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Abstract 

This paper describes fatigue tests performed on 6061-T651 and 5083-H321 aluminum friction stir 

welded joints with dimensions and loading conditions typical for structural applications. Butt and lap 

joint details with various defects intentionally introduced were tested under tension-only constant and 

variable amplitude loading conditions. In this paper, the fatigue test results are presented along with 

supporting metallurgical and nonlinear fracture mechanics analyses. Based on this work, it is concluded 

that kissing bond defects on the order of 0.3-1.0 mm can result in a significant fatigue life reduction and 

a shift in the failure mode to the weld root. The investigated toe-flash defect had less of an effect on 

fatigue performance. The lap joint did not perform as well as the butt joint detail. 

Keywords: Aluminum; Friction stir welds; Defects; Fracture mechanics; Variable amplitude loading 

1. Introduction and Background 

Friction stir welding (FSW) is a solid-state joining process. It involves rotating a cylindrical tool with a 

short protrusion or “pin”, which is plunged between two metal plates. High pressure and shear strain 

plastically deform and consolidate the work pieces by means of material extrusion from the front to the 

back of the tool [1]. The plates are clamped with a sturdy fixture to the backing plate with an anvil piece 

of hardened steel underneath the path of the FSW tool, counteracting the vertical and horizontal forces 
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arising during welding. The combination of frictional and deformation heating around the immersed 

rotating pin and at the interface between the shoulder of tool and the plates leads to the consolidation of 

the two metal plates as the tool traverses along the joint line [2]. FSW was invented in the Welding 

Institute (TWI) in the UK in 1991 by Wayne Thomas and has been researched extensively since then 

and applied in various fields such as the automotive, marine, and aerospace industries, where aluminum 

alloys are heavily used [3]. Interest in FSW for emerging applications such as vehicular bridge decks is 

growing due to the high productivity associated with welding thick aluminum sections in a single pass 

with much lower distortion compared to arc welding [4]. Due to its simple concept and operation, it has 

replaced fusion welding in some areas, particularly where aluminum alloys are joined. Another benefit 

of FSW is the solid-state process itself, which allows one to avoid reaching the liquidus temperature of 

the work piece, and thus prevents several detrimental defects often associated with fusion welding such 

as porosity, liquation cracking, and solidification cracking [5]. Other advantages include avoiding fume 

generation, eliminating the need for filler metal, and minimal required operator skill. 

Recent efforts to introduce FSW in structural welding codes have resulted in some success. ISO and 

AWS standards now exist, containing provisions for the quality control and pre-qualification of FSW 

joints [6,7]. The Canadian code for welding of aluminum structures, CAN/CSA W59.2 [8], is presently 

considering the adoption of similar provisions. Generally absent in these welding standards are details 

concerning fatigue design. The common practice is to use the available fusion weld design curves for 

similar joint geometries (e.g. butt joints) in structural aluminum standards such as Eurocode 9, the 

Aluminum Design Manual (ADM), and CAN/CSA S157 [9-11]. Several studies have suggested that this 

approach may actually be overly conservative due to the improved properties of FSW versus fusion 

joints [12-14]. For example, it has been reported that 5xxx and 6xxx FSW samples that contained 

“kissing bond” defects up to 0.35 mm, cause no measurable degradation in mechanical performance 
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compared to defect-free welds [12]. In addition, samples with kissing bond defects up to 1 mm in depth 

could still meet the requirements of Eurocode 9 according to another recent study [13]. A recent state-

of-the-art review presents available fatigue data for structural aluminum welds including 322 data points 

for a range of alloys and plate thicknesses [14]. Based on a statistical analysis of this data, the 

conservativism of the Eurocode and ADM design curves for fusion welded butt joints is highlighted, and 

a FAT62 design curve is recommended with a slope of m = 7.0. Recent research has investigated other 

issues related to the fatigue performance of FSW joints including: fatigue testing and fracture mechanics 

analysis of other joint details, such as “clinch joints” [15], micro-structural modelling of fatigue 

behaviour [16,17], and FSW joints in other alloys [18] and dissimilar alloys [19]. 

Despite this recent progress, a number of gaps in the current state-of-the-knowledge appear to remain 

unaddressed [14]. In addition to the conservative fatigue performance assumptions made in the structural 

design codes, the tolerance limits on the various defect types in the welding codes do not appear to have 

been related to fatigue performance, but seem to have been established based on “best practice”. A lack 

of fatigue data under variable amplitude loading, is also apparent. 

Against this background, a study was undertaken with the following objectives: 

1) to fabricate FSW joint specimens with different defect types and degrees of severity due to 

variations in the welding process, and to characterize the metallurgical properties of the joints 

using various destructive and non-destructive evaluation (NDE) methods; 

2) to perform fatigue tests on the fabricated FSW joint specimens, under a range of loading 

conditions, including constant amplitude (CA) loading and variable amplitude (VA) loading 

simulating service conditions typical for vehicular bridge decks; and 
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3) to relate the weld quality and fatigue performance with the goal of providing recommendations 

for the future development of “performance-based” quality control (QC) criteria and improved 

fatigue design provisions for FSW joints structural aluminum applications. 

So far this research has focused on two alloys: 6061-T651 and 5083-H321 and two joint geometries 

(butt joints and a lap joint detail) in ~10 mm thick plate. It has also focused on a limited subset of 

defects, including: kissing bond, toe flash (due to excessive tool penetration), and wormhole defects. 

This paper presents the results of the research completed to date to address the identified research needs. 

2. Fatigue Test Description 

The specimens tested in this study were fabricated from 6061-T651 and 5083-H321 aluminum alloy 

plate with nominal thicknesses of 9.5 mm and 9.1 mm, respectively. The slight variation in the nominal 

plate thicknesses between the specimens fabricated with these two alloys, while not preferred, was the 

result of local material availability. The alloy compositions were verified in accordance to ASTM 

Standards E1097-12 and E1479-99 [20,21] by an external laboratory (see Table 1). To fabricate the 

specimens, pairs of 175 mm by 420 mm plates were prepared and welded along the long edge, which 

was oriented parallel to the rolling direction of the plate. The welding edges were cleaned before 

welding to avoid contamination potentially leading to voids and unexpected defects. The plates were 

held in place using clamps mounting on the backing plate with both vertical and horizontal forces (see 

Figure 1(A)). Each of the welded plates was then cut into four “dog-bone” fatigue specimens using a 

CNC machine. Scrap material between each fatigue specimen was saved for subsequent metallurgical 

analysis. The specimens had a 90 mm width in the grip regions (see Figure 1(B)), a 70 mm minimum 

width in the narrow region between the grips, and a curved transition with a radius of 85 mm. A linear 

elastic finite element analysis verified that this geometry resulted in a stress at the weld location that was 

not less than the stress in the transition region adjacent to the grips. 
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Table 1. Compositions of base materials in weight percentage (wt%). 

Elements Al Mn Mg Si Cr Cu Zn Fe 

6061-T651 Balance 0.08 0.81 0.53 0.06 0.18 0.01 0.19 

5083-H321 Balance 0.79 4.74 0.05 0.06 0.07 0.14 0.21 

 

Figure 1: Specimen fabrication and loading details: (A) welding process setup, (B) specimen layout, (C) 

FSW tool, and (D) tested VA loading history. 

For most of the specimens, the welding resulted in a butt joint between the plates. In addition to the butt 

joint specimens, a special lap joint detail was also investigated, which simulates a lap joint between 

extrusions in (for example) a multi-extrusion vehicular bridge deck panel. The lap joint is a convenient 

way to provide built in backing material for a one sided weld. On the other hand, it results in a crack-like 

gap, which runs parallel to the loading direction. One of the objectives of testing this detail was to assess 

the performance of this complex joint type. The lap joint specimens were fabricated by milling 19.05 

mm (3/4”) 6061-T651 aluminum plates to half of their thickness at one end with a filleted transition in 

the weld region. A profile of the lap joint detail is shown in Figure 2. 

Figure 2: Specimen profiles: (A) 6061 proper weld profile, (B) 6061 toe flash / undercut weld profile, 

(C) lap joint detail, and (D) lap joint weld profile. 

In total, six specimen types were fabricated: i) “properly welded” 6061 butt joints, ii) 6061 butt joints 

with kissing bond defects, iii) 6061 butt joints with toe flash defects, iv) 6061 lap joints, v) “properly 

welded” 5083 butt joints, and vi) 5083 butt joints with wormhole defects. The idea of testing 

intentionally introduced defects in this manner was similarly employed in [22] to study the effects of 

kissing bond defects on the behaviour of 7475 alloy FSW specimens. 

The employed FSW tool was made from H13 steel, quenched and tempered to 46-48 HRC. The pin 

geometry is 10° tapered and M6-threaded with three flats (see Figure 1(C)). In general, the penetration 
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depth of the FSW pin should be approximately 0.2 mm above the bottom of the welded plate, as the 

shearing action from the tool pin is expected to be sufficient to fuse the weld at the bottom. This depth 

also protects the backing plate from deforming due to the high heat input. For the 6061 butt joint 

specimens, the penetration depth was set at 9.3 mm for the 9.5 mm thick aluminum plates. Similarly, for 

the 5083 plate, the penetration depth was set at 8.9 mm for the 9.1 mm thick aluminum plates. For the 

specimens with kissing bond and toe flash defects, the pin length was reduced to 8.4 or 8.5 mm. The 

plunge depth was then varied as needed to create each defect type. A penetration depth of 10.7 mm was 

used for the lap joint detail in order to ensure that the weld penetrated through the entire 9.5 mm plate 

thickness to create a horizontal initial crack-like defect (see Table 2).  

Table 2: Welding process design for specimen fabrication. 

Specimen 
type 

Aluminum 
alloy 

Plate 
thickness 

Tool pin 

length 

(mm) 

Tilt angle 
(º) 

Rotation 

speed 

(rpm) 

Travel 

speed 

(mm/min) 

Plunge 

depth 

(mm) 

Proper weld 

6061 9.5 

9.3 

2.5 1120 63 

9.3 

Kissing bond 8.4 8.4 

Toe flash 8.5 9.3 

Lap joint 10.7 10.7 

Proper weld 
5083 9.1 8.9 2.5 1120 

63 
8.9 

Wormhole 90 

 

60 fatigue tests were performed for this study in total. For each specimen type, at least four tests were 

completed under tension-only constant amplitude (CA) loading conditions at different stress ranges, ΔS 

(= Smax – Smin), a stress ratio, R (= Smin / Smax), of 0.1. For these tests, an effort was made to select stress 

ranges that would allow the slope of the finite life portion of the S-N curve, as well as an effective 

constant amplitude fatigue limit (CAFL), to be estimated. Tests that exceeded 3 million or so applied 

cycles without failure were identified as “runouts”. It should be noted that here that the term “runout” 

simply refers to a test that was stopped before failure (in this study, practical limitations prevented the 
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test from continuing further) – not a test for which an “infinite” fatigue life is necessarily expected. 

Following the CA loading tests, specimens were tested under a variable amplitude (VA) loading history 

for the support reaction on a 15 m long simply-supported beam subjected to measured highway traffic 

loading (see Figure 1(D)). This history was found in previous work to be a relatively severe one for 

aluminum welds in bridges [23]. 

The fatigue tests were performed in a 500 kN MTS structural testing frame at a frequency of 10-15 Hz. 

Specimen alignment was ensured using a “dummy” specimen, with gauges installed to measure the 

longitudinal strains on the four sides. This specimen was used on a regular basis to check the position of 

the stops, which controlled the specimen alignment. The formation of fatigue cracks was detected by 

visual inspection and the use of displacement limits, which stopped the test when there was a detectable 

change in the specimen stiffness. When a visible crack was detected, the crack surface was stained with 

dye penetrant, to enable measurement of the crack size and shape.  

3. Fatigue Test Results 

The stress-life (S-N) results of the fatigue test program are presented in Table 3 and Figures 3-6. In 

Table 3, the failure mode is also identified as a crack initiating from either the top of the weld on the 

advancing side (AR) – i.e. the side of the weld where the rotation and forward movement direction of 

the tool are the same, the top of the weld on the retreating side (RS), the bottom of the weld or weld root 

(WR), or the base metal (BM). The reported stress range, ΔSeq, is simply Smax – Smin for the CA tests. For 

the VA tests, a histogram of stress ranges in the 1000 peak repeating stress history was generated using a 

rainflow cycle counting algorithm. The Palmgren-Miner sum was then used to calculate ΔSeq: 
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where Ntot is the number of cycles in the history and ΔSi and Ni are the stress ranges and number of 

cycles for each of the k stress range increments. In calculating the ΔSeq values in Table 3, an S-N curve 

slope of m = 4.84 was assumed, which is the slope of the Cat. B design S-N curve for butt joints in [10]. 

This value was later varied to enable comparisons with different design curves. 

Figure 3(A) presents the results for the “properly welded” 6061 specimens, along with the specimens 

fabricated with significant kissing bond defects, compared to the ADM Cat. B design curve. Looking at 

this figure, it can be seen that the results for the properly welded (PW) specimens all fall above the 

curve, whereas the specimens with kissing bond (KB) defects mostly fall below. It is concerning that 

there is considerable scatter in the PW data, and a number of PW points fall close to the design curve, 

contradicting the previous findings of others that this design curve is overly conservative. Further review 

revealed that the PW specimens exhibited a mixture of failure modes, and that the lower results in the 

data set can all be attributed to weld root (WR) failures. These results are circled in Figure 3.  

A subsequent metallurgical analysis revealed that these specimens had KB defects with a depth of up to 

344 μm at the weld root, even though they were fabricated with welding parameters established to avoid 

this. Thus, the results in Figure 3 could be considered as three data sets – PW specimens with top side 

(AS, RS, or BM) crack initiation sites, PW specimens with WR failures from small KB defects, and 

specimens with large, intentionally fabricated KB defects. In general, it can be seen that the CA and VA 

results line up reasonably well for each other for each of these three data sets.  

In Figure 3(B), a similar comparison is made with the FAT 62 (m = 7) design curve proposed in [14]. 

Note that this design curve gets its name from the fact that it passes through a stress range of 62 MPa at 

N = 2 million cycles. Looking at this figure, it can be seen that all of the PW specimens with top side 

failures fall above the design curve. The PW specimens with WR failures straddle this design curve, and 

the KB specimens all fall below this design curve.  
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Table 3(a): Fatigue test results. 

Test ID Loading Smax (MPa) ΔSeq (MPa) N (103 cycles) Failure Defect1 Defect2 

6061 Butt Joints, Properly Welded 

A6PW01B CA 159.0 143.1 61079 BM 
  

A6PW01C CA 120.0 108.0 828642 AS 

  
A6PW01D CA 112.5 101.2 741302 BM 

  
A6PW02A CA 90.0 81.0 3255068 Runout 

  
A6PW02B CA 105.0 94.5 6017249 Runout 

  
A6PW02C CA 135.0 121.5 420979 AS 

  
A6PW02D CA 150.0 135.0 276560 RS 

  
A6PW03A CA 165.0 148.5 33235 WR 332 µm (JLR) 

 
A6PW03C CA 177.0 159.3 48356 AS and WR 344 µm (JLR) 

 
A6PW04A VA 166.3 65.0 492437 WR 

  
A6PW04B VA 102.3 40.0 4112113 WR 

  
A6PW04C VA 144.4 56.5 858770 WR 

  
A6PW05A VA 127.9 50.0 7724571 AS 

  
A6PW05C VA 166.3 65.0 5383609 RS 

  6061 Butt Joints, Kissing Bond Defect 

A6KB01A CA 120.0 108.0 13506 WR 1.10±0.06 mm 1.05± 0.03 mm 

A6KB01B CA 90.0 81.0 57581 WR 1.11±0.08 mm 1.00±0.03 mm 

A6KB01C CA 60.0 54.0 5322591 Runout 1.20±0.03 mm 
 

A6KB01D CA 75.0 67.5 135466 WR 
 

0.97±0.04 mm 

A6KB02A VA 127.9 50.0 342040 WR 1.00±0.02 mm 0.90±0.03 mm 

A6KB02B VA 76.8 30.0 10176309 Runout 1.03±0.01 mm 
 

A6KB02C VA 102.3 40.0 1692092 WR 1.01±0.03 mm 0.87±0.02 mm 

A6KB02D VA 89.5 35.0 4613013 WR 
 

0.85±0.06 mm 

A6KB03A VA 153.5 60.0 213159 WR 1.02±0.04 mm 0.93±0.02 mm 

A6KB03B VA 127.9 50.0 458736 WR 1.02±0.04 mm 0.89±0.03 mm 

A6KB03C VA 102.3 40.0 2017588 WR 1.00±0.03 mm 0.85±0.02 mm 

A6KB03D VA 89.5 35.0 1791686 WR   0.8±0.03 mm 

6061 Lap Joints 

A6LJ01A CA 120.0 108.0 13693 WR 453 µm 
 

A6LJ01B CA 90.0 81.0 64970 WR 599 µm 
 

A6LJ01C CA 75.0 67.5 126227 WR 449 µm 
 

A6LJ01D CA 60.0 54.0 219378 WR 
  

A6LJ02A CA 45.0 40.5 563711 WR 455 µm 
 

A6LJ02B CA 30.0 27.0 5338486 WR 292 µm 
 

A6LJ02C VA 76.8 30.0 2144792 WR 313 µm 
 

A6LJ02D VA 51.2 20.0 9419241 WR 
  

A6LJ03A VA 89.5 35.0 923005 WR 262 µm 
 

A6LJ03B VA 89.5 35.0 1395342 WR 384 µm 
 

A6LJ03D VA 115.1 45.0 494469 WR 376 µm 
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Table 3(b): Fatigue test results (cont’d). 

Test ID Loading  Smax (MPa) ΔSeq (MPa) N (103 cycles) Failure Defect1 Defect2 

6061 Butt Joints, Toe Flash Defect 

A6TF01A CA 150.0 135.0 55846 AS 
  

A6TF01B CA 120.0 108.0 114016 AS 
  

A6TF01C CA 90.0 81.0 520841 AS 
  

A6TF01D CA 105.0 94.5 418103 AS 
  

A6TF02B CA 75.0 67.5 467218 WR 700 µm 0.62±0.04 mm 

A6TF02C VA 166.3 65.0 290734 WR 629 µm 0.63±0.03 mm 

A6TF02D VA 153.5 60.0 349585 WR 
  

A6TF03A VA 181.5 71.0 1009218 WR 356 µm (JLR) 
 

A6TF03B VA 146.2 57.2 5497205 Runout 324 µm (JLR) 
 

A6TF03C VA 102.3 40.0 10001506 Runout 
  

A6TF03D VA 115.1 45.0 11082046 Runout 
  

5083 Butt Joints, Properly Welded 

A5PW02A CA 125.6 113.0 92467 AS and WR 
  

A5PW02B CA 109.9 98.9 5606722 Runout 
  

A5PW02C CA 141.3 127.2 2992566 Runout 
  

A5PW02D CA 172.7 155.4 94494 WR 
  

A5PW03A CA 157.0 141.3 404680 WR 33 µm (JLR) 

 
A5PW03B CA 164.8 148.4 238098 WR 160 µm (JLR) 

 
A5PW03C CA 149.1 134.2 390320 WR 365 µm (JLR) 

 
A5PW03D CA 149.1 134.2 99589 WR 

  5083 Butt Joints, Wormhole Defect 

A5WH01A CA 125.6 113.0 139337 WH 
 

0-2.46 mm 

A5WH01B CA 109.9 98.9 408156 WR 
  

A5WH01C CA 94.2 84.8 338064 WH 
 

0-2.76 mm 

A5WH01D CA 78.5 70.6 2951 WH   3.18±0.16 mm 
Notes:  ΔSeq shown in this table for VA tests is value calculated using Palmgren-Miner sum with m = 4.84. 

 N = number of cycles required to fracture specimen into two pieces. 
BM = base metal, AS = advancing side, RS = retreating side, WR = weld root 
1 = cross section measurement, 2 = fracture surface measurement, JLR = joint line remnant 

 

Figure 4 presents similar results for the 6061 lap joint (LJ) specimens. Looking at Figure 4(A) it can be 

seen that the results for the specimens in this series generally fall below the ADM Cat. B design curve. 

For this test series, the results can also be seen to exhibit minimal scatter, with the CA and VA results 

lining up well with each other. In Figure 4(B), the results are compared with the ADM Cat. D design 

curve (m = 3.73). Qualitatively, it seems that this curve would be a more satisfactory one for use with 
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this detail, as all of the data points except one fall above it. To confirm this, a statistical procedure 

recommended by the International Institute of Welding (IIW)[24] was used to establish mean and design 

S-N curves for this detail, for which relatively little test data currently exists. Looking at Figure 4(B), it 

can be seen that the calculated design (95% survival probability) curve is slightly above the ADM Cat. 

D design curve. 

Figure 3: Fatigue test results for 6061 PW and KB specimens compared with: (A) ADM Cat. B design 

curve, and (B) FAT 62 (m = 7) design curve from [14]. 

Figure 4: Fatigue test results for 6061 LJ specimens compared with: (A) ADM Cat. B design curve, and 

(B) ADM Cat. D design curve. 

Figure 5 presents results for the TF specimens with toe flash defects intentionally introduced by 

excessive tool penetration. The data for this defect type shows more scatter than that of the KB and LJ 

data sets. The explanation for this is that – similar to the PW data set – the TF specimens exhibited two 

failure modes. Specifically, failures were observed at the AS and WR locations. The WR failures are 

circled in Figure 5 and generally fell on or below the AS failure data. Comparing the results to the ADM 

Cat. B design curve in Figure 5(A), it can be seen that all of the results fall above this curve except for 

two points corresponding with WR failures. In Figure 5(B), the results are compared with the FAT 62 

(m = 7) design curve proposed in [14]. Again, all of the results fall above this design curve except for 

three points corresponding with WR failures. 

Figure 5: Fatigue test results for 6061 TF specimens compared with: (A) ADM Cat. B design curve, and 

(B) FAT 62 (m = 7) design curve from [14]. 

Figure 6 shows the results for the 5083 PW specimens and specimens fabricated with wormhole (WH) 

defects introduced. Only CA tests were performed for these two specimen types. For comparison 
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purposes, the 6061 PW CA results are plotted, along with the ADM Cat. B design curve, and the FAT 

62 (m = 7) design curve from [14]. Looking at this figure, it can be seen that the 5083 PW results all fall 

above both design curves. If an effective CAFL were to be established using the runout data, it appears 

that it would be slightly higher for the 5083 alloy. The results for the WH specimens show a very high 

level of scatter, and no clear linearly decreasing trend as was seen for the other data sets. The reason for 

this result, as well be discussed in the next section, was the high level of difficulty encountered in 

creating this defect type with any consistency in the size or degree of continuity. 

Figure 6: Fatigue test results for 5083 PW and WH specimens compared with ADM Cat. B design curve 

FAT 62 (m = 7) design curve from [14]. 

4. Metallurgical Analysis Results 

A broad range of destructive and non-destructive evaluation (NDE) techniques were employed with the 

goal of quantifying the FSW joint properties and defect severity at various stages during this 

experimental study. The KB defects in the various specimen types, including the specimens with 

significant KB defects intentionally fabricated were not visible on the bottom surface to the naked eye. 

In order to investigate how these defects might be detected in practice, several NDE techniques were 

performed on the WR location of the specimens in the KB series, including radiographic (RT), liquid 

penetrant (LP), and ultrasonic (UT) inspection, by an external laboratory. Initial attempts to detect the 

KB defects were unsuccessful regardless of the method used. Subsequent efforts using UT with the 

phased array method were more successful. The best results were obtained using this method with the 

45° linear technique. Further details on these NDE efforts can be found in [25]. 

Metallographic analysis was performed on the scrap material between the dog-bone specimens. Samples 

were cut from this material, mounted in epoxy, and ground, polished, and etched using Keller’s reagent 
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so that the cross section of the weld nugget could be viewed under a microscope and so that hardness 

measurements at various locations on the weld profile could be obtained. 

Vickers microhardness was obtained using a 200 g force load with a 10 s dwell time. Results of these 

measurements are presented in Figure 7. The hardness values in Figure 7(a) were measured horizontally 

at the mid-thickness, while Figures 7(b) and (c) are representative cross sectional hardness maps of the 

stir zones of 6061 and 5083 samples, respectively. Looking at Figure 7(a), it can be noted that the 

differences between the A6PW, A6TF, and A6LJ samples are minimal. The hardness values measured 

in the heat affected zones (HAZs) were the lowest on each side of the weld nugget zone (NZ) for the 

heat-treatable 6061 alloy, forming a “W” shaped hardness profile for the A6PW, A6TF, and A6LJ 

samples. This softening of the HAZ is expected in heat treatable alloy welds and is due to the coarsening 

of the strengthening precipitates caused by heat from the welding process [26-28].  

The hardness profiles in Figure 7 also suggests that the fatigue strength for the non-heat-treatable 5083 

alloy was less influenced by heat during the FSW process, therefore resulting in a higher hardness 

profile than the 6061 alloy. The measured hardness values across the weld profile for the 5083 alloys 

were relatively uniform, with negligible hardness changes across the welding profile. This may explain 

in part why the majority of failures in the 5083 samples initiated from the WR and WH locations, since 

there is no significant softened region prone to localized straining for this alloy. 

Figure 7: Microhardness measurements: (A) mid-thickness, (B) 6061, and (C) 5083. 

Kissing bond (i.e. WR) defect depths were measured on both the polished cross section samples and the 

fracture surfaces of specimens that were observed to have failed by crack initiation at the WR location. 

Figure 8 shows sample images of WR defects observed in the cross section samples. For the KB 

specimens, the WR defect was on the order of 1 mm in depth and was initially straight and 

perpendicular to the bottom edge of the specimen. Further within the thickness of the plate the kissing 
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bond deflects towards the AS direction and becomes parallel to the plate surface. The minor WR defects 

observed in the PW specimens tended to appear as a straight fold aligned at a shallow angle with respect 

to the specimen bottom edge. The crack-like defects observed in the LJ specimens, which also resulted 

in WR failures, were hook-shaped. They started out in a horizontal direction, parallel to the specimen 

bottom edge, and then turned upwards near the NZ edge, possibly due to upward flow of the plasticized 

material in this region.  

Identifying the precise location of the defect tips was made difficult by the fact that in many cases the 

tips were not distinct, but rather the defect gradually transitioned into a discontinuous joint line remnant 

(JLR). In Table 3, the results of the KB defect depth measurements are tabulated. The cross section 

samples obtained from the scrap material adjacent to a given fatigue specimen were deemed to provide a 

representative indication of the defect depth within the specimen. The cross section measurements were 

verified by measurements made on the fracture surfaces (see Figure 9) using an optical microscope. 

Although the fracture surface measurements were potentially affected by plastic deformation that may 

have preceded the specimen fracture, these measurements were useful for verifying the continuity of the 

defect across the specimen width. These measurements are reported as depths perpendicular to the 

loading direction, recognizing that the actual defect shape is more complex. For the planned fracture 

mechanics analysis, however, this dimension was thought to be the simplest and most practical way of 

characterizing the defect size. Where the defects transitioned to a JLR, judgement was used to determine 

the depth at which the defect ceased to be continuous. Table 3 indicates cases where the defect appeared 

to consist entirely of JLR. This was typically the case for the small defects observed in the PW 

specimens. 

Figure 8: WR defect measurements in (A) KB, (B) PW, and (C) LJ specimens. 

Figure 9: Fracture surface of specimen with kissing bond defect. 
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Figure 10 shows an example of the cross-sectional weld profile for one of the specimens with toe flash 

due to excessive tool penetration. While the toe flash generated in the fabrication of these specimens 

was readily apparent, it is the loss of cross section and the sharp stress concentration resulting from the 

excess tool penetration that are thought to be more detrimental from a fatigue perspective. In general, the 

thickness reduction for these specimens was on the order of 0.5 mm at the nugget centre. This reduction 

reduced by half at the edges of the tool / nugget zone. The radius of the transition was similar to the tool 

shoulder radius of 0.15 mm. 

Figure 10: Weld profile of specimen with toe flash defect. 

Figure 11 shows typical fracture profiles for TF, KB, and LJ specimens. In this figure, the extents of the 

weld NZ are denoted with dashed lines and the fracture direction is also indicated. The typical failure 

mode for the TF specimens was a crack initiating on the AS, and propagating through the HAZ. For the 

KB specimens, the cracks initiated from the WR and propagated through the NZ. For the LJ specimens, 

the cracks initiated from tip of the WR defect and propagated through the NZ. 

  Figure 11: Fracture profiles for (A) TF, (B) KB, and (C) LJ specimens. 

Figure 12 presents fracture surface photos for the three A5WH specimens with detectable WH defects. 

In this figure, the defect irregularity can be seen. While the original goal was to produce subsurface 

defects, the produced defects broke the surface, which means they are more severe from a fatigue 

perspective and likely would be detected by visual inspection. In Table 3, WH depths are estimated for 

each specimen, based on microscope images of the fracture surfaces. While the results of this study 

show the effect that WH defects can have on fatigue performance, further study would be needed to 

establish a relationship between WH severity and fatigue performance. 

Figure 12: Wormhole defects in specimens (A) A5WH01A, (B) A5WH01C, and (C) A5WH01D. 
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5. Fracture Mechanics Analysis 

Following the fatigue testing and metallurgical analysis, a fracture mechanics analysis was conducted to 

facilitate further understanding of the effects of several of the investigated defect types and demonstrate 

that the experimental results could be predicted with a reasonable accuracy using this approach. The 

analyzed defects included those observed in the 6061 PW, KB, TF, and LJ specimens. 

Further details of the strain-based fracture mechanics (SBFM) model used in this analysis can be found 

in [23, 29-31]. The basis for this model is the Paris-Erdogan crack growth law, commonly used in linear 

elastic fracture mechanics (LEFM), modified to consider crack closure effects and a threshold stress 

intensity factor (SIF) range, ΔKth, and integrated over a crack depth range, ai to ac: 

 
d

·MAX ,0
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 

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m m
a eff th
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N

C K K
  (2) 

where C and m are material constants. The effective SIF range, ΔKeff, considering crack closure (or 

opening) stress effects, is determined by the following expression: 

 MAX ,eff max op minK K K K     (3) 

where Kmax and Kmin are the SIFs due to the maximum and minimum local strain levels (ε) for each load 

cycle and Kop is the SIF corresponding with the crack opening strain level for a given load cycle. The 

following expression is used to calculate each of the required SIFs: 

 0K Y E a a          (4) 

where a0 is a material constant to account for small crack behaviour and Y is a correction factor to 

account for the crack shape, the free surface on one side of the crack, and the finite thickness of the 

cracked plate. The constant a0 can be calculated as follows: 
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where Δσe is the fatigue limit for R = -1 (≈ 0.5·σu).  

To calculate the stresses and strains, σ and ε, for each load cycle, a Ramberg-Osgood material model is 

used, which requires the cyclic material parameters: K’ and n’. Strain histories are determined using 

Neuber’s rule. Crack closure is modelled using formulas by Newman [32]. These require the maximum 

stress, σmax, the stress ratio, R, the flow stress, σ0, and a plastic constraint factor, α.  

As discussed in [29,30], the primary advantage of the SBFM model is its ability to model nonlinear 

material effects such as crack closure and the effects of changes in the residual stress level following 

overload or underload events in VA loading histories. Another significant advantage of this model, is 

that it does not require two stages to model the total fatigue life of the weld. Since it was developed to 

model small crack behaviour in notches, where material behaviour is nonlinear, it does not run into the 

problems of LEFM in this domain. For larger crack sizes, the results converge on those calculated by 

LEFM. Table 4 provides values for the input parameters used in this analysis.  

Table 4: Input parameters used in fracture mechanics analysis. 

Parameter Value Units 

t 9.5 mm 

E 64011 MPa 

σy 134.1 MPa 

σu 181.5 MPa 

LN(C) -30.6 MPa, mm 

m 4.0 MPa, mm 

ΔKth 45.0 MPa·√mm 

K’ 304.5 MPa 

n’ 0.13 - 

µ 0.003 - 
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Regarding these input parameters, the following comments can be made: 

 E, σy, σu, K’, and n’ were estimated based on the hardness measurements reported herein and 

interpolating between the measured properties for 6061 alloy T651 and O tempers from [23]. 

 LN(C), m, ΔKth, and μ values were similar to the values used in [14,23], which are intended to 

represent averages of measured data for 5xxx and 6xxx series alloys.   

In addition to these input parameters, implementation of the fracture mechanics model requires the local 

elastic stress distribution along the anticipated crack path and the initial defect size and shape. The 

elastic stress distribution was assumed to be uniform for the PW and KB specimens. For the TF and LJ 

specimens, the stress distributions were obtained by finite element analysis using the software 

ABAQUS. 2D plane strain models were used to obtain stress concentration factors (SCFs) relating the 

nominal stress in the plate to the local elastic stress along the crack path. The resulting SCF distributions 

along the crack paths for these specimen types are shown in Figure 13. The initial crack depths assumed 

in the analysis were: 1.0 mm for the KB specimens, 0.3 mm for the PW specimens with WR failures due 

to unexpected KB defects, and 0.6 mm for the LJ specimens, which were considered to be characteristic 

defect sizes, based on the measurements reported in Table 3. All of these defects were considered as 

through-cracks (running the full 70 mm specimen width), based on the observed defect shapes and 

fracture surfaces. For the topside failures in the PW and TF specimens, a 0.15 mm initial defect depth 

was assumed, which is the radius of the FSW tool shoulder. Based on crack shape measurements 

reported in [25], a crack aspect ratio (depth / half width) of 0.55 was assumed. This was the average of 

the measured crack aspect ratios for larger cracks, based on measurements made on fracture surfaces 

stained with dye penetrant prior to total specimen fracture. In the analysis, a uniform, tensile residual 

stress of 8.45 MPa was assumed, as recommended in prior work [14]. Analyses were performed under 

CA loading and under the VA loading history used in the experimental study (see Figure 1(D)). 
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Figure 13: SCF distributions for: (A) lap joint, and (B) toe flash specimens. 

Figures 14 and 15 present the results of the performed SBFM analyses. In these figures, the solid lines 

represent CA analysis results and the dashed lines represent VA results. Looking at these figures, it can 

be seen that the SBFM model does a reasonable job of predicting a number of the key trends observed in 

the experimental results. In Figure 14, comparisons are presented for the 6061 PW and KB specimens. 

In general, the analysis results with a 1.0 mm WR defect assumed provide accurate or slightly 

conservative predictions for the KB specimens. For the PW specimens, the WR failures follow the 

SBFM curves with a 0.3 mm WR defect assumed. The topside failures are predicted reasonably well by 

the analysis with a 0.15 mm semi elliptical defect with a crack aspect ratio of 0.55. The predictions are 

somewhat on the high side though at the higher stress ranges. Similar trends and a similar level of 

prediction accuracy can be seen in Figure 15 for the LJ and TF specimens.  

Figure 14: SBFM results for 6061 PW and KB specimens. 

Figure 15: SBFM results for 6061 LJ (A) and TF (B) specimens. 

6. Conclusions 

Based on the fatigue test results, metallurgical analysis, and nonlinear fracture mechanics analysis 

presented in this paper, the following main conclusions are drawn: 

 The properly welded FSW butt joints were generally seen to achieve fatigue lives above the 

ADM Cat. B. and FAT62 (m = 7.0) design curves.  

 Kissing bond (KB) defects on the order of 0.3-1.0 mm in depth in 6061-T651 alloy specimens 

generally resulted in a significant fatigue life reduction and a shift in the failure mode from crack 

initiation on the weld topside to crack initiation at the weld root.  

 The investigated toe-flash (TF) defect had a less significant effect on fatigue performance. 
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 The tested lap joint (LJ) detail resulted in a lower fatigue life than that of the butt joint detail, 

which could be safely estimated using the ADM Cat. D design curve. 

 It was found that the fatigue test results could be predicted reasonably well, using a nonlinear 

fracture mechanics (SBFM) model with typically assumed input parameters for 5xxx and 6xxx 

series alloys and knowledge of the initial defect geometry. 
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Highlights 

 0.3-1.0 mm kissing bond defects led to a fatigue life reduction in FSW joints 

 Investigated toe flash / undercut defect had less of an effect on fatigue life 

 Tested FSW lap joint detail had lower fatigue life than the butt joint detail 

 Fatigue test results predicted with nonlinear fracture mechanics (SBFM) model 
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