provided by University or Walenov S version is made available under the CC-DT+INC+IND +LO Incense Integs.//Creativecommons.org/incenses/by+IIC+IND+LO/

Accepted Manuscript

Enhanced photocatalytic oxidation of SO₂ on TiO₂ surface by Na₂CO₃ modification

Haiming Wang, Changfu You, Zhongchao Tan

PII:	S1385-8947(18)30942-2
DOI:	https://doi.org/10.1016/j.cej.2018.05.128
Reference:	CEJ 19144
To appear in:	Chemical Engineering Journal

Received Date:7 March 2018Revised Date:11 May 2018Accepted Date:21 May 2018

Please cite this article as: H. Wang, C. You, Z. Tan, Enhanced photocatalytic oxidation of SO₂ on TiO₂ surface by Na₂CO₃ modification, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.05.128

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Enhanced photocatalytic oxidation of SO₂ on TiO₂ surface by Na₂CO₃ modification

Haiming Wang^{1,2}, Changfu You^{1,3}*, Zhongchao Tan^{2,3}*

 Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
 Department of Mechanical and Mechatronics Engineering, University of Waterloo, Ontario, Canada N2L 3G1

 Tsinghua University – University of Waterloo Joint Research Centre for Micro/Nano Energy & Environment Technologies, Tsinghua University, Beijing, China 100084

> *Corresponding authors: Changfu You: youcf@tsinghua.edu.cn And Zhongchao Tan: tanz@uwaterloo.ca

Abstract: The effects of Na₂CO₃ on the photocatalytic oxidation (PCO) of SO₂ with UV irradiated TiO₂ (P25) were studied using a fixed bed reactor. Na₂CO₃ was loaded onto P25 using a wet coating method. The PCO efficiency for SO₂ with P25 was enhanced by 1.6 and 10.6 times using 0.05M and 0.2M Na₂CO₃ modified P25, respectively. The enhancement of the photocatalytic activity of P25 by Na₂CO₃ was observed only with the presence of water vapor. Low temperature (113K) electron spinning resonance (ESR) analysis showed that Na₂CO₃ promoted the photoinduced electron-hole separation by trapping valance band holes and forming carbonate radicals (CO₃⁻). The ESR spin trapping analyses showed a remarkable increase in the intensity of [DMPO-OH] adducts with the addition of Na₂CO₃. This increase phenomena indicates that more reactive species were formed on the P25 surface. The deposited Na₂CO₃ inhibited the recombination of electron-hole pairs and promoted the generation of hydroxyl radicals (•OH), most likely through the photo-reduction of O₂ adsorbed by the conduction band electrons. The generated •OH radicals reacted with SO₂ rapidly and improved the PCO effectiveness of P25.

Keywords: Photocatalytic oxidation, Titanium dioxide, Sodium carbonate, Sulfur dioxide, Electron spinning resonance

1. Introduction

Photocatalysis, as an efficient redox technique, has attracted considerable attention in air cleaning and water purification applications [1-3]. Titanium dioxide (TiO₂) based catalysts are the most widely tested photocatalyst for this purpose [1, 4]. The photoinduced electron-hole pairs under UV irradiation on TiO₂ surface can be transferred to the catalyst surface to initiate redox; they also undergo recombination to release heat. The recombination lowers the quantum efficiency of the photocatalytic reaction and limits the activity of TiO₂ [5, 6].

A number of surface modification strategies have been developed in the past few decades to improve the separation of photoinduced electron-hole pairs before their recombination [7, 8]. For example, the deposition of noble metals such as Pt [9] and Au [10, 11] enhanced the photocatalytic activity by increasing the formation rate of electron-hole pairs and/or accelerating the transfer of the pairs to the catalyst interface. Modifying TiO₂ with carbon-based nanomaterials such as carbon nanotube [12] and graphene [13] can also increase the electron transfer rate and the adsorption ability of the catalysts. The effects of inorganic anions including Fluoride (F^-), sulfate ($SO_4^{2^-}$), and phosphate ($PO_4^{3^-}$) on the photocatalytic activity of TiO₂ were also investigated for the decomposition of contaminants. These anions were able to alter the pathways of charge transfer [7] through enhanced hole transfer [14], and/or improved generation of free hydroxyl groups [15], surface stability and surface acidity [16].

Carbonate $(CO_3^{2^-})$ is a common and pervasive species in both aqueous and solid phases. However, there are limited studies on the effects of $CO_3^{2^-}$ on the photocatalytic activity of TiO₂ for environmental remediation [17]. Carbonate salts, mostly sodium carbonate, reportedly play a different role in the photocatalytic oxidation of contaminants in liquid with TiO₂ suspensions. The addition of Na₂CO₃ has been found to improve the PCO of aniline and phenol.[17, 18] The proposed

enhancement mechanisms depend on the contaminants. For the PCO of phenol, the formation of $CO_3^{\bullet-}$ from the hole oxidation of carbonate enhanced the hole transfer from TiO₂ to phenol [17]. An increased number of adsorption sites on TiO₂ surface and the combination of $CO_3^{\bullet-}$ and \bullet OH were considered the main reasons behind the improvement of the photocatalytic degradation of aniline [18]. Sayama et al. [19, 20] found that the overall water splitting on Pt/TiO₂ was expedited by the addition of Na₂CO₃. It promoted the formation of peroxycarbonate via the reaction between carbonate anions and photoinduced holes on the TiO₂ surface.

On the other hand, the inhibition effect of carbonate anions on PCO was also reported in TiO₂ suspensions. For the PCO of dichloroethane (DCE), the competitive adsorption of DCE and anions on the TiO₂ surface decreased the decomposition rate of DCE [21]. Even though the adsorption of acid red 88 (AR) was promoted by the addition of bicarbonate anions (HCO₃⁻), the detrimental effects on the PCO of AR with TiO₂ were attributed to possible scavenging of hydroxyl radicals (•OH) to form carbonate radicals (CO₃⁻), which were less active than •OH [22]. Both the aforementioned drawbacks were observed when Bouanimba et. al. [23] used P25 suspensions to degrade methyl orange (MO) mixed with NaHCO₃ or Na₂CO₃.

Therefore, the effects of carbonate salts on TiO_2 photocatalysis could be system dependent. To our best knowledge, the effects of carbonate salts on the photocatalytic activity have mostly been tested for the PCO of aqueous contaminants using TiO_2 suspensions. There are few reports for the effects of carbonate on the PCO of gaseous pollutants with TiO_2 particles.

In this work, the gaseous pollutant of concern is sulfur dioxide (SO_2) . SO₂ is largely emitted from the combustion of sulfur-containing fuels. It is a common air pollutant that negatively impacts the environment and public health [24]. SO₂ in the atmosphere

can be oxidized by photocatalysts (contained in mineral dusts) into sulfuric acid and/or sulfate, which cause acid rain and secondary aerosol particles [25-27].

Photocatalytic technology has been developed recently to treat SO_2 in indoor air [28, 29] and industrial flue gases [30-35]. The PCO of SO_2 is caused by the oxidative species generated on UV irradiated TiO₂ surfaces. The hydroxyl radicals (•OH) and superoxide radicals ($O_2^{\bullet-}$) are two well known, important oxidative radicals that trigger the redox reactions [4]. Several researchers reported the PCO of SO_2 with these radicals on TiO₂ surfaces [30, 36]. The possible reaction mechanism has been proposed for the oxidation process:

$$SO_2(ads) + 2 \cdot OH \rightarrow SO_3(ads) + H_2O$$
 (1)

$$SO_2(ads) + \bullet O_2 \rightarrow SO_3(ads) + O$$
 (2)

$$\mathrm{SO_3}^{2-} + 2 \bullet \mathrm{OH} \to \mathrm{SO_4}^{2-} + \mathrm{H_2O}$$
(3)

$$SO_3(ads) + H_2O(ads) \rightarrow H_2SO_4(ads)$$
 (4)

Researchers have tried to modify TiO_2 to improve the PCO efficiency of SO_2 aiming at industrial applications. The modification methods include supporting TiO_2 with activated carbon [28], multi-walled carbon nanotubes [37], electro-spun nanofibers [30, 35], and doping TiO_2 with Cu [37], Mn [31], and N [32]. Carbonates are commonly present in the atmosphere and flue gas, and may deposit on the catalyst surface and affect the PCO process. However, their effects on the PCO of SO_2 and the reaction mechanisms are not available in literature. To understand their possible roles in the PCO of SO_2 , it is worth investigating the photocatalytic performance of TiO_2 in the presence of carbonate salts.

In this study, therefore, the effects of Na₂CO₃ on the PCO of SO₂ by P25-TiO₂ were investigated using a homemade fixed bed reactor. The performances of catalysts modified with NaCl, NaNO₃, Na₂SO₄, NaOH, and NaHCO₃ were also compared with Na₂CO₃. Different characterization techniques, including X-ray photoelectron

spectroscopy (XPS), X-ray Diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), were used to characterize the morphology of TiO_2 before and after the catalyst modification and the photocatalytic reaction. Furthermore, low temperature (113K) electron spinning resonance (ESR) and ESR spin trapping methods were used to understand the possible mechanisms of the enhanced photocatalytic activity with respect to Na₂CO₃.

2. Experimental

2.1. Sample preparation

P25-TiO₂ (Evonik) was used as the basic photocatalyst in this study. Gas cylinders and chemical reagents were purchased from Air Liquid and Sinopharm Chemical Reagent, Beijing, China, respectively, unless stated otherwise. The photocatalyst was immobilized on inert glass beads, of which the sizes are in the range of 0.4-0.5 mm in diameter. It is deemed to avoid the large pressure drops caused by packing P25 nanoparticles in the fixed bed reactor. The detailed procedure was described elsewhere [34] and briefly summarized as follow. The glass beads were first washed using hydrofluoric acid and then immersed in P25 suspensions by continuous stirring for 30 min. Glass beads loaded with P25 were dried at 80 °C for 2 hr followed by calcination in a muffle furnace at 400 °C for 3 hr. The coating weight of TiO₂ was approximately 20mg/g glass beads.

Photocatalysts modified with carbonate salts were prepared by washing the immobilized P25 with corresponding solution of different concentrations (0.005 to 0.2 mol/L). For a typical procedure, 3 ± 0.01 g of glass-beads-P25 composites was impregnated in 50 ml of solution for 30 min. After separation from liquid, the wet composite catalyst particles were dried at 105°C in an oven for 6 hr. The resultant samples were then labeled in the format of P25-A-B, where A and B represent the concentration of solution and the name of chemical reagent, respectively.

2.2. Photocatalytic activity measurement

The photocatalysts were tested for their effects on PCO of SO_2 using a homemade fixed bed reactor. As shown in Figure 1, the reactor was surrounded by four UV lamps providing an intensity of 3 mW/cm² at the peak wavelength of 365 nm. The UV intensity was measured by a UV light meter ST513 (Sentry Optronics Corp.). More information about the reactor can be found in literature [34].

Comparative tests were conducted following the same procedure under identical conditions for P25 before and after modification with Na₂CO₃. In each test, simulated flue gas, containing 40 ppm SO₂, 5 vol% O₂, and 2.9 vol% H₂O mixed with nitrogen the balance gas, passed through the reactor at a flow rate of 100 sccm. The reaction temperature was maintained at 60 ± 1 °C using a temperature controller (Shimaden, Japan). Three grams (3±0.01 g) of photocatalyst was packed into the reactor with a height of 160 mm. The corresponding superficial residence time was 1.2 s.

SO₂ concentration in the gas stream was monitored by an online gas analyzer (Model 43C, Thermo Scientific). The inlet SO₂ concentration was taken for 10 minutes of stable reading prior to the onset of the test. Then the gas flow was introduced into the catalyst bed via three-way valves. The adsorption of SO₂ without UV light was firstly conducted until the adsorption reached its breakthrough. Afterward, the UV irradiation was activated to trigger the photocatalytic oxidation. The variation of the outlet SO₂ concentration was recorded every minute in the test. The performance of the catalyst is quantified by SO₂ penetration rate (*P*), which is defined as the ratio of outlet (*C*_{out}) to inlet SO₂ concentrations (*C*_{in}):

$$P = \frac{C_{out}}{C_{in}} \tag{5}$$

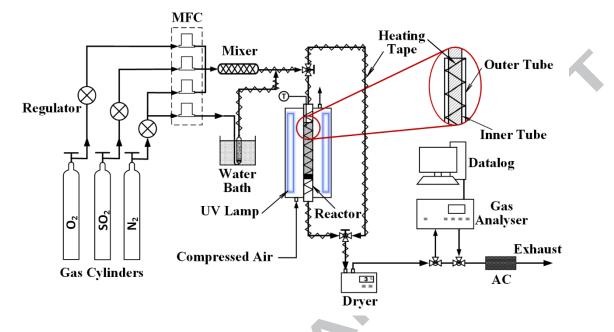


Figure 1. Diagram of the experimental setup

The Na₂CO₃ modification process could introduce different factors which may affect the photocatalytic activity of P25. They include enhanced adsorption of SO₂ (due to the reaction between the deposited Na₂CO₃ and SO₂), deposited sodion (Na⁺), deposited carbonate/bicarbonate ions (CO₃^{2-/} HCO₃⁻), and hydroxyl groups (OH⁻) in the Na₂CO₃ solution. To quantify their relative importance, the following tests were also conducted following the same procedure mentioned above.

- A blank test: The inert glass beads without P25 coated with Na₂CO₃ by soaking in Na₂CO₃ solution (0.2 M) and tested for PCO of SO₂.
- 2) Tests for P25 modified with different sodium salts including NaCl, NaNO₃, and Na₂SO₄. The results were compared with that of P25 modified with Na₂CO₃ to study the effects of Na⁺ on the PCO of SO₂. The concentrations of all the above sodium salts were 0.2M.
- 3) Tests for P25 modified with 0.01M NaOH. There are hydroxyl groups in Na₂CO₃ solution, which may deposit on P25 surface and affect its surface activity. 0.01M NaOH solution (pH=12) was used to replace 0.2M Na₂CO₃ (pH=11.8). The goal

was to study the possible influences of OH^- on the performance of P25 while eliminating the effect of $CO_3^{2^-}$.

4) Tests for P25 modified with 0.2M NaHCO₃. Both CO_3^{2-} and HCO_3^{-} exist in Na₂CO₃ solutions. They deposit on P25 surface and may affect the PCO of SO₂ too. It is necessary to investigate the roles of HCO_3^{-} and CO_3^{2-} in the PCO performance using P25 modified by Na₂CO₃.

2.3. Characterization of photocatalysts

The samples were characterized using multiple equipment to investigate the mechanisms underlying the effects of Na₂CO₃ modification on the photocatalytic activity of P25. The crystal phase of glass beads, P25, and modified catalyst composites were characterized by XRD to identify the change in the crystal phase of TiO₂ resulted from the modification. The XRD analyses were conducted using D/max2550HB+/PC diffractometer with Cu-K α radiation (λ =0.15418 nm) in continuous scan mode with a step size of 0.02° in the 2 θ range of 10° to 80°.

XPS study was carried out to identify the surface speciation and possible reaction products on the P25 surface before and after the PCO of SO₂. It was conducted using the Escalab 250Xi (Thermo Scientific) with monochromatic radiation from Al K α source at hv=1486.6 eV. The binding energy of C1s, which is 284.8 eV, was taken as an internal energy reference for calibration in all experiments.

UV-Vis DRS of catalysts was recorded on a UV-Vis-NIR spectrophotometer UV3600 (Shimadzu, Japan) for wavelength from 200 to 800 nm. The corresponding results were used to analyze the UV-Vis irradiation acceptance. They can also be used for the calculation of the band gaps of the photocatalysts.

Electron Spin Resonance (ESR) technology offers a great potential to trap short-lived

radical species on the photo-irradiated TiO₂ surface. This information can be useful to the elucidation of photo-induced surface reactions. In this study, therefore, ESR spectra of P25 modified with different reagents were analyzed using JES-FA200 ESR Spectrometer (JEOL, Japan) operating in X-band at a microwave frequency of 9.06 GHz. The UV irradiation was introduced by an ultrahigh-pressure mercury UV lamp (Ushio SX-UI502HQ, Ushio Inc.) with an intensity of 50 mW/cm². Mn^{2+} was used as an internal standard ($g_3=2.0345$, $g_4=1.9804$) to calibrate the sample spectra. The other ESR spectrometry parameters are listed as follows: ANU

- Power: 0.998 mW
- Modulation frequency: 100 kHz
- Modulation width: 0.1 mT
- Sweep width: ~10mT
- Sweep time: 1-3 min
- Temperature: 113K (For ESR spectra of solid samples)
- Concentration of P25: 10 g/L (For ESR spin trap).

For each solid test, 50 mg of catalyst was loaded into the ESR. With UV irradiation the ESR recorded the signals of the surface trapped holes and electrons. The ESR spin trapping was also conducted for P25 suspensions at room temperature with 50 mmol/L 5,5-dimethyl pyrroline N-oxide (DMPO, Sigma Aldrich) as the trapping agent. DMPO can trap hydroxyl radical (•OH) produced on the surface of irradiated TiO₂ to form paramagnetic adduct [DMPO-OH], which can be identified by ESR.

Results and Discussion 3.

3.1. Photocatalytic oxidation of SO₂ on bare P25

Figure 2 shows the variation of SO₂ penetration rate vs. time on stream (TOS) for P25 without modification. The adsorption breakthrough time and reaction breakthrough time were denoted as t_{ab} and t_{rb} , respectively. SO₂ outlet concentration decreased dramatically to zero due to the strong adsorption of TiO₂ in dark. The UV lamps were

then turned on after the adsorption breakthrough of the catalyst bed, when the photocatalytic reaction took place on the catalysts surface. The corresponding C_{out} dropped sharply again to zero. However, after a relatively short duration of high-efficiency reaction, the efficiency of the photo-reaction began to decline as indicated by the rising SO₂ penetration rate. This is the result of the adsorption of the reaction products which covered the surface active sites and deactivated the catalyst [30, 34].

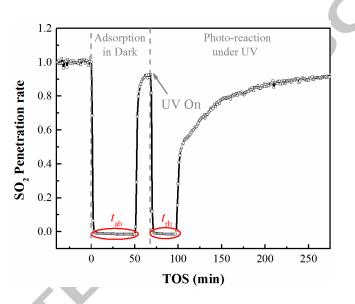
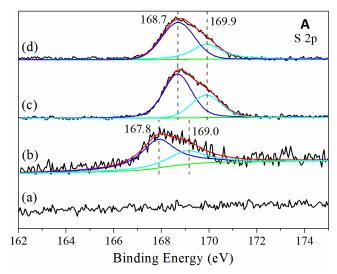



Figure 2. Change of SO₂ penetration rate vs. TOS for P25

Figure 3 shows the high resolution XPS spectra of S2p and Ti2p before and after the reactions. No signals of sulfur compounds were observed on the fresh P25 catalyst (Figure 3A (a)). After the SO₂ adsorption in dark, a strong signal was observed, which can be subdivided into the characteristic S2p doublet. The S2p doublet of S2p_{3/2} and S2p_{1/2} with the binding energies of 167.8 eV and 169.0 eV, respectively, was assigned to the surface bounded sulfite/SO₂ [38]. The binding energies of the doublet shifted to higher values after UV irradiation (Figure 3A (c)), which can be assigned to the sulfate species such as SO₄²⁻ (H₂SO₄) and/or SO₃ [39], indicating the oxidation of the SO₂ or sulfite on the irradiated catalyst surface. Similar shifting was observed in terms of the binding energy of Ti2p spectra after the photocatalytic oxidation of SO₂. The

adsorption of SO_2 had negligible effect on the binding energy of the fresh P25 sample, as shown in Figure 3B (b). Nevertheless, after UV irradiation, the PCO products adsorbed on P25 surface caused the increment of the binding energy of Ti2p from the original 458.5 eV to 458.9 eV (Figure 3B (c)).

As seen in Figure 3, $S_{(VI)}$ was formed on the irradiated P25 surface. To further determine the species on the catalyst surface, the fresh P25 sample was washed with 0.1 M H₂SO₄ followed by drying at 105 °C for 6 hr. It was next tested to check the influences of the accumulated sulfate ions. The corresponding high resolution XPS spectra are shown in Figure 3 (d). It was found that the samples washed with H₂SO₄ showed the same S2p doublet as on the UV irradiated catalyst surface (Figure 3A (c) and (d)). The accumulated H₂SO₄/SO₄²⁻ also caused the same shifting in binding energy of Ti2p (Figure 3B (c) and (d)). In the present study, the flue gas temperature was maintained at 60°C, and the water content was 2.9 vol% which is three orders of magnitudes greater than the concentration of SO₂. It was reported that over 95% of the SO₃ was converted into H₂SO₄/SO₄²⁻ instead of SO₃. The deactivated catalyst can simply be regenerated partially as described in previous studies due to the high solubility of the PCO products [30, 34].

11

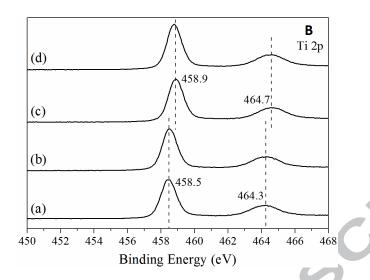


Figure 3. High resolution XPS spectra for P25, A: S2p, and B: Ti2p. (a) fresh P25, (b) after the SO₂ adsorption in dark, (c) after PCO, (d) after washing by 0.1 M H₂SO₄

3.2. Effects of Na₂CO₃ on the PCO of SO₂

The blank test results are shown in Figure 4. It indicates that the Na₂CO₃ itself cannot react with SO₂ under UV-irradiation after the adsorption breakthrough. Without immobilizing P25, glass beads exhibited very weak adsorption ability for SO₂. UV irradiation caused a slight decrease in the outlet SO₂ concentration, which was negligible compared to the photocatalytic ability of P25 shown in Figure 2. After doping with Na₂CO₃, the accumulated Na₂CO₃ on the surfaces of the glass beads can react with SO₂ to produce Na₂SO₃/NaHSO₃. They changed the physisorption on glass beads to chemisorption, which enhanced the SO₂ adsorption. However, the photocatalytic activity was similar to that of the bare glass beads; this indicates that Na₂CO₃ itself did not have the ability to oxidize SO₂ through photo-reaction. The enhancement of the PCO ability observed for the P25 modified with Na₂CO₃ in the following experiments should mainly be attributed to the interaction between Na₂CO₃ and TiO₂ surface. This will be discussed in detail below.

Worth noting is that the chemisorption of SO_2 on surface deposited Na_2CO_3 can possibly cause the loss of the effective component $CO_3^{2^-}$. The gaseous CO_2 can be produced by the reaction between SO_2 and Na_2CO_3 . However, not all of the products

are released from the surface of TiO₂. According to a recent study[27], the adsorption uptake of CO₂ on TiO₂ (~1.5×10¹³ molecules/cm²) is of the same magnitude as that of SO₂ on TiO₂ (~5.0×10¹³ molecules/cm²). Thus the generated CO₂ are likely adsorbed onto TiO₂ even though the existence of SO₂ would decrease the adsorption ability of CO₂ on TiO₂[41]. The adsorbed CO₂ on TiO₂ has shown the formation of carbonate and bicarbonate species as reported by other researchers [27, 41, 42]. In addition, the surface deposited Na₂CO₃, especially the Na₂CO₃ attached right next to the surface of the TiO₂, will not react with SO₂ completely, which can be inferred from the low efficiency after the adsorption breakthrough. To confirm the existence of the surface carbonate species, the XPS analysis was conducted to characterize the Na₂CO₃ modified catalyst before and after the SO₂ adsorption (shown in Figure S1). After the modification, the high resolution XPS spectrum of C1s presents a peak with an increased intensity at the binding energy of 289.3 eV, which is assigned to carbonate species (Na₂CO₃ in [43]). After SO₂ adsorption, the peak intensity decreases slightly yet remaining much stronger than the catalyst before modification.

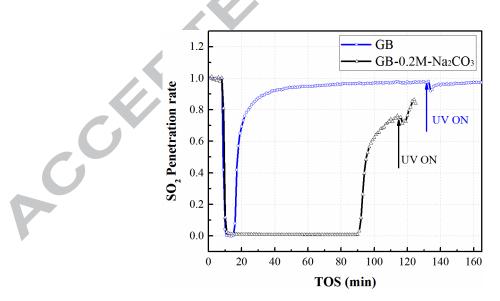
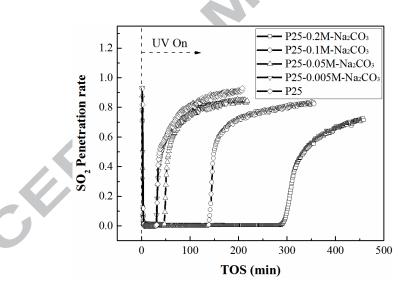



Figure 4. Blank test results for original glass beads (GB) and those washed with 0.2M-Na₂CO₃

Figure 5 shows the SO₂ penetration rate over time with P25 modified by Na₂CO₃ of

different concentrations. The photocatalytic ability of P25 was improved dramatically after being modified with 0.2M Na₂CO₃. The improvement rate, however, gradually decreased with the decreasing concentration of Na₂CO₃. Not much improvement was found when P25 was modified with 0.005M Na₂CO₃. As Table 1 shows, the photocatalytic reaction breakthrough time t_{rb} increased by 1.04, 1.64, 4.96 and 10.6 times when the catalysts were modified with 0.005, 0.05, 0.1 and 0.2 M Na₂CO₃, respectively. The PCO capacity of SO₂ with bare P25 under UV irradiation was about 5.8 mg SO₂/g TiO₂, while it could be as high as 61.5 (mg SO₂/g TiO₂) after the modification with 0.2 M Na₂CO₃. As stated, the mechanisms of Na₂CO₃ modification could be attributed to the adsorption enhancement of SO₂ (as observed in Figure 4), and Na⁺, CO₃²⁻/ HCO₃⁻ and OH⁻ in the used Na₂CO₃ solution. Their effects on the enhancement of P25 activity are discussed as follows.

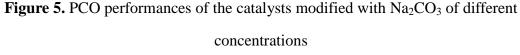


Table 1 shows the adsorption breakthrough time (t_{ab}) for bare P25 and P25 modified with different salts. It can been seen that the t_{ab} was increased from 50 min for bare P25 to 570 min for P25-0.2M-Na₂CO₃. This adsorption improvement resulted from the reaction between the deposited Na₂CO₃ and SO₂ as discussed in the blank test

results. The PCO of gaseous SO_2 on the surface of TiO_2 is a heterogeneous catalytic reaction. SO_2 was firstly adsorbed on the catalyst surface for the reaction to take place. Therefore, it is reasonable to say that the improved photocatalytic activity could be attributed to the enhanced adsorption ability of the catalyst. However, the improvement for the photocatalytic activity of P25 cannot be explained solely by the enhanced adsorption ability of the catalyst.

Figure 6 shows the comparison of the adsorption breakthrough time (t_{ab}) with the photo-reaction breakthrough time (t_{rb}). It shows that t_{ab} increased almost linearly with the concentration of Na₂CO₃, while t_{rb} increased slowly at low Na₂CO₃ concentration (<0.05 M) and then increased much faster at higher concentrations. In addition, NaHCO₃ was used to modify P25 in this study, and it could also improve the chemisorption of SO₂. The performance of P25-0.2M-NaHCO₃ was compared to that of P25-0.1M-Na₂CO₃ (same Na⁺ concentration) and that of P25-0.2M-Na₂CO₃ (same carbon species concentration). Even though the t_{ab} of P25-0.2M-NaHCO₃ (488 min) was much longer than that of P25-0.1M-Na₂CO₃ (335 min), the photocatalytic activity of the former was about two times less (see Table 1). If the carbon species concentration remained unchanged (i.e., using 0.2M Na₂CO₃ modified P25), the photo-reaction capability could be four times higher than that treated using 0.2M NaHCO₃. As a result, catalyst modification with Na₂CO₃ could enhance not only the adsorption ability, but also the photocatalytic activity of TiO₂ under UV-irradiation.

Toubound							
Reagents	Concentration (mol/L)	pH^{*}	$t_{\rm ab}$ (min)	$t_{\rm rb}$ (min)	Capacity ^{**} (mg SO ₂ /g TiO ₂)		
Bare P25			50	28	5.8		
Na ₂ CO ₃	0.005	10.9	55	29	5.8		
	0.05	11.5	251	46	9.0		
	0.1	11.6	335	139	26.5		
	0.2	11.8	570	297	61.5		
NaHCO ₃	0.2		488	73	13.3		
NaCl	0.2		21	20	3.9		
NaNO ₃	0.2		18	15	3.0		
Na ₂ SO ₄	0.2		18	20	3.9		
NaOH	0.01	12	45	23	4.7		

Table 1. Breakthrough time and SO_2 dealing capacity for P25 modified by different

reagents

*: The theoretical pH value calculated by the proton balance equation

^{**}: The photocatalytic oxidation capacity of SO_2 per gram TiO_2 before the photo-reaction breakthrough (with almost 100% removal efficiency of SO_2)

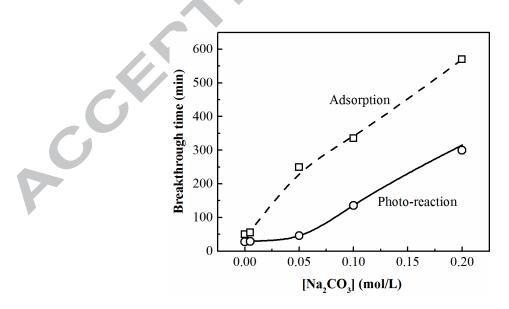


Figure 6. The adsorption and photo-reaction breakthrough times for P25 modified with different concentrations of Na₂CO₃ solution

The deposition of Na⁺ on catalyst surface did not contribute to the enhancement of photocatalytic activity of P25. Three types of sodium salts (NaCl, NaNO₃, and Na₂SO₄) were used to replace Na₂CO₃ to evaluate the possible effects of Na⁺ on the photocatalytic activity of the modified P25. As seen in Table 1, the PCO of SO₂ was not improved with these modified catalysts. In contrast, the photo-reaction breakthrough time (t_{rb}) of P25 decreased from 28 min to 20, 15, and 20 min for the P25 modified by NaCl, NaNO₃, and Na₂SO₄, respectively. The inhibition of the photocatalytic reaction could probably be caused by several reasons as follows. The adsorption ability of P25 decreased after washing with the aforementioned sodium salts. This change of performance was mainly caused by the occupation of SO₂ adsorption sites on the surface of the catalyst. Besides, the coverage of the sodium salts on the catalyst surface prevented the UV irradiation from reaching the TiO₂, and consequently lowered the photocatalytic oxidation reaction.

The third column, pH, in Table 1, were recorded when Na₂CO₃ solution was used to modify P25. There are abundant hydroxyl groups (OH⁻) in the 0.2M Na₂CO₃ aqueous solution with pH11.8. The hydroxyl groups were likely bounded to the catalyst surface and they improved the photocatalytic activity of P25. This hypothesis was tested by examining the performance of the catalyst modified with 0.01M NaOH (pH=12) instead of 0.2M Na₂CO₃ (pH=11.8). Comparison between the results of P25-0.2M-Na₂CO₃ and P25-0.01M-NaOH in Table 1 shows that the PCO activity of P25 modified by NaOH was much lower than that by Na₂CO₃ despite of the higher OH⁻ concentration in NaOH. The result confirms that the hydroxyl groups in Na₂CO₃ solution were not the main factor that contributed to the enhancement in the photocatalytic activity of P25.

In summary, the enhanced photocatalytic activity of P25 for PCO of SO_2 was attributed to the carbonate/bicarbonate ions deposited on the surface of catalyst.

Figure 6 and Table 1 show that the catalyst activity increased dramatically with increasing the Na₂CO₃ from 0.005M to 0.2M. The corresponding mechanisms were investigated and analyzed by characterizing the modified catalysts in the following sections.

3.3. On the mechanisms of enhanced PCO activity of P25

3.3.1. XRD and UV-Vis results

Figure S2 shows crystalline phases of P25 before and after catalyst modification. The diffraction peaks of the modified catalysts were in consistent with those of pure P25, which showed both anatase and rutile phases [44]. There are no observable changes in the peak positions, numbers, and intensities of the XRD patterns among the modified samples. This indicates the modification did not affect the crystallographic structure of P25.

Figure S3 shows the UV-Vis absorbance spectra of P25 modified with different chemicals. The same absorption edge for different catalysts indicates that the accumulation of the carbonate salts on the catalyst surface did not affect the band gap of the P25 catalyst composites. This also indicates that the enhancement of the photocatalytic activity by Na₂CO₃ was not caused by the change of irradiation absorption. However, the absorbance of UV irradiation with the wavelength less than 350 nm decreased slightly because of the deposition of Na₂CO₃ on the catalyst surface, which affects the photo-activity adversely. As Figure 5 shows, the photocatalytic activity of TiO₂ increased remarkably with increasing Na₂CO₃ concentration from 0.005M to 0.2M. This indicates that the improvement in the PCO ability caused by $CO_3^{2^-}$ outweighed the aforementioned adverse effects. Nevertheless, further increasing the concentration of Na₂CO₃ will cause more surface coverage of TiO₂. At certain point, UV irradiation will be blocked and could not reach the TiO₂ surface, and the catalyst lost its photocatalytic activity (see blank test results in Figure 4). The adverse effects of

the surface coverage dominated the whole process in this scenario. In a word, there must be an optimum modification concentration of Na_2CO_3 for the photocatalytic activity of TiO₂, which needs to be determined in the further study.

3.3.2. Formation of oxidative species on the modified P25 surface

The catalyst modification with Na₂CO₃ resulted in the deposition of CO₃²⁻ on the TiO₂ surface. The redox-couple CO₃^{-/} CO₃²⁻ has a potential of 1.59V (vs. NHE) [45], which is more negative than the valence band of TiO₂ as shown in Figure 7. From a thermodynamics point of view, the redox-couples on the catalyst surface can be oxidized by the valence band holes if their redox potential is more negative than the energy level of the top of valence band [46]. As a result, the oxidation of CO₃²⁻ to CO₃⁻⁻ by the photo-generated holes could take place through the following two reactions

$$\operatorname{CO}_3^{2-} + h^+ \to \operatorname{CO}_3^{-} \tag{6}$$

$$\mathrm{HCO}_{3}^{-} + h^{+} \to \mathrm{CO}_{3}^{\bullet-} + \mathrm{H}^{+} \tag{7}$$

In addition, due to the lower redox potential of $\text{CO}_3^{\bullet-7}$ CO_3^{2-} than that of the $\bullet \text{OH/OH}^-$ (1.9 V) or $\bullet \text{OH/H}_2\text{O}$ (2.73 V) [47], a large amount of $\bullet \text{OH}$ radicals in Na₂CO₃ [18] and NaHCO₃ [48] solutions were consumed by CO_3^{2-} and HCO_3^{--} through the following equations:

$$\mathrm{CO}_3^{2^-} + \bullet \mathrm{OH} \to \mathrm{CO}_3^{\bullet^-} + \mathrm{OH}^-$$
 (8)

$$HCO_3^- + \bullet OH \to CO_3^{\bullet-} + H_2O$$
(9)

The increase of the PCO ability of P25 upon the addition of Na_2CO_3 indicates an increase in the formation of oxidative species.

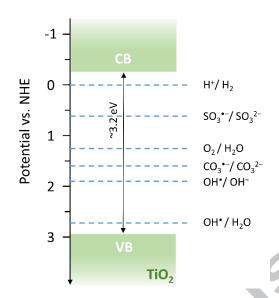
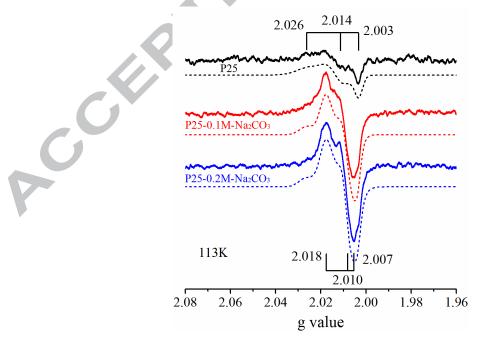


Figure 7 TiO₂ band gap and redox potentials (vs. NHE) for different redox-couples (based on the data in ref.[4, 45, 47, 49])


This hypothesis is confirmed with the low temperature ESR (113K) and spin-trapping analysis, which examined the role of carbonate in the generation of oxidative species on illuminated P25 surface. Figure 8 shows the ESR spectra recorded at 113K for catalysts under UV irradiation. The signals of P25 corresponding to g-values of $g_x=2.003$, $g_y=2.014$, and $g_z=2.026$ can be assigned to the TiO₂ surface oxygen-related radicals (Ti⁴⁺O⁻) [50, 51]. They are resulted from the trapping of holes on the illuminated catalyst surface.

The intensity of the spectrum was dramatically enhanced after the modification of Na_2CO_3 . The results of UV-Vis analysis indicate that the modification of Na_2CO_3 did not change the band gap or the UV absorbance intensity of TiO₂ (shown in Figure S3). Thus the ability of TiO₂ under the same UV irradiation to generate electron-hole pairs is believed to be similar before and after the modification. However, the intensity of the ESR spectrum increased greatly after the modification. This indicates more electron-hole pairs were able to separate from each other and move toward the catalyst surface to be captured. The ESR spectrum intensity became stronger with a higher concentration of modification reagent. This is in line with the observations in Figure 6, which shows that the photocatalytic activity increased with increasing the Na_2CO_3

concentration.

The new ESR signal of CO₃⁻ was observed for P25 samples modified with Na₂CO₃. Those corresponding to the g values of $g_x = 2.007$, $g_y = 2.010$, and $g_z = 2.018$ are in agreement with literature for CO₃⁻ on the γ -irradiated KHCO₃ surface [52] and the UV-irradiated Na₂CO₃/TiO₂ mixture [51].

The ESR spectra were simulated using the BiomolecularEPRSpectroscopy software developed by Hagen [53]. The simulated spectra are shown in dash lines in Figure 8. The spectrum of CO_3^{-} overlapped with the holes trapping spectrum of $Ti^{4+}O^{-}$. According to the simulation results, the contributions of CO_3^{-} signal to the total intensity were 60% and 67% for 0.1 and 0.2 M Na₂CO₃ modified samples, respectively. Therefore, the enhancement of the ESR spectrum after modification was mainly due to the formation of CO_3^{-} . Consequently, after Na₂CO₃ modification, the carbonate and bicarbonate ions accumulated on P25 surface acted as electron donors and trap photo-generated holes on the valance band. The trapping of holes suppressed the electron-hole recombination and increased the photocatalytic activity as indicated by the ESR spectra in Figure 8.

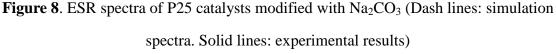
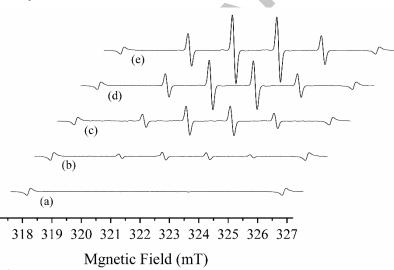
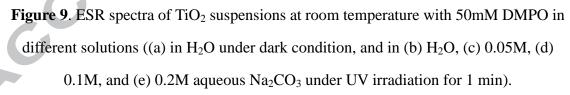




Figure 9 shows the ESR spin trapping spectra of different TiO₂ suspensions with various concentrations of Na₂CO₃. Negligible spin-adducts were formed under dark condition, whereas the formation of spin-adduct [DMPO-OH] ($a_N = a_H^\beta = 1.49$ mT and g=2.006) was observed under UV irradiation (Figure 9 (b)). The [DMPO-OH] intensity increased with increasing Na₂CO₃ concentration, suggesting that the production of •OH radicals on the TiO₂ surface was possibly promoted by Na₂CO₃. As shown in Eqs. (1) to (4), the •OH radicals are important oxidants in the PCO of SO₂. This also explains why the photocatalytic reaction time was prolonged by increasing Na₂CO₃ concentration (Figure 6 and Table 1). All this leads to a conclusion that the increment of •OH may be one of the most important reasons behind the improvement in the photocatalytic oxidation of SO₂.

However, the mechanisms behind the increase of [DMPO-OH] adducts in the presence of carbonate is not clear. The formation of •OH radicals on the irradiated TiO_2 surface has been investigated both experimentally and theoretically by other researchers [54]. Two main pathways were proposed and shown in Figure 10 [4, 54]: one is through the reaction between surface bounded H₂O/OH⁻ and valence band

holes (Figure 10 (a)), and the other is through the photo-reduction of adsorbed O_2 by the conduction band electrons (Figure 10 (b)).

$$[\mathbf{Ti}-\mathbf{O}-\mathbf{Ti}] \xrightarrow{+h^{+}}_{+H_{2}O} [\mathbf{Ti}-\mathbf{0} \mathbf{HO}-\mathbf{Ti}] \longrightarrow [\mathbf{Ti}-\mathbf{O}-\mathbf{Ti}] + \mathbf{0}\mathbf{H}$$

$$\xrightarrow{-H^{+}}_{+H_{2}O} \xrightarrow{-H^{+}}_{+H^{+}} [\mathbf{Ti}-\mathbf{0}-\mathbf{O}-\mathbf{Ti}] \xrightarrow{+h^{+}}_{+H_{2}O} [\mathbf{Ti}-\mathbf{0} \mathbf{HOO}-\mathbf{Ti}]$$

$$\xrightarrow{+H_{2}O}_{-OH^{-}} + e^{\mathbf{0}} \xrightarrow{-H^{+}}_{+H^{+}} \bigvee$$

$$[\mathbf{Ti}-\mathbf{O}-\mathbf{Ti}] + \mathbf{0}\mathbf{H} \qquad [\mathbf{Ti}-\mathbf{O}-\mathbf{O}-\mathbf{Ti}] + \mathbf{0}\mathbf{H}$$

$$[\mathbf{Ti}-\mathbf{O}-\mathbf{Ti}] + \mathbf{0}\mathbf{H} \qquad [\mathbf{Ti}-\mathbf{O}-\mathbf{O}-\mathbf{Ti}] + \mathbf{0}\mathbf{H}$$

$$(\mathbf{b}) \qquad \mathbf{0}_{2[\mathbf{ads}]} \xrightarrow{+e^{-}}_{-OH^{-}} \mathbf{0}_{2}^{-} \xrightarrow{+e^{-}}_{+2H_{2}O}_{-2OH^{-}} \qquad \mathbf{H}_{2}O_{2} \xrightarrow{+e^{-}}_{-OH^{-}} \mathbf{0}_{1}$$

Figure 10. Photocatalytic pathways for the generation of hydroxyl radicals ((a) through valence band holes, (b) through conduction band electrons).

It is proposed in this study that the addition of Na_2CO_3 suppressed the electron-hole recombination and caused the increase of •OH most likely through Figure 10 (b), which increased the [DMPO-OH] intensity. The low temperature ESR spectra (see Figure 8) indicated the trapping of the valence band holes by carbonate and bicarbonate ions. The role of carbonate ions as the hole scavenger to form CO_3 was also reported by others for aqueous solutions [17]. If Figure 10 (a) had dominated the production pathway of •OH, the competitive effects would have decreased the concentration of •OH radicals, but this was not supported by the results in the present study. In contrast, the intensity of •OH trapping adducts gradually increased with the addition of Na_2CO_3 as shown in Figure 9. Similar results were reported by other researchers using $NaHCO_3$ [55]. The trapping of valance band holes by carbonate and bicarbonate increased the lifetime of photoinduced electrons by hindering the electron-hole recombination, which could increase the amount of •OH radicals through the pathway (b) in Figure 10.

On the other hand, it was reported that CO_3 can be trapped by DMPO and eventually

form [DMPO-OH] adducts [56, 57], which may affect the detection of the original •OH radicals. The CO₃⁻⁻ can be formed through the capture of valence band holes (Reactions 6 and 7) or the consumption of •OH (Reactions 8 and 9). The increase in [DMPO-OH] intensity with increasing Na₂CO₃ concentration could be caused by the reaction between DMPO and CO₃⁻⁻ instead of the increasing of •OH itself. However, DMPO is more competitive than $CO_3^{2^-/}$ HCO₃⁻⁻ in reacting with •OH. The rate constant of DMPO trapping with •OH, which is $4.3 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$ [57], is about 10-fold and 1000-fold greater than those for Reactions (8) ($3 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$) and (9) ($8.5 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$)[58], respectively. As such, the existing •OH would prefer to react with DMPO instead of consuming by $CO_3^{2^-/}$ HCO₃⁻⁻. In addition, the improved performance of P25 would mainly be attributed to CO₃⁻⁻ radicals if CO₃⁻⁻ dominates the increase of [DMPO-OH] instead of •OH on the irradiated P25-Na₂CO₃ surface. As seen below, additional experiments with P25-0.2M-Na₂CO₃ in the absence of O₂ and H₂O showed that the CO₃⁻⁻ alone could not react effectively with SO₂.

Figure 11 shows the effects of O_2 and H_2O on the photocatalytic activity of P25-0.2M-Na₂CO₃. SO₂ cannot be effectively oxidized without O_2 and H_2O in the flue gas, although Na₂CO₃ can enhance the hole trapping ability of the catalyst by forming CO₃⁻⁻ (as explained above in Figure 8). Addition of 5 vol% O_2 into the flue gas led to a slight decrease in SO₂ penetration rate. With 2.9 vol% H_2O in the gas flow, the SO₂ concentration at the outlet decreased to zero and maintained this status for about 300 min. This is close to the t_{rb} (297 min) of P25-0.2M-Na₂CO₃ (see Figure 5), where H_2O and O_2 were added from the beginning. In other words, the enhancement of the photocatalytic activity of P25 by Na₂CO₃ can only be achieved with the presence of H_2O .

Even though CO_3 and O_2 can be formed without H₂O, the reaction rate was much lower than that in the presence of H₂O. Regardless of the pathway in Figure 10, H₂O

is always needed for the formation of •OH. Carbonate radicals (CO₃⁻⁻) was reported to be much less reactive than •OH when reacting with sulfite; the rate constants for CO₃⁻⁻ (Eq. (10)) and •OH ((Eq. (11))) are 1×10^7 and 5.5 $\times 10^9$ M⁻¹ s⁻¹, respectively [49]. The formed SO₃⁻⁻ can further produce SO₃ through Eq. (12). The rate constant for the reaction between O₂⁻⁻ and sulfite was reported only 82 M⁻¹s⁻¹, which is much smaller that of CO₃⁻⁻ and •OH [59]. Since •OH plays a more important role than CO₃⁻⁻ in the PCO of SO₂, the reaction rate of SO₂ would decrease if •OH was consumed by CO₃²⁻⁻/HCO₃⁻. Nevertheless, the addition of Na₂CO₃ improved the PCO of SO₂ as shown in Figure 5. Therefore, the consumption of •OH by CO₃²⁻/HCO₃⁻ should have a minor impact on the formation of •OH for the experimental conditions within this study. It is worth noting that the reaction rate between •OH and sulfite is about 10 times faster than that between •OH and CO₃²⁻, and 1000 times faster than that between •OH and HCO₃⁻. Consequently, most •OH would react with the adsorbed SO₂ rapidly instead of consuming by CO₃²⁻/HCO₃⁻.

$$\mathrm{SO_3}^{2-} + \mathrm{CO_3}^{\bullet-} \to \mathrm{SO_3}^{\bullet-} + \mathrm{CO_3}^{2-} \tag{10}$$

$$\mathrm{SO}_3^{2^-} + \bullet \mathrm{OH} \to \mathrm{SO}_3^{\bullet^-} + \mathrm{OH}^-$$
 (11)

$$2\mathrm{SO}_3^{-} \to \mathrm{SO}_3 + \mathrm{SO}_3^{2-} \tag{12}$$

In summary, the addition of H_2O caused the production of •OH on the irradiated P25 surface and this process could be promoted by the presence of Na_2CO_3 through the scheme described in Figure 10 (b). As a result, the PCO performance of P25 improved.

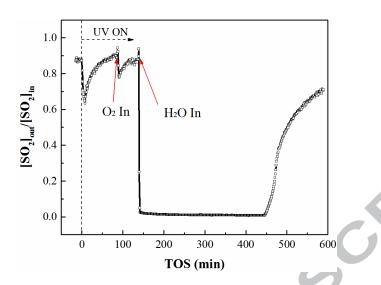


Figure 11. Effects of O_2 and H_2O on the photocatalytic oxidation of SO_2 using P25-0.2M-Na₂CO₃

3.3.3. The roles of CO_3^{2-} and HCO_3^{-}

When P25 was modified using Na_2CO_3 solution, both carbonate and bicarbonate ions exist in solution and could deposit on catalyst surface. The concentration distribution of CO_3^{2-} and HCO_3^{-} can be determined by using the proton balance equations (PBE) for the ionization of Na_2CO_3 in solutions:

$$[CO_3^{2^-}] = \frac{[C_t][OH^-]^2}{k_{b1} \cdot k_{b2} + k_{b1}[OH^-] + [OH^-]^2}$$
(13)

$$[HCO_{3}^{-}] = \frac{k_{b1}[C_{t}][OH^{-}]}{k_{b1} \cdot k_{b2} + k_{b1}[OH^{-}] + [OH^{-}]^{2}}$$
(14)

where $k_{bl}=1.79\times10^{-4}$ and $k_{b2}=2.33\times10^{-8}$ are the primary and secondary hydrolysis constants, respectively; $[C_t]$ is the total carbon concentration which equals to the Na₂CO₃ concentration; $[OH^-]$ is the concentration of hydroxyl ions in Na₂CO₃ solution.

Figure 12 shows the distributions of $CO_3^{2^-}$ and HCO_3^- in different concentrations of Na₂CO₃ solution. They were calculated using Eqs. (13) and (14). As [Na₂CO₃] decreased, the share of $CO_3^{2^-}$ in the total carbon species decreased while that of

 HCO_3^- increased gradually. When $[Na_2CO_3]$ decreased to 0.05M or lower, the share of CO_3^{2-} began to decrease sharply, and more carbon species are presented in the form of HCO_3^- . Consequently, for a solution with low concentration of Na_2CO_3 , considerable amount of carbon in the solution would present as HCO_3^- and deposited on catalyst surface after the catalyst modification process.

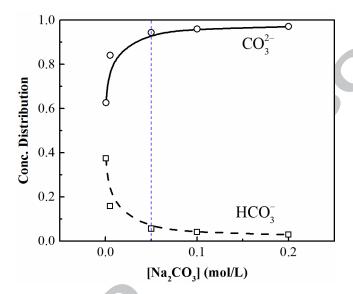


Figure 12. Distribution of CO₃²⁻ and HCO₃⁻ versus the Na₂CO₃ concentration

As shown in Figure 5 and Figure 6, the enhancement in the activity of P25 was closely related to the concentration of Na₂CO₃. With a Na₂CO₃ concentration lower than 0.05M, the enhancement of the photocatalytic activity was much smaller than the one modified with 0.2M Na₂CO₃. The adsorption ability of the latter was about 2.3 times greater than the former, while the photo-reaction with SO₂ was 6.4 times greater. Similar results were reported by Sayama et.al. [19] when Na₂CO₃ was added to liquid water to improve the water-splitting process with Pt doped TiO₂ as catalyst. They found that only concentrated Na₂CO₃ solutions was able to dramatically boost the H₂ and O₂ splitting rates. In this study P25 modified with 0.2M NaHCO₃ showed four times less photocatalytic activity than that with P25-0.2M-Na₂CO₃ (see Table 1). This indicates that the accumulated NaHCO₃ on catalyst surface had a much less impact on the catalyst activity than Na₂CO₃ did. Although both HCO₃⁻ and CO₃²⁻ can act as

electron donors to produce CO_3^- and promote the production of •OH as discussed above, the reactivity of HCO_3^- is much less than that of $CO_3^{2^-}[58]$. Figure 13 shows the ESR spectra of spin trap for TiO₂ suspensions in Na₂CO₃ and NaHCO₃ solutions. Even with the same anion concentration, the intensity of [DMPO-OH] in Na₂CO₃ was much stronger than that in NaHCO₃ solutions. This is consistent with the experimental results presented in Table 1. The lower efficiency in the PCO of SO₂ was mainly caused by the lower reactivity of HCO₃⁻ compared with CO₃²⁻.

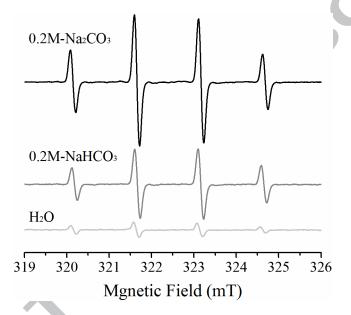


Figure 13. ESR spectra of TiO₂ suspensions at room temperature in different solutions under UV illumination for 1 min.

3.4. Recycle stability for the Na₂CO₃ modified P25

As seen in Figure 5 and Table 1, even though the modification can prolong the photoreaction breakthrough time and improve the SO_2 conversion capacity of TiO_2 , the modified catalyst still suffers from the deactivation caused by the adsorption of the PCO products on its surface. To test the stability of catalyst recycling and the regeneration, the used (deactivated) P25-0.2M-Na₂CO₃ was regenerated with the same solution following the same procedure described in section 2.1.

Figure 14 shows the SO₂ capacity and the reaction breakthrough time $t_{\rm rb}$ for the ²⁸

modified TiO₂ with different recycle times. It can be seen that after fifth recycle, the activity of the catalyst could still be improved for SO₂ treatment comparing with that of P25 only. Furthermore, the capacity and the breakthrough time are close to the first recycle. However, fluctuation exists for different recycle times, which is most likely caused by the slight difference in the modification procedure during the experiments. In general, the reactivity of the modified catalyst is stable with the average capacity and $t_{\rm rb}$ being 62.5 mg SO₂/g TiO₂ and 309 min, respectively. The activity of the deactivated catalyst can be recovered by washing and drying.

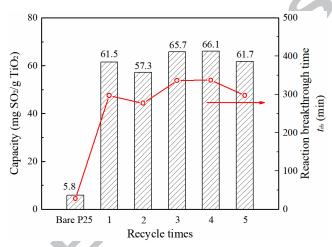


Figure 14. Capacity and reaction breakthrough time of P25-0.2M-Na₂CO₃ vs. recycle

time.

4. Conclusions

In this study, the photocatalytic abilities of TiO₂ (P25) modified with Na₂CO₃ of different concentrations were investigated. The PCO of SO₂ with P25 was enhanced by 1.04, 1.64, 4.96 and 10.6 times when P25 was modified with 0.005, 0.05, 0.1 and 0.2M Na₂CO₃, respectively. The enhancement was caused by 1) the improvement in the adsorption ability of P25 due to the reaction between Na₂CO₃ and SO₂, and 2) the positive effects of Na₂CO₃ on the photocatalytic activity of TiO₂ under UV-irradiation. The enhancement of the photocatalytic activity of P25 by Na₂CO₃ was only observed in the presence of H₂O, which emphasizes the important role of H₂O in the PCO of SO₂. Low temperature (113K) ESR reveals that Na₂CO₃ boosted the separation of $\frac{29}{29}$

electron-hole pairs by trapping valance band holes to form carbonate radicals (CO₃⁻). In addition, the intensity of [DMPO-OH] adducts increased with increasing Na₂CO₃ concentration because more reactive species were formed on P25 surface. Na₂CO₃ deposited on the catalyst surface could inhibit the recombination of electron-hole and promote the generation of hydroxyl radicals (•OH) most likely through the photo-reduction of adsorbed O₂ by the conduction band electrons. The promoted generation of •OH reacted with SO₂ rapidly and improved the PCO ability of P25. As the concentration of Na₂CO₃ decreased to less than 0.05M, more carbonate ions presented in the form of HCO₃⁻ and deposited on P25 surface. However, HCO₃⁻ was found to be less active than CO₃²⁻ on P25 surface, which caused the improvement of P25 to be minor when modifying at a low Na₂CO₃ concentration (<0.05M).

Acknowledgement

The authors would like to thank Joerg Ahne for proof reading the manuscript. Financial support was provided by National Key Research and Development Program of China (2017YFB0603903) and Tsinghua University – University of Waterloo Joint Research Centre for Micro/Nano Energy & Environment Technologies operating grant.

References

- [1] A. Di Paola, E. Garcia-Lopez, G. Marci, L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater. 211-212 (2012) 3-29.
- [2] W. Cui, J. Li, F. Dong, Y. Sun, G. Jiang, W. Cen, S.C. Lee, Z. Wulle, Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride, Environ. Sci. Technol. 51 (2017) 10682-10690.
- [3] X. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang, F. Dong, The activation of reactants and intermediates promotes the selective photocatalytic NO conversion on electron-localized Sr-intercalated g-C₃N₄, Appl. Catal. B 232 (2018) 69-76.
- [4] A. Fujishima, X.T. Zhang, D.A. Tryk, TiO₂ photocatalysis and related surface

phenomena, Surf. Sci. Rep. 63 (2008) 515-582.

- [5] D. Zhao, G. Sheng, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO₂ dyade structure, Appl. Catal. B 111-112 (2012) 303-308.
- [6] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO₂ photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919-9986.
- [7] S.G. Kumar, L.G. Devi, Review on modified TiO₂ photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A 115 (2011) 13211-13241.
- [8] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO₂ photocatalyst for environmental applications, J. Photochem. Photobiol. C: Photochem. Rev. 15 (2013) 1-20.
- [9] A. Naldoni, M. D'Arienzo, M. Altomare, M. Marelli, R. Scotti, F. Morazzoni, E. Selli, V. Dal Santo, Pt and Au/TiO₂ photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency, Appl. Catal. B 130-131 (2013) 239-248.
- [10] J. Long, H. Chang, Q. Gu, J. Xu, L. Fan, S. Wang, Y. Zhou, W. Wei, L. Huang, X. Wang, Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO₂ nanosheets, Energy Environ. Sci. 7 (2014) 973-977.
- [11] J. Shi, J. Chen, G. Li, T. An, H. Yamashita, Fabrication of Au/TiO₂ nanowires@carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene, Catal. Today 281 (2017) 621-629.
- [12] Y. Cong, X.K. Li, Y. Qin, Z.J. Dong, G.M. Yuan, Z.W. Cui, X.J. Lai, Carbon-doped TiO₂ coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity, Appl. Catal. B 107 (2011) 128-134.
- [13] K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, C.Z. Li, Preparation of graphene-TiO₂ composites with enhanced photocatalytic activity, New J. Chem. 35 (2011) 353-359.
- [14] H. Sheng, Q. Li, W. Ma, H. Ji, C. Chen, J. Zhao, Photocatalytic degradation of organic pollutants on surface anionized TiO₂: Common effect of anions for high hole-availability by water, Appl. Catal. B 138-139 (2013) 212-218.
- [15] J. Yu, W. Wang, B. Cheng, B.-L. Su, Enhancement of photocatalytic activity of mesporous TiO₂ powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C 113 (2009) 6743-6750.
- [16] M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO₂, Appl. Catal. B 81 (2008) 49-55.
- [17] X. Xiong, X. Zhang, Y. Xu, Incorporative Effect of Pt and Na₂CO₃ on TiO₂-Photocatalyzed Degradation of Phenol in Water, J. Phys. Chem. C 120 (2016) 25689-25696.
- [18] A. Kumar, N. Mathur, Photocatalytic degradation of aniline at the interface of

TiO₂ suspensions containing carbonate ions, J. Colloid Interface Sci. 300 (2006) 244-252.

- [19] K. Sayama, H. Arakawa, Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO₂ catalyst, J. Chem. Soc., Faraday Trans. 93 (1997) 1647-1654.
- [20] H. Arakawa, K. Sayama, Solar hydrogen production. Significant effect of Na₂CO₃ addition on water splitting using simple oxide semiconductor photocatalysts, Catal. Surv. JPN. 4 (2000) 75-80.
- [21] H. Chen, O. Zahraa, M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO₂ by inorganic ions, J. Photochem. Photobiol. A: Chem. 108 (1997) 37-44.
- [22] B. Gao, P.S. Yap, T.M. Lim, T.-T. Lim, Adsorption-photocatalytic degradation of Acid Red 88 by supported TiO₂: Effect of activated carbon support and aqueous anions, Chem. Eng. J. 171 (2011) 1098-1107.
- [23] N. Bouanimba, N. Laid, R. Zouaghi, T. Sehili, Effect of pH and inorganic salts on the photocatalytic decolorization of methyl orange in the presence of TiO₂ P25 and PC500, Desalination Water Treat. 53 (2015) 951-963.
- [24] C.F. You, X.C. Xu, Coal combustion and its pollution control in China, Energy 35 (2010) 4467-4472.
- [25] H.H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium Dioxide Photocatalysis in Atmospheric Chemistry, Chem. Rev. 112 (2012) 5919-5948.
- [26] Y. Dupart, S.M. King, B. Nekat, A. Nowak, A. Wiedensohler, H. Herrmann, G. David, B. Thomas, A. Miffre, P. Rairoux, Mineral dust photochemistry induces nucleation events in the presence of SO₂, PNAS 109 (2012) 20842-20847.
- [27] C.E. Nanayakkara, W.A. Larish, V.H. Grassian, Titanium Dioxide Nanoparticle Surface Reactivity with Atmospheric Gases, CO₂, SO₂, and NO₂: Roles of Surface Hydroxyl Groups and Adsorbed Water in the Formation and Stability of Adsorbed Products, J. Phys. Chem. C 118 (2014) 23011-23021.
- [28] C.H. Ao, S.C. Lee, Combination effect of activated carbon with TiO₂ for the photodegradation of binary pollutants at typical indoor air level, J. Photochem. Photobiol., A 161 (2004) 131-140.
- [29] C.H. Ao, S.C. Lee, S.C. Zou, C.L. Mak, Inhibition effect of SO₂ on NOx and VOCs during the photodegradation of synchronous indoor air pollutants at parts per billion (ppb) level by TiO₂, Appl. Catal. B 49 (2004) 187-193.
- [30] C.Y. Su, X. Ran, J.L. Hu, C.L. Shao, Photocatalytic Process of Simultaneous Desulfurization and Denitrification of Flue Gas by TiO₂-Polyacrylonitrile Nanofibers, Environ. Sci. Technol. 47 (2013) 11562-11568.
- [31] J. Bao, Y. Dai, H. Liu, L. Yang, Photocatalytic removal of SO₂ over Mn doped titanium dioxide supported by multi-walled carbon nanotubes, Int. J. Hydrogen Energy 41 (2016) 15688-15695.
- [32] Y. Han, J. Zhang, Y. Zhao, Visible-light-induced photocatalytic oxidation of nitric oxide and sulfur dioxide: Discrete kinetics and mechanism, Energy 103 (2016)

725-734.

- [33] H. Wang, D. Xie, Q. Chen, C. You, Kinetic modeling for the deactivation of TiO₂ during the photocatalytic removal of low concentration SO₂, Chem. Eng. J. 303 (2016) 425-432.
- [34] H. Wang, C. You, Photocatalytic removal of low concentration SO₂ by titanium dioxide, Chem. Eng. J. 292 (2016) 199-206.
- [35] L. Wang, Y. Zhao, J. Zhang, Photochemical Removal of SO₂ over TiO₂-Based Nanofibers by a Dry Photocatalytic Oxidation Process, Energy Fuels 31 (2017) 9905-9914.
- [36] G. Rubasinghege, S. Elzey, J. Baltrusaitis, P.M. Jayaweera, V.H. Grassian, Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size-Dependent Nanoscale Redox Chemistry, J. Phys. Chem. Lett. 1 (2010) 1729-1737.
- [37] H. Liu, X.Q. Yu, H.M. Yang, The integrated photocatalytic removal of SO₂ and NO using Cu doped titanium dioxide supported by multi-walled carbon nanotubes, Chem. Eng. J. 243 (2014) 465-472.
- [38] J. Baltrusaitis, P.M. Jayaweera, V.H. Grassian, Sulfur Dioxide Adsorption on TiO₂ Nanoparticles: Influence of Particle Size, Coadsorbates, Sample Pretreatment, and Light on Surface Speciation and Surface Coverage, J. Phys. Chem. C 115 (2011) 492-500.
- [39] A. Yamamoto, K. Teramura, S. Hosokawa, T. Tanaka, Effects of SO₂ on selective catalytic reduction of NO with NH₃ over a TiO₂ photocatalyst, Sci. Technol. Adv. Mater. 16 (2015) 1-9.
- [40] R. Jaworowski, S. Mack, Evaluation of Methods for Measurement of SO₃/H₂SO₄ in Flue Gas, J. Air Pollut. Control Assoc. 29 (1979) 43-46.
- [41] U. Tumuluri, J.D. Howe, W.P. Mounfield, M. Li, M. Chi, Z.D. Hood, K.S. Walton, D.S. Sholl, S. Dai, Z. Wu, Effect of Surface Structure of TiO₂ Nanoparticles on CO₂ Adsorption and SO₂ Resistance, ACS Sustain. Chem. Eng. 5 (2017) 9295-9306.
- [42] J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Carbon dioxide adsorption on oxide nanoparticle surfaces, Chem. Eng. J. 170 (2011) 471-481.
- [43] A. Shchukarev, D. Korolkov, XPS study of group IA carbonates, Open Chemistry 2 (2004) 347-362.
- [44] Z. Jin, W.B. Duan, B. Liu, X.D. Chen, F.H. Yang, J.P. Guo, Fabrication of efficient visible light activated Cu-P25-graphene ternary composite for photocatalytic degradation of methyl blue, Appl. Surf. Sci. 356 (2015) 707-718.
- [45] R.E. Huie, C.L. Clifton, P. Neta, Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions, Int. J. Rad. Appl. Instrum. C 38 (1991) 477-481.
- [46] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem. 32 (2004) 33-177.
- [47] H. Kornweitz, D. Meyerstein, The plausible role of carbonate in photo-catalytic

water oxidation processes, Phys. Chem. Chem. Phys. 18 (2016) 11069-11072.

- [48] T. Eriksen, J. Lind, G. Merenyi, On the acid-base equilibrium of the carbonate radical, Radiat. Phys. Chem. 26 (1985) 197-199.
- [49] P. Neta, R.E. Huie, Free-radical chemistry of sulfite, Environ. Health Perspect. 64 (1985) 209.
- [50] C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, S.C. Ke, EPR investigation of TiO₂ nanoparticles with temperature-dependent properties, J. Phys. Chem. B 110 (2006) 5223-5229.
- [51] N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A. Gray, H. He, P. Zapol, Role of water and carbonates in photocatalytic transformation of CO₂ to CH4 on titania, J. Am. Chem. Soc. 133 (2011) 3964-3971.
- [52] R. Serway, S. Marshall, Electron Spin Resonance Absorption Spectra of CO₃⁻ and CO₃³⁻ Molecule—Ions in Irradiated Single- Crystal Calcite, J. Chem. Phys. 46 (1967) 1949-1952.
- [53] W.R. Hagen, Biomolecular EPR spectroscopy, CRC press2008.
- [54] Y. Nosaka, A.Y. Nosaka, Generation and Detection of Reactive Oxygen Species in Photocatalysis, Chem. Rev. 117 (2017) 11302-11336.
- [55] A. Molinari, L. Samiolo, R. Amadelli, EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO₂ in TiO₂ aqueous suspensions, Photochem Photobiol Sci 14 (2015) 1039-1046.
- [56] H. Zhang, J. Joseph, M. Gurney, D. Becker, B. Kalyanaraman, Bicarbonate enhances peroxidase activity of cu, zn-superoxide dismutase role of carbonate anion radical and scavenging of carbonate anion radical by metalloporphyrin antioxidant enzyme mimetics, J. Biol. Chem. 277 (2002) 1013-1020.
- [57] C. Karunakaran, H. Zhang, J. Joseph, W.E. Antholine, B. Kalyanaraman, Thiol oxidase activity of copper, zinc superoxide dismutase stimulates bicarbonate-dependent peroxidase activity via formation of a carbonate radical, Chem. Res. Toxicol. 18 (2005) 494-500.
- [58] O. Augusto, M.G. Bonini, A.M. Amanso, E. Linares, C.C. Santos, S.I.L. De Menezes, Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology, Free Radical Biol. Med. 32 (2002) 841-859.
- [59] T. Sadat-Shafai, J. Pucheault, C. Ferradini, A radiolysis study of the role of superoxide ion in the oxidation of sulfite by oxygen, Radiat. Phys. Chem. 17 (1981) 283-288.

Enhanced photocatalytic oxidation of SO₂ on TiO₂ surface by Na₂CO₃

modification

Haiming Wang^{1,2}, Changfu You^{1,3}*, Zhongchao Tan^{2,3}*

Highlights:

- 1. Photocatalytic oxidation of SO_2 on TiO_2 was improved after Na_2CO_3 modification
- 2. The improvement was due to the enhanced adsorption and photocatalytic ability
- 3. The recombination of electron-hole was suppressed by the formation of $CO_3^{\bullet-}$
- 4. The generation of hydroxyl radicals was promoted because of the deposited Na₂CO₃