
Intelligence Based Error Detection
and Classification for 3D
Measurement Systems

By

Ivän Jan-Richard van Rooyen

Submitted in fulfilment of the requirements for the degree of Master of Engineering in
Mechatronics to be awarded at the Nelson Mandela Metropolitan University.

April 2017

Supervisor: Prof Theo Ian van Niekerk

Declaration

I, Ivän Jan-Richard van Rooyen, hereby declare that the work presented in this disser-
tation is my own and that all sources used and referred to have been documented and
recognised.

Furthermore, this dissertation has not previously been submitted in full or in par-
tial fulfilment of the requirements of another qualification.

Author’s Signature

Date

Abstract

For many years 2D machine vision has been used to perform automated inspection and
measuring in the manufacturing environment. A strong drive to automate manufac-
turing has meant improvements in robotics and sensor technologies. So has machine
vision seen a steady movement away from 2D and towards 3D. It is necessary to re-
search and develop software that can use these new 3D sensing equipment in novel and
useful ways. One task that is particularly useful, for a variety of situations is object
recognition.

It was hypothesised that it should be possible to train artificial neural networks to
recognise 3D objects. For this purpose a 3D laser scanner was developed. This scanner
and its software was developed and tested first in a virtual environment and what was
learned there was then used to implemented an actual scanner. This scanner served
the purpose of verifying what was done in the virtual environment. Neural networks
of different sized were trained to establish whether they are a feasible classifier for the
task of object recognition.

Testing showed that, with the correct preprocessing, it is possible to perform 3D object
recognition on simple geometric shapes by means of artificial neural networks.

i

Acknowledgements

Pa, Ma: Baie dankie vir julle liefde, ondersteuning en oneindige geduld.

Roxanne en Renic: Dankie vir al die moed in praat; julle vertroue in my was ’n reuse
aansporing.

Prof Van Niekerk: Prof se ondersteuning, positiwiteit en geduld sal my altyd by bly.
Baie, baie dankie.

Vir:
R.R.C. van Rooyen

J.F. Westraadt

ii

Contents

List of Figures viii

List of Tables x

List of Algorithms xi

List of Listings xii

Nomenclature xiii

I Background 1

1 Introduction 2
1.1 Problem Statement . 3

1.1.1 Research Question and Hypothesis 6
1.1.2 Objectives . 7

1.2 Research Methodology . 8
1.3 Delimitations of the Research . 8
1.4 Research Significance . 10

1.4.1 Significance to Industry . 10
1.4.2 Personal Significance . 10
1.4.3 Significance to the University 10

1.5 Organisation of the Dissertation . 11
1.6 Summary . 11

2 Machine Vision and Laser Triangulation 13
2.1 Machine Vision: A Review of the Literature 13
2.2 The Camera Model . 14
2.3 Distortion . 16

2.3.1 Radial Distortion . 16
2.3.2 Tangential Distortion . 17

iii

CONTENTS iv

2.4 Camera Calibration . 18
2.5 Image Processing . 19

2.5.1 Segmentation . 19
2.5.2 Smoothing . 19

2.6 Laser Triangulation . 20
2.6.1 The Basic Principle . 20
2.6.2 3D Reconstruction Using Inverse Camera Model 21

2.7 Summary . 22

3 Object Recognition and Artificial Neural Networks 24
3.1 3D Object Recognition: A Review of the Literature 24
3.2 Artificial Neural Networks (ANNs) . 26

3.2.1 The Artificial Neuron . 26
3.2.2 The Artificial Neural Network 30

3.3 Summary . 33

II Implementation 35

4 3D Laser Scanner Implementation 36
4.1 The Concept . 36
4.2 The Simulation . 38

4.2.1 3D Model and Animation in Blender 38
4.2.2 Software . 42

4.3 Verification Platform . 45
4.3.1 Hardware Architecture . 47
4.3.2 Software . 52
4.3.3 Scanner Calibration . 55

4.4 Summary . 56

5 Object Recognition Implementation 59
5.1 Introduction . 59
5.2 Preprocessing . 59

5.2.1 Data reduction . 59
5.2.2 The Global Point Feature Histogram 61

5.3 ANN Implementation . 62
5.3.1 Training, Testing and Validation Datasets 62
5.3.2 Training and Validation . 64
5.3.3 Object Recognition Software Operation 65

5.4 Summary . 66

CONTENTS v

III Validation 69

6 Results and Discussion 70
6.1 Scanner Results . 71

6.1.1 Camera Calibration . 71
6.1.2 Image Processing . 73
6.1.3 3D Reconstruction . 74

6.2 ANN Training and Validation Results 74
6.2.1 Performance Measures for Classification 74
6.2.2 Object Recognition Results . 76

IV Conclusion 82

7 Conclusion 83
7.1 Pitfalls Encountered . 84

7.1.1 Generating Training- and Testing Data 84
7.2 Research Contribution . 84
7.3 Future Work . 84

Bibliography 89

Appendices 91

A Results: ANN Training and Validation 91
A.1 2 Hidden Neurons . 92
A.2 5 Hidden Neurons . 96
A.3 10 Hidden Neurons . 100
A.4 15 Hidden Neurons . 104
A.5 20 Hidden Neurons . 108
A.6 30 Hidden Neurons . 112
A.7 40 Hidden Neurons . 116
A.8 60 Hidden Neurons . 120

B Source Code 124
B.1 Laser Scanner Related Code . 124

B.1.1 Serial Port Class . 124
B.1.2 Controller Class . 126
B.1.3 Camera Class . 128
B.1.4 Image Processing Class . 133
B.1.5 Laser Scanner Class . 138

CONTENTS vi

B.1.6 Arduino Uno Controller . 147
B.1.7 3D Laser Scanner: main.cpp . 149

B.2 Object Recognition Related Code . 151
B.2.1 Data Generation for Training and Testing 151
B.2.2 Training and Testing . 157
B.2.3 Object Recognition . 165

List of Figures

1.1 Schematic layout of a simple FMS with AIS at each machine station. . 4
1.2 Alternative schematic layout of a simple FMS with a single, intelligent

AIS. 5
1.3 High level flow chart for intelligent AIS. 6
1.4 The 8 objects used for recognition in this research. 9
1.5 Layout of the dissertation. 12

2.1 The pinhole camera model. 15
2.2 Radial lens distortion . 16
2.3 Tangential distortion . 17
2.4 Camera calibration procedure. 18
2.5 Example of segmentation. 19
2.6 Example of Gaussian blur. 20
2.7 The laser triangulation principle. 21

3.1 An Artificial Neuron, shown here with input vector z, weight vector v,
and output signal o. 27

3.2 Popular activation functions. 29
3.3 A general case FFNN . 31

4.1 Concept configuration. This figure demonstrates the proposed orienta-
tion of the scanner hardware. 37

4.2 Concept Architecture . 37
4.3 The iterative design process . 38
4.4 Scanner model in Blender . 40
4.5 Scanner dimensions. 41
4.6 Laser model . 42
4.7 This figure shows the effect of the adaptive binary threshold algorithm. 43
4.8 This figure shows the effect of the thinning algorithm. 45
4.9 Point cloud of a coffee mug. 47
4.10 Hardware architecture. 47

vii

LIST OF FIGURES viii

4.11 Hardware components for the 3D scanner. 51
4.13 The final 3D scanner. 51
4.12 The electrical connection of the hardware components. 52
4.14 Calibration pattern . 56
4.15 Finding centroids for calibration. 57

5.1 A 2D illustration of voxel grid filtering. 60
5.2 Point cloud before and after voxel grid filtering. 60
5.5 Output of the object recognition software. 66
5.3 Point clouds with corresponding histograms 67
5.4 Point clouds with corresponding histograms (continued) 68

6.1 Some camera calibration images. 72
6.2 Image processing comparison . 73
6.3 Point cloud comparison. 74
6.4 Training time . 77
6.5 Mean Squared Error during training . 77
6.6 Visualisation of the mean performance measures. 79
6.7 Mean performance comparison . 80

A.1 MSE vs Epochs. (2 hidden neurons) . 94
A.2 Neural Network performance. (2 hidden neurons) 95
A.3 MSE vs Epochs. (5 hidden neurons) . 98
A.4 Neural Network performance. (5 hidden neurons) 99
A.5 MSE vs Epochs. (10 hidden neurons) 102
A.6 Neural Network performance. (10 hidden neurons) 103
A.7 MSE vs Epochs. (15 hidden neurons) 106
A.8 Neural Network performance. (15 hidden neurons) 107
A.9 MSE vs Epochs. (20 hidden neurons) 110
A.10 Neural Network performance. (20 hidden neurons) 111
A.11 MSE vs Epochs. (30 hidden neurons) 114
A.12 Neural Network performance. (30 hidden neurons) 115
A.13 MSE vs Epochs. (40 hidden neurons) 118
A.14 Neural Network performance. (40 hidden neurons) 119
A.15 MSE vs Epochs. (60 hidden neurons) 122
A.16 Neural Network performance. (60 hidden neurons) 123

List of Tables

4.1 Scanner dimensions. 40
4.2 Blender light sources . 42
4.3 personal computer (PC) specifications 48
4.4 Laser module specifications . 49
4.5 Arduino Uno specifications . 49
4.6 Specifications for NEMA 17 stepper motor 50
4.7 Specifications EasyDriver V4.4 . 50
4.8 Image– and object points used to estimate R and t for the verification

platform. 57

5.1 Summary of training groups . 64

6.1 A summary of the training of the different ANNs 77
6.2 A summary of the performance of the different ANNs 78
6.3 Performance Measures . 81

A.1 Training and validation results. (2 hidden neurons) 92
A.2 Summary of the mean performance. (2 hidden neurons) 95
A.3 Training and validation results. (5 hidden neurons) 96
A.4 Summary of the mean performance. (5 hidden neurons) 99
A.5 Training and validation results. (10 hidden neurons) 100
A.6 Summary of the mean performance. (10 hidden neurons) 103
A.7 Training and validation results. (15 hidden neurons) 104
A.8 Summary of the mean performance. (15 hidden neurons) 107
A.9 Training and validation results. (20 hidden neurons) 108
A.10 Summary of the mean performance. (20 hidden neurons) 111
A.11 Training and validation results. (30 hidden neurons) 112
A.12 Summary of the mean performance. (30 hidden neurons) 115
A.13 Training and validation results. (40 hidden neurons) 116
A.14 Summary of the mean performance. (40 hidden neurons) 119
A.15 Training and validation results. (60 hidden neurons) 120

ix

LIST OF TABLES x

A.16 Summary of the mean performance. (60 hidden neurons) 123

List of Algorithms

3.1 Batch/Offline Back-propagation Learning Algorithm 33
4.1 The binary threshold algorithm (Also see listing B.8). 44
4.2 Algorithm for thinning the laser line after the threshold operation (Also

see listing B.8). 46
4.3 Point Cloud Estimation Algorithm (Simulated scanner) 46
5.1 Algorithm for generating training, validation or testing data 63

xi

List of Listings

B.1 Header file of the serial port class. 124
B.2 Implementation of the serial port class. 124
B.3 Header file of the controller class. 126
B.4 Implementation of the controller class. 126
B.5 Header file of the camera class. 128
B.6 Implementation of the camera class. 129
B.7 Header file of the image processing class. 133
B.8 Implementation of the image processing class. 133
B.9 Header file of the laser scanner class. 138
B.10 Implementation of the laser scanner class. 139
B.11 Code for the Areduino Uno Controller. 147
B.12 Main file for 3D laser scanner. 149
B.13 Main file for data generation . 151
B.14 Main file for neural network training . 157
B.15 Main file for neural network validation. 159
B.16 ANN based 3D object recognition code. 165

xii

Nomenclature

A Camera matrix containing the intrinsic camera parameters; fx, fy, cx, cy

M ′ Homogeneous coordinate in the object coordinate system.

m′ Homogeneous pixel coordinate,

m′ =

u

v

1

Rx(ψ) Rotation transformation about the x axis.

Rx(ψ) =

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

Ry(φ) Rotation transformation about the y axis.

Ry(φ) =

cosφ 0 − sinφ

0 1 0
− sinφ 0 cosφ

Rz(θ) Rotation transformation about the z axis.

Rz(θ) =

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xiii

NOMENCLATURE xiv

R Rotation matrix;

R = Rz(θ)Ry(φ)Rx(ψ) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

t Translation vector;

t =

tx

ty

tz

µ The arithmetic mean.

φ Angle of rotation about the y-axis of a coordinate system.

ψ Angle of rotation about the x-axis of a coordinate system.

σ Standard deviation.

τ Threshold light intensity value for performing a binary threshold operation
on a monochrome image.

θ Angle of rotation about the z-axis of a coordinate system, or the bias value
of an artificial neuron, depending on the context.

ACC Accuracy.

cx, cy Centroid of image sensor.

fx, fy Focal length along x and y axes. Measured in pixels.

FN False negative. When a value expected to be true is observed to be false.

FP False positive. When a value expected to be false observed to be true.

k1, . . . , k3 Radial distortion coefficients.

NPV Negative Predictive Value.

p1, p2 Tangential distortion coefficients.

PPV Positive Predictive Value (Precision).

NOMENCLATURE xv

s Arbitrary scalar value.

SPC Specificity (True Negative Rate).

tx, ty, tz x, y, and z components of the translation vector.

TN True negative. When a value expected to be false is observed to be false.

TP True positive. When a value expected to be true is observed to be true.

TPR True Positive Rate (Sensitivity).

u, v Pixel coordinates

Part I

Background

1

Chapter 1

Introduction

“Any customer can have a car painted any colour that he wants so long as
it is black.” - Henry Ford, circa 1909 [1].

At the time when Henry Ford made this statement, owning a motor vehicle was still
very much a novelty and the privilege of only those wealthy enough to afford such a
luxury. Ford understood that the only way to reach a broader market, his company
would have to design, produce and sell cars that were more affordable. To achieve this
goal Ford set out to design a “motor car for the great multitude” based on the principle
of simplicity. He believed:

“The less complex an article, the easier it is to make, the cheaper it may be
sold, and therefore the greater number may be sold.”

This quest for simplicity culminated in the production of the Model T and the moving
assembly line which gave Ford a competitive advantage, resulting in rapid growth for
the company in the early 1900s.

These days, however, customers are no longer satisfied with products that are “any
colour you like as long as it is black”. Customers want products that reflect their
individuality. In [2], the author states that:

manufacturers in the automotive sector are experiencing an increased cus-
tomer demand for personalised, high quality products.

To obtain and maintain a competitive advantage it has become important for manufac-
turers to adapt to customer demands. Manufacturers that are able to adapt the most
efficiently have the competitive advantage. The traditional Dedicated Manufactur-
ing Systems (DMSs), like that pioneered by Ford, are too rigid to respond efficiently
to rapid market changes brought on by customer demands. Manufacturers and re-

2

CHAPTER 1. INTRODUCTION 3

searchers have developed, and are continually researching and improving, adaptive
manufacturing techniques. These adaptive manufacturing systems, also known as ag-
ile manufacturing systems, can be divided into two categories; Flexible Manufacturing
Systems (FMSs) and Reconfigurable Manufacturing Systems (RMSs). While FMSs are
more flexible than RMSs and thus capable of producing a wider range of products or
parts, FMSs are more suited to low production volumes. RMSs are better suited for
larger production runs. However, both these manufacturing systems are designed to
facilitate the production of a variety of different parts or part families.

Revisiting the statement by [2]:

manufacturers in the automotive sector are experiencing an increased cus-
tomer demand for personalised, high quality products.

– it is clear that customers also value products of a good quality. To ensure that
products are of a high quality manufacturers inspect the products or, in some cases
like [2] the manufacturing equipment itself, for anomalies. [3] reports that current
inspection technologies used most frequently to provide a form of flexible quality control
include, Coordinate Measuring Machines (CMMs) and even manual inspection [4].
These methods, however, are slow, expensive and can cause bottlenecks [3], [5]. For this
reason a number of researchers are developing Automated Inspection Systems (AISs),
and specifically flexible and reconfigurable inspection systems based on machine vision.
These inspection systems or optical measurement systems can perform non-contact
measurements and are considerably faster than traditional CMMs.

The majority of research conducted on the topic of automated inspection for agile man-
ufacturing systems focusses on the physical reconfigurability of the inspection system.
[5] claims that optical metrology techniques are still lacking intelligence. The research
presented in this dissertation is an attempt to make optical measurement systems more
flexible by introducing heuristic object recognition.

1.1 Problem Statement

The introductory paragraphs of this chapter introduced the following two concepts:

• Agile manufacturing; flexible- and reconfigurable manufacturing

• Automated inspection.

It is where these two concepts intersect where the inspiration for this research origi-
nated. To illustrate the problem to be addressed in this research consider the following

CHAPTER 1. INTRODUCTION 4

scenario:

An FMS consisting of a material transport system, four robotic arms for material han-
dling, four Computerised Numerical Control (CNC) machines, and a sorting station;
produces parts A, B, C, and D. Since flexibility is the defining characteristic of FMSs,
suppose that all four CNC machines are able to produce any of the four parts, and that
the CNC machines can be reassigned to produce a part according to the demand for
said part. Now, consider the issue of quality; it is required that the parts be measured
and compared to Computer Aided Design (CAD) designs to ensure that each part is
within allowable tolerances. It is also a requirement that the quality inspection be done
as quickly as possible, ruling out the use of CMMs in favour of optical measurement
techniques.

Following, are two solutions to the scenario proposed above:

Solution 1

This solution, illustrated in figure 1.1, consists of introducing automated, optical mea-
surement/inspection stations at each CNC machine in the FMS. Each CNC machine
is supplied material from the conveyor system by means of a dexterous robotic arm.
Once a CNC machine has completed a part, the robot arm takes the part and positions
it in the AIS. The AIS inspects the part which is then transferred onto the conveyor
system by the robot arm.

Load Material

CNC Machine_1

3D AIS_1

Robot Arm_1

CNC Machine_2

3D AIS_2

Robot Arm_2

CNC Machine_3

3D AIS_3

Robot Arm_3

CNC Machine_4

3D AIS_4

Robot Arm_4
Sorting
Station

Part C

Part D

Rejected

Part B

Part A
Transport System (Conveyor)

Figure 1.1: Schematic layout of a simple FMS with AIS at each machine station.

However, there are a few problems with this solution:

CHAPTER 1. INTRODUCTION 5

• Complex scheduling/communication - Each AIS must communicate with
the sorting station what part is on its way, and whether that part must be rejected
or not. The sorting station must keep a schedule of these communications to
operate correctly. The parts produced by the FMS each have their corresponding
lead time, adding complexity to the communication and scheduling of the system.

• High cost - Although the cost of non-contact measuring systems like laser and
camera based scanners are becoming less expensive as the technology matures,
they remain a significant expense. Having duplicate AISs adds to the cost.

The next solution attempts to address these problems.

Solution 2

This second solution, illustrated in figure 1.2, attempts to improve upon the first solu-
tion by replacing the AISs with a single intelligent AIS. Figure 1.3 shows a flow chart
of how such an intelligent AIS might function. The problem of high cost is addressed
by the reduction of inspection units, while the communication complexity is reduced
by making the AIS more intelligent; providing it with the ability to see for itself – to
recognise – what part it is inspecting. And it is this idea – the ability to recognise a
part – that lead to the main research question asked in the next section.

Load Material

CNC Machine_1

Robot Arm_1

CNC Machine_2

Robot Arm_2

CNC Machine_3

Robot Arm_3

CNC Machine_4

Robot Arm_4
Sorting
Station

Part C

Part D

Rejected

Part B

Part A Transport System (Conveyor)

Intelligent
3D AIS

Figure 1.2: Alternative schematic layout of a simple FMS with a single, intelligent AIS.

CHAPTER 1. INTRODUCTION 6

begin

Perform 3D scan

Perform Object Recognition

Object 1 ?

1. Locate Regions of Interest (ROIs)

2. Analyse ROIs

3. Classify detected errors

4. Compile & submit report

Object 2 ?

1. Locate ROIs

2. Analyse ROIs

3. Classify detected errors

4. Compile & submit report

Object 3 ?

1. Locate ROIs

2. Analyse ROIs

3. Classify detected errors

4. Compile & submit report

Object n ?

1. Locate ROIs

2. Analyse ROIs

3. Classify detected errors

4. Compile & submit report

Error: Unknown object

end

True

True

True

True

False

False

False

False

The focus of this study.

Figure 1.3: High level flow chart for intelligent AIS.

1.1.1 Research Question and Hypothesis

Research Question

Can a machine be made to recognise an object?

This question serves as the point of departure for the research described in this disser-
tation. However, in this form the question is too general to serve as the main research
question. The question must be refined and focussed by answering the following:

• How does the machine perceive (sense/see) the object? What hardware provides
the data of the environment - the input - to the machine? (A camera? Or some
type of Three-dimensional (3D) sensor?)

CHAPTER 1. INTRODUCTION 7

• The answer to the previous question then leads to the following question: How
is the input data represented and what does it represent? (2D data or 3D?)

• Once the data representing the object have been acquired; how will the recog-
nition/classification be done? What techniques are available, and which are the
prevailing ones?

The scenario described in the Problem Statement section required an automated in-
spection system to ensure that part dimensions are within specified tolerances. This
implies measurements are made in three dimensions and consequently a 3D capable
sensor like a 3D scanner is required. The preliminary research question can now be
rewritten as:

Is it possible to recognise an object from data obtained by a 3d scanner?

Surface data obtained by 3D scanners are typically presented in either a some mesh
format (*.ply, *.stl, or similar) or as a point cloud (*.pcd in the case of Point Cloud
Library (PCL)). Point clouds are the simplest 3D representation of an object and will
be used in this research. The research question now becomes:

Is it possible to recognise an object from point cloud data?

Popular techniques or classifiers used for 2D object recognition include; Support Vector
Machines (SVMs), Kernel estimation (k-nearest neighbour) and ANNs. The research
presented here wants to establish whether the use of ANNs are appropriate in the case of
3D object recognition, thus leading to the final iteration of the research question:

Is it possible to recognise/classify an 3D object from point
cloud data using an ANN?

Hypothesis

Rewriting the final version of the research question into a statement reveals the hy-
pothesis:

It is possible, using ANNs, to classify, or recognise, 3D objects
represented by point cloud data.

1.1.2 Objectives

To achieve the ultimate goal of the answering the research question above, the following
objectives were set out:

CHAPTER 1. INTRODUCTION 8

1. Obtain insight into 3D surface data capturing- and Object Recognition methods.

2. Implement a 3D scanner to demonstrate an understanding of the underlying
principles.

3. Develop an ANN or ANNs to perform Object Recognition. This includes re-
searching ways to reduce point cloud data to an input vector of manageable
length for the proposed ANN(s).

1.2 Research Methodology

The research methodology can be divided into the following sections:

Literature Study In this part of the research the work of other researchers are con-
sidered. Knowledge of machine vision, laser triangulation, object recognition and
artificial neural networks is gathered.

Implementation Here the gathered knowledge is used to implement a 3D scanner
and to develop neural network based object recognition software.

Testing and Validation Finally, what results from the implementation stage is
tested and validated.

1.3 Delimitations of the Research

In order to prevent inflating the scope of the project it was important to establish
the scope, the domain, of the research presented in this dissertation. The following
delimiting factors were identified:

• From the literature study it became evident that many 3D sensing technologies
exist. The focus of the work undertaken in this particular project, however,
was recognising 3D objects and not to conduct an in-depth study on sensing
technologies. Yet a 3D acquisition device remained an integral part in performing
this research. For this reason this study was limited to the development of a 3D
scanning device based on the laser triangulation principle.

• The study was also limited to implementing only ANNs to perform object recog-
nition or object classification. Other types of classifiers will be discussed in the
next chapter, but these classifiers were not implemented.

CHAPTER 1. INTRODUCTION 9

• ANNs can be implemented on a variety of hardware such microprocessors, Field
Programmable Gate Arrays (FPGAs), and Programmable Logic Controllers (PLCs).
In this study the ANN(s) was implemented on a personal computer using C++
and existing software libraries as far as practical to reduce development complex-
ity.

• The objects to be recognised in this project were limited to the eight non-complex
shapes shown in figure 1.4. These non-complex geometric objects were chosen
since the goal of this study was not to find the upper limit of object complexity
at which ANNs will fail to perform the recognising task, but rather to establish
whether ANNs were a feasible approach. Note the similarity between Object 6,
Object 7 and Object 8. This was to subject the developed ANN(s) to some level
of ambiguous data.

(a) Object 1: Cube (b) Object 2: Cylinder

(c) Object 3: Triangular prism (d) Object 4: Square base pyramid

(e) Object 5: Hemisphere (f) Object 6: Rectangular prism

(g) Object 7: Modified object 6 (h) Object 8: Modified object 7

Figure 1.4: The 8 objects used for recognition in this research.

CHAPTER 1. INTRODUCTION 10

1.4 Research Significance

1.4.1 Significance to Industry

The automotive industry is a major contributor to the Nelson Mandela Bay economy.
Sustained research and innovation is necessary to ensure that the local industry remains
globally competitive. The research done in this project offers two contributions to the
local manufacturing industry:

1. A method or approach to recognise objects or parts from 3D scan data.

2. A low cost method to design and analyse machine vision systems and test related
vision algorithms before procuring any vision hardware.

1.4.2 Personal Significance

This research undertaking presented an opportunity to develop and increase program-
ming proficiency, especially in using the C++ language. At the same time a deeper
understanding of machine vision and machine learning was obtained by studying the
related literature and implementing what was learned there using OpenCV, PCL, Fast
Artificial Neural Network (FANN) library, and C++.

1.4.3 Significance to the University

Over the years, and in more recent times, several research projects conducted at Nelson
Mandela Metropolitan University (NMMU) contained elements of machine perception
and machine learning. Research has been done on the use of a 3D scanning device
to measure and detect tooling errors within an automotive production context [2].
Machine vision (stereo vision in particular) guided tracking of seams for robotic welders
has also been studied in [6]. In [7] the author trained ANNs by means of a Genetic
Algorithm (GA) to perform parts recognition using timed distance signals.

The research conducted in this project, and presented in these pages, supplements
NMMU’s existing body of knowledge pertaining to machine vision and machine intel-
ligence by combining these paradigms to perform 3D object/shape recognition.

CHAPTER 1. INTRODUCTION 11

1.5 Organisation of the Dissertation

For clarity and readability this dissertation is divided into four parts:

• Part I , the background, consists of three chapters. Chapter 1 - Introduction
introduces the the problems of 3D data acquisition and object recognition. In
Chapter 2 - Machine Vision and Laser Triangulation relevant machine vision
literature is discussed, the laser triangulation principle is presented while Chapter
3 - Object Recognition and Artificial Neural Networks contains a literature review
of research relting to object recognition, and the necessary theory on ANNs that
will be used to perform the task object recognition.

• Part II contains two chapters focusing implementation of the theories presented
in, and knowledge gained from, the previous three chapters. A 3D laser scanner
is developed Chapter 4 - 3D Laser Scanner Implementation. This scanner is
first implemented as a simulation using a software package called Blender, then
an actual scanner is built to verify the simulated scanner. Chapter 5 - Object
Recognition Implementation discusses the development and implementation of
an ANN to perform object recognition.

• Part II consists of one chapter, Chapter 6 - Results, and details the experiments
conducted in this study and presents the results thereof.

• Finally, Part IV , consisting of Chapter 7 - Discussion and Conclusion, con-
cludes the dissertation. This final chapter discusses the results shown in the
chapter 7, presents some conclusions that can be made based on those results,
and also suggests ways in which this study could be improved upon and future
work that could stem from the research presented in this dissertation.

A visual representation of the structure of the dissertation can be seen in figure 1.5.

1.6 Summary

In conclusion, the main research problem, 3D object recognition, was introduced in
this chapter and the main research question was formulated:

Is it possible to recognise/classify an 3D object from point cloud
data using an ANN?

Furthermore, this chapter outlined the objectives, methodology, scope and significance
of the research, as well as the layout of this dissertation.

CHAPTER 1. INTRODUCTION 12

The next chapter explores the literature related to machine vision, in particular laser
triangulation based scanners and related theory.

Part I: Background

Part IV: Conclusion

Part III: Results

Part II: Implementation

Chapter 1:
Introduction

Chapter 2:
Machine Vision &

Laser
Triangulation

Chapter 3:
Object

Recognition &
ANNs

Chapter 4:
3D Scanner

Implementation

Chapter 5:
Object

Recognition
Implementation

Chapter6:
Results

Chapter 7:
Discussion &
Conclusion

Figure 1.5: Layout of the dissertation.

Chapter 2

Machine Vision and Laser
Triangulation

The aim of this chapter is to present a review of machine vision literature in section 2.1,
with the remaining sections dedicated to machine vision theory relevant to the 3D
scanner developed for this research project.

2.1 Machine Vision: A Review of the Literature

The authors of this paper, [8], proposed a system to inspect mass produced items – in
this case, percussion caps. The vision component of the inspection system comprises of
a camera and laser based 3D scanner. The paper does not discuss the vision system in
great detail and is more focussed on the task of classifying the inspected pieces. This
classification is done using an artificial neural network, warranting further mention of
this paper in the next chapter.

To perform measurements for inspection- and quality purposes, often CMMs are used.
These machines are slow and it is not always practical to obtain a dense set of mea-
surements representative of the entire surface of the measured object – optical methods
like laser triangulation scanners are much more suited for this scenario. The authors
of [9] developed a dual camera 3D laser scanner and compared the performance of
this scanner to that of a CMM. They found that the scanner they developed produces
measurements with similar accuracy to those obtained with a CMM.

The paper, [10], documents the calibration of a 3D inspection system meant to inspect
the completeness of assemblies on an assembly line. The inspection system is also
based upon the principle of triangulation. To combat the issue of occlusion, this vision

13

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 14

consists of two lasers and a camera, instead of the more conventional set-up with dual
cameras and a single laser. This paper focusses on the calibration of said inspection
system.

[11] is a paper on measuring the wheel alignment of a motor vehicle using laser tri-
angulation. This paper proved useful because of the completeness of the mathematics
presented therein.

The authors of [12] discuss improving the speed of a robot’s ability to perform pick-
and-place tasks by adding 3D machine vision. They claim that performing object
recognition on 3D data is slow and therefore use only 2D information to classify the
objects. 3D data is used to determine object pose aiding the robot in the pick-and-place
procedure. 3D data is acquired using a laser triangulation type scanner.

In [13], the authors present 3D vision system to inspect the condition of the carbon
contact strips on pantographs for electrical railway vehicles. These contact strips wear
over time, and must be maintained to perform optimally. The vision system used in
by the authors is based on laser triangulation. A simple laser line thinning approach
was used: the centre of the laser line is assumed to be along the brightest part of the
projected line.

Laser triangulation based machine vision systems are quite popular for performing
seam tracking in automated welding tasks and has been the research topic of many
researchers such as [14]–[16].

In [14], the authors present an automated welding system to perform welds on golf
club heads. The solution relies on a 3D vision system to find the weld path. The
vision system used is a camera-and-laser, laser triangulation based solution, augmented
by using two cameras. This reduces the probability of occlusions occurring in the
scans. The authors report that the precision of the vision system is acceptable for the
welding task, with a 3D error of approximately 0.0314mm with a standard deviation
of 0.0211mm.

2.2 The Camera Model

This section shows how a camera is modelled mathematically. Consider figure 2.1.
This figure represents a pinhole camera capturing a scene containing point P situated
at the coordinate (X, Y, Z). A ray of light is reflected off of P . This ray of light is then
focused by the optics onto the image sensor to form an image of P at point (u, v) in

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 15

Figure 2.1: The pinhole camera model [17].

the image plane. Equation 2.1 describes this mathematically.

sm′ = A [R|t] M ′ (2.1)

which, with the matrices expanded to expose the matrix elements, can be rewritten as:

s

u

v

1

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

X

Y

Z

1

 (2.2)

Machine vision and photogrammetry literature refer to A as the camera intrinsics
matrix, or simply, the camera matrix. Equations 2.1 and 2.2, shown using homogeneous
coordinates, can be written as equations 2.3 and 2.4 respectively.

sm′ = A (RM + t) (2.3)

s

u

v

1

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13

r21 r22 r23

r31 r32 r33

X

Y

Z

+

tx

ty

tz

 (2.4)

Provided that z 6= 0, the above equations are equivalent to:
x

y

z

 = R

X

Y

Z

+ t (2.5)

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 16

x′ = x

z
y′ = y

z
(2.6)

The coordinates, (u, v), of the projected point can then be calculated as:

u = fxx
′ + cx v = fyy

′ + cy (2.7)

That then concludes the basic mathematical model for an ideal pinhole camera. The
next section will look at:

• different types of distortion that may occur when capturing images, and

• how to incorporate distortion into the camera model presented above.

2.3 Distortion

The previous section introduced the mathematical model for an ideal camera. This is
a good starting point, but real world cameras are often far from ideal and may capture
distorted images. The two most common types of distortion are:

1. radial, and

2. tangential distortion.

These two types of distortions are discussed below.

2.3.1 Radial Distortion

The ideal lens has a parabolic profile. However, real lenses – notably, inexpensive
lenses – do not have true parabolic profiles. This deviation causes radial distortion,
illustrated in figure 2.2. [18] states that radial distortion at the optical centre of the

(a) No distortion. (b) Positive radial distortion. (c) Negative radial distortion.

Figure 2.2: Radial lens distortion

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 17

image sensor is equal to 0, and the distortion increases as r – the distance from the
optical centre – increases. Radial distortion can be modelled using a Taylor expansion
about r = 0, shown in equations 2.8 and 2.9.

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) (2.8)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) (2.9)

where r2 = x′2 + y′2.

2.3.2 Tangential Distortion

Tangential distortion is caused by manufacturing defects, specifically when the camera
lens and image sensor are not exactly parallel. This type of distortion can be modelled
by equations 2.10 and 2.11. Tangential distortion is depicted in figure 2.3.

(a) No distortion. (b) Tangential distortion (hori-
zontal).

(c) Tangential distortion (verti-
cal).

Figure 2.3: Tangential distortion

x′′ = x′ + 2p1x
′y′ + p2(r2 + 2x′2) (2.10)

y′′ = y′ + p1(r2 + 2y′2) + 2p2x
′y′ (2.11)

Combining radial and tangential distortions:

x′′ = x′(1 + k1r
2 + k2r

4 + k3r
6) + 2p1x

′y′ + p2(r2 + 2x′2) (2.12)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2) + 2p2x

′y′ (2.13)

Using equations 2.12 and 2.13, the distorted pixel coordinates, (udistorted, vdistorted), are

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 18

then approximated with:

udistorted = fxx
′′ + cx vdistorted = fyy

′′ + cy (2.14)

2.4 Camera Calibration

This sections discusses the issue of camera calibration. Camera calibration is the pro-
cess of determining a camera’s intrinsic parameters, as well as the distortion coefficients
of the lens being used. Knowing these parameters is important for performing accurate
optical metrology type tasks. For example, by knowing the distortion coefficients of
the lens, it possible to, at least partly, compensate for and eliminate distortion.

OpenCV was used in this research to implement all image acquisition and processing.
For this reason the OpenCV literature, [17], [18], was consulted on the topic of camera
calibration.

According to [18], the OpenCV camera calibration procedure estimates the camera
intrinsics using an algorithm based on the research by [19]. The distortion coefficients
are determined using an algorithm based on Brown’s method presented in [20]. The
calibration is performed by capturing images of a planar calibration pattern, usually a
checker board pattern consisting of squares with known dimensions. These images are
taken, each time the calibration pattern being held in a different pose (see figure 2.4).
Given enough images, the OpenCV calibration algorithm then estimates the camera
intrinsics, distortion coefficients and pose ([R|t]) for each image. This done by min-
imising the re-projection error using iterative Levenberg-Marquardt optimisation[17].

Figure 2.4: Camera calibration procedure[18].

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 19

2.5 Image Processing

In machine vision applications, the images captured often contain more data or infor-
mation than is required for the task at hand. Analysing this extra information may add
to the complexity and operation time of the vision system. For this reason it is usually
necessary to perform some kind of image processing, or preprocessing, to reduce the
amount of data to only that what is useful. This is especially true for vision systems
that need to operate at near real-time speeds.

This section introduces the two most popular techniques used in image preprocess-
ing:

1. Segmentation (also called thresholding), and

2. Smoothing (sometimes referred to as blurring).

2.5.1 Segmentation

When performing basic segmentation on a monochrome image, the pixels with an
intensity value lower than a specified threshold value is forced to 0. All pixels with
intensities above the threshold are set to the maximum intensity (255 in the case of an
image with 8 bit colour encoding). Figure 2.5 shows an example of this.

(a) Original image. (b) Thresholded image.

Figure 2.5: Example of segmentation (Threshold value set to 100).

2.5.2 Smoothing

The smoothing operation is mostly used to reduce noise, or fine details, that might be
present in an image. Gaussian smoothing is one of the most well known smoothing
operators. An example of Gaussian blur is shown in figure 2.6. In this example a 9× 9
Gaussian kernel was used.

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 20

(a) Original image. (b) Blurred image.

Figure 2.6: Example of Gaussian blur (9× 9 kernel).

2.6 Laser Triangulation

This section explains the principle of laser triangulation. In sub-section 2.6.2 the equa-
tions needed to implement a laser scanner are derived from the camera model.

2.6.1 The Basic Principle

A 3D scanner that uses laser triangulation typically consists of at least one camera and
one laser. The laser is usually of the type that projects a sheet of light. The scanner is
constructed in such a way that the camera is at an angle to the laser (see figure 2.7).
When scanning an object, the object is passed through the sheet of laser (alternatively,
the camera-laser assembly may be passed over the object). The laser light is reflected
off of the object, producing a distorted line highlighting the profile of the object. These
distorted lines are captured by camera. The 3D shape information of the object can
then be obtained by processing the captured images. Equations 2.15 through 2.18, in
conjunction with figure 2.7, shows how to calculate the height, z, of an object using
basic geometry and trigonometry.

α = arctan
(
b

h

)
β = arctan

(
u

f

)
(2.15)

γ = π − (α + β) (2.16)

d =
√
b2 + h2 (2.17)

z = (d− f) sin β
sin γ (2.18)

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 21

Figure 2.7: The laser triangulation principle.

The width of the object may be calculated following similar logic. The following sub-
section presents a more general approach to calculate the 3D data for laser scan-
ning.

2.6.2 3D Reconstruction Using Inverse Camera Model

This approach is essentially the inverse of the camera model discussed earlier in this
chapter, and was inspired by the work done in [21]. The camera model (equation 2.1)
allows us to estimate the image point or pixel values of known object point or XY Z-
coordinate, while 3D laser scanning aims to achieve the opposite or inverse: 3D coordi-
nates are estimated from pixel values. If the projected plane of laser light is coincident
with the Y Z-plane of the object coordinate system, then X = 0, and equation 2.2 can
be rewritten as:

s

u

v

1

 =

fx 0 cx

0 fy cy

0 0 1

r12 r13 tx

r22 r23 ty

r32 r33 tz

Y

Z

1

 (2.19)

Now, let:

H =

fx 0 cx

0 fy cy

0 0 1

r12 r13 tx

r22 r23 ty

r32 r33 tz

 (2.20)

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 22

By substitution equation 2.19 becomes:

s

u

v

1

 = H

Y

Z

1

 (2.21)

This equation can be rearranged to give:
Y

Z

1

 = sH−1

u

v

1

 det(H) 6= 0 (2.22)

Let:
q1

q2

q3

 = H−1

u

v

1

 (2.23)

Then equation 2.22 can be written as:
Y

Z

1

 = s

q1

q2

q3

 (2.24)

Finally:

X = 0 Y = sq1 Z = sq2 (2.25)

where s = 1
q3

.

That concludes this section on laser triangulation.

2.7 Summary

This chapter opened with a literature review on machine vision in partial fulfilment of
the first objective of this study. This literature review highlighted the following:

• Laser triangulation remains an acceptable and popular method for acquiring 3D
data, both in research and industry.

• The digital camera is an integral and complex component of laser triangulation
based scanner.

CHAPTER 2. MACHINE VISION AND LASER TRIANGULATION 23

• It is imperative to perform camera calibration to improve the accuracy of machine
vision systems. This improvement is the result of adjusting for any misalignment
and lens distortion that might be present in the vision system.

• To extract useful information from captured images it is necessary to perform
image processing.

The chapter presented the mathematical model of a pinhole camera (refer to figure 2.1
and equations 2.1 to 2.7).

Next, the chapter discussed the main types and sources of distortions namely, radial
and tangential distortion. Figure 2.2 and 2.3 illustrate the effect of radial and tangential
distortion respectively.

Then followed a section on a camera calibration method based on the works of [19] and
[20].

Some basic image processing concepts were introduced namely, segmentation and
smoothing.

Finally, a section on laser triangulation presented:

• the laser triangulation principle using basic geometry and trigonometry (refer to
figure 2.7 and equations 2.15 to 2.18).

• a more general case of laser triangulation derived from the camera model pre-
sented early in this chapter (see equations 2.19 to 2.25).

The following chapter looks at object recognition and then discusses artificial neural
networks in some detail.

Chapter 3

Object Recognition and Artificial
Neural Networks

3.1 3D Object Recognition: A Review of the Lit-
erature

This section presents a review of literature pertaining to object recognition.

Although not quite object recognition, [8] developed an intelligent system to inspect
the quality of percussion caps. The system uses a 3D laser scanner to acquire the
3D data of a plate containing 120 percussion caps. Each percussion cap, or region of
interest, is then processed resulting in a number of parameters that serve as the input
vector for a back-propagation neural network. The neural network is trained to classify
the percussion as one of the following classes:

1. Dented central cap.

2. Poorly mounted central cap.

3. Inverted central cap.

4. Paper present in the joints of the
cap.

5. Missing central cap.

6. Dirty central cap.

7. Dirty or dented external cap.

8. Missing percussion cap.

9. Central cap mounted above toler-
ance.

10. Central cap mounted above toler-
ance.

The author reports that the neural network is able to correctly classify the percussion
caps 93.05% of the time.

24

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS25

The authors of [22] proposes a deep learning model for recognising 3D objects and pose
estimation from 2D images. They then use this model to implement a robotic system
able to grasp objects. They apply the Max-pooling Convolutional Neural Network to
perform both object recognition and pose estimation. The authors report that

our system can make accurate object recognition, pose estimation, as well
as successful grasping.

In [23], the authors discuss a 3D object recognition system using what they call an
interactive open-ended learning approach. The system is able to learn new objects over
time. They acquire 3D data of a scene using a RGB-D sensor, specifically Microsoft’s
Kinect. This sensor captures colour and depth information of a scene. The 3D data is
then segmented in order to isolate the objects contained in the scene. For each object
a spin-image – a type of descriptor – is then calculated. Using this spin-image, the
objects are classified by means of a nearest-neighbour algorithm.

[24] proposes using Deep Belief Networks (DBN) to perform object recognition and
pose estimation. DBNs are a type of deep learning model. The system developed
by these authors uses two cameras to obtain a top and side view of the object to be
recognised. A DBN is created for each camera and the outputs of these two DBNs
are fed into a final output layer that performs the classification. This approach has
the advantage of not relying on a 3D sensor of some kind, although this reduces the
system’s capability to perform measurement tasks.

In [25], the authors present a method to recognise 3D objects. The system is developed
to improve factory automation, and is implemented on a robot arm with 7 degrees
of freedom. The authors use a similar approach as [23]. Instead of performing a
segmentation step and calculating spin-images for the detected object, [25] proposes
using global descriptors discussed in [26]–[29]. Again, a nearest-neighbour algorithm is
used to perform the classification.

[30] proposes a 3D object recognition method where a 3D scene is basically projected
onto multiple 2D views, essentially images. These images are then searched for known
objects.

In the paper, [31], the authors perform 3D object recognition by using a Convolutional
Neural Network to detect features in RGB-D data. These detected features are then
fed to a Support Vector Machine (SVM) that performs the task of classification.

[32] implemented a 3D object recognition system for mobile robots. 3D data is ob-
tained using a RGB-D sensor. The 3D data is then processed to obtain features using
descriptors developed by [26], [33]–[36]. Finally the 3D features obtained from the

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS26

descriptors are passed to a nearest-neighbour algorithm to perform classification.

This concludes the review of the object recognition literature. The next section intro-
duces and discusses the artificial neural network theory relevant for purposes of object
recognition in this research.

3.2 ANNs

ANNs are algorithms that attempt to solve a variety of problems by mimicking the way
the biological neural systems, like the human brain, work. According to [37], ANNs
are particularly useful for solving problems such as:

• classification

• pattern completion

• optimisation

• control

• function approximation

• data mining

It is exactly because of this ability to solve classification problems that ANNs were
selected for this research.

The remainder of this chapter is dedicated to ANNs and the theory relevant to this
research. Note that unless otherwise indicated, all theory presented further in this
chapter is from [37] and all symbols and naming conventions follow those used by the
author of that work.

3.2.1 The Artificial Neuron

As the name, ANN, suggests, an ANN is a network of interconnected Artificial Neurons
(ANs). These are the building blocks of an ANN. An AN actually represents some
function that maps some input RI to [0, 1] or [−1, 1] depending on the type of activation
function used. This is shown in 3.1 and 3.2.

fAN : RI 7→ [0, 1] (3.1)

fAN : RI 7→ [−1, 1] (3.2)

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS27

where I is the number of input values. These input values are typically presented to
the AN in vector format e.g.:

z = (z1, z2, . . . , zI) (3.3)

v = (v1, v2, . . . , vI) (3.4)

z1

f(net - θ) oz2

zI

v1v2
vI

Figure 3.1: An Artificial Neuron, shown here with input vector z, weight vector v, and output signal
o.

The AN also has a corresponding weight, vi, for each input value, zi. These weights
strengthen or weaken the input signals in an attempt to emphasise the more impor-
tant signals and to attenuate the less important input values. From the input signals
and corresponding weights the total-, or net input signal is calculated. An activation
function, fAN , then calculates the output value, o. A threshold or bias, denoted by θ is
applied to the net input signal to control the strength of the output signal. Figure 3.1
is a graphical representation of this process.

In the following three subsections the basic components of an artificial neural network
shall be presented. These components are:

1. the net input signal,

2. the activation function, and

3. the threshold value.

Net Input

The most common way of calculating the net input signal is by computing the weighted
sum of all the input signals. This is done using equation 3.5

net =
I∑
i=1

zivi (3.5)

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS28

An AN using equation 3.5 is called a summation unit (SU). Another method of calcu-
lating the net input signal is shown in equation 3.6. An AN implementing this method
is called a product unit (PU).

net =
I∏
i=1

zvii (3.6)

PUs are known to provide improved information capacity.

Activation Functions

This subsection documents the activation functions most commonly used. The purpose
of the activation function is to determine an output value from the given inputs, weights
and bias. This process is often referred to as firing.

Linear function The linear activation function is represented by the following equa-
tion, the graph of which is shown figure 3.2a:

f(net− θ) = λ(net− θ) (3.7)

where λ is the gradient of the function.

Step function The step activation function is given as:

f(net− θ) =

 γ1 if net ≥ θ

γ2 if net < θ
(3.8)

where γ1 and γ2 usually are 1 and 0 respectively. γ1 = 1 and γ2 = −1 are also
not uncommon. Figure 3.2b shows illustrates this activation function.

Ramp function (See figure 3.2c)

f(net− θ) =

γ if net− θ ≥ ε

net− θ if −ε < net− θ < ε

−γ if net− θ ≤ −ε
(3.9)

Sigmoid function This is the most commonly used activation function. It can be
written as:

f(net− θ) = 1
1 + e−λ(net−θ) (3.10)

where λ controls the gradient of the function. (See figure 3.2d)

Hyperbolic tangent function The hyperbolic tangent activation function, given in

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS29

equation 3.11, is yet another activation often used:

f(net− θ) = eλ(net−θ) − e−λ(net−θ)

eλ(net−θ) + e−λ(net−θ) (3.11)

where, again, λ dictates the steepness of the function. As seen in figure 3.2e, this
function is similar to the sigmoid activation function but, the output ranges from
-1 to 1 instead of from 0 to 1.

Gaussian function Shown in figure 3.2f, this activation function is given as:

f(net− θ) = e−
(net−θ)2

σ2 (3.12)

where the mean of the Gaussian function is net− θ, and the standard deviation
is σ.

(a) Linear function (b) Step function

(c) Ramp function (d) Sigmoid function

(e) Hyperbolic tangent function (f) Gaussian function

Figure 3.2: Popular activation functions.

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS30

That concludes this subsection on activation functions. The next subsection discusses
the threshold value, θ, and the purpose thereof.

The Threshold

The threshold, also referred to as the bias, is denoted by the Greek symbol θ. The
purpose of this value is to amplify or attenuate the output signal of an artificial neu-
ron.

To simplify the learning algorithms (discussed later), the bias is incorporated into the
net input signal using:

net =
I∑
i=1

zivi − θ

=
I∑
i=1

zivi + zI+1vI+1

=
I+1∑
i=1

zivi (3.13)

where θ = zI+1vI+1 = −vI+1.

3.2.2 The Artificial Neural Network

Now that the basic building block of the artificial neural network – the artificial neuron
– has been discussed, this section will discuss in deeper detail the neural network.

Learning

Consider the feed-forward neural network shown in figure 3.3. For an artificial neural
network to be of any use it is necessary to find right combination of connection weights
such that the network produces the expected output for a given input. The process of
finding these weights is known as learning. Neural networks typically learn by using
one of the following methods:

• Supervised learning: The neural network is presented with training dataset.
This dataset contains input patterns and corresponding desired outputs. During
training the network estimates outputs for each input vector. These outputs
are compared to the desired values and the connection weights are adjusted to
minimise the error between the actual- and desired outputs.

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS31

• Unsupervised learning: Here the network is left to find to patterns in the
input data on its own. There is no error minimisation step as in supervised
learning.

• Reinforcement learning: Similar to supervised learning, here the network is
rewarded (positive reinforcement) for performing well, and penalised (negative
reinforcement) for not performing well.

A supervised learning strategy was used in this research, and shall therefore be dis-
cussed in further detail in the rest of this chapter. Supervised learning algorithms can
be divided into the following two groups:

• Stochastic learning: With this learning approach the ANN’s weights are ad-
justed after each training pattern is presented to the network. The following
training pattern is randomly selected from the training set to prevent the net-
work from developing any bias caused by the order of the training patterns.

• Batch learning: Here the weight changes are added up, and only once the net-
work has been presented with the complete training set are the weights adjusted.

Batch back-propagation learning was used to train the neural networks implemented in
chapter 5. The underlying mathematics for this particular learning method is presented
next.

Batch Back-propagation Learning for Feed-forward Neural Networks Again
consider the network shown in figure 3.3. Using the sigmoid activation function the
following equations can be used to train the neural network under consideration. This
training is also summarised in algorithm 3.1. Each output value in the output layer is

Figure 3.3: A general case FFNN showing the connection weights between layers.

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS32

calculated using:
ok = fok(netok) = 1

1 + e−netok
(3.14)

and the output of each hidden neuron is calculated with:

yj = fyj(netyj) = 1
1 + e−netyj

(3.15)

Connection weight adjustments are made using:

wkj(t)+ = ∆wkj(t) + α∆wkj(t− 1) (3.16)

vji(t)+ = ∆vji(t) + α∆vji(t− 1) (3.17)

where α is the momentum. Momentum attempts to counteract the occurrence of the
network becoming trapped in a local minimum during training.

The weight changes for the input connections of the output layer calculated using
the following two equations. These weight changes are calculated after each training
iteration.

∆wkj = η

(
− ∂E

∂wkj

)
= −ηδokyj (3.18)

where E = 1
2
∑K
k=1(tk − ok)2, η is the learning rate. The learning rate determines how

large an adjustment is made to weights during training. δok is the output error to be
back-propagated and this is calculated as:

δok = ∂E

∂netok
(3.19)

Similarly, the weight changes for the input connections of the hidden layer is calculated
with:

∆vji = η

(
− ∂E
∂vji

)
= −ηδyjzi (3.20)

δyj = ∂E

∂netyj
(3.21)

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS33

In batch training the network weights are adjusted only after all training patterns have
been presented to the network. These weight adjustment are done using equations 3.16
and 3.17. The batch weight changes are calculated by accumulating the weight changes
for each training pattern, using the equations below:

∆wkj(t) =
PT∑
p=1

∆wkj,p(t) (3.22)

∆vji(t) =
PT∑
p=1

∆vji,p(t) (3.23)

Algorithm 3.1 Batch/Offline Back-propagation Learning Algorithm
Initialise weights, learning rate (η), momentum (α), and the epochs (t = 0);
while stopping conditions not true do

Let εT = 0;
for each training pattern p do

Feed-forward pass: calculate yj,p∀j = 1, · · · , J and ok,p∀k = 1, · · · ,K;
Compute output error signals, δok,p , and hidden layer error signals, δyj,p ;
∆wkj(t) = ∆wkj(t− 1) + ∆wkj,p(t);
∆vji(t) = ∆vji(t− 1) + ∆vji,p(t);

end for
Back-propagation of Errors: Adjust weights wkj and vji;
εT = εT +

∑K
k=1(tk,p − ok,p)2;

t = t+ 1;
end while

3.3 Summary

This chapter presented a review of object recognition related research. From this
literature review it became apparent that artificial neural networks are actively being
used in research to solve various classification problems. This fact justifies the use of
artificial neural networks in this research project.

The rest of the chapter was dedicated to artificial neural network theory and pre-
sented:

• The Artificial Neuron, which consisted of:

– an explanation on how the net input of a n artificial neuron is calculated
(refer in particular to equations 3.5 and 3.6).

– a section discussing the most commonly used activation functions (see fig-
ure 3.2 together with equations 3.7 to 3.12).

CHAPTER 3. OBJECT RECOGNITION AND ARTIFICIAL NEURAL NETWORKS34

– a section explaining the purpose of the bias value, θ. This section also
showed how the bias is integrated into the net input signal of the artificial
neuron (refer to equation 3.13).

• The Artificial Neural Network, which included:

– the different types of learning methods used to train artificial neural net-
works. These are:

∗ supervised learning,

∗ unsupervised learning, and

∗ reinforcement learning.

– an explanation of stochastic and batch learning. These two learning strate-
gies are types of supervised learning.

– a relatively detailed description of the back propagation training algorithm
typically used to train artificial neural networks (refer to figure 3.3, equa-
tions 3.14 up to 3.23 and, algorithm 3.1).

The next chapter looks at the implementation of a 3D scanner based on the principle
of laser triangulation.

Part II

Implementation

35

Chapter 4

3D Laser Scanner
Implementation

4.1 The Concept

This section will discuss, from a high level point of view, the concept, and the method
of operation of the laser scanner that was developed during this research project. Sub-
sequent sections will delve into the deeper details concerning the hardware and of
software of the laser scanner.

The scanner operates in the following way: the object to be is placed on a rotating
platform and is then rotated in view of a camera. This camera captures frames while
a laser projects a plane of light onto the object. The laser highlights the outline of
the object. Each captured frame is then analysed – for this research the red channel is
analysed and the pixels with highest intensity found. The shape of the object, or the
surface thereof, is then calculated from these pixel values using the laser triangulation
equations discussed in section 2.6.2. Figure 4.1 shows the proposed configuration of
the hardware.

From a Systems Engineering or architectural point of view the laser scanner can be
represented by figure 4.2. At the highest level a PC

• captures of images from the camera,

• coordinates the actuation of the rotating platform,

• coordinates the state of the laser’s illumination,

• performs the necessary image processing to generate the 3D scan.

36

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 37

(a) Side view. (b) Top view.

Figure 4.1: Concept configuration. This figure demonstrates the proposed orientation of the scanner
hardware.

At a level below the PC, a microcontroller is used to control the actuator and laser.

Figure 4.2: Concept Architecture

During this research the need arose to commence with developing the required software
before any of the hardware needed for the scanner was available. To overcome this
challenge it was decided to simulate a 3D scanner. The idea was to develop and test the
image processing software on images obtained from this simulated, or virtual, scanner.
At a later stage, once the required hardware was available, the performance of the
software and algorithms developed for the simulation would be validated on an actual
scanner. The next section discusses the simulated scanner in greater detail.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 38

4.2 The Simulation

Developing a new product often relies on an iterative design process (see figure 4.3).
Developing a 3D scanner requires the selection of hardware such as the type of camera,
lens, laser and actuators to use. It is also necessary to establish where these hardware
elements must be positioned. To follow an iterative design process, which includes
the building of a prototype and related software after each iteration, can become an
expensive endeavour. By replacing the physical prototype with a simulated one, it
becomes possible to develop and test software, and various hardware configurations,
before having to procure any expensive components. So, the advantages of prototype
simulation are:

• it is financially less expensive than physical prototypes,

• software development and testing can start earlier.

Figure 4.3: The iterative design process

For these two reasons it was decided to simulate a 3D scanner in order to deter-
mine:

• the size and geometry of the scanner (camera and laser pose).

• the specification for the camera (resolution, focal length).

Once all of this was done, a physical scanner was build to verify the algorithms devel-
oped for the simulation also work in the physical world. This verification platform will
be discussed later in the chapter in section 4.3.

4.2.1 3D Model and Animation in Blender

Since, for this research, it became a requirement to develop and test image processing
software with the aid of simulation, it was very important that this simulation be as

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 39

realistic as practically possible. To realise this requirement a solution from the motion
picture- and video gaming industries was employed. Video games and special visual
effects in film are becoming increasingly difficult to distinguish from reality despite
being computer generated. Software often used by animators, graphic designers and
architects amongst others include:

• Autodesk 3ds Max,

• Autodesk Maya,

• MAXON Cinema 4D, and

• Blender.

These software packages can be used for 3D modelling, animation and the photo re-
alistic rendering of said models and scenes. The open source product, Blender, was
used in this project for the purpose of creating a virtual scanner. The output of this
virtual scanner is a sequence of renderings to be processed by the software discussed
in section 4.2.2.

Blender

Blender is a suite for creating 3D content. Blender is a product of the Blender Founda-
tion and is free and open source software. Blender can be used to perform the following
[38]:

• 3D modelling,

• rigging,

• animation,

• simulation,

• rendering,

• composting,

• motion tracking,

• video editing,

• game creation.

The simulated scanner for this research relied on Blender’s modelling, animation and
rendering capabilities. Blender is a powerful and feature rich package accompanied by
a steep learning curve. A detailed, step-by-step, explanation here of how the virtual
scanner was made using Blender would be impractical, and is considered to be beyond
the scope of this document. Interested readers are encouraged to consult the multitude
of online video tutorials showing how to use Blender. However, the next sub section
will describe the strategy behind creating a laser light source in Blender, since such a

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 40

light source does not exist at the time of writing, using Blender 2.69. Figure 4.4 shows
the Blender software with the model simulated scanner.

Figure 4.4: This figure shows the 3D model of the scanner modelled in Blender

Scanner Dimensions

The final dimensions for the virtual scanner is shown in figure 4.5 and also summarised
in table 4.1. Note it is difficult to indicate clearly rotations about axes in the figure;
hence the accompanying table.

Table 4.1: Scanner dimensions.

Dimension Description Value Unit
txc x component of the distance between world- and

camera coordinate systems
−115 mm

tyc y component of the distance between world- and
camera coordinate systems

−230 mm

tzc z component of the distance between world- and
camera coordinate systems

−200 mm

ψc Rotation of the camera coordinate system about
xc

−128.2 ◦

φc Rotation of the camera coordinate system about
yc

0 ◦

θc Rotation of the camera coordinate system about
zc

−26.6 ◦

fx dimensionless focal length for x-axis, focallength
pixelwidth 600 –

fx dimensionless focal length for y-axis, focallength
pixelheight 600 –

cx half the image sensor width 400 pixels
cy half the image sensor height 300 pixels

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 41

Figure 4.5: Scanner dimensions.

From these dimensions it is possible to find the camera matrix, A, the rotation matrix,
R, and the translation vector, t:

A =

600 0 400
0 600 300
0 0 1

 R =

0.8944 −0.4473 0.0000
−0.2766 −0.5531 −0.7859
0.3515 0.7029 −0.6184

 t =

0.00
0.00

325.77

 (4.1)

these parameters are required for performing laser triangulation as described in sec-
tion 2.6.2.

Modelling a Laser

Table 4.2 shows the various types of default light sources available to the user. Each of
these light sources are configurable and parameters such as light colour and intensity,
amount of specular highlight and diffuse shading can be adjusted. The virtual laser
scanner requires a laser light source. Unfortunately Blender does not provide a laser
light source as a default option at this point in time. For that reason a laser had to be
created with what tools are available in Blender.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 42

Table 4.2: Blender light sources

Name Description
Point Omnidirectional point light source
Sun Constant direction parallel ray light source
Spot Directional cone light source
Hemi 180◦ constant light source
Area Directional area light source

An acceptable approximation was achieved by enclosing an high intensity red spot
light. The enclosure has a thin, extruded slit through which the red light is projected.
This concept is depicted figure 4.6, and attempts to model the collimated nature of
laser light. The result of the modelled laser can be seen figure 4.7a

Figure 4.6: Laser model

4.2.2 Software

The previous section looked at the modelling, animation and rendering parts of creating
a virtual scanner. In this section the final part of the simulation strategy is presented
– the software that brings all the components together.

An Adaptive Binary Threshold Algorithm

In order to calculate 3D coordinates from the rendered images (and later the captured
images) it necessary to isolate the laser line in each image. This is known as thresh-
olding or segmentation; pixels with a light intensity below a certain value, called the
threshold, is set to the minimum intensity value (0), while pixel with an intensity above
the threshold are set to the maximum intensity value (254). Selecting an appropriate
threshold value can be a difficult task due to reflections and changeable ambient light
conditions. In their research on mapping underwater archaeological sites using laser

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 43

scanning, [39], the authors calculated the threshold value as:

τ = µ+ 2.5σ (4.2)

where τ is the threshold value, µ is the mean intensity of the image, and σ the standard
deviation. This approach served as a starting point for developing an adaptive threshold
method shown in algorithm 4.1. This algorithm analyses the red channel of each RGB-
image since the laser used in the simulation (and verification platform) projects red
light. The algorithm is adaptive in the sense that the highest possible multiple of
standard deviation is added to mean intensity to calculate the threshold value. This
is done in an attempt to ensure that all that remains after the threshold operation is
the laser line, even in the presence of changeable light conditions. The result of this
algorithm can be seen in figure 4.7.

(a) Laser light modelled with Blender. (b) Same image after segmentation.

Figure 4.7: This figure shows the effect of the adaptive binary threshold algorithm.

A Simple Thinning Algorithm

The threshold operation described above is, on it’s own, does not yet provide sufficient
data required to calculate 3D coordinates from. An ideal laser would project a plane of
light with an infinitesimal thickness. However, the light plane emitted by a real laser
does have a real thickness, and the result is that the laser line, that is the intersection
of the laser-light plane and the object surface, recovered by threshold operation can
be several pixels thick. To improve the accuracy of the laser scanner it is necessary
to determine where the centre of the laser light plane is. This is the research topic of
several researchers . . .

The laser thinning approach used in this research is a compromise between accuracy
an computational effort and is described in algorithm 4.2, the result of which can be
seen in figure 4.8. Essentially, the algorithm traverses the image from top to bottom.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 44

Algorithm 4.1 The binary threshold algorithm (Also see listing B.8).
Split image into RGB channels;
Find maximum intensity value, max val, of the red channel;
Calculate the mean intensity, µ, of the red channel;
Calculate the standard deviation, σ, of the light intensity of the red channel;
Let the threshold value, τ = µ+ 4σ;
if τ > max val then
τ = µ+ 3.5σ;
if τ > max val then
τ = µ+ 3σ;
if τ > max val then
τ = µ+ 2.5σ;
if τ > max val then
τ = µ+ 2σ;
if τ > max val then
τ = µ+ 1.5σ;
if τ > max val then
τ = µ+ σ;
if τ > max val then
τ = µ+ 0.5σ;

end if
end if

end if
end if

end if
end if

end if
Perform binary threshold on the red channel using τ and the threshold() function provided
by OpenCV;

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 45

(a) Laser light after segmentation. (b) Same image after thinning.

Figure 4.8: This figure shows the effect of the thinning algorithm.

The left and right edges of the laser line is found, and the centre is calculated as the
arithmetic mean of the edges of the laser line.

Point Cloud Estimation Algorithm

In the case of the simulated scanner, the point cloud estimation algorithm is responsible
for: This section describes the software component of the scanner simulation.

1. reading the Blender generated images from directory where these images were
stored,

2. performing the binary threshold operation, described in a previous subsection,
on these images,

3. thinning laser lines within the segmented images and,

4. estimating 3D coordinates from pixel values using the equations discussed in
section 2.6.

These operations are summarised in algorithm 4.3 and the source code can be found in
listing B.12. Figure 4.9 shows the resulting point cloud for a simulated scan of a coffee
mug.

4.3 Verification Platform

To confirm that the software algorithms (Algorithms 4.1, 4.2 and 4.3) developed for the
scanner simulation could be applied in the real world, a physical scanner, or verification
platform, was built. This section explains the hardware- and software architecture of
this verification platform, and discusses the hardware components.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 46

Algorithm 4.2 Algorithm for thinning the laser line after the threshold operation
(Also see listing B.8).

Let image points be an empty list of pixel values to describe the centre of the laser line;
Get input image;
for each row of the input image do

for each column from the left of the input image do
Get intensity of pixel;
if intensity > 0 then
pixelleft = pixel;
Break out of for-loop;

end if
end for
for each column from the right of the input image do

Get intensity of pixel;
if intensity > 0 then
pixelright = pixel;
Break out of for-loop;

end if
end for
centre = 0.5(pixelright + pixelleft);
Get intensity of centre;
if intensity > 0 then

Append centre to image points;
end if

end for

Algorithm 4.3 Point Cloud Estimation Algorithm (Simulated scanner)
Create empty point cloud, P ;
Create memory buffer to hold images;
Load Blender generated images in directory into memory buffer;
for each image in memory buffer do

Perform binary threshold;
Perform thinning operation;
Calculate object’s z-axis rotation from previous image to current image, θ;
for each image point do

Calculate object point using equations given in section 2.6.2
end for
Rotate object points by θ;
Append object points to point cloud, P ;

end for
Write point cloud, P , to disk;

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 47

Figure 4.9: Point cloud of a coffee mug generated by the simulated scanner and related software.

4.3.1 Hardware Architecture

This section presents the hardware architecture of the physical scanner, or verification
platform. This architecture, how all the components fit together, is shown in figure 4.10
and the main components are the PC, camera, laser, controller, and a stepper motor
and driver. These hardware components are discussed in more detail in the following
sub sections.

Figure 4.10: Hardware architecture.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 48

PC

An ASUS N61Ja notebook was used in this research. The specification of this PC is
summarised in table 4.3.

Table 4.3: PC specifications

Processor 4 x Intel Core i5 430M, 2.27 GHz
Operating System Ubuntu 14.04 LTS 64 bit
Chipset Intel HM55 Express Chipset
Memory 8 GB DDR3 1066 MHz SDRAM
Storage Samsung 750 EVO 250 GB SSD
Graphics ATI Mobility Radeon HD5730 1GB DDR3

VRAM

Camera

The camera used in this project is the Microsoft LifeCam Cinema (figure 4.11a). An
OmniVision OV9712 CMOS imaging sensor is used with a pixel width and length of
3 µm. The camera is capable of capturing video at an resolution of 1280 x 720 at
30 frames per second depending on light conditions. For this project the camera was
configured to capture image at resolution of 800 x 600 at the maximum frame rate
possible. The LifeCam Cinema uses USB 2.0 to connect to the host PC. The camera is
popular with amateur astronomers for lunar and planetary photography, and related
internet forums provide valuable information not available in the official Microsoft
documentation.

The following factors influenced the selection of this camera:

• the availability of data,

• the camera is designed and manufactured by a reputable company, Microsoft,

• the camera provides a good compromise between cost and quality.

Laser

A class III laser (figure 4.11b) that emits a red laser beam was used for 3D scanner. The
laser module emits light with a wavelength of 650 nm. The laser module is connected to
the Arduino and is activated by setting the digital output pin, pin 9, to high. Table 4.4
summarises the rest of the laser module specifications.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 49

Table 4.4: Laser module specifications

Property Min Typical Max Units
Output power 2.5 3.0 5.0 mW
Working current 10 20 25 mA
Working voltage 2.3 4.5 8.0 VDC
Working temperature -15 25 35 ◦C

Controller

A controller was needed to serve as an interface between the PC and the laser and
the stepper motor. This controller turns the laser module on/off and generates the
pulses for the stepper motor upon receiving a signal from the PC via TTL level serial
communication. An Arduino Uno (figure 4.11c) was sourced for this purpose, and the
specification for this controller is shown in table 4.5. The Uno was chosen for this
project because it’s ease to program.

Table 4.5: Arduino Uno specifications

Microcontroller ATmega328P
Operating Voltage 5V
Input Voltage (recommended) 7-12 V
Input Voltage (limit) 6-20 V
Digital I/O Pins 14 (of which 6 provide PWM output)
PWM Digital I/O Pins 6
Analog Input Pins 6
DC Current per I/O Pin 20 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 32 KB (ATmega328P) 0.5 KB used by

bootloader
SRAM 2 KB (ATmega328P)
EEPROM 1 KB (ATmega328P)
Clock Speed 16 MHz
Length 68.6 mm
Width 53.4 mm
Weight 25 g

Actuator and Accompanying Driver

Stepper motor To perform a scan it is necessary for the camera to view the entire
surface of the artefact (excluding bottom/base view in this project). To achieve
this, either the camera can be rotated about the artefact or, the artefact can
be rotated in view of the camera. The later option was opted for since it was
considered to be more practical. The object to be scanned is placed on a rotating
platform. This platform is rotated by means of a bipolar NEMA 17 stepper

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 50

(figure 4.11d). A stepper motor was selected because of the ability to control the
rotational displacement and velocity accurately. Specifications for the NEMA 17
motor used in this project is shown in table 4.6.

Driver To control the stepper a drive circuit, or driver, was required. An EasyDriver
V4.4 stepper driver (see figure 4.11e) was used to interface the Arduino Uno and
NEMA 17 stepper motor. The EasyDriver is essentially a breakout board fea-
turing an A3967 stepper driver. The driver is capable of microstepping, allowing
step resolutions of full, 1/2, 1/4, and 1/8 steps. 1/8 microstepping is the default
setting for the EasyDriver, requiring that 1600 pulses be generated by the Ar-
duino Uno to rotate the 200 step/rotation stepper motor once. Table 4.7 provides a
summary of the specifications of the EasyDriver V4.4.

Table 4.6: Specifications for NEMA 17 stepper motor

Step Angle 1.8◦ ± 5% (200 steps/revolution)
Motor Length 34 mm
Rated Voltage 12 V
Rated Current 400 mA
Phase Resistance 30 Ω
Phase inductance 37 mH
Holding Torque 28 N.cm
Wires 4
Rotor Inertia 34 g.cm−3

Detent Torque 1.6 N.cm
Weight 200 g

Table 4.7: Specifications EasyDriver V4.4

Driver chip A3967
Microstepping full, 1/2, 1/4, and 1/8 steps
Output current 150-750 mA/phase
Supply voltage 7-30 V

Figure 4.12 shows how the hardware components (Arduino Uno, laser module, stepper
motor and stepper driver) where connected together. The completed scanner is shown
in figure 4.13.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 51

(a) Web camera. (b) Laser.

(c) Arduino Uno. (d) NEMA 17 stepper motor.

(e) EasyDriver V4.4.

Figure 4.11: Hardware components for the 3D scanner.

Figure 4.13: The final 3D scanner.1

1Photographer: Nienke van Jaarsveld

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 52

Figure 4.12: The electrical connection of the hardware components.

4.3.2 Software

The program flow for the verification platform is very similar to that of the simulated
scanner. The main difference is that instead of reading rendered images from a direc-
tory on the PC hard drive, images are captured with a camera. This section describes
the operation of the verification platform and how that was realised programmati-
cally.

Scanner Operation

This section describes the sequence of actions performed by both the PC-side software
and the micro-controller during a scan cycle.

On the PC: Once an operator or user has placed an object on the scanner and
initiated a scan cycle, the PC performs the following:

1. Pings the camera. If the camera is not connected a scan will not be at-
tempted.

2. Pings the micro-controller. If the micro-controller is not connected a scan
will not be attempted.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 53

3. At this point, if both camera and micro-controller are connected, the PC
signals the micro-controller to turn on the laser and to rotate the stepper
motor a full revolution.

4. Since the camera takes a few seconds to adjust to ambient light, the MCU
waits 5 seconds before commencing with rotating the stepper. Upon com-
pletion of this 5 second waiting period, the PC is notified by the MCU that
rotation has started. At this point the PC starts grabbing frames from the
camera.

5. After the stepper motor has made a complete revolution the MCU signals
the PC to stop grabbing more frames.

6. The PC software then proceeds to process the captured images. The images
are segmented and thinned using algorithms 4.1 and 4.2 respectively.

7. Next the software calculates the point cloud of the object using the equations
given in section 2.6.2

On the MCU: The interaction between the MCU and PC is as follows:

1. Replies to the ping received from PC.

2. Upon receiving the message from the PC to start stepper motor rotation,
the MCU turns on the laser, wakes the stepper motor driver and waits 5
seconds. This waiting period is to allow the camera to settle and adjust to
ambient lighting conditions.

3. After waiting 5 seconds the MCU signals the PC that it is about to start
rotating the stepper motor. The MCU then starts rotating the stepper
by sending 1600 pulses to the stepper driver. During this time the PC is
capturing images from the camera.

4. Once the stepper motor has made a full rotation MCU turns the signals the
PC to stop capturing images and then switches the laser off.

5. The MCU then waits for the next scan cycle.

The laser scanner software for the PC and MCU, described above, are available in
appendix B.1. To help implement the software described above several third party
libraries were used. These libraries are discussed in the subsection that follows.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 54

Software Libraries

Boost Boost is a collection of C++ libraries that aims to provide functionality not yet
part of the standard C++ libraries. Boost was used in this project to implement
multi-threading, serial communication and file system operations. Boost 1.54 was
employed in this project.

OpenCV OpenCV is a popular open source computer vision library. OpenCV con-
tains a large number of computer vision algorithms and this library was employed
to perform all of the image processing, and interaction with the camera, required
in this research. The software in this project relies on OpenCV 2.4.8.

Point Cloud Library The Point Cloud Library is an open source library mainly
used for 3D point cloud processing. For the laser scanner software the built-in
visualisation and write-file functionality of Point Cloud Library was used. Point
Cloud Library 1.7.2 was used in this research.

Object Oriented Approach

The laser scanner software was written in an object oriented way. This subsection
provides brief description for each of the classes that make up the laser scanner soft-
ware.

SerialPort This class contains methods needed for serial communication and depends
the boost::asio, boost::chrono, and boost::thread libraries. This class provides serial
(UART) communication between the PC and Arduino Uno. The source code of
this class is given in appendix B.1.1.

Controller Methods needed for controlling the stepper motor and laser module are
contained in this class. The class depends on the SerialPort class. Source code
for this class is in appendix B.1.2.

Camera Methods required to access the camera, capture images and perform a cam-
era calibration are contained in the Camera class. This class relies on a number
OpenCV modules and the source code is documented in appendix B.1.3.

ImageProcessor This class contains all the required image processing methods, such
as the adaptive binary threshold algorithm (Algorithm 4.1), the laser line thin-
ning algorithm (Algorithm 4.2) and the method for removing distortions from
captured images. The methods in this class depend on several OpenCV modules,
specifically the imgproc module. The source code for the ImageProcessor class
can be found in appendix B.1.4.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 55

LaserScanner The LaserScanner class ties all of the above mentioned classes to-
gether, and provides the necessary methods to perform a 3D scan and visualise
the acquired point cloud. The class also contains methods required to calibrate
the scanner. In addition to the above mentioned classes,the LaserScanner class
also depends on a few Point Cloud Library (PCL) modules for file I/O and point
cloud visualisation. Appendix B.1.5 documents the class definition (laserscan-
ner.hpp) and implementation (laserscanner.cpp) for the LaserScanner class.

4.3.3 Scanner Calibration

In the case of the simulated scanner, the geometry of the scanner is completely known
since it is essentially a computer generated 3D model. However, this is not true for
the verification platform. Inconsistencies are introduced during the construction of the
scanner and the manufacturing of the camera. This means that the actual distances
and angles must be determined in order to perform scans as accurately as possible.
This is done by calibrating the scanner. This section will describe how the camera
calibration was achieved.

Calibration in the case of the scanner can be defined as finding the:

• camera parameters contained in the camera matrix, A,

• rotation transformation matrix, R, of the camera coordinate system with respect
to the world coordinate system and,

• translation transformation matrix, t, of the camera coordinate system with re-
spect to the world coordinate system.

The camera matrix can be determined using the camera calibration method described
in section 2.4. Finding the rotation and translation matrices is equivalent to finding
the pose of the world coordinate system with respect to the camera. This can be
done by capturing an image of a number points with known positions, referred to
as object points denoted by P (X, Y, Z), and finding how those object points relate
to the corresponding points in the image, refered to as image points and denoted as
p(u, v).

The dotted pattern in figure 4.14 provides the object points needed for calibrating the
scanner. The pattern is placed on the scanner such that the pattern coincides with the
plane if light projected by the laser. The calibration software finds the image points
by calculating the centroids of the elements on the calibration pattern using OpenCV’s
SimpleBlobDetector. Figure 4.15 shows the centroids detected during a calibration.

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 56

Figure 4.14: Scanner calibration pattern. (Not to scale)

Once both sets of points – the object points and corresponding image points – are
available it possible to estimate R and t using the solvePnP function available in
OpenCV. Table 4.8 summarises the object- and corresponding image points obtained
during a calibration. The resulting rotation matrix and translation vector is shown
in equations 4.3. Note that these values closely relate those of the simulated scanner
in equations 4.1. The scanner calibration is implemented as part of the LaserScanner
class, the source code of which can be found in appendix B.1.5.

R =

0.9282 −0.3338 −0.1642
−0.3333 −0.5507 −0.7652
0.1650 0.7650 −0.6224

 t =

15.31
3.67

321.90

 (4.3)

4.4 Summary

This chapter addressed the second objective of this project as stated in section 2.6.2:

“Implement a 3D scanner to demonstrate an understanding of the underly-
ing principles.”

In summary, the 3D scanner and related software developed in during the course of
this research project were presented in this chapter. The chapter:

• introduced the concept for the scanner,

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 57

Figure 4.15: Finding centroids for calibration.

• discussed the need for, and implementation of the simulated scanner,

Table 4.8: Image– and object points used to estimate R and t for the verification platform.

Pattern Element u v X Y Z
(mm) (mm) (mm)

1 509.767 384.182 0 -75 25
2 472.376 344.466 0 -50 25
3 438.979 308.103 0 -75 50
4 409.726 276.741 0 -25 25
5 514.974 328.689 0 -50 50
6 474.725 289.566 0 0 25
7 520.285 265.159 0 -75 75
8 439.753 255.573 0 -25 50
9 383.857 248.787 0 25 25
10 339.139 200.501 0 75 25
11 381.531 198.798 0 25 50
12 439.99 196.448 0 -25 75
13 526.519 192.178 0 -75 100
14 407.41 168.351 0 50 50
15 357.208 174.972 0 0 75
16 330.774 102.078 0 25 75
17 378.895 143.672 0 -25 100
18 440.653 129.819 0 50 75
19 353.591 121.774 0 0 100
20 406.229 104.54 0 75 75
21 376.122 82.6321 0 25 100
22 349.279 61.3419 0 50 100
23 325.815 45.4718 0 75 100

CHAPTER 4. 3D LASER SCANNER IMPLEMENTATION 58

• documented the adaptive binary threshold-, thinning-, and point cloud estimation
algorithms used in the scanner software,

• presented the verification platform– a physical implementation of the simulated
scanner,

• detailed the hardware components and software of the physical 3D scanner, and

• documented the scanner calibration procedure.

The following chapter documents the implementation of the object recognition part of
this research.

Chapter 5

Object Recognition
Implementation

5.1 Introduction

This chapter documents the work done in order to fulfil the third objective set out in
section 1.1.2:

“Develop an ANN or ANNs to perform Object Recognition. This includes
researching ways to reduce point cloud data to an input vector of manageable
length for the proposed ANN(s).”

5.2 Preprocessing

This section discusses the two preprocessing techniques that were applied to a point
cloud before being presented to the ANN for recognition:

1. Voxel grid filtering, and

2. global point feature histograms.

5.2.1 Data reduction

Point clouds may contain many data points, many more than what may be necessary
for the object recognition task. Reducing the number of points in a point cloud, in such
a way that the overall surface information remains intact, will reduce the computational

59

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 60

load during recognition. The this was achieved in this project was by filtering the point
clouds with a voxel grid filter. The voxel grid filter is a standard filter available in the
PCL. Following is an explanation how this filter works.

The voxel grid filter in PCL creates a 3D grid, such that, this grid encompasses the
point cloud to be filtered. This grid is subdivided into cells known as voxels. Each
voxel is then processed. Where a voxel contains any points, these points are replaced
by a single point. This single point is calculated as the mean or centroid of the original
set of points in that voxel. Figure 5.1 is a 2D illustration of this filtering process. In
this illustration it is clear that even though the number of points are significantly less
after filtering, the original shape – a circle – is still recognisable. An example of voxel
grid filtering can be seen in figure 5.2.

(a) Before filtering. (b) After filtering.

Figure 5.1: A 2D illustration of voxel grid filtering.

Figure 5.2: Point cloud of a coffee mug before (left) and after (right) voxel grid filtering.

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 61

5.2.2 The Global Point Feature Histogram

As seen in chapter 3, the classical Feed Forward Neural Network (FFNN) accepts an
input vector, z, containing a known- and fixed number of elements. This is not usually
a property of point clouds. Even when taking several scans of the same object, those
scans my differ in the number points they contain. These differences can occur because
of changes in lighting conditions during the scan, or the object being moved between
scan cycles. Objects with a larger surface area will also result in point clouds with
more points. To combat this issue of varying pattern length, more preprocessing of
some kind needed to be done. This further preprocessing incorporated part of an
approach developed by [40]. Some of the authors of that paper developed several
descriptors – histograms for point clouds. These descriptors can be thought of as an
object’s signature. The histograms proposed in [26], [41], [42] possess the following
useful qualities:

1. Reduced number of data points compared to the original point cloud.

2. Fixed number of data points.

3. Attempts to retain geometric information of the original point cloud.

The Global Point Feature Histogram proved useful for this research. This histogram
summarises the angles between all surface normals and the axes of a local reference
frame placed at the centroid of the point cloud. The histogram consists of 135 bins
– 45 bins for each of the 3 angles. What follows is a description of how global point
feature histograms are calculated.

Consider the point cloud P . To find the global point feature histogram, HGPF , of P ,
we follow these steps:

1. Find the centroid, pc, of P .

2. Place a unit vector, nc, at the centroid. nc points in the z direction.

3. For each point, pi:

(a) Find the surface normal, ni.

(b) Place a local reference frame (u,v,w) at pc using equations 5.1.

(c) Calculate angles, αi, φi and θi, using equations 5.2.

(d) Update the bins of the histogram according to size of the angles calculated
in the previous step.

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 62

ui = nc, vi = pi − pc

‖pi − pc‖
× ui, wi = ui × vi (5.1)

αi = arccos (vi · ni) , φi = arccos
(

ui ·
pi − pc

‖pi − pc‖

)
, θi = arctan (wi · ni,ui · ni)

(5.2)

Figures 5.3 and 5.4 shows point clouds of 8 objects, each with their corresponding
GPFH.

The global point feature histogram described above was implemented using the View-
point Feature Histogram class in PCL. This type of histogram contains 308 bins, and
is actually a concatenation of several histograms. The first 135 bins is the GPFH as
described above. This histogram contains information about the objects shape. The
next 45 bins contains information about the objects scale, or size. This was not used in
this research. The final 128 bins contains information about the viewpoint from which
the object was viewed – not relevant in this research since the objects are scanned from
all round.

5.3 ANN Implementation

This section will discuss how the ANNs were implemented in this research. For clarity
the section is separated into two subsections. The first of these subsections discusses
the training and testing data, while the second subsection will discuss the training and
testing itself.

5.3.1 Training, Testing and Validation Datasets

Initially it was thought that training, testing and validation data would be obtained
from scans performed by the simulated scanner. This soon proved to be problematic
due to the significant time it takes to render the images for these simulated scans.
Generating a sufficient amount of training, testing and validation samples in this way
would take an impractically long time. A different approach was needed – it is presented
below.

Point clouds of each of the eight objects were generated in two ways:

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 63

Method 1: Point clouds of the eight test objects are generated by means of the
simulated scanner. This method is slow and impractical for generating large
datasets.

Method 2: The PCL comes with command line utilities, pcl ply2pcd and pcl obj2pcd,
that allows one to generate point clouds (*.pcd) from 3D models (*.ply and
*.obj). In addition to the point clouds generated by means of the first method,
point clouds were also generated using pcl ply2pcd. This method has two main
advantages:

1. Reduced generating time.

2. Can be easily automated with some scripting language like, Bash or Python.

These point clouds were then used as a starting point for generating the required
training, testing and validation datasets. A program (see appendix B.2.1) was writ-
ten to generate the data for these datasets according to algorithm 5.1. Essentially
this program generates new point clouds by adding random noise to the X, Y and Z
components of each point of the point clouds. The program also introduces random
translation within the XY -plane, and random rotation about the Z-axis. Finally the
program calculates point feature histograms (discussed in subsection 5.2.2) for each of
the newly generated point clouds. These point feature histograms, along with their cor-
responding object identities, become the training, testing or validation dataset.

Algorithm 5.1 Algorithm for generating training, validation or testing data
Create memory, clouds, to hold point clouds;
Create memory, output, to hold dataset;
Read from disk point clouds into clouds;
for each pointcloud in clouds do

for each point in pointcloud do
point.x = point.x + noise sampled from uniform distribution on [−0.5, 0.5] in mm;
point.y = point.y + noise sampled from uniform distribution on [−0.5, 0.5];
point.z = point.z + noise sampled from uniform distribution on [−0.5, 0.5];

end for
Rotate pointcloud about z-axis an angle from uniform distribution on [−π, π];
Translate pointcloud along x-axis a distance from uniform distribution on [−10, 10] in
mm;
Translate pointcloud along y-axis a distance from uniform distribution on [−10, 10];
Calculate GPFH for pointcloud;
Append histogram and pointcloud ID to output;

end for
Write output to disk;

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 64

5.3.2 Training and Validation

Network Architecture

The networks developed for this project were simple three layer FFNNs. Each network
contains:

• 135 input neurons (the number of elements in a point feature histogram),

• a hidden layer with the number of neuron to be determined, and

• 8 output neurons – a neuron for each object to be recognised.

80 networks were trained to establish the optimum number of neurons required for the
hidden layer. These networks can be divided into 8 groups, each group containing 10
examples. The groups are summarised in table 5.1.

Table 5.1: Summary of training groups

Group Hidden neurons Networks in group Results
1 2 10 Appendix A.1
2 5 10 Appendix A.2
3 10 10 Appendix A.3
4 15 10 Appendix A.4
5 20 10 Appendix A.5
6 30 10 Appendix A.6
7 40 10 Appendix A.7
8 60 10 Appendix A.8

Training Strategy

The ANNs implemented in this research were trained using a batch back-propagation
learning algorithm based on algorithm 3.1. This means that the network’s weights are
updated only once all training patterns have been presented. The source code of the
implementation can be found in appendix B.2.2.

Over-fitting occurs when a neural network starts memorising each of the patterns
in the training set. The neural network loses the ability to generalise and correctly
classify previously unseen examples – this is not desirable. To prevent over-fitting
from occurring the mean square error (MSE) of the training set was compared to that
of a validation dataset. Over-fitting is observed when MSEvalidation increases while
MSEtraining decreases. In this project over-fitting was deemed to be occurring when
an increase in MSEvalidation was observed for 20 consecutive epochs.

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 65

The learning rate, η, was kept fixed at 0.3 for each network trained. Similarly, the
momentum, α, was fixed at 0.5.

To implement the ANNs, the Fast Artificial Neural Network library was used. This is
an open source C/C++ library developed by [cite work of FANN dev].

The stopping conditions for training the neural network were the following: The neural
network training was stopped when any of the following conditions were true:

1. Over-fitting observed.

2. Maximum number of epochs reached (epochsmax = 50000).

3. Minimum required MSEtraining (MSEtraining ≤ 0.0001).

Once all 80 networks were trained, they were then evaluated using a previously unseen
test dataset. This evaluation, and the results thereof, will be presented in the next
chapter.

5.3.3 Object Recognition Software Operation

An object recognition program (see appendix B.2.3) was developed that utilises what is
considered the best neural network found during training. This command-line program
can be called as follows:

$./3d_recognition input.pcd

Figure 5.5 shows the output of the object recognition program. The object was in this
case correctly identified as Object 1.

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 66

Figure 5.5: Output of the object recognition software.

5.4 Summary

This chapter detailed the implementation of the object recognition part of this study.
Data preprocessing, using voxel grid filtering and global point feature histograms were
presented. Dataset generation was discussed, as well as the training and validation of
the artificial neural networks.

The next chapter documents the results obtained during this study.

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 67

(a) Object 1: Cube (b) Histogram: Object 1

(c) Object 2: Cylinder (d) Histogram: Object 2

(e) Object 3: Triangular prism (f) Histogram: Object 3

(g) Object 4: Square base pyramid (h) Histogram: Object 4

Figure 5.3: An illustration of point clouds with their corresponding global point feature histograms.
Continued in figure 5.4

CHAPTER 5. OBJECT RECOGNITION IMPLEMENTATION 68

(a) Object 5: Hemisphere (b) Histogram: Object 5

(c) Object 6: Rectangular prism (d) Histogram: Object 6

(e) Object 7: Variation of object 6 (f) Histogram: Object 7

(g) Object 8: Variation of object 7 (h) Histogram: Object 8

Figure 5.4: Continued from figure 5.3

Part III

Validation

69

Chapter 6

Results and Discussion

This chapter presents the results of this research, and provides some explanation and
discussion where deemed necessary. Following is a short explanation of the layout of
this chapter. Section 6.1 documents the:

• Calibration results of the scanner’s camera. This is done in subsection 6.1.1.

• Image processing results. In the context of image processing, a comparison
between the simulated scanner and verification platform is shown in subsec-
tion 6.1.2.

• 3D reconstruction results. Subsection 6.1.3 shows point clouds that were con-
structed from images, using the software developed during this research project.
Point clouds generated using the simulated scanner, as well as the actual scanner
are shown.

The second part of this chapter, section 6.2, documents the result of the object recog-
nition objective of this study. This section is divided into two subsections:

• The first part of this section, subsection 6.2.1, discusses the theory behind the
performance measures used to evaluate the object recognition results in this re-
search.

• Next, subsection 6.2.2, summarises the object recognition results.

70

CHAPTER 6. RESULTS AND DISCUSSION 71

6.1 Scanner Results

6.1.1 Camera Calibration

The camera of the 3D scanner was calibrated using the method described in chapter 2,
section 2.4. Figure 6.1 shows some of the images captured while performing the cal-
ibration. The calibration pattern used, was a 10 × 7 checker board pattern with the
sides of each square being 23.5 millimetres in length.

The calibration yielded a camera matrix, Averification, shown in equation 6.1. This
camera matrix compares well to that of the simulated scanner (see equation 6.2).

Averification =

727.09 0 397.45

0 730.56 309.88
0 0 1

 (6.1)

Asimulation =

600 0 400
0 600 300
0 0 1

 (6.2)

The radial and tangential distortion coefficients obtained by the calibration are shown
in equations 6.3 and 6.4 respectively.

k1 = −3.42× 10−3 k2 = −1.44× 10−1 k3 = 1.48× 10−1 (6.3)

p1 = 6.03× 10−3 p2 = −4.35× 10−3 (6.4)

CHAPTER 6. RESULTS AND DISCUSSION 72

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6.1: A selection of the images captured during the camera calibration procedure.

CHAPTER 6. RESULTS AND DISCUSSION 73

6.1.2 Image Processing

This subsection briefly shows the results of the image processing algorithms discussed in
chapter 4, section 4.2.2. Figure 6.2 is a comparison showing how the image processing
algorithms perform on both synthetic and real images.

Simulation Reality

(a) Before segmentation. (b) Before segmentation.

(c) After segmentation and before thinning. (d) After segmentation and before thinning.

(e) After thinning. (f) After thinning.

Figure 6.2: Image processing comparison: Simulation versus reality.

CHAPTER 6. RESULTS AND DISCUSSION 74

6.1.3 3D Reconstruction

This subsection presents the results of point cloud estimation algorithm discussed in
chapter 4, section 4.2.2. See figure 6.3 below.

(a) (b)

Figure 6.3: A comparison of a mug point cloud produced with the scanner simulation (a), and with
the actual scanner (b).

6.2 ANN Training and Validation Results

6.2.1 Performance Measures for Classification

This subsection presents the theory behind the performance measures that were used
to evaluate the performance of the artificial neural networks trained in this study. [43]
analyses performance measures for classification tasks, and that work influenced the
approach taken in this research.

The performance evaluation of the artificial neural networks was based on the following
performance measures:

• Accuracy

• Precision

• Negative Predictive Value

• Sensitivity

• Specificity

These performance measures are discussed below.

CHAPTER 6. RESULTS AND DISCUSSION 75

Accuracy

The author of [43] describes accuracy as being the classifier’s overall effectiveness. The
classifiers being evaluated in this study being artificial neural networks. Equation 6.5
calculates the accuracy.

ACC = TP + TN

TP + FN + FP + TN
(6.5)

Precision (Positive Predictive Value)

This performance measure quantifies how well a classifier can make positive identifi-
cations. A positive identification, for example, is the neural network determining that
a given object is in fact object 1. The following equation shows how to calculate the
positive predictive value.

PPV = TP

TP + FP
(6.6)

Negative Predictive Value

This performance measure quantifies how well the neural network can make negative
identifications. A negative identification, for example, is the neural network determin-
ing that a given object is not object 1. The following equation shows how to calculate
the negative predictive value.

NPV = TN

TN + FN
(6.7)

Sensitivity (True Positive Rate)

Sensitivity is the measure of how effective the neural network can make positive iden-
tifications. The sensitivity is calculated using the following equation.

TPR = TP

TP + FN
(6.8)

Specificity (True Negative Rate)

Specificity is the measure of how effective the neural network can make negative iden-
tifications. The specificity of the network is calculated using equation 6.9.

SPC = TN

TN + FP
(6.9)

CHAPTER 6. RESULTS AND DISCUSSION 76

6.2.2 Object Recognition Results

Training

This section presents a summary of the training performed for the 80 artificial neural
networks. Note that due to the large quantity of data generated by training the 80
neural networks, it is not practical to present all the results here. The complete results
are documented in appendix 6.2.

The time taken to train a neural network can be described by two variables:

1. The number of times the network evaluated the training set during the training.
This is known as the epochs.

2. The actual time spent in seconds to perform the training.

Table 6.1 and figure 6.4 summarises the training times of the various artificial neural
networks that were developed in this study. As can be seen, the variations in training
times are quite significant, nevertheless, there are some trends that emerged.

The neural networks with 5 hidden neurons took a significant amount of epochs and
time to train. This is likely because 5 neurons were only just not enough neurons to
learn the object recognition task.

Neural networks with 2 hidden neurons were even more ill equipped for the particular
task, but training times were significantly less than in the case of 5 hidden neurons.
The reason for this is over-fitting. The 2 hidden neurons is just about enough to enable
the network to learn to identify 1 of the 8 objects within a reasonable amount of time
and further training leads to over-fitting.

The remaining neural networks took a similar number of epochs to learn the recognition
task, while a steady increase in actual training time was observed. This increase in
training time was expected, since more hidden neurons will result in more computations
that must be performed during training.

CHAPTER 6. RESULTS AND DISCUSSION 77

Table 6.1: A summary of the training of the different ANNs

Neurons Epochs Training Time
(s)

2 2036.10 ± 2313.42 2.33 ± 2.64
5 8072.10 ± 6831.11 15.35 ± 12.97
10 793.80 ± 726.38 2.51 ± 2.28
15 626.40 ± 271.39 2.76 ± 1.19
20 513.80 ± 250.71 2.92 ± 1.43
30 558.90 ± 227.78 4.57 ± 1.86
40 538.70 ± 239.01 5.79 ± 2.57
60 518.40 ± 230.56 8.13 ± 3.61

(a) Mean epochs for all tests (b) Mean training time for all tests

Figure 6.4: Training time

Figure 6.5 highlights how the mean square error reduced during training.

(a) 10 hidden neurons in hidden layer, test 2 (b) 40 neurons in hidden layer, test 7

Figure 6.5: Mean Squared Error during training

CHAPTER 6. RESULTS AND DISCUSSION 78

Performance Evaluation

This section documents the results of the performance evaluation of the 80 neural
networks that were trained as part of this research project. Again, it is not practical to
present all the results here, and the complete results can be found in appendix 6.2.

Table 6.2 is a summary showing how each group of neural network performed on aver-
age in the performance evaluation. Figures 6.6 is a visual representation of this table.
A comparison of the evaluation is illustrated in figure 6.7. As expected, an increase
in performance can be observed as the hidden neurons in the networks are increased.
Note that from 30 hidden neurons onwards, the performance increase becomes mini-
mal.

Table 6.2: A summary of the performance of the different ANNs

Neurons ACC PPV NPV TPR SPC
(%) (%) (%) (%) (%)

2 88.91 ± 1.16 18.07 ± 9.59 89.54 ± 1.06 16.62 ± 9.26 99.23 ± 1.57
5 94.22 ± 1.55 71.49 ± 13.18 95.91 ± 1.26 68.58 ± 12.69 97.89 ± 0.81
10 97.31 ± 0.97 89.21 ± 4.02 98.83 ± 0.65 91.67 ± 3.11 98.12 ± 0.79
15 97.65 ± 0.68 91.29 ± 3.62 98.69 ± 0.67 90.66 ± 3.20 98.65 ± 0.36
20 97.93 ± 0.74 92.87 ± 2.47 98.74 ± 0.81 91.03 ± 4.81 98.91 ± 0.18
30 98.06 ± 0.38 94.19 ± 2.16 98.66 ± 0.54 90.38 ± 2.10 99.15 ± 0.15
40 98.01 ± 0.62 95.05 ± 1.90 98.47 ± 0.77 88.97 ± 4.44 99.30 ± 0.12
60 98.17 ± 0.43 95.14 ± 0.77 98.63 ± 0.73 90.12 ± 3.92 99.32 ± 0.01

CHAPTER 6. RESULTS AND DISCUSSION 79

(a) 2 neurons in hidden layer (b) 5 neurons in hidden layer

(c) 10 neurons in hidden layer (d) 15 neurons in hidden layer

(e) 20 neurons in hidden layer (f) 30 neurons in hidden layer

(g) 40 neurons in hidden layer (h) 60 neurons in hidden layer

Figure 6.6: Means of performance measures for each group of neural networks.

CHAPTER 6. RESULTS AND DISCUSSION 80

Figure 6.7: Mean performance comparison

Table 6.3 shows the evaluation results for 2 of the 80 test cases. Specifically test 2 from
the 10 hidden neuron group, and test 7 from the 40 hidden neuron group of networks.
Here one can see that these specific networks are better at identifying some objects than
others. The final line of each sub-table shows the average of the performance measures
for that that particular test case. For the complete results see appendix 6.2.

CHAPTER 6. RESULTS AND DISCUSSION 81

Table 6.3: Performance Measures

(a) 10 neurons in hidden layer, test 2

Object TP TN FP FN ACC PPV NPV TPR SPC
(%) (%) (%) (%) (%)

1 100 685 15 0 98.12 86.96 100 100 97.86
2 100 693 7 0 99.12 93.46 100 100 99
3 91 679 21 9 96.25 81.25 98.69 91 97
4 87 680 20 13 95.88 81.31 98.12 87 97.14
5 100 689 11 0 98.62 90.09 100 100 98.43
6 88 680 20 12 96 81.48 98.27 88 97.14
7 95 671 29 5 95.75 76.61 99.26 95 95.86
8 86 696 4 14 97.75 95.56 98.03 86 99.43

Total: 747 5473 127 53 97.19 85.84 99.05 93.38 97.73
(b) 40 neurons in hidden layer, test 7

Object TP TN FP FN ACC PPV NPV TPR SPC
(%) (%) (%) (%) (%)

1 87 692 8 13 97.38 91.58 98.16 87 98.86
2 100 669 31 0 96.12 76.34 100 100 95.57
3 88 700 0 12 98.5 100 98.31 88 100
4 88 696 4 12 98 95.65 98.31 88 99.43
5 100 700 0 0 100 100 100 100 100
6 75 700 0 25 96.88 100 96.55 75 100
7 81 692 8 19 96.62 91.01 97.33 81 98.86
8 84 660 40 16 93 67.74 97.63 84 94.29

Total: 703 5509 91 97 97.06 90.29 98.29 87.88 98.37

That then concludes, this, the second to last chapter of this document.

Part IV

Conclusion

82

Chapter 7

Conclusion

In chapter 1 the hypothesis:

It is possible, using ANNs, to classify, or recognise, 3D objects
represented by point cloud data.

was formulated.

In an attempt to prove or disprove whether it is possible to perform 3D object recog-
nition with artificial neural networks the following was done during the course of this
research:

Relevant literature was reviewed which suggested that neural networks are particu-
larly well suited for pattern recognition type applications. An understanding of basic
machine vision (camera theory) was gained. This knowledge was applied in order to
develop a laser triangulation 3D scanner and object recognition software that relies on
artificial neural networks. The use of global point feature histograms to reduce point
clouds to a form more manageable for neural networks proved important.

Studying the validation results of the trained neural networks, it is clear that networks
with 30 or more hidden neuron perform the task of object recognition very well. Once
again the roll of the global point feature histogram needs to be stressed here. The
overall impression of the results is that it is that the hypothesis is at the very least
partly confirmed – Artificial neural networks can indeed be used to perform 3D object
recognition, but the preprocessing of the data plays a major part in how successful
these networks will be.

83

CHAPTER 7. CONCLUSION 84

7.1 Pitfalls Encountered

7.1.1 Generating Training- and Testing Data

Images obtained from the simulated scanner took a long time to render. This was not
a practical solution, but was a valuable exercise towards understanding laser scanning,
and is still useful as an engineering tool for design and analysis of machine vision
applications and testing of vision algorithms. PCL’s built in virtual scanner was used
instead of generating training and testing data from the Blender simulation. The
PCL virtual scanner program has the advantage that it can generate point cloud data
using the 3D CAD model as input, thus eliminating the time consuming rendering
process.

7.2 Research Contribution

One contribution by this research is the use of 3D modelling and animation software
to study, develop and test machine vision configurations and the required software
without having to build potentially expensive prototypes. In this research Blender was
used to do just that. A verification platform, an actual laser scanner, was then built
and performed relatively well considering the low cost component that were used.

7.3 Future Work

1. The research in this dissertation only considered FFNNs for classifying non-
complex 3D objects. Future research may consider using other types of classifiers,
such as k-Nearest Neighbours, Support Vector Machines, more complex ANN ar-
chitectures, and comparing the performance of these classifying techniques. Fur-
thermore, the object recognition task could be tested on more complex geometries
that are more representative of what might be encountered in a manufacturing
environment. This would provide more definitive proof whether or not ANNs are
applicable and reliable classifiers.

2. 3D scanners are becoming increasingly important within quality inspection sys-
tems. Existing metrology and inspection software, like GOM Inspect, provide the
functionality of comparing 3D scan data to corresponding CAD data. Any di-
mensional deviations from the specified tolerances are reported, often as a colour
plot. These reports require interpretation by a human expert in order to identify

CHAPTER 7. CONCLUSION 85

the possible causes of the deviations. Building on the research presented in this
dissertation, future work can be done to make metrology software more intel-
ligent. Through the use of ANNs, inspection software might be made capable
of classifying detected deviations into different error classes. These error classes
could represent geometrical characteristics, like:

• Straightness

• Flatness

• Roundness

• Cylindricity

• Parallelism

• Perpendicularity

• Angularity

• Location or position

• Run-out

Bibliography

[1] H. Ford and S. Crowther. My Life and Work. Library of American civilization.
Doubleday, Page & Company, 1922.

[2] Florian Viol. “An in-line measuring technique with tool error detection in an au-
tomotive production line”. Masters dissertation. Port Elizabeth: Nelson Mandela
Metropolitan University, Dec. 2010.

[3] J Padayachee, J Davrajh, and G Bright. “The development of reconfigurable man-
ufacturing equipment for product mass customization”. In: International Confer-
ence on Competitive Manufacturing. Ed. by Dimitri Dimitrov. Feb. 2010, pp. 291–
296.

[4] Shaniel Davrajh and Glen Bright. “An automated apparatus for dynamic in-
spection of mass-produced custom parts”. In: Assembly Automation 30.1 (2010),
pp. 47–55.

[5] Tian Chen, Xiaoming Du, Ming Jia, et al. “Application of optical inspection and
metrology in quality control for aircraft components”. In: Computer Engineering
and Technology (ICCET), 2010 2nd International Conference on. Vol. 5. IEEE.
2010, pp. V5–294.

[6] Maien Hamed. “Vision-guided tracking of complex three-dimensional seams for
robotic gas metal arc welding”. Masters dissertation. Port Elizabeth: Nelson Man-
dela Metropolitan University, Jan. 2011.

[7] Stefan Buys. “Genetic algorithm for artificial neural network training for the
purpose of automated part recognition”. Masters dissertation. Port Elizabeth:
Nelson Mandela Metropolitan University, 2012.

[8] Alberto Tellaeche and Beatriz Robles. “3D machine vision and artificial neural
networks for quality inspection in mass production pieces”. In: Emerging Tech-
nologies and Factory Automation (ETFA), 2010 IEEE Conference on. IEEE.
2010, pp. 1–4.

[9] João L Vilaça, Jaime C Fonseca, and António M Pinho. “Non-contact 3D acqui-
sition system based on stereo vision and laser triangulation”. In: Machine vision
and applications 21.3 (2010), pp. 341–350.

86

BIBLIOGRAPHY 87

[10] Edmond Wai Yan So, Stefano Michieletto, and Emanuele Menegatti. “Calibration
of a dual-laser triangulation system for assembly line completeness inspection”.
In: Robotic and Sensors Environments (ROSE), 2012 IEEE International Sym-
posium on. IEEE. 2012, pp. 138–143.

[11] Jigar Senjalia, Parinda Pandya, and Harsh Kapadia. “Measurement of wheel
alignment using Camera Calibration and Laser Triangulation”. In: Engineering
(NUiCONE), 2013 Nirma University International Conference on. IEEE. 2013,
pp. 1–5.

[12] Paolo Bellandi, Franco Docchio, and Giovanna Sansoni. “Roboscan: a combined
2D and 3D vision system for improved speed and flexibility in pick-and-place
operation”. In: The International Journal of Advanced Manufacturing Technology
69.5-8 (2013), pp. 1873–1886.

[13] Leszek Jarzebowicz and Slawomir Judek. “3D machine vision system for inspec-
tion of contact strips in railway vehicle current collectors”. In: Applied Electronics
(AE), 2014 International Conference on. IEEE. 2014, pp. 139–144.

[14] Ming J Tsai and Nai-Jun Ann. “An automatic golf head robotic welding system
using 3D machine vision system”. In: Advanced robotics and Its Social Impacts,
2008. ARSO 2008. IEEE Workshop on. IEEE. 2008, pp. 1–6.

[15] Wei Huang and Radovan Kovacevic. “Development of a real-time laser-based
machine vision system to monitor and control welding processes”. In: The Inter-
national Journal of Advanced Manufacturing Technology 63.1-4 (2012), pp. 235–
248.

[16] Yu Huang, Yangliu Xiao, Pingjiang Wang, et al. “A seam-tracking laser welding
platform with 3D and 2D visual information fusion vision sensor system”. In:
The International Journal of Advanced Manufacturing Technology 67.1-4 (2013),
pp. 415–426.

[17] OpenCV. Camera Calibration and 3D Reconstruction. url: http : / / docs .
opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.html (visited on 12/16/2016).

[18] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly Media, 2008. isbn: 9780596554040.

[19] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE
Transactions on pattern analysis and machine intelligence 22.11 (2000), pp. 1330–
1334.

[20] Duane C Brown. “Close-range camera calibration”. In: Photogrammetric Engi-
neering 37.8 (1971), pp. 855–866.

[21] Vaibhav Bajpai and Vladislav Perelman. “A Cross-Platform Open Source 3D
Object Reconstruction System using a Laser Line Projector.” In: IEEE German
Student Conference 2012. 2012.

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

BIBLIOGRAPHY 88

[22] Jincheng Yu, Kaijian Weng, Guoyuan Liang, et al. “A vision-based robotic grasp-
ing system using deep learning for 3D object recognition and pose estimation”.
In: Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference
on. IEEE. 2013, pp. 1175–1180.

[23] S Hamidreza Kasaei, Miguel Oliveira, Gi Hyun Lim, et al. “An interactive open-
ended learning approach for 3d object recognition”. In: Autonomous Robot Sys-
tems and Competitions (ICARSC), 2014 IEEE International Conference on.
IEEE. 2014, pp. 47–52.

[24] Dong Liang, Kaijian Weng, Can Wang, et al. “A 3D object recognition and pose
estimation system using deep learning method”. In: Information Science and
Technology (ICIST), 2014 4th IEEE International Conference on. IEEE. 2014,
pp. 401–404.

[25] Ren C Luo, Chia-Wen Kuo, and Yi-Ting Chung. “Model-based 3D object recog-
nition and fetching by a 7-DoF robot with online obstacle avoidance for factory
automation”. In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE. 2015, pp. 2647–2652.

[26] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, et al. “Fast 3d recogni-
tion and pose using the viewpoint feature histogram”. In: Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE. 2010,
pp. 2155–2162.

[27] Aitor Aldoma, Markus Vincze, Nico Blodow, et al. “CAD-model recognition and
6DOF pose estimation using 3D cues”. In: Computer Vision Workshops (ICCV
Workshops), 2011 IEEE International Conference on. IEEE. 2011, pp. 585–592.

[28] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu, et al. “OUR-CVFH–oriented,
unique and repeatable clustered viewpoint feature histogram for object recog-
nition and 6DOF pose estimation”. In: Joint DAGM (German Association for
Pattern Recognition) and OAGM Symposium. Springer. 2012, pp. 113–122.

[29] Walter Wohlkinger and Markus Vincze. “Ensemble of shape functions for 3d
object classification”. In: Robotics and Biomimetics (ROBIO), 2011 IEEE Inter-
national Conference on. IEEE. 2011, pp. 2987–2992.

[30] Guan Pang and Ulrich Neumann. “Fast and Robust Multi-view 3D Object Recog-
nition in Point Clouds”. In: 3D Vision (3DV), 2015 International Conference on.
IEEE. 2015, pp. 171–179.

[31] Jianhua Wang, Jinjin Lu, Weihai Chen, et al. “Convolutional neural network for
3D object recognition based on RGB-D dataset”. In: Industrial Electronics and
Applications (ICIEA), 2015 IEEE 10th Conference on. IEEE. 2015, pp. 34–39.

[32] Alberto Garcia-Garcia, Sergio Orts-Escolano, Jose Garcia-Rodriguez, et al. “In-
teractive 3D object recognition pipeline on mobile GPGPU computing plat-

BIBLIOGRAPHY 89

forms using low-cost RGB-D sensors”. In: Journal of Real-Time Image Processing
(2016), pp. 1–20.

[33] Andrea Frome, Daniel Huber, Ravi Kolluri, et al. “Recognizing objects in range
data using regional point descriptors”. In: European conference on computer vi-
sion. Springer. 2004, pp. 224–237.

[34] Federico Tombari, Samuele Salti, and Luigi Di Stefano. “Unique shape context
for 3D data description”. In: Proceedings of the ACM workshop on 3D object
retrieval. ACM. 2010, pp. 57–62.

[35] Federico Tombari, Samuele Salti, and Luigi Di Stefano. “A combined texture-
shape descriptor for enhanced 3D feature matching”. In: Image Processing (ICIP),
2011 18th IEEE International Conference on. IEEE. 2011, pp. 809–812.

[36] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, et al. “Rotational projection
statistics for 3D local surface description and object recognition”. In: Interna-
tional journal of computer vision 105.1 (2013), pp. 63–86.

[37] Andries P Engelbrecht. Computational intelligence: an introduction. John Wiley
& Sons, 2007.

[38] Blender Foundation. About - blender.org - Home of the Blender project - Free and
Open 3D Creation Software. url: https://www.blender.org/about/ (visited
on 12/16/2016).

[39] Chris Roman, Gabrielle Inglis, and James Rutter. “Application of structured
light imaging for high resolution mapping of underwater archaeological sites”.
In: OCEANS 2010 IEEE-Sydney. IEEE. 2010, pp. 1–9.

[40] Marius Muja, Radu Bogdan Rusu, Gary Bradski, et al. “Rein-a fast, robust,
scalable recognition infrastructure”. In: Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE. 2011, pp. 2939–2946.

[41] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. “Fast point feature his-
tograms (FPFH) for 3D registration”. In: Robotics and Automation, 2009. ICRA’09.
IEEE International Conference on. IEEE. 2009, pp. 3212–3217.

[42] Radu Bogdan Rusu, Jan Bandouch, Franziska Meier, et al. “Human action recog-
nition using global point feature histograms and action shapes”. In: Advanced
Robotics 23.14 (2009), pp. 1873–1908.

[43] Marina Sokolova and Guy Lapalme. “A systematic analysis of performance mea-
sures for classification tasks”. In: Information Processing & Management 45.4
(2009), pp. 427–437.

https://www.blender.org/about/

Appendices

90

Appendix A

Results: ANN Training and
Validation

91

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 92

A.1 2 Hidden Neurons

Table A.1: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 0 700 0 100 87.5 0 87.5 0 100 - - -
5 100 618 82 0 89.75 54.95 100 100 88.29 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 100 5518 82 700 87.78 6.868 89.06 12.5 98.54 0.09627 56 0.06559

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 78 664 36 22 92.75 68.42 96.79 78 94.86 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 95 688 12 5 97.88 88.79 99.28 95 98.29 - - -
5 91 700 0 9 98.88 100 98.73 91 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 264 5552 48 536 90.88 32.15 91.54 33 99.14 0.06815 68 0.08639

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 1 700 0 99 87.62 100 87.61 1 100 - - -
4 0 700 0 100 87.5 0 87.5 0 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 101 5600 0 699 89.08 25 89.08 12.62 100 0.08885 2708 3.069

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 59 700 0 41 94.88 100 94.47 59 100 - - -
5 0 700 0 100 87.5 0 87.5 0 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 59 5600 0 741 88.42 12.5 88.37 7.375 100 0.08146 194 0.2349

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 100 674 26 0 96.75 79.37 100 100 96.29 - - -
5 0 700 0 100 87.5 0 87.5 0 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 100 5574 26 700 88.66 9.921 89.06 12.5 99.54 0.08088 7606 8.691

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 93

Table A.1: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 84 683 17 16 95.88 83.17 97.71 84 97.57 - - -
4 0 700 0 100 87.5 0 87.5 0 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 184 5583 17 616 90.11 22.9 90.34 23 99.7 0.08106 2240 2.575

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 85 683 17 15 96 83.33 97.85 85 97.57 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 0 700 0 100 87.5 0 87.5 0 100 - - -
5 89 700 0 11 98.62 100 98.45 89 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 174 5583 17 626 89.95 22.92 90.16 21.75 99.7 0.07968 4480 5.109

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 87 569 131 13 82 39.91 97.77 87 81.29 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 30 700 0 70 91.25 100 90.91 30 100 - - -
5 100 591 109 0 86.38 47.85 100 100 84.43 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 217 5360 240 583 87.14 23.47 90.77 27.12 95.71 0.0832 1119 1.282

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 0 700 0 100 87.5 0 87.5 0 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 31 700 0 69 91.38 100 91.03 31 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 131 5600 0 669 89.55 25 89.5 16.38 100 0.08226 1845 2.11

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 0 700 0 100 87.5 0 87.5 0 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 0 700 0 100 87.5 0 87.5 0 100 - - -
5 0 700 0 100 87.5 0 87.5 0 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 0 5600 0 800 87.5 0 87.5 0 100 0.09571 45 0.05353

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 94

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.1: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 95

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.2: Visualisation of recognition performance of ANNs with 2 hidden neurons.

Table A.2: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

88.91 ± 1.16 18.07 ± 9.59 89.54 ± 1.06 16.62 ± 9.26 99.23 ± 1.57 2036.10 ± 2313.42 2.3277 ± 2.6396

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 96

A.2 5 Hidden Neurons

Table A.3: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 99 691 9 1 98.75 91.67 99.86 99 98.71 - - -
2 100 690 10 0 98.75 90.91 100 100 98.57 - - -
3 32 686 14 68 89.75 69.57 90.98 32 98 - - -
4 94 700 0 6 99.25 100 99.15 94 100 - - -
5 91 682 18 9 96.62 83.49 98.7 91 97.43 - - -
6 95 693 7 5 98.5 93.14 99.28 95 99 - - -
7 42 699 1 58 92.62 97.67 92.34 42 99.86 - - -
8 100 577 123 0 84.62 44.84 100 100 82.43 - - -

Total: 653 5418 182 147 94.86 83.91 97.54 81.62 96.75 0.00612 6739 12.88

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 688 12 100 86 0 87.31 0 98.29 - - -
2 99 699 1 1 99.75 99 99.86 99 99.86 - - -
3 12 700 0 88 89 100 88.83 12 100 - - -
4 79 700 0 21 97.38 100 97.09 79 100 - - -
5 99 679 21 1 97.25 82.5 99.85 99 97 - - -
6 91 684 16 9 96.88 85.05 98.7 91 97.71 - - -
7 87 660 40 13 93.38 68.5 98.07 87 94.29 - - -
8 78 700 0 22 97.25 100 96.95 78 100 - - -

Total: 545 5510 90 255 94.61 79.38 95.83 68.12 98.39 0.02078 1248 2.422

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 6 696 4 94 87.75 60 88.1 6 99.43 - - -
2 100 665 35 0 95.62 74.07 100 100 95 - - -
3 79 684 16 21 95.38 83.16 97.02 79 97.71 - - -
4 87 697 3 13 98 96.67 98.17 87 99.57 - - -
5 100 688 12 0 98.5 89.29 100 100 98.29 - - -
6 0 697 3 100 87.12 0 87.45 0 99.57 - - -
7 3 677 23 97 85 11.54 87.47 3 96.71 - - -
8 48 663 37 52 88.88 56.47 92.73 48 94.71 - - -

Total: 423 5467 133 377 92.03 58.9 93.87 52.88 97.62 0.03521 774 1.494

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 59 690 10 41 93.62 85.51 94.39 59 98.57 - - -
2 59 696 4 41 94.38 93.65 94.44 59 99.43 - - -
3 90 651 49 10 92.62 64.75 98.49 90 93 - - -
4 96 689 11 4 98.12 89.72 99.42 96 98.43 - - -
5 94 700 0 6 99.25 100 99.15 94 100 - - -
6 0 698 2 100 87.25 0 87.47 0 99.71 - - -
7 0 698 2 100 87.25 0 87.47 0 99.71 - - -
8 92 691 9 8 97.88 91.09 98.86 92 98.71 - - -

Total: 490 5513 87 310 93.8 65.59 94.96 61.25 98.45 0.02263 1.998e+04 38.25

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 59 700 0 41 94.88 100 94.47 59 100 - - -
2 100 688 12 0 98.5 89.29 100 100 98.29 - - -
3 99 656 44 1 94.38 69.23 99.85 99 93.71 - - -
4 100 696 4 0 99.5 96.15 100 100 99.43 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 93 700 0 7 99.12 100 99.01 93 100 - - -

Total: 551 5540 60 249 95.17 69.33 96.04 68.88 98.93 0.0163 7530 14.41

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 97

Table A.3: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 58 697 3 42 94.38 95.08 94.32 58 99.57 - - -
2 85 698 2 15 97.88 97.7 97.9 85 99.71 - - -
3 95 688 12 5 97.88 88.79 99.28 95 98.29 - - -
4 82 694 6 18 97 93.18 97.47 82 99.14 - - -
5 97 666 34 3 95.38 74.05 99.55 97 95.14 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 0 700 0 100 87.5 0 87.5 0 100 - - -
8 46 700 0 54 93.25 100 92.84 46 100 - - -

Total: 463 5543 57 337 93.84 68.6 94.54 57.88 98.98 0.02487 1.394e+04 26.29

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 51 700 0 49 93.88 100 93.46 51 100 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 48 691 9 52 92.38 84.21 93 48 98.71 - - -
4 94 699 1 6 99.12 98.95 99.15 94 99.86 - - -
5 100 664 36 0 95.5 73.53 100 100 94.86 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 99 558 142 1 82.12 41.08 99.82 99 79.71 - - -
8 94 671 29 6 95.62 76.42 99.11 94 95.86 - - -

Total: 586 5383 217 214 93.27 71.77 96.51 73.25 96.12 0.01205 1.764e+04 33.26

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 46 698 2 54 93 95.83 92.82 46 99.71 - - -
2 100 690 10 0 98.75 90.91 100 100 98.57 - - -
3 97 682 18 3 97.38 84.35 99.56 97 97.43 - - -
4 89 688 12 11 97.12 88.12 98.43 89 98.29 - - -
5 100 656 44 0 94.5 69.44 100 100 93.71 - - -
6 84 698 2 16 97.75 97.67 97.76 84 99.71 - - -
7 58 681 19 42 92.38 75.32 94.19 58 97.29 - - -
8 91 651 49 9 92.75 65 98.64 91 93 - - -

Total: 665 5444 156 135 95.45 83.33 97.67 83.12 97.21 0.00429 1600 3.05

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 0 700 0 100 87.5 0 87.5 0 100 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 0 700 0 100 87.5 0 87.5 0 100 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 0 700 0 100 87.5 0 87.5 0 100 - - -
7 97 586 114 3 85.38 45.97 99.49 97 83.71 - - -
8 0 700 0 100 87.5 0 87.5 0 100 - - -

Total: 396 5486 114 404 91.91 43.25 93.67 49.5 97.96 0.04803 982 1.894

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 52 700 0 48 94 100 93.58 52 100 - - -
2 78 654 46 22 91.5 62.9 96.75 78 93.43 - - -
3 96 697 3 4 99.12 96.97 99.43 96 99.57 - - -
4 97 678 22 3 96.88 81.51 99.56 97 96.86 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 92 696 4 8 98.5 95.83 98.86 92 99.43 - - -
7 99 692 8 1 98.88 92.52 99.86 99 98.86 - - -
8 100 697 3 0 99.62 97.09 100 100 99.57 - - -

Total: 714 5514 86 86 97.31 90.85 98.5 89.25 98.46 0.005115 1.029e+04 19.53

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 98

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.3: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 99

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.4: Visualisation of recognition performance of ANNs with 5 hidden neurons.

Table A.4: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

94.22 ± 1.55 71.49 ± 13.18 95.91 ± 1.26 68.58 ± 12.69 97.89 ± 0.81 8072.10 ± 6831.11 15.3485 ± 12.9652

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 100

A.3 10 Hidden Neurons

Table A.5: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 92 689 11 8 97.62 89.32 98.85 92 98.43 - - -
2 100 658 42 0 94.75 70.42 100 100 94 - - -
3 87 694 6 13 97.62 93.55 98.16 87 99.14 - - -
4 98 694 6 2 99 94.23 99.71 98 99.14 - - -
5 100 697 3 0 99.62 97.09 100 100 99.57 - - -
6 84 688 12 16 96.5 87.5 97.73 84 98.29 - - -
7 95 686 14 5 97.62 87.16 99.28 95 98 - - -
8 91 700 0 9 98.88 100 98.73 91 100 - - -

Total: 747 5506 94 53 97.7 89.91 99.06 93.38 98.32 0.002071 241 0.7685

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 685 15 0 98.12 86.96 100 100 97.86 - - -
2 100 693 7 0 99.12 93.46 100 100 99 - - -
3 91 679 21 9 96.25 81.25 98.69 91 97 - - -
4 87 680 20 13 95.88 81.31 98.12 87 97.14 - - -
5 100 689 11 0 98.62 90.09 100 100 98.43 - - -
6 88 680 20 12 96 81.48 98.27 88 97.14 - - -
7 95 671 29 5 95.75 76.61 99.26 95 95.86 - - -
8 86 696 4 14 97.75 95.56 98.03 86 99.43 - - -

Total: 747 5473 127 53 97.19 85.84 99.05 93.38 97.73 9.231e-05 2814 8.839

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 93 690 10 7 97.88 90.29 99 93 98.57 - - -
2 80 679 21 20 94.88 79.21 97.14 80 97 - - -
3 98 698 2 2 99.5 98 99.71 98 99.71 - - -
4 100 698 2 0 99.75 98.04 100 100 99.71 - - -
5 89 700 0 11 98.62 100 98.45 89 100 - - -
6 93 690 10 7 97.88 90.29 99 93 98.57 - - -
7 53 700 0 47 94.12 100 93.71 53 100 - - -
8 91 693 7 9 98 92.86 98.72 91 99 - - -

Total: 697 5548 52 103 97.58 93.59 98.22 87.12 99.07 0.00193 328 1.044

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 46 696 4 54 92.75 92 92.8 46 99.43 - - -
2 81 700 0 19 97.62 100 97.36 81 100 - - -
3 99 678 22 1 97.12 81.82 99.85 99 96.86 - - -
4 95 700 0 5 99.38 100 99.29 95 100 - - -
5 93 690 10 7 97.88 90.29 99 93 98.57 - - -
6 89 639 61 11 91 59.33 98.31 89 91.29 - - -
7 88 694 6 12 97.75 93.62 98.3 88 99.14 - - -
8 100 669 31 0 96.12 76.34 100 100 95.57 - - -

Total: 691 5466 134 109 96.2 86.67 98.11 86.38 97.61 0.00221 540 1.706

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 90 692 8 10 97.75 91.84 98.58 90 98.86 - - -
2 100 676 24 0 97 80.65 100 100 96.57 - - -
3 99 698 2 1 99.62 98.02 99.86 99 99.71 - - -
4 100 686 14 0 98.25 87.72 100 100 98 - - -
5 100 693 7 0 99.12 93.46 100 100 99 - - -
6 80 699 1 20 97.38 98.77 97.22 80 99.86 - - -
7 95 681 19 5 97 83.33 99.27 95 97.29 - - -
8 95 699 1 5 99.25 98.96 99.29 95 99.86 - - -

Total: 759 5524 76 41 98.17 91.59 99.28 94.88 98.64 0.001471 764 2.411

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 101

Table A.5: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 84 700 0 16 98 100 97.77 84 100 - - -
2 100 695 5 0 99.38 95.24 100 100 99.29 - - -
3 98 682 18 2 97.5 84.48 99.71 98 97.43 - - -
4 99 695 5 1 99.25 95.19 99.86 99 99.29 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 94 693 7 6 98.38 93.07 99.14 94 99 - - -
7 95 689 11 5 98 89.62 99.28 95 98.43 - - -
8 99 685 15 1 98 86.84 99.85 99 97.86 - - -

Total: 769 5539 61 31 98.56 93.06 99.45 96.12 98.91 0.0004649 1190 3.782

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 77 695 5 23 96.5 93.9 96.8 77 99.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 93 668 32 7 95.12 74.4 98.96 93 95.43 - - -
4 94 700 0 6 99.25 100 99.15 94 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 92 688 12 8 97.5 88.46 98.85 92 98.29 - - -
7 88 693 7 12 97.62 92.63 98.3 88 99 - - -
8 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -

Total: 741 5543 57 59 98.19 93.55 98.95 92.62 98.98 0.004332 196 0.629

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 53 700 0 47 94.12 100 93.71 53 100 - - -
2 100 641 59 0 92.62 62.89 100 100 91.57 - - -
3 99 655 45 1 94.25 68.75 99.85 99 93.57 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 693 7 0 99.12 93.46 100 100 99 - - -
6 68 694 6 32 95.25 91.89 95.59 68 99.14 - - -
7 93 689 11 7 97.75 89.42 98.99 93 98.43 - - -
8 99 699 1 1 99.75 99 99.86 99 99.86 - - -

Total: 712 5471 129 88 96.61 88.18 98.5 89 97.7 0.001717 578 1.826

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 97 658 42 3 94.38 69.78 99.55 97 94 - - -
2 100 699 1 0 99.88 99.01 100 100 99.86 - - -
3 83 679 21 17 95.25 79.81 97.56 83 97 - - -
4 100 696 4 0 99.5 96.15 100 100 99.43 - - -
5 91 699 1 9 98.75 98.91 98.73 91 99.86 - - -
6 96 683 17 4 97.38 84.96 99.42 96 97.57 - - -
7 84 696 4 16 97.5 95.45 97.75 84 99.43 - - -
8 96 693 7 4 98.62 93.2 99.43 96 99 - - -

Total: 747 5503 97 53 97.66 89.66 99.05 93.38 98.27 0.0004399 667 2.106

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 81 653 47 19 91.75 63.28 97.17 81 93.29 - - -
2 78 676 24 22 94.25 76.47 96.85 78 96.57 - - -
3 92 595 105 8 85.88 46.7 98.67 92 85 - - -
4 100 697 3 0 99.62 97.09 100 100 99.57 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 93 673 27 7 95.75 77.5 98.97 93 96.14 - - -
7 92 694 6 8 98.25 93.88 98.86 92 99.14 - - -
8 88 685 15 12 96.62 85.44 98.28 88 97.86 - - -

Total: 724 5373 227 76 95.27 80.04 98.6 90.5 95.95 0.002927 620 1.961

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 102

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.5: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 103

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.6: Visualisation of recognition performance of ANNs with 10 hidden neurons.

Table A.6: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

97.31 ± 0.97 89.21 ± 4.02 98.83 ± 0.65 91.67 ± 3.11 98.12 ± 0.79 793.80 ± 726.38 2.5072 ± 2.2801

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 104

A.4 15 Hidden Neurons

Table A.7: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 95 669 31 5 95.5 75.4 99.26 95 95.57 - - -
2 100 658 42 0 94.75 70.42 100 100 94 - - -
3 70 683 17 30 94.12 80.46 95.79 70 97.57 - - -
4 99 698 2 1 99.62 98.02 99.86 99 99.71 - - -
5 99 694 6 1 99.12 94.29 99.86 99 99.14 - - -
6 94 685 15 6 97.38 86.24 99.13 94 97.86 - - -
7 84 695 5 16 97.38 94.38 97.75 84 99.29 - - -
8 97 684 16 3 97.62 85.84 99.56 97 97.71 - - -

Total: 738 5466 134 62 96.94 85.63 98.9 92.25 97.61 0.0003499 817 3.604

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 666 34 0 95.75 74.63 100 100 95.14 - - -
2 100 683 17 0 97.88 85.47 100 100 97.57 - - -
3 68 689 11 32 94.62 86.08 95.56 68 98.43 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 683 17 0 97.88 85.47 100 100 97.57 - - -
6 93 687 13 7 97.5 87.74 98.99 93 98.14 - - -
7 88 693 7 12 97.62 92.63 98.3 88 99 - - -
8 98 688 12 2 98.25 89.09 99.71 98 98.29 - - -

Total: 746 5489 111 54 97.42 87.64 99.05 93.25 98.02 0.0002995 859 3.777

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 58 682 18 42 92.5 76.32 94.2 58 97.43 - - -
2 100 661 39 0 95.12 71.94 100 100 94.43 - - -
3 77 691 9 23 96 89.53 96.78 77 98.71 - - -
4 100 695 5 0 99.38 95.24 100 100 99.29 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 89 695 5 11 98 94.68 98.44 89 99.29 - - -
7 81 682 18 19 95.38 81.82 97.29 81 97.43 - - -
8 91 684 16 9 96.88 85.05 98.7 91 97.71 - - -

Total: 696 5490 110 104 96.66 86.82 98.18 87 98.04 0.0002576 1276 5.609

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 98 697 3 2 99.38 97.03 99.71 98 99.57 - - -
2 100 695 5 0 99.38 95.24 100 100 99.29 - - -
3 80 697 3 20 97.12 96.39 97.21 80 99.57 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 695 5 0 99.38 95.24 100 100 99.29 - - -
6 85 697 3 15 97.75 96.59 97.89 85 99.57 - - -
7 94 691 9 6 98.12 91.26 99.14 94 98.71 - - -
8 90 700 0 10 98.75 100 98.59 90 100 - - -

Total: 746 5572 28 54 98.72 96.47 99.05 93.25 99.5 0.0007948 406 1.795

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 98 686 14 2 98 87.5 99.71 98 98 - - -
2 91 692 8 9 97.88 91.92 98.72 91 98.86 - - -
3 94 700 0 6 99.25 100 99.15 94 100 - - -
4 97 700 0 3 99.62 100 99.57 97 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 87 689 11 13 97 88.78 98.15 87 98.43 - - -
7 67 692 8 33 94.88 89.33 95.45 67 98.86 - - -
8 92 668 32 8 95 74.19 98.82 92 95.43 - - -

Total: 726 5527 73 74 97.7 91.47 98.7 90.75 98.7 0.0006047 530 2.342

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 105

Table A.7: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 684 16 0 98 86.21 100 100 97.71 - - -
2 100 694 6 0 99.25 94.34 100 100 99.14 - - -
3 90 697 3 10 98.38 96.77 98.59 90 99.57 - - -
4 95 700 0 5 99.38 100 99.29 95 100 - - -
5 100 699 1 0 99.88 99.01 100 100 99.86 - - -
6 91 695 5 9 98.25 94.79 98.72 91 99.29 - - -
7 89 699 1 11 98.5 98.89 98.45 89 99.86 - - -
8 95 696 4 5 98.88 95.96 99.29 95 99.43 - - -

Total: 760 5564 36 40 98.81 95.75 99.29 95 99.36 0.0003922 471 2.074

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 697 3 0 99.62 97.09 100 100 99.57 - - -
2 94 700 0 6 99.25 100 99.15 94 100 - - -
3 99 652 48 1 93.88 67.35 99.85 99 93.14 - - -
4 88 700 0 12 98.5 100 98.31 88 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 98 675 25 2 96.62 79.67 99.7 98 96.43 - - -
7 83 700 0 17 97.88 100 97.63 83 100 - - -
8 92 699 1 8 98.88 98.92 98.87 92 99.86 - - -

Total: 754 5523 77 46 98.08 92.88 99.19 94.25 98.62 0.0003856 519 2.286

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 54 700 0 46 94.25 100 93.83 54 100 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 87 694 6 13 97.62 93.55 98.16 87 99.14 - - -
4 88 698 2 12 98.25 97.78 98.31 88 99.71 - - -
5 93 700 0 7 99.12 100 99.01 93 100 - - -
6 95 696 4 5 98.88 95.96 99.29 95 99.43 - - -
7 85 690 10 15 96.88 89.47 97.87 85 98.57 - - -
8 91 683 17 9 96.75 84.26 98.7 91 97.57 - - -

Total: 693 5561 39 107 97.72 95.13 98.15 86.62 99.3 0.001501 351 1.55

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 55 673 27 45 91 67.07 93.73 55 96.14 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 74 686 14 26 95 84.09 96.35 74 98 - - -
4 89 700 0 11 98.62 100 98.45 89 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 93 690 10 7 97.88 90.29 99 93 98.57 - - -
7 86 697 3 14 97.88 96.63 98.03 86 99.57 - - -
8 99 692 8 1 98.88 92.52 99.86 99 98.86 - - -

Total: 696 5538 62 104 97.41 91.33 98.18 87 98.89 0.002047 393 1.734

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 61 691 9 39 94 87.14 94.66 61 98.71 - - -
2 85 698 2 15 97.88 97.7 97.9 85 99.71 - - -
3 86 695 5 14 97.62 94.51 98.03 86 99.29 - - -
4 95 695 5 5 98.75 95 99.29 95 99.29 - - -
5 100 698 2 0 99.75 98.04 100 100 99.71 - - -
6 85 677 23 15 95.25 78.7 97.83 85 96.71 - - -
7 91 693 7 9 98 92.86 98.72 91 99 - - -
8 95 668 32 5 95.38 74.8 99.26 95 95.43 - - -

Total: 698 5515 85 102 97.08 89.84 98.21 87.25 98.48 0.0004005 642 2.826

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 106

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.7: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 107

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.8: Visualisation of recognition performance of ANNs with 15 hidden neurons.

Table A.8: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

97.65 ± 0.68 91.29 ± 3.62 98.69 ± 0.67 90.66 ± 3.20 98.65 ± 0.36 626.40 ± 271.39 2.7596 ± 1.1911

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 108

A.5 20 Hidden Neurons

Table A.9: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 39 700 0 61 92.38 100 91.98 39 100 - - -
2 89 700 0 11 98.62 100 98.45 89 100 - - -
3 93 694 6 7 98.38 93.94 99 93 99.14 - - -
4 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 69 661 39 31 91.25 63.89 95.52 69 94.43 - - -
7 93 677 23 7 96.25 80.17 98.98 93 96.71 - - -
8 90 699 1 10 98.62 98.9 98.59 90 99.86 - - -

Total: 670 5530 70 130 96.88 91.99 97.76 83.75 98.75 0.006212 128 0.7304

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 78 700 0 22 97.25 100 96.95 78 100 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 85 691 9 15 97 90.43 97.88 85 98.71 - - -
4 95 686 14 5 97.62 87.16 99.28 95 98 - - -
5 100 697 3 0 99.62 97.09 100 100 99.57 - - -
6 88 692 8 12 97.5 91.67 98.3 88 98.86 - - -
7 91 675 25 9 95.75 78.45 98.68 91 96.43 - - -
8 94 691 9 6 98.12 91.26 99.14 94 98.71 - - -

Total: 731 5532 68 69 97.86 92.01 98.78 91.38 98.79 0.003752 134 0.766

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 60 684 16 40 93 78.95 94.48 60 97.71 - - -
2 61 700 0 39 95.12 100 94.72 61 100 - - -
3 100 698 2 0 99.75 98.04 100 100 99.71 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 99 700 0 1 99.88 100 99.86 99 100 - - -
6 92 652 48 8 93 65.71 98.79 92 93.14 - - -
7 66 679 21 34 93.12 75.86 95.23 66 97 - - -
8 94 685 15 6 97.38 86.24 99.13 94 97.86 - - -

Total: 672 5498 102 128 96.41 88.1 97.78 84 98.18 0.0002697 607 3.445

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 94 691 9 6 98.12 91.26 99.14 94 98.71 - - -
2 100 689 11 0 98.62 90.09 100 100 98.43 - - -
3 91 664 36 9 94.38 71.65 98.66 91 94.86 - - -
4 95 694 6 5 98.62 94.06 99.28 95 99.14 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 100 699 1 0 99.88 99.01 100 100 99.86 - - -
7 89 680 20 11 96.12 81.65 98.41 89 97.14 - - -
8 98 696 4 2 99.25 96.08 99.71 98 99.43 - - -

Total: 767 5513 87 33 98.12 90.48 99.4 95.88 98.45 0.0001961 891 5.094

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 98 674 26 2 96.5 79.03 99.7 98 96.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 95 691 9 5 98.25 91.35 99.28 95 98.71 - - -
4 100 699 1 0 99.88 99.01 100 100 99.86 - - -
5 100 696 4 0 99.5 96.15 100 100 99.43 - - -
6 96 696 4 4 99 96 99.43 96 99.43 - - -
7 94 674 26 6 96 78.33 99.12 94 96.29 - - -
8 94 689 11 6 97.88 89.52 99.14 94 98.43 - - -

Total: 777 5519 81 23 98.38 91.17 99.58 97.12 98.55 0.0002685 708 4.014

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 109

Table A.9: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -
2 100 695 5 0 99.38 95.24 100 100 99.29 - - -
3 96 700 0 4 99.5 100 99.43 96 100 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 88 693 7 12 97.62 92.63 98.3 88 99 - - -
7 97 681 19 3 97.25 83.62 99.56 97 97.29 - - -
8 95 700 0 5 99.38 100 99.29 95 100 - - -

Total: 773 5568 32 27 99.08 96.31 99.52 96.62 99.43 0.0002235 673 3.817

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 94 673 27 6 95.88 77.69 99.12 94 96.14 - - -
2 100 696 4 0 99.5 96.15 100 100 99.43 - - -
3 73 693 7 27 95.75 91.25 96.25 73 99 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 91 686 14 9 97.12 86.67 98.71 91 98 - - -
7 86 696 4 14 97.75 95.56 98.03 86 99.43 - - -
8 91 698 2 9 98.62 97.85 98.73 91 99.71 - - -

Total: 734 5542 58 66 98.06 93.15 98.84 91.75 98.96 0.0003019 696 3.947

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 52 697 3 48 93.62 94.55 93.56 52 99.57 - - -
2 92 698 2 8 98.75 97.87 98.87 92 99.71 - - -
3 80 690 10 20 96.25 88.89 97.18 80 98.57 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 90 698 2 10 98.5 97.83 98.59 90 99.71 - - -
7 78 694 6 22 96.5 92.86 96.93 78 99.14 - - -
8 90 694 6 10 98 93.75 98.58 90 99.14 - - -

Total: 682 5571 29 118 97.7 95.72 97.96 85.25 99.48 0.001659 253 1.437

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 96 681 19 4 97.12 83.48 99.42 96 97.29 - - -
2 94 700 0 6 99.25 100 99.15 94 100 - - -
3 81 700 0 19 97.62 100 97.36 81 100 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 699 1 0 99.88 99.01 100 100 99.86 - - -
6 82 689 11 18 96.38 88.17 97.45 82 98.43 - - -
7 96 688 12 4 98 88.89 99.42 96 98.29 - - -
8 86 700 0 14 98.25 100 98.04 86 100 - - -

Total: 735 5557 43 65 98.31 94.94 98.85 91.88 99.23 0.0007126 424 2.409

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 97 700 0 3 99.62 100 99.57 97 100 - - -
2 100 699 1 0 99.88 99.01 100 100 99.86 - - -
3 98 696 4 2 99.25 96.08 99.71 98 99.43 - - -
4 96 697 3 4 99.12 96.97 99.43 96 99.57 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 72 682 18 28 94.25 80 96.06 72 97.43 - - -
7 86 687 13 14 96.62 86.87 98 86 98.14 - - -
8 92 700 0 8 99 100 98.87 92 100 - - -

Total: 741 5561 39 59 98.47 94.87 98.96 92.62 99.3 0.0002227 624 3.543

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 110

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.9: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 111

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.10: Visualisation of recognition performance of ANNs with 20 hidden neurons.

Table A.10: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

97.93 ± 0.74 92.87 ± 2.47 98.74 ± 0.81 91.03 ± 4.81 98.91 ± 0.18 513.80 ± 250.71 2.9202 ± 1.4261

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 112

A.6 30 Hidden Neurons

Table A.11: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 78 699 1 22 97.12 98.73 96.95 78 99.86 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 97 695 5 3 99 95.1 99.57 97 99.29 - - -
4 96 698 2 4 99.25 97.96 99.43 96 99.71 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 96 681 19 4 97.12 83.48 99.42 96 97.29 - - -
7 89 696 4 11 98.12 95.7 98.44 89 99.43 - - -
8 95 697 3 5 99 96.94 99.29 95 99.57 - - -

Total: 751 5566 34 49 98.7 95.99 99.14 93.88 99.39 0.001181 285 2.337

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 78 684 16 22 95.25 82.98 96.88 78 97.71 - - -
2 100 698 2 0 99.75 98.04 100 100 99.71 - - -
3 94 695 5 6 98.62 94.95 99.14 94 99.29 - - -
4 89 699 1 11 98.5 98.89 98.45 89 99.86 - - -
5 99 700 0 1 99.88 100 99.86 99 100 - - -
6 83 697 3 17 97.5 96.51 97.62 83 99.57 - - -
7 78 695 5 22 96.62 93.98 96.93 78 99.29 - - -
8 87 699 1 13 98.25 98.86 98.17 87 99.86 - - -

Total: 708 5567 33 92 98.05 95.53 98.38 88.5 99.41 0.002863 92 0.7729

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 97 695 5 3 99 95.1 99.57 97 99.29 - - -
2 89 696 4 11 98.12 95.7 98.44 89 99.43 - - -
3 87 698 2 13 98.12 97.75 98.17 87 99.71 - - -
4 97 700 0 3 99.62 100 99.57 97 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 80 698 2 20 97.25 97.56 97.21 80 99.71 - - -
7 52 694 6 48 93.25 89.66 93.53 52 99.14 - - -
8 92 697 3 8 98.62 96.84 98.87 92 99.57 - - -

Total: 694 5578 22 106 98 96.58 98.17 86.75 99.61 0.000163 567 4.635

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 61 695 5 39 94.5 92.42 94.69 61 99.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 100 699 1 0 99.88 99.01 100 100 99.86 - - -
4 100 697 3 0 99.62 97.09 100 100 99.57 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 92 698 2 8 98.75 97.87 98.87 92 99.71 - - -
7 82 692 8 18 96.75 91.11 97.46 82 98.86 - - -
8 89 694 6 11 97.88 93.68 98.44 89 99.14 - - -

Total: 724 5575 25 76 98.42 96.4 98.68 90.5 99.55 0.0003258 388 3.177

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 697 3 0 99.62 97.09 100 100 99.57 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 90 695 5 10 98.12 94.74 98.58 90 99.29 - - -
4 96 700 0 4 99.5 100 99.43 96 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 94 678 22 6 96.5 81.03 99.12 94 96.86 - - -
7 52 685 15 48 92.12 77.61 93.45 52 97.86 - - -
8 95 669 31 5 95.5 75.4 99.26 95 95.57 - - -

Total: 727 5524 76 73 97.67 90.73 98.73 90.88 98.64 0.0001664 708 5.775

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 113

Table A.11: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 94 694 6 6 98.5 94 99.14 94 99.14 - - -
2 95 700 0 5 99.38 100 99.29 95 100 - - -
3 96 689 11 4 98.12 89.72 99.42 96 98.43 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 99 700 0 1 99.88 100 99.86 99 100 - - -
6 82 657 43 18 92.38 65.6 97.33 82 93.86 - - -
7 46 696 4 54 92.75 92 92.8 46 99.43 - - -
8 94 684 16 6 97.25 85.45 99.13 94 97.71 - - -

Total: 706 5520 80 94 97.28 90.85 98.37 88.25 98.57 0.0001525 629 5.126

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 99 687 13 1 98.25 88.39 99.85 99 98.14 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 94 694 6 6 98.5 94 99.14 94 99.14 - - -
4 100 699 1 0 99.88 99.01 100 100 99.86 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 48 696 4 52 93 92.31 93.05 48 99.43 - - -
7 94 692 8 6 98.25 92.16 99.14 94 98.86 - - -
8 95 700 0 5 99.38 100 99.29 95 100 - - -

Total: 730 5568 32 70 98.41 95.73 98.81 91.25 99.43 9.955e-05 778 6.329

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 79 669 31 21 93.5 71.82 96.96 79 95.57 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 79 694 6 21 96.62 92.94 97.06 79 99.14 - - -
4 96 700 0 4 99.5 100 99.43 96 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 90 695 5 10 98.12 94.74 98.58 90 99.29 - - -
7 88 690 10 12 97.25 89.8 98.29 88 98.57 - - -
8 99 696 4 1 99.38 96.12 99.86 99 99.43 - - -

Total: 731 5544 56 69 98.05 93.18 98.77 91.38 99 0.0001223 786 6.393

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 57 695 5 43 94 91.94 94.17 57 99.29 - - -
2 97 700 0 3 99.62 100 99.57 97 100 - - -
3 98 693 7 2 98.88 93.33 99.71 98 99 - - -
4 97 700 0 3 99.62 100 99.57 97 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 93 690 10 7 97.88 90.29 99 93 98.57 - - -
7 84 684 16 16 96 84 97.71 84 97.71 - - -
8 88 699 1 12 98.38 98.88 98.31 88 99.86 - - -

Total: 714 5561 39 86 98.05 94.8 98.51 89.25 99.3 0.0002577 534 4.347

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 98 653 47 2 93.88 67.59 99.69 98 93.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 86 700 0 14 98.25 100 98.04 86 100 - - -
4 100 697 3 0 99.62 97.09 100 100 99.57 - - -
5 100 696 4 0 99.5 96.15 100 100 99.43 - - -
6 81 689 11 19 96.25 88.04 97.32 81 98.43 - - -
7 82 698 2 18 97.5 97.62 97.49 82 99.71 - - -
8 98 690 10 2 98.5 90.74 99.71 98 98.57 - - -

Total: 745 5523 77 55 97.94 92.15 99.03 93.12 98.62 0.0001764 822 6.791

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 114

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.11: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 115

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.12: Visualisation of recognition performance of ANNs with 30 hidden neurons.

Table A.12: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

98.06 ± 0.38 94.19 ± 2.16 98.66 ± 0.54 90.38 ± 2.10 99.15 ± 0.15 558.90 ± 227.78 4.5683 ± 1.8578

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 116

A.7 40 Hidden Neurons

Table A.13: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 42 700 0 58 92.75 100 92.35 42 100 - - -
2 78 700 0 22 97.25 100 96.95 78 100 - - -
3 96 689 11 4 98.12 89.72 99.42 96 98.43 - - -
4 89 700 0 11 98.62 100 98.45 89 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 81 684 16 19 95.62 83.51 97.3 81 97.71 - - -
7 87 691 9 13 97.25 90.62 98.15 87 98.71 - - -
8 91 698 2 9 98.62 97.85 98.73 91 99.71 - - -

Total: 664 5562 38 136 97.28 95.21 97.67 83 99.32 0.002521 161 1.743

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 67 697 3 33 95.5 95.71 95.48 67 99.57 - - -
2 100 699 1 0 99.88 99.01 100 100 99.86 - - -
3 94 700 0 6 99.25 100 99.15 94 100 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 93 688 12 7 97.62 88.57 98.99 93 98.29 - - -
7 83 699 1 17 97.75 98.81 97.63 83 99.86 - - -
8 92 699 1 8 98.88 98.92 98.87 92 99.86 - - -

Total: 729 5582 18 71 98.61 97.63 98.76 91.12 99.68 9.521e-05 744 7.977

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 65 698 2 35 95.38 97.01 95.23 65 99.71 - - -
2 91 699 1 9 98.75 98.91 98.73 91 99.86 - - -
3 86 697 3 14 97.88 96.63 98.03 86 99.57 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 85 696 4 15 97.62 95.51 97.89 85 99.43 - - -
7 96 687 13 4 97.88 88.07 99.42 96 98.14 - - -
8 93 695 5 7 98.5 94.9 99 93 99.29 - - -

Total: 716 5572 28 84 98.25 96.38 98.54 89.5 99.5 9.291e-05 808 8.817

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 97 694 6 3 98.88 94.17 99.57 97 99.14 - - -
2 100 692 8 0 99 92.59 100 100 98.86 - - -
3 97 698 2 3 99.38 97.98 99.57 97 99.71 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 94 691 9 6 98.12 91.26 99.14 94 98.71 - - -
7 82 690 10 18 96.5 89.13 97.46 82 98.57 - - -
8 94 697 3 6 98.88 96.91 99.15 94 99.57 - - -

Total: 764 5562 38 36 98.84 95.26 99.36 95.5 99.32 0.0001259 564 6.072

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 53 700 0 47 94.12 100 93.71 53 100 - - -
2 100 698 2 0 99.75 98.04 100 100 99.71 - - -
3 86 695 5 14 97.62 94.51 98.03 86 99.29 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 56 695 5 44 93.88 91.8 94.05 56 99.29 - - -
7 49 691 9 51 92.5 84.48 93.13 49 98.71 - - -
8 99 699 1 1 99.75 99 99.86 99 99.86 - - -

Total: 643 5578 22 157 97.2 95.98 97.35 80.38 99.61 0.0001142 594 6.334

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 117

Table A.13: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 55 681 19 45 92 74.32 93.8 55 97.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 97 697 3 3 99.25 97 99.57 97 99.57 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 98 685 15 2 97.88 86.73 99.71 98 97.86 - - -
7 82 691 9 18 96.62 90.11 97.46 82 98.71 - - -
8 90 698 2 10 98.5 97.83 98.59 90 99.71 - - -

Total: 721 5552 48 79 98.02 93.25 98.62 90.12 99.14 0.0001097 808 8.676

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 87 692 8 13 97.38 91.58 98.16 87 98.86 - - -
2 100 669 31 0 96.12 76.34 100 100 95.57 - - -
3 88 700 0 12 98.5 100 98.31 88 100 - - -
4 88 696 4 12 98 95.65 98.31 88 99.43 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 75 700 0 25 96.88 100 96.55 75 100 - - -
7 81 692 8 19 96.62 91.01 97.33 81 98.86 - - -
8 84 660 40 16 93 67.74 97.63 84 94.29 - - -

Total: 703 5509 91 97 97.06 90.29 98.29 87.88 98.37 0.0008384 245 2.66

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 698 2 0 99.75 98.04 100 100 99.71 - - -
2 89 700 0 11 98.62 100 98.45 89 100 - - -
3 92 696 4 8 98.5 95.83 98.86 92 99.43 - - -
4 100 698 2 0 99.75 98.04 100 100 99.71 - - -
5 100 697 3 0 99.62 97.09 100 100 99.57 - - -
6 92 692 8 8 98 92 98.86 92 98.86 - - -
7 86 693 7 14 97.38 92.47 98.02 86 99 - - -
8 89 690 10 11 97.38 89.9 98.43 89 98.57 - - -

Total: 748 5564 36 52 98.62 95.42 99.08 93.5 99.36 0.0001221 670 7.155

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 82 681 19 18 95.38 81.19 97.42 82 97.29 - - -
2 99 700 0 1 99.88 100 99.86 99 100 - - -
3 96 699 1 4 99.38 98.97 99.43 96 99.86 - - -
4 100 700 0 0 100 100 100 100 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 91 692 8 9 97.88 91.92 98.72 91 98.86 - - -
7 78 700 0 22 97.25 100 96.95 78 100 - - -
8 92 690 10 8 97.75 90.2 98.85 92 98.57 - - -

Total: 738 5562 38 62 98.44 95.28 98.9 92.25 99.32 0.001206 180 1.923

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 54 700 0 46 94.25 100 93.83 54 100 - - -
2 96 700 0 4 99.5 100 99.43 96 100 - - -
3 82 694 6 18 97 93.18 97.47 82 99.14 - - -
4 99 700 0 1 99.88 100 99.86 99 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 88 683 17 12 96.38 83.81 98.27 88 97.57 - - -
7 84 690 10 16 96.75 89.36 97.73 84 98.57 - - -
8 89 700 0 11 98.62 100 98.45 89 100 - - -

Total: 692 5567 33 108 97.8 95.79 98.13 86.5 99.41 6.033e-05 613 6.538

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 118

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.13: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 119

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.14: Visualisation of recognition performance of ANNs with 40 hidden neurons.

Table A.14: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

98.01 ± 0.62 95.05 ± 1.90 98.47 ± 0.77 88.97 ± 4.44 99.30 ± 0.12 538.70 ± 239.01 5.7895 ± 2.5729

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 120

A.8 60 Hidden Neurons

Table A.15: Summary of training and validation results for each test case.

(a) Test 1.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 98 683 17 2 97.62 85.22 99.71 98 97.57 - - -
2 100 699 1 0 99.88 99.01 100 100 99.86 - - -
3 96 694 6 4 98.75 94.12 99.43 96 99.14 - - -
4 98 697 3 2 99.38 97.03 99.71 98 99.57 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 80 689 11 20 96.12 87.91 97.18 80 98.43 - - -
7 54 697 3 46 93.88 94.74 93.81 54 99.57 - - -
8 89 696 4 11 98.12 95.7 98.44 89 99.43 - - -

Total: 715 5555 45 85 97.97 94.22 98.54 89.38 99.2 3.409e-05 925 14.47

(b) Test 2.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 698 2 0 99.75 98.04 100 100 99.71 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 86 695 5 14 97.62 94.51 98.03 86 99.29 - - -
4 96 696 4 4 99 96 99.43 96 99.43 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 89 685 15 11 96.75 85.58 98.42 89 97.86 - - -
7 92 684 16 8 97 85.19 98.84 92 97.71 - - -
8 89 699 1 11 98.5 98.89 98.45 89 99.86 - - -

Total: 752 5557 43 48 98.58 94.77 99.15 94 99.23 0.0003386 163 2.571

(c) Test 3.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 687 13 0 98.38 88.5 100 100 98.14 - - -
2 100 687 13 0 98.38 88.5 100 100 98.14 - - -
3 88 700 0 12 98.5 100 98.31 88 100 - - -
4 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -
5 99 700 0 1 99.88 100 99.86 99 100 - - -
6 88 700 0 12 98.5 100 98.31 88 100 - - -
7 88 693 7 12 97.62 92.63 98.3 88 99 - - -
8 92 699 1 8 98.88 98.92 98.87 92 99.86 - - -

Total: 752 5565 35 48 98.7 95.94 99.15 94 99.37 0.000106 446 7.015

(d) Test 4.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 68 700 0 32 96 100 95.63 68 100 - - -
2 89 699 1 11 98.5 98.89 98.45 89 99.86 - - -
3 96 697 3 4 99.12 96.97 99.43 96 99.57 - - -
4 97 696 4 3 99.12 96.04 99.57 97 99.43 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 93 699 1 7 99 98.94 99.01 93 99.86 - - -
7 44 699 1 56 92.88 97.78 92.58 44 99.86 - - -
8 87 684 16 13 96.38 84.47 98.13 87 97.71 - - -

Total: 674 5574 26 126 97.62 96.63 97.85 84.25 99.54 9.475e-05 605 9.479

(e) Test 5.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 84 694 6 16 97.25 93.33 97.75 84 99.14 - - -
2 85 696 4 15 97.62 95.51 97.89 85 99.43 - - -
3 94 697 3 6 98.88 96.91 99.15 94 99.57 - - -
4 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 79 694 6 21 96.62 92.94 97.06 79 99.14 - - -
7 47 692 8 53 92.38 85.45 92.89 47 98.86 - - -
8 85 698 2 15 97.88 97.7 97.9 85 99.71 - - -

Total: 671 5570 30 129 97.52 95.1 97.78 83.88 99.46 3.922e-05 813 12.74

Continued on next page

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 121

Table A.15: – continued from previous page

(f) Test 6.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 688 12 0 98.5 89.29 100 100 98.29 - - -
2 96 697 3 4 99.12 96.97 99.43 96 99.57 - - -
3 97 697 3 3 99.25 97 99.57 97 99.57 - - -
4 100 698 2 0 99.75 98.04 100 100 99.71 - - -
5 100 699 1 0 99.88 99.01 100 100 99.86 - - -
6 88 687 13 12 96.88 87.13 98.28 88 98.14 - - -
7 44 697 3 56 92.62 93.62 92.56 44 99.57 - - -
8 100 697 3 0 99.62 97.09 100 100 99.57 - - -

Total: 725 5560 40 75 98.2 94.77 98.73 90.62 99.29 0.0001768 254 3.994

(g) Test 7.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 74 700 0 26 96.75 100 96.42 74 100 - - -
2 94 700 0 6 99.25 100 99.15 94 100 - - -
3 95 695 5 5 98.75 95 99.29 95 99.29 - - -
4 95 690 10 5 98.12 90.48 99.28 95 98.57 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 74 698 2 26 96.5 97.37 96.41 74 99.71 - - -
7 84 684 16 16 96 84 97.71 84 97.71 - - -
8 100 700 0 0 100 100 100 100 100 - - -

Total: 716 5567 33 84 98.17 95.86 98.53 89.5 99.41 0.0001267 373 5.853

(h) Test 8.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 66 700 0 34 95.75 100 95.37 66 100 - - -
2 99 697 3 1 99.5 97.06 99.86 99 99.57 - - -
3 95 698 2 5 99.12 97.94 99.29 95 99.71 - - -
4 95 699 1 5 99.25 98.96 99.29 95 99.86 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 55 692 8 45 93.38 87.3 93.89 55 98.86 - - -
7 89 680 20 11 96.12 81.65 98.41 89 97.14 - - -
8 95 695 5 5 98.75 95 99.29 95 99.29 - - -

Total: 694 5561 39 106 97.73 94.74 98.17 86.75 99.3 7.479e-05 430 6.744

(i) Test 9.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 89 697 3 11 98.25 96.74 98.45 89 99.57 - - -
2 97 699 1 3 99.5 98.98 99.57 97 99.86 - - -
3 93 695 5 7 98.5 94.9 99 93 99.29 - - -
4 97 700 0 3 99.62 100 99.57 97 100 - - -
5 100 699 1 0 99.88 99.01 100 100 99.86 - - -
6 94 696 4 6 98.75 95.92 99.15 94 99.43 - - -
7 88 677 23 12 95.62 79.28 98.26 88 96.71 - - -
8 98 698 2 2 99.5 98 99.71 98 99.71 - - -

Total: 756 5561 39 44 98.7 95.35 99.21 94.5 99.3 6.708e-05 461 7.221

(j) Test 10.

Object TP TN FP FN ACC PPV NPV TPR SPC MSE Epochs Training Time
(%) (%) (%) (%) (%) (s)

1 100 681 19 0 97.62 84.03 100 100 97.29 - - -
2 100 700 0 0 100 100 100 100 100 - - -
3 95 697 3 5 99 96.94 99.29 95 99.57 - - -
4 96 700 0 4 99.5 100 99.43 96 100 - - -
5 100 700 0 0 100 100 100 100 100 - - -
6 89 690 10 11 97.38 89.9 98.43 89 98.57 - - -
7 84 691 9 16 96.88 90.32 97.74 84 98.71 - - -
8 91 691 9 9 97.75 91 98.71 91 98.71 - - -

Total: 755 5550 50 45 98.52 94.02 99.2 94.38 99.11 4.921e-05 714 11.2

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 122

(a) Test 1. (b) Test 2.

(c) Test 3. (d) Test 4.

(e) Test 5. (f) Test 6.

(g) Test 7. (h) Test 8.

(i) Test 9. (j) Test 10.

Figure A.15: MSE vs Epochs: Mean Squared Error during the training of each test case.

APPENDIX A. RESULTS: ANN TRAINING AND VALIDATION 123

(a) Comparative graph: Performance for each test case.

(b) Mean performance with error bars indicating standard deviation.

Figure A.16: Visualisation of recognition performance of ANNs with 60 hidden neurons.

Table A.16: Summary of the mean performance.

ACC PPV NPV TPR SPC Epochs Training Time
(%) (%) (%) (%) (%) (s)

98.17 ± 0.43 95.14 ± 0.77 98.63 ± 0.73 90.12 ± 3.92 99.32 ± 0.01 518.40 ± 230.56 8.1295 ± 3.6050

Appendix B

Source Code

B.1 Laser Scanner Related Code

B.1.1 Serial Port Class

The serial port class is used for simple (read line – write line) UART communication
between the PC and a serial device.

Listing B.1: Header file of the serial port class.

1 # ifndef SERIALPORT_HPP
2 # define SERIALPORT_HPP
3
4 # include <boost /asio.hpp >
5 # include <boost / chrono .hpp >
6 # include <boost / thread .hpp >
7 # include <iostream >
8
9 # define DEFAULT_DEVICE "/dev/ ttyACM0 "

10 # define DEFAULD_BAUDRATE 9600
11
12 class SerialPort
13 {
14 public :
15 SerialPort (std :: string port = DEFAULT_DEVICE ,
16 int baudrate = DEFAULD_BAUDRATE);
17 ˜ SerialPort ();
18 bool isOpen ();
19 void writeLine (std :: string tx_string);
20 std :: string readLine ();
21 private :
22 boost :: asio :: io_service io;
23 boost :: asio :: serial_port serial ;
24 bool PORT_OPENED ;
25 };
26
27 # endif // SERIALPORT_HPP

Listing B.2: Implementation of the serial port class.

124

APPENDIX B. SOURCE CODE 125

1 # include " serialport .hpp"
2
3 SerialPort :: SerialPort (std :: string port , int baudrate) : io () , serial (io)
4 {
5 try {
6 serial .open(port);
7 if (! serial . is_open ()) {
8 throw " Serial port was not opened ";
9 } else {

10 serial . set_option (boost :: asio :: serial_port_base :: baud_rate (baudrate));
11 serial . set_option (boost :: asio :: serial_port_base :: character_size (8));
12 serial . set_option (boost :: asio :: serial_port_base :: parity (boost :: asio ::

serial_port :: parity :: none));
13 serial . set_option (boost :: asio :: serial_port_base :: stop_bits (boost :: asio ::

serial_port :: stop_bits :: one));
14 serial . set_option (boost :: asio :: serial_port_base :: flow_control (boost :: asio

:: serial_port :: flow_control :: none));
15 boost :: this_thread :: sleep (boost :: posix_time :: seconds (2));
16 PORT_OPENED = true ;
17 }
18 } catch (const char * msg) {
19 std :: cerr << " Exception in SerialPort :: SerialPort : " << msg << std :: endl;
20 PORT_OPENED = false ;
21 } catch (boost :: exception_detail :: clone_impl < boost :: exception_detail ::

error_info_injector < boost :: system :: system_error > > &e) {
22 std :: cerr << " Exception in SerialPort :: SerialPort : " << e.what () << std :: endl;
23 PORT_OPENED = false ;
24 }
25 }
26
27 SerialPort ::˜ SerialPort ()
28 {
29 serial . close ();
30 }
31
32 bool SerialPort :: isOpen ()
33 {
34 return PORT_OPENED ;
35 }
36
37 void SerialPort :: writeLine (std :: string tx_string)
38 {
39 boost :: asio :: write (serial , boost :: asio :: buffer (tx_string . c_str () ,tx_string .size ())

);
40 }
41
42 std :: string SerialPort :: readLine ()
43 {
44 char c;
45 std :: string result ;
46 while (1) {
47 boost :: asio :: read(serial , boost :: asio :: buffer (&c ,1));
48 switch (c) {
49 case ’\r’:
50 break ;
51 case ’\n’:
52 return result ;
53 default :
54 result +=c;
55 }
56 }
57 }

APPENDIX B. SOURCE CODE 126

B.1.2 Controller Class

Listing B.3: Header file of the controller class.

1 # ifndef CONTROLLER_HPP
2 # define CONTROLLER_HPP
3
4 # include " serialport .hpp"
5 # include <string >
6
7 class Controller
8 {
9 friend class LaserScanner ;

10 public :
11 Controller ();
12
13 // Getters
14 double getRotationTime ();
15
16 // Functions
17 bool ping ();
18 bool sentStartCaptureSignal ();
19 void rotateFull ();
20
21 private :
22 SerialPort serial ;
23 bool START_CAPTURE ;
24 double ROTATION_TIME ;
25 };
26
27 # endif // CONTROLLER_HPP

Listing B.4: Implementation of the controller class.

1 # include " controller .hpp"
2
3 Controller :: Controller ()
4 {
5 START_CAPTURE = false ;
6 }
7
8 double Controller :: getRotationTime ()
9 {

10 return ROTATION_TIME ;
11 }
12
13 bool Controller :: ping ()
14 {
15 try {
16 std :: cout << " Pinging scanner ";
17 std :: cout. flush ();
18 if (! serial . isOpen ()) {
19 std :: cout << "No controller found ." << std :: endl;
20 throw " Device not found ! Check connection .";
21 } else {
22 serial . writeLine ("1");
23 std :: string ack_ping = " Received ping";
24 if (ack_ping . compare (serial . readLine ()) == 0) {
25 std :: cout << " Connected and ready ." << std :: endl;
26 return true ;
27 } else {
28 throw " Device not found ! Check connection .";
29 }
30 }
31 } catch (const char *msg) {
32 std :: cerr << " Exception : " << msg << std :: endl;
33 return false ;

APPENDIX B. SOURCE CODE 127

34 } catch (boost :: exception_detail :: clone_impl < boost :: exception_detail ::
error_info_injector < boost :: system :: system_error > > &e) {

35 std :: cerr << " Exception : " << e.what () << std :: endl;
36 return false ;
37 }
38 }
39
40 bool Controller :: sentStartCaptureSignal ()
41 {
42 return START_CAPTURE ;
43 }
44
45 void Controller :: rotateFull ()
46 {
47 std :: string ack_start = " Stepper started ";
48 std :: string ack_stop = " Stepper complete ";
49 boost :: chrono :: system_clock :: time_point start ;
50 boost :: chrono :: system_clock :: time_point end;
51 serial . writeLine ("2");
52 while (1) {
53 std :: string response = serial . readLine ();
54 if (response . compare (ack_start) == 0) {
55 START_CAPTURE = true ;
56 start = boost :: chrono :: system_clock :: now ();
57 } else if (response . compare (ack_stop) == 0) {
58 START_CAPTURE = false ;
59 end = boost :: chrono :: system_clock :: now ();
60 break ;
61 }
62 }
63 boost :: chrono :: duration <double > duration = end - start ;
64 ROTATION_TIME = double (duration . count ());
65 }

APPENDIX B. SOURCE CODE 128

B.1.3 Camera Class

Listing B.5: Header file of the camera class.

1 # ifndef CAMERA_HPP
2 # define CAMERA_HPP
3
4 # include <boost / chrono .hpp >
5 # include <boost / thread .hpp >
6 # include <iostream >
7 # include <opencv2 / opencv .hpp >
8 # include <vector >
9

10 // Defaults
11 # define DEFAULT_CAMERA_ID 0
12 # define DEFAULT_FRAME_RATE 30.0f
13 # define DEFAULT_FRAME_HEIGHT 600.0 f
14 # define DEFAULT_FRAME_WIDTH 800.0 f
15
16 struct Pattern
17 {
18 float squareSize ;
19 cv :: Size size;
20 std :: vector <cv :: Point3f > objectPoints ()
21 {
22 std :: vector <cv :: Point3f > result ;
23 for (int i = 0; i < this ->size. height ; ++i) {
24 for (int j = 0; j < this ->size. width ; ++j) {
25 result . push_back (cv :: Point3f (float (j*this -> squareSize), float (i*this ->

squareSize), 0));
26 }
27 }
28 return result ;
29 }
30 };
31
32 class Camera
33 {
34 friend class ImageProcessor ;
35 friend class LaserScanner ;
36 public :
37 Camera (int camera_id = DEFAULT_CAMERA_ID ,
38 double frame_height = DEFAULT_FRAME_HEIGHT ,
39 double frame_width = DEFAULT_FRAME_WIDTH ,
40 double frame_rate = DEFAULT_FRAME_RATE);
41
42 // Getters
43
44 // Setters
45 void setId (int camera_id);
46 void setFrameRate (double frame_rate);
47 void setFrameHeight (double frame_height);
48 void setFrameWidth (double frame_width);
49 void startCapture ();
50
51 // Functions
52 bool ping ();
53 void capture ();
54 bool calibrate ();
55 void saveCalibrationData (std :: string filename = "/home/ivan/MEng/C++/ Shared Files /

calibration_data .xml");
56
57 private :
58 // Variables
59 int ID;
60 double FRAME_RATE , FRAME_HEIGHT , FRAME_WIDTH ;
61 std :: vector <cv ::Mat > RGB_BUFFER , CALIBRATION_IMAGES ;
62 std :: vector <double > TIME_STAMPS ;
63 bool START_CAPTURE ;
64 Pattern CHESSBOARD ;
65 std :: vector <std :: vector <cv :: Point2f > > IMAGE_POINTS ;

APPENDIX B. SOURCE CODE 129

66 std :: vector <std :: vector <cv :: Point3f > > OBJECT_POINTS ;
67 cv :: Mat CAMERA_MATRIX , DIST_COEFFS ;
68 std :: vector <cv ::Mat > R_VECS , T_VECS ;
69 double REPROJECTION_ERROR ;
70
71 // Functions
72 void getPatternValues ();
73 bool captureCalibrationImages ();
74 bool performCalibration ();
75 };
76
77 # endif // CAMERA_HPP

Listing B.6: Implementation of the camera class.

1 # include " camera .hpp"
2
3 Camera :: Camera (int camera_id , double frame_height ,
4 double frame_width , double frame_rate)
5 {
6 ID = camera_id ;
7 FRAME_HEIGHT = frame_height ;
8 FRAME_WIDTH = frame_width ;
9 FRAME_RATE = frame_rate ;

10 }
11
12 void Camera :: setId (int camera_id)
13 {
14 ID = camera_id ;
15 }
16
17 void Camera :: setFrameRate (double frame_rate)
18 {
19 FRAME_RATE = frame_rate ;
20 }
21
22 void Camera :: setFrameHeight (double frame_height)
23 {
24 FRAME_HEIGHT = 600; // frame_height ;
25 }
26
27 void Camera :: setFrameWidth (double frame_width)
28 {
29 FRAME_WIDTH = 800; // frame_width ;
30 }
31
32 void Camera :: startCapture ()
33 {
34 START_CAPTURE = true ;
35 }
36
37 bool Camera :: ping ()
38 {
39 try {
40 std :: cout << " Pinging camera " << ID << " ";
41 std :: cout. flush ();
42 cv :: VideoCapture cap(ID);
43 if (! cap. isOpened ()) {
44 std :: cout << "No camera found ." << std :: endl;
45 throw " Device not found ! Check connection .";
46 } else {
47 std :: cout << " Connected and ready ." << std :: endl;
48 cap. release ();
49 return true ;
50 }
51 } catch (const char *msg) {
52 std :: cerr << " Exception : " << msg << std :: endl;
53 return false ;
54 }
55 }
56

APPENDIX B. SOURCE CODE 130

57 void Camera :: capture ()
58 {
59 boost :: chrono :: system_clock :: time_point start ;
60 boost :: chrono :: system_clock :: time_point capture_time ;
61 boost :: chrono :: duration <double > duration ;
62 try {
63 cv :: VideoCapture cap(ID);
64 if (! cap. isOpened ()) {
65 throw " Device not found !";
66 } else {
67 cap.set(CV_CAP_PROP_FPS , FRAME_RATE);
68 cap.set(CV_CAP_PROP_FRAME_HEIGHT , FRAME_HEIGHT);
69 cap.set(CV_CAP_PROP_FRAME_WIDTH , FRAME_WIDTH);
70 cv :: Mat frame ;
71 std :: cout << " Camera adjusting to ambient light .. ";
72 std :: cout << std :: flush ;
73 while (! START_CAPTURE) { // ugly but effective hack to allow camera to:
74 // 1) adjust to ambient light conditions before
75 cap >> frame ; // capturing frames to frame buffer
76 } // 2) ensure synchronisation with turn table
77 std :: cout << " Complete ." << std :: endl;
78
79 std :: cout << " Capturing images of object ";
80 std :: cout << std :: flush ;
81 start = boost :: chrono :: system_clock :: now ();
82 while (1) {
83 cap >> frame ;
84 RGB_BUFFER . push_back (frame . clone ());
85 capture_time = boost :: chrono :: system_clock :: now ();
86 duration = capture_time - start ;
87 TIME_STAMPS . push_back (double (duration . count ()));
88 boost :: this_thread :: interruption_point ();
89 }
90 }
91 } catch (const char * msg) {
92 std :: cerr << " Exception : " << msg << std :: endl;
93 } catch (boost :: thread_interrupted &) {
94 std :: cout << " Complete ." << std :: endl;
95 return ;
96 }
97 }
98
99 bool Camera :: calibrate ()

100 {
101 getPatternValues ();
102 if (! captureCalibrationImages ()) return false ;
103 else if (! performCalibration ()) return false ;
104 else return true ;
105 }
106
107 void Camera :: saveCalibrationData (std :: string filename)
108 {
109 cv :: FileStorage fs(filename , cv :: FileStorage :: WRITE);
110 fs << " CameraMatrix " << CAMERA_MATRIX ;
111 fs << " DistCoeffs " << DIST_COEFFS ;
112 fs << " rvecs " << R_VECS ;
113 fs << " tvecs " << T_VECS ;
114 fs << " ReprojectionError " << REPROJECTION_ERROR ;
115 fs. release ();
116 }
117
118 void Camera :: getPatternValues ()
119 {
120 std :: cout << " Enter the number of corners along the width of the board : ";
121 std :: cin >> CHESSBOARD .size. width ;
122 std :: cout << " Enter the number of corners along the height of the board : ";
123 std :: cin >> CHESSBOARD .size. height ;
124 std :: cout << " Enter the length of the sides of the squares in milimeters : ";
125 std :: cin >> CHESSBOARD . squareSize ;
126 }
127
128 bool Camera :: captureCalibrationImages ()
129 {

APPENDIX B. SOURCE CODE 131

130 try {
131 cv :: VideoCapture cap(ID);
132 if (! cap. isOpened ()) {
133 throw " Device not found !";
134 } else {
135 cap.set(CV_CAP_PROP_FRAME_HEIGHT , 600);
136 cap.set(CV_CAP_PROP_FRAME_WIDTH , 800);
137 cap.set(CV_CAP_PROP_FPS , FRAME_RATE);
138 char c = 0;
139 cv :: Mat frame ;
140 int counter = 0;
141 std :: cout << " Press <ESC > to stop capturing images . . . " << std :: endl;
142 while (1) {
143 cap >> frame ;
144 cv :: imshow (" Calibrate ", frame);
145 c = cv :: waitKey (10);
146 counter ++;
147 if (counter == 30) {
148 RGB_BUFFER . push_back (frame . clone ());
149 cv :: Mat subMat (frame .rows , frame .cols , frame .type () ,cv :: Scalar ::

all (255));
150 cv :: imshow (" Calibrate ", subMat - frame);
151 cv :: waitKey (5);
152 counter = 0;
153 }
154 if (c == 27) { break ;}
155 }
156 cv :: destroyAllWindows ();
157 return true ;
158 }
159 } catch (const char * msg) {
160 std :: cerr << " Exception : " << msg << std :: endl;
161 return false ;
162 } catch (cv :: Exception &e) {
163 std :: cerr << " Exception : " << e.what () << std :: endl;
164 return false ;
165 }
166 }
167
168 bool Camera :: performCalibration ()
169 {
170 try {
171 cv :: Mat gray;
172 std :: vector <cv :: Point2f > corners ;
173
174 // Find good images for calibration (ie images in RGB_BUFFER containing

chessboard pattern)
175 for (int i = 0; i < RGB_BUFFER .size (); ++i) {
176 bool found ;
177 found = cv :: findChessboardCorners (RGB_BUFFER [i],
178 CHESSBOARD .size ,
179 corners ,
180 CV_CALIB_CB_ADAPTIVE_THRESH |

CV_CALIB_CB_FAST_CHECK |
CV_CALIB_CB_NORMALIZE_IMAGE);

181 if (found) {
182 cv :: cvtColor (RGB_BUFFER [i], gray , CV_BGR2GRAY);
183 cv :: cornerSubPix (gray , corners , cv :: Size (11 ,11) , cv :: Size (-1,-1),
184 cv :: TermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER ,

30, 0.001));
185 IMAGE_POINTS . push_back (corners);
186 OBJECT_POINTS . push_back (CHESSBOARD . objectPoints ());
187 cv :: drawChessboardCorners (RGB_BUFFER [i], CHESSBOARD .size , corners ,

found);
188 CALIBRATION_IMAGES . push_back (RGB_BUFFER [i]. clone ());
189 }
190 }
191
192 if (CALIBRATION_IMAGES .size () < 10) {
193 throw "Too few images to perform a reliable calibration !";
194 } else {
195 REPROJECTION_ERROR = cv :: calibrateCamera (OBJECT_POINTS ,
196 IMAGE_POINTS ,

APPENDIX B. SOURCE CODE 132

197 cv :: Size(FRAME_WIDTH ,
FRAME_HEIGHT),

198 CAMERA_MATRIX ,
199 DIST_COEFFS ,
200 R_VECS , T_VECS);
201
202 for (int i = 0; i < CALIBRATION_IMAGES .size (); ++i) {
203 cv :: imshow (" Calibration Images ", CALIBRATION_IMAGES [i]);
204 std :: stringstream ss;
205 ss << " calibration /" << i << ".jpg";
206 std :: string filename ;
207 ss >> filename ;
208 cv :: imwrite (filename . c_str () , CALIBRATION_IMAGES [i]);
209 cv :: waitKey (100) ;
210 }
211 return true ;
212 }
213
214 } catch (const char * msg) {
215 std :: cerr << " Exception : " << msg << std :: endl;
216 return false ;
217 }
218 }

APPENDIX B. SOURCE CODE 133

B.1.4 Image Processing Class

Listing B.7: Header file of the image processing class.

1 # ifndef IMAGEPROCESSOR_HPP
2 # define IMAGEPROCESSOR_HPP
3
4 # include <boost / filesystem .hpp >
5 # include " camera .hpp"
6
7 namespace fs = boost :: filesystem ;
8
9 # define BLUE_CHANNEL 0

10 # define GREEN_CHANNEL 1
11 # define RED_CHANNEL 2
12 # define THRESHOLD_METHOD_1 1
13 # define THRESHOLD_METHOD_2 2
14
15 # define DEFAULT_FRAME_RATE 30.0f
16
17 class ImageProcessor
18 {
19 friend class LaserScanner ;
20 public :
21 ImageProcessor ();
22
23 // Getters
24
25 // Setters
26 void setCameraMatrix (cv :: Mat cameraMatrix);
27 void setDistortionCoefficients (cv :: Mat distCoeffs);
28 void loadCalibrationDataFrom (std :: string filename);
29
30 bool readImagesInDirectory (fs :: path imageDirectory);
31
32 // Functions
33 bool Undistort (Camera camera);
34 bool Threshold (int channel = RED_CHANNEL ,
35 int threshold_method = THRESHOLD_METHOD_2);
36 bool Thin ();
37
38 private :
39 // Variables
40 cv :: Mat CAMERA_MATRIX , DISTORTION_COEFFICIENTS ;
41 std :: vector <cv ::Mat > UNDISTORTED_IMAGES ;
42 std :: vector <cv ::Mat > THRESHOLD_IMAGES ;
43 std :: vector <cv ::Mat > THINNED_IMAGES ;
44 std :: vector <std :: vector <cv :: Point2d > > IMAGE_POINTS ;
45
46 std :: vector <fs :: path > list;
47 // double THRESHOLD_TIME , THINNING_TIME ;
48
49 // Functions
50 double ThresholdMethod_1 (cv :: Mat input);
51 double ThresholdMethod_2 (cv :: Mat input);
52
53 bool readFileNames2List (fs :: path dir);
54
55 };
56
57 # endif // IMAGEPROCESSOR_HPP

Listing B.8: Implementation of the image processing class.

1 # include " imageprocessor .hpp"
2 # include <string >
3 # include <sstream >
4

APPENDIX B. SOURCE CODE 134

5 ImageProcessor :: ImageProcessor () {}
6
7 void ImageProcessor :: setCameraMatrix (cv :: Mat cameraMatrix)
8 {
9 CAMERA_MATRIX = cameraMatrix ;

10 }
11
12 void ImageProcessor :: setDistortionCoefficients (cv :: Mat distCoeffs)
13 {
14 DISTORTION_COEFFICIENTS = distCoeffs ;
15 }
16
17 void ImageProcessor :: loadCalibrationDataFrom (std :: string filename)
18 {
19 cv :: FileStorage fs(filename , cv :: FileStorage :: READ);
20 fs[" CameraMatrix "] >> CAMERA_MATRIX ;
21 fs[" DistCoeffs "] >> DISTORTION_COEFFICIENTS ;
22 fs. release ();
23 }
24
25 bool ImageProcessor :: readImagesInDirectory (boost :: filesystem :: path imageDirectory)
26 {
27 try {
28 if (! readFileNames2List (imageDirectory)) {
29 throw " readFileNames2List (imageDirectory) failed .";
30 } else {
31 fs :: path tempPath ;
32 for(int i = 0; i < list.size (); i++)
33 {
34 tempPath = imageDirectory ;
35 tempPath /= list[i];
36 UNDISTORTED_IMAGES . push_back (cv :: imread (tempPath . c_str ()));
37 }
38 return true ;
39 }
40 } catch (const char * msg) {
41 std :: cerr << " Error in ImageProcessor :: readImagesInDirectory :" << msg << std ::

endl;
42 return false ;
43 } catch (...) {
44 std :: cerr << " Unknown error in: ImageProcessor :: readImagesInDirectory " << std

:: endl;
45 return false ;
46 }
47 }
48
49 bool ImageProcessor :: Undistort (Camera camera)
50 {
51 try {
52 if (camera . RGB_BUFFER . empty ()) {
53 throw " Buffer empty . No images to undistort .";
54 } else {
55 std :: cout << " Undistorting images ";
56 std :: cout << std :: flush ;
57
58 // boost :: chrono :: system_clock :: time_point start = boost :: chrono ::

system_clock :: now ();
59 for(int i = 0; i < camera . RGB_BUFFER .size (); i++)
60 {
61 cv :: Mat tempResult ;
62 cv :: undistort (camera . RGB_BUFFER [i],
63 tempResult ,
64 CAMERA_MATRIX ,
65 DISTORTION_COEFFICIENTS);
66 UNDISTORTED_IMAGES . push_back (tempResult . clone ());
67 }
68 // boost :: chrono :: system_clock :: time_point stop = boost :: chrono ::

system_clock :: now ();
69 // boost :: chrono :: duration < double > sec = stop - start ;
70 // UNDISTORT_TIME = double (sec . count ());
71 std :: cout << " Complete ." << std :: endl;
72 return true ;
73 }

APPENDIX B. SOURCE CODE 135

74 } catch (const char * msg) {
75 std :: cerr << " Exception : " << msg << std :: endl;
76 return false ;
77 }
78 }
79
80 bool ImageProcessor :: Threshold (int channel , int threshold_method)
81 {
82 try {
83 if (UNDISTORTED_IMAGES . empty ()) {
84 throw "No source image to perform threshold operations on!";
85 } else {
86 std :: cout << " Performing threshold operation ";
87 std :: cout << std :: flush ;
88 double thresh ;
89 cv :: Mat input , result ;
90 std :: vector <cv ::Mat > BGR;
91 // boost :: chrono :: system_clock :: time_point start = boost :: chrono ::

system_clock :: now ();
92 for (int i = 0; i < UNDISTORTED_IMAGES .size (); i++) {
93 cv :: split (UNDISTORTED_IMAGES [i], BGR);
94 input = BGR[channel]. clone ();
95
96 switch (threshold_method) {
97 case THRESHOLD_METHOD_1 :
98 thresh = ThresholdMethod_1 (input);
99 break ;

100 case THRESHOLD_METHOD_2 :
101 thresh = ThresholdMethod_2 (input);
102 break ;
103 default :
104 std :: cerr << " Warning : Undefined threshold option selected ! Using

method 2 as default .";
105 thresh = ThresholdMethod_2 (input);
106 break ;
107 }
108
109 cv :: threshold (input , result , thresh , 255 , 0);
110 std :: stringstream ss;
111 ss << " segmented /" << i << ".jpg";
112 std :: string filename ;
113 ss >> filename ;
114 cv :: imwrite (filename . c_str () , result . clone ());
115 THRESHOLD_IMAGES . push_back (result . clone ());
116 }
117 // boost :: chrono :: system_clock :: time_point stop = boost :: chrono ::

system_clock :: now ();
118 // boost :: chrono :: duration < double > duration = stop - start ;
119 // THRESHOLD_TIME = double (duration . count ());
120 std :: cout << " Complete ." << std :: endl;
121 return true ;
122 }
123 } catch (const char *msg) {
124 std :: cerr << " Exception : " << msg << std :: endl;
125 return false ;
126 }
127 }
128
129 bool ImageProcessor :: Thin ()
130 {
131 try {
132 if (THRESHOLD_IMAGES . empty ()) {
133 throw "No binary thresholded images to thin!";
134 } else {
135 // boost :: chrono :: system_clock :: time_point start = boost :: chrono ::

system_clock :: now ();
136 std :: cout << " Performing thinning operation ";
137 std :: cout << std :: flush ;
138
139 for (int i = 0; i < THRESHOLD_IMAGES .size (); i++) {
140 cv :: Mat input = THRESHOLD_IMAGES [i];
141 std :: vector <cv :: Point2d > tempPoints ;
142 cv :: Mat result = cv :: Mat :: zeros (input .rows , input .cols , CV_8UC1);

APPENDIX B. SOURCE CODE 136

143
144 for (int j = 0; j < input .rows; j++) {
145 int left_pixel , right_pixel ;
146
147 for (int k = 0; k < input .cols; k++) {
148 cv :: Scalar intensity = input .at <uchar >(j,k);
149 if (intensity [0] > 0) {
150 left_pixel = k;
151 break ;
152 }
153 }
154
155 for (int k = input .cols - 1; k >= 0; k--) {
156 cv :: Scalar intensity = input .at <uchar >(j,k);
157 if (intensity [0] > 0) {
158 right_pixel = k;
159 break ;
160 }
161 }
162
163 // double center = left_pixel + 0.5*(right_pixel - left_pixel);
164 double center = 0.5*(left_pixel + right_pixel);
165 cv :: Scalar intensity = input .at <uchar >(j, int(center));
166 if (intensity [0] > 0) {
167 tempPoints . push_back (cv :: Point2d (center , j));
168 result .at <uchar >(j, int(center)) = 255;
169 }
170 }
171 std :: stringstream ss;
172 ss << " thinned /" << i << ".jpg";
173 std :: string filename ;
174 ss >> filename ;
175 cv :: imwrite (filename . c_str () , result . clone ());
176 IMAGE_POINTS . push_back (tempPoints);
177 THINNED_IMAGES . push_back (result . clone ());
178 }
179 // boost :: chrono :: system_clock :: time_point stop = boost :: chrono ::

system_clock :: now ();
180 // boost :: chrono :: duration < double > duration = stop - start ;
181 // THINNING_TIME = double (duration . count ());
182 std :: cout << " Complete ." << std :: endl;
183 return true ;
184 }
185 } catch (const char *msg) {
186 std :: cerr << " Exception : " << msg << std :: endl;
187 return false ;
188 }
189 }
190
191 double ImageProcessor :: ThresholdMethod_1 (cv :: Mat input)
192 {
193 double min , max , thresholdValue ;
194
195 cv :: minMaxIdx (input , &min , &max);
196 if(max == 255)
197 thresholdValue = 253;
198 else
199 thresholdValue = max - 2;
200
201 return thresholdValue ;
202 }
203
204 double ImageProcessor :: ThresholdMethod_2 (cv :: Mat input)
205 {
206 double min , max , thresholdValue ;
207 cv :: Mat mean , stddev ;
208
209 cv :: meanStdDev (input , mean , stddev);
210 cv :: minMaxIdx (input , &min , &max);
211
212 thresholdValue = mean.at <double >(0 ,0) + 4* stddev .at <double >(0 ,0);
213 if (thresholdValue > max) {
214 thresholdValue = mean.at <double >(0 ,0) + 3.5* stddev .at <double >(0 ,0);

APPENDIX B. SOURCE CODE 137

215 if (thresholdValue > max) {
216 thresholdValue = mean.at <double >(0 ,0) + 3* stddev .at <double >(0 ,0);
217 if (thresholdValue > max) {
218 thresholdValue = mean.at <double >(0 ,0) + 2.5* stddev .at <double >(0 ,0);
219 if (thresholdValue > max) {
220 thresholdValue = mean.at <double >(0 ,0) + 2* stddev .at <double >(0 ,0);
221 if (thresholdValue > max) {
222 thresholdValue = mean.at <double >(0 ,0) + 1.5* stddev .at <double

>(0 ,0);
223 if (thresholdValue > max) {
224 thresholdValue = mean.at <double >(0 ,0) + 1.0* stddev .at <

double >(0 ,0);
225 if (thresholdValue > max) {
226 thresholdValue = mean.at <double >(0 ,0) + 0.5* stddev .at <

double >(0 ,0);
227 }
228 }
229 }
230 }
231 }
232 }
233 }
234 return thresholdValue ;
235 }
236
237 bool ImageProcessor :: readFileNames2List (fs :: path dir)
238 {
239 try {
240 list. clear ();
241 std :: vector <fs :: path > v;
242 copy(fs :: directory_iterator (dir), fs :: directory_iterator () , back_inserter (v));
243 sort(v. begin () , v.end ());
244 for(int i = 0; i < v.size (); i++)
245 list. push_back (v[i]. filename ());
246 return true ;
247 } catch (...) {
248 std :: cerr << " Error in private method : ImageProcessor :: readFileNames2List " <<

std :: endl;
249 return false ;
250 }
251 }

APPENDIX B. SOURCE CODE 138

B.1.5 Laser Scanner Class

Listing B.9: Header file of the laser scanner class.

1 # ifndef LASERSCANNER_HPP
2 # define LASERSCANNER_HPP
3
4 # include " camera .hpp"
5 # include " imageprocessor .hpp"
6 # include " controller .hpp"
7
8 # include <boost / filesystem .hpp >
9

10 # include <pcl/io/ pcd_io .h>
11 # include <pcl/ point_types .h>
12 # include <pcl/ visualization / pcl_visualizer .h>
13
14 # define OPENCV_VERSION 100* CV_MAJOR_VERSION + 10* CV_MINOR_VERSION +

CV_SUBMINOR_VERSION
15
16 const float PI = atan (1) *4;
17
18 struct CameraParameters
19 {
20 int id;
21 double frame_rate , frame_height , frame_width ;
22 };
23
24 class LaserScanner
25 {
26 public :
27 LaserScanner (std :: string sim_data_filename);
28 LaserScanner (CameraParameters params);
29
30 // Getters
31 bool ping ();
32
33 // Setters
34 void setScannerParametersFromFile (std :: string filename);
35 void setSimulationImageDirectory (fs :: path directory);
36
37 // Functions
38 bool calibrate ();
39 void saveCalibrationData (std :: string image_filename = "/home/ivan/MEng/C++/ Shared

Files / result .png",
40 const char * imagePoints_filename = "/home/ivan/MEng/C++/

Shared Files / imagePoints .csv",
41 std :: string calibrationData_filename = "/home/ivan/MEng/C

++/ Shared Files / scanner_calibration_data .xml");
42 bool Scan(int channel = RED_CHANNEL ,
43 int threshold_method = THRESHOLD_METHOD_2);
44 void showPointCloud ();
45 void displayImageBuffers ();
46 void savePointCloudToFile (std :: string filename = "/home/ivan/MEng/C++/ Temp/scan.

pcd");
47
48 private :
49 // Objects
50 bool simulation ;
51 Camera camera ;
52 Controller controller ;
53 ImageProcessor imgProcessor ;
54
55 // Variables
56 std :: vector <cv :: KeyPoint > keypoints ;
57 cv :: Mat frame , calibrationResult ;
58 cv :: Mat cameraMatrix , distCoeffs , rotationMatrix , translationVector , inv_H ;
59 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ;
60
61 // Functions
62 void writeToCsv (const char *filename , std :: vector <cv :: KeyPoint > keypoints);

APPENDIX B. SOURCE CODE 139

63 std :: vector <cv :: Point2f > getImagePointsFrom (std :: vector <cv :: KeyPoint > keypoints);
64 std :: string intToString (int input);
65 void numberKeyPoints (cv :: Mat &image , std :: vector <cv :: KeyPoint > keypoints);
66 std :: vector <cv :: Point3f > readObjectPointsFrom (const char * filename);
67 void readCameraParameters (std :: string filename);
68 void writeScannerParameters (std :: string filename ,
69 cv :: Mat cameraMatrix ,
70 cv :: Mat distCoeffs ,
71 cv :: Mat rotationMatrix ,
72 cv :: Mat translationVector);
73 bool captureCalibrationImage ();
74 bool performCalibration ();
75 double deg2rad (double degrees);
76 cv :: Mat RotateZ (double z_deg);
77 cv :: Mat calculateCoordinate (cv :: Point2d imagePoint);
78 bool calculatePointCloud ();
79 void displayBuffer (std :: string window_name ,
80 std :: vector <cv ::Mat > buffer ,
81 double frame_rate);
82 };
83
84 # endif // LASERSCANNER_HPP

Listing B.10: Implementation of the laser scanner class.

1 # include " laserscanner .hpp"
2
3 LaserScanner :: LaserScanner (std :: string sim_data_filename) : cloud (new pcl :: PointCloud <

pcl :: PointXYZ >)
4 {
5 simulation = true ;
6 cv :: FileStorage fs(sim_data_filename , cv :: FileStorage :: READ);
7 fs[" CameraMatrix "] >> cameraMatrix ;
8 fs[" RotationMatrix "] >> rotationMatrix ;
9 fs[" TranslationVector "] >> translationVector ;

10 fs. release ();
11
12 cv :: Mat B(3,3, CV_64F); // | r12 r13 tx|
13 rotationMatrix .col (1). copyTo (B.col (0)); // B = | r22 r23 ty| , when X = 0
14 rotationMatrix .col (2). copyTo (B.col (1)); // | r32 r33 tz|
15 translationVector .col (0). copyTo (B.col (2));//
16 cv :: Mat H = cameraMatrix *B; // equation #, H = AB
17 inv_H = H.inv (); // Hˆ(-1)
18 }
19
20 LaserScanner :: LaserScanner (CameraParameters params) : cloud (new pcl :: PointCloud <pcl ::

PointXYZ >)
21 {
22 simulation = false ;
23 camera . setId (params .id);
24 camera . setFrameRate (params . frame_rate);
25 camera . setFrameHeight (params . frame_height);
26 camera . setFrameWidth (params . frame_width);
27
28 imgProcessor . loadCalibrationDataFrom (" calibration_data .xml");
29 }
30
31 bool LaserScanner :: ping ()
32 {
33 if (camera .ping () && controller .ping ()) {
34 return true ;
35 } else {
36 return false ;
37 }
38 }
39
40 void LaserScanner :: setScannerParametersFromFile (std :: string filename)
41 {
42 cv :: FileStorage fs(filename , cv :: FileStorage :: READ);
43 fs[" CameraMatrix "] >> cameraMatrix ;
44 fs[" DistCoeffs "] >> distCoeffs ;

APPENDIX B. SOURCE CODE 140

45 fs[" RotationMatrix "] >> rotationMatrix ;
46 fs[" TranslationVector "] >> translationVector ;
47 fs. release ();
48
49 // Calculate inv(H) required for equations #, #, and # here instead of
50 // repeatedly in calulateCoordinate (point (u,v))
51 cv :: Mat B(3,3, CV_64F); // | r12 r13 tx|
52 rotationMatrix .col (1). copyTo (B.col (0)); // B = | r22 r23 ty| , when X = 0
53 rotationMatrix .col (2). copyTo (B.col (1)); // | r32 r33 tz|
54 translationVector .col (0). copyTo (B.col (2));//
55 cv :: Mat H = cameraMatrix *B; // equation #, H = AB
56 inv_H = H.inv (); // Hˆ(-1)
57
58 imgProcessor . setCameraMatrix (cameraMatrix);
59 imgProcessor . setDistortionCoefficients (distCoeffs);
60 return ;
61 }
62
63 void LaserScanner :: setSimulationImageDirectory (boost :: filesystem :: path directory)
64 {
65 imgProcessor . readImagesInDirectory (directory);
66 }
67
68 bool LaserScanner :: calibrate ()
69 {
70 if (! captureCalibrationImage ()) return false ;
71 else if (! performCalibration ()) return false ;
72 else return true ;
73 }
74
75 void LaserScanner :: saveCalibrationData (std :: string image_filename ,
76 const char * imagePoints_filename ,
77 std :: string calibrationData_filename)
78 {
79 cv :: imwrite (image_filename , calibrationResult);
80 writeToCsv (imagePoints_filename , keypoints);
81 writeScannerParameters (calibrationData_filename ,
82 cameraMatrix ,
83 distCoeffs ,
84 rotationMatrix ,
85 translationVector);
86 }
87
88 bool LaserScanner :: Scan(int channel , int threshold_method)
89 {
90 try {
91 if (simulation) {
92 if (! imgProcessor . Threshold (channel , threshold_method)) {
93 throw " Threshold operation failed .";
94 } else if (! imgProcessor .Thin ()) {
95 throw " Thinning operation failed .";
96 } else if (! calculatePointCloud ()) {
97 throw " Point cloud calculation failed .";
98 } else {
99 return true ;

100 }
101 } else {
102 boost :: thread cameraThread (& Camera :: capture , & camera);
103 boost :: thread controllerThread (& Controller :: rotateFull , & controller);
104 while (! controller . sentStartCaptureSignal ());
105 camera . startCapture ();
106 while (controller . sentStartCaptureSignal ());
107 cameraThread . interrupt ();
108 cameraThread .join ();
109 controllerThread .join ();
110 if (! imgProcessor . Undistort (camera)) {
111 throw " Undistort operation failed .";
112 } else if (! imgProcessor . Threshold (channel , threshold_method)) {
113 throw " Threshold operation failed .";
114 } else if (! imgProcessor .Thin ()) {
115 throw " Thinning operation failed .";
116 } else if (! calculatePointCloud ()) {
117 throw " Point cloud calculation failed .";

APPENDIX B. SOURCE CODE 141

118 } else {
119 return true ;
120 }
121 }
122 } catch (const char * msg) {
123 std :: cerr << " Exception : " << msg << std :: endl;
124 return false ;
125 }
126 }
127
128 void LaserScanner :: showPointCloud ()
129 {
130 try {
131 if (cloud -> empty ()) {
132 throw " Cannot display empty point cloud !";
133 } else {
134 std :: cout << " Displaying point cloud ";
135 std :: cout << std :: flush ;
136 pcl :: visualization :: PCLVisualizer viewer ;
137 if (simulation) {
138 viewer . setWindowName (" Point cloud of simulated scan");
139 } else {
140 viewer . setWindowName (" Point cloud of scan");
141 }
142 viewer . addPointCloud <pcl :: PointXYZ >(cloud , " cloud ");
143 viewer .spin ();
144 viewer . close ();
145 std :: cout << " Complete ." << std :: endl;
146 return ;
147 }
148 } catch (const char * msg) {
149 std :: cerr << " Exception : " << msg << std :: endl;
150 return ;
151 }
152 }
153
154 void LaserScanner :: displayImageBuffers ()
155 {
156 double frame_rate ;
157 if (! simulation) {
158 frame_rate = camera . RGB_BUFFER .size ()/ controller . ROTATION_TIME ;
159 displayBuffer (" Captured frames (undistorted)", imgProcessor . UNDISTORTED_IMAGES

, frame_rate);
160 } else {
161 frame_rate = 30;
162 displayBuffer (" Blender simulation ", imgProcessor . UNDISTORTED_IMAGES ,

frame_rate);
163 }
164
165 displayBuffer (" Frames after segmentation ", imgProcessor . THRESHOLD_IMAGES ,

frame_rate);
166 displayBuffer (" Frames after thinning ", imgProcessor . THINNED_IMAGES , frame_rate);
167 }
168
169 void LaserScanner :: savePointCloudToFile (std :: string filename)
170 {
171 try {
172 if (cloud -> empty ()) {
173 throw " Cannot save empty cloud to file";
174 } else {
175 std :: cout << " Saving point cloud ";
176 std :: cout << std :: flush ;
177 pcl :: io :: savePCDFile (filename , * cloud);
178 std :: cout << " Complete ." << std :: endl;
179 return ;
180 }
181 } catch (const char * msg) {
182 std :: cerr << " Exception : " << msg << std :: endl;
183 return ;
184 }
185 }
186

APPENDIX B. SOURCE CODE 142

187 void LaserScanner :: writeToCsv (const char *filename , std :: vector <cv :: KeyPoint >
keypoints)

188 {
189 std :: ofstream fout;
190 fout.open(filename);
191
192 for (int i = 0; i < keypoints .size (); i++) {
193 fout << keypoints [i]. pt.x
194 << ","
195 << keypoints [i]. pt.y
196 << std :: endl;
197 }
198 fout. close ();
199 return ;
200 }
201
202 std :: vector <cv :: Point2f > LaserScanner :: getImagePointsFrom (std :: vector <cv :: KeyPoint >

keypoints)
203 {
204 std :: vector <cv :: Point2f > imagePoints ;
205 for (int i = 0; i < keypoints .size (); i++) {
206 imagePoints . push_back (keypoints [i]. pt);
207 }
208 return imagePoints ;
209 }
210
211 std :: string LaserScanner :: intToString (int input)
212 {
213 std :: ostringstream convert ;
214 convert << input ;
215 return convert .str ();
216 }
217
218 void LaserScanner :: numberKeyPoints (cv :: Mat &image , std :: vector <cv :: KeyPoint > keypoints

)
219 {
220 for (int i = 0; i < keypoints .size (); i++) {
221 cv :: putText (image ,
222 intToString (i + 1) ,
223 keypoints [i]. pt + cv :: Point2f (5 ,5) ,
224 CV_FONT_HERSHEY_PLAIN ,
225 0.7 ,
226 cv :: Scalar (0 ,255 ,0) ,
227 1,
228 8,
229 false);
230 }
231 }
232
233 std :: vector <cv :: Point3f > LaserScanner :: readObjectPointsFrom (const char * filename)
234 {
235 try
236 {
237 std :: vector <cv :: Point3f > objectPoints ;
238 std :: ifstream file(filename);
239 std :: string line;
240 while (std :: getline (file , line))
241 {
242 std :: stringstream ss(line);
243 std :: string X_string , Y_string , Z_string ;
244 float X, Y, Z;
245 while (std :: getline (ss , X_string , ’,’))
246 {
247 std :: stringstream Xs(X_string);
248 Xs >> X;
249
250 std :: getline (ss , Y_string , ’,’);
251 std :: stringstream Ys(Y_string);
252 Ys >> Y;
253
254 std :: getline (ss , Z_string , ’,’);
255 std :: stringstream Zs(Z_string);
256 Zs >> Z;

APPENDIX B. SOURCE CODE 143

257 }
258 objectPoints . push_back (cv :: Point3f (X, Y, Z));
259 }
260 return objectPoints ;
261 }
262 catch (std :: exception &e)
263 {
264 std :: cerr << " Error : " << e.what () << std :: endl;
265 }
266 }
267
268 void LaserScanner :: readCameraParameters (std :: string filename)
269 {
270 cv :: FileStorage fs(filename , cv :: FileStorage :: READ);
271 fs[" CameraMatrix "] >> cameraMatrix ;
272 fs[" DistCoeffs "] >> distCoeffs ;
273 fs. release ();
274 }
275
276 void LaserScanner :: writeScannerParameters (std :: string filename , cv :: Mat cameraMatrix ,

cv :: Mat distCoeffs , cv :: Mat rotationMatrix , cv :: Mat translationVector)
277 {
278 cv :: FileStorage fs(filename , cv :: FileStorage :: WRITE);
279 fs << " CameraMatrix " << cameraMatrix ;
280 fs << " DistCoeffs " << distCoeffs ;
281 fs << " RotationMatrix " << rotationMatrix ;
282 fs << " TranslationVector " << translationVector ;
283 fs. release ();
284 }
285
286 bool LaserScanner :: captureCalibrationImage ()
287 {
288 try {
289 cv :: VideoCapture cap(camera .ID);
290 if (! cap. isOpened ()) {
291 throw " Device not found !";
292 } else {
293 cap.set(CV_CAP_PROP_FRAME_HEIGHT , 600.00) ;
294 cap.set(CV_CAP_PROP_FRAME_WIDTH , 800.00) ;
295 // cv :: Mat frame , result , temp ;
296
297 // Blob detector parameters
298 cv :: SimpleBlobDetector :: Params params ;
299 params . filterByInertia = true ;
300 params . minInertiaRatio = 0.01;
301 params . filterByCircularity = true ;
302 params . minCircularity = 0.01;
303 params . filterByConvexity = true ;
304 params . minConvexity = 0.01;
305
306 #if OPENCV_VERSION == 300 // OpenCV 3.0.0
307 cv :: SimpleBlobDetector detector ;
308 detector . create (params);
309 # else
310 cv :: SimpleBlobDetector detector (params);
311 # endif
312
313
314 while (1) {
315 cap >> frame ;
316 cv :: cvtColor (frame , frame , CV_BGR2GRAY);
317 detector . detect (frame , keypoints);
318 cv :: drawKeypoints (frame , keypoints , calibrationResult , cv :: Scalar

(0 ,0 ,255));
319 numberKeyPoints (calibrationResult , keypoints);
320 cv :: imshow (" Keypoints ", calibrationResult);
321 char c = cv :: waitKey (33);
322 if (c == 27 || keypoints .size () == 23)
323 break ;
324 }
325 cap. release ();
326 cv :: destroyAllWindows ();
327 std :: cout << " Press any to quit ..." << std :: endl;

APPENDIX B. SOURCE CODE 144

328 cv :: imshow (" Final Result ", calibrationResult);
329 cv :: waitKey ();
330 cv :: destroyAllWindows ();
331 return true ;
332 }
333 } catch (const char * msg) {
334 std :: cerr << " Exception : " << msg << std :: endl;
335 return false ;
336 } catch (cv :: Exception &e) {
337 std :: cerr << " Exception : " << e.what () << std :: endl;
338 return false ;
339 }
340 }
341
342 bool LaserScanner :: performCalibration ()
343 {
344 try {
345 // Blob detector parameters (Describes dots to be found in calibration pattern

)
346 cv :: SimpleBlobDetector :: Params params ;
347 params . filterByInertia = true ;
348 params . minInertiaRatio = 0.01;
349 params . filterByCircularity = true ;
350 params . minCircularity = 0.01;
351 params . filterByConvexity = true ;
352 params . minConvexity = 0.01;
353
354 #if OPENCV_VERSION == 300 // OpenCV 3.0.0
355 cv :: SimpleBlobDetector detector ;
356 detector . create (params);
357 # else
358 cv :: SimpleBlobDetector detector (params);
359 # endif
360
361 cv :: Mat temp;
362 readCameraParameters ("/home/ivan/MEng/C++/ Shared Files / calibration_data .xml");
363 cv :: Mat rotationVector (1, 3, CV_64F);
364
365 if (cameraMatrix . empty ()) {
366 throw " Camera Matrix is empty . Perform a camera calibration first .";
367 }
368
369 if (distCoeffs . empty ()) {
370 throw "No distortion coefficients . Perform a camera calibration first .";
371 }
372
373 cv :: undistort (frame , temp , cameraMatrix , distCoeffs);
374 detector . detect (temp , keypoints);
375
376 if (keypoints .size () != 23) {
377 throw "Not enough keypoints found to perform calibration !";
378 } else {
379 std :: vector <cv :: Point3f > objectPoints = readObjectPointsFrom ("/home/ivan/

MEng/C++/ Shared Files / objectPoints .csv");
380 std :: vector <cv :: Point2f > imagePoints = getImagePointsFrom (keypoints);
381
382 // Finds R and t (camera pose w.r.t. object coordinate system , i.e.

calibration)
383 cv :: solvePnP (objectPoints ,
384 imagePoints ,
385 cameraMatrix ,
386 distCoeffs ,
387 rotationVector ,
388 translationVector);
389
390 cv :: Rodrigues (rotationVector , rotationMatrix); // convert rotation vector

to rotation matrix
391 std :: cout << " Calculation complete ." << std :: endl;
392 return true ;
393 }
394 } catch (const char * msg) {
395 std :: cerr << " Exception : " << msg << std :: endl;
396 return false ;

APPENDIX B. SOURCE CODE 145

397 }
398 }
399
400 double LaserScanner :: deg2rad (double degrees)
401 {
402 return degrees *PI /180;
403 }
404
405 cv :: Mat LaserScanner :: RotateZ (double z_deg)
406 {
407 double phi = deg2rad (z_deg);
408 cv :: Mat RotZ = (cv :: Mat_ <double >(3 ,3) << cos(phi), -sin(phi), 0,
409 sin(phi), cos(phi), 0,
410 0, 0, 1);
411 return RotZ;
412 }
413
414 cv :: Mat LaserScanner :: calculateCoordinate (cv :: Point2d imagePoint)
415 {
416 cv :: Mat m = (cv :: Mat_ <double >(3 ,1) << imagePoint .x, imagePoint .y, 1); // m = [u; v

; 1]
417 cv :: Mat q = inv_H *m; // equation #
418 double s = 1/q.at <double >(2 ,0); // equation #
419 double X = 0; // laser plane coincident with YZ - plane , X = 0
420 double Y = s*q.at <double >(0 ,0); // equation #
421 double Z = s*q.at <double >(1 ,0); // equation #
422
423 cv :: Mat M = (cv :: Mat_ <double >(3 ,1) << X, Y, Z);
424 return M; // return M = [X=0; Y; Z]
425 }
426
427 bool LaserScanner :: calculatePointCloud ()
428 {
429 if (imgProcessor . IMAGE_POINTS . empty ()) {
430 std :: cerr << " There are no image points to calculate a point cloud from!" <<

std :: endl;
431 return false ;
432 } else {
433 std :: cout << " Calculating point cloud ";
434 std :: cout << std :: flush ;
435
436 // boost :: chrono :: system_clock :: time_point start = boost :: chrono :: system_clock

:: now ();
437 for(int i = 0; i < imgProcessor . IMAGE_POINTS .size (); i++)
438 {
439 cv :: Mat RotZ;
440 if (simulation) {
441 RotZ = RotateZ (-360.0*i/ imgProcessor . IMAGE_POINTS .size ());
442 } else {
443 RotZ = RotateZ ((-360.0) *(camera . TIME_STAMPS [i]- camera . TIME_STAMPS [0])/

controller . ROTATION_TIME);
444 }
445 for(int j = 0; j < imgProcessor . IMAGE_POINTS .at(i).size (); j++)
446 {
447 cv :: Mat Point = calculateCoordinate (imgProcessor . IMAGE_POINTS .at(i).at

(j));
448 cv :: Mat Result = RotZ* Point ;
449 if (simulation && Result .at <double >(2) > 2.5) {
450 cloud -> push_back (pcl :: PointXYZ (Result .at <double >(0) /1000 , //

divide by 1000 to go from milimeters to meters
451 Result .at <double >(1) /1000 , //
452 Result .at <double >(2) /1000)); //

(base unit for Point Cloud
Library is m)

453 }
454 if (! simulation) {
455 cloud -> push_back (pcl :: PointXYZ (Result .at <double >(0) /1000 , //

divide by 1000 to go from milimeters to meters
456 Result .at <double >(1) /1000 , //
457 Result .at <double >(2) /1000)); //

(base unit for Point Cloud
Library is m)

458 }

APPENDIX B. SOURCE CODE 146

459 Point . release ();
460 Result . release ();
461 }
462 RotZ. release ();
463 }
464 // boost :: chrono :: system_clock :: time_point stop = boost :: chrono :: system_clock ::

now ();
465 // boost :: chrono :: duration < double > duration = stop - start ;
466 // CALCULATION_TIME = double (duration . count ());
467 std :: cout << " Complete ." << std :: endl;
468 return true ;
469 }
470 }
471
472 void LaserScanner :: displayBuffer (std :: string window_name ,
473 std :: vector <cv ::Mat > buffer ,
474 double frame_rate)
475 {
476 cv :: namedWindow (window_name , CV_WINDOW_AUTOSIZE);
477 cv :: moveWindow (window_name , 10, 10);
478 for (int i = 0; i < buffer .size (); ++i) {
479 cv :: imshow (window_name , buffer [i]);
480 cv :: waitKey (int (1000/ frame_rate));
481 }
482 cv :: destroyWindow (window_name);
483 }

APPENDIX B. SOURCE CODE 147

B.1.6 Arduino Uno Controller

Listing B.11: Code for the Areduino Uno Controller.

1 char message = 0;
2 int stepPin = 12;
3 int directionPin = 11;
4 int sleepPin = 10;
5 int laserPin = 9;
6 int laserStatus = 0;
7 int halfPeriod = 4; // milliseconds
8 int fullRotation = 1600; // steps @ 8x microstepping
9

10
11 void setup ()
12 {
13 Serial . begin (9600) ;
14 pinMode (stepPin , OUTPUT);
15 pinMode (directionPin , OUTPUT);
16 pinMode (sleepPin , OUTPUT);
17 pinMode (laserPin , OUTPUT);
18
19 digitalWrite (stepPin , LOW);
20 digitalWrite (directionPin , LOW);
21 digitalWrite (sleepPin , LOW);
22 digitalWrite (laserPin , LOW);
23 }
24
25 void loop ()
26 {
27 if (Serial . available () > 0) {
28 message = Serial .read ();
29 }
30
31 if (message == ’0’) {
32 toggleLaser ();
33 clearMessage ();
34 }
35 if (message == ’1’) {
36 replyToPing ();
37 clearMessage ();
38 }
39 if (message == ’2’) {
40 rotateStepper ();
41 clearMessage ();
42 }
43 }
44
45 void toggleLaser ()
46 {
47 if (laserStatus == 0) {
48 digitalWrite (laserPin , HIGH);
49 laserStatus = 1;
50 } else {
51 digitalWrite (laserPin , LOW);
52 laserStatus = 0;
53 }
54 return ;
55 }
56
57 void clearMessage ()
58 {
59 message = ’ ’;
60 return ;
61 }
62
63 void replyToPing ()
64 {
65 delay (200) ;
66 Serial . println (" Received ping");
67 return ;

APPENDIX B. SOURCE CODE 148

68 }
69
70 void rotateStepper ()
71 {
72 digitalWrite (sleepPin , HIGH);
73 digitalWrite (laserPin , HIGH);
74 delay (5000) ; // Give camera time to adjust to ambient light conditions .
75 Serial . println (" Stepper started "); // Tells PC to start capturing images .
76 for (int i = 0; i < fullRotation ; i++) {
77 digitalWrite (stepPin , HIGH);
78 delay (halfPeriod);
79 digitalWrite (stepPin , LOW);
80 delay (halfPeriod);
81 }
82 Serial . println (" Stepper complete ");
83 delay (500) ;
84 digitalWrite (sleepPin , LOW);
85 digitalWrite (laserPin , LOW);
86 laserStatus = 0;
87 return ;
88 }

APPENDIX B. SOURCE CODE 149

B.1.7 3D Laser Scanner: main.cpp

Listing B.12: Main file for 3D laser scanner.

1 # include " laserscanner .hpp"
2 # include <boost / program_options .hpp >
3
4 int main(int argc , char *argv [])
5 {
6 int camera_id = 0;
7 int threshold_method = 2;
8 bool show_point_cloud = false ;
9 bool show_buffers = false ;

10 bool sim = false ;
11 fs :: path sim_images_dir = "/home/ivan/MEng/ Blender / Images ";
12
13 boost :: program_options :: options_description description ("\ nUsage : ./3d- scanner [

options]\n\ nAllowed options ");
14 description . add_options ()
15 ("help", " produces this help information ")
16 ("simulate - scanner ", " Simulates a 3d scanner (specify path to images with

--image -dir")
17 ("image -dir", boost :: program_options :: value <fs :: path >(& sim_images_dir), "

Specify input image directory for scanner simulation ")
18 ("cam -id", boost :: program_options :: value <int >(& camera_id), " Camera ID (

default =0)")
19 (" thresh ", boost :: program_options :: value <int >(& threshold_method),
20 " Threshold method (1 or 2, default =2)")
21 ("show - cloud ", "Show point cloud ")
22 ("show - buffers ", "Show image buffers ")
23 ("calibrate - camera ", " Calibrate the scanner ’s camera ")
24 ("calibrate - scanner ", " Calibrate the scanner (Perform after calibrating

camera)")
25 ;
26
27 boost :: program_options :: variables_map vm;
28 boost :: program_options :: store (boost :: program_options :: parse_command_line (argc ,

argv , description), vm);
29 boost :: program_options :: notify (vm);
30
31 if (vm. count ("help")) {
32 std :: cout << description << std :: endl;
33 return 0;
34 }
35
36 if (vm. count ("calibrate - camera ")) {
37 Camera camera (camera_id , 30, 600 , 800);
38 if (! camera . calibrate ()) {
39 return -1;
40 } else {
41 camera . saveCalibrationData ();
42 return 0;
43 }
44 }
45
46 if (vm. count ("calibrate - scanner ")) {
47 CameraParameters params ;
48 params .id = camera_id ;
49 params . frame_rate = 30;
50 params . frame_height = 600;
51 params . frame_width = 800;
52 LaserScanner scanner (params);
53 if (! scanner . calibrate ()) {
54 return -1;
55 } else {
56 scanner . saveCalibrationData ();
57 return 0;
58 }
59 }
60 if (vm. count (("simulate - scanner "))) {
61 sim = true ;

APPENDIX B. SOURCE CODE 150

62 }
63
64 if (vm. count ("show - cloud ")) {
65 show_point_cloud = true ;
66 }
67
68 if (vm. count ("show - buffers ")) {
69 show_buffers = true ;
70 }
71
72 if (sim) {
73 std :: cout << " Running scanner simulation . . ." << std :: endl;
74 if (! fs :: exists (sim_images_dir)) {
75 std :: cerr << " Image directory does not exist !" << std :: endl;
76 return -1;
77 }
78
79 if (sim_images_dir . empty ()) {
80 std :: cerr << " Image directory is empty !" << std :: endl;
81 return -1;
82 }
83 LaserScanner scanner ("/home/ivan/MEng/C++/ Shared Files / scanner_sim_data .xml");
84 scanner . setSimulationImageDirectory (sim_images_dir);
85 scanner .Scan(RED_CHANNEL , threshold_method);
86 if (show_buffers) {
87 scanner . displayImageBuffers ();
88 }
89 if (show_point_cloud) {
90 scanner . showPointCloud ();
91 }
92 scanner . savePointCloudToFile ("/home/ivan/MEng/C++/ Temp/scan.pcd");
93 return 0;
94 } else {
95 CameraParameters params ;
96 params .id = camera_id ;
97 params . frame_rate = 30;
98 params . frame_height = 600;
99 params . frame_width = 800;

100 LaserScanner scanner (params);
101
102 if (! scanner .ping ()) {
103 return -1;
104 } else {
105 scanner . setScannerParametersFromFile ("/home/ivan/MEng/C++/ Shared Files /

scanner_calibration_data .xml");
106 }
107 if (! scanner .Scan(RED_CHANNEL , threshold_method)) {
108 return -1;
109 }
110 if (show_buffers) {
111 scanner . displayImageBuffers ();
112 }
113 if (show_point_cloud) {
114 scanner . showPointCloud ();
115 }
116 scanner . savePointCloudToFile ("/home/ivan/MEng/C++/ Temp/scan.pcd");
117 return 0;
118 }
119 }

APPENDIX B. SOURCE CODE 151

B.2 Object Recognition Related Code

B.2.1 Data Generation for Training and Testing

Listing B.13: Main file for data generation

1 # include <floatfann .h>
2 # include <fann_cpp .h>
3 # include <boost / chrono .hpp >
4 # include <boost / random .hpp >
5 # include <cmath >
6 # include <ctime >
7 # include <Eigen /Core >
8 # include <fstream >
9 # include <pcl/ common / transforms .h>

10 # include <pcl/ point_types .h>
11 # include <pcl/io/ pcd_io .h>
12 # include <pcl/ filters / voxel_grid .h>
13 # include <pcl/ filters / filter .h>
14 # include <pcl/ features /vfh.h>
15 # include <pcl/ features / normal_3d .h>
16 # include <pcl/ kdtree / kdtree_flann .h>
17 # include <pcl/ surface /mls.h>
18 # include <pcl/ visualization / pcl_visualizer .h>
19 # include <pcl/ visualization / histogram_visualizer .h>
20
21 const float PI = atan (1.0) *4;
22
23 boost :: random :: mt19937 generator (std :: time (0));
24
25 float noise (void)
26 {
27 boost :: random :: uniform_real_distribution <float > num (-0.0005f, 0.0005 f);
28 return num(generator);
29 }
30
31 float randomAngle (void)
32 {
33 boost :: random :: uniform_real_distribution <float > num(-PI , PI);
34 return num(generator);
35 }
36
37 float randomDist (void)
38 {
39 boost :: random :: uniform_real_distribution <float > num (-0.010f, 0.010 f);
40 return num(generator);
41 }
42
43 void write_data2File (const char *filename ,
44 std :: vector < std :: vector <float > > inputs ,
45 std :: vector < std :: vector <float > > targets)
46 {
47 std :: ofstream fout;
48 fout.open(filename);
49 fout << inputs .size () << " " << inputs [0]. size () << " " << targets [0]. size ()
50 << std :: endl;
51
52 for(int i = 0; i < inputs .size (); i++)
53 {
54 for(int j = 0; j < inputs [i]. size (); j++)
55 {
56 fout << inputs [i][j] << " ";
57 }
58 fout << std :: endl;
59
60 for(int j = 0; j < targets [i]. size (); j++)
61 {
62 fout << targets [i][j] << " ";

APPENDIX B. SOURCE CODE 152

63 }
64 fout << std :: endl;
65 }
66 fout. close ();
67 return ;
68 }
69
70 void VoxelGrid (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
71 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr & filtered_cloud)
72 {
73 pcl :: VoxelGrid <pcl :: PointXYZ > sor;
74 sor. setInputCloud (cloud);
75 sor. setLeafSize (0.001f, 0.001f, 0.001 f);
76 sor. filter (* filtered_cloud);
77 return ;
78 }
79
80 void NormalEstimate (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
81 pcl :: PointCloud <pcl :: PointNormal > & CloudNormals)
82 {
83 pcl :: NormalEstimation <pcl :: PointXYZ , pcl :: Normal > ne;
84 ne. setInputCloud (cloud);
85 pcl :: search :: KdTree <pcl :: PointXYZ >:: Ptr
86 tree (new pcl :: search :: KdTree <pcl :: PointXYZ > ());
87 ne. setSearchMethod (tree);
88 pcl :: PointCloud <pcl :: Normal >:: Ptr cloud_normals (new pcl :: PointCloud <pcl :: Normal >)

;
89 ne. setRadiusSearch (0.006) ;
90 ne. compute (* cloud_normals);
91
92 pcl :: concatenateFields (* cloud , * cloud_normals , CloudNormals);
93
94 std :: vector <int > indices ;
95 pcl :: removeNaNFromPointCloud (CloudNormals , CloudNormals , indices);
96 return ;
97 }
98
99 void ViewpointFeatureHistogram (pcl :: PointCloud <pcl :: PointNormal > mls_points ,

100 pcl :: PointCloud <pcl :: VFHSignature308 >:: Ptr &vfhs)
101 {
102 pcl :: VFHEstimation <pcl :: PointNormal , pcl :: PointNormal , pcl :: VFHSignature308 > vfh;
103 vfh. setInputCloud (mls_points . makeShared ());
104 vfh. setInputNormals (mls_points . makeShared ());
105 pcl :: search :: KdTree <pcl :: PointNormal >:: Ptr
106 tree (new pcl :: search :: KdTree <pcl :: PointNormal >);
107 vfh. setSearchMethod (tree);
108 vfh. setNormalizeBins (true);
109 vfh. compute (* vfhs);
110 return ;
111 }
112
113 void addRandomNoise (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
114 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr & noisy_cloud)
115 {
116
117 noisy_cloud -> clear ();
118 noisy_cloud -> resize (cloud ->size ());
119 for(int i = 0; i < cloud -> points .size (); i++)
120 {
121 noisy_cloud -> points [i].x = cloud -> points [i].x + noise ();
122 noisy_cloud -> points [i].y = cloud -> points [i].y + noise ();
123 noisy_cloud -> points [i].z = cloud -> points [i].z + noise ();
124 }
125 return ;
126 }
127
128 void addRandomTransRot (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr & cloud)
129 {
130 float angle_Z = randomAngle ();
131 float x_dist = randomDist ();
132 float y_dist = randomDist ();
133 Eigen :: Matrix4f TransRot ;
134 TransRot << cos(angle_Z), -sin(angle_Z), 0, x_dist ,

APPENDIX B. SOURCE CODE 153

135 sin(angle_Z), cos(angle_Z), 0, y_dist ,
136 0, 0, 1, 0,
137 0, 0, 0, 1;
138
139 pcl :: transformPointCloud (* cloud , *cloud , TransRot);
140 return ;
141 }
142
143 std :: vector <int > getParams (int argc , char *argv [])
144 {
145 std :: vector <int > result ; result . clear ();
146
147 if(argc < 2)
148 {
149 result . push_back (100) ; // num_data [0]
150 result . push_back (135) ; // num_inputs [1]
151 result . push_back (8); // num_outputs [3]
152 }
153 else
154 {
155 for(int i = 1; i < argc; i++)
156 {
157 std :: istringstream iss(argv[i]);
158 float val;
159 if(iss >> val) result . push_back (val);
160 }
161 }
162 return result ;
163 }
164
165 void saveData (const char * filename , std :: vector < std :: vector <float > > data)
166 {
167 std :: cout << " Saving " << filename << " ..." << std :: endl;
168 int rows = data.size ();
169 int cols = data [0]. size ();
170
171 std :: ofstream fout;
172 fout.open(filename);
173
174 for(int i = 0; i < rows; i++)
175 {
176 for(int j = 0; j < cols; j++)
177 {
178 fout << data[i][j] << " ";
179 }
180 fout << "\n";
181 }
182 fout. close ();
183 std :: cout << " Saving complete ." << std :: endl;
184 return ;
185 }
186
187 int main (int argc , char ** argv)
188 {
189 /* Declare and initialize variables ************************************** */
190 std :: vector <int > arguments = getParams (argc , argv);
191 const unsigned int num_data = arguments [0];
192 const unsigned int num_inputs = arguments [1];
193 const unsigned int num_outputs = arguments [2];
194
195 // Allocate memory for point clouds
196 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud1 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;
197 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud2 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;
198 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud3 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;
199 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud4 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;
200 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud5 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;
201 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud6 (new pcl :: PointCloud <pcl :: PointXYZ > ())

;

APPENDIX B. SOURCE CODE 154

202 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud7 (new pcl :: PointCloud <pcl :: PointXYZ > ())
;

203 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud8 (new pcl :: PointCloud <pcl :: PointXYZ > ())
;

204
205 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud1a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
206 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud2a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
207 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud3a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
208 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud4a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
209 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud5a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
210 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud6a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
211 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud7a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
212 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud8a (new pcl :: PointCloud <pcl :: PointXYZ > ()

);
213
214 // Load point clouds from file into memory
215 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object1 .pcd", *

cloud1);
216 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object2 .pcd", *

cloud2);
217 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object3 .pcd", *

cloud3);
218 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object4 .pcd", *

cloud4);
219 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object5 .pcd", *

cloud5);
220 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object6 .pcd", *

cloud6);
221 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object7 .pcd", *

cloud7);
222 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object8 .pcd", *

cloud8);
223
224 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object1a .pcd", *

cloud1a);
225 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object2a .pcd", *

cloud2a);
226 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object3a .pcd", *

cloud3a);
227 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object4a .pcd", *

cloud4a);
228 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object5a .pcd", *

cloud5a);
229 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object6a .pcd", *

cloud6a);
230 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object7a .pcd", *

cloud7a);
231 pcl :: io :: loadPCDFile ("/home/ivan/ Applications /bin/ TrainingObjects / Object8a .pcd", *

cloud8a);
232
233 // Accumulating clouds
234 std :: vector < pcl :: PointCloud < pcl :: PointXYZ >:: Ptr > clouds ;
235 clouds . push_back (cloud1);
236 clouds . push_back (cloud2);
237 clouds . push_back (cloud3);
238 clouds . push_back (cloud4);
239 clouds . push_back (cloud5);
240 clouds . push_back (cloud6);
241 clouds . push_back (cloud7);
242 clouds . push_back (cloud8);
243
244 clouds . push_back (cloud1a);
245 clouds . push_back (cloud2a);
246 clouds . push_back (cloud3a);
247 clouds . push_back (cloud4a);
248 clouds . push_back (cloud5a);

APPENDIX B. SOURCE CODE 155

249 clouds . push_back (cloud6a);
250 clouds . push_back (cloud7a);
251 clouds . push_back (cloud8a);
252 std :: cout << clouds .size () << std :: endl;
253 /* ** */
254
255 /* Generate input vectors from point clouds ****************************** */
256 std :: cout << " Generating input values ...\t" << std :: flush ;
257 std :: vector < std :: vector <float > > training_inputs ;
258 for(int i = 0; i < num_data ; i++)
259 {
260 for(int j = 0; j < 2* num_outputs ; j++)
261 {
262 //
263 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr
264 reduced_cloud (new pcl :: PointCloud <pcl :: PointXYZ > ());
265 pcl :: PointCloud <pcl :: PointNormal > point_normal ;
266 pcl :: PointCloud <pcl :: VFHSignature308 >:: Ptr
267 vfhs (new pcl :: PointCloud <pcl :: VFHSignature308 > ());
268 std :: vector <float > signature ;
269
270 //
271 if(i == 0) // don ’t add noise
272 {
273 VoxelGrid (clouds [j], reduced_cloud);
274 NormalEstimate (reduced_cloud , point_normal);
275 }
276 else // add noise
277 {
278 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr
279 noisy_cloud (new pcl :: PointCloud <pcl :: PointXYZ > ());
280 addRandomNoise (clouds [j], noisy_cloud);
281 VoxelGrid (noisy_cloud , reduced_cloud);
282 addRandomTransRot (reduced_cloud);
283 NormalEstimate (reduced_cloud , point_normal);
284 }
285
286 ViewpointFeatureHistogram (point_normal , vfhs);
287 for(int k = 0; k < num_inputs ; k++)
288 {
289 signature . push_back (vfhs -> points [0]. histogram [k]);
290 }
291 training_inputs . push_back (signature);
292 }
293 }
294 std :: cout << " Complete ." << std :: endl;
295 /* ** */
296
297 /* Generate corresponding target values ********************************** */
298 std :: cout << " Generating target values ...\t" << std :: flush ;
299 std :: vector < std :: vector <float > > training_targets ;
300 int placeholder = 0;
301 for(int i = 0; i < 2* num_data * num_outputs ; i++)
302 {
303 std :: vector <float > targets ; targets . clear ();
304 for(int j = 0; j < num_outputs ; j++)
305 {
306 if(j == placeholder) targets . push_back (1.0f);
307 else targets . push_back (-1.0f);
308 }
309 training_targets . push_back (targets);
310 placeholder ++;
311 if(placeholder == num_outputs)
312 placeholder = 0;
313 else continue ;
314 }
315 std :: cout << " Complete ." << std :: endl;
316 /* ** */
317
318 /* Write data to file ** */
319 std :: cout << " Writing data to file ...\t" << std :: flush ;
320 write_data2File (" training .data", training_inputs , training_targets);
321 std :: cout << " Complete ." << std :: endl;

APPENDIX B. SOURCE CODE 156

322 /* ** */
323 return 0;
324 }

APPENDIX B. SOURCE CODE 157

B.2.2 Training and Testing

Listing B.14: Main file for neural network training .

1 # include <ctime >
2 # include <boost / chrono .hpp >
3 # include <boost / thread .hpp >
4 # include <floatfann .h>
5 # include <fann_cpp .h>
6 # include <iostream >
7 # include <fstream >
8 # include <sstream >
9 # include <vector >

10 # include <cmath >
11
12 void writeMSE_Errors (const char * filename , std :: vector <float > TrainingMSE ,
13 std :: vector <float > TestingMSE)
14 {
15 std :: ofstream fout;
16 fout.open(filename);
17 fout << " Training Errors , Testing Errors " << std :: endl;
18 for(int i = 0; i < TrainingMSE .size (); i++)
19 {
20 fout << TrainingMSE [i] << "," << TestingMSE [i] << std :: endl;
21 }
22 fout. close ();
23 return ;
24 }
25
26 void writeTrainingDuration (const char * filename , float MSE , int epochs ,
27 double training_duration)
28 {
29 std :: ofstream fout;
30 fout.open(filename);
31 fout << MSE << " " << epochs << " " << training_duration << std :: endl;
32 fout. close ();
33 return ;
34 }
35
36 std :: vector <float > getParams (int argc , char *argv [])
37 {
38 std :: vector <float > result ; result . clear ();
39
40 if(argc < 2) // Default parameters
41 {
42 result . push_back (135.0 f); // num_input [0]
43 result . push_back (10.0 f); // num_hidden [1]
44 result . push_back (8.0f); // num_output [2]
45 result . push_back (0.15 f); // learning_rate [3]
46 result . push_back (0.1f); // learning_momentum [4]
47 result . push_back (1000) ; // epochs [5]
48 result . push_back (0.0005 f); // desired_MSE [6]
49 }
50 else
51 {
52 for(int i = 1; i < argc; i++)
53 {
54 std :: istringstream iss(argv[i]);
55 float val;
56 if(iss >> val) result . push_back (val);
57 }
58 }
59 return result ;
60 }
61
62 int main(int argc , char *argv [])
63 {
64 /* Declare and initialise some variables ********************************* */
65 boost :: chrono :: system_clock :: time_point start ;
66 boost :: chrono :: system_clock :: time_point stop;
67 boost :: chrono :: duration <double > training_duration ;// = stop - start ;

APPENDIX B. SOURCE CODE 158

68 std :: vector <float > arguments = getParams (argc , argv);
69 const unsigned int num_layers = 3;
70 const unsigned int num_input = (int) arguments [0];
71 const unsigned int num_hidden = (int) arguments [1];
72 const unsigned int num_output = (int) arguments [2];
73 const float learning_rate = arguments [3];
74 const float learning_momentum = arguments [4];
75 const float desiredMSE = arguments [6];
76 const unsigned int max_iterations = arguments [5];
77 const float desiredGradient = 0.000001 f;
78 std :: vector <float > TrainMSE ; TrainMSE . clear ();
79 std :: vector <float > TestMSE ; TestMSE . clear ();
80 /* ** */
81
82 /* Create Artificial Neural Network ************************************** */
83 FANN :: neural_net ANN;
84 ANN. create_standard (num_layers , num_input , num_hidden , num_output);
85 ANN. set_learning_rate (learning_rate);
86 ANN. set_learning_momentum (learning_momentum);
87 ANN. set_activation_steepness_hidden (1.0) ;
88 ANN. set_activation_steepness_output (1.0) ;
89 ANN. set_activation_function_hidden (FANN :: SIGMOID_SYMMETRIC);
90 ANN. set_activation_function_output (FANN :: SIGMOID_SYMMETRIC);
91 ANN. set_training_algorithm (FANN :: TRAIN_BATCH);
92 /* ** */
93
94 /* Prepare training and testing data ************************************* */
95 //
96 FANN :: training_data training_data ;
97 training_data . read_train_from_file (" training .data");
98 training_data . shuffle_train_data ();
99 FANN :: training_data testing_data ;

100 testing_data . read_train_from_file (" testing .data");
101 testing_data . shuffle_train_data ();
102 /* ** */
103
104 /* Perform training and cross validation ********************************* */
105 std :: cout << " Commence ANN training ...\t" << std :: flush ;
106 //
107 start = boost :: chrono :: system_clock :: now ();
108 int gradientCount = 0;
109 int mseDiffCount = 0;
110 bool minimumGradient = false ;
111 bool minimumMSE = false ;
112 bool maximumEpochs = false ;
113 bool overfitting = false ;
114 ANN. randomize_weights (-0.5f, 0.5f);
115 ANN. train_epoch (training_data);
116 float trainingMSE = ANN. get_MSE ();
117 float testingMSE = ANN. test_data (testing_data);
118 float MSEdiff = std :: abs(testingMSE - trainingMSE);
119 float previousMSEdiff = MSEdiff ;
120 float previousMSE = testingMSE ;
121 float gradient ;
122 TrainMSE . push_back (trainingMSE);
123 TestMSE . push_back (testingMSE);
124 int epoch = 1;
125 for(int i = 1; i < max_iterations ; i++)
126 {
127 epoch ++;
128 ANN. train_epoch (training_data);
129 trainingMSE = ANN. get_MSE ();
130 testingMSE = ANN. test_data (testing_data);
131 gradient = std :: abs(testingMSE - previousMSE);
132 MSEdiff = std :: abs(testingMSE - trainingMSE);
133 previousMSE = testingMSE ;
134 TrainMSE . push_back (trainingMSE);
135 TestMSE . push_back (testingMSE);
136
137 if(MSEdiff > previousMSEdiff)
138 {
139 ++ mseDiffCount ;
140 previousMSEdiff = MSEdiff ;

APPENDIX B. SOURCE CODE 159

141 }
142 else
143 {
144 mseDiffCount = 0;
145 previousMSEdiff = MSEdiff ;
146 }
147
148 if(gradient <= desiredGradient)
149 {
150 ++ gradientCount ;
151 }
152 else
153 {
154 gradientCount = 0;
155 }
156
157 if(gradientCount == 20)
158 {
159 minimumGradient = true ;
160 break ;
161 }
162 else if(testingMSE < desiredMSE)
163 {
164 minimumMSE = true ;
165 break ;
166 }
167 else if(mseDiffCount == 20)
168 {
169 overfitting = true ;
170 break ;
171 }
172 else continue ;
173 }
174 if(epoch == max_iterations) maximumEpochs = true ;
175 stop = boost :: chrono :: system_clock :: now ();
176 training_duration = stop - start ;
177 std :: cout << " Complete ." << std :: endl;
178 /* ** */
179
180 /* Save ANN and MSEs *** */
181 std :: cout << " Saving ANN and MSEs ...\t\t" << std :: flush ;
182 ANN.save("ANN.net");
183 writeMSE_Errors (" Errors .csv", TrainMSE , TestMSE);
184 writeTrainingDuration (" training_time .csv", trainingMSE ,
185 epoch , double (training_duration . count ()));
186 std :: cout << " Complete ." << std :: endl;
187 /* ** */
188
189 /* Exit report *** */
190 std :: cout << " Training terminating condition : " << std :: flush ;
191 if(maximumEpochs)
192 std :: cout << " Reached maximum epochs ." << std :: endl;
193 else if(minimumGradient)
194 std :: cout << " Achieved minimum MSE gradient ." << std :: endl;
195 else if(overfitting)
196 std :: cout << " Overfitting detected ." << std :: endl;
197 else
198 std :: cout << " Achieved desired MSE." << std :: endl;
199 std :: cout << " Training time: "
200 << double (training_duration . count ())
201 << " seconds " << std :: endl;
202 /* ** */
203 return 0;
204 }

Listing B.15: Main file for neural network validation.

1 # include <cstdio >
2 # include <floatfann .h>
3 # include <fann_cpp .h>
4 # include <fstream >

APPENDIX B. SOURCE CODE 160

5 # include <iostream >
6 # include <iomanip >
7 # include <string >
8 # include <vector >
9

10 int myRound (float val)
11 {
12 int result ;
13 if(val < 0) result = -1;
14 else result = 1;
15 return result ;
16 }
17
18 float class_ACC (int tp , int tn , int fp , int fn)
19 {
20 return (float) 100*(tp + tn)/(tp + tn + fp +fn);
21 }
22
23 float class_PPV (int tp , int fp)
24 {
25 if(tp == 0) return 0.0f;
26 else
27 return (float) 100*(tp)/(tp + fp);
28 }
29
30 float class_NPV (int tn , int fn)
31 {
32 if(tn == 0) return 0.0f;
33 else
34 return (float) 100*(tn)/(tn + fn);
35 }
36
37 float class_TPR (int tp , int fn)
38 {
39 if(tp == 0) return 0.0f;
40 else
41 return (float) 100*(tp)/(tp + fn);
42 }
43
44 float class_SPC (int tn , int fp)
45 {
46 if(tn == 0) return 0.0f;
47 else
48 return (float) 100*(tn)/(tn + fp);
49 }
50
51 float network_ACC (std :: vector <int > tp , std :: vector <int > tn ,
52 std :: vector <int > fp , std :: vector <int > fn)
53 {
54 float sum = 0;
55 int I = tp.size ();
56 for(int i = 0; i < I; i++)
57 {
58 sum += class_ACC (tp[i], tn[i], fp[i], fn[i]);
59 }
60 return sum/I;
61 }
62
63 float network_PPV (std :: vector <int > tp ,std :: vector <int > fp)
64 {
65 float sum = 0;
66 int I = tp.size ();
67 for(int i = 0; i < I; i++)
68 {
69 sum += class_PPV (tp[i], fp[i]);
70 }
71 return sum/I;
72 }
73
74 float network_NPV (std :: vector <int > tn ,std :: vector <int > fn)
75 {
76 float sum = 0;
77 int I = tn.size ();

APPENDIX B. SOURCE CODE 161

78 for(int i = 0; i < I; i++)
79 {
80 sum += class_PPV (tn[i], fn[i]);
81 }
82 return sum/I;
83 }
84
85 float network_TPR (std :: vector <int > tp ,std :: vector <int > fn)
86 {
87 float sum = 0;
88 int I = tp.size ();
89 for(int i = 0; i < I; i++)
90 {
91 sum += class_TPR (tp[i], fn[i]);
92 }
93 return sum/I;
94 }
95
96 float network_SPC (std :: vector <int > tn ,std :: vector <int > fp)
97 {
98 float sum = 0;
99 int I = tn.size ();

100 for(int i = 0; i < I; i++)
101 {
102 sum += class_SPC (tn[i], fp[i]);
103 }
104 return sum/I;
105 }
106
107 void writeResults_LaTeX (std :: vector <int > tp ,
108 std :: vector <int > tn ,
109 std :: vector <int > fp ,
110 std :: vector <int > fn ,
111 std :: vector <float > acc ,
112 std :: vector <float > ppv ,
113 std :: vector <float > npv ,
114 std :: vector <float > tpr ,
115 std :: vector <float > spc ,
116 int TP , int TN , int FP , int FN ,
117 float ACC , float PPV , float NPV , float TPR , float SPC ,
118 std :: vector <float > MSE_epochs_time ,
119 const char * filename)
120 {
121 int I = acc.size ();
122 std :: ofstream fout;
123 fout.open(filename);
124
125 fout << "Object ,TP ,TN ,FP ,FN ,ACC ,PPV ,NPV ,TPR ,SPC ,MSE ,Epochs , Training Time" << std ::

endl;
126
127 for(int i = 0; i < I; i++)
128 {
129 fout << i+1 << "," << std :: setprecision (4)
130 << tp[i] << ","
131 << tn[i] << ","
132 << fp[i] << ","
133 << fn[i] << ","
134 << acc[i] << ","
135 << ppv[i] << ","
136 << npv[i] << ","
137 << tpr[i] << ","
138 << spc[i] << " ,-,-,-" << std :: endl;
139 }
140 fout << " Total :,"
141 << TP << ","
142 << TN << ","
143 << FP << ","
144 << FN << ","
145 << ACC << ","
146 << PPV << ","
147 << NPV << ","
148 << TPR << ","
149 << SPC << ","

APPENDIX B. SOURCE CODE 162

150 << MSE_epochs_time [0] << ","
151 << MSE_epochs_time [1] << ","
152 << MSE_epochs_time [2] << std :: endl;
153 fout. close ();
154 return ;
155 }
156
157 void readCSV (const char * filename , std :: vector <float > & MSE_epochs_time)
158 {
159 MSE_epochs_time . clear ();
160 std :: ifstream fin;
161 fin.open(filename);
162 float value ;
163 while (! fin.eof ())
164 {
165 fin >> value ;
166 MSE_epochs_time . push_back (value);
167 }
168 fin. close ();
169 return ;
170 }
171
172 void writeResults (std :: vector <int > tp ,
173 std :: vector <int > tn ,
174 std :: vector <int > fp ,
175 std :: vector <int > fn ,
176 std :: vector <float > acc ,
177 std :: vector <float > ppv ,
178 std :: vector <float > npv ,
179 std :: vector <float > tpr ,
180 std :: vector <float > spc ,
181 int TP , int TN , int FP , int FN ,
182 float ACC , float PPV , float NPV , float TPR , float SPC ,
183 std :: vector <float > MSE_epochs_time ,
184 const char * filename)
185 {
186 int I = acc.size ();
187 std :: ofstream fout;
188 fout.open(filename);
189
190 fout << "Object ,TP ,TN ,FP ,FN ,ACC ,PPV ,NPV ,TPR ,SPC ,MSE ,Epochs , Training Time" << std :: endl

;
191
192 for(int i = 0; i < I; i++)
193 {
194 fout << i+1 << ","
195 << tp[i] << ","
196 << tn[i] << ","
197 << fp[i] << ","
198 << fn[i] << ","
199 << acc[i] << ","
200 << ppv[i] << ","
201 << npv[i] << ","
202 << tpr[i] << ","
203 << spc[i] << " ,-,-,-" << std :: endl;
204 }
205 fout << " Total :,"
206 << TP << ","
207 << TN << ","
208 << FP << ","
209 << FN << ","
210 << ACC << ","
211 << PPV << ","
212 << NPV << ","
213 << TPR << ","
214 << SPC << ","
215 << MSE_epochs_time [0] << ","
216 << MSE_epochs_time [1] << ","
217 << MSE_epochs_time [2] << std :: endl;
218 fout. close ();
219 return ;
220 }
221

APPENDIX B. SOURCE CODE 163

222 int main ()
223 {
224 /* Declare and initialise some variables ********************************* */
225 FANN :: training_data testing_data ;
226 testing_data . read_train_from_file (" validation .data");
227 const unsigned int num_output = testing_data . num_output_train_data ();
228 const unsigned int num_data = testing_data . length_train_data ();
229 FANN :: neural_net ANN;
230 ANN. create_from_file ("ANN.net");
231
232 std :: vector <int > tp , fp , tn , fn;
233 int TP = 0, TN = 0, FP = 0, FN = 0;
234
235 // Performance measures
236 std :: vector <float > acc , ppv , npv , tpr , spc; // micro
237 float ACC , PPV , NPV , TPR , SPC; // macro
238
239 for(int j = 0; j < num_output ; j++)
240 {
241 tp. push_back (0);
242 fp. push_back (0);
243 tn. push_back (0);
244 fn. push_back (0);
245 }
246 std :: vector <float > MSE_epochs_time ;
247 readCSV (" training_time .csv", MSE_epochs_time);
248 /* ** */
249
250 /* Determine True Pos ’ves , True Negs , False Pos ’ves , and False Negs ****** */
251 for(int i = 0; i < num_data ; i++)
252 {
253 fann_type * result = ANN.run(testing_data . get_input ()[i]);
254
255 for(int j = 0; j < num_output ; j++)
256 {
257 int output = myRound (result [j]);
258 int target = (int) testing_data . get_output ()[i][j];
259
260 if(output == target && output > 0)
261 {
262 // We have a true positive
263 ++ tp[j];
264 ++ TP;
265 }
266 else if(output == target && output < 0)
267 {
268 // We have a true negative
269 ++ tn[j];
270 ++ TN;
271 }
272 else if(output > target)
273 {
274 // We have a false positive
275 ++ fp[j];
276 ++ FP;
277 }
278 else
279 {
280 // We must be left with a false negative
281 ++ fn[j];
282 ++ FN;
283 }
284
285 }
286 }
287 /* ** */
288
289 /* Calculate Performance Measures ** */
290 for(int j = 0; j < num_output ; j++)
291 {
292 acc. push_back (class_ACC (tp[j], tn[j], fp[j], fn[j]));
293 ppv. push_back (class_PPV (tp[j], fp[j]));
294 npv. push_back (class_NPV (tn[j], fn[j]));

APPENDIX B. SOURCE CODE 164

295 tpr. push_back (class_TPR (tp[j], fn[j]));
296 spc. push_back (class_SPC (tn[j], fp[j]));
297 }
298 ACC = network_ACC (tp , tn , fp , fn);
299 PPV = network_PPV (tp , fp);
300 NPV = network_NPV (tn , fn);
301 TPR = network_TPR (tp , fn);
302 SPC = network_SPC (tn , fp);
303 /* ** */
304
305 /* Write test results to file ** */
306 writeResults (tp , tn , fp , fn ,
307 acc , ppv , npv , tpr , spc ,
308 TP , TN , FP , FN ,
309 ACC , PPV , NPV , TPR , SPC ,
310 MSE_epochs_time ,
311 " validation_results .csv");
312
313 writeResults_LaTeX (tp , tn , fp , fn ,
314 acc , ppv , npv , tpr , spc ,
315 TP , TN , FP , FN ,
316 ACC , PPV , NPV , TPR , SPC ,
317 MSE_epochs_time ,
318 " validation_results_LaTeX .csv");
319 /* ** */
320 return 0;
321 }

APPENDIX B. SOURCE CODE 165

B.2.3 Object Recognition

Listing B.16: ANN based 3D object recognition code.

1 // Required headers from std library
2 # include <ctime >
3 # include <iomanip >
4 # include <iostream >
5 # include <sstream >
6
7 // Required headers from Boost library
8 # include <boost / chrono .hpp >
9 //# include <boost / random .hpp >

10 # include <boost / thread .hpp >
11
12 // Required headers from FANN library
13 # include <floatfann .h>
14 # include <fann_cpp .h>
15
16 // Required headers from Point Cloud Library
17 # include <pcl/ point_types .h>
18 # include <pcl/io/ pcd_io .h>
19 # include <pcl/ filters / voxel_grid .h>
20 # include <pcl/ filters / filter .h>
21 # include <pcl/ features / normal_3d .h>
22 # include <pcl/ features /vfh.h>
23 # include <pcl/ kdtree / kdtree_flann .h>
24 # include <pcl/ surface /mls.h>
25 # include <pcl/ visualization / pcl_visualizer .h>
26 # include <pcl/ visualization / histogram_visualizer .h>
27
28 // Define
29 # define INPUTS 135
30 # define CLASSES 8
31
32 // Declare and instantiate random number generator
33 boost :: random :: mt19937 generator (std :: time (0));
34
35 float random_num (float min , float max)
36 {
37 boost :: random :: uniform_real_distribution <float > num(min , max);
38 return num(generator);
39 }
40
41 void VoxelGrid (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
42 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr & filtered_cloud)
43 {
44 pcl :: VoxelGrid <pcl :: PointXYZ > sor;
45 sor. setInputCloud (cloud);
46 sor. setLeafSize (0.001f, 0.001f, 0.001 f);
47 sor. filter (* filtered_cloud);
48 return ;
49 }
50
51 void NormalEstimate (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
52 pcl :: PointCloud <pcl :: PointNormal > & CloudNormals)
53 {
54 pcl :: NormalEstimation <pcl :: PointXYZ , pcl :: Normal > ne;
55 ne. setInputCloud (cloud);
56 pcl :: search :: KdTree <pcl :: PointXYZ >:: Ptr
57 tree (new pcl :: search :: KdTree <pcl :: PointXYZ > ());
58 ne. setSearchMethod (tree);
59 pcl :: PointCloud <pcl :: Normal >:: Ptr cloud_normals (new pcl :: PointCloud <pcl :: Normal >)

;
60 ne. setRadiusSearch (0.006) ;
61 ne. compute (* cloud_normals);
62
63 pcl :: concatenateFields (* cloud , * cloud_normals , CloudNormals);
64
65 std :: vector <int > indices ;
66 pcl :: removeNaNFromPointCloud (CloudNormals , CloudNormals , indices);

APPENDIX B. SOURCE CODE 166

67 return ;
68 }
69
70 void ViewpointFeatureHistogram (pcl :: PointCloud <pcl :: PointNormal > mls_points ,
71 pcl :: PointCloud <pcl :: VFHSignature308 >:: Ptr &vfhs)
72 {
73 pcl :: VFHEstimation <pcl :: PointNormal , pcl :: PointNormal ,
74 pcl :: VFHSignature308 > vfh;
75 vfh. setInputCloud (mls_points . makeShared ());
76 vfh. setInputNormals (mls_points . makeShared ());
77 pcl :: search :: KdTree <pcl :: PointNormal >:: Ptr
78 tree (new pcl :: search :: KdTree <pcl :: PointNormal >);
79 vfh. setSearchMethod (tree);
80 vfh. setNormalizeBins (true);
81 vfh. compute (* vfhs);
82 return ;
83 }
84
85 void visualizeClouds (pcl :: PointCloud <pcl :: PointXYZ >:: Ptr cloud ,
86 pcl :: PointCloud <pcl :: PointNormal > mls_points ,
87 int object_class ,
88 bool known_object)
89 {
90 std :: ostringstream output_string ;
91
92 if(known_object)
93 output_string << " Object classification : Object " << object_class ;
94 else
95 output_string << " Object classification : Object " << object_class << "?";
96
97 pcl :: visualization :: PCLVisualizer viewer (" Point Cloud Viewer ");
98 int v1 (0);
99 viewer . createViewPort (0.0 , 0.0 , 0.5 , 1.0 , v1);

100 viewer . addPointCloud <pcl :: PointXYZ >(cloud , " cloud1 ", v1);
101 viewer . addText ("Raw point cloud .", 10, 30, 14, 1, 1, 1, " title v1", v1);
102 viewer . addText (output_string .str () , 10, 10, 14, 1, 1, 1, " classification ", v1);
103
104 int v2 (0);
105 viewer . createViewPort (0.5 , 0.0 , 1.0 , 1.0 , v2);
106 viewer . addPointCloud <pcl :: PointNormal >(mls_points . makeShared () , " filtered cloud ",

v2);
107 viewer . addText (" Filtered point cloud .", 10, 30, 14, 1, 1, 1, " title v2", v2);
108 viewer . resetCamera ();
109 viewer .spin ();
110 return ;
111 }
112
113 int main(int argc , char *argv [])
114 {
115 /* Declare and initialise variables ************************************** */
116 bool known_object ;
117 int object_class = 1;
118 boost :: chrono :: system_clock :: time_point start ;
119 boost :: chrono :: system_clock :: time_point stop;
120 boost :: chrono :: duration <double > OCR_duration ;// = stop - start ;
121
122 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr
123 cloud (new pcl :: PointCloud <pcl :: PointXYZ >);
124 pcl :: PointCloud <pcl :: PointXYZ >:: Ptr
125 filtered_cloud (new pcl :: PointCloud <pcl :: PointXYZ >);
126 pcl :: PointCloud <pcl :: PointNormal > mls_points ;
127 pcl :: PointCloud <pcl :: VFHSignature308 >:: Ptr
128 vfhs(new pcl :: PointCloud <pcl :: VFHSignature308 >);
129 pcl :: io :: loadPCDFile (argv [1] , * cloud);
130
131 FANN :: neural_net ANN;
132 ANN. create_from_file ("/home/ivan/MEng/C++/ Shared Files /ANN.net");
133 fann_type input [INPUTS], * result ;
134 /* ** */
135
136 /* Point Cloud Processing ** */
137 start = boost :: chrono :: system_clock :: now ();
138 std :: cout << " Reducing input data (voxel grid filter) ...\t" << std :: flush ;

APPENDIX B. SOURCE CODE 167

139 VoxelGrid (cloud , filtered_cloud);
140 std :: cout << " Complete ." << std :: endl;
141 std :: cout << " Estimating surface normals ... \t\t\t" << std :: flush ;
142 NormalEstimate (filtered_cloud , mls_points);
143 std :: cout << " Complete ." << std :: endl;
144 std :: cout << " Calculating Feature Histogram ... \t\t" << std :: flush ;
145 ViewpointFeatureHistogram (mls_points , vfhs);
146
147 // Get first 135 entries of viewpoint feature histogram
148 for(int i = 0; i < INPUTS ; i++)
149 {
150 input [i] = vfhs -> points [0]. histogram [i];
151 }
152 std :: cout << " Complete ." << std :: endl;
153 /* ** */
154
155 /* Classification / Recognition ** */
156 result = ANN.run(input);
157 int max_index = 0;
158 float max_val = result [0];
159 for(int i = 1; i < CLASSES ; i++)
160 {
161 float val = result [i];
162 if(val > max_val)
163 {
164 max_index = i;
165 max_val = val;
166 }
167 }
168 stop = boost :: chrono :: system_clock :: now ();
169 OCR_duration = stop - start ;
170 object_class += max_index ;
171 /* ** */
172
173 /* Print results to console ** */
174 if(max_val > 0) // threshold operation
175 known_object = true ;
176 else
177 known_object = false ;
178
179 std :: cout << "\n*** Results ***" << std :: endl;
180 for(int i = 0; i < CLASSES ; i++)
181 std :: cout << " Object " << i + 1 << ": " << result [i]
182 << std :: endl;
183 std :: cout << std :: endl;
184 if(known_object)
185 std :: cout << "The object is: Object " << object_class << std :: endl;
186 else
187 std :: cout << "The object is: Object " << object_class << "?" <<
188 std :: endl;
189 std :: cout << std :: endl;
190 std :: cout << " Object classification took: "
191 << double (OCR_duration . count ()) << " seconds \n" << std :: endl;
192 /* ** */
193
194 /* Start visualisation thread ** */
195 boost :: thread visualisation_thread (visualizeClouds ,
196 cloud , mls_points ,
197 object_class ,
198 known_object);
199 /* ** */
200 visualisation_thread .join (); // join thread
201 return 0;
202 }

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Nomenclature
	I Background
	Introduction
	Problem Statement
	Research Question and Hypothesis
	Objectives

	Research Methodology
	Delimitations of the Research
	Research Significance
	Significance to Industry
	Personal Significance
	Significance to the University

	Organisation of the Dissertation
	Summary

	Machine Vision and Laser Triangulation
	Machine Vision: A Review of the Literature
	The Camera Model
	Distortion
	Radial Distortion
	Tangential Distortion

	Camera Calibration
	Image Processing
	Segmentation
	Smoothing

	Laser Triangulation
	The Basic Principle
	3D Reconstruction Using Inverse Camera Model

	Summary

	Object Recognition and Artificial Neural Networks
	3D Object Recognition: A Review of the Literature
	ANN
	The Artificial Neuron
	The Artificial Neural Network

	Summary

	II Implementation
	3D Laser Scanner Implementation
	The Concept
	The Simulation
	3D Model and Animation in Blender
	Software

	Verification Platform
	Hardware Architecture
	Software
	Scanner Calibration

	Summary

	Object Recognition Implementation
	Introduction
	Preprocessing
	Data reduction
	The Global Point Feature Histogram

	ANN Implementation
	Training, Testing and Validation Datasets
	Training and Validation
	Object Recognition Software Operation

	Summary

	III Validation
	Results and Discussion
	Scanner Results
	Camera Calibration
	Image Processing
	3D Reconstruction

	ANN Training and Validation Results
	Performance Measures for Classification
	Object Recognition Results

	IV Conclusion
	Conclusion
	Pitfalls Encountered
	Generating Training- and Testing Data

	Research Contribution
	Future Work

	Bibliography

	Appendices
	Results: ANN Training and Validation
	2 Hidden Neurons
	5 Hidden Neurons
	10 Hidden Neurons
	15 Hidden Neurons
	20 Hidden Neurons
	30 Hidden Neurons
	40 Hidden Neurons
	60 Hidden Neurons

	Source Code
	Laser Scanner Related Code
	Serial Port Class
	Controller Class
	Camera Class
	Image Processing Class
	Laser Scanner Class
	Arduino Uno Controller
	3D Laser Scanner: main.cpp

	Object Recognition Related Code
	Data Generation for Training and Testing
	Training and Testing
	Object Recognition

