equation (Eq. 2.5) and Young’s equation (Eq. 2.1) concerning the 

interfacial thermodynamics. The second approach, according to Berg8, focuses on minimizing 

the Gibb’s free energy of the droplet in an EWOD setup, which is contributed by the interfacial 

energies and by the electrostatic energy. The third approach has been developed by 

Jones et al.11, 44-46 from a physical mechanical view by considering the electric-field-induced 

forces47 that affect the liquid droplet. 

Here, the Young-Lippmann equation is derived according to the first approach for a typical 

EWOD setup (Figure 2.1) with a dielectric layer as the defined droplet-electrode-interface. This 

typical EWOD setup represents the experimental setup in this study (Chapter 3.3.1). Moreover, 

this classic interfacial thermodynamic derivation is viewed with respect to the energy balance 

following the second approach. 

Upon the voltage application in the EWOD system (Figure 2.1), an electric field induces charge 

accumulation on the droplet-electrode interface, more specifically, on the droplet-dielectric 

layer interface and on the dielectric layer-electrode interface.  
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The dielectric layer can thus be considered as a capacitor according to the capacitor 

definition48. Its capacitance (�) can be expressed as 

� = �� 2.3 

with the charge (�) on one interface, e.g. the dielectric layer-droplet (solid-liquid) interface and 

the voltage between the two interfaces (�). 

The charge density on this solid-liquid interface (���) is obtained as 

��� = �� ∙ � 2.4 

with reference to the area of the solid-liquid interface (�). 

The accumulated charge on the solid-liquid interface leads to the reduction of its interfacial 

tension. This effect was firstly explained by Lippmann9 in his investigation into electrocapillarity 

with an electrolyte directly contacted to a metal (mercury).I  In his setup, the electric double 

layer adjacent to the electrolyte-metal interface works as the capacitor. According to Lippmann, 

the correlation of the interfacial tension (��� ), the charge density (��� ) on the solid-liquid 

interface and the voltage (�) across the interface can be formulated as below: 

������� �� = −��� 2.5. 

Concerning the definition of chemical potential49,  � = � ����� !,#, the boundary condition of the 

Lippmann’s equation is implied to be the constant temperature, pressure and no material 

exchange with the exterior. 

By combining Eq. 2.4 with Eq. 2.5, the reduction of the solid-liquid interfacial tension ($���) can 

be described as: 

$��� = − �� ∙ � ∙ $� 2.6. 

The integral of Eq. 2.6 leads to the voltage dependent solid-liquid interfacial tension (���(�)): 

���(�) = ���(�) − �� ∙ �� ∙ �� 2.7. 

                                                 

I The original work from Lippmann was written in French. A translation in English is provided in the 

review article: Mugele, F.; Baret, J.-C. Electrowetting: from basics to applications. J. Phys.: Condens. 

Matter 2005, 17, R705-R774. 
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Moreover, this correlation can be viewed from the energy balance aspect. 

By considering the interfacial dielectric layer as a capacitor with a capacitance of �, its stored 

electric potential energy48 ('(�) under a voltage of � can be expressed as 

'(� = �� ∙ � ∙ �� 2.8. 

The corresponding areal value can be calculated with reference to the interfacial area as below:  

'(�� = �� ∙ �� ∙ �� 2.9 

with the unit, J/m2, equal to the unit of interfacial tension, N/m. 

Based on this, Eq. 2.7 can be understand as the voltage-induced reduction of the solid-liquid 

interfacial tension (���(�) − ���(�)) equals the electric potential energy stored in the interfacial 

dielectric layer of unit area ('(�/�, Eq. 2.9). 

This claim is supported by the derivation with the energy minimization approach8, 35: This 

electric potential energy dominates the electrostatic contribution to the EWOD effect. Another 

local contribution around the contact line, which arises from the stray capacitance and the 

fringe fields37, 50, is negligible for the sufficiently large droplets as the case of this study. 

Further on, the EWOD system at a constant voltage (Figure 2.1 b) is at an equilibrium state of 

the three interfacial tensions: the voltage-dependent, reduced solid-liquid interfacial tension 

( ���(�) ) and the other two voltage-independent interfacial tensions ( ���  and ��� ). This 

equilibrium is reflected with the contact angle under voltage (��) and can be described with 

the Young’s equation: 

	
��� = ��� − ���(�)���  2.10. 

By combining Eq. 2.1, Eq. 2.7 and Eq. 2.10, the Young-Lippmann equation (Eq. 2.2) is derived. 

For the EWOD electrode with a planar structure, as the case in this study, the interfacial 

dielectric layer can be modeled as a parallel plate capacitor. Its capacitance per unit area (� �⁄ ) 

depends on the relative permittivity (*$) of its material and its layer thickness ($) as below: 

�� = *�*$$  2.11 

with *� standing for the vacuum permittivity. 
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By combining with Eq. 2.11, the Young-Lippmann equation (Eq. 2.2) has the following 

expression: 

	
��� − 	
��� = *�*$����$ ∙ �� 2.12. 

Here, � is the applied voltage across the interfacial dielectric layer.  

Concerning the aim of this study to induce the EWOD effect on application of low voltages, a 

further explanation of � is given below: In the differential equation of Lippmann (Eq. 2.5), the 

original � is the applied voltage minus the voltage required to compensate the potential of zero 

charge (� = �+,, − �,-. ). In contrast to a metal surface, which was directly contacted to 

electrolyte in Lippmann’s experiment, the surface of an insulating material should not induce 

the spontaneous charge accumulation without voltage application35. Moreover, in the 

integrated Lippmann equation, the potential of zero charge can be considered negligible, since 

it is even in case of a metal (in the sub-mV range)51 significantly lower than the normal applied 

voltage (25 – 50 V)21, 23, 26 by two to three magnitudes. Therefore, for the practical investigation 

of EWOD effect, the applied voltage is usually regarded as the same as �. 

In this study with low voltages, the resting state is defined at � = 0 V, each applied voltage is 

an increment to the zero voltage. 

 

2.1.2. Electrical Impedance Spectroscopy (EIS) 

EIS32, 52-53, electrical impedance spectroscopy, is a non-invasive electrical analysis method 

using AC signals for material and process characterization. Its application can be found in 

versatile fields: on-line monitoring of living cells54 in life science55, control of product quality and 

production processes56 in food industry and characterization of batteries57 and solar cells58 in 

energy sector.  

As an important analysis method, EIS yields useful information about the electrical features of 

the object under measurement. Furthermore, diverse material and process parameters can be 

obtained from the EIS information through further analysis. For example, aqueous droplets in 

segmented flow can be online determined for their conductivity based on the EIS technique59.  

Moreover, EIS has also been utilized together with EWOD as integrated sensor-actuators. The 

two complimentary technologies combined on one platform close the gap between the 

operation and the detection of fluids, which is advantageous or even demanded in diverse 

application fields. EIS in association with electrowetting actuation has led to active matrix 

EWOD devices, in which the presence and the size of droplets can be determined12. A digital 

microfluidic platform with integrated EIS and EWOD enables the automatic actuation of 

droplets, to characterize the droplet composition of particles and the measurement 

conditions60-61. 
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In addition, EIS has been applied to study various EWOD arrangements concerning the droplet 

configuration. By using EIS technique, droplet contact area can be detected during 

electrowetting and its geometry can be further interrogated62-63. 

The sections focus on the theoretical basics of the electrical impedance spectroscopy (EIS) 

with respect to its two measurement techniques: EIS in frequency domain (Chapter 2.1.2.1) 

and EIS in time domain (Chapter 2.1.2.2). In this study, the two EIS techniques are integrated 

with EWOD excitation to enable the online investigation into the frequency influence on the 

EWOD effect (Chapter 4.2) and the non-linear and dynamic processes in the EWOD system 

(Chapter 4.3). 

 

2.1.2.1. Frequency-Domain EIS 

The general principle of frequency-domain EIS is the measurement of the current response of 

the system under investigation to an alternating voltage signal applied as stimulus. The basic 

alternating voltage stimulus (�), as illustrated in Figure 2.3 (red curve), is a sinusoidal function 

of time (/). It can be expressed as: 

� = �,,/� ∙ �01 2/ 2.13 

where �,,/� is the voltage amplitude and 2 is the angular frequency. 

This voltage stimulus results in a current flowing through the system under investigation. The 

current response of a (pseudo)-linear system or a non-linear system at its steady state, is also 

a sinusoidal function as demonstrated in Figure 2.3 (blue curve). Due to the electrical 

properties of the components in the system under investigation, there may be a phase shift (3) 

between the voltage stimulus and current response. This can be expressed as: 

4 = 4,,/� ∙ �01(2/ +  3) 2.14 

 

Figure 2.3. Measurement principle of EIS in frequency domain. U: sinusoidal voltage stimulus 
(red), I: current response (blue), 3: phase shift between the voltage and current signals. 
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In analogy to Ohm’s law, the impedance (6) can be calculated and written in its polar form as64: 

6 = �4 = |6| ∙ 893 2.15 

Here, 9 = √−� is the imaginary unit and 6 is a complex impedance. |6| is the impedance 

modulus, the magnitude of 6. 

With Euler’s formula65, 89; = .<� ; + 9 ∙ �01 ;, Eq. 2.15 can be transformed to: 

6 = |6| ∙ .<� 3 + 9 ∙ |6| ∙ �01 3 = 6=8 + 9 ∙ 64> 2.16 

The complex impedance can be generally represented with the separated real (6=8) and 

imaginary (64>) parts64. 

 

Concerning the impedimetric investigation of a physicochemical system or process, equivalent 

circuit models55, 66 are commonly constructed to electrically describe the object under study. 

The basic physical components of equivalent circuit models are resistors and capacitors. For 

example, the electrochemical double layer (EDL)39, 64 at the electrode-electrolyte interface is 

commonly modeled as a capacitor, while a bulk electrolyte is usually represented as a resistor. 

In biology, the cell membrane is usually simplified to be represented as a capacitor and the 

cytosol as a resistor67. In this study, a resistor and a capacitor in series connection is applied 

as the equivalent circuit model to electrically describe the EWOD system (Chapter 2.2.2.1). 

The complex impedance of a resistor, a capacitor and a series RC circuit are derived below. 

First, by applying a sinusoidal voltage across a resistor, its current response is in phase with 

the applied voltage. By inserting 3 = � in Eq. 2.16 and Eq. 2.15, 6 is reduced to its real part 

and is determined by Ohm’s law:  

6 = |6| ∙ .<� 3 = 6=8 = �4 = = 2.17 

Thus, the impedance of a resistor possesses merely a real part, which is equal to the 

resistance (=). 

Second, by applying a sinusoidal voltage across a capacitor, its current response to the applied 

voltage has a lag of  ? �⁄ . Due to 3 = − ? �⁄ , Eq. 2.16 is reduced to its imaginary part: 

6 =  9 ∙ |6| ∙ �01 3 = −9 ∙ 64> 2.18 
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Based on the definition of capacitance (� = ��, Eq. 2.3), that of current (4 = $�$/ ) and Eq. 2.15 

at 3 = −? �⁄ , the impedance of a capacitor can be derived as64: 

6 = −9 ∙ �2� = −9 ∙ @. 2.19 

with @. standing for the capacitive reactance (@. = �2�)48.  

The combination of Eq. 2.18 and Eq. 2.19 yields:  

|6| = 64> = @. 2.20 

Hence, the impedance of a capacitor consists solely of an imaginary part, which is equal to the 

capacitive reactance. 

 

Figure 2.4. Series connection of a resistor and a capacitor. 

Third, for an electric circuit consisting of a resistor and a capacitor in series (Figure 2.4), the 

application of the sinusoidal voltage across them follows Kirchhoff’s law48: 

� = �= + �� 2.21 

The entire impedance is the sum of the impedance of the resistor (Eq. 2.18) and that of the 

capacitor (Eq. 2.19): 

6 = = − 9 ∙ @. 2.22 

The impedance modulus and the phase shift can be calculated as: 

|6| = A=� + @	� 2.23 

3 = B+1C� �− @.= � = B+1C� �− �2=�� 2.24 

In this study, impedance spectra are presented in Bode plots53, 64, in which �<D|6| and 3 are 

plotted against the logarithm of frequency (E = 2�?) respectively. 

For a series RC circuit, the phase shift is negative and varies between 0 and −?/�; it indicates 

the balance between R and C. A break-point frequency53 or critical frequency 

(2	 =  �=� ;  E. =  ��?=� ) is defined for 3 = ?/G , where the resistive component and the 

capacitive component contribute equally to |6|.  
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This study applies frequency domain EIS for the online investigation of the frequency influence 

on the EWOD effect. The EWOD excitation and the simultaneous EIS measurements are 

achieved here with a single sinusoidal voltage signal. By applying a series of voltages and 

frequencies successively on the EWOD system with each condition maintaining for sufficient 

time, the system attains the steady-state for each impedance measurement (Chapter 3.3.2). 

The correlations derived in this chapter are involved in the data processing for compiling 

impedance spectra in Bode plots and in the data analysis for yielding further features of the 

EWOD system (Chapter 4.2). 

 

2.1.2.2. Time-Domain EIS and Dynamic EIS 

One of the most important excitation signals for time-domain EIS 55 is the square wave. In this 

study, it is the basic signal involved in the dynamic EIS68 applied for investigation into the 

dynamics of EWOD effect. A detailed description about the dynamic EIS is provided further on. 

A square wave can be considered as a series of alternating positive and negative voltage steps 

(Figure 2.5). 

 

Figure 2.5. Square wave as a series of alternating positive (red) and negative (blue) voltage steps. 

The basic principle of EIS in time domain is to apply a voltage step as electrical perturbation 

to the system under investigation and to analyze its current response64.  

Upon applying a positive voltage step (�) on a series RC circuit (Figure 2.4), the current (4) 

flowing through the circuit reaches first its maximal amplitude and immediately decays with the 

time (/) as illustrated in Figure 2.6. 

The current decay reflects the electrical relaxation behavior of the system under investigation 

and can be expressed as: 

4 = �= ∙ 8C//=� 2.25 

Its derivation can be found in the textbook written by Bard and Faulkner64. The exponential 

function of the current decay contains diverse information: Its initial maximal amplitude 

correlates inversely with the resistance (=) in the system. The time constant (H) equals the 

product of = and � and is reciprocal to the corresponding critical frequency (2	) of EIS in 

frequency domain. At / = H, the current decreases to 0.37 �/=. 
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Figure 2.6. Basic principle of EIS in time domain demonstrated for a series RC circuit. (a) A 
positive voltage step as electrical perturbation. (b) Current response with the time constant (H)II. 

By applying a negative voltage step to the series RC circuit, the current responses in the 

negative region in the identical manner: a maximal negative amplitude followed by an 

exponential decay towards zero. This current response yields the same impedimetric 

information as that under the application of a positive voltage. 

Based on this, EIS measurements with a high repetition rate can be achieved by using a square 

voltage signal with a high frequency. This makes the EIS in time domain advantageous for 

rapid measurement requirements55. Moreover, the square wave is a typical broad bandwidth 

signal,69 which contains all odd harmonic signals.53 The impedimetric information related to a 

broad frequency range can be obtained with EIS in time domain in each single voltage step. 

 

 

 

 

                                                 

II Own representation based on Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals 

and Applications. 2 ed.; JOHN WILEY & SONS, INC.: New York, Chichester, Weinheim, Brisbane, 

Singapore, Toronto, 2001, p. 16. 
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In this study, the non-linear and dynamic processes in the EWOD system are investigated by 

dynamic EIS53, 68. It combines the EIS in time domain using a high-frequency square signal 

with the EWOD excitation using a DC (direct current) staircase voltage signal (Figure 2.7).  

 

Figure 2.7. Dynamic EIS signal for investigation into the dynamic behavior of EWOD effect. Main 
panel: Staircase voltage signal for the EWOD excitation. Inset (enlargement of the green marked 
region): Square signal superposed in each DC voltage step for EIS measurement in time domain. 

The staircase signal consists of an ascending ramp with increments of voltage offsets for 

EWOD excitation and a descending ramp with decrements of voltage offsets for controlled 

dewetting relaxation. At each step, the voltage offset is superposed with a square signal of 

high frequency for the rapid EIS measurement to trace the EWOD-system change during the 

wetting and dewetting process time-resolved. 

Dynamic EIS is an appropriate method for characterization of time-varying and non-linear 

processes, such as the droplet deformation during EWOD and dewetting, for the following 

reasons68: First, the EIS measurement period is shorter than the characteristic time of the 

EWOD-system change during wetting and dewetting process. Second, the small amplitude of 

the EIS excitation signal enables the EIS measurement within a linear or quasi-linear range 

although the superposed larger DC staircase signal inducing the non-linear EWOD effect. 
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2.2. LV-EWOD Approaches and Analysis Models 

Partial content in this chapter has been published in Li, Ying-Jia and Cahill, Brian P., 

“Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance 

Spectroscopy”, Langmuir 2017, doi: 10.1021/acs.langmuir.7b03049. 

This section is mainly devoted to the theoretical approach for the low-voltage electrowetting 

on dielectric (LV-EWOD) effect and the analysis model for the investigation with the electrical 

impedance spectroscopy (EIS). An overview of the development process and the diverse 

aspects concerning the online electrical investigation of EWOD effect is given in the following 

illustration. 

 

Figure 2.8. Overview of the development process and the diverse aspects concerning the online 
electrical investigation of EWOD effect. 

As the fundamental equation describing the EWOD effect, the Young-Lippmann equation 

(Eq. 2.2) provides the foundation of Chapter 2.2.1 to develop the concept of low voltage EWOD 

and the approach for a LV-EWOD-electrode for the EWOD-EIS integration. In Chapter 2.2.2, 

an equivalent circuit model is postulated for the object under investigation in the EWOD system. 

An adapted Young-Lippmann equation is formulated for evaluating the EWOD effect in AC 

(alternating current) applications that accounts for the electric energy budget in the EWOD 

system. 
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2.2.1. Low-Voltage Electrowetting on Dielectrics (LV-EWOD) 

2.2.1.1. LV-EWOD Electrode Concept 

Based on the Young-Lippmann equation (Eq. 2.2) and its transformation (Eq. 2.12), 

	
��� − 	
��� = ������ ∙ �� = *�*$����$ ∙ �� 2.26 

the voltage demand for EWOD can be reduced through three approaches: 

(i) Increase of the relative permittivity of the dielectric layers (*$), 

(ii) Reduction of the dielectric layer thickness ($), 

(iii) Enlargement of the droplet contact angle at the resting state (��). 

The first two approaches can contribute to an increased areal capacitance of the interfacial 

dielectric layer (� �⁄ ). Due to this enhanced capacitive property, the same amount of electric 

potential energy can be stored in the dielectric layer by applying a lower voltage. Therefore, 

the four parameters (*$, $, � �⁄ , ��) are relevant for a successful low-voltage EWOD electrode. 

 

2.2.1.2. Material Selection and Fabrication Methods for Dielectric Layers 

To achieve the three approaches postulated in Chapter 2.2.1.2, the key is the material, layer 

and surface property of the interfacial dielectric layer. The first approach, the increase of *$, 

can be fulfilled by using dielectric materials with high relative permittivity. The second approach, 

the reduction of $, can be complied with thin-film deposition techniques. Moreover, the thin 

dielectric layer should be pin-hole free and have sufficient electrical breakdown strength. The 

third approach, the enlargement of �� , can be achieved by increasing the surface 

hydrophobicity. 

In the applications and earlier studies of the EWOD effect70-73, EWOD electrodes are often 

constructed as a dielectric bilayer or multilayer stack on an electrode substrate. The dielectric 

stack consists usually of an insulating material with high breakdown strength and a 

hydrophobic surface coating. 

 

Figure 2.9. General layer structure of EWOD electrodes. 

In this study, the EWOD electrode was designed based on the common layer structure 

(Figure 2.9): a hydrophobic coating and a main dielectric layer on an electrode substrate. The 

dielectric layer materials and fabrication methods were carefully selected with regard to 

processing approaches and optimization of low-voltage EWOD.  
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I. Anodic Tantalum Pentoxide 

A promising material for the main dielectric layer is anodic tantalum pentoxide (Ta2O5). Its 

relative permittivity (*$ = 25.3 - 29.5)74-77 is much higher in comparison with the commonly 

used dielectrics, such as silicon oxide (*$ = 3.9)78-79 and silicon nitride (*$ = 7.5)73. Besides its 

high relative permittivity, Ta2O5 features high breakdown strength (4 - 6.61 MV/cm)76, 80-81 and 

low pin-hole density70, 82. These properties have made Ta2O5 a favorable storage dielectric 

layer in microelectronics83 and in capacitance sensors84-85 over decades. Moreover, Ta2O5 

possesses outstanding chemical stability82 and biocompatibility86 for applications in implants86 

and other biomedical devices. Due to its high refractive index, Ta2O5 is also used as a basic 

material in optical waveguides87, in optical lenses88 and in antireflective films83. 

Ta2O5 thin films can be fabricated through diverse techniques reviewed by Chaneliere et al.83: 

anodic or thermal oxidation of tantalum, oxide sputtering, vacuum evaporation, direct or 

chemical vapor deposition, atomic layer deposition, sol-gel methods, ion-assisted deposition. 

However, most of the techniques require expensive equipment with vacuum condition or high 

temperature to obtain a low-defect smooth oxide layer. In comparison, anodic oxidation 

(anodization)75, 89-90 is a low-cost and promising fabrication method: anodic Ta2O5 thin layers 

can possess a higher film density (8.01 g/cm3)90 than those obtained with other preparation 

methods83, higher relative permittivity (values listed above) and better layer quality (e.g. 

negligible pin-holes)70 than those produced by sputtering (*$ = 20 – 23)71, 91. 

Anodization is an electrochemical process for defined oxide formation on a metal surface. The 

resulting layer possesses a self-healing property92-93 and a strong adherence to the metal94. 

For the anodization of tantalum, the following redox reaction is postulated77, 89, 95:  

Anode reaction: � I+ + J K�L → I+�LJ +  �� KN + �� (C 

Cathode reaction:  � KN + � (C →  K�, � L� + O KN + O (C →  G K�L 

Total redox reaction: � I+ +  K�L +  � L� → I+�LJ + K� 

On the anode, tantalum is oxidized to tantalum ions (Ta5+), which react with the water 

molecules to form Ta2O5. On the cathode, hydrogen develops; oxygen is converted to water. 

In this study, the anodic Ta2O5 was formed via potentiostatic anodization96 in citric acid on an 

electrode substrate of tantalum atop a silicon wafer (Chapter 3.1.2). The oxide layer thickness 

can be defined with process parameters, such as voltage and time. 

 

II. Self-assembled Silane Monolayer 

An advantageous thin layer as the hydrophobic surface coating of EWOD-electrode is an 

organic trichloro-silane monolayer. The silane monolayer of a few nanometers97 is significantly 

thinner than the commonly used spin-coated Teflon-AF film with a typical thickness from sub-

µm to a few µm25. Moreover, silane is less expensive than Teflon-AF and can form a 

homogeneous smooth surface97 with high-level hydrophobicity98 and low mechanical friction99. 
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These features should fulfill the low-voltage EWOD approaches for a large initial contact angle 

and a thin coating. Furthermore, a low resistance against droplet motion should lower the 

voltage threshold for the EWOD-induced wetting and should ease the passive dewetting to 

ensure good process dynamics. Additionally, silane monolayers are good candidates for the 

gate dielectric in the low-voltage OTFTs (organic thin-film transistors)100 or for the functional 

semiconductor/dielectric interface in molecular electronic devices101.  

A promising deposition method to obtain a well-arranged silane monolayer that strongly binds 

to the Ta2O5 surface, is the self-assembled monolayer (SAM)102 formation through silanization4. 

The silanization on silicon oxide and other metal oxide surfaces has been optimized over 

decades103-105. For the Ta2O5 surface, the same SAM formation principle is valid and shown in 

the illustration (Figure 2.10). From a microscopic view, an organic trichloro-silane molecule 

consists of two parts: a Si head group with three Cl-atoms and an organic chain as rest group. 

Through a spontaneous chemisorption, the Si head group binds covalently onto the metal 

oxide surface, which ensures a superior stability of the binding to the substrate. Meanwhile, 

the organic chains of the silane molecules are spontaneously bound through the non-covalent 

van der Waal interaction. The regularly ordered and close-packed organic chains results in a 

hydrophobic layer. In addition, the adjacent Si head groups are bound through covalent cross-

linking105, which leads to an enhanced chemical and mechanical robustness of the SAM. 

 

Figure 2.10. Principle of the self-assembled monolayer formation.III  

In this study, the silanization on the Ta2O5 surface was mainly implemented in a wet chemical 

procedure using octadecyltrichlorosilane (ODTS) in toluene (Chapter 3.1.4).  

                                                 

III Own representation based on COST workshop on surface and interface 2014 in Delft. 
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III. Dielectric Layer Combinations 

In earlier studies, Ta2O5 and trichloro-silane have each been applied with diverse materials as 

a bilayer or multilayer dielectric integrated in advanced low-voltage EWOD electrodes. For 

example, Ta2O5 has been combined with an amorphous fluoropolymer coating, such as Teflon-

AF72 and CytopTM 70-71. Li et al. showed that anodic Ta2O5 forms a smooth and robust layer and 

when coated with a thin fluoropolymer coating, the EWOD voltage could be reduced to 13 V 
72. Moreover, anodic Ta2O5 was reported to have better EWOD performance under AC 

actuation (� = 13 VRMS) than sputtered Ta2O5
70. A bilayer stack with Ta2O5 was revealed to 

require a lower actuation threshold voltage (� = 6 V) than that with Parylene C (a poly(p-

xylylene) polymer with *P ≅ 3.15)71. Furthermore, EWOD electrodes with a hydrophobic silane 

integrated with other dielectric materials, such as silicon nitride was studied for electrowetting 

reversibility. In that study, an ODTS monolayer was shown to have slightly higher 

hydrophobicity and lower contact angle hysteresis than the Teflon-like fluoropolymers, which 

makes the droplet motion during electrowetting easier73. 

In this doctoral research, an anodic Ta2O5 layer and a self-assembled silane monolayer are 

selected as the main dielectric layer and as the hydrophobic surface coating respectively; they 

are combined into a dielectric bilayer for the low-voltage (LV) EWOD electrode. The EWOD 

relevant parameters (*$, $, � �⁄ , ��), as mentioned in Chapter 2.2.1.1, depend on the surface, 

layer and material properties of both layers and can be influenced by diverse factors in the 

fabrication processes. To ensure the quality of the LV-EWOD electrode and to ease the 

comparison with other studies in the literature, it is essential to characterize each layer 

fabricated under diverse conditions regarding the four EWOD-relevant parameters 

(Chapter 4.1). 

 

2.2.1.3. Multilayer Dielectric Stack (MDS) 

In this doctoral research, the EWOD effect was studied by making use of the sessile drop 

model system, whereby a µL-sized aqueous droplet was placed on the LV-EWOD electrode 

with oil as the surrounding medium. The setup is shown in the optical image (Figure 2.11 left).  

 

Figure 2.11. Optical image of a 3 µL aqueous droplet on the EWOD electrode in oil with an 
inserted counter electrode and schematic abstract of the system under investigation. 
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According to the Young-Lippmann equation (Eq. 2.2), the strength of the EWOD effect is 

directly proportional to capacitance per unit area of the dielectric material between the droplet 

and the electrode. This capacitance per unit area in the EWOD experiments detailed in this 

thesis depends directly on the components of the multilayer dielectric stack (MDS) shown in 

the illustration (Figure 2.11 right). The MDS consists of two solid layers in the EWOD electrode, 

the anodic Ta2O5 layer and the self-assembled silane layer, as well as one fluid oil layer 

entrapped between the droplet and the EWOD electrode. 

This thin oil film should act as an additional dielectric layer besides the fabricated dielectric 

bilayer and as a lubricant to reduce the surface friction, the contact line pinning and thus ease 

the droplet wetting and dewetting35. The entrapment of such an oil film was observed by 

Staicu et al.36 in a comparable experimental setup. 

 

2.2.2. EWOD Effect Analysis 

2.2.2.1. Equivalent Circuit Models 

To describe the system under investigation electrically, an equivalent circuit model was 

constructed (Figure 2.12 a): The aqueous droplet is represented by a resistor (=PR<,) and a 

capacitor (�PR<,) in parallel. The MDS is described as a resistor (=STU) in parallel connection 

with three capacitors in series, �<0�, ��0�+1( and �I+�LJ. Concerning the measuring frequencies 

(100 Hz – 1 MHz) and the used salt concentrations (6.25 mM – 200 mM KCl) in this study, this 

equivalent circuit model (Figure 2.12 a) can be simplified as shown in Figure 2.12 (b). 

 

Figure 2.12. (a) Equivalent circuit model for the system under investigation and (b) simplified 
equivalent circuit model. =PR<, : droplet resistance; �PR<, : droplet capacitance; =STU : total 

resistance of the multilayer dielectric stack; �<0�, ��0�+1( and �I+�LJ: separated capacitances of the 

oil film, the silane layer and the Ta2O5-layer respectively; �STU: total capacitance of the multilayer 
dielectric stack, composed of �<0�, ��0�+1( and �I+�LJ in series.  
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The simplification is due to:  

(i) =STU ≫ @�STU, where @�STU =  ��?E�STU , 
(ii) =PR<, ≪ @�PR<,, where @�PR<, =  ��?E�PR<,. 

Shapiro et al.106 suggested a comparable equivalent circuit for a system with a slightly resistive 

liquid drop on a dielectric resistive solid. Both their circuit and the simplified equivalent circuit 

in this study, describe the liquid drop as a resistor. In comparison to the simplified circuit here, 

the dielectric layer is modelled as a capacitor in parallel with an additional resistor. However, 

this resistor can be neglected under the measurement conditions in this study. Due to the low 

thickness of the MDS and the high relative permittivity of the Ta2O5-layer, the dielectric layers 

in this study have a very small capacitive reactance. In comparison, the total resistance of the 

dielectric layers is very high and appears beyond the measuring frequency range. 

The EIS analysis of the EWOD effect in this study, either with the focus on the signal frequency 

influence or on the non-linear dynamic behavior, is based on the simplified equivalent circuit 

model (Figure 2.12b). 

According to this model, the total capacitance of the MDS (�STU) is given by: 

��STU = ��<0� + ���0�+1( + ��I+�LJ
 2.27 

Each layer in the MDS can be considered as a parallel plate capacitor. Thus, the capacitance 

per unit area (�/�) of each layer can be calculated with Eq. 2.11. 

Moreover, the simplified equivalent circuit model is a series RC circuit in principle, where R 

represents the droplet and C the entire MDS. Based on that, the EWOD system is comparable 

to a low-pass filter30, 107 (Figure 2.13) in the electrical engineering. In analogy to the energy 

input and output through the low-pass filter, the electric potential energy stored in the MDS is 

the energy contributes to the EWOD effect. 

 

Figure 2.13. Circuit of a low-pass filter consisting of a resistor and a capacitor in series. IV 
Vin: Signal input. Vout: Signal output. 

                                                 

IV  Own representation based on Horowitz, P.; Hill, W. The Art of Electronics. 3. ed.; Cambridge 

University Press: United Kingdom, 2015, p. 961. 
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A low-pass filter, as its name says, passes signals with low frequencies and attenuates signals 

with high frequencies. The filter functionality is characterized by a cutoff-frequency, at which 

half of the input power is attenuated. This cutoff-frequency can be expressed identically as the 

critical frequency in the EIS for a series RC circuit (Chapter 2.1.2.1): E. = ��?=�. Furthermore, 

the low-pass filter can also be considered as a voltage divider. At the cutoff-frequency, the 

voltage drops equally across the resistor and the capacitor.  

 

2.2.2.2. Energy Budget in EWOD 

In an ideal EWOD process, as described in Chapter 2.1.1, the applied electric energy at a 

constant voltage should be completely stored in the dielectric layer as the electric potential 

energy to lower the solid-liquid interfacial tension. This causes the droplet to wet the surface 

until a new interfacial thermodynamic equilibrium is achieved. On reducing the voltage, the 

droplet ideally dewets the surface reversibly and returns to its initial geometry at the resting 

state. The electric potential energy per unit interfacial area, as mentioned in Chapter 2.1.1.3, 

is given by: 

'(�� = �� ∙ �� ∙ �� 2.9 

However, in a real EWOD system, the scenario is more complicated.  

In the EWOD system of this study, an additional oil layer occupies the space between the 

droplet and the EWOD electrode. Under this circumstance, the stored electric potential energy 

can induce not only the droplet deformation, the EWOD effect, but also the deformation of the 

interfacial oil layer.  

Besides the deformation processes, the electric energy input can be consumed in some 

dissipative processes: energy loss caused by the need to overcome contact line pinning due 

to the surface friction or through the droplet acting as a dissipative resistor and inducing Joule 

heating effect48. 

Moreover, the impact of surface friction on EWOD can be reduced through application of an 

alternating voltage instead of a direct voltage as shown by Li and Mugele.34 However, by 

applying an alternating voltage with a high frequency, only partial electric energy input can be 

stored in the dielectric layer, as revealed by the low-pass filter model. The influence of 

frequency on the EWOD effect is reported in Chapter 4.2. 

Furthermore, in either EWOD or dewetting, voltage jumps are the external disturbance for the 

EWOD system. By applying a single voltage jump, the EWOD- or dewetting-related 

deformation process should be a typical first-order relaxation response49. 
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In the case of applying an asending voltage jump of the stair case stimulus (Figure 2.7) on the 

EWOD system, the increase of the droplet contact area (�) can be expressed as: 

� = �8 ∙ (� − 8C/H) 2.28 

with �8 standing for the contact area reached at the interfacial equilibrium state and H for the 

characteristic time of the first-order relaxation process. The derivation for this equation can be 

found in Appendix 7.1.1. The process dynamics can be characterized with H  due to its 

reciprocal correlation with the process rate. 

With respect to the electric potential energy, the dynamics and the non-linear responses of 

diverse parameters in the EWOD system have been investigated for the electrowetting and 

the dewetting process and shown in Chapter 4.3.  

 

2.2.2.3. Young-Lippmann Equation for Alternating Voltage Applications 

The basic Young-Lippmann equation (Eq. 2.2) is the gold standard to assess the EWOD effect 

at direct voltages. For alternating voltage applications, the basic Young-Lippmann equation 

requires adaptions.35 

For the study of the influence of frequency on the EWOD effect, the Young-Lippmann equation 

is adapted to the measurement condition by specifying two parameters: the capacitance of the 

corresponding dielectric layers and the voltage inducing the EWOD effect. Moreover, the 

Young-Lippmann equation is extended with a correlation coefficient for comparison of EWOD 

performance under diverse experimental conditions and as an indicator for the energy amount 

converted to EWOD effect. 

First, based on the EWOD system described in Chapter 2.2.1.3 and its equivalent circuit model 

presented in Chapter 2.2.2.1, the capacitance correlating with the EWOD effect is the MDS 

capacitance. Of all three dielectric layers in the MDS, the fluid oil layer can change its 

capacitance due to the influence of electrostatic pressure on the layer thickness36. Hence, in 

the adapted Young-Lippmann equation (Eq. 2.32), the entire MDS capacitance (�STU) is a 

variable parameter. 

Second, the voltage involved in the Young-Lippmann equation is specified with regard to three 

aspects: (i) The EWOD effect is induced by a partial voltage applied to the EWOD system. It 

corresponds to the voltage drop across the MDS. (ii) With respect to the alternating voltage 

application, the effective voltage is calculated as the root mean square (RMS) value. (iii)  For 

the EWOD electrode with an anodic Ta2O5 dielectric layer, merely positive voltage stimuli can 

be applied. This is because Ta2O5 is a valve metal oxide. It is a perfect insulator against the 

anodic current at a voltage below 50% of its anodization voltage but can be damaged by the 

cathodic current108. To fulfill this condition, the applied sinusoidal signal possesses a direct 

voltage offset that equals the voltage amplitude to yield the positive stimulus. 
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Based on the equivalent circuit model (Figure 2.12 b) that represents the EWOD system as a 

series RC circuit, the specified voltage drop on the MDS, �(XSU)STU, can be determined by 

applying the voltage division principle: 

�(XSU)STU = @�STU|6| · �XSU 2.29 

Here, the capacitive reactance (@�STU) depends on the MDS capacitance (�STU) and the 
frequency (E): 

@�STU = ��?E�STU 2.30 

The impedance modulus of the total system (|6|) is contributed by the droplet resistance 

(=PR<,) and the capacitive reactance of the MDS ( @�STU): 

|6| = Z=PR<,� + @�STU�  2.23 

The RMS value of the applied positive voltage stimulus (�XSU) can be expressed as: 

�XSU = A[/� ∙ �,,/� 2.31 

with �,,/� standing for the amplitude, the half value of the peak-to-peak voltage. A detailed 

derivation of this �XSU expression is enclosed in Appendix 7.1.2. 

Third, a dimensionless correlation-coefficient, \ , is introduced into the adapted Young-

Lippmann equation as below: 

	
��� − 	
��� = \ ∙ �STU����� ∙ �(XSU)STU�
 2.32 

\  is considered as an assessment parameter, which enables direct comparison of 

electrowetting performance under diverse experimental conditions, regarding the frequency 

and the amplitude of the alternating voltage stimulus as well as the salt concentration. 

Moreover, in the context of the energy budget in EWOD (Chapter 2.2.2.2), \ can reflect the 

energy efficiency for the EWOD effect. Based on the integrated Lippmann equation (Eq. 2.7), 

Eq. 2.32 can be converted to the following expression: 

Here, \ indicates the ratio of the energy output for the EWOD effect, the reduction of the solid-

liquid interfacial tension, to the areal electric potential energy stored in the MDS. 

\ = (	
��� − 	
���) ∙ ����STU�� ∙ �(XSU)STU� = ���(�) − ���(])�STU�� ∙ �(XSU)STU�  2.33 
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3. MATERIALS AND METHODS 

3.1. Fabrication of Low-Voltage (LV) EWOD Electrodes 

The LV-EWOD electrode was designed as a multilayer stack (Chapter 2.2.1.3). It was 

fabricated by a series of surface modifications of the planar electrode substrate (silicon wafer 

with a sputtered tantalum layer) as shown in the overview scheme below. 

 

 

Figure 3.1. Overview scheme of the fabrication processes for the low-voltage EWOD electrode. 

The fabrication process of the LV-EWOD electrode consists of 5 steps, 

• cleaning (Chapter 3.1.1) 

• anodization (Chapter 3.1.2) 

• plasma activation (Chapter 3.1.3) 

• silanization (Chapter 3.1.4) 

• conditioning (Chapter 3.1.5). 

Through these five steps, the electrode with an anodic tantalum pentoxide layer and a 

subsequent silane monolayer as defined dielectrics can be obtained and is conditioned for 

further measurement. 
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3.1.1. Electrode Substrate and Cleaning 

The electrode substrate is a planar silicon wafer without thermal oxidation that was sputter 

coated with a tantalum layer (typical thickness 500 nm ± 50 nm). This tantalum layer was 

covered with a very thin native tantalum oxide layer (typical thickness: a few nm) and a 

photoresist layer. The electrode substrate was diced into 10 mm x 15 mm specimen (supplier: 

IMN MacroNano®, Ilmenau University of Technology, Germany). 

A single specimen was first carefully separated from the diced substrate, which was hold by 

an adhesive foil from the backside (Figure 3.2). 

 

 

Figure 3.2. Diced substrates covered with photo resist (left). One specimen after cleaning (right). 

The specimen was then placed in a PTFE (Polytetrafluoroethylene) sample holder (Figure 3.3) 

with four vacancies for the cleaning procedures to remove the photoresist layer. This sample 

holder was in-house constructed and fabricated (technical drawing in Appendix 7.7: Li00). 

 

 

Figure 3.3. PTFE sample holder with four specimens for the cleaning procedures. 

 

 

 



 

 

3. Materials and Methods 

29 

 

The cleaning procedure includes three steps:  

1. Immersion in an acid piranha solution, which consists of concentrated H2SO4 (Carl 

Roth GmbH, Germany) and 30% H2O2 (Carl Roth GmbH, Germany) in a ratio of 3:1, 

at room temperature under stirring for 15 min. 

2. Heating in a base piranha solution, which consists of 25% NH4OH (Carl Roth GmbH, 

Germany), 30% H2O2 and deionized water in a ratio of 1:1:4, at 70°C under stirring 

for 15 min. 

3. Rinsing with deionized water and keep the specimen in the deionized water before 

usage. 

 

3.1.2. Anodization 

The anodization, as shown in Figure 3.4, is conducted under the potentiostatic condition in an 

electrochemical cell. The anode is here the working electrode (WE). On the anode surface, the 

electrochemical oxidation of tantalum to tantalum pentoxide occurs and the generated 

electrons enter the electrical circuit. The cathode is the counter electrode (CE), from which the 

electrons are released for the electrochemical reduction. Both electrodes are connected to a 

power source supplying a constant DC voltage. The current flowing through the circuit is 

measured by an ammeter. In this work, an electrometer is used as the power source and the 

ammeter. 

 

 

Figure 3.4. Scheme of an electrochemical cell configured with two electrodes for potentiostatic 
anodization and an ammeter for current measurement. CE: counter electrode, WE: working 
electrode. 

Setup 

The setup for the anodization consists of the following six elements: an anodization cell 

containing the specimen, a counter electrode, a solution bath, a Faraday cage, an electrometer 

and a control and recording software. 

One essential accessory for the anodization was an anodization cell (Figure 3.4), in which the 

specimen was mounted for anodization in a solution bath. 
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This anodization cell provides two functionalities: (i) It strictly separates the specimen surface 

in two regions: A round opening in the middle ensures a defined section area (0.42 mm2) for 

the anodization; meanwhile, the rest of the specimen is leak-proof to avoid short current.  (ii) In 

the leak-proof region, the specimen inside is electrically connected with a spring pin wired to 

a power source for the anodization. The anodization cell was in-house constructed and 

fabricated (technical drawing in Appendix 7.7: Li 01). 

 

 

Figure 3.5. Anodization cell (left) facilitates a defined round area of the tantalum as the working 
electrode (WE). Separated anodization cell (right): two seal rings, housing bottom, top housing 
nut and middle part with a central aperture and a wired spring pin. 

An electrometer (Keithley 6517, Tektronix Inc., USA) was used for DC-voltage application. A 

graphite electrode (Phywe Systeme GmbH & Co. KG, Germany) was utilized as the counter 

electrode. An in-house fabricated Faraday cage was used for shielding during the anodization 

process. 

As the measuring software for the anodization, a LabView programV was developed in this 

work to fulfill the following demands: (i) setting the duration for the anodization, (ii) automatic 

countdown of the anodization period (iii) tracing the real-time current flow and recording the 

data every 0.45 seconds in a txt. file during the anodization process. 

Procedure 

Directly before the anodization, the specimen was rinsed with deionized water, dried with 

nitrogen flow and mounted in the anodization cell. The anodization cell was completely 

immersed in a solution bath of degassed 0.1 M aqueous citric acid. The specimen was 

connected through the anodization cell as the working electrode to the electrometer. Opposite 

to the opening of the anodization cell, the graphite electrode was inserted in the solution and 

contacted to the electrometer as the counter electrode.  

                                                 

V The development of the LabView program was mostly supported by Robert Römer (Bioprocessing 

Techniques Department) and by Dr. Brian Cahill (Junior Researcher Department) at IBA. 
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This electrochemical cell was located in the Faraday cage. Both electrode surfaces were 

controlled for assurance of no attached gas bubbles. 

The electrometer was set to apply a constant positive DC voltage (20, 30, 40 or 50 V) on the 

tantalum specimen against the counter electrode. An anodization duration of 90 min was set 

in the LabView program.  The real-time current value was traced and shown in the LabView 

program window. A representative development of the current density over time is plotted for 

the anodization process at 30 V in Figure 3.6. 

 

Figure 3.6. Logarithmic plot of current density over time for a representative anodization process 
of tantalum at 30 V in 0.1 M citric acid for 90 min. 

After the anodization, the specimen was analyzed by EIS using the same anodization cell and 

0.1 M citric acid. Afterwards, the specimen was demounted from the anodization cell, cleaned 

with the acid piranha solution (Chapter 3.1.1, Cleaning step 1), rinsed with deionized water 

and dried with nitrogen flow for the further fabrication. 

 

3.1.3. Plasma Activation 

A plasma is an ionized gas, the so-called “fourth state of matter”, and was firstly studied by 

Irving Langmuir109-110. Plasma is typically formed by applying an electric current or radio waves 

to a gas at low pressure. In this process, the gas molecules are heated, collide with each other, 

generate free electrons and become ionized. The free electrons collide with the gas molecules 

and generate more electrons. This cascade process continues until an equilibrium state, at 

which a certain degree of ionization is reached.111 Plasma has diverse applications, such as 

plasma medicine112, light generation with extreme brightness113, plasma etching and 

deposition in the semiconductor production114-115. Here, an oxygen plasma was applied to 

oxidize and to remove the residual organic contamination on the Ta2O5 surface as well as to 

activate the surface for the subsequent silane coating. 
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Procedure 

Immediately before the silanization step, the dried specimen was placed in the middle of the 

plasma cleaner chamber (Plasma Cleaner, Harrick Inc., USA). The chamber pressure was 

firstly reduced to 26.7 Pa and subsequently increased through an oxygen influx to 66.6 Pa. At 

this condition, an oxygen plasma was generated. The specimen was treated with the oxygen 

plasma for 1 minute. 

 

3.1.4. Silanization 

Octadecyltrichlorosilane (ODTS) was selected as the appropriate coating material for 

fabricating the hydrophobic surface of the LV-EWOD electrode. It consists of a silane functional 

group and a long alkane chain as revealed by its chemical structure (Figure 3.7).  

 

 

Figure 3.7. Chemical structure of octadecyltrichlorosilane (ODTS). 

The silanization in this study was a wet-chemical coating process with an ODTS (Abcr, 

Germany) solution in toluene (Sigma-Aldrich Chemie, Germany). Since ODTS is sensitive to 

moisture, its contamination with air at the normal ambient humidity can induce unwanted 

agglomeration of ODTS. To assure a dry ambiance for the silane solution preparation, a glove 

bag (Aldrich® AtmosBag, Sigma-Aldrich, Germany) was set up, equipped with a hygrometer 

and associated with a vacuum plant and with a dry argon gas supply. The toluene was dried 

over night with sodium sulphate (Carl Roth, Germany). The consumable items, such as pipette 

tips and glass tubes, were also dried before usage. 

Procedure 

First, the glove bag with all items for the silane solution preparation inside was alternatively 

evacuated and filled with dry argon gas. 

Second, a 0.5 wt% ODTS solution was prepared in the dried toluene under argon atmosphere 

in the glove bag. 

Third, the ODTS coating was performed according to the literature116 with modification. After 

the plasma activation (Chapter 3.1.3), the specimen was immediately immersed in the 

prepared ODTS solution under argon atmosphere for 3 hours and kept in the dark.  

Fourth, the specimen was thoroughly and successively rinsed with chloroform, acetone, 

deionized water and methanol, blown off with nitrogen gas and dried for 12 hours at 80°C in a 

heating cabinet. 
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3.1.5. Conditioning 

The fabricated EWOD electrode was conditioned in tetradecane (Sigma-Aldrich Chemie, 

Germany) before its usage in all experiments performed in oil. As transparent liquid oil, 

tetradecane is a long-chain alkane insoluble in water (3.3·10-4 mg/L)117. For the conditioning, 

the entire specimen was immersed in tetradecane and kept in the dark at least for one day. 
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3.2. Characterization of Dielectric Layers 

This section describes the characterization of diverse surface and layer properties of the 

dielectric materials consisting in the LV-EWOD electrode using commercial equipment. The 

characterization refers to the electrowetting-relevant parameters declared in Chapter 4.1.1. It 

aims to select the appropriate fabrication conditions and to validate the quality of the dielectric 

materials for the LV-EWOD electrode. The characterization covers the following analysis 

spectrum: 

• Capacitance determination with electrical impedance spectroscopy (EIS) in a bulk 

solution and in a drop of solution (Chapter 3.2.1)  

• Characterization of capacitive behavior with the cyclic voltammetry (CV) in a drop of 

solution (Chapter 3.2.2) 

• Layer thickness measurement with the ellipsometry (Chapter 3.2.3) 

• Surface topology and roughness investigation with the atomic force microscopy 

(AFM, Chapter 3.2.4) 

• Surface chemistry analysis by means of the contact angle measurement 

(Chapter 3.2.5) and determination of the contact angle hysteresis (Chapter 3.2.6) 

For the measurements in this section, the following aqueous solutions were prepared with the 

deionized water: (i) 0.1 M citric acid solution after degassing for 30 min and (ii) 200 mM KCl in 

0.1 mM HCl solution. 

 

3.2.1. Electrical Impedance Spectroscopy: Capacitance 

Electrical impedance spectroscopy (EIS) is a non-invasive analytic method that finds use in 

versatile applications (Chapter 2.3). In this study, potentio electrochemical impedance 

spectroscopy (PEIS) was applied as the measurement technique. To determine the 

capacitance of the dielectric coatings, the impedance spectra were analyzed with an equivalent 

circuit model, which electrically represents the system under investigation. The areal value of 

the capacitance can be obtained with reference to the involved electrode area.  

In this chapter, the capacitance per unit area was determined with a commercial potentiostat 

associated in two measurement setups for different dielectric layers: 

(i) Bulk solution setup for the native tantalum oxide layer and the anodic Ta2O5-layers 

(�+1<P = 20 – 50 V)  

(ii) Drop solution setup for the Ta2O5-ODTS-layer 
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3.2.1.1. EIS in a Bulk Solution 

To determine the capacitance per unit area (C/A) of the native tantalum oxide layer and the 

anodic Ta2O5-layers (�+1<P = 20 – 50 V), the PEIS measurements were performed in a bulk 

solution. 

Setup 

The setup was an electrochemical cell with a potentiostat and three electrodes in a bulk 

solution. As shown in Figure 3.8, the potentiostat serves as the power source, generates the 

voltage signal and traces the current feedback. The defined voltage signal was applied 

between the working electrode (WE) and the reference electrode (RE). The current flow was 

measured between the working electrode and the counter electrode (CE). Here, single 

sinusoidal signals were used for measurements in a defined frequency range (Table 3.1). 

 

 

Figure 3.8. Scheme of an electrochemical cell configured with three electrodes in a bulk solution 
and a potentiostat for the electrical impedance spectroscopy. CE: counter electrode, 
RE: reference electrode, WE: working electrode. 

Procedure 

First, the working electrode was prepared: In case of the native tantalum oxide layer, an 

electrode substrate was cleaned (Chapter 3.1.1) and mounted into the anodization cell 

(Figure 3.5). In case of an anodic Ta2O5-layer, an electrode substrate was cleaned and 

anodized (Chapter 3.1.2). The anodized electrode substrate was kept inside the anodization 

cell. 

Second, the electrode substrate was connected through the anodization cell as working 

electrode to a potentiostat (SP-300, Bio-Logic Science Instruments SAS, France) against a 

graphite counter electrode (44513-00, Phywe System, Germany) and a silver / silver chloride 

reference electrode (DRIREF-2, Sensortechnik Meinsberg GmbH, Germany). The three 

electrodes were inserted in the 0.1 M citric acid solution. 

 

 



 

 

3. Materials and Methods 

36 

 

The PEIS measurement was conducted under the instruction118-119 for using the software, EC-

lab V10.44 (Bio-Logic Science Instruments SAS, France), with the parameters listed in 

Table 3.1. 

Table 3.1. Parameters for the PEIS measurements of the Ta2O5 layer with EC-lab. 
 

parameter 

 

setting 

 

mode 

 

single sine 

frequency range 1 mHz – 10 kHz 

number of data points 7 per decade 

voltage offset 0.01 ∙ �+1<P (anodic oxide layer); 0.05 V (native oxide layer) 

sinus amplitude 0.01 ∙ �+1<P (anodic oxide layer); 0.05 V (native oxide layer) 

Third, the electrode substrate was demounted from the anodization cell after the PEIS 

measurement. It was rinsed with the deionized water and dried with the nitrogen flow. 

Data Processing 

The recorded impedimetric data were processed and analyzed with the same software, EC-

lab V10.44, according to the user manual119. The impedance spectra were plotted as Bode 

plots with the impedance modulus and the phase shift against the frequency (Figure 3.9 a). 

 

 

Figure 3.9. (a) Bode plot (black dots) of impedance modulus (left axis) and phase shift (right axis) 
against frequency for a Ta2O5 layer anodized at 50 V measured with PEIS. The fitted curves (red) 
based on (b) Equivalent circuit model for the tantalum oxide layer and the measurement solution. 
R1: Resistance of the measurement solution, C2, R2: Capacitance and resistance of tantalum 
oxide layer. 

The data were then fitted with the equivalent circuit model illustrated in Figure 3.9 (b) with the 

same software for the measurements. 
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The fitting was performed with the parameters listed in Table 3.2 to determine the value of C2. 

It indicates the capacitance of the Ta2O5 layer. The capacitance per unit area of the Ta2O5 

layer was calculated with reference to the electrode area (0.42 mm2). This was specified by 

the central aperture of the anodization cell. 

Table 3.2. Parameters for the data fit with EC-lab. 
 

fit parameter 

 

setting 

 

analysis tool 

 

Z-Fit 

equivalent circuit R1/ (R2+C2) 

fit method Randomize + Simplex 

weight |6| 
iterations (Randomize) 5000 

iterations (Simplex) 10000 

 

3.2.1.2. EIS on a Droplet of Solution 

To determine the capacitance per unit area of the Ta2O5-ODTS-bilayer, the PEIS measurement 

was conducted with two electrodes connected with a droplet of solution. These measurements 

also served as the calibration for the in-house developed EIS setup involved in the LV-EWOD-

EIS system (Chapter 3.3.1-3.3.2). 

Setup 

The setup consisted of the commercial potentiostat (SP-300, Bio-Logic Science Instruments 

SAS, France), an in-house-fabricated measurement cell (Chapter 3.3.1) and an imaging 

system (Chapter 3.3.1). 

In comparison with the PEIS measurements in a bulk solution with three electrodes 

(Figure 3.8), this electrochemical cell solely consisted of the potentiostat, a working electrode 

(WE) and a counter electrode (CE). Instead of a bulk solution, a droplet of solution connected 

the two electrodes electrically. The working electrode was the fabricated LV-EWOD electrode 

with a Ta2O5 layer anodized at 30 V as the initial layer and an ODTS top layer. The counter 

electrode was a miniaturized platinum electrode with a wire diameter of 0.23 mm. This 

electrochemical cell was set up in a measurement cell (Chapter 3.3.1). 

The potentiostat worked as the power source, the signal generator and the signal recorder.  

The imaging system was applied to determine the contact area of the working electrode to the 

drop (Chapter 3.3.1). 
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Procedure 

A fabricated LV-EWOD electrode without the oil conditioning was fixed in the in-house 

fabricated electrode-holder (Figure 3.13, Chapter 3.3.1). Through the holder, the electrode was 

connected through a spring pin as the working electrode to the potentiostat. The electrode 

holder was placed on a sample stage (Table 3.10, Chapter 3.3.1). Through a holding bar 

(Figure 3.13, Chapter 3.3.1) on the lifting stage, the platinum electrode was fixed right above 

the LV-EWOD electrode within the area of the anodic Ta2O5. The platinum electrode was 

connected as the counter electrode to the potentiostat. 

Immediately before the PEIS measurement, a 3 µL droplet of 200 mM KCl was positioned 

between the platinum wire and the LV-EWOD electrode surface. The PEIS measurement was 

conducted according to the user instruction118-119 with the following setting: 

Table 3.3. Parameters for the PEIS measurements of the ODTS-Ta2O5-bilayer with EC-lab. 
 

measurement parameter 

 

setting 

 

mode 

 

single sine 

frequency range 100 Hz – 10 kHz 

number of data points 5 per decade 

voltage offset 0.5 V 

sine amplitude 0.5 V 

Since the applied voltage was below the threshold for the EWOD effect, the droplet geometry 

maintained its static resting state. Shortly after the PEIS measurement was started, the 

imaging system was operated with a software written in Python (Chapter 3.3.1). The optical 

measurement was focused on the interfacial region of the droplet on the LV-EWOD-electrode. 

The diameter of the droplet-electrode contact area was determined with the profile images 

recorded in the optical measurement (Chapter 3.3.1). Both the PEIS measurement and the 

imaging acquisition took a few seconds. 

Data Processing 

The data fitting was performed according to the user manual119. A simplified equivalent circuit 

model with one resistor and one capacitor in a series connection (Figure 3.10) was used in the 

Z-Fit, the EC-lab analysis tool. 

 

Figure 3.10. Equivalent circuit model for the Ta2O5-ODTS-bilayer and the drop of solution. R: 
Resistance of the measurement solution, C: Capacitance of the bilayer. 
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In this equivalent circuit model, the resistor represents the resistance of the measuring solution 

and the capacitor stands for the total capacitance of the Ta2O5-ODTS-bilayer. For the 

frequency measuring range (Table 3.3), the resistance of the dielectric bilayers does not 

appear in the spectrum due to its very high value. Therefore, the equivalent circuit can be 

simplified in comparison to that in Figure 3.9 (b). 

The other parameters for the data fitting were identical to those listed in the Table 3.2. Through 

the data fitting, �  was determined. The contact area value ( � ) was calculated with the 

measured contact diameter ($.) according to the correlation � = �/G ∙ ? ∙ $.�. The capacitance 

per unit area of the Ta2O5-ODTS-bilayer was obtained with reference to the value of the contact 

area between the droplet and the LV-EWOD-electrode. 

 

3.2.2. Cyclic Voltammetry: Capacitive Behavior 

Cyclic voltammetry (CV) 120-121 is commonly used in electrochemical analysis for studying 

electrode coatings and electrochemical processes on the electrodes. The CV measurement 

was performed in this study with a droplet of solution in an immiscible oil surrounding to 

characterize the capacitive behavior of the MDS comprising the solid Ta2O5-ODTS-bilayer and 

a fluid oil layer as dielectrics. 

Setup 

The measurement setup was nearly identical to that for the PEIS measurement on a drop of 

solution (Chapter 3.2.1.2). It consisted of the commercial potentiostat (SP-300, Bio-Logic 

Science Instruments SAS, France), the imaging system for the EWOD-EIS system 

(Chapter 3.3.1) and the measurement cell (Chapter 3.3.1). 

The CV measurements was performed on a droplet in oil contained in the measurement cell. 

The electrochemical cell was comparable to that for the PEIS measurements with a bulk 

solution. Instead of a bulk solution, a drop of solution in oil connected the three electrodes 

(Figure 3.11). 

 

 

Figure 3.11. Optical image of the electrochemical cell for cyclic voltammetry (CV) measurements 
in an aqueous droplet connecting three electrodes in oil. WE: LV-EWOD electrode as working 
electrode, CE: platinum wire as counter electrode, RE: sintered Ag/AgCl wire as reference 
electrode. 
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The counter electrode (CE) and the reference electrode (RE) were inserted in the droplet 

resting on the working electrode (WE). In this study, the working electrode was a LV-EWOD 

electrode with a Ta2O5 layer (�+1<P = 30 V) and an ODTS top layer in association with a thin 

oil layer beneath the drop. The counter electrode was the miniaturized platinum electrode with 

a platinum wire and the reference electrode was a sintered Ag/AgCl wire. 

The potentiostat and the imaging system were used to fulfill the same tasks as described in 

Chapter 3.2.1.2. 

Procedure 

Comparable to the PEIS measurement on a droplet, a LV-EWOD electrode was fixed in the 

electrode holder (Figure 3.13, Chapter 3.3.1).  The electrode holder was positioned in 

tetradecane (oil) contained by a glass cuvette (Figure 3.13, Chapter 3.3.1.) and connected to 

the potentiostat as the working electrode. A 10 µL droplet of 200 mM KCl solution was placed 

in tetradecane on the LV-EWOD electrode within the region of the anodic Ta2O5 layer. The 

platinum electrode and the sintered Ag/AgCl wire were inserted into the drop (Figure 3.11) and 

connected to the potentiostat as the counter electrode and as the reference electrode 

respectively. 

The CV measurements were performed according to the user manuals118-119 for the software, 

EC-lab V10.44 (Bio-Logic Science Instruments SAS, France). The applied electrical signal 

processed a triangle waveform with the parameter settings listed in Table 3.4. 

Table 3.4. Parameters for the CV measurements with EC-lab. 
 

CV-parameter 

 

setting 

 

starting potential 

 

0.1 V vs. RE 

scan rate 32 mV/s (oil) 

maximal potential 0.4 V vs. RE 

minimal potential 0.1 V vs. RE 

cycle numbers 3 

Since the applied maximal potential (0.4 V vs. RE) was below the electrowetting excitation 

threshold, the droplet presented no electrowetting behavior and remained in a static resting 

state during the entire CV measurement. Analog to the imaging measurement for PEIS on a 

drop of solution (Chapter 3.2.1.2), the diameter of the contact area between the droplet and 

the LV-EWOD electrode was measured with the imaging system operated with the Python 

script (Chapter 3.3.1). 
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Data Processing 

The recorded data were processed with the software, EC-lab V10.44, according to the user 

manual119. A baseline correction was performed to the current data with the program Origin 

(OriginPro 8.5, OriginLab Corporation, United States). The cyclic voltammogram was obtained 

by plotting the current response against the applied voltage between the working electrode 

and the reference electrode. 

 

3.2.3. Ellipsometry: Layer Thickness 

Ellipsometry122-123 is a non-contact and non-destructive spectroscopic analysis method for thin 

film characterization concerning the layer thickness and the optical properties (reflection index, 

extinction coefficient). In this study, imaging ellipsometry was applied to determine the 

thickness of the anodic Ta2O5 layers (�+1<P = 20, 30, 40 and 50 V) and that of the ODTS 

coating. 

Principle 

The general principle123 of ellipsometry is based on the change of polarization states of a 

polarized light beam reflected on a surface. The change or maintenance of the polarization 

state depends on the optical properties (refraction index, extinction coefficient) of the sample 

material as well as on the layer thickness. The polarization state is described by the amplitude 

and the phase shift of the p component (parallel to the incident plane) and s component 

(perpendicular to the incident plane) of the polarized light. As shown in the fundamental 

equation of ellipsometry124 (Eq. 3.1), the polarization state change is experimentally 

determined with two ellipsometric parameters, Delta (∆) and Psi (ψ): 

B+1 ^8_` = =a
=b  3.1 

Delta relates to the phase shift difference between the p and the s component. Psi corresponds 

to the amplitude reduction, which is the reflection coefficient (=) ratio between the p and the s 

component. 

Procedure 

To determine the different thicknesses of the anodic Ta2O5 layers, specimens under 

investigation were the electrode substrates with the Ta2O5 layers fabricated through 

anodization at 20, 30, 40 and 50 V respectively (Chapter 3.1.2). Shortly before the ellipsometry 

measurement, the specimen was cleaned again with the acid piranha solution (Chapter 3.1.1, 

cleaning step 1). The ellipsometry measurements were conducted according to the operating 

instructions125 using a spectroscopic imaging ellipsometer (EP3). The measurement 

parameters were listed in Table 3.5. 
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To obtain the ODTS layer thickness, a prerequisite was the precisely known thickness of the 

Ta2O5 initial layer. First, an electrode substrate with an anodic Ta2O5 initial layer (�+1<P = 30 V) 

was measured with the ellipsometer (EP3) to determine the Ta2O5 layer thickness. Second, 

this electrode substrate was activated with the oxygen plasma (Chapter 3.1.3) and coated with 

an ODTS layer (Chapter 3.1.4). After the LV-EWOD electrode was fabricated, the ellipsometry 

measurement was performed with the parameter settings listed in Table 3.5. 

Table 3.5. Parameters for the ellipsometric measurements of Ta2O5 layers and ODTS coatingVI. 
 

measurement parameter 

 

anodic Ta2O5 layers 

 

ODTS coating 

 

wavelength (λ) 

 

658 nm, 532 nm 

 

532 nm 

microscope objective 20x magnification 20x magnification 

angle of incidence (AOI) 70° 40° 

region of interest (ROI) 3 ROIs 3 ROIs 

measurement averaging 4-zone 4-zone 

 

Data Processing 

The data processing was performed according to the user manual126 for the analyzing software 

(EP4 Model 1.2.0). With the software, a sample layer stack was set up as model. Based on 

the fabrication process of the LV-EWOD electrode (Figure 3.1), the model for the substrate 

with an anodic Ta2O5 layer consists from bottom up of Ta, Ta2O5 and air. For the LV-EWOD 

electrode, ODTS was added between Ta2O5 and air in the model. The ellipsometry data were 

fitted according to the model using the reflection index (�) and the extinction coefficient (c) for 

each layer listed in Table 3.6. Due to the large variability of the tantalum lattice structure 

depending on the sputter procedure, the parameters for the tantalum layer were experimental 

specified with the best fit of Psi and Delta based on the literature value10. 

  

                                                 

VI The anodic Ta2O5-layers were measured with the ellipsometer (EP3 View, Accurion, Germany) at the 

wavelength of 658 nm in the Department of Biomaterials in the Institute for Bioprocessing and Analytical 

Measurement Techniques (IBA). The ODTS coating thickness was determined with the ellipsometer 

(EP3 View V260, Nanofilm Technologie, Germany) at the wavelength of 532 nm in the research group 

of Prof. Dr. A. Janshoff in the Institute for Physical Chemistry at the University of Göttingen. 
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Table 3.6. Refractive index (�) and extinction coefficient (c) of each layer for the analysis model. 
 

layer 

 

refractive index (�) 

 

extinction coefficient (c) 

 

reference 

 

Ta 

(λ = 532 nm) 

 

2.92 

 

3.33 

 

experimental value 

Ta 

(λ = 658 nm) 
2.92 2.13 experimental value 

Ta2O5 2.22 0 76, 127 

ODTS 1.46 0 128 

air 1.00 0  

For the ellipsometry measurements, all used equipment and software were supplied by 

Accurion GmbH in Germany. 

 

3.2.4. Atomic Force Microscopy: Surface Topology and Roughness 

Atomic force microscopy (AFM) is an important and widely used analysis method to determine 

the surface topology and surface chemistry. AFM can highly resolve the scanned surface 

almost at the scale of the atomic level. As a standard analytical technique, AFM is described 

in detail concerning its working principle, the physiochemical background and its applications 

in textbooks129-130. In this study, AFM was applied to topologically scan and image the surface 

of the anodic Ta2O5 layers as well as that of the ODTS coating. 

Setup 

An atomic force microscope, NanoWizard® 4 NanoScience, was placed on a vibration isolation 

system (Accurion GmbH, Germany) equipped with a JPK TopViewOptics™ camera. This 

setup was located in a JPK acoustic enclosure on a JPK base. For specimens with either a 

Ta2O5 surface or a silane surface, AFM cantilevers with a Si3N4-tip (NCHR-50, Pointprobe®-

Silicon SPM-Sensor, non-contact mode, Nanoworld, Germany) were used. 

The AFM preparation and operation were performed with the SPM software (software v.6).  

Procedure 

The specimen was attached to a glass slide and placed on the sample stage. The 

measurement was prepared according to the user manual131 for the NanoWizard® devices. In 

case of the specimens with a Ta2O5 surface, the cantilever end was controlled with the 

TopViewOptics™, which was positioned right over the anodic Ta2O5 area. 
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For a Ta2O5 surface, the tapping mode (AC mode)131 in air was set in the software for 

measurement. For an ODTS surface, the quantitative imaging (QITM) mode131 in air was 

selected due to the strong repulsive interaction between the hydrophobic surface and the 

hydrophilic cantilever tip.132 The scanning was performed according to the user manual131 with 

the following parameter settings for the Ta2O5 surface and for the ODTS surface respectively. 

Table 3.7. Parameter settings for the AFM imaging of a Ta2O5 surface (left) and for that of an 
ODTS surface (right). 

 

AC mode  

 

QITM mode 

 

I Gain 

 

300 Hz  
 

Cantilever 

 

NCH-AC 

Set point 0.598 V  Set point 13.24 nN 

Z-range 5 µm  Z-length 0.172 µm 

Line rate 1 Hz  Speed 64.18 µm/s 

The topographical information was repeatedly collected with different specimens and various 

regions of interest with a size of 20 µm x 20 µm. 

Data Processing 

With the software, JPK data processing (Version 6.0.64), the topographical information of each 

scanned region was processed to an image. The data processing was operated according to 

the software manual133. Each image and its roughness were obtained through following 

operations: (i) The height data were corrected through a line-by-line fitting with a polynomial 

function. (ii) The root-mean-square value of roughness (=XSU ) was determined with the 

histogram tool in the software. 

All applied equipment, accessories and softwares for the AFM measurement were provided by 

JPK instruments in Germany, when no other assignment is mentioned. 

 

3.2.5. Contact Angle Determination: Surface Hydrophobicity 

Contact angle measurement39 is a method for characterizing the surface chemistry. The 

contact angle describes the wettability of a surface by a liquid in a second fluid phase (gas or 

another immiscible liquid). In the case of a water droplet on a surface, low contact angle values 

indicate surface hydrophilicity and high contact angle values indicate hydrophobicity.41 The 

quantitative correlation between the contact angle and the interfacial tensions is described by 

the Young’s equation (Eq. 2.1).  

Here, the 3-phase-circumstances under investigation were (i) a water droplet on the anodic 

Ta2O5 surface in air, (ii) a water droplet on the ODTS surface in air and (iii) a water droplet on 

the ODTS surface in oil. 
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Setup 

In this study, the sessile drop method was used with the tangent leaning fitting to determine 

the contact angle. The same measurement principle was applied for the droplet geometry 

determination with the imaging system constructed for the LV-EWOD-EIS system 

(Chapter 3.3.1). 

The measurement setup was a commercial contact angle measurement system (OCA 20) and 

its software (SCA 20). The equipment consists of a camera, a back light, a dosing system and 

a sample table. The software controls the droplet dosing, the baseline setting and the contact 

angle determination with the tangent leaning fitting method. The equipment and the software 

were supplied by the company, Dataphysics instruments in Germany. 

Procedure 

The specimens for the three measurement circumstances were (i) an anodized electrode 

substrate after cleaning with the acid piranha solution (Chapter 3.1.1, cleaning step 1), (ii) an 

electrode substrate with a Ta2O5 initial layer (�+1<P = 30 V) and an ODTS top layer and (iii) a 

fabricated LV-EWOD electrode immersed in tetradecane (oil) in a glass cuvette. For all 

specimens, the measurements were performed according to the user manual134 with the 

setting listed in Table 3.8. 

Table 3.8. Parameters for the contact angle measurements. 
 

measurement parameter 

 

setting 

 

droplet size 

 

3 µL 

droplet solution deionized water 

calculation tangent leaning 

number of data points 15 

number of measured sites 3 

Each circumstance was measured on three sites of the specimen surface. For each 

measurement, the mean contact angle was determined by averaging the left and right contact 

angle. Fifteen data points were recorded for the statistic mean value and standard deviation. 
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3.2.6. Measurement of Contact Angle Hysteresis: Surface Friction 

Contact angle hysteresis (CAH)39, 135 indicates the surface resistance against drop motion. 

CAH is defined as the difference between an advancing contact angle (�+Pd) and a receding 

contact angle (�R(.) as below: 

��e = ��$f − �g8	 3.2 

These two contact angles can be determined with two measurement techniques: (i) dynamic 

sessile drop method and (ii) tilting method. 

Two Measurement Techniques 

In case of the dynamic sessile drop method18, the volume of a sessile drop is continuously 

varied. The advancing angle is measured as the maximal contact angle, while the drop volume 

is increased, before its contact area to the substrate advances. Reversely, the receding angle 

is measured as the minimal contact angle, while the drop volume is decreased, before the 

contact area recedes. 

In case of the tilting method20, the measurement system with a sessile drop resting on the 

specimen is tilted to bring the drop into motion. While the drop moves, its larger contact angle 

on one site of the interfacial intersection is measured as the advancing contact angle. Its 

smaller contact angle on the other site is the receding contact angle. 

In this study, the two methods were used for two different measurement circumstances: (i) For 

a water droplet on the ODTS surface in air, the CAH was determined with the dynamic sessile 

drop method. (ii) For a water droplet on the ODTS surface in an oil environment, the tilting 

method was applied to determine the CAH.  

Under the circumstance (i) in air, the large surface friction hindered the droplet motion despite 

of the system tilting to a large extent. This CAH could not be measured with the tilting method. 

Under the circumstance (ii) in the oil surrounding, the needle for dispensing and reverse 

dispensing could not be kept inserted in the drop. This made the CAH of this circumstance not 

measurable with the dynamic sessile drop method. Therefore, the CAHs of the two 

circumstances were determined using different measurement techniques. 

Setup 

The contact angle system (OCA 20) and the software (SCA 20) used for the CAH 

measurement were the same equipment and software involved in the contact angle 

determination (Chapter 3.2.5). 

Procedure 

Both CAH measurements were performed according to the user manual134. The specimen for 

the measurement circumstance (i) was an electrode substrate with a Ta2O5 initial layer 

(�+1<P = 30 V) and an ODTS top layer. The advancing and the receding contact angle were 
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successively determined using the dynamic sessile drop method with the parameters listed in 

Table 3.9. The CAH was calculated with Eq. 3.2. 

Table 3.9. Parameters for the CAH measurements with the dynamic sessile drop method. 
 

measurement parameter 

 

setting 

 

mode 

 

needle in 

velocity of dispensing and 

reverse dispensing 
3 µL/s 

droplet solution deionized water 

calculation tangent leaning 

number of data points 15 advancing contact angles, 15 receding contact angles 

number of measured sites 3 

The specimen for the measurement circumstance (ii) was a fabricated LV-EWOD electrode 

immersed in tetradecane (oil) in a glass cuvette. The advancing and the receding contact angle 

were determined with the tilting method. Besides the tilting of the sample stage, the 

measurement parameter setting was identical to that for the contact angle determination 

(Table 3.8). The CAH was calculated with Eq. 3.2. 
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3.3. Integrated LV-EWOD-EIS Systems 

A novel integrated LV-EWOD-EIS system associated with optical imaging was established 

within this doctoral research for the online investigation of the EWOD effect by EIS and imaging. 

Its setup, as demonstrated in Figure 3.12, consists of four modules: (I) measurement cell, (II) 

electroanalytical instrument, (III) optical imaging instrument and (IV) software. This modular 

setup enables versatile investigation and application opportunities through its adaptability to 

the individual measurement tasks. 
 

Figure 3.12. Schematic setup of the integrated LV-EWOD-EIS system associated with optical 
imaging. Modular setup with (I) measurement cell, (II) electroanalytical instrument, (III) optical 
imaging instrument and (IV) software. 

In this doctoral research, two measurement principles were applied: EWOD integrated with 

EIS in frequency domain (Chapter 2.1.2.1) and EWOD integrated with dynamic EIS 

(Chapter 2.1.2.2). These two measurement principles were implemented by two experimental 

setups consisting of the four modules. They share the measurement cell and the optical 

imaging instrument but utilize individual electroanalytical instruments and are controlled by 

different software programs.  

In this section, the four modules composing this integrated system are individually presented 

in the beginning (Chapter 3.3.1). For each module, their components are introduced with the 

focus on the functionality and the specification. The two subsequent chapters are devoted to 

one measurement application with frequency-domain EIS (Chapter 3.3.2) and to another with 

dynamic EIS (Chapter 3.3.3). Each measurement application is described in detail concerning 

the measurement setup, the procedure and the data processing. 
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3.3.1. Integrated System with Modular Setup 

I. Measurement Cell 

Concerning the role in the integrated LV-EWOD-EIS system, the measurement cell contains 

the object under investigation: an aqueous saline drop on the LV-EWOD electrode surrounded 

by an immiscible oil (tetradecane). In principle, the centerpiece is an electrochemical cell in oil 

with the LV-EWOD electrode as the working electrode, the droplet as the electrolyte solution 

and a platinum electrode as the counter electrode. 

 

 

 

Figure 3.13. Measurement cell setup and its disassembled components: a LV-EWOD 
electrode (I.1), an electrode holder (I.2), a platinum electrode (I.3), a glass cuvette (I.4), a 
transparent hood (I.5) and a holding bar (I.6). 

The measurement cell setup and its disassembled hardware components are shown in 

Figure 3.13. The LV-EWOD electrode (I.1) was fabricated according to Chapter 3.1. The 

electrode holder (I.2), the platinum electrode (I.3), the transparent hood (I.5) and the holding 

bar (I.6) were developed and fabricated in-house. Technical drawings are enclosed in 

Appendix 7.7 (Li02, Li03, Li04, Li05, Li06, Li07, Li08). The glass cuvette (I.4) was a high 

precision glass cell made for optical spectroscopy and supplied by Hellma Analytics, Germany. 

The functionality and specification of each component are listed in the following table. 
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Table 3.10. Functionality and specification of the hardware components in the measurement cell. 
 

component name 

 

functionality and specification 

 

LV-EWOD electrode 

(I.1) 

 

The electrode coating consists of an anodic Ta2O5 initial layer 

fabricated at 30 V and an ODTS top layer. The electrode was 

conditioned in tetradecane. (Chapter 3.1) 

It enables the EWOD effect to be induced by applying low voltages, 

which is the foundation for the integrated EWOD excitation and EIS 

measurement using one signal. 
 

electrode holder 

(I.2) 

 

The electrode consists of a bottom part, an upper part and two 

screws. 

The bottom part has an indentation for fixing an EWOD electrode. 

The upper part processes a spring pin and a thin cable for connecting 

an electrical measurement device. 

With two screws, the electrode holder is mounted with an EWOD 

electrode positioned on the bottom part and half covered by the 

upper part. The EWOD electrode can be connected to the electrical 

measurement device   
 

platinum electrode 

(I.3) 

 

The platinum electrode served as the counter electrode in the 

electrical measurements. 

It consists of a pure platinum wire with a diameter of 0.23 mm (purity 

proven by energy-dispersive X-ray spectroscopy) soldered on a thin 

cable and fixed in a glass capillary within a holder. The platinum 

electrode can be fixed on the holding bar (I.6) on a sample stage to 

be set at a proper distance to the EWOD electrode. 
 

glass cuvette 

(I.4) 
 

 

The glass cuvette has a size of 40 mm (l) x 40 mm (w) x 20 mm (h). 

It serves as a container for tetradecane as the fluid surrounding for 

the EWOD experiment. Its transparent glass walls permit high 

transmission of light and support the good image quality in the optical 

measurement. 
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transparent hood 

(I.5) 

 

The transparent hood serves mainly to minimize oil evaporation and 

contaminations, such as dusts, from the ambient air.  

It consists of two assembled parts for positioning around the glass 

cuvette (I.4). Each part has an opening on the side to let the light 

beam pass through the cuvette for optical detection. Another 

opening on the top side enables the positioning of the platinum 

electrode in a short distance to the EWOD electrode. 
 

holding bar 

(I.6) 

 

 

The holding bar is fixed on the sample stage to enable a proper 

configuration of the counter electrode, working electrode and 

reference electrode (if used). 

 

sample stage 

 

The sample stage supports the measurement cell and facilitates its 

independent position adjustment in the x-, y- and z- direction. It can 

be adjusted in the horizontal plane to control and avoid the stage 

tilting.  

It consists of following components:  

• a microscope table for the position adjustment in the x- and 

y- direction 

• a rod to fix the holding bar for the counter electrode 

• a lifting platform (Rudolf Grauer AG, Switzerland) for the 

height adjustment  

a base with four height-adjustable pillars and a spirit level for precise 

setting in the horizontal plane  

 

II. Electroanalytical Instruments 

The simultaneous LV-EWOD excitation and EIS measurement were achieved using the 

electroanalytical instrument. It consists of a digital USB oscilloscope, a transimpedance 

amplifier and a power source. The oscilloscope fulfills two tasks: It serves as an arbitrary 

waveform generator and possesses two measurement channels, Channel 1 and Channel 2, 

for simultaneously recording the applied signal and the signal response in units of voltage. The 

transimpedance amplifier30 converts the signal response in current to voltage. The 

amplification can be adjusted by setting the value of a feedback resistor, so that the signal 

response can be recorded by the oscilloscope. The signal generation, the data acquisition and 

the response analysis are controlled by software programs written in Python (Chapter 3.3.1.IV). 
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The LV-EWOD-EIS system was implemented using two hardware setups (Table 3.11), one for 

measurements using frequency-domain EIS (Chapter 3.3.2) and the other using dynamic EIS 

(Chapter 3.3.3). 

Table 3.11. Hardware components of two instrumental setups corresponding to measurement 
applications with frequency-domain EIS and with dynamic EIS respectively. 

 

hardware 

components 

 

frequency-domain EIS 

 

dynamic EIS 

 

oscilloscope 

 

Handyscope HS3 (Tiepie 

engineering, Netherlands) 

 

Handyscope HS5 (Tiepie 

engineering, Netherlands) 

transimpedance 

amplifier 

in-house developed and 

fabricated front-end 

transimpedance amplifier and 

feedback resistor 

variable gain high speed current 

amplifier DHPCA-100 (FEMTO 

Messtechnik GmbH, Germany) 

power supply 
in-house fabricated power supply, 

output: ± 12 V 

Traco Power (Traco electronic AG, 

Germany), output: DC ± 15 V 

Sufficient measurement accuracy was confirmed for both setups by calibration with standard 

RC combinations.  

In comparison to the conventional EIS equipment based on a commercial potentiostat (ref. 

Chapter 3.2.1), the two in-house developed setups possess several advantages: 

programmable input signal for combination with EWOD excitation, extended voltage 

measurement range, low-cost and small size. 

 

III. Optical Imaging Instrument 

In parallel to the electrical analysis, EWOD effect was investigated by the online optical 

detection of the droplet geometry parameters including contact angle and contact diameter. 

The optical measurement was implemented with a high-speed imaging instrument. 

The hardware setup consists of a high-speed camera (Pike F-032C, Allied Vision Technologies 

GmbH, Germany) with an associated objective (Micro-NIKKOR 105mm f/2.8, Nikon, Japan) 

and a simple LED (light-emitting diode) lamp with a dimmer as back light. The specification of 

the high-speed camera is listed in Table 3.12. 
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Table 3.12. Specification of the Pike high-speed camera.136 

 

parameter 

 

technical data 

 

camera type 

 

video graphic array camera 

sensor technique CCD 

sensor type KAI-0340 

cell size / µm2 7.4 x 7.4 

interface IEEE 1394b Fire Wire - 800Mb/s 

For the measurement applications in this doctoral research, the imaging instrument recorded 

images at a high rate between 715 and 720 frames per second for a defined observation 

window with a length of 640 pixels and a height of 100 pixels. This observation window was 

set at the maximal zoom of the objective and covered the entire intersect region of a 3 µL 

droplet on the EWOD electrode in oil (Figure 3.14). 

Figure 3.14. Recorded image of the intersection region of a 3 µL droplet on the EWOD electrode. 
Image analysis with the baseline and the two tangent lines yields the right and the left contact 
angles as well as the diameter of the contact area. 

The image acquisition and analysis were controlled and implemented with software programs 

written in Python (Chapter 3.3.1.IV). 

The high-speed imaging instrument in combination with the software programs possess the 

functionalities comparable to a commercial contact angle measurement system (ref. 

Chapter 3.2.5) for setting base line and image contrast as well as for measuring the contact 

angle and contact area. Moreover, it is advantageous in the high-speed image recording, the 

programmed simultaneous measurements with electric analysis and low cost.  
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IV. Software ProgramsVII 

To simultaneously implement the EWOD excitation, the EIS measurement and the optical 

imaging analysis, software programs were developed to achieve a centralized control of 

hardware units, automatic data acquisition and basic data processing. 

Four software scripts were written in-house in Python 2.7 (Python Software Foundation) for 

the two measurement applications: one with frequency-domain EIS (Chapter 3.3.2) and the 

other with dynamic EIS (Chapter 3.3.3). The four program codes are enclosed on the 

webpage137 of Institute for Bioprocessing and Analytical Measurement Techniques (IBA). Their 

main functionalities and applications are summarized below: 

Program 1: acquiretheta3 

This program serves to prepare the image acquisition in both measurement applications 

(Chapter 3.3.2 and 3.3.3). It enables the baseline setting and tilting in the observation window 

to fit the droplet-electrode-intersection (Figure 3.14) and the regulation of the image contrast. 

Moreover, the platinum wire diameter was measured with this program for determining the 

actual pixel-to-millimeter ratio used for the unit-conversion in analyzing the recorded images.  

Program 2: Impedancecameraloop13 

This program combines the imaging with the simultaneous EWOD excitation and frequency-

domain EIS for the measurement application presented in Chapter 3.3.2.  

It serves to define the key parameters of a sinusoidal voltage signal concerning its frequency, 

amplitude, offset and signal length. The Handyscope generates the electrical signal for the 

EWOD excitation and acquires the EIS measurement data. Moreover, this program 

implements loops that enable the automation of measurements covering a wide range of 

frequencies and voltage amplitudes. Concerning the imaging functionality, it triggers the high-

speed camera for continuous image acquisition at each frequency and voltage. 

This program serves to record the applied signal and the signal response as a voltage signal 

and to convert the signal response in current via the given value of the feedback resistor. 

Based on the theory of frequency-domain EIS (Chapter 2.1.2.1), the impedance and the phase 

shift are determined in this program using the applied voltage signal and the current feedback. 

Concerning the image analysis, this program determines the contact diameter of the droplet- 

electrode-intersection and calculates the average contact angle from the measured left and 

right contact angles. 

 

                                                 

VII Program 1, 2 and 3 were mainly written by Dr. Brian Cahill (Junior Researcher Department) at IBA. 

Program 4 was mainly written by Jiaji Pan (former intern of Department for Analytical Measurement 

Techniques) at IBA. 
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Program 3: aquaretheta5 

This program supports a continuous image acquisition and analysis. It was used in parallel to 

the dynamic EIS measurement (Chapter 3.3.3). It is manually triggered at the measurement 

beginning of the dynamic EIS. It records and analyzes the droplet deformation along the 

staircase voltage signal with a high time resolution. It yields the contact area and the average 

contact angle from the measured left and right contact angles. 

Program 4: staircase 

In this program, the EWOD excitation and the dynamic EIS measurement are integrated using 

a staircase voltage signal with a square wave function on each voltage step (Figure 2.7, 

Chapter 2.1.2.2). Its measurement application is described in Chapter 3.3.3. 

This program allows to define the frequency and the voltage amplitude of the square wave 

function as well as the maximal voltage of the staircase signal. The applied signal and the 

signal response are both recorded as voltage signals in a very high time resolution. 

 

3.3.2. LV-EWOD with Frequency-Domain EIS 

For investigation of the frequency dependence of the EWOD effect, the LV-EWOD-EIS system 

(Figure 3.12) was applied to integrate EWOD excitation, frequency-domain EIS and optical 

imaging. The measurements yielded the raw data for determination of the EWOD-related 

variables (Chapter 4.2) at different frequency (100 Hz – 1 MHz) under the voltage variation 

(0.5 V – 5 V) for a 3 µL droplet of a KCl solution (6.25 mM – 200 mM). 

SetupVIII 

The measurement setup consisted of the four modules of the LV-EWOD-EIS system 

(Figure 3.12). In Module II (electroanalytical instrument, Table 3.11), the centerpieces were 

the Handyscope HS3 and the in-house fabricated transimpedance amplifier (Figure 3.15). The 

circuit diagram of the later is enclosed in Appendix 7.6. 

The transimpedance amplifier, as shown in Figure 3.15, was connected to the Handyscope 

HS3 via its three channels (AWG, Ch1, Ch2), and connected to the measurement cell via the 

working electrode (WE) and the counter electrode (CE). A feedback resistor was attached to 

the amplifier to set the transimpedance gain. A power supplier was connected to the backside 

of the transimpedance amplifier. The Handyscope HS3 and the imaging instrument 

(Chapter 3.3.1.III) were connected to a computer that carried out the software programs 

(Chapter 3.3.1.IV). 

                                                 

VIII The in-house fabricated transimpedance amplifier and the power supplier were provided by the 

Department of Analytical Measurement Techniques at IBA. 
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Figure 3.15. Transimpedance amplifier with a changeable feedback resistor, connections to the 
working electrode (WE) and the counter electrode (CE) as well as connections to the three 
channels of the Handyscope. AWG: arbitrary waveform generation, Ch1: Channel 1 for recording 
the applied signal, Ch2: Channel 2 for recording the response signal. 

 

Procedure 

First, a 3 µL droplet of KCl solution (6.25 mM – 200 mM) was placed on the LV-EWOD 

electrode (working electrode) in tetradecane in the measurement cell (Figure 3.13). The 

platinum electrode was inserted in the droplet and served as counter electrode. Both 

electrodes were connected to the transimpedance amplifier (Figure 3.15). Depending on the 

KCl-concentration in the droplet, an appropriate feedback resistor (Table 3.13) was used in the 

measurement setup. 

Table 3.13. KCl concentrations in the droplet and the correspondingly used feedback resistors. 
 

KCl concentration / mM 

 

resistor value / kΩ 
 

200 

 

1.203 

100 2.207 

50 6.860 

25 7.400 

12.5 14.90 

6.25 27.00 

Second, the Python program “acquiretheta3” (Program 1, Chapter 3.3.1 IV) was executed to 

prepare the imaging measurement. 
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Third, the simultaneous EWOD excitation, EIS in the frequency domain and imaging 

measurement were conducted by using the Python program “impedancecameraloop13” 

(Program 2, Chapter 3.3.1 IV) with the following parameter setting (Table 3.14). 

Table 3.14. Parameter setting for the simultaneous EWOD excitation, EIS in the frequency 
domain and imaging measurement. 

 

 

 

parameter 

 

 

 

variable label in the program code 

 

 

 

values / unit 

 

number of frames recorded per 

amplitude and per frequency  

 

frames 

 

10 – 100 

initial excitation frequency exfreqstart 1000000 Hz 

final excitation frequency exfreqend 100 Hz 

frequency values per decade perdecade 5 

initial excitation amplitude amplitudestart 0.5 V 

final excitation amplitude amplitudeend 5 V 

number of amplitude values amplitudeloops 10 

amplitude increment amplitudesteps 0.5 V 

resistance of feedback resistor feedback Table 3.13 

The measurement series were performed in the frequency range from 1 MHz to 100 Hz using 

a sinusoidal alternating voltage signal with an offset (�<���(B) equal to the amplitude (�,,/�). 

The amplitude was varied from 0.5 V to 5 V in steps of 0.5 V. Measurements were conducted 

with several EWOD electrodes and repeated three times with each electrode to ensure the 

reproducibility. 

Data Processing 

The data processing was automatically conducted by the measuring program 

“impedancecameraloop13” (Program 2, Chapter 3.3.1 IV) for each single measurement at 

each frequency and applied voltage. Based on the theory of frequency-domain EIS (Chapter 

2.1.2.1), the impedimetric data were analyzed to generate the impedance spectra and to 

determine the capacitive resistance, the capacitance and the resistance. Through the image 

analysis, the contact angle and contact area were obtained. 
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3.3.3. LV-EWOD with Dynamic EIS 

To investigate the dynamics and non-linearity in the EWOD system during electrowetting and 

dewetting, the LV-EWOD-EIS system (Figure 3.12) served to integrate dynamic EIS, EWOD 

excitation and optical imaging. The time-resolved response of a 3 µL droplet of the 200 mM 

KCl solution to a staircase voltage signal (Figure 2.7, Chapter 2.1.2.2) was recorded by 

determining the contact angle, the contact area and the MDS-capacitance in parallel. 

Setup 

The measurement setup consisted of the four modules in the LV-EWOD-EIS system 

associated with optical imaging (Figure 3.12). As Module II (electroanalytical instrument, 

Table 3.11), a dynamic EIS measurement device was designed in-house and assembled by 

the Department of Analytical Measurement Techniques at IBA. As a closed device, it 

possesses a power switch, a USB-port for connection to a computer with the software 

programs (Chapter 3.3.1.IV) and a coaxial cable as connection to the working electrode and 

to the counter electrode. Inside the dynamic EIS measurement device, the internal feedback 

resistor on the transimpedance amplifier was set at 100 Ω for the measuring condition in this 

study.  

Procedure 

First , the measurement cell (Figure 3.13) was setup with a 3 µL droplet of 200 mM KCl solution 

between the platinum electrode (counter electrode) and the LV-EWOD electrode (working 

electrode) in analogy to the measurement preparation described in Chapter 3.3.2. Both 

electrodes were connected to the dynamic EIS measurement device. 

Second, the Python program “acquiretheta3” (Program 1, Chapter 3.3.1 IV) was implemented 

to prepare the imaging measurement. 

Third, the Python program “staircase” (Program 4, Chapter 3.3.1 IV) was started to prepare 

the dynamic EIS measurement device for the measurement. 

Fourth, the Python program “staircase” with the following parameter setting (Table 3.15) and 

the Python program “acquiretheta5” (Program 3, Chapter 3.3.1 IV) were executed 

simultaneously. 

The dynamic EIS measurements were performed for one period (1 s) with a symmetric 

staircase signal consisting of 40 steps. Its maximal voltage was 6.12 V. At each voltage step, 

the voltage offset was superposed with a square wave function signal. It had a frequency of 

10 kHz and a peak-to-peak amplitude in a ratio of 0.1 to the maximal voltage in the staircase 

signal. The EWOD excitation and measurement began with the ascending ramp followed by a 

descending ramp. In parallel, the high-speed camera recorded 2500 image frames at the rate 

about 720 frame per second. Measurements were repeated three times with several EWOD 

electrodes to ensure the result reproducibility. 
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Table 3.15. Parameter setting for the simultaneous EWOD excitation and dynamic EIS. 

 

parameter 

 

variable label in the 

program code 

 

values / unit 

 

max. voltage of the staircase signal 

 

gen.amplitude 

 

6.12/5 V 

number of steps in the staircase signal steps 40 

frequency of the square wave function f1 10000 Hz 

peak-to-peak amplitude of the square 

wave function 
Amp 

0.1 x max. voltage of 

the staircase signal 

resistance of feedback resistor Trans_R 100 

 

Data Processing 

The recorded images were automatically analyzed by the Python program “acquiretheta5” 

during a measurement (Chapter 3.3.1.IV). The averaged contact angle and contact area were 

determined in a time-resolved manner. 

The data recorded in the dynamic EIS measurement were processed by Prof. Dr. Pliquett at 

IBA (Department for Analytical Measurement Techniques) within the funding project, 

“Impedanzspektroskopische Bioanalytik – schnell und hochparallel”, 2016 FGR 0040. The data 

processing was based on the theory of the dynamic EIS (Chapter 2.1.2.2). It was implemented 

by using software programs written in-house in Matlab (R2011, MathWorks, USA) and 

enclosed on the webpage137 of IBA. The determined parameters were the MDS-capacitance 

and the characteristic time of the contact area change at each voltage jump in the staircase 

signal. 
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4. RESULTS AND DISCUSSION 

4.1. Quality Features of Dielectric Layers in EWOD 

This section focuses on the characterization of EWOD-relevant parameters for the dielectric 

layers in the system under investigation, the multilayer dielectric stack (MDS). This 

characterization aims to specify the features of each dielectric layer with a view in three 

dimensions: surface, layer and material. This serves to assure the quality of the LV-EWOD 

electrode fabrication and to determine the resting state of the MDS without EWOD effect. 

The EWOD-relevant parameters are firstly defined in Chapter 4.1.1. The parameters are 

successively characterized for each dielectric layer (Ta2O5, ODTS and oil) individually and for 

the entire MDS in Chapter 4.1.2, 4.1.3, 4.1.4, as shown in the overview scheme (Figure 4.1). 

Lastly, conclusions from the parameter characterization are summarized in Chapter 4.1.5. 

 

Figure 4.1. Layer model for the object under investigation (Figure 2.11) and overview of the layer-
oriented chapter assignment concerning characterization of EWOD-relevant parameters for each 
dielectric layer individually and for the entire MDS. 

 

4.1.1. EWOD-Relevant Parameters 

Four EWOD-relevant parameters in the Young-Lippmann equation and its transformation 

(Eq. 2.26) are identified in Chapter 2.2.1.1 as key to the low-voltage EWOD. 

	
��� − 	
��� = *�*P�h��$ ∙ �� = ��h�� ∙ �� ∙ ��  2.26  

These key parameters are highlighted in blue: �� stands for the contact angle of droplet in its 

resting or dewetted state and reflects the surface hydrophobicity, �/� is the capacitance per 

unit area, $ the layer thickness and *P the relative permittivity of the entire dielectric layers in 

EWOD. 
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Besides the four parameters, a fifth essential parameter for EWOD, the surface friction against 

droplet motion, is indirectly implied in the Young-Lippmann equation by 	
��� − 	
���. Due 

to its possible influence on the droplet wetting and dewetting process, the surface friction may 

affect the minimal contact angle under voltage (��) and the reattainment of the contact angle 

at the resting state ( �� ). The surface friction can originate from the surface topology, 

specifically the roughness, which may lead to surface pinning and limit the change of the 

contact angle. 

These five EWOD-relevant parameters are classified into three categories: surface, layer and 

material property (Table 4.1). They were determined for each dielectric material in the MDS 

with various surface and layer analytics or through calculation. 

Table 4.1. Overview of analytic methods or calculation applied to determine the EWOD-relevant 
parameters for each dielectric layer in the MDS. AFM: atomic force microscopy, CAH: 
measurement of contact angle hysteresis, CA: contact angle measurement, CV: cyclic 
voltammetry, EIS: electrical impedance spectroscopy. 

target 

layer 

(liquid / 

solid) 

 

surface property 

 

layer property 

 

material 

property 

 

topology 

(roughness), 

friction 

hydrophobicity 

(��) 

capacitance 

per unit area   (�/�) 

thickness 

($) 

relative 

permittivity (*$) 

 

oil 

 

CAH 

 

CA 

 

CV, EIS 

 

calculationIX 

 

literature value 
 

silane 

 

AFM, CAH 

 

CA 

 

EIS 

 

ellipsometry  

calculationX  

Ta2O5 

 

AFM 

 

CA 

 

EIS 

 

ellipsometry 

For the surface characterization, the topology of the two solid layers (Ta2O5 and silane) was 

characterized by AFM (Chapter 3.2.4). The hydrophobicity of all layers was determined by 

means of contact angle measurement (Chapter 3.2.5). The friction against droplet motion was 

evaluated by measuring the contact angle hysteresis (Chapter 3.2.6) of the hydrophobic silane 

surface in air and in oil respectively. 

                                                 

IX The oil layer thickness was calculated with the transformed Eq. 2.11, $ = *$ ∙ *� ∙ ��, based on the 

measured �/� value and the *$ value from literature. 

X The relative permittivity of the silane layer and that of the Ta2O5 layer were calculated using the 

transformed Eq. 2.11, *$ = $*� ∙ ��. The $ and �/� values were determined experimentally. 
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For the layer analytics, the capacitance per unit area for each layer was obtained using 

EIS (Chapter 3.2.1) and the capacitive behavior of the MDS was investigated by 

CV (Chapter 3.2.2). The thickness of the two solid layers was measured by imaging 

ellipsometry (Chapter 3.2.3). The thickness of the fluid oil layer was indirectly determined with 

its capacitance per unit area from the EIS analysis and its relative permittivity from the literature. 

The material property, relative permittivity, was specified for the Ta2O5 and the silane layer 

fabricated in this research through calculation. This is based on the correlation of this material 

property to the measurable layer properties, the capacitance per unit area and the layer 

thickness (Eq. 2.11).  

In the following chapters, a layer-by-layer characterization is presented for the Ta2O5 layer 

(Chapter 4.1.2), silane layer (Chapter 4.1.3), oil layer as well as the entire MDS (Chapter 4.1.4) 

with the focus on their EWOD-relevant parameters. 

 

4.1.2. Ta2O5 Thin Layer with High Relative Permittivity 

As the essential component of the EWOD electrode, an anodic thin Ta2O5 layer should serve 

as a dielectric with high relative permittivity, high capacitance and high dielectric strength. It is 

located adjacent to the electrode substrate and is the layer onto which the silane coating binds 

(Figure 4.1). The Ta2O5 layer was fabricated through anodization (Chapter 3.1.2). 

 

4.1.2.1. Homogeneous Smooth Hydrophilic Ta2O5 Surface 

A representative Ta2O5 layer, which was formed through anodization at 30 V, is shown to be a 

homogeneous surface in the AFM image (Figure 4.2 a). 

 

 

Figure 4.2. AFM images with their color-height correlations for (a) anodic Ta2O5 layer 

( �+1<P = 30 V) with a root-mean-square roughness of 0.31 nm, (b) anodic Ta2O5 layer 

(�+1<P = 50 V) with a root-mean-square roughness of 0.47 nm. 
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Besides the homogeneity, this surface was very smooth. Its root-mean-square roughness 

(=XSU) of 0.31 nm is negligible in comparison to its layer thickness of 59 nm (Figure 4.5). 

Moreover, homogeneous surfaces with a comparable smoothness were observed for the other 

anodic Ta2O5 layers (e.g. �+1<P = 50 V, Figure 4.2 b) as well. This suggests anodization to be 

an appropriate method for fabricating a Ta2O5 layer with a homogeneous and smooth surface. 

This appropriate surface topology may benefit a homogeneous and smooth subsequent 

coating of silane monolayer. In comparison, De Palma et al.116 reported a root-mean-square 

roughness of 0.8 nm for a dry-cleaned native Ta2O5 surface. Anodized Ta2O5 with a mean 

roughness of 0.6 nm was used by other researchers as initial layer for a thin fluoropolymer 

coating for low-voltage EWOD72. 

Furthermore, the Ta2O5 surface after the anodization was thoroughly wetted by water. The 

water contact angle in air on the Ta2O5 surface was measured to be 9° (Table 4.2 for 

comparison of the surface property between Ta2O5 and ODTS). This reveals the Ta2O5 surface 

to be very hydrophilic. 

 

4.1.2.2. Ta2O5 Layer Thickness 

In the optical image (Figure 4.3), the anodic Ta2O5 layers show different colors (dark red to 

bright blue) depending on the anodization voltage (20 – 50 V). The color is not a material 

property of Ta2O5, since Ta2O5 is transparent as bulk material and its extinction coefficient 

equals zero.  

 

Figure 4.3. Optical image of the electrode substrates with a Ta2O5 layer anodized in the round 
middle area at various voltages (20 – 50 V). 

The color results from interference138, an optical effect occurring in a transparent thin film with 

an interference thickness (nm – sub µm) under visible light. Examples in nature of how thin 

films cause structural color are many butterfly wings and bird feathers139. It has diverse 

technical applications, such as interferometry138 for optical analytics, antireflection coatings138, 

interferometric chemical, biochemical sensors140 or colorimetric humidity sensors141-142. 
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Here, the Ta2O5 layer functions as an interference layer, when visible light partially reflects on 

its upper interface to air or silane and partially on its lower interface to the reflective tantalum 

substrate. In general, the reflected intensity is enhanced at certain wavelengths and attenuated 

at other wavelengths due to interference. The Ta2O5 layer thickness determines the 

interference pattern for the reflected light and thus the observable color. Based on this, the 

interference colors, as reported by L. Young76, were successfully used for determination of the 

thickness of the oxide films on tantalum.  

Since the interference-based divergence in color can mirror the thickness difference of the 

interference layer in nm range, the uniform color of each anodized area (Figure 4.3) indicates 

the thickness homogeneity of the Ta2O5 layer fabricated through anodization. 

The precise thickness of the Ta2O5 layers anodized at 20, 30, 40 and 50 V was determined by 

means of ellipsometry (Chapter 3.2.3) and its correlation with the anodization voltage was 

studied. In the i/j  trajectory (Figure 4.4), the representative data point for each layer 

(�+1<P = 20 – 50 V) in red locates close on the theoretical thickness curve in black, which was 

calculated with the layer stack model (Chapter 3.2.3, Table 3.6). This evinces the significant 

difference of layer thickness for various anodization voltages. Additionally, this confirms the 

validity of the layer stack model and its related optical parameters, the refractive index and the 

extinction coefficient, for tantalum and for the anodic Ta2O5.  

 

Figure 4.4. i/j  trajectory for the experimental data points (red) of the anodic Ta2O5 layers 
(�+1<P = 20 – 50 V) and the scaled theoretical thickness (black curve with dots) of the ellipsometry 
model (Chapter 3.2.3, Table 3.6).  

Ta2O5 layers were anodized at four different voltages (20, 30, 40 and 50 V). The layer thickness 

plotted against the anodization voltage (Figure 4.5) presents a linear correlation (=k2 = 0.998)XI. 

                                                 

XI The adjusted coefficient of determination (=k2) is used to describe the quality of a fit. It is calculated 

with the data analysis program Origin as follows: =k� = � − =bb/$E(RR<Rlbb/$EB<B+�  with the residual sum of squares 

(RSS), the total sum of squares (TSS) and the degree of freedom (df). 
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This indicates a linear increase of the Ta2O5 layer thickness with anodization voltage and 

supports the findings of earlier studies77 that the Ta2O5 layer grows linearly with the applied 

voltage. The slope of the linear fitting yields a layer growth coefficient of (1.94 ± 0.05) nm/V. 

This value is comparable with the result reported by Kim et al.75 for a 22-nm-thick anodic Ta2O5 

layer prepared in a citric acid solution at 10 V.  

 

Figure 4.5. Thickness of Ta2O5 layers anodized at different voltages (20 – 50 V, N ≥ 3) and a linear 
fit (red). 

In comparison with the Ta2O5 layers anodized at higher voltages (30 – 50 V), the Ta2O5 layer 

anodized at the lowest voltage (20 V) shows an outlier behavior concerning its thickness 

(Figure 4.5). On one hand, its mean value deviates most from the linear dependence of the 

layer thickness on the voltage. In comparison, the data points at the higher anodization 

voltages (30 – 50 V) exhibit this linear correlation very consistently. On the other hand, the 

layer thickness obtained at 20 V has a coefficient of variationXII (cv)143 of 10.2%. This cv value 

is significantly higher than those determined for the other anodic Ta2O5 layers (cv < 1%). These 

suggest that the Ta2O5 layers anodized at 30, 40 and 50 V feature a significantly more 

predictable and more reproducible thickness than the oxide layer obtained at 20 V. 

 

 

 

 

                                                 

XII Coefficient of variation (cv) is defined in the statistics as the ratio of the standard deviation to the 

mean in percentage (cv = mnk). It is used to compare the reproducibility for data sets with significantly 

different mean values. In this study, it was applied to evaluate the reproducibility of the thickness, the 

capacitance per unit area and the relative permittivity of the Ta2O5 layers. 
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4.1.2.3. Ta2O5 Layer Capacitance 

The electrical capacitance of tantalum oxide layers, either in the native form or fabricated 

through anodization, was investigated by means of PEIS (potentiostatic electrochemical 

impedance spectroscopy) in the citric acid solution (Chapter 3.2.1). The object under study 

here consists of the Ta2O5 layer and the citric acid solution. 

The impedance spectra of the native tantalum oxide (�+1<P  = 0 V) and the anodic oxide 

(�+1<P = 20 – 50 V) are shown in a Bode plot (Figure 4.6 a). The spectra reveal the frequency-

dependent responses of the impedance modulus, |6|, (dots) and the phase shift, Ø, (circles). 

Each impedance modulus curve, as well as each phase shift curve, shows two behaviors 

separated by a critical frequency (grey arrows demonstrated for a native tantalum oxide layer 

and for one anodized at 20 V). At the critical frequency (Chapter 2.1.2.1), the impedance 

modulus shows a cutoff behavior; meanwhile, the phase shift has a value of -45°. This is 

marked by the grey dashed lines. Above the critical frequency, the impedance modulus 

remains constant and independent from the frequency; meanwhile, the phase shift is between 

0° and -45°. This behavior in the high frequency range reveals the resistance of the 

surrounding aqueous solution. This resistance is represented as R1 in the circuit model 

(Figure 4.6 b). Below the critical frequency, the impedance modulus features an inverse linear 

correlation to the frequency in the log-log graph; meanwhile, the phase shift is between -45° 

and -90°. This impedance response indicates the capacitance of the object under study. This 

capacitance is represented as C2 in the equivalent circuit model (Figure 4.6 b).  

 

Figure 4.6. (a) Bode plot of impedance spectra with impedance modulus (|6|, dots) and phase 

shift (Ø, circles) against frequency for a native tantalum oxide layer (�+1<P = 0 V) and for anodic 
Ta2O5 layers (�+1<P = 20 – 50 V). Grey arrows: critical frequencies for a native oxide layer and for 
one anodized at 20 V. (b) Equivalent circuit model for data fitting. R1: resistance of the 
surrounding solution, C2: capacitance of the object under study, R2: resistance of the Ta2O5 layer.  

Moreover, a large drift of the phase shift toward 0° was measured for the native tantalum oxide 

layer (�+1<P = 0 V) at very low frequencies below 12 mHz. In contrast, the anodized layers 

(�+1<P = 20 – 50 V) just show slight drifts of their phase shift in this low frequency region. This 

means a significant leakage current flowing through the native oxide layer. This finding reveals 

the native oxide layer to be unsuitable as the dielectric layer for the EWOD electrode. 
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In comparison, the anodized oxide layers are superior in avoiding current leakage with a higher 

breakdown voltage. This result implies also the significantly higher resistance of the anodized 

oxide layers than that of the native one. This coincides with the finding that the anodized layers 

(33.0 – 97.9 nm, Figure 4.5) are significantly thicker than the native one (2 – 3 nm)77, 116 due to 

the linear correlation between the layer resistance (=) and the thickness ($) expressed in the 

equation = = � ∙ $p , with � standing for the resistivity and p for the cross-section area48. The 

Ta2O5 layer resistance is represented in the equivalent circuit model as R2 (Figure 4.6 b). 

By analyzing the impedance spectra (Figure 4.6 a) with the equivalent circuit model 

(Figure 4.6 b), the capacitance of the object under study, C2, was determined (Chapter 3.2.1). 

This capacitance may originate from the Ta2O5 layer (�I+�LJ) and from the electrochemical 

double layer (EDL, �P�)66, 121, which is adjacent to the electrode surface in the solution. Due to 

their layer-on-layer structure, they can be modeled as two capacitors in series. The correlation 

between the �I+�LJ, �� and �P� can be expressed as below:  

��I+�LJ
= ��� − ��P� 4.1 

To estimate the influence of the EDL capacitance, �� and �P� are compared based on their 

areal values. Since the counter electrode possesses a significantly larger contact area to the 

electrolyte than the working electrode, the �P� of the counter electrode can be considered 

negligible in comparison with the �P� of the working electrode. This means that the tantalum 

oxide layer and the EDL have an identical area. Thus, the areal value of �� was determined 

with reference to the contact area (�) of the working electrode to the electrolyte.  

As a result, the ��/� yields (103 ± 8) nF/mm2 in case of the native tantalum oxide, while it 

ranges from 2.40 nF/mm2 to 5.88 nF/mm2 for the anodic Ta2O5 layers (�+1<P = 20 – 50 V). The 

typical �/� value for a EDL lies in the range from 100 nF/mm2 to 500 nF/mm2 according to 

Orazem and Tribollet 13 or further to 1000 nF/mm2 according to Butt et al.39, 66. 

Based on that, two cases are distinguished with the following conclusions: 

Case 1: native tantalum oxide layer 

The total capacitance per unit area (��/�) and the contribution from the EDL are at the same 

magnitude or have a maximal difference by one magnitude. This result implies an essential 

influence of the EDL on the total capacitance for the object under study with a native tantalum 

oxide layer. 

Case 2: anodic Ta2O5 layer 

The total capacitance per unit area (��/�) is significantly smaller than the contribution from 

the EDL by at least two magnitudes. According to Eq. 4.1, this result suggests that the influence 

of the EDL can be considered negligible. Therefore, the determined ��/� can be considered 

as the capacitance per unit area of the anodic Ta2O5 layer (�I+�LJ/ � ). Meanwhile, the 
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capacitive component, ��, in the equivalent circuit (Figure 4.6 b) represents the capacitance 

of the anodic Ta2O5 layers (�I+�LJ). 

To further characterize and compare the capacitive features of the anodic Ta2O5 layers 

fabricated at various voltages, the �I+�LJ/ � values are plotted against the anodization voltage 

in Figure 4.7. The �/� values are fitted with the function, y = a / x + b, to prove the following 

hypothesis: The capacitance per unit area should linearly correlate with the reciprocal voltage 

of anodization (
�� ∝ ��+1<P). This hypothesis is based on the finding, $ ∝ �+1<P (Figure 4.5, 

Chapter 4.1.2.2), and on the theoretical expression of the layer capacitance with the parallel-

plate capacitor model (
�� = *�*$$ , Eq. 2.11). 

 

Figure 4.7. Capacitance per unit area of the anodic Ta2O5 layers (�+1<P = 20 – 50 V, N ≥ 3) fitted to 
the function, y = a / x + b, in red. 

In Figure 4.7, the data set shows a trend of decreasing capacitance with increasing anodization 

voltage. Through the well-matched fitting (=k�= 0.999) with the function, y = a / x + b, this trend 

can be described more precisely: �/�  correlates with the reciprocal voltage. This result 

confirms the hypothesis suggested above. Furthermore, with respect to the result presented 

in Figure 4.5 ($ ∝ �+1<P), the outcome agrees well with the finding reported in earlier studies77, 

that the capacitance increases linearly with the reciprocal layer thickness. 

A comparison among all data points shows that the highest value of the capacitance per unit 

area can be achieved through anodization at the lowest voltage (20 V). Unfortunately, this high 

capacitance is associated with a significantly higher coefficient of variation (11.4%) in 

comparison with those obtained through anodization at 30, 40 and 50 V (cv < 2.5%). This 

reveals the low reproducibility of the Ta2O5 layer anodized at 20 V with regard to its 

capacitance. 
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4.1.2.4. Relative Permittivity of Ta2O5 Layer 

Based on the two independently determined layer-properties, the thickness (Chapter 4.1.2.2) 

and the capacitance per unit area (Chapter 4.1.2.3), a material property of the anodic Ta2O5, 

the relative permittivity (*$), can be calculated with the following equation: 

*P = $*� ∙ �� 4.2. 

This equation is obtained using Eq. 2.11 (Chapter 2.2.2.1) with *� standing for the relative 

permittivity of vacuum. Since the thickness linearly correlates with the anodization voltage   

($ ∝ ���
$, Figure 4.5), while the capacitance per unit area depends linearly on the reciprocal 

voltage (
�� ∝ ��+1<P , Figure 4.7), the product of these two voltage-dependent parameters 

should be independent of the anodization voltage. Thus, *$  should also be voltage-

independent according to Eq. 4.2. 

To prove that the relative permittivity and the anodization voltage are independent of each 

other, the *$-value was determined for the Ta2O5 layers fabricated at 20, 30, 40 and 50 V 

individually (Figure 4.8). 

 

Figure 4.8. Relative permittivity of Ta2O5 layers anodized at different voltages (20 – 50 V, N ≥ 3). 

The Ta2O5 layers anodized at the higher anodization voltages (30, 40 and 50 V) yield 

comparable values of the relative permittivity (Figure 4.8). Their mean value was determined 

to be 26.7 with a low standard deviation of 0.4. This indicates that a constant, voltage-

independent relative permittivity is available through anodization in this voltage region. 

Moreover, this relative permittivity value agrees very well with the literature values for the 

anodic Ta2O5 fabricated in citric acid solutions. A relative permittivity of 26.7 (anodization in 

0.01% citric acid) was reported by Muth127 and 26.2 – 26.3 (anodization in 0.5% citric acid) by 

Wilcox et al.90. 
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In contrast, the Ta2O5 layer anodized at 20 V shows a low relative permittivity of 21.9 ± 2.3. 

The percentage differenceXIII between this low *$-value and the high *$-value from the other 

Ta2O5 layers (�+1<P  = 30, 40 and 50 V) amounts to 19.8%. This signalizes a significant 

negative variation of the relative permittivity in case of the anodization at 20 V. Moreover, 

based on the linear correlation between the layer thickness and the anodization voltage 

(Figure 4.5), this result agrees with the finding reported by Kerrec et al.: a low *$-value (~18.5) 

for thin anodic Ta2O5 layers (≤ 19 nm) and a high *$-value (~27.5) for thick Ta2O5 layers74. As 

the reason for the *$-value difference, Kerrec et al. claimed that the relative permittivity in thin 

films is strongly influenced by the native tantalum oxide layer, which mainly contains TaO 

instead of Ta2O5.
74 This suggests that the relative permittivity of TaO is lower than that of Ta2O5. 

Thus, the thin layer below a certain thickness threshold possesses a low *$-value due to the 

low percentage ratio of Ta2O5 to TaO in the layer. 

Furthermore, the *$-value of the Ta2O5 layer anodized at 20 V has a cv of 10.4%. This cv is 

significantly higher than those for the other oxide layers (cv ≤ 3.5%). The error in the relative 

permittivity arises from the error in the layer thickness (cv = 10.2%) and that in the capacitance 

per unit area (cv = 11.4%). The high cv-values imply the low reproducibility of the Ta2O5 layer 

fabricated through anodization at 20 V. Since these three parameters are key to the EWOD 

effect (Chapter 4.1.1), their high uncertainty in this case makes this Ta2O5 layer inadequate as 

the dielectric layer in an EWOD electrode.  

To achieve the low-voltage EWOD, the Ta2O5 layer anodized at 30 V was considered to be the 

most appropriate dielectric layer in the EWOD electrode. This Ta2O5 layer possesses the 

lowest layer thickness (59.4 ± 0.6 nm, Figure 4.5) and the highest capacitance per unit area 

(3.93 ± 0.07 nF/mm2, Figure 4.7) among the Ta2O5 layers fabricated at higher voltages 

(�+1<P = 30 – 50 V) in this study. These two layer-properties and its high relative permittivity 

(26.3 ± 0.5) benefit the EWOD effect to occur at a low voltage according to the Young-

Lippmann equation (Eq. 2.26). Moreover, its low cv-values for the three key parameters, $ (0.9%), �/� (1.8%) and *$ (2.0%), confirm the high reproducibility of the dielectric properties 

and thus assure the reliability of its high dielectric quality. Therefore, this Ta2O5 layer 

(�+1<P = 30 V) was preferred as the dielectric initial layer for the LV-EWOD electrodes used in 

the further investigations into the EWOD effect. 

 

 

 

                                                 

XIII Percentage difference is the difference between two values with reference to their average 

value in percentage. It is mathematically expressed as: 
|;�C;�|(;�N;�)/� · 100%. 
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4.1.3. ODTS Monolayer with Hydrophobic Smooth Surface 

On top of the Ta2O5 initial layer, a silane layer, specifically a thin film of ODTS 

(Octadecyltrichlorosilane), covers the EWOD electrode (Figure 4.1) to render its surface 

hydrophobic. The ODTS layer was fabricated through the wet-chemical silanization 

(Chapter 3.1.4) based on the self-assembling principle39, 102.  

4.1.3.1. Topology and Hydrophobicity of ODTS Surface 

A representative ODTS coating on the anodic Ta2O5 layer ( �+1<P = 30 V) shows a 

homogeneous smooth surface with a few round particles in different nanometer sizes in its 

AFM image (Figure 4.9). The surface roughness has an increased root-mean-square value of 

1.45 nm in comparison to that of the Ta2O5 layer (0.31 nm, Figure 4.2 a). 

 

Figure 4.9. AFM image besides the color-height correlation for an ODTS coating with a root-
mean-square roughness of 1.45 nm on a Ta2O5 initial layer (�+1<P = 30 V). 

The increased surface roughness can mainly result from the particles, which can be the 

oligomers of ODTS formed through a water-induced aggregation. Despite the preventive dry 

operation condition, water in the ambient air may contaminate ODTS due to the gaps in the 

preparation and the coating process chain. Chen et al.144 also reported particles on the ODTS 

monolayer generated through vapor deposition on SiO2. Due to the novel combination of ODTS 

and Ta2O5, no other report about this material combination was available for the literature 

values for comparison. 

Besides the determination of the topological roughness, the ODTS coating was investigated 

for its surface hydrophobicity through measurements of the contact angle. Its contact angle 

hysteresis was determined to quantify the resistance against droplet motion on its surface, 

since this resistance can be considered as a static friction37. 

In Table 4.2, the ODTS coating presents a large water contact angle of 104.7° ± 1.0°, while 

the Ta2O5 initial layer shows a very small contact angle (Chapter 4.1.2.1). This indicates that 

the fourth fabrication step, silanization with ODTS (Chapter 3.1.4), successfully converted the 

electrode surface from very hydrophilic to hydrophobic. Moreover, the electrode surface of 

ODTS on the Ta2O5 exhibits a contact angle hysteresis of 11.6° ± 0.6°.  
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Table 4.2. Contact angle and contact angle hysteresis determined for the anodic Ta2O5 surface 
(�+1<P = 20 – 50 V) and for the ODTS surface based on a Ta2O5 initial layer. 

 

interfacial circumstance 

 

Ta2O5 / water / air 

 

ODTS / water / air 

 

static contact angle (��) [°] 

 

11.2 ± 3.3 

 

104.7 ± 1.0 

contact angle hysteresis (Δ�) [°] - 11.6 ± 0.6 

The ODTS surface generated in this study features a comparable contact angle and a slightly 

lower contact angle hysteresis in comparison to another alkyl silane, (n-decyl)trichlorosilane 

(DTS), coated on a wet-cleaned Ta2O5 layer (�� = 108.4°, Δ� = 13.8°)116.  

A comparison with the ODTS-coatings on other substrates reveals slight discrepancy in the 

contact angle and contact angle hysteresis. A larger contact angle was reported for the ODTS 

layer deposited on SiO2 (�� = 112°)97. The ODTS layer on silicon nitride oxide was reported to 

have lower values in both contact angle and contact angle hysteresis (�� = 101°, Δ� = 6°)73. 

This comparison indicates that ODTS layers deposited on initial layers consisting of various 

materials can present differences in their surface hydrophobicity and in the friction against 

droplet motion on their surfaces. This interfacial friction or resistance may result from the 

surface roughness and from the surface topology on the macroscopic and microscopic level 

as elucidated below. 

First, the roughness of the initial layer strongly influences the roughness of the top layer due 

to the very thin monolayer of ODTS in the nanometric scale (Chapter 4.1.3.2). In comparison 

to the typically used substrates for silane coatings, such as silicon, silicon dioxide 

(=XSU = 0.46 Å)97 and silicon nitride oxides, the anodic Ta2O5 (Figure 4.2) has a significantly 

rougher surface. This roughness of the metal oxides differs probably due to their fabrication 

process and their material properties, such as the lattice structure and the correlated distance 

between the possible binding sites for silane molecules. Thus, the lattice structure of 

substrates essentially affects the molecular arrangement of a self-assembled silane monolayer. 

The resulted different package density and the tilt angle of the silane molecules on different 

metal oxide initial layer can influence the microscopic surface roughness. 

Second, this roughness may originate from the inhomogeneity of the self-assembled ODTS 

monolayer on a molecular level as reported in a publication145 within this doctoral research. 

During self-assembly, the head groups of ODTS molecules bond with Ta2O5 via silanol-groups 

and become immobilized on the surface. Besides this covalent bonding, the ODTS molecules 

non-covalently bind with each other through the van der Waals interaction between their 

hydrophobic alkyl chains. The long alkyl chains in a monolayer may have different 

conformations. Since the identical conformation is essential for molecules to be regularly 

ordered, slight difference in the conformation may result in irregular orientation and non-

uniform arrangement of the molecules. 
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This microscopic inhomogeneity may originate from impurities, such as ODTS-isomers and      

-oligomers, and result in a loose packed layer and local discrepancy in the surface topology 

(roughness).The ODTS surface roughness may affect the interfacial friction against the droplet 

movement during electrowetting and thus influence the dynamics of the wetting and dewetting 

process. 

Furthermore, the high hydrophobicity of the ODTS surface could induce a strong repulsive 

force against the hydrophilic cantilever made of Si3N4 
132

 and result in artefacts in AFM-imaging. 

Therefore, the ODTS surface was scanned under the qualitative imaging mode in AFM by 

applying a constant force to the cantilever, to avoid possible errors by using the tapping mode. 

In addition, to achieve the hydrophobic electrode surface, ODTS and a fluorinated silane, 

(tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane, were applied using diverse coating 

methods, including wet-chemical deposition in various solvents and vapor deposition. The 

fluorinated silane coatings generated through each deposition method contained significantly 

more aggregates in irregular forms and sizes (AFM images not shown here) in comparison to 

the ODTS coatings. This may be caused by the very high sensitivity of the fluorinated silane 

molecules to moisture. Due to the low quality and low reproducibility, these coatings are 

inadequate for usage in the EWOD electrode. In this study, the ODTS coating obtained through 

the wet deposition in toluene was found to be the most promising candidate as the top layer in 

the LV-EWOD electrode. McGovern et al. reported also about the well-packed SAM of silane 

on glass through silanization in toluene146. The high quality of this ODTS coating is based on 

its superior reproducibility and high homogeneity with reference to the AFM images and the 

contact angle results. In consequence, merely this ODTS coating was thoroughly investigated 

with respect to the EWOD-relevant parameters. 

 

4.1.3.2. ODTS as Monolayer 

The ODTS thin layer deposited on the anodic Ta2O5 surface is transparent. Its thickness was 

determined with the ellipsometry to be (2.3 ± 0.2) nm.  

The length of an ODTS molecule along its alkyl chain was estimated to be 2.62 nm. This was 

calculated based on the monolayer model postulated by Wassermann et al.147 for methyl-

terminated siloxane deposited on SiO2. In that model, the silane molecules in the SAM (self-

assembled monolayer) are oriented nearly perpendicularly to the SiO2 surface with a tilt angle 

of 10° from the vertical axis. The monolayer thickness (t) is expressed as /v = 1.26 > + 4.78 

(in Å) with > standing for the number of CH2-units in the alkyl chain. Moreover, this estimated 

molecule length agrees with the ellipsometirc thickness of ODTS monolayer on Si/SiO2 

reported by Wang et al. (2.4 nm ± 0.2 nm, 2.6 nm ± 0.2 nm)97 and by Bush et al. 

(2.7 nm ± 0.1 nm)148. 
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Furthermore, SAM of silane on Ta2O5 surface was studied by De Palma et al.116 with                    

(n-decyl)trichlorosilane (DTS). In comparison to ODTS (> = 17), DTS has the analog structure 

but a shorter alkyl chain with 9 CH2-units. A thickness of (1.11 ± 0.01) nm was reported besides 

a tilt angle of 45° between the alkyl chain and the Ta2O5 surface for DTS. Based on their study 

and the length of a C-C single bond (0.153 – 0.154 nm) 149-150, a theoretical monolayer 

thickness of ODTS on the Ta2O5 surface was estimated at 2.0 nm. 

In this study, the determined thickness value (2.3 nm ± 0.2 nm) of the ODTS layer is lower 

than the estimated value of the ODTS molecule length (2.6 nm). This difference indicates the 

fabricated ODTS coating to be a monolayer with the ODTS molecules tilting on the Ta2O5 

surface. In addition, the determined thickness is higher than its theoretical thickness (2.0 nm) 

derived from that of the DTS monolayer. This can result from the particles on the ODTS surface, 

which also contributed to the average layer thickness over the entire region of interest (ROI) 

in the ellipsometry measurement. 

 

4.1.3.3. Capacitance of Ta2O5-ODTS-Bilayer and of ODTS Layer  

The capacitance per unit area of the ODTS-Ta2O5-bilayer was characterized by means of EIS 

using single sinusoidal signals and imaging. In this study, measurements were conducted with 

(i) an in-house programmed EIS associated with imaging for integration with EWOD (Chapter 

3.3.1, 3.3.2) and (ii) a commercial potentiostat (Chapter 3.2.1) for calibration. Based on the �/�  value of the ODTS-Ta2O5-bilayer and that of the Ta2O5-layer (Chapter 4.1.2.3), the 

capacitance per unit area was determined for the ODTS layer. 

First, the capacitance per unit area (�/�) was determined for the ODTS-Ta2O5-bilayer with the 

in-house programed EIS in a two-electrode configuration (Figure 3.13, Chapter 3.3.1). The 

object under investigation was a 3 µL droplet of 200 mM KCl resting on the LW-EWOD 

electrode. The applied sinusoidal signal had a voltage amplitude of 0.5 V and an offset of 0.5 V. 

The involved area of the dielectric bilayer was measured as the contact area (�) between the 

droplet and the EWOD electrode. It was acquired through the simultaneous imaging for EIS 

measurement at each frequency. The �/�-value was calculated using the capacitance (�) 

determined through EIS and the droplet contact area on the EWOD electrode determined by 

analysis of optical images of the droplet (Chapter 3.3.1, 3.3.2). The �/� was plotted against 

frequency in the region from 100 Hz to 10 kHz, as shown in Figure 4.10. 

Within the frequency measuring range, �/� generally remains constant. This yields a mean 

value of (2.66 ± 0.16) nF/mm2. This result was verified by PEIS-measurement using a 

commercial potentiostat and the separated imaging system under the same measuring 

conditions (2.65 nF/mm2 ± 0.04 nF/mm2, N = 3). The well comparable mean values reveal the 

high accuracy of the in-house programmed EIS for integration with EWOD. 
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Figure 4.10. Capacitance per unit area for the ODTS-Ta2O5-bilayer determined with EIS using a 
single sinusoidal signal (�,,/� = 0.5 V) on a 3 µL drop of 200 mM KCl resting on the LV-EWOD 

electrode (N = 3). 

This determined capacitance per unit area can be considered as the ODTS-Ta2O5-bilayer 

capacitance. This claim is based on the significantly smaller capacitance of the ODTS-Ta2O5-

bilayer than that of the EDL on the droplet - platinum wire - interface by two magnitudes.  

Despite its area being larger by one order of magnitude, the dielectric bilayer has the 

significantly larger thickness by three orders of magnitude and lower relative permittivity than 

the EDL. Therefore, the dielectric capacitance dominates in the system under investigation 

and the EDL capacitance can be considered negligible. 

Moreover, the plot reveals a slight consistent drift of �/�. For this observation, two reasons 

may be responsible: On the one hand, the recorded droplet - EWOD electrode - contact area 

(�) declines with the proceeding of the measurement from the highest to the lowest frequency. 

This means that the droplet shrinks slightly due to evaporation with the frequency decrease. 

On the other hand, the recorded capacitance increased slightly with the frequency decrease. 

This could result from the prolonged period (l = �E ) for the storage of the electrical potential 

energy, which causes a higher apparent capacitance. 

Second, the ODTS-Ta2O5-bilayer (�/� = (2.66 ± 0.16) nF/mm2, Figure 4.10) and the anodic 

Ta2O5 layer ( �+1<P  = 30 V, �/�  = (3.93 ± 0.07) nF/mm2, Figure 4.7) exhibited capacitive 

characteristics. This indicates the ODTS layer to also behave as a capacitor in the bilayer stack. 

Based on the layer-by-layer structure, this supports the validity of the equivalent circuit model 

(Figure 2.12 b, Chapter 2.2.2.1) to represent the Ta2O5 layer and the ODTS layer as two 

capacitors in a series connection. Thus, the capacitance per unit area (�/�) value for the 

ODTS layer was calculated according to the following correlation: 

��LTIU = ��w0�+x(R − ��I+�LJ
 4.3 

This yields a �/�-value of (8.23 ± 1.56) nF/mm2 for the ODTS layer. The uncertainty was 

calculated according to Gaussian error propagation. 
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4.1.3.4. Relative Permittivity of ODTS Monolayer 

Based on the plate capacitor model, the relative permittivity was determined for the ODTS 

monolayer with its thickness (2.3 nm ± 0.2 nm, Chapter 4.1.3.2) and its capacitance per unit 

area (8.23 nF/mm2 ± 1.56 nF/mm2, Chapter 4.1.3.3). In analogy to the case of the anodic Ta2O5 

layer (Chapter 4.1.2.4), the *$-value was calculated for the ODTS monolayer with Eq. 4.2 to 

be 2.1 ± 0.4. 

This *$ -value is close to the medium *$-value suggested by Gala and Zollo79 in a simulation 

study about the relative permittivity of the ODTS monolayer. The authors postulated the *$-

value for an ODTS monolayer on a silicon substrate in the range from 1.6 to 3.1 depending on 

the coverage ratio.  

According to Gala and Zollo79, the medium *$-value may be induced by a medium package 

density of the fabricated ODTS layer on the Ta2O5 surface and could be limited by the Ta-O-

Si adhesion group between the ODTS surface and the Ta2O5 surface.  

The medium package density may originate from the material property of Ta2O5 as the 

immobilization substrate and from the layer property of the self-assembled ODTS monolayer. 

First, in comparison to silicon, Ta2O5 possesses a larger lattice distance. This means a larger 

distance between the accessible binding sites for the ODTS molecules on the Ta2O5-surface. 

Additionally, De Palma et al.116 suggested that not every binding site on the Ta2O5-surface is 

linked to a silane molecule. These factors may lead to the large distance between the 

neighboring adhesion groups and thus a large tilting angle of the alkyl chains in the ODTS 

molecules. In this study, the lower value of the determined layer thickness than the estimated 

ODTS molecule length (Chapter 4.1.3.2) confirms the molecule tilting and the limited package 

density. Second, the self-assembled ODTS monolayer may contain local inhomogeneity. The 

inhomogeneous arrangement of the ODTS molecules could be caused by different 

configurations of the alkyl chains regarding their torsion and orientation. This is suggested for 

the slight surface roughness in the topology analysis with AFM (Chapter 4.1.3.1) and could 

reduce the packing density of the alkyl chains.  

The packing density of the adhesion groups and the alkyl chains influences their partial dipole 

contribution to the entire polarizability of the ODTS layer and hence influences the relative 

permittivity. 

  



 

 

4. Results and Discussion 

77 

 

4.1.4. Multilayer Dielectric Stack Including an Oil Layer 

Besides the solid ODTS-Ta2O5-bilayer of the LV-EWOD-electrode, an oil layer of tetradecane 

contributes a fluid dielectric layer to the MDS model as shown in Figure 4.1. This oil layer is 

entrapped between the droplet and the hydrophobic EWOD electrode due to the application of 

an oil environment in the EWOD setup. In comparison with air, an oil surrounding immiscible 

to the droplet should benefit the low-voltage EWOD in diverse aspects: increasing the contact 

angle of the droplet in its resting state, reducing the surface friction against the droplet motion 

and preventing droplet evaporation. In addition, the most applications of droplet-based 

microfluidics use aqueous droplets in an oil as carrier medium151. 

 

4.1.4.1. Low Surface Friction in Oil Surrounding 

The advantages of the oil environment against the air ambience were characterized by the 

results of contact angle and contact angle hysteresis shown in Table 4.3. These two 

parameters were determined with a water droplet in air on the LV-EWOD electrode before its 

oil conditioning (Chapter 3.1.5) and in tetradecane (oil) respectively (Chapter 3.2.5–3.2.6). 

Table 4.3. Contact angle and contact angle hysteresis of a 3 µL water droplet on the LV-EWOD 
electrode in air and in tetradecane. 

 

interfacial circumstance 

 

ODTS / water/ air 

 

ODTS / water / tetradecane 

 

static contact angle (��) [°] 

 

104.7 ± 1.0 

 

160.7 ± 0.8 

contact angle hysteresis (Δ�) [°] 11.6 ± 0.6 0.9 ± 0.4 

In tetradecane, the water droplet presents a large contact angle of 160.7°. This contact angle 

is significantly larger than that in air by 56°. Moreover, a water droplet in tetradecane exhibits 

a very low contact angle hysteresis of 0.9°. This value is significantly smaller than that in air 

by 10.7° (Table 4.3). 

The large contact angle and the very low contact angle hysteresis are two essential and 

advantageous features for achieving the EWOD effect at low voltages, as reasoned below. 

First, the static contact angle corresponds to the droplet contact angle without applied 

voltage (��) in the Young-Lippmann equation (Eq. 2.2). The large �� value is a key approach 

to the low-voltage electrowetting, as elucidated at the beginning of Chapter 4.1.  

Second, the very low contact angle hysteresis measured in tetradecane by tilting method 

(Chapter 3.2.6) means the droplet requires just a slight difference between the advancing and 

the receding contact angle for its motion. This result suggests a very low surface friction against 

droplet motion. Transferred into the EWOD circumstance, the easy motion may lead to the 

rapid deformation of the droplet concerning its simultaneous alteration of the contact area and 
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the contact angle. This implies good dynamic responses in the voltage-induced wetting 

process and more importantly in the passive dewetting process. Moreover, the simultaneous 

alteration of the contact area and the contact angle would be an essential condition for the 

replacement of the optical detection through area-related electrical measurements in the future 

research towards compact and low-cost EWOD-EIS devices. 

Therefore, the application of an oil environment instead of the air ambience enhances the 

efficiency of the low-voltage EWOD effect. The enlarged contact angle and the reduced contact 

angle hysteresis of a water droplet on the solid surface of ODTS indicate the interfacial 

interaction between the aqueous droplet and the electrode surface to be strongly reduced by 

the oil surrounding. With a view of the Young’s equation (Eq. 2.1), the larger contact angle in 

the oil than that in air can be attributed to the lower interfacial tensions on the oil-solid-interface 

and on the water-oil-interface than those corresponding surface tensions in air. With a 

microscopic view, the tetradecane (oil) molecules and the ODTS molecules may be weakly 

bound through the van der Waals interaction between their long alkane chains. Based on that, 

the immersion of the LV-EWOD electrode in the tetradecane for sufficient time may enable the 

silanized surface to be saturated with oil. This may result in a thin oil layer existing between 

the droplet and the substrate. This oil layer may act as lubricant and thus reduce or avoid the 

droplet pinning on the surface as postulated in the literature50. 

 

4.1.4.2. Capacitance of MDS and of Oil Layer 

Concerning the equivalent circuit model for the MDS (Figure 2.12 b, Chapter 2.2.2.1), the oil 

top layer, the ODTS middle layer and the Ta2O5 initial layer (�+1<P = 30 V) are theoretically 

described as three plate capacitors in series. Based on this, the oil-ODTS-Ta2O5-stack (MDS) 

consisting of one fluid and two solid dielectric layers should feature a capacitor behavior. This 

hypothesis was proven by a CV measurement (Chapter 3.2.2) to characterize the capacitive 

behavior through a charging and discharging process. Moreover, analog to the �/� 

determination of the ODTS-Ta2O5-bilayer (Chapter 4.1.3.3), the MDS was characterized for its 

capacitance per unit area with the in-house programmed EIS for the integration with EWOD 

(Chapter 3.3.2). The �/� value of the oil layer was determined based on that of the MDS and 

that of the ODTS-Ta2O5-bilayer (Figure 4.10). 

First, to characterize the capacitive behavior of the oil-ODTS-Ta2O5-stack, CV was measured 

on an aqueous 200 mM KCl droplet resting in oil on the LV-EWOD electrode (Chapter 3.2.2). 

The cyclic voltammogram (Figure 4.11) shows the averaged current from three cycles against 

the applied voltage between the LV-EWOD electrode and the Ag/AgCl reference electrode.  
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Figure 4.11. Cyclic voltammogram of the MDS during the charging and the discharging process 
(progression shown by orange arrows). Measurement at a scan rate of 32 mV/s with a 10 µL drop 
of 200 mM KCl resting in oil on the LV-EWOD electrode (averaged data of 3 cycles). 

The cyclic voltammogram shows an asymmetry of the current progression in the charging 

process and in the discharging process.  

In the charging process with the voltage ramp from 0.0 V to 0.4 V, the current starts with a 

sharp rise, gradually reaches its maximal value and remains almost constant in a saturated 

state. This rapidly reached constant current indicates the presence of a pure displacement 

current. It corresponds to the displacement of charge carriers within a capacitor upon 

penetration by an electric field. This characteristic displacement current reflects a charging 

process of a nearly ideal capacitor.  

In the discharging process with the reversed ramp back to 0.0 V, the current shows first a steep 

decline until 0 A. It is followed by a further decrease in the negative region with a nearly 

constant slope. The latter consistent decline indicates that a faradaic current flows besides a 

displacement current. The faradaic current is very low, since the total recorded current locates 

in the sub-nA region. The displacement current is the reverse to that in the charging process. 

It corresponds to the relaxation of the charge carriers within the capacitor. This curve 

progression agrees with the general discharging behavior of real capacitors. 

The asymmetry of the cyclic voltammogram reveals that the LV-EWOD electrode behaves 

differently in the charging and discharging process. This can mainly result from the material 

characteristics of anodic Ta2O5, an almost perfect isolator108. As a valve metal oxide, anodic 

Ta2O5 can ideally block anodic current, when the applied voltage is below 50% of the 

anodization voltage for the Ta2O5 formation152. In the CV measurement here, the maximal 

voltage is 0.4 V. This is far below the half of 30 V, at which the Ta2O5 was anodized for using 

in the EWOD electrode. Thus, in the charging process the displacement current was observed 

exclusively. However, the anodic Ta2O5 can nearly but not completely block the cathodic 

current152. This may result in the dissipation with a marginal faradaic current flowing through 

the anodic Ta2O5 in the discharging process. 
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Based on the typical capacitor behavior revealed by the cyclic voltammogram, the hypothesis 

at the section beginning can be confirmed: It is appropriate to model the MDS as a capacitor 

in the equivalent circuit (Figure 2.12 b) as postulated in Chapter 2.2.2.1. 

 

Second, the �/�  of the MDS was determined through EIS with the simultaneous optical 

imaging to compare with the �/� of the ODTS-Ta2O5-bilayer (Chapter 4.1.3.3). Based on that, 

the capacitance of the thin oil layer in the interfacial region can be characterized indirectly. 

Experimentally, the MDS was obtained by changing the measuring ambient medium from air 

to oil for the 3 µL droplet of 200 mM KCl resting on the LV-EWOD electrode (Chapter 3.3.2). 

Identically to the experiments for determining the �/�  of the ODTS-Ta2O5-bilayer, EIS 

measurements were performed using the single sinusoidal signal with a voltage amplitude of 

0.5 V and an offset of 0.5 V in the frequency range from 100 Hz to 10 kHz. The optical imaging 

was applied to measure the contact area between the droplet and the electrode to normalize 

the capacitance to the �/�. The data were analyzed with the equivalent circuit model, which 

consists of a resistor for the droplet resistance and a capacitor for the total capacitance of the 

dielectric layer stack. 

At this measuring condition, the object under investigation was considered to be at its resting 

state without the EWOD effect, since the applied voltage is below the threshold to facilitate the 

EWOD effect (Figure 4.23, Figure 4.24, Chapter 4.3.3.1). 

The determined �/�-values are plotted against frequency in Figure 4.12. The solid ODTS-

Ta2O5-bilayer shows higher and more constant �/�-values over the frequency range (filled 

squares, replotted from Figure 4.10) than those corresponding to the oil-ODTS-Ta2O5-stack 

(empty squares in Figure 4.12).  

 

Figure 4.12. Capacitance per unit area of the MDS (N = 5) and that of the ODTS-Ta2O5-bilayer 
(N = 3, Figure 4.10) determined with EIS using a single sinusoidal signal (�,,/� = 0.5 V) on a 3 µL 

drop of 200 mM KCl resting on the LV-EWOD electrode. 
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However, concerning the oil layer as a fluid dielectric layer in the MDS, �/�-value of the MDS 

is generally constant except the first data point at 100 Hz. This data point was regarded as an 

outlier due to its high uncertainty. The nearly constant �/�  of the oil-ODTS-Ta2O5-stack 

indicates the oil layer to be stable at this low voltage with varied frequency.  

The mean �/�-value of the oil-ODTS-Ta2O5-stack was determined without the first data point 

to be (0.818 ± 0.268) nF/mm2. Its coefficient of variance (cv) yields 32.8 %. In comparison, the 

ODTS-Ta2O5-bilayer has a higher �/�-value of (2.66 ± 0.16) nF/mm2 but a lower cv-value of 

6.0 %. The significant discrepancy in the cv-values results from the large variability of the oil 

layer thickness. This may be influenced by the insertion position and depth of the platinum 

electrode in the droplet. 

Based on the capacitive feature of the MDS (Figure 4.11) and its higher �/� than that of the 

solid ODTS-Ta2O5-bilayer (Figure 4.12), the oil layer is suggested to act as a capacitor as well. 

Moreover, the overlapping structure of the oil layer on top and the solid ODTS-Ta2O5-bilayer 

beneath supports the equivalent circuit model postulated for the MDS (Figure 2.12b, 

Chapter 2.2.2.1): the series connection of one capacitor for the oil layer and two capacitors for 

the solid bilayer. Therefore, the oil layer can be calculated with the �/�-value of the MDS and 

that of the ODTS-Ta2O5-bilayer (Figure 4.12) according to the following correlation: 

��<0� = ��STU − ��w0�+x(R 4.4 

The �/�-value of oil layer yields (1.18 ± 0.56) nF/mm2. This characterizes the initial capacitive 

state of the oil layer between the droplet and the LV-EWOD electrode without EWOD effect. 

 

4.1.4.3. Oil Layer Thickness 

The oil layer entrapped between the droplet and the LV-EWOD electrode is characterized for 

its average thickness. As a fluid dielectric, this interfacial oil layer has a variable thickness 

depending on the radial position relative to the center of the droplet. The average thickness 

was determined by modeling the entire oil layer as a plate capacitor with a constant thickness 

and through calculation based on the following correlation (transformed from Eq. 2.11): 

$ = *� ∙ *$ ∙ �� 4.5 

To characterize the entrapped oil layer at its initial resting state without EWOD effect, its 

thickness was determined according to Eq. 4.5 with the �/�-value of (1.18 ± 0.56) nF/mm2 

(Chapter 4.1.4.2), the permittivity of vacuum ( *� ) and the relative permittivity value of 

tetradecane (*$ = 2.03) 153. This yields a thickness of (15.2 ± 7.2) nm. The large standard 

deviation of the oil layer thickness indicates its high variability. This variability is suggested to 

depend on the insertion position and the insertion depth of the platinum electrode in the droplet. 
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Moreover, a thickness below 20 nm is far beyond the resolution limit of a light microscope 

(>200 nm) based on the light diffraction (Abbe’s) limit154. This thin oil layer might be detectable 

with the STED (stimulated emission depletion) nanoscope155 or Raman spectroscopy156-157. 

However, using these measurement techniques would require (i) complicated and expensive 

experimental setups, (ii) a transparent EWOD electrode for the detection in z-direction. In 

comparison, the indirect determination method applied in this study provides a low-cost and 

convenient opportunity to obtain the thickness information of a fluid layer in the nm range and 

is suitable for a non-transparent electrode. 

 

4.1.5. Conclusions 

This section focuses on the layer-by-layer characterization of the fabricated LV-EWOD 

electrode in its working ambience of oil. The object of interest, the multilayer dielectric stack 

(MDS, Figure 4.1), consists of three dielectric layers: the solid Ta2O5 layer, the solid ODTS 

layer and the fluid oil layer. Each layer was investigated with regard to its surface property, its 

layer property and its material property. The corresponding EWOD-relevant parameters are 

quantitatively determined for each layer and summarized in the following table: 

Table 4.4. Overview table of the EWOD-relevant parameters determined for each dielectric layer 
in the MDS. =XSU : root-mean-square roughness, CAH: contact angle hysteresis, �� : contact 
angle without voltage application. 

 

Target layer: 

 

Ta2O5 

(�+1<P = 30 V) 

 

ODTS 

 

oil 

    

 

surface 

property 

 

roughness (=XSU / 1v) 

 

0.31 

 

1.45 

 

- 

 

friction (CAH / °) 

 

- 

 

11.6 ± 0.6 

 

0.9 ± 0.4 

 

hydrophobicity (�� / °)  

11.2 ± 3.3 

 

104.7 ± 1.0 

 

160.7 ± 0.8 

     

layer 

property 

 

capacitance per unit area 

� ��  / 1z/vv�� 

 

3.93 ± 0.07 

 

3.91 ± 1.27 

 

1.18 ± 0.56 

 

thickness ($ / 1v) 

 

59.35 ± 0.55 

 

2.3 ± 0.2 

 

15.2 ± 7.2 

     

 

material 

property 

 

relative permittivity (*P) 

 

26.3 ± 0.5 

 

2.1 ± 0.4 

 

2.03 lit.153 
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In this study, a thin anodic Ta2O5 layer fabricated through anodization at 30 V is evaluated as 

the best candidate to be the initial dielectric layer in the MDS. This layer features a smooth 

and hydrophilic surface and a homogeneous layer thickness. Moreover, it is outstanding due 

to the high reproducibility and reliability of its capacitance per unit area and of its high relative 

permittivity.  

The anodization voltage is indicated to be an essential factor for adjusting the properties of the 

Ta2O5 layer. The linear increase of the Ta2O5 layer thickness with the anodization voltage is 

characterized with a growth coefficient of (1.94 ± 0.05) nm/V. As of the anodization voltage of 

30 V, the Ta2O5 layer thickness is predictable and reproducible according to this linear 

dependence. The capacitance per unit area of the Ta2O5 layer is confirmed to correlate with 

the reciprocal value of the anodization voltage. The relative permittivity, an important material 

property of the anodic oxide layer, shows independence of the anodization voltage from 30 V 

upwards. 

The anodic Ta2O5 layer has proved advantageous over native tantalum oxide because of its 

higher relative permittivity and its better isolating property to avoid the leakage current and to 

increase the breakdown strength. 

Based on the Ta2O5 layer, a self-assembled ODTS layer consists as the middle layer in the 

MDS. The thickness of the monolayer characterizes this silane layer. The silanization 

successfully converts the electrode surface from hydrophilic to hydrophobic. This surface 

chemistry change is suggested to be responsible for the subsequent entrapment of a thin oil 

layer as the fluid dielectric top layer in the MDS. 

By replacing air with oil as the ambient medium, a thin oil layer is indicated to occupy the space 

between the droplet and the electrode. This interfacial scenario results in the significantly 

enlarged contact angle of the droplet in its resting state and the largely reduced surface friction 

against the droplet motion (Table 4.4). These two parameters highlight the benefits of an oil 

environment for a successful low-voltage EWOD effect. Moreover, the application of an oil 

environment can prevent the µL-sized droplets from evaporation, to assure the measurement 

reliability and to enable the long-time investigation. This advantageous operation ambience is 

also applied in the 2-fluid-phase (water-oil) systems for the microfluidics158, liquid lenses15 and 

EWOD displays159. 

Furthermore, the capacitance per unit area (�/�) is an important EWOD-relevant parameter 

due to its role in the areal electric potential energy (Eq. 2.9), which induces the EWOD effect. 

In this study, the �/�-values were determined for the Ta2O5-ODTS-bilayer and the MDS 

without EWOD effect respectively: (2.66 ± 0.16) nF/mm2 and (0.818 ± 0.268) nF/mm2. The 

former value was as reference subsequently involved in the estimation of the oil layer thickness 

at the EWOD effect (Chapter 4.3.2).  
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In this study, a few key parameters, such as the relative permittivity of Ta2O5 layer, that of the 

silane layer as well as the thickness of the thin oil layer between the droplet and the electrode, 

are experimentally difficult to assess by direct analysis methods. To determine these 

parameters, a methodology involving indirect investigations and physical correlations based 

on equivalent circuit models was applied. 

One methodology in this study is the independent investigation by ellipsometry and by EIS with 

simultaneous imaging followed by calculation based on the plate capacitor model. With this 

methodology, the relative permittivity, an essential material property, can be individually 

specified for diverse fabrication conditions. This enhances the quality control of the Ta2O5 layer 

and the silane layer. Moreover, this enables different fabrication conditions to be compared 

and the appropriate conditions to be selected, e.g. for preparing the Ta2O5 layer used in the 

low-voltage EWOD study. 

Concerning the thin oil layer, its thickness in the nm-range as well as its location between an 

aqueous drop and a non-transparent solid electrode hinder its thickness to be determined with 

the usual optical analysis methods. A low-cost and convenient solution to overcome this 

obstacle is using the indirect methodology by measuring the layer capacitance and converting 

it to the thickness information. It involves EIS with simultaneous macroscopic imaging, the 

capacitors-in-series model for the MDS, the plate capacitor model for the oil layer and the 

literature value of the oil relative permittivity. With this indirect method, the oil layer thickness 

can be determined at the droplet resting state as reference (Chapter 4.1.4.3) and be monitored 

online during the EWOD process (Chapter 4.3.2). 
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4.2. Frequency Dependence of EWOD 

Partial results in this chapter have been published in Li, Ying-Jia and Cahill, Brian P., 

“Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance 

Spectroscopy”, Langmuir 2017, doi: 10.1021/acs.langmuir.7b03049. 

To understand and assess the frequency dependence of the EWOD effect at low alternating 

voltages, this study focuses on the influence of frequency on the three EWOD-relevant 

variables in the Young-Lippmann equation (Eq. 2.2). They are the voltage drop on the dielectric 

layer in the EWOD electrode (�), the capacitance per unit area of the dielectric layer (�/�) 

and the contact angle under voltage (��). Furthermore, the influence of frequency is analyzed 

for the correlation of these three EWOD-relevant variables under various measurement 

conditions. 

The system under investigation is a sessile droplet of aqueous KCl solution resting on the LV-

EWOD electrode in the oil surrounding. The fabrication and the characterization of the LV-

EWOD electrode were presented in Chapter 3.1, 3.2 and 4.1 respectively. The region of 

interest is the droplet-electrode-interface including an entrapped oil layer as the fluid dielectric. 

This interfacial region is described as the multilayer dielectric stack (MDS, Figure 2.11, 

Chapter 2.2.1.3). The droplet and the MDS are electrically modelled with a developed 

equivalent circuit (Figure 2.12 b, Chapter 2.2.2.1). For the alternating voltage applications, an 

adapted Young-Lippmann equation (Eq. 2.32) is postulated in Chapter 2.2.2.3. 

The influence of frequency was investigated online using the integrated LV-EWOD-EIS system 

and high-speed imaging system (Chapter 3.3.1). It facilitates simultaneous EWOD excitation, 

EIS measurement and optical analysis of the droplet geometry. In this study, single sinusoidal 

signals were applied to the system under investigation with two variable quantities: frequency 

(100 Hz – 1 MHz) and amplitude voltage (0.5 V – 5 V). A third variable of the measuring 

condition was the salt concentration of the droplet varied within the physiological-relevant 

range (6.25 mM – 200 mM KCl). 

In this section, the three EWOD-relevant variables in the adapted Young-Lippmann equation 

(Eq. 2.32) were individually and systematically addressed as shown in Figure 4.13. 

The online impedimetric response of EWOD (Chapter 4.2.1) serves to determine �(XSU)STU, 

the effective voltage drop on the MDS, (Chapter 4.2.2) and �STU, the MDS capacitance. The 

optical characterization of the droplet geometry yields ��, the contact angle under voltage, 

(Chapter 4.2.4) and � , the droplet / electrode contact area. From �STU  and � , the MDS 

capacitance per unit area, �STU/�, is determined (Chapter 4.2.3). Based on the three EWOD-

relevant variables, the conversion efficiency of the electric potential energy to EWOD effect is 

evaluated with reference to the correlation coefficient \  in the adapted Young-Lippmann 

equation (Chapter 4.2.5). 
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Figure 4.13. Section overview with the optical image of the system under study, its equivalent 
circuit model (reprint of Figure 2.12 b, Chapter 2.2.2.1) and the adapted Young-Lippmann 
equation (Eq. 2.32). Three EWOD-relevant variables (blue): effective voltage drop on the MDS 
(�(XSU)STU ), MDS-capacitance per unit area (�STU/�) and contact angle under voltage (�� ). 

β: correlation coefficient for assessment of the EWOD effect. 

 

4.2.1. Online Impedance Spectroscopy of EWOD 

By means of the integrated LV-EWOD and EIS, the impedimetric response of the system under 

investigation can be traced online during EWOD. In this study, the impedance spectra were 

recorded at frequencies from 1 MHz to 100 Hz, at voltage amplitudes from 0.5 V to 5 V and 

with different droplet KCl concentrations from 6.25 mM to 200 mM (Chapter 3.3.2). The 

impedimetric response was recorded under the diverse operating conditions to investigate the 

equivalent circuit model (Figure 2.12 b) for representing the system under study during EWOD. 

Based on this equivalent circuit model, the impedance spectra were analyzed for determining 

the voltage drop on the MDS (Chapter 4.2.2) and the MDS-capacitance. 

The equivalent circuit model describes the droplet as a resistive component and the entire 

MDS as a capacitive component (Chapter 2.2.2.1). Concerning its configuration as an RC 

combination in series, the impedance spectra should show two different responses: one 

frequency-independent resistive response and one frequency-dependent capacitive response 

at all measurement conditions. The latter is based on the frequency dependence of the 

impedance contribution from a capacitive component: @� = ��?E� (Eq. 2.30). The validity of the 

equivalent circuit is supported by comparison with the impedance spectra obtained at various 

voltages (Figure 4.14 a) and for a range of saline concentrations (Figure 4.14 b). 
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Figure 4.14. Impedance spectra of impedance modulus against frequency (a) during EWOD at 
varied voltage amplitudes (�,,/� = 0.5 – 5 V) on a droplet of 6.25 mM KCl and (b) during EWOD 

of droplets with diverse KCl concentrations (c = 6.25 – 200 mM) at the voltage amplitude of 5 V. 
Grey arrows: critical frequencies dividing the impedance spectra in the capacitive and the 
resistive response of the system under investigation. 

For EWOD at varied voltages, representative impedance spectra (Figure 4.14 a) are 

demonstrated with measurements on droplets with a constant KCl concentration of 6.25 mM. 

Despite the difference in the applied voltage, each spectrum shows two characteristic 

impedimetric responses separated by a critical frequency. The critical frequency is pointed out 

by a grey arrow in Figure 4.14 (a) for each measurement at a �,,/� with the integer values. 

Below the critical frequency, the impedance modulus shows an inverse linear correlation to the 

frequency at each voltage. This impedimetric response is characteristic for a capacitor. Above 

the critical frequency, the impedance modulus appears to be independent of frequency. This 

impedimetric behavior is typical for a resistor. These two characteristic responses appear in 

the impedance spectra at all the applied voltages. This result confirms the hypothesis 

postulated above. Hence, the system under investigation can be electrically modeled as an 

RC combination. 
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Moreover, the impedance spectra show that the applied voltage significantly influences the 

capacitive response of the system under investigation. In contrast, the voltage does not 

significantly affect the resistive response.  

For EWOD of droplets with diverse KCl concentrations, representative impedance spectra are 

exhibited for a constant voltage of 5 V (Figure 4.14 b). 

Despite the difference in the KCl concentration, each impedance spectrum reveals the two 

characteristic responses as well: the capacitive response below the critical frequency and the 

resistive response above the critical frequency. Concerning the resistive response, the 

impedance modulus decreases with increasing the salt concentration in the droplet. 

Concerning the capacitive response at a constant voltage, all impedance spectra present a 

coincident inverse linear correlation between the impedance modulus and the frequency.  

The concentration dependence of the resistive response implies the droplet to be the resistive 

element in the system under investigation. The influence of the KCl concentration on the 

resistive response can be explained as below: For the investigated concentration range, the 

concentration of the strong electrolyte (KCl) proportionally correlates with its specific 

conductivity.49 The specific conductivity correlates inversely with the solution resistance, which 

is the predominant component of the frequency-independent real part of the impedance.  

The concentration independence and the coincidence of the capacitive response 

(Figure 4.14 b) indicate that, the capacitive element in the system under study is independent 

of the KCl concentration in the measuring range. This result suggests that, the contribution of 

the double layer capacitance at the wire-droplet-interface and that at the droplet-MDS-interface 

to the entire capacitance of the system under study can be neglected. A detailed proof with a 

comparison between the MDS capacitance and the double layer capacitance is provided as 

the supporting material in the publication145. Therefore, the MDS can be considered as the 

capacitive element in the system under study. 

The results presented above suggest the validity of the equivalent circuit model for 

representing the system under study during EWOD effect at the measuring conditions. 

 

4.2.2. Voltage Drop on MDS Influenced by Frequency and Concentration 

According to the equivalent circuit model (Figure 2.12 b), the capacitive MDS can only store a 

part of the electric potential energy depending on the voltage drop across it 

('(� =  �� ∙  �STU ∙  �STU� ). According to the Young-Lippmann equation (Eq. 2.2), the electric 

potential energy per unit area stored in the MDS ('(�/� = �� �STU ∙ �STU� , Eq. 2.9) induces the 

EWOD effect. Due to its quadratic contribution to the '(�/�, the voltage drop on the MDS is 

implied to essentially influence the strength of the EWOD effect. 

This voltage was determined with the voltage division principle (Eq. 2.29) and the impedance 

spectra analysis of the impedance modulus and phase. Concerning the alternating voltage 
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application, the effective voltage value is calculated as the root-mean-square value (Eq. 2.31). 

The percentage of the voltage drop on MDS (
�(XSU)STU�XSU %) was investigated for the frequency 

dependence at various voltages (Figure 4.15 a) and with different saline concentrations 

(Figure 4.15 b). A hypothesis about the frequency influence is postulated as below: Since the 

system under study is electrically modeled as an RC combination in series, the voltage drop 

on the capacitive MDS should show a frequency dependence like the first-order low-pass 

filters30, 55 (Figure 2.13, Chapter 2.2.2.1) in the electrical engineering. 

The percentage of the voltage drop across MDS shows a comparable frequency dependence 

at various voltages with a constant saline concentration (example: 6.25 mM KCl) in the droplet 

(Figure 4.15 a): In the low frequency region, 100 % of the applied voltage drops across the 

MDS. With the frequency increase, the percentage of voltage drop on MDS decreases 

gradually toward 0 %.  

 

Figure 4.15. Percentage of the RMS-voltage drop on the MDS versus frequency (a) for EWOD at 
alternating voltages from 0.5 V to 5 V on a droplet of 6.25 mM KCl and (b) for EWOD on droplets 
with KCl concentrations from 200 mM to 6.25 mM at the alternating voltage of 5 V. Black arrow 
with c: increase of KCl concentration. 
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This frequency dependence reflects a typical electrical low-pass filter behavior. Moreover, this 

low-pass filter behavior of the voltage percentage is observed for all measured saline 

concentrations (Figure 4.15 b). These results confirm the hypothesis and support the validity 

of the equivalent circuit model to represent the system under study as a series RC-circuit.  

With increasing saline concentration (black arrow in Figure 4.15 b), the voltage percentage 

curve shifts to the higher frequencies and thus the low-pass frequency range extends. This 

influence can be explained by the following correlation: The saline concentration contributes 

negatively to the droplet resistance (detailed explanation in Chapter 4.2.1), which affects the 

total impedance (Eq. 2.23) and the voltage division (Eq. 2.29). Thus, the saline concentration 

is indicated to be a determining factor of the frequency range of the low-pass filter. 

 

4.2.3. MDS Capacitance Influenced by Oil Layer and Frequency 

As the origin of the EWOD effect, the electric potential energy per unit area 

( '(� / � =  �� ∙  �STU� ∙  �STU� , Eq. 2.9) is contributed by the MDS capacitance per unit 

area (�STU / �).  

Based on the equivalent circuit model (Figure 2.12 b), the MDS-capacitance (�STU ) was 

determined by analyzing the impedance spectra of modulus ( |6| ) and phase (∅) with 

@�STU =  −  |6| · �_�∅ (Eq. 2.18, Eq. 2.20) and @�STU = ��?E�STU (Eq. 2.29). The area (�) refers 

to the contact area between the droplet and the LV- EWOD electrode and was obtained 

through image analysis of the droplet-electrode interfacial region. 

Moreover, the capacitance per unit area, �STU / �, was used to exclude the influence of the 

contact area change. The influence of voltage and of frequency on �STU / � during EWOD is 

shown in Figure 4.16 for a 6.25 mM KCl droplet. 

 

Figure 4.16. MDS capacitance per unit contact area to the droplet versus frequency for EWOD at 
alternating voltages from 0.5 V to 5 V on a droplet of 6.25 mM KCl. Black arrow with U: increase 
of the voltage. 
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Each �STU / � curve exhibits a decrease with the frequency, especially in the high frequency 

region. Since MDS works as a capacitor, upon applying a voltage on the system under 

investigation, the charging process in MDS is time-related. At these high frequencies, the 

corresponding period values are lower than the time constant (H = =�) of the system under 

investigation. The charging process is incomplete, and less electric potential energy can be 

stored. 

Moreover, �STU / � significantly increases with the voltage, especially in the low frequency 

region. Based on the correlation, 
�� = *�*$$  (Eq. 2.11), this parameter is affected by the 

thicknesses of the dielectric layers consisting in the MDS. The thickness of its two solid layers, 

the Ta2O5-layer and the ODTS-layer, are invariable during EWOD. In contrast, the oil layer as 

a fluid between the droplet and the electrode can be deformed during EWOD. Its thickness 

should decrease with the increasing electrostatic pressure48. This means, that the oil layer 

should be squeezed out of the space between the droplet and the electrode by increasing the 

voltage. This hypothesis is supported by the observed increase of the MDS capacitance per 

unit area with the applied voltage. 

 

4.2.4. Contact Angle Influenced by Voltage and Frequnecy 

The electrowetting behavior of a droplet is characterized by its voltage-induced contact angle 

decrease and the corresponding contact area increase. The contact angle under voltage, �|, 

as marked in a droplet image in Figure 4.17 (a), is the parameter used to study the influence 

of voltage and frequency on the electrowetting effect.  

The EWOD-induced contact angle change at voltages lower than 5 V is shown in 

Figure 4.17 (b). A contact angle change of 30° in the oil was observed at the AC voltage 

amplitude of 5 V (6.12 VRMS) during the frequency decrease from 1 MHz to 100 Hz. This low-

voltage electrowetting performance is comparable or better than the results from other 

research groups that used Ta2O5 insulating layers. To reach the same contact angle change 

in air, an EWOD electrode combining Ta2O5 with Teflon-AF required 13 VDC
72. EWOD 

electrodes with Ta2O5 and CytopTM demanded 6 VDC to overcome the actuation threshold71 or 

to approach a contact angle change of 19° in air 72. The lower voltage demand reported here 

can be attributed to the much lower thickness of silane monolayers in comparison with 

fluoropolymers layers coated by spin coating. 

Since the system under investigation shows a low-pass filter behavior (Figure 4.15), less 

voltage is dropped across �STU  at high frequencies. Thus, at low frequencies and high 

voltages, more electric potential energy is stored in �STU and the electrowetting is expected to 

be enhanced.  
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The representative contact angle behavior at varied frequency (example: 6.25 mM KCl droplet) 

is presented in Figure 4.17 (b).  

 

Figure 4.17. (a) Optical image of a 3 µL droplet in tetradecane. ��: contact angle under voltage. 
(b) Contact angle under voltage versus frequency for the electrowetting at alternating voltages 
from 0.5 V to 5 V on a droplet of 6.25 mM KCl. Black arrow with E/: frequency threshold. 

At the alternating voltages above and equal to 2 V, the contact angle is significantly affected 

by the frequency. By lowering the frequency from 1 MHz to 100 Hz, the contact angle remains 

unchanged at the high frequencies, decreases at a frequency threshold (black arrow in 

Figure 4.17 b) and reaches saturation at the low frequencies. Moreover, the contact angle 

change depends on the applied voltage by reducing the final saturated contact angle. These 

indicate, the electrowetting can only occur below a frequency threshold and it is enhanced by 

lowering frequency and by increasing voltage. 

Furthermore, at the alternating voltages below 2 V, frequency has no significant influence on 

the contact angle. This indicates that the voltage drop across MDS and the electric potential 

energy stored in the MDS are too low to cause significant electrowetting. 
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4.2.5. Young-Lippmann Equation for AC Applications 

The three EWOD-relevant variables (�(XSU)STU, �STU� , �� ) in the adapted Young-Lippmann 

equation (Eq. 2.32, Chapter 2.2.2.3) are directly or indirectly influenced by frequency, voltage 

and salt concentration in the droplets, as shown in the previous chapters (Chapter 4.2.2 – 

Chapter 4.2.4).  

How frequency influences the Young-Lippmann equation, is analyzed here with a plot of the 

electrowetting number (
�STU����� �(XSU)STU� )35 against the EWOD-induced contact angle change 

(	
��� − 	
���). The slope yields the correlation coefficient \. It indicates the percentage of 

the electric potential energy contributing to the electrowetting. 

A plot of the adapted Young-Lippmann equation (Eq. 2.32) is shown for the electrowetting at 

various frequencies from 100 Hz to 1 MHz on a droplet of a physiologically relevant salt 

concentration (100 mM KCl) as a representative example (Figure 4.18).  

 

Figure 4.18. (a) Plot of the adapted Young-Lippmann equation (Equation 2.32) for the EWOD at 
frequencies from 100 Hz to 1 MHz on a droplet of 100 mM KCl. (b) Correlation coefficient β for 
droplets of 100 mM KCl and 6.25 mM KCl at frequencies where β < 1 (N=3). 
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The adjusted coefficient of determination (=k2) and the slope (\, Figure 4.18 b, right bars, N = 3) 

were determined through a linear fitting for the lower frequencies (100 Hz ≤ E ≤ 100 kHz). All 

the =k2 values are very close to one (=k2 > 0.98) and the significance of each linear correlation 

is confirmed by a Student’s t-test 160 with 99 % confidence. This indicates a significant linear 

correlation between the electrowetting number and 	
��� − 	
��� in this frequency regime. 

Furthermore, the right bars in Figure 4.18 b reveal the comparable slopes (\) of the linear 

correlations in the lower frequency range from 100 Hz to 100 kHz.  Their average value is 

0.55 ± 0.02. The significant linear correlations and the comparable \ values suggest that the 

electrowetting behavior at alternating voltages can be well described by the adapted Young-

Lippmann equation (Eq. 2.32) with a stable \ value in this frequency region. Moreover, the \ 

value below one indicates that the electric potential energy stored in the dielectrics only 

partially contributes to the electrowetting. The residual energy may be converted to 

electromechanical work for the oil layer deformation and to dissipation during EWOD. Staicu 

and Mugele have investigated the deformation of an entrapped oil layer in a comparable 

measurement setup. The oil film thickness is described by an extension of the Landau-Levich 

law regarding the electrostatic pressure36. 

In contrast, the dataset of the highest frequency (E = 1 MHz) reveals no significant linear 

correlation between 	
��� − 	
��� and the electrowetting number based on a Student’s two-

tailed t-test with 95 % confidence limit. This suggests that EWOD effect is not the main cause 

of contact angle change at this high frequency. 

This frequency-based difference shown in the correlation behavior reveals that, electrowetting 

occurs below a frequency threshold. The frequency-based relationship between electrowetting 

and dielectrophoresis was studied by Jones et al.44-45: electrowetting dominates at lower 

frequencies while dielectrophoresis dominates at higher frequencies. Due to the asymmetric 

electrode configuration (Figure 2.11) in the measurement setup here, the aqueous droplet 

experiences an inhomogeneous electric field during electrowetting. For a comparable system 

as reported here, Shapiro et al.106 have demonstrated the non-uniform electric potential scaling 

inside a slightly resistive droplet and in its underneath EWOD electrode. Since the voltage 

mainly drops across the droplet rather than across the MDS at high frequencies, the gradient 

of the electric field may be sufficiently high to cause a significant volume polarization force 46 

on the droplet and thus induce dielectrophoresis here.  

In addition, at a low salt concentration of 6.25 mM KCl, the correlation in the adapted Young-

Lippmann equation behaves similarly: Below a frequency threshold of 10 kHz, significant linear 

correlations deliver comparable slope values below one ( \  = 0.63 ± 0.05) at various 

frequencies (Figure 4.18 b, left bars). This confirms that electrowetting dominates in the low 

frequency range. Moreover, this indicates that the frequency and the salt concentration have 

no significant influence on the correlation in the adapted Young-Lippmann equation. 
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However, the frequency region for electrowetting is limited by a lower threshold at the low salt 

concentration (EB = 10 kHz) than at the high salt concentration (EB = 100 kHz). This implies that 

the salt concentration in the droplet regulates the frequency threshold, below which the 

adapted Young-Lippmann equation can well describe the electrowetting behavior at alternating 

voltages. 

 

4.2.6. Conclusions 

The frequency dependence of the EWOD effect on application of alternating voltages is the 

focus of study presented in this section. The key prerequisite for this study is the simultaneous 

implementation of EWOD excitation, impedimetric investigation and imaging analysis. This 

was fulfilled with the high-speed imaging instrument in association with the LV-EWOD-EIS 

system. By means of frequency-domain EIS using a sinusoidal voltage signal with variable 

frequency and amplitude, the EWOD effect was induced on a droplet with various salt 

concentrations on the low-voltage EWOD electrode in oil. Its impedimetric response at diverse 

measurement conditions confirms the validity of the equivalent circuit model for electrically 

representing the object under study: the droplet and the MDS. The latter includes two solid 

dielectric layers in the EWOD electrode and a fluid oil layer between the droplet and the 

electrode. The basic Young-Lippmann equation was adapted to account for alternating 

voltages by specifying the effective voltage and added with a correlation coefficient (\) to 

indicate the EWOD efficiency. 

The frequency dependence of the three EWOD-related variables in the adapted Young-

Lippmann equation was investigated: the effective voltage drop across MDS, the MDS-

capacitance per unit area and the contact angle under voltage. First, the frequency 

dependence of the voltage drop across MDS indicates a low-pass filter behavior; the low-pass 

frequency region can be regulated by the salt concentration. Second, the MDS-capacitance 

per unit area shows a voltage-dependence at low frequencies due to the deformation of the oil 

layer between the droplet and the electrode during electrowetting. Meanwhile, the decrease of 

the MDS-capacitance per unit area at high frequencies reveals that the time limitation may 

result in the incomplete storage of the electric potential energy in the MDS. Third, the frequency 

dependence of the contact angle under voltage is visible above a voltage threshold and below 

a frequency threshold. 

Finally, the correlation between both sides of the adapted Young-Lippmann equation was 

studied with regard to frequency dependence. Below a frequency threshold, electrowetting 

dominates and can be well described by the adapted Young-Lippmann equation independently 

of frequency and salt concentration. In this frequency region, the correlation coefficient (\) is 

less than one, thus the electric potential energy stored in MDS is indicated to only partially 

contribute to EWOD effect. 
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4.3. Non-Linearity and Dynamics in EWOD SystemXIV 

In this section, the non-linearity and dynamics of electrowetting and dewetting were studied 

with focus on the electric potential energy per unit area ('(�/�) for the EWOD system with oil 

as the ambient medium. In this study, the EWOD system (Figure 4.19 a) was electrically 

excited, impedimetrically characterized using dynamic EIS and optically analyzed by high-

speed imaging. The EWOD system was a 3 µL-droplet of 200 mM KCl immersed in oil and 

resting on the LV-EWOD electrode with two solid dielectric layers (Chapter 3.1): an ODTS 

monolayer coating and an anodic Ta2O5 layer (�+1<P = 30 V). The objects of interest are the 

droplet and the interfacial oil layer between the droplet and the electrode. The latter is 

considered as the top layer in the MDS. The applied voltage stimulus was a symmetric 

staircase signal (�<��,v01 = 0.3 V, �<��,v+} = 5.8 V, l = 1 s) with a square signal (�,,/� = 0.3 V, E = 10 kHz) integrated at each voltage step (Figure 2.7, Chapter 2.1.2.2, Chapter 3.3.3). The 

ascending voltage ramp in the staircase stimulus induces electrowetting and the descending 

ramp leads to the dewetting. For both processes, the time-resolved response of the EWOD 

system was traced in terms of following parameters (Figure 4.19 b): the contact angle (��), the 

contact area (�) of the droplet and the area-related capacitance (�) of the multilayer dielectric 

stack (MDS).  

Figure 4.19. (a) EWOD system model (Chapter 2.2.1.3): an aqueous saline droplet on the MDS 
(multilayer dielectric stack) consisting of an interfacial oil layer and solid dielectrics (b) Overview 
of the time-resolved response of the contact area (red), the contact angle (blue) of the droplet 
and the area-related MDS-capacitance (green) to the staircase voltage stimulus (black). The 
arbitrary unit is defined for each parameter as the ratio to the difference between its maximum 
and its minimum value. 

 

                                                 

XIV All results in this section were produced in cooperation with the research group at IBA for the funding 

project, “Impedanzspektroskopische Bioanalytik – schnell und hochparallel”, 2016 FGR 0040. 

 



 

 

4. Results and Discussion 

97 

 

This section begins with the voltage dependence of the origin of the EWOD effect, which is the 

electric potential energy per unit area stored in the MDS, and the correlated capacitance per 

unit area of the MDS (Chapter 4.3.1). The non-linear behavior and the hysteresis feature of 

the EWOD system at electrowetting and dewetting is characterized by the thickness change 

of the interfacial oil layer (Chapter 4.3.2) and the droplet deformation with a view of the voltage 

threshold and the contact angle hysteresis (Chapter 4.3.3). The dynamics of the EWOD 

system is studied with the characteristic time of the contact area alternation based on the time-

resolved measurements of the electrowetting and the dewetting process (Chapter 4.3.4). 

 

4.3.1. Electric Potential Energy and MDS-Capacitance  

As the Young-Lippmann equation (Eq. 2.2) implies, the electric potential energy per unit area 

('(�/�) stored in the MDS yields the EWOD effect. This electric potential energy per unit area 

depends on the MDS-capacitance per unit area ( �STU/� ) and the applied voltage ( � ) 

according to Eq. 2.9, 
'(�� = �� ∙ �� ∙ ��.  

To find out the �/� in this study, the area-related MDS capacitance (�STU) was determined by 

means of dynamic EIS for equidistant voltage steps between 0.3 V and 5.8 V in an ascending 

ramp followed by a descending ramp. The corresponding droplet contact area (�) was obtained 

through the synchronized optical imaging (Chapter 3.3.3). 

Based on the �STU/�, the electric potential energy per unit area ('(�/�) is calculated with the 

voltage offset (�<��) for each step in the staircase signal according to Eq. 2.9. A representative 

voltage dependence of '(�/� is shown for the ascending ramp in red and for the descending 

ramp in blue (Figure 4.20). 

The non-linear '(�/�-voltage dependence in the ascending ramp and that in the descending 

ramp are generally in coincidence with each other despite slight discrepancy. Within the 

voltage region from 2.2 V to 4.1 V, '(�/� has lower values in the ascending ramp than in the 

descending ramp. In contrast, higher '(�/� values were determined in the ascending ramp 

than in the descending ramp between 4.4 V and 5.3 V. 
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Figure 4.20. Non-linear voltage dependence of the electric potential energy per unit area (Eel/A) 
in the ascending (red) and in the descending (blue) voltage ramp. Uoff: voltage offsets of the 
staircase stimulus.XV 

The discrepancy of the '(�/� behavior in the electrowetting and in the dewetting process can 

be elucidated by the different �STU/�-voltage dependence in the ascending ramp and in the 

descending ramp shown in Figure 4.21. 

 

Figure 4.21. Non-linear responses of the MDS-capacitance per unit area (CMDS/A) to the 
ascending (red) and to the descending (blue) voltage ramp. Uoff: voltage offsets of the staircase 
stimulus. 

In the ascending ramp, data points of the �STU/� are presented above the voltage threshold 

(about 2 V, Figure 4.23 and Figure 4.24, Chapter 4.3.3.1) for inducing EWOD effect. The 

omission of the data points in the measurement beginning is explained in Footnote XV.  

                                                 

XV At the low voltages in the ascending ramp (0.3 - 1.9 V), six data points of the capacitance were not 

appropriately determined due to the signal drift at the beginning of the EIS measurement, which did not 

originate from the object under study. Since '(�/� and �/� were calculated with the capacitance, their 

data points in this voltage region are hence omitted in all relevant figures. 
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Starting with its minimum value around 2.5 V, the �STU/� shows a steep rise followed by an 

attenuated increase in the ascending ramp. In the descending ramp, the �STU/� decreases 

continuously and almost linearly with the voltage.  

This �STU/�-response to the applied voltage sequence is expected. As elucidated in the study 

of the frequency influence on the EWOD effect in Chapter 4.2.3, �STU/� should rise with the 

increasing voltage and decline with the reducing voltage. This voltage-influence on the �STU/� 

can be reasoned with its correlation with the thickness of the oil layer ($<0�) in the MDS and the 

influence of the electrostatic pressure on $<0�. The relationship between the �STU/� and the $<0� can be expressed with Eq. 4.4 and Eq. 4.5, which are indicated by the equivalent circuit 

model (Figure 2.12 b) representing the oil layer and the solid dielectrics as capacitors 

connected in series. The results about the oil layer deformation are provided in detail further 

on (Chapter 4.3.2). 

Moreover, in comparison to the slight difference of the '(�/�-voltage dependence in the 

electrowetting and the dewetting process, more significant difference is shown by the �/�-

voltage dependence in the comparable voltage regions. This can be explained by the Eq. 2.9: 

Although �/� contributes proportionally to '(�/�, its influence is much less significant than the 

voltage influence on '(�/� with the power of two. 

Therefore, despite the different response of �/� in the electrowetting and dewetting process, 

the non-linear voltage dependence of '(�/� is comparable in both processes. 

 

4.3.2. Oil Layer Deformation 

To quantify the deformation of the interfacial oil layer during the electrowetting and the 

dewetting process, the oil layer thickness was evaluated. Due to its nm-scale, it is difficult to 

measure this parameter directly with the commonly used optical techniques. In this study, the 

oil layer thickness was indirectly determined from  �STU/� (Figure 4.21), by accounting for the 

capacitance of the solid Ta2O5-ODTS-bilayer (2.66 nF/mm2) using the plate capacitor model 

as described by Eq. 4.4 and Eq. 4.5. The approach and the procedure can be found in the 

previous sections (Chapter 4.1.4.2 and 4.1.4.3). A representative oil layer deformation with the 

electric potential energy per unit area ('(�/�) is shown in Figure 4.22 for the ascending ramp 

in red and for the descending ramp in blue. 
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Figure 4.22. Non-linear variation of the oil layer thickness ($<0�) with the electric potential energy 
per unit area (Eel/A) in the ascending (red) and in the descending (blue) voltage ramp. 

In the ascending ramp, the oil layer reaches its maximal thickness at the low '(�/�-level 

corresponding to the voltage threshold around 2 V (Chapter 4.3.3.1). This observation agrees 

with the literature report about a thick oil layer separating the water phase and a hydrophobic 

substrate at the droplet resting state35, 161. The “thick” oil layer results from the substrate-wetting 

by the oil phase, since their microscopic interactions are stronger than those between the 

substrate and the aqueous phase. In this study, the oil phase should completely wet the 

hydrophobic ODTS-surface of the LV-EWOD electrode, mainly due to the long-range van der 

Waals interaction between the alkyl chains in the ODTS molecules and those in the oil 

(tetradecane) molecules (Chapter 4.1.4.1). 

Beginning with its maximal value, the $<0�  decays with the '(�/�-increase constantly and 

approaches its minimum of 9.9 nm at the highest '(�/�-level of 31 mJ/m2. Upon the '(�/�-

decrease along the descending voltage ramp, the $<0� rises gradually and reaches a stable 

value of 18 nm around the '(�/�-level of zero. This indicates that the droplet presses the oil 

out of the space between the droplet and the electrode by increasing the supply of the electric 

potential energy per unit area in the EWOD system. Reversely, the oil flows back with ceasing 

energy. This oil layer deformation can originate from the electrostatic forces47 changing the 

balance of the microscopic interactions162. 

In the low '(�/�-range between 2.5 mJ/m2 and 13 mJ/m2, the oil layer presents a larger 

thickness change during the ascending voltage ramp than during the descending ramp. This 

reveals that the oil layer deforms more strongly during the electrowetting process than during 

the dewetting process in this low '(�/�-region. In the high '(�/�-range above 13 mJ/m2, the 

difference in the oil layer deformation between the electrowetting and the dewetting process 

turns to be insignificant. The different non-linear $<0�-change along the electrowetting and 

along the dewetting process suggests that, the oil layer deformation is a non-conservative 

process in the low '(�/�-range and a nearly reversible process in the high '(�/�-range. 

Thus, the hysteresis in oil layer deformation occurs mainly at low energy levels. The involved 

dissipation10, 35 may originate from the fluid friction in oil, namely the viscous effect. 
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Furthermore, $<0�-values obtained at the end of the descending ramp and at the beginning of 

the ascending ramp (18.0 nm and 22.5 nm) are slightly different, but comparable with the oil 

layer thickness determined for the droplet resting state ( $<0�  = 15.2 nm ± 7.2 nm) in 

Chapter 4.1.4.3.  

 

4.3.3. Droplet Deformation 

The droplet deformation is characterized by the contact angle under voltage (��) and the 

contact area (�) between the droplet and the EWOD electrode. These two parameters were 

traced online by high-speed optical imaging during the electrowetting and the dewetting 

process (Chapter 3.3.1, III and IV). In this study, the voltage threshold of EWOD effect is 

determined with both contact angle and contact area (Chapter 4.3.3.1). Moreover, the contact 

angle hysteresis indicates the energy loss in a cycle of the electrowetting and the dewetting 

process (Chapter 4.3.3.2).  

 

4.3.3.1. Low Voltage Threshold 

The voltage threshold for EWOD effect is defined as the lowest applied voltage, where the 

droplet starts to deform from its initial static state. In this study, the voltage threshold was 

yielded based on the response of the contact angle (Figure 4.23) as well as that of the contact 

area (Figure 4.24) to the voltage steps in the ascending ramp. 

At the beginning of the voltage staircase, the contact angle remains constant despite the 

voltage application (Figure 4.23). The inhibited droplet deformation can be due to the inertia or 

fluid friction resulting from the bulk viscosity of the droplet and that of the surrounding oil. By 

increasing the voltage offset, the EWOD effect is shown by the reduction of the contact angle 

after the voltage threshold (�B) is overcome. 

 

Figure 4.23. Voltage threshold (�/,~ ) of EWOD effect determined with the contact angle (�u) 

response to the ascending voltage ramp. Uoff: voltage offsets of the staircase stimulus. 

0 1 2 3 4 5 6

100

110

120

130

140

150

160

 θ
u
  /

 °

U
off

 / V

 ascending ramp

Ut, ~



 

 

4. Results and Discussion 

102 

 

As illustrated by the gray dashed lines in Figure 4.23, the voltage threshold corresponds to the 

intersection point of two extrapolated fitting lines: the base line of the initial static contact angle 

and the tangent line to the receding contact angle. 

For a 3 µL droplet of 200 mM KCl in oil, the voltage threshold (�/,~) was determined to be 

(1.93 ± 0.16) V based on four measurements of the contact angle response. 

Along the same ascending ramp, the droplet inertia behavior and the droplet spreading 

process upon overcoming the voltage threshold results in the corresponding contact area 

response: a stable phase with the initial constant area value followed by an increase 

(Figure 4.24). Here, the voltage threshold was determined with the same procedure used 

above in the case of the contact angle response. 

 

Figure 4.24. Voltage threshold (�/,� ) of EWOD effect determined with the contact area (� ) 

response to the ascending voltage ramp. Uoff: voltage offsets of the staircase stimulus. 

Four measurements of the contact area response yielded the voltage threshold ( �/,� ) 

determined with the contact area of (2.13 ± 0.17) V. 

The two voltage thresholds,  �/,~  and �/,� , were determined for comparable low values. 

Concerning the advanced EWOD systems, this threshold is lower than the most achieved “low 

voltages” reported for example by Lin et al. (7.2 V)71, Khodayari et al. (10 V)163 and Moon et al. 

(15 V)164. The low voltage threshold yielded in this study confirms the achievement of a low-

voltage EWOD system. 

The slightly higher value of �/,~ can result from the additional electrical energy required for 

overcoming the advancing contact angle, so that the force balance between the interfacial 

tensions and the surface friction force at the static state can be broken. Upon this condition, 

the contact line motion can occur. Due to the low contact angle hysteresis in this EWOD system 

(Chapter 4.1.4.1), the dissipation contributed by the surface friction against the contact line 

motion36, 165-166 is low, hence the voltage threshold for the contact angle change and that for 

the contact area change almost overlap. This minor contact line pinning is a feature of an 

effective EWOD system. 

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
 /
 m

m
2

U
off

 / V

 ascending ramp

Ut, A



 

 

4. Results and Discussion 

103 

 

4.3.3.2. Contact Angle Hysteresis 

The hysteresis of droplet deformation in the electrowetting and dewetting process was 

investigated in this study with the cosine of the droplet contact angle (.<� �u) at diverse levels 

of the electric potential energy per unit area ('(�/�). 

With respect to '(�/�, a representative hysteresis behavior of .<� �u is shown in Figure 4.25 

along an ascending voltage ramp (red, Stage I) followed by a descending voltage ramp (blue, 

Stage II and III). 
 

Figure 4.25. Cosine of the contact angle (.<� �u) at diverse levels of the areal electrical potential 
energy ( '(�/� ) in the ascending (red) and the descending (blue) voltage ramp. Stage I: 
electrowetting; Stage II (enclosed square): inertia behavior in the switch from electrowetting to 
dewetting; Stage III: dewetting. Dashed lines: linear fitting lines ( =k� =0.999 within Stage I, =k�=0.994 at Stage III).XVI 

Starting from the low '(�/�-level (2 mJ/m2) corresponding to the voltage threshold (�/ = 2 V, 

Chapter 4.3.3.1), the .<� � u begins to increase and the electrowetting occurs at Stage I 
(Figure 4.25). The .<� � u shows firstly a strong rise with the '(�/�  and subsequently an 

attenuated increase. This reveals a decrease in the efficiency of the electric potential energy 

in inducing electrowetting. The later increase reflects a linear correlation between the .<� �u 

and the '(�/�. This is indicated by the adjusted coefficient of determination (=k� = 0.999) for 

the linear fitting (dashed line) in the '(�/�-region from 4.3 to 27.9 mJ/m2. This linear correlation 

coincides in principle with the Young-Lippmann equation (Eq. 2.2). This suggests that the 

equilibrium of interfacial interactions at the droplet-electrode-interface is rapidly achieved at 

each energy level in this region. This can be confirmed by the significantly shorter characteristic 

time ( H ) in comparison with the period of a voltage step (25 ms) for this '(�/� -region 

(Figure 4.27). 

By switching from the ascending to the descending voltage ramp, the droplet shows an inertial 

behavior in Stage II (enclosed square in Figure 4.25). At this inertial stage, the droplet contact 

                                                 

XVI The omission of the data points in the measurement beginning is explained in Footnote XV. 
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angle declines merely slightly with the descending voltage ramp in spite of a significant amount 

of energy being withdrawn from the EWOD system. Moreover, a long response time is required 

for the very slight change of the contact angle at this stage (Figure 4.27). These results indicate 

a strong inertial behavior at this stage. The change of the droplet actuation from electrowetting 

(Stage I) to dewetting (Stage III) is related to the reversion of the flow impulse. 

At Stage III, the droplet dewetting process can be described with an approximately linear 

correlation between .<� � u and '(�/� , based on the linear fitting line (dashed line) with =k� = 0.994. Furthermore, the low values of the corresponding H’s (Figure 4.27) indicate the 

equilibrium states being quickly reached and thus support the linear correlation principally 

reflecting the Young-Lippmann equation (Eq. 2.2). In comparison to the electrowetting 

behavior (Stage I), the dewetting behavior (Stage III) reveals a larger .<� �u-alternation per 

unit '(�/� above 4.4 mJ/m2 according to the slopes of their fitting lines. However, below this '(�/�-level, less .<� �u-change is shown in the dewetting process than in the electrowetting 

process. In addition, the .<� �u correlates almost linearly with the '(�/�  in the dewetting 

process. These results suggest that the conversion efficiency between the electric potential 

energy and the droplet deformation maintains in the dewetting process and decreases at the '(�/� -level of 4.4 mJ/m2. Moreover, the oil layer deforms also more effectively in the 

electrowetting than in the dewetting process in the low '(�/� -region (Figure 4.22, 

Chapter 4.3.2); however, this region ends at a much higher '(�/�-boundary of 13 mJ/m2. This 

means that the '(�/�-range for more effective electrowetting is significantly narrower for the 

droplet deformation than that for the oil layer deformation. This indicates that more or stronger 

dissipation occurs related to the droplet deformation process than that to the oil layer 

deformation. 

At the end of Stage III, the droplet returns to its resting state at zero Volt with a comparable 

contact angle to that at the beginning of the electrowetting, where '(�/� = 2 mJ/m2 (Stage I). 
Comparing the electrowetting process (Stage I) with the dewetting process (Stage III), they 

cover almost the same .<� �u-range; however, the electrowetting process occurs generally at 

higher '(�/�-levels than the dewetting process. This means that the electrowetting process 

requires higher energy input than the energy withdrawn in the corresponding dewetting 

process. 

In fact, the contact angle hysteresis between the ascending and the descending voltage ramps 

can be associated with four stages: the initial inertial stage prior to the electrowetting, the 

electrowetting process (Stage I ), the inertial stage on alternating from electrowetting to 

dewetting (Stage II) and the dewetting process (Stage III). The initial inertial stage is not 

plotted in Figure 4.25 but is reflected by the voltage threshold (Chapter 4.3.3.1). The contact 

angle hysteresis can originate from the energy dissipation processes10, 35 including overcoming 

the diverse frictions to actuate the droplet deformation, such as the fluid friction or the viscous 

effect in the droplet and in its surrounding oil as well as the surface friction responsible for the 

contact line pinning. 
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4.3.4. Contact Area Dynamics and Characteristic Time 

A representative time-resolved response of the droplet contact area to a voltage step stimulus 

is shown in Figure 4.26: the electrowetting process upon the voltage jump from 4.14 V to 

4.42 V. The contact area starts with the end-value reached at the previous voltage step. It 

increases gradually with the time and achieves almost a stabilized stage at the process end.  

This contact area increase should follow the course of a first-order relaxation process49. The 

electrowetting process can be considered as the conversion of the droplet geometry from one 

with a smaller to a larger wetted area under the influence of an external factor, here the voltage. 

Hence, the dynamic electrowetting process is comparable to a first-order reaction and can be 

described as a first-order relaxation process with the exponential function (� = �8 ∙ (� − 8C/H), 

Eq. 2.28). 

 

Figure 4.26. Time-resolved dynamic relaxation process of the contact area (A) upon the voltage 
jump from 4.14 V to 4.42 V. 

Based on this approach, the contact area response was analyzed with Eq. 2.28 in case of an 

ascending voltage jump and with its negative expression, � = −�8 ∙ (� − 8C/H), in case of a 

descending voltage jump. Through curve fitting, the characteristic time (H) was determined for 

the dynamic relaxation process of the contact area at all voltage steps of the staircase stimulus. 

For a first-order relaxation process, H can be easily used to assess the process velocity due to 

its inverse correlation to the process rate constant. With respect to the electric potential energy 

per unit area ('(�/�), the non-linear behavior of H is presented in Figure 4.27 for the ascending 

ramp in red and for the descending ramp in blue. 

In both ascending and descending voltage ramps, the characteristic time behaves in a 

comparable way. With increasing '(�/�, H shows a decline followed by a stabilized stage and 

an increase. This means that the droplet deformation process during the electrowetting firstly 

speeds up until an approximately constant rate is achieved and then slows down with the 

increasing supply of the electric potential energy per unit area. During the dewetting process, 

the droplet deformation velocity varies in an inverse matter. 
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Figure 4.27. Non-linear correlation between the characteristic time (H) and the electrical potential 
energy per unit area (Eel/A) for each voltage step in the ascending (red) and the descending (blue) 
voltage ramp.XVII 

The H-discrepancy between the electrowetting and the dewetting process is mostly significant 

at the high levels of '(�/�. With the '(�/�-decline, the H-difference becomes less significant; 

comparable H-values are found at the low levels of '(�/�. This suggests the electrowetting 

process is faster than the dewetting process. The velocity difference diminishes with the 

reducing electrical potential energy per unit area. This hysteresis of H  indicates the non-

linearity of the EWOD-system. It may originate from the difference between the “active” 

electrowetting process fed with the electric potential energy and the passive dewetting process, 

in which the droplet motion is more affected by the surface friction and viscous effect. 

Moreover, the determined characteristic time is in the range between 5 and 20 ms 

(Figure 4.27). This range is comparable with the time scale (~10 ms) corresponding to the 

boundary frequency (~100 Hz) observed for this EWOD system, where the droplet reaches its 

hydrodynamic limitation to follow the excitation of an oscillating voltage signal. This coincident 

time scale could result from the common limitations in the droplet motion with a 

hydrodynamics-based origin, such as the viscous effect of the droplet and the oil. 

In comparison to the period (l = 0.1 ms) of the applied EIS signal (E = 10 kHz) and that 

(l ~ 1.4 ms) of the optical measurement (f ~700 frames/s), the H of the droplet deformation 

process is significantly longer. This means that, within the observation window of each single 

EIS measurement and frame recording, the droplet maintains unchanged and can be 

described as “frozen” in time. Thus, the rapid EIS measurement and the optical imaging with 

a high-speed camera paves the way for a highly time-resolved characterization of the droplet 

deformation process. 

                                                 

XVII At the very low electric potential energy per unit area levels, the characteristic time could not be 

determined, since the contact area remains constant below the voltage threshold (Figure 4.24) due to 

the droplet inertia behavior. 
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4.3.5. Conclusions 

This section is devoted to the characterization of the non-linearity and the dynamics of the 

EWOD system (Figure 4.19 a) with a focus on the deformation processes during the 

electrowetting and dewetting in correlation with the alternation of the electric potential energy 

per unit area. 

The investigation aim was successfully achieved by applying dynamic EIS associated with 

optical imaging. The staircase voltage signal of the dynamic EIS combines the voltage jumps 

for inducing electrowetting as well as dewetting with an integrated square function for online 

tracing of the system capacitance. Simultaneously, the optical imaging using a high-speed 

camera delivers the time-resolved droplet contact angle and contact area. 

The non-linearity of EWOD was characterized by the hystereses in the deformation of the 

interfacial oil layer and in the droplet deformation with the stepwise voltage changes. With a 

view of the time-resolved deformation of the contact area at each voltage step, the determined 

characteristic time laid a foundation for analyzing the dynamics.  

The electric potential energy per unit area ('(�/�) was determined with the MDS-capacitance 

per unit area (�STU/�) for each voltage offset in the staircase stimulus. It shows a nearly 

reversible behavior along the voltage staircase. 

As key parameter for the oil layer deformation, the oil layer thickness was indirectly determined 

from the MDS-capacitance per unit area (�STU/�) due to its nm-scale. The oil layer is indicated 

to flow out of the space between the droplet and the electrode during electrowetting and to 

flow back during dewetting. The outflow and the backflow of the oil layer is shown by the 

comparable efficiency of the conversion of the electric potential energy per unit area to the 

thickness alternation at the high '(�/�-levels. At the low '(�/�-levels, the electrowetting-

related outflow of the oil layer shows a higher energy-deformation-conversion efficiency than 

for the dewetting-related backflow. Thus, the deformation process of the oil layer is suggested 

to be reversible at high energy levels while hysteresis dominates at low energy levels. 

Two characteristics of the droplet deformation were identified in this study: a quantified low 

voltage threshold to induce the electrowetting and the contact angle hysteresis between 

electrowetting and dewetting. 

The voltage threshold was determined with the response of the contact angle 

(�/,~ = 1.93 V ± 0.16 V) and with that of the contact area (�/,� = 2.13 V ± 0.17 V). The low 

values signify the low voltage demand for overcoming the droplet inertia to start electrowetting. 

The achievement of a low-voltage EWOD system in this doctoral research is confirmed with 

comparison with the literature values (7.2 – 15 V) 71, 163-164. Moreover, the coincidence of the 

two values indicates the insignificance of the contact line pinning. Since this is a major source 

of dissipation10, 50 in electrowetting and dewetting, this result suggests the high efficiency of the 

EWOD system. 
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The contact angle hysteresis was studied with the 	
� �u-alternation with '(�/�  for three 

stages along the voltage staircase upon the voltage threshold: the electrowetting, the inertia 

state upon the actuation direction switch and the dewetting. Among all stages, linear 

correlations between .<� �u and '(�/� can be observed in the dewetting stage and at high '(�/�-levels in the electrowetting stage. These linear correlations reflect in principle the Young-

Lippmann equation (Eq. 2.2). Their slope discrepancy indicates the different efficiency of the 

energy-deformation-conversion in electrowetting and dewetting. Furthermore, the droplet 

deforms in a significantly narrower '(�/�-range, where electrowetting is more effective than 

dewetting, in comparison with the oil layer does. This indicates more or stronger dissipation 

involved in the droplet deformation than that in the oil layer deformation. 

The dynamics of the EWOD system was studied with the contact area response upon the 

voltage jumps in the staircase stimulus. Based on its principle as a first-order relaxation 

process, the deformation response was determined for its characteristic time (H) to assess the 

deformation velocity. In both electrowetting and dewetting, the H-alternation indicates the slow 

deformation at the high '(�/�-levels and the quickly achieved balance of the interfacial forces 

in the EWOD system at the middle energy levels. The H-hysteresis suggests a faster droplet 

deformation in the electrowetting than that in the dewetting. This further indicates dewetting to 

be more affected by dissipation than electrowetting. Moreover, the determined H between 5 ms 

and 20 ms is significantly longer than the measuring period of a single EIS and that of a single 

frame imaging. This ensured the successful time-resolved investigation of the droplet 

deformation. 

The hysteresis between the electrowetting and the dewetting revealed by all the 

characterizations in this section can originate from the dissipation accompanying the 

deformation process of the oil layer and that of the droplet. The dissipation has been a major 

challenge in the fluid dynamics10, 50 and may have diverse sources, such as fluid frictions or 

viscose effect and surface friction related contact line pinning.  
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5. SUMMARY 

The aims of this thesis are to optimize electrowetting on dielectrics (EWOD) on application of 

low voltages, to investigate the frequency dependence of EWOD in alternating voltage 

applications and to characterize the dynamics and non-linearity of EWOD and dewetting. The 

achievement of the low-voltage EWOD paves the way for its integration with electrical 

impedance spectroscopy (EIS) serving for the online electrical analysis of EWOD and 

dewetting. 

First, a low-voltage EWOD (LV-EWOD) electrode was developed with the focus on optimizing 

the dielectric layers. To reduce EWOD operating voltages, three approaches originating from 

the Young-Lippmann equation were implemented by strategic selection of the dielectric 

materials and their fabrication methods. An optimized dielectric bilayer resulted from an anodic 

Ta2O5 initial layer coated with a self-assembled monolayer of octadecyltrichlorosilane (ODTS). 

With an aqueous droplet of µL volume on the LV-EWOD electrode, the EWOD configuration 

uses oil as ambient medium due to its practical relevance for many EWOD applications. This 

results in a thin oil layer being entrapped between the droplet and the electrode as shown by 

Staicu and Mugele36. A multilayer dielectric stack (MDS) was postulated to describe the entire 

stack of dielectric multilayers in the EWOD configuration. It consists of the oil layer as a fluid 

dielectric layer and the solid dielectric electrode coatings.  

To validate the layer quality and to adjust the fabrication process parameters, each layer of the 

MDS was characterized by five EWOD-related properties: hydrophobicity, surface friction, 

capacitance per unit area, layer thickness and relative permittivity.  

The most appropriate anodizing conditions for Ta2O5 layers were studied at various 

anodization voltages (�+1<P = 20 – 50 V). An anodization voltage of 30 V was chosen based 

on the following outstanding features: smooth surface, homogeneous layer thickness 

( $  = 59.35 nm ± 0.55 nm), high reproducibility, reliability of capacitance per unit area 

(�/� = 3.93 nF/mm2 ± 0.07 nF/mm2) and high relative permittivity (*P = 26.3 ± 0.5). For the 

anodization voltage range from 20 V to 50 V, the layer growth coefficient was determined to 

be (1.94 ± 0.05) nm/V. For anodization voltage from 30 V upwards, relative permittivity was 

shown to be independent of the anodization voltage. Based on the anodic Ta2O5 layer, a self-

assembled ODTS monolayer ( $  = 2.3 nm ± 0.2 nm) rendered the electrode surface 

hydrophobic. With a microscopic view of the interfacial interactions, this surface chemistry 

modification was indicated to contribute to the oil layer formation between the droplet and the 

electrode as a fluid dielectric layer. Due to its nanometer scale, the oil layer thickness 

($ = 15.2 nm ± 7.2 nm, without EWOD) is not easily accessible by direct experimental methods. 

In this study, the thickness of the oil layer was determined by measuring the layer capacitance 

indirectly and converting it to the thickness information using a physical model of the MDS. For 

the first time, this indirect methodology was applied for this purpose during EWOD. Moreover, 

by means of the indirect methodology, I determined the relative permittivity of the anodic Ta2O5 

layer and that of the ODTS monolayer. Relative permittivity is a key material property for 
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successful low-voltage EWOD. Its specification served initially for the validation of the 

fabrication conditions of the anodic Ta2O5 layer and later for the quality control of both dielectric 

solid layers. Based on the optimization of the dielectric layers, low-voltage EWOD was 

achieved in this study and confirmed by the low voltage threshold for the EWOD actuation in 

comparison with the literature values (7.2 – 15 V)71, 163-164. The low voltage threshold was 

determined with contact angle ( �/,~  = 1.93 V ± 0.16 V) and with contact area 

(�/,� = 2.13 V ± 0.17 V). 

With the LV-EWOD electrode as the centerpiece, a low-voltage EWOD-EIS system was 

established in association with a high-speed optical imaging instrument. It enables the online 

investigation of EWOD by simultaneous EWOD excitation, impedimetric measurement and 

optical detection. Due to its modular construction, the EWOD-EIS system supports 

impedimetric measurements using diverse measuring techniques. In this thesis, frequency-

domain EIS was applied for studying the frequency dependence of EWOD on application of 

alternating voltages; dynamic EIS was used for studying the non-linearity and dynamics of 

EWOD and dewetting. As the object under test in both studies, an aqueous electrolyte droplet 

on the MDS was modelled by an equivalent circuit. It represents the droplet as a resistor and 

the MDS as three capacitors connected in series. The validity of this circuit model was 

confirmed by the impedimetric response traced online by frequency-domain EIS. 

Second, for the frequency dependence study, I adapted the basic Young-Lippmann equation 

to the alternating voltage application by using the effective value for the voltage drop across 

MDS and introducing a correlation coefficient (\) as indicator for the EWOD efficiency. All 

three EWOD-related variables in the adapted Young-Lippmann equation were demonstrated 

to be frequency dependent: (i) The effective voltage drop across MDS shows a low-pass filter 

behavior with a critical frequency determined by the salt concentration in the droplet. (ii) The 

MDS-capacitance per unit area decreases with the frequency possibly due to the incomplete 

storage of the electric potential energy in the MDS due to the time limitation. At low frequencies, 

the increase of the capacitance per unit area with increasing voltage indicates a thickness 

decease of the interfacial oil layer during EWOD. (iii) The frequency- and voltage-dependent 

contact angle change indicates a voltage minimum and a frequency maximum for the EWOD 

actuation. Furthermore, EWOD dominates below a frequency threshold and is induced by 

partial conversion of the electric potential energy stored in MDS. In the low frequency region, 

the EWOD-related variables present a linear correlation with the adapted Young-Lippmann 

equation with \ below one. 

Third, the non-linearity and the dynamics of EWOD and dewetting was studied extensively for 

the first time using dynamic EIS in parallel to high-speed imaging. The dynamic EIS was 

configured with a staircase voltage signal in combination with a square wave function at each 

voltage step. Ascending and descending ramps induce EWOD and dewetting respectively, 

while the square wave signal serves as a high-frequency stimulus for the impedimetric 

measurement. By means of dynamic EIS, the electric potential energy stored in MDS per unit 

area ('(�/�) was determined in voltage resolution and in time resolution. This enabled the 
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study of the non-linearity and dynamics during EWOD and dewetting with a new aspect of the 

electrical energy conversion in the deformation of the droplet and the interfacial oil layer.  

The indirectly determined thickness of the interfacial oil layer was used to indicate its 

deformation. A thick oil layer was revealed to occupy the space between the droplet and the 

electrode before electrowetting and after dewetting. At the high '(�/�-levels, its outflow with 

the progressing EWOD and its backflow with the dewetting were assessed to be reversible 

based on the comparable efficiencies of the energy conversion during deformation. At the low '(�/� -levels, the oil layer deformation reveals a hysteresis with a more efficient energy 

conversion in the outflow during EWOD than that in the backflow during dewetting. 

Moreover, the droplet deformation was evaluated by means of the contact angle and contact 

area to characterize the non-linearity of EWOD and dewetting. The quantified low voltage 

threshold with both parameters, as mentioned above, demonstrates that EWOD can be 

induced at a low voltage with the EWOD configuration developed in this study. The coincidence 

of the two voltage thresholds indicates the low dissipation relating to the contact line pinning 

and thus the high efficiency of this EWOD system. Furthermore, the contact angle hysteresis 

was evaluated with the 	
� �u-change with the '(�/�. It was characterized by an inertia state 

corresponding to the switch from EWOD to dewetting and by the different efficiencies of the 

energy conversion to the droplet deformation in EWOD and dewetting. In comparison with the 

oil layer deformation, the droplet deformation was indicated to relate to more intensive energy 

dissipation. 

To elucidate the dynamics of EWOD and dewetting, the characteristic time was determined for 

the droplet deformation process with a view of the contact area response upon the voltage 

jumps in the staircase stimulus. The characteristic time shows a hysteresis behavior indicating 

a faster deformation in EWOD than in dewetting. Moreover, the measuring period of a single 

EIS measurement and that of a single frame imaging is significantly shorter than the 

characteristic time (~ 5 – 20 ms) of the droplet deformation process. This ensures the 

successful time-resolved investigation. 

In this study, the low-voltage EWOD was successfully achieved and facilitates the diverse 

online investigations based on the simultaneous EWOD and EIS in association with high-

speed imaging. In the context of common EWOD applications using alternating voltages, the 

EWOD principle was related to its frequency-dependent dielectric behavior. For the first time, 

the EWOD principle was extensively characterized for the non-linearity and the dynamic 

behavior of EWOD and dewetting using dynamic EIS in parallel with high-speed imaging. 

Moreover, the thickness of the interfacial oil layer was determined for an EWOD configuration 

using oil as surrounding medium as the common EWOD applications for the first time. The 

integration of low-voltage EWOD with EIS achieved in this study further indicates the promising 

future of EWOD-EIS-based actuator-sensor systems. 
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7. APPENDIX 

7.1. Equation Derivations 

7.1.1. Equation for Assessment of Dynamic Relaxation Process 

The dynamic process of droplet deformation is analyzed based on the change of the contact 

area between the droplet and the EWOD electrode upon each voltage jump within the staircase 

voltage stimulus. For a voltage step in the ascending ramp, the contact area increase is 

illustrated as a typical relaxation process as below. 

 

Figure A.1. Increase of the droplet contact area to its equilibrium end state upon a voltage step 
applied for a sufficient long period. 

The difference between the maximal area value at the equilibrium end state (�8) and the 

contact area (�) at time t is �8 − �. The decrease of this area difference as a function of time 

can be regarded as a first-order reaction and is given by: 

$�$/ = (�8 − �) ∙ c ∙ / A.1  

with c standing for the first order reaction rate. 

The integrated form of Eq. A.1 is derived as below: 

Eq. A.1 is rearranged to 

$��8 − � = c ∙ / ∙ $/ A.2.  

Eq. A.2 should be integrated over the time interval from zero to / and over the area interval 

from the initial area (��) to �. The integral can be written as, 

A

t

Ae

A0

0

Ae-A
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� $��8 − �
�

��
= � c ∙ / ∙ $//

�  A.3,  

which can be transformed using the substitution, �8 − � =6 ⇒  $6$� = −� ⇒ $� = −$6, to 

� − $66
�

��
= � c ∙ / ∙ $//

�  A.4.  

The integral results in 

− �1 6 � ��� = c ∙ / �/� A.5. 

By replacing 6 with �8 − �, the calculation is continued as, 

− �1(�8 − �) � ��� = c ∙ / �/� A.6 

− �1(�8 − �) + �1(�8 − �_) = c ∙ / A.7 

�1 (�8 − ��)(�8 − �) = c ∙ / A.8 

with �� = �, 

�1 �8�8 − � = c ∙ / A.9 

�8�8 − � = 8c∙/ A.10 

�8 ∙ 8Cc∙/ = �8 − � A.11 

� = �8(� − 8Cc∙/) A.12. 

Since the characteristic time (H) is equal to the reciprocal value of the reaction rate, 

� = �8(� − 8C/H) A.13. 

Thus, the Eq. 2.28 in Chapter 2.2.2.2 is obtained. 
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7.1.2. Root-Mean-Square Value of the Positive Alternating Voltages 

For the investigation of the influence of frequency on the EWOD effect, an alternating voltage 

stimulus in the positive region is applied to the EWOD system. This voltage stimulus is a 

sinusoidal signal with a direct voltage offset (��) that equals the amplitude (��), the half value 

of the peak-to-peak voltage (�,,/�). The voltage stimulus can be expressed as: 

�(/) = �� + �� ∙ �_� 2/ A.14. 

Here, 2 is the angular frequency of the sinusoidal wave function and t is time.  

Based on �� = �� = �,,/�, Eq. A.14 can be transformed to: 

�(/) = �!!/� ∙ (� + �_� 2/) A.15. 

The effective value, the RMS value, of the applied alternating voltage (�XSU) can be calculated 

according to its definition as below: 

�=�b =  Z��������  = ��l ∙ � ��$/l
�

= ��l ∙ � [�!!/� ∙ (� + �01 2/)]� ∙ $/l
�  

A.16 

with T standing for the period of the sinusoidal wave function. 

Based on the following derivationXVIII of �XSU� ,  

�XSU� = �l ∙ � [�,,/� ∙ (� + �01 2/)]� ∙ $/l
�  

= �l ∙ � �,,/�� ∙ [� + � �01 2/ +  (�01 2/)�] ∙ $/l
�  

= �l ∙ �,,/�� ∙ �� � ∙ $/ + � � �01 2/l
� ∙ $/ +  � (�� − .<� �2/� )l

� ∙ $/l
� � 

                                                 

XVIII The derivation is based on Nastase, A. S., How to Derive the RMS Value of a Sine Wave with a DC 

Offset, URL: http://masteringelectronicsdesign.com/how-to-derive-the-rms-value-of-a-sine-wave-with-

a-dc-offset/ [12.6.2017]. 
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= �l ∙ �,,/�� ∙ [/| l� + (�2 ∙ .<� 2/)| l� +  /�� l� − �G2 �_��2/� l�] A.17. 

Since 2 = �?l , 

�XSU� = �l ∙ �,,/�� ∙ �l + l? (.<� �? − 	
��) + l� − lO? (�_�G? − �_��)� 
= [� �,,/��  A.18. 

Therefore, the RMS-value of the applied positive sinusoidal signal is: 

�XSU = A[/� ∙ �,,/� A.19. 
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value 
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�/,~  EWOD voltage threshold determined with the contact angle 

Vin  voltage signal input 

Vout  voltage signal output 

@.  capacitive reactance 

@�PR<,  capacitive reactance of the droplet 

@�STU  capacitive reactance of the multilayer dielectric stack 

6  complex impedance 

|6|  impedance modulus 

64>  imaginary part of the complex impedance 

6=8  real part of the complex impedance 
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\ 

 correlation-coefficient introduced into the adapted Young-

Lippmann equation for assessment of the electrowetting 

efficiency 
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���  solid-liquid interfacial tension 
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 phase shift difference between the p and the s component in 
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��  contact angle under voltage 

Δ�  contact angle hysteresis 

#  Temperature 

λ  wavelength 

�  chemical potential 

�k  mean 

�  resistivity 

���  charge density on the solid-liquid interface 

�  standard deviation 

H  characteristic time 

3 
 phase shift between the voltage stimulus and current 

response in EIS 

ψ  amplitude reduction in ellipsometry 

2  angular frequency 

2	  critical frequency 
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7.6. Circuit Diagram of Transimpedance Amplifier 
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7.7. Technical Drawings 

Drawing Nr. Component name Relevance 

Li00 Specimen holder Figure 3.3, Chapter 3.1.1 

Li01 Anodization cell Figure 3.5, Chapter 3.1.2 

Li02 Camera holder Chapter 3.3.1 

Li03 Transparent hood I.5, Figure 3.13, Chapter 3.3.1 

Li04 EWOD-electrode holder I.2, Figure 3.13, Chapter 3.3.1 

Li05 Sample stage cover Chapter 3.3.1 

Li06 Sample stage supporter Chapter 3.3.1 

Li07 
Platinum electrode holder & 

Holding bar 

I.3, Figure 3.13, Chapter 3.3.1 & 

I.6, Figure 3.13, Chapter 3.3.1 

Li08 Sample stage base Chapter 3.3.1 
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