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A LOWER BOUND FOR THE TWO-VARIABLE ARTIN CONJECTURE AND PRIME
DIVISORS OF RECURRENCE SEQUENCES

M. RAM MURTY, FRANÇOIS SÉGUIN, AND CAMERON L. STEWART

ABSTRACT. In 1927, Artin conjectured that any integer other than -1 or a perfect square gener-
ates the multiplicative group (Z/pZ)× for infinitely many p. In 2000, Moree and Stevenhagen
considered a two-variable version of this problem, and proved a positive density result condi-
tionally to the generalized Riemann Hypothesis by adapting a proof by Hooley for the original
conjecture. In this article, we prove an unconditional lower bound for this two-variable problem.
In particular, we prove an estimate for the number of distinct primes which divide one of the
first N terms of a non-degenerate binary recurrence sequence. We also prove a weaker version of
the same theorem, and give three proofs that we consider to be of independent interest. The first
proof uses a transcendence result of Stewart, the second uses a theorem of Bombieri and Schmidt
on Thue equations and the third uses Mumford’s gap principle for counting points on curves by
their height. We finally prove a disjunction theorem, where we consider the set of primes satis-
fying either our two-variable condition or the original condition of Artin’s conjecture. We give
an unconditional lower bound for the number of such primes.

1. INTRODUCTION

In this article we study the two-variable analogue of Artin’s conjecture on primitive roots.
Artin’s original conjecture suggested that for any integer a other than -1 and perfect squares,
there are infinitely many primes p for which a generates the multiplicative group (Z/pZ)×.
Specifically, Artin conjectured that the set

Pa(X) =
{
p ≤ X prime : 〈a mod p〉 = (Z/pZ)×

}
has positive density in the set of all primes. We can trace the origin of this problem all the
way back to Gauss. It was apparently popular at the time to study decimal expansions of
certain rational numbers. In his Disquisitiones Arithmeticae, Gauss describes the period of the
decimal expansion of 1

p in terms of the order of 10 mod p. Some other such specific cases of this
were considered before 1927, at which time Artin formulated the above conjecture.

As of now, the conjecture is still open. There is actually no a for which we know Pa(X) goes
to infinity as X goes to infinity. However, there have been major partial results since, the con-
ditional proof by Hooley [10] under the assumption of the generalized Riemann Hypothesis
being among the most important, as are the works of Gupta and Murty [7] and Heath-Brown
[8]. For example, we know that given three mutually coprime numbers a, b, c, there are infin-
itely many primes p for which at least one of a, b, c is a primitive root mod p.

Many variations on Artin’s original conjecture have since been studied. Moree and Steven-
hagen [15] considered a two-variable variant where the set of interest is

S =
{
p prime : b mod p ∈ 〈a mod p〉 ⊆ (Z/pZ)×

}
for given a and b. They adapted Hooley’s argument, as well as using some work by Stephens
([22]), to show a positive density result for such primes, conditionally under the generalized
Riemann Hypothesis. In this article, we prove an unconditional lower bound on the number
of primes in this set. Specifically, we prove the following result.
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Theorem 1.1. Let a, b ∈ Z∗ with |a| �= 1. Then,∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗
p

}∣∣	 log x.

We do so by proving in section 2 a more general result about binary recurrence sequences.

Theorem 1.2. Let {un}∞n=1 be a non-degenerate binary recurrence sequence with the n-th term given
by (2.1). Let ε be a positive real number. There exists an effectively computable positive number C,
depending at most on ε, a, b, α and β, such that if N exceeds C, then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ >

(
1− 1/

√
2− ε

)
N.

Here, ω(n) denotes the number of distinct prime factors of n.

We also prove a more precise result for the specific case of Lucas sequences.

Theorem 1.3. Let {tn}∞n=1 be a non-degenerate Lucas sequence. Then,

ω

(
N∏

n=1

tn

)
≥ N − 9.

Equality holds when tn satisfies

tn = tn−1 − 2tn−2 for n = 2, 3, ...

and N = 30, 31, 32, 33 or 34.

We finally conjecture the following stronger statement.

Conjecture 1.4. There exist positive numbers C1 and C2, which depend at most on a, b, α and β, such
that if {un}∞n=1 is a non-degenerate binary recurrence sequence, then

C1N logN ≤ ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ ≤ C2N logN.

It can be shown that the lower bound obtained from this conjecture could be used to improve
Theorem 1.1 by replacing log x with log x log log x in the lower bound.

We shall also give several proofs, which we believe to be of independent interest, for the
following theorem, which is a weaker version of Theorem 1.1.

Theorem 1.5. Let a, b ∈ Z∗ with |a| �= 1. Then,∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗
p

}∣∣	 log log x.

The last theorem we prove is a disjunction theorem.

Theorem 1.6. Let a, b ∈ Z∗ with (a, b) = 1. Then,∣∣{p ≤ x prime : b mod p ∈ 〈a mod p〉 or 〈b mod p〉 = F∗
p

}∣∣	 x

(log x)2
.

This theorem suggests that it might be possible to prove positive density of this set uncon-
ditionally. It is worth noting that unlike the original Artin conjecture, the set S is known to
be infinite. Moree and Stevenhagen included in [15] a modification of a simple argument by
Pólya (found in [18]) that proves the infinitude unconditionally. However, their argument does
not seem to provide any explicit function going to infinity as a lower bound.

We will start by proving Theorem 1.2 in section 4 after a few preliminaries in sections 2 and
3. Theorem 1.3 will be proven in section 5. Then, we will use Theorem 1.2 to prove Theorem
1.1 in section 6. Our three proofs for Theorem 1.5 are in sections 7, 8 and 9 respectively. Finally,
we will prove Theorem 1.6 in section 11.
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2. PRIME DIVISORS OF TERMS OF RECURRENCE SEQUENCES

For any non-zero integer n let ω(n) denote the number of distinct prime factors of n. Let r
and s be integers with r2 + 4s �= 0. Let u0 and u1 be integers and put

un = run−1 + sun−2 for n ≥ 2.

Then,

un = aαn + bβn,(2.1)

where α and β are the roots of the polynomial

x2 − rx− s

and

a =
u0β − u1
β − α

, b =
u1 − u0α

β − α
.

The sequence {un}∞n=0 is called a binary recurrence sequence. It is said to be non-degenerate if
abαβ �= 0 and α/β is not a root of unity.

Lemma 2.1. For non-degenerate binary recurrence sequences, if |α| ≥ |β|, then

|α| ≥
√
2.

Proof. Actually, we will prove that |α| ≥ (1 +
√
5)/2. This is stronger than the stated lemma,

but the bound of
√
2 is sufficient for our application, and will be used for simplicity.

If α and β are integers this is obvious. Also, since r = α + β, it cannot be the case that only
one of α and β is an integer.

Suppose that α and β are not integers. If Q(α) is an imaginary quadratic field, α
β is a root of

unity, which again contradicts the hypothesis.
We therefore assume that Q(α) is totally real. Then, α = a+ b

√
D and β = a− b

√
D for some

D ≥ 2 and a, b in Z, or in Z
[
1
2

]
if D ≡ 1 mod 4. Note that b �= 0 since we assumed that α, β

were not integers. Also, a �= 0 as otherwise α/β = −1 which is a root of unity.
Since |α| ≥ |β|, a and b must have the same sign, and so |α| = |a|+ |b| √D.
If D �≡ 1 mod 4, then |a|+ |b| √D ≥ 1 +

√
2 ≥ 1+

√
5

2 .
If D ≡ 1 mod 4, then D ≥ 5 and so |a|+ |b| √D ≥ 1+

√
5

2 . �
In 1921 Polya [18] showed that

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠→ ∞ as N → ∞;(2.2)

Gelfond [6] and Mahler [13] in 1934 and Ward [27] in 1954 gave alternative proofs of (2.2). In
1987 Shparlinski [21] showed that

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠	 N/ logN,(2.3)

improving on an earlier result of his [20], where he had established (2.3) with its righthand
side replaced by

√
N . It should be noted that Shparlinski’s result (2.3) applies not just to binary

recurrence sequences but to non-degenerate sequences of order k with k ≥ 2.
Theorem 1.2 is an improvement upon (2.3) for binary recurrence sequences. It is the key

result we need to establish Theorem 1.1.

A Lucas sequence is a non-degenerate binary recurrence sequence {tn}∞n=0 with t0 = 0 and
t1 = 1. Thus, a = 1

α−β and b = −1
α−β , so that from (2.1), we have

tn =
αn − βn

α− β
(2.4)
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for n ≥ 0. The divisibility properties of Lucas sequences have been extensively studied, see for
example [12, 4, 25], and for these binary recurrence sequences, Theorem 1.3 gives an improve-
ment on Theorem 1.2.

It is not difficult to show that if {un}∞n=1 is a non-degenerate binary recurrence sequence
then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠�a,b N

2/ logN.(2.5)

To see this suppose that un is given by (2.1) with |α| ≥ |β|. Then,

|un| ≤ (|a|+ |b|)|α|n

and therefore, ∣∣∣∣∣∣∣
N∏

n=1
un �=0

un

∣∣∣∣∣∣∣ ≤ (|a|+ |b|)N |α|N(N+1)/2.(2.6)

Let 2 = p1, p2, ... be the sequence of prime numbers. By the Prime Number Theorem
t∏

i=1

pi = e(1+o(1))t log t.(2.7)

Observe that if

t∏
i=1

pi ≥

∣∣∣∣∣∣∣
N∏

n=1
un �=0

un

∣∣∣∣∣∣∣ .
then

ω

⎛
⎜⎝ N∏

n=1
un �=0

un

⎞
⎟⎠ ≤ t.

Thus (2.5) follows from (2.6), (2.7), and Lemma 2.1.
We hypothesize that those bounds could be improved according to Conjecture 1.4.

3. PRELIMINARIES FOR THE PROOF OF THEOREM 1.2

The first two results we require concern prime divisors of Lucas numbers.

Proposition 3.1. Let {tn}∞n=0 be a Lucas sequence, as in (2.4), with |α| ≥ |β|. If p is a prime number
not dividing αβ, then p divides tn for some positive integer n and if � is the smallest such n, then

log p− log 2
2

log |α| ≤ � ≤ p+ 1.

Proof. Apart for the lower bound, this is Lemma 7 of [23]. The lower bound follows from
p ≤ |t�| ≤

√
2 |α|�.

Indeed, note that |α− β| =
∣∣∣√r2 + 4s

∣∣∣ and therefore either |α− β| ≥ √
2, in which case the

triangle inequality yields the desired result, or |α− β| = 1. In this case, we have that

|tn| = |α|n
∣∣∣∣ 2

r + 1

∣∣∣∣
n

≤ αn ≤
√
2αn

since the cases r = 0,−1,−2 are either degenerate or can’t yield r2 − 4s = 1. �

For any rational number x let |x|p denote the p-adic value of x, normalized so that |p|p = p−1.
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Proposition 3.2. Let {tn}∞n=0 be a Lucas sequence, as in (2.4), with α+ β and αβ coprime. Let p be a
prime number which does not divide αβ, let � be the smallest positive integer for which p divides t� and
let n be a positive integer. If � does not divide n, then

|tn|p = 1.

If n = �k for some positive integer k, we have, for p > 2,

|tn|p = |t�|p |k|p ,
while for p = 2,

|tn|2 =
{
|t�|2 for k odd
2 |t2�|2 |k|2 for k even.

Proof. This is Lemma 8 of [23] and it is based on work of Carmichael [4], see also [25]. �
In addition to the results about Lucas sequences, we need an estimate from below for the

size of the n-th term of a non-degenerate binary recurrence sequence.

Proposition 3.3. Let un be the n-th term of a non-degenerate binary recurrence sequence as in (2.1).
There exist positive numbers c0 and c1, which are effectively computable in terms of a and b, such that
for all n > c1,

|un| ≥ |α|n−c0 logn .

Proof. This is Lemma 6 in [23] and is a consequence of Baker’s theory of linear forms in loga-
rithms. �

4. THE PROOF OF THEOREM 1.2

It suffices to prove the result under the assumption that α+β and αβ are coprime or, equiv-
alently, that r and s are coprime. We shall also suppose, without loss of generality, that

|α| ≥ |β| .
In the following discussion, every ci will denote a positive number effectively computable in
terms of a, b, α and β. For any prime p let [p] denote the principal ideal generated by p in the
ring of algebraic integers of Q(α). Put

a′ = (α− β)a, b′ = (α− β)b.

Let p be a prime which divides αβ and let p be a prime ideal which divides [p]. Then, since
α+β and αβ are coprime integers, p divides either [α] or [β]. Thus, by (2.1) for m > c1 we have

|um|p ≥
∣∣a′b′∣∣

p
.(4.1)

It follows from Proposition 3.3 that um is non-zero for m > c2. Put

γ = 1− 1/
√
2.

Then γN exceeds both c1 and c2 for N > c3. For each positive integer N with N > c3, put

S = S(N) :=
∏

γN<n≤N

un.

Our proof proceeds by a comparison of estimates for S.
By Proposition 3.3, there exists c4 such that

|S| ≥
∏

γN<n≤N

|α|n−c4 logn

and so

|S| ≥ |α| (1−γ2)N2

2
−c5N logN .(4.2)

Plainly,

|S| =
∏
p|S

|S|−1
p .
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We first estimate |S|−1
p for primes p which divide αβ. By (4.1), we have

|S|−1
p ≤ ∣∣a′b′∣∣−N

p
.

We shall now estimate |S|−1
p for primes p which divide S but do not divide αβ. For each

such prime p, we let n(p) be the smallest integer with γN < n(p) ≤ N for which∣∣un(p)∣∣p ≤ |un|p for γN < n ≤ N.

For positive integers m and r with m ≥ r,

um − βrum−r = a′αm−rtr,(4.3)

with tr as in (2.4).
Let | |p denote an extension of | |p from Q to Q(α). For each integer r with 1 ≤ r < n(p)−γN ,

|a′b′tr|p ≤ |a′tr|p = |a′αn(p)−rtr|p
and, by (4.3) with m = n(p),

|a′αn(p)−rtr|p ≤ max(|un(p)|p, |βrun(p)−r|p).
Since |β|p = 1 ,

max(|un(p)|p, |βrun(p)−r|p) = max(|un(p)|p, |un(p)−r|p) = |un(p)−r|p,
and we deduce that

|a′b′tr|p ≤ |un(p)−r|p
for 1 ≤ r < n(p)− γN. Hence,∣∣∣∣∣∣

∏
γN<n<n(p)

un

∣∣∣∣∣∣
p

≥
∏

1≤r<n(p)−γN

(
|tr|p

∣∣a′b′∣∣
p

)
.

Letting � = �(p) be the smallest integer for which p|t�, we have by Proposition 3.1 and
Proposition 3.2 that if p > 2, ∏

1≤r<n(p)−γN

|tr|p = |t�|s1p |s1!|p ,

where s1 =
⌊
n(p)−γN

�

⌋
, while for p = 2,

∏
1≤r<n(2)−γN

|tr|2 = |t�|s12
∣∣∣∣ t2�t�

∣∣∣∣
s2

2

|s2!|2 ,

with s2 =
⌊
n(2)−γN

2�

⌋
.

Next, on setting m − r = n(p) and letting r run over those integers such that n(p) + r ≤ N ,
we find that for p > 2 ∏

n(p)<n≤N

|un|p ≥ |t�|s3p |s3!|p
∣∣a′b′∣∣N−n(p)

p
,

while for p = 2, ∏
n(2)<n≤N

|un|2 ≥ |t�|s42
∣∣∣∣ t2�t�

∣∣∣∣
s4

2

|s4!|2
∣∣a′b′∣∣N−n(2)

p
,

where

s3 =

⌊
N − n(p)

�

⌋
and s4 =

⌊
N − n(2)

2�

⌋
.

Putting all this together gives, for p > 2,

|S|−1
p ≤ |t�|−s

p |s!|−1
p

∣∣a′b′∣∣−N

p

∣∣un(p)∣∣−1

p
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where s =
⌊
N−γN

�

⌋
. As |t�|−1

p ≤ |t�| ≤ 2 |α|�, we find that

|S|−1
p ≤ 2

N
�(p) |α|N−γN |N !|−1

p

∣∣a′b′∣∣−N

p

∣∣un(p)∣∣−1

p

for p > 2. For p = 2 we similarly have

|S|−1
2 ≤ 4

N
�(2) |α|2(N−γN) |N !|−1

2

∣∣a′b′∣∣−N

2

∣∣un(2)∣∣−1

2
.

Putting T = ω(S), we may suppose T < N for otherwise we are done. Inserting the above
estimates, we obtain

S =
∏
p|S

|S|−1
p ≤

⎛
⎝∏

p|S
4

N
�(p)

⎞
⎠ |α|(N−γN)(T+1)N !

∣∣a′b′∣∣N ∏
p|S

∣∣un(p)∣∣−1

p
.(4.4)

We need to estimate the right hand side and compare it with (4.2). Note that∏
p|S

4
N

�(p) ≤
∏
p|S

p<T/ log T

4N ·
∏
p|S

p>T/ log T

4
N

�(p)

≤ 4NT/ log T ·
∏
p|S

p>T/ log T

4
N

�(p) .

However, by Proposition 3.1,

�(p) ≥ log p− log 2

log |α| >
log T − log log T − log 2

log |α| .

As |α| ≥ √
2, we deduce ∏

p|S
4

N
�(p) < ec8N

2/ logN .

Inserting this in inequality (4.4) and using N ! ≤ NN , we get∏
p|S

|S|−1
p < ec9N

2/ logN |α|N(1−γ)T
∏
p|S

∣∣un(p)∣∣−1

p
.

For each n, we have |un| ≤ (|a|+ |b|) |α|n, since |α| ≥ |β|. Put

K := {n(p) : p|S} .
Then, |K| ≤ T . Thus,∏

p|S

∣∣un(p)∣∣−1

p
≤
∏
k∈K

|uk| ≤
∏
k∈K

(|a|+ |b|) |α|k ≤ (|a|+ |b|)T |α|NT−T (T−1)
2 .

Putting everything together, we get

∏
p|S

|S|−1
p ≤ ec10N

2/ logN |α|(2−γ)NT−T2

2 ,

and as |α| ≥ √
2, we get from (4.2)

|α|N
2(1−γ2)

2 < ec11N
2/ logN |α|(2−γ)NT−T2

2 .

Therefore T > (1−1/
√
2−ε)N for N > c12 since the roots of the quadratic x2−(4−2γ)x+1−γ2

are γ and γ + 2
√
2.



8 M. RAM MURTY, FRANÇOIS SÉGUIN, AND CAMERON L. STEWART

5. THE PROOF OF THEOREM 1.3

Let {tn}∞n=1 be a non-degenerate Lucas sequence with n-th term given by (2.4). We may
assume, without loss of generality, that α+ β and αβ are coprime. A primitive divisor of tn is
a prime p which divides tn but does not divide (α−β)2t2 · · · tn−1. In [24], Stewart showed that
there are only finitely many Lucas sequences, with α + β and αβ coprime, for which tn does
not possess a primitive divisor when n > 4 and n �= 6, and these sequences may be explicitly
determined. It then follows that the number of distinct prime factors of

∏N
n=1 tn is at least N−5

whenever {tn}∞n=1 is not an exceptional sequence. Bilu, Hanrot and Voutier [1] determined the
complete list of exceptional sequences, and by examining the list we see that whenever {tn}∞n=1
is a non-degenerate Lucas sequence,

ω

(
N∏

n=1

tn

)
≥ N − 9,

with equality holding when tn satisfies

tn = tn−1 − 2tn−2 for n = 2, 3, ...

and N = 30, 31, 32, 33 or 34.

6. PROOF OF THEOREM 1.1

First, notice that the set of interest

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
can be expressed as

Sx = {p ≤ x prime : p|(an − b) for some n}.

Suppose that p divides an − b with n ≤
⌊
log x
log a

⌋
=: N . Then, p ≤ an − b < an ≤ x.

Therefore, it is clear that

#Sx 	 #{p prime : p|(an − b) for some n ≤ N}.
Consider the binary recurrence sequence given by un = an − b (here α, β, a and b in (2.1) are

respectively a, 1, 1 and b). Then, by Theorem 1.2,

# {p : p|an − b for some n ≤ N} 	 N

for N =
⌊

log x
log|a|

⌋
, and so

# {p ≤ x : p|an − b for some n} 	 log x.

7. THEOREM 1.5 VIA THE GREATEST PRIME FACTOR OF TERMS OF RECURRENCE SEQUENCES

The first proof uses the following result by Stewart about the growth of the largest prime
divisor in a type of recurrence sequence.

For any integer n let P (n) denote the greatest prime factor of n with the convention that
P (0) = P (1) = P (−1).

Theorem 7.1 (Stewart [26]). Let un, as in (2.1), be the n-th term of a non-degenerate binary recurrence
sequence. There exists a positive number C, which is effectively computable in terms of a, b, α and β,
such that, for n > C,

P (un) >
√
n exp(log n/104 log log n).

We actually need a special case of this result. Note that for α = 1, x = a, β = b and y = 1,
the above theorem yields

P (an − b) 	a,b

√
n exp(log n/104 log log n).

This is what we will be using.



A LOWER BOUND FOR THE TWO-VARIABLE ARTIN CONJECTURE 9

Proof of Theorem 1.5. We will prove the theorem for the case a, b > 0 for simplicity. The proof
can be easily adapted to the general case. See the remark for more details. Again, let

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
.

Using the same argument as in section 6, we have

#Sx 	 #{p prime : p|(an − b) for some n ≤ N},
for N :=

⌊
log x
log a

⌋
.

Consider the sequence ξn = an − b for N − y ≤ n ≤ N where y is a parameter to be chosen
later. As noted above, p|ξn in this range implies p ≤ x. Now consider P (an − b), the largest
prime factor of an − b, for each of those n. Those yield y primes, albeit a priori not necessarily
distinct.

Suppose that for some m and n with N − y ≤ m < n ≤ N , we have

P (an − b) = P (am − b) =: q.

Then, an ≡ b mod q and am ≡ b mod q, so

anm ≡ bn ≡ bm mod q,

meaning that q divides bn − bm.
From Theorem 7.1, we know that q exceeds b for x large enough, and so q does not divide

b. We conclude that q|(bn−m − 1). In particular, we have that q ≤ bn−m − 1 < bn−m. However,

n−m ≤ y, and so choosing y =
log(C1

√
N)

log b yields

P (an − b) = q < bn−m ≤ C1

√
N,

which is a contradiction to Theorem 7.1 for properly chosen C1.
We therefore have y distinct primes in the set Sx, where

y =
log log x

2 log b
+ C ′ 	 log log x.

�

8. THEOREM 1.5 VIA THUE EQUATIONS

The second proof of Theorem 1.5 uses a result on Thue equations. Recall that a Thue equa-
tion is an equation of the form

F (x, y) = h,

where F (x, y) = a0x
r + a1x

r−1y + · · ·+ ary
r is an integral binary form of degree at least 3. We

have the following result for the number of solutions to such an equation.

Theorem 8.1 (Bombieri, Schmidt [3]). Let F (x, y) be an irreducible binary form of degree r ≥ 3 with
rational integral coefficients. The number of primitive solutions of the equation

|F (x, y)| = h

does not exceed
c1r

t+1,

where c1 is an absolute constant and t is the number of distinct prime factors of h.

We now proceed with our second proof of Theorem 1.5. For this particular proof, we require
the extra condition that a and b are coprime. However, this condition is not too restrictive and
we believe the proof to still have its merits.

Proof of Theorem 1.5. Suppose that (a, b) = 1. As in the previous proof, notice that

Sx = {p ≤ x prime : p|(an − b) for some n}.
Fix x. Then, again,

#Sx 	 #{p prime : p|(an − b) for some n ≤ N}(8.1)

where N :=
⌊
log x
log a

⌋
. Denote by k the quantity on the right hand side of (8.1).
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Since there are at most k primes dividing the numbers an − b with n varying, we can write

an − b = p
α1(n)
1 p

α2(n)
2 · · · pαk(n)

k

with pi distinct primes, and αi(n) = ordpi(a
n − b).

For every fixed n, we have

aδa3j − pε11 · · · pεkk p3j11 · · · p3jkk = b

where δ and εi are the residue of n and αi(n) modulo 3 respectively (δ, εi ∈ {0, 1, 2}). We obtain
the equation

aδ
(
aj
)3 − (pε11 · · · pεkk

) (
pj11 · · · pjkk

)3
= b.

As n varies, we obtain at most 3k+1 different equations of the form

aδX3 − (pε11 · · · pεkk
)
Y 3 = b.

The binary form on the left hand side is irreducible unless δ = 0 and all εi = 0. This last case is
easily dismissed because, by (2.2), |Sx| goes to infinity in x, and therefore so does Y . However,
X3 − Y 3 = b implies that both X − Y and X2 +XY + Y 2 divide b. However, since b is fixed,
this implies that there are only finitely many choices for X and Y , which is a contradiction.

Also, every single n ≤ N gives a different solution to one of those equations. All the solu-
tions are primitive since (a, b) = 1. Therefore, one equation has at least N

3k+1 solutions.
Let C = c13

1+t, where t is the number of prime factors of b, and c1 is the constant appearing
in Theorem 8.1. Then, N

3k+1 > C would be a contradiction to Theorem 8.1, and so we have that

N

3k+1
≤ C,

that is N � 3k and so logN � k. Recall from the definition of N that N 	 log x, hence

log log x �a,b k,

which completes the proof. It is worth noting that the dependence on a and b can easily be
made explicit as

k 	 log log x− log log a− ω(b),

where ω(b) denotes the number of distinct prime factors of b, and the implicit constant is abso-
lute. �

9. THEOREM 1.5 VIA MUMFORD’S GAP PRINCIPLE

This proof uses Mumford’s theorem about counting points on curves using a height func-
tion.

Theorem 9.1 (Mumford [9], [16]). Let C/K be a curve of genus g ≥ 2 defined over a number field.
Then, there is a constant c depending on C/K and the height function H used, such that

#{P ∈ C(K) : H(P ) ≤ T} ≤ c log log T

for all T ≥ ee, where H is a fixed multiplicative height function on C.

It is important to note that we can make the constant c in Theorem 9.1 depend only on the
field K. As such, we can apply the theorem to quadratic twists of the same curve with the
same constant for each of them. See [11, Lemma 5] for a proof of this fact.

Proof of Theorem 1.5. The general idea of this proof is similar to that of section 8. As before,

#Sx 	 #{p prime : p|(an − b) for some n ≤ N}(9.1)

where N :=
⌊
log x
log a

⌋
. Denote by k the quantity on the right hand side of (9.1).

Again, write

an − b = p
α1(n)
1 p

α2(n)
2 · · · pαk(n)

k
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with pi distinct primes, and αi(n) = ordpi(a
n − b). This time, we consider only the n divisible

by 5, and write

a5j − pε11 · · · pεkk p2j11 · · · p2jkk = b,

where εi are the residue of αi(n) modulo 2, so we obtain the equation

(
pε11 · · · pεkk

) (
pj11 · · · pjkk

)2
=
(
aj
)5 − b.

Now, consider the curve given by the equation

Cb : Y
2 = X5 − b.

We know this to be a hyperelliptic curve over Q, and thus a curve of genus g ≥ 2. Also, if we
let Dn = pε11 · · · pεkk , we can consider the quadratic twist

Cb,Dn : DnY
2 = X5 − b.

However, any point (x, y) on this new curve would give

Dny
2 = x5 − b

(
√

Dny)
2 = x5 − b,

and so simply amounts to a point on Cb

(
Q
(√

Dn

))
.

From above, we see that every n ≡ 0 mod 5 gives a solution to the curve Cb,Dn . Since the X
coordinate of those points are distinct, it is clear that the points are distinct. As n varies over
multiples of 5 between 0 and N , we get

⌊
N
5

⌋
distinct solutions to at most 2k different curves. It

follows that one of these curves has at least N
5·2k solutions.

Consider the “naïve” multiplicative height function on Cb,Dn given by H (P ) = max{|x| , |d|},
where P =

(
x
d2
, y
d3

)
with x, y and d integers, and (x, d) = (y, d) = 1.

Then, note that all the solutions produced above for the curves Cb,Dn have height at most
aN . We then apply Mumford’s theorem with this height function to conclude that

#
{
P ∈ Cb,Dn(Q) : H(P ) ≤ aN

} ≤ c log log aN .

By the previous comment on quadratic twists,

#
{
P ∈ Cb

(
Q

(√
Dn

))
: H(P ) ≤ aN

}
≤ c log log aN .

Note that our previous comment about the independence of the constant on the field in Mum-
ford’s theorem allows us to have the constant c here be independent of n. Hence, by the above

N

5 · 2k ≤ c log log aN ,

and therefore k 	 logN 	 log log x. �

We want to point out that even if all three proofs give bounds of the same order of magnitude
with respect to x, the dependence of the implied constants on a and b vary for each approach.
For example, the proof in section 8 reduces the dependence on b dramatically. Note also that
the dependence on b of the implicit constant in section 9 is harder to make explicit as the
constant given from Mumford’s theorem depends on b. However, we see that the proof of
section 8 requires an extra condition on a and b to use Theorem 8.1, albeit a mild one.

In any case, as all three proofs use ideas fundamentally different from each other, we believe
that they are of independent interest.
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10. SECOND ORDER RECURRENCE SEQUENCES

In [15], Moree and Stevenhagen actually consider the two-variable problem with a and b
rational numbers (and then disregard the finitely many primes dividing their numerators or
denominators). Here, for clarity, we restricted our attention to integers. However, it is not very
hard to retrieve our results in the case where a and b are rational numbers.

Write a = a1
a2

and b = b1
b2

with gcd(a1, a2) = gcd(b1, b2) = 1. Then, the set of primes we are
interested in counting,

Sx =
{
p ≤ x prime : b mod p ∈ 〈a mod p〉 ⊂ F∗

p

}
,

can be written as
Sx = {p ≤ x prime : p|(b2an1 − b1a

n
2 ) for some n}.

The sequence (b2a
n
1 − b1a

n
2 ) is a linear recurrence sequence of order 2 and so we may again

apply Theorem 7.1.
For the proof of section 9, it is also easy to generalize the argument. Indeed, following the

same notation, we can write for n ≡ 0 mod 10

b2a
n
1 − b1a

n
2 = p2j1+ε1

1 · · · p2jk+εk
k

(
pε11 · · · pεkk

)(pj11 · · · pjkk
a
n/2
1

)2

= b2

(
a
n/5
1

a
n/5
2

)5

− b1,

which gives the rational solution
(

a
n/5
1

a
n/5
2

,
p
j1
1 ···pjkk
a
n/2
1

)
to the hyperelliptic curve DnY

2 = b2X
5 −

b1. Since Mumford’s theorem considers any rational solutions, and since the height of these
solutions is again at most max{∣∣aN1 ∣∣ , ∣∣aN2 ∣∣} ∼ x, the rest of the proof goes through unchanged.

The proof in section 8 is trickier to generalize. Indeed, the result from Bombieri and Schmidt
we use considers only integral solutions to the Thue equation.However, similarly to what we
did above, we need here a bound on the number of S-integer solutions to the Thue equation.
This is given by Evertse in [5].

Theorem 10.1 (Evertse, [5]). Let F (X,Y ) be an irreducible binary form of degree n ≥ 3, and let
{p1, . . . , pt} be a (possibly empty) set of distinct prime numbers. Then, the equation

|F (x, y)| = pk11 · · · pktt
has at most

2× 7n
3(2t+3)

solutions (x, y, k1, . . . , kt) ∈ Zt+2 with (x, y) = 1.

Therefore, for a = r/s and b = u/v rational numbers, we get the equation

vrδ
(
rj
)3 − (vpε11 · · · pεkk

) (
pj11 · · · pjkk

)3
= s3j+δu.

We can therefore apply the above theorem and follow the same argument as before.

11. PROOF OF THEOREM 1.6

This proof mainly relies on the following theorem of Gupta and Murty.

Theorem 11.1 (Gupta, Murty [7]). Fix a, b coprime integers. There exists a constant c > 0 such that

#

{
p ≤ x prime : p− 1 = 2P2(x) and

(
a

p

)
=

(
b

p

)
= −1

}
≥ cx

(log x)2
,

where P2(x) is the set of numbers n that can be written either as n = q1 or as n = q1q2, in both cases
with q1 and q2 primes such that x1/4+ε < q1 < q2.
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Proof of Theorem 1.6. We start by considering only the primes in the set

Tx =

{
p ≤ x prime : p− 1 ∈ 2P2(x) and

(
a

p

)
=

(
b

p

)
= −1

}
,

and ask how many of them are also in our set of interest

S′
x =

{
p ≤ x prime : b mod p ∈ 〈a mod p〉 or 〈b mod p〉 = F∗

p

}
.

Let p ∈ Tx, and let fp(a) and fp(b) denote the order of a and b respectively in F×
p . Since

by assumption both a and b are not squares modulo p, it follows that 2 divides fp(a) and
fp(b). From the definition of Tx, either p − 1 = 2q1 or p − 1 = 2q1q2 with q1, q2 primes, and
x1/4+ε < q1 < q2.

Case 1 Suppose p− 1 = 2q1. Since fp(a) �= 2, then fp(a) = 2q1 and so a is a primitive root for
F×
p . p is therefore trivially in S′

x.
Case 2 Suppose p− 1 = 2q1q2. There are three possibilities.
Case 2.1 fp(a) = 2q1q2. Then, a is a primitive root modulo p.
Case 2.2 fp(a) = 2q2.
Case 2.3 fp(a) = 2q1. We now show that this case does not happen too often. Here, clearly,

x1/4+ε < q1 <
√
x. We then count the number of p ∈ Tx that produce this situation. We do so

by splitting the range of the possible q1.
Case 2.3a Suppose that x1/4+ε < q1 <

√
x

log x . Since fp(a) = 2q1, p divides a2q1 − 1, and the
number of such primes when ranging over possible q1 is

�
∑

x1/4+ε<q1<
√
x/ log x

2q1
log x

� x

(log x)3
,

where we use that ω(n) � log n/ log log n. This is a result due to Ramanujan. In fact, he proves
[19] that

ω(n) ≤ log n

log log n
+O

(
log n

(log log n)2

)
.

Case 2.3b Suppose that
√
x

log x ≤ q1 <
√
x. Since p − 1 = 2q1q2, then we know that p−1

2q1
has

no small prime factor (in particular is equal to q2). By a theorem of Bombieri, Friedlander and
Iwaniec [2], we know that for fixed q1 <

√
x,

#

{
p ≤ x prime :

p− 1

2q1
has no small prime factors

}
� x

q1(log x)2
.

Thus, summing over all possible q1 in the range, we get that the number of primes p that
contribute to this case is

� x

(log x)2

∑
√
x

log x
≤q1<

√
x

1

q1
.

Since we know that
∑

p<x
1
p = log log x+ c+O

(
1

log x

)
, we get

∑
√

x
log x

≤q1<
√
x

1

q1
= log log

√
x− log log

√
x

log x
+O

(
1

log x

)

= log

(
1
2 log x

1
2 log x− log log x

)
O

(
1

log x

)

= − log

(
1− 2 log log x

log x

)
+O

(
1

log x

)
.
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For x large enough, 2 log log x
log x is small, and for small y, − log(1− y) ∼ y. We then get∑

√
x

log x
≤q1<

√
x

1

q1
� log log x

log x
.

Therefore,
x

(log x)2

∑
√
x

log x
≤q1<

√
x

1

q1
� x log log x

(log x)3
.

From the bounds we get in cases 2.3a and 2.3b, we conclude that the number of primes p in
Tx yielding the case 2.3 is negligible compared to the total number of primes in Tx, which is at
least cx

(log x)2
. We thus have that

|{p ∈ Tx : a is a primitive root mod p or fp(a) = 2q2}| 	 x

(log x)2
.

We can repeat the whole argument for b instead of a with Tx replaced with the set above. We
then get∣∣∣∣

{
p ≤ x prime :

a is a primitive root mod p or fp(a) = 2q2 and
b is a primitive root mod p or fp(b) = 2q2

}∣∣∣∣	 x

(log x)2
.

Now, if either a or b is a primitive root modulo p, then p ∈ S′
x. Also, if fp(a) = fp(b) = 2q2,

then 〈b〉 = 〈a〉 and so p ∈ S′
x as well.

We thus conclude that |S′
x| 	 x

(log x)2
as desired. �

12. CONCLUDING REMARKS

The original Artin conjecture was proved conditionally on the generalized Riemann hypoth-
esis by Hooley ([10]). The two-variable Artin conjecture was also proved conditionally on the
generalized Riemann hypothesis by Moree and Stevenhagen ([15]). However, Theorem 1.6
suggests that we might not need the generalized Riemann hypothesis to show that at least one
of them is true.
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