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ABSTRACT 

Transportation technology is providing new ways to mitigate multipollutant emissions co-emitted from on-

road sources. Zero-emission vehicles (ZEV) are more common in passenger vehicles and other light-duty 

vehicles; however, they remain a relatively new technology for most medium-duty and heavy-duty vehicles. 

As more trucks are adopting zero-emission technology, we need to evaluate whether these mitigation 

strategies are sufficient in meeting regional reduction goals. Previous studies have evaluated the 

multipollutant impacts of trucks and other vehicles; however, these methods estimate vehicle activity by 

empirical data such as surveys, which, unlike process-based models, are not amenable to evaluating 

significant future technology adoption. 

 

This research presents a new method to quantify the atmospheric impacts and evaluate mitigation strategies 

of zero-emission technology in trucks at a regional scale using an integrated assessment model (IAM). This 

model establishes a connection between EMME, a travel demand model, MOVES, a mobile emissions 

simulator, and EASIUR, a regression model that produces marginal damage estimates. The IAM estimates 

a baseline and compares the total damages of alternative scenarios, using different ZEV adoption rates 

applied to trucks. The annual, ground-level emissions were estimated for the following pollutants using the 

developed IAM: primary PM2.5, NOX, SO2, NH3, CO2, CH4, and N2O. 

 

The results from the application of the IAM to the baseline scenario show that the total annual damages 

resulting from atmospheric emissions from trucks for the Province of Ontario in 2012 is approximately 

$1.82 Billion (2005 USD). Most of these damages are in Southern Ontario, with Toronto, Peel and York 

being the top three contributors. Adoption of ZEV decreases these damages linearly.  Ontario has an 

adoption rate goal for ZEV of 5% by 2020. This rate is assumed to hold true for trucks in this transportation 

network. This goal would yield approximately $89 Million (2005 USD) in benefits annually from trucks 

alone. This result varies by up to ±25% according to the sensitivity analysis related to the travel and 

emissions models. Future work should focus on the relationship between emissions to damages, which 

likely remain the largest source of uncertainty.  
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1.0 INTRODUCTION 

1.1. Background 

The atmospheric-related impacts of freight transportation remain a policy challenge. At the regional scale 

(state- or province- wide), the movement of goods is dominated by trucks. Domestic freight movement by 

trucks in 2016 was approximately 72% by weight in Canada (Transport Canada, 2016), and in 2015 was 

approximately 60% by weight in the U.S. (USDOT BTS, 2016). Freight presents unique challenges for 

addressing the atmospheric impacts of this economically vital activity. With passenger vehicles and public 

transit, many technological advances have been employed to reduce the environmental impacts (e.g., hybrid 

or electric powertrains). However, trucks currently have limited alternatives and many current trucks still 

run on diesel fuel, a major source for both greenhouse gases (GHGs) and air pollutants.  

 

GHGs (such as carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4)) are gasses in the atmosphere 

that have a positive radiative forcing, which means that they contribute to the overall global rise in surface 

and atmosphere temperatures, and indirectly impacts human health. Air pollutants, such as primary fine 

particulate matter (PM2.5 – particles with a diameter size smaller 2.5μm), nitrogen dioxide (NO2), carbon 

monoxide (CO), and sulfur dioxide (SO2), have direct impacts to human health. In addition to their direct 

impacts on human health, nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2) are 

harmful via their contribution to the formation of fine particulate matter in the atmosphere. The World 

Health Organization (WHO) has estimated 3.7 million deaths globally are attributed to ambient air pollution 

(primarily due to exposure to PM2.5) in 2012 (Smith et al., 2014). 

 

Direct global GHG emissions from transportation have increased by 250% from 2.8 gigatonne (Gt) CO2 

equivalent (CO2e) (in 1970) to 7.0 Gt CO2e (in 2010), and, barring mitigation, could reach 12 Gt CO2e / yr 

by 2050 (Sims et al., 2014). As presented in Figure 1, the transportation sector accounts for the largest 

portion (34%) of anthropogenic GHG emissions in Ontario (Environmental Commissioner of Ontario, 

2014). When broken down, on-road freight transportation accounts for 23.5% of transportation-related 

emissions, or 8% of all anthropogenic GHG emissions in the province.  
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Figure 1 – Regional GHG emissions from economic sector, Ontario (2012) 

 

Transportation policies are in place to regulate GHG emissions and air pollutants at various spatial scales 

(i.e., local, regional, national and global). Though air pollutants are usually regulated separately from 

GHGs, they are often emitted from the same sources. These compounds are inextricably linked, as the 

extraction, production, and use of fossil fuels for transportation emits GHGs (such as CO2) and air pollutants 

(such as PM2.5). In addition to being linked through co-emissions, air quality and climate change are linked 

through atmospheric processes (Fiore et al., 2012; Jacob and Winner, 2009). Simultaneously considering 

multiple air pollutants and/or GHGs is sometimes termed a ‘multipollutant’ approach. 

 

Policies to reduce GHG emissions can also improve air quality as a “co-benefit”. These co-benefits can be 

significant (Jack and Kinney, 2010). Nemet et al. (2010) summarized 37 peer-reviewed studies yielding 

estimates of air quality co-benefits ranging from $2 to $147/tCO2 (in 2008$ USD). Thompson et al. (2014) 

estimated that the co-benefits can offset 26-1050% of the costs of U.S. climate policy. However, co-benefits 

studies have not traced the pathway between regional-scale transportation policy (including freight) to 

multipollutant impacts. 

 

Several studies have estimated the effects of freight transportation or freight policy on emissions of GHGs 

or air pollutants, but did not assess both, nor estimate their economic impacts. For example, various studies 

have examined the effects of fuel consumption on GHG emissions (Demir et al., 2011; Patterson et al., 

2008),  however there is little to no focus on the associated air quality impacts. Other studies have included 

multipollutant impacts as part of the external costs of freight on a U.S.-scale (Forkenbrock, 2001) or 

European-scale (Janic, 2007), but these country-scale approaches do not evaluate regional policies.  
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Integrated Assessment Modelling (IAM) is one approach for estimating multipollutant impacts of on-road 

freight policy. Numerical IAMs represent more than one discipline and aim to trace the causal pathway 

from policy to impacts. IAMs can use one of two approaches for estimating the co-benefits of policies: 

impact models and damage functions. Impact models include a physical representation of atmospheric 

processes and impacts, and involve a coupling of, for example, emissions models, chemical transport 

models, and health impact models. They are commonly applied in national policy-making in the U.S. and 

Canada, but their application is limited by the fact that they are highly resource-intensive from a 

computational, data, and human resource perspective (Fann et al., 2012). 

 

Another method quantifies the co-benefits of policies using damage estimates. Marginal damages aim to 

linearize the complex chain of processes from emissions to impacts. The marginal damage of an air 

pollutant or GHG is the social cost incurred from emitting one additional unit (e.g. $/tPM2.5). Marginal 

damage estimates provide a resource efficient alternative to a full-scale benefits assessment (Fann et al., 

2012). Recent studies account for the marginal damages ($/tonne) of different atmospheric emissions across 

different spatial and temporal scales as well as impact categories (Fann et al., 2012; Shindell, 2015). They 

have been applied in benefit analysis of policies in transportation, energy, and climate change by regulators 

and academics (Greenstone et al., 2013; Anthoff and Tol, 2013; Shindell et al., 2016). Such estimates can 

be applied to quantify the multipollutant impacts of alternative transportation scenarios. 

 

1.2. Problem Statement 

The growing focus of the environmental impacts of global climate trends and air quality have led 

researchers to develop methods to capture these impacts in order to inform mitigation efforts. 

Transportation is a major contributor for both GHGs and air pollutants in most areas around the world. 

Within regions, where the main mode of transportation is on-road vehicles, there have been emission 

mitigation strategies such as electric vehicles being adopted. Previous studies have managed to evaluate 

transportation policies related to reducing emissions. However, these studies have either estimated 

emissions for on-road passenger vehicles, or the studies evaluate atmospheric impacts of GHGs and air 

pollutants separately. Demand for on-road truck travel is significant and projected to increase. There is little 

research on tracing the pathway between transportation policy to impacts pertaining to the co-emissions of 

regional freight transportation.  

 

1.3. Research Objectives 

This research aims to develop an integrated assessment model to evaluate the multipollutant economic 

impacts from truck movements in Ontario, and to evaluate the benefits of introducing zero-emission trucks. 
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Transportation policies at the regional scale demand large amounts of data compared to previous country-

scale and continent-scale analyses. This IAM links a travel demand model, EMME (Equilibre Multimodal 

– Multimodal Equilibrium) (Florian et al., 1979), a transportation emissions model, MOVES (MObile 

Vehicle Emission Simulator) (US EPA, 2016), and marginal damage estimates of air pollutant emissions 

(from EASIUR – Estimating Social Impact Using Regression model (Heo et al., 2016a)  and GHG 

emissions developed by a suite of IAMs for the US Interagency Working Group on the Social Cost of 

Carbon. Figure 2 provides a visual representation of the relationship of the IAM components and also 

indicate that economic damages and/or benefits estimated with this framework can inform policy evaluation 

and design. 

 

 

Figure 2 – Relationship between the Integrated Assessment Model’s components and policy-to-impacts 

pathway 

 

The developed IAM will be applied to a baseline scenario (which represents the conditions of Ontario, 

Canada in the year 2012), and alternative scenarios (which represent the potential conditions if 

transportation policies were implemented affecting the use of zero-emission trucks in the province). The 

robustness and accuracy of these results will be assessed as best as possible via comparison to other relevant 

estimates, and parameter sensitivity analysis. 
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1.4. Research Scope 

The study domain for this research is the province of Ontario in the year 2012. While travel by passenger 

vehicles are modelled, they are used only to determine vehicle miles travelled and speed of travel by trucks. 

Policy scenarios represent a static shock of the transportation network and travel demand in 2012, where 

the various zero-emission adoption rates are applied to the medium-duty and heavy-duty vehicle population 

within the network. The baseline scenario represents the province, as it was in 2012. The policy scenarios 

represent the same province conditions with the exception of adopting a percentage of ZEVs in the vehicle 

population. This research does not forecast future demands or include any dynamic responses to policy such 

as rebound or other possible feedbacks. As significant data gathering was required for the travel and 

emissions modeling, efforts are made to assess the sensitivity of results to uncertainty in these parameters. 

Since the damages of emissions were drawn from EASIUR, uncertainty in the parameters contained within 

EASIUR, e.g., its economic valuations, are out of scope and are instead drawn from literature.  

 

1.5. Structure of Thesis 

The remainder of this thesis is organised into 5 sections. 

 

The next section (Chapter 2) provides a review of the literature related to multipollutant impacts of freight 

transportation policies and scenarios, marginal damage estimates, freight emission modelling at the regional 

scale, and green freight technology alternatives.  

 

Chapter 3 presents the methodology and the development of each component of the IAM and how they 

were linked together. The first subsection describes the transportation model of the IAM, discussing the 

travel and freight demand modelling in EMME, as well as how data were collected and processed. Chapter 

3 also discusses how the transportation model connects with the other model components. The second 

subsection contains detailed model run specifications used in MOVES to simulate transportation emissions. 

The section includes the methods used to prepare a custom domain and the associated input tables to obtain 

results. Additionally, the section describes how MOVES interacts with the other IAM components. The 

next subsection describes the use of marginal damages from EASIUR and their application to the emission 

estimates to produce damage estimates. The next subsection describes the baseline and alternative scenarios 

for which the IAM is applied. The last subsection presents the design of the sensitivity analysis based on 

the various model parameters being analyzed. 

 

The last two sections present the results (Chapter 4) and the sensitivity analysis (Chapter 5). The results 

section discusses the implications from applying the IAM to the baseline and alternative scenarios. The 
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sensitivity analysis examines the changes in the baseline scenario’s results due to changes in various 

parameters that are known to affect emission estimates. 

 

2.0 LITERATURE REVIEW 

The challenges of climate change and health impacts from air pollution at the global scale have spurred 

research aimed at mitigating these impacts for many sources. In addition to global efforts, regional and 

local efforts have been made to research, identify and mitigate these impacts. There have been an increasing 

number of studies with respect to air pollution and GHG emissions in past years, with growing attention to 

vehicle emissions. Vehicle technology is a rising topic, as advances in technology have made for more cost-

efficient strategies for light-duty (passenger) vehicles (e.g., battery electric vehicles). These changes are 

now being focused towards improving emissions from trucks. However, there is still little research in 

understanding the multipollutant atmospheric impacts generated from freight trucks at the regional scale. 

To understand these effects, researchers require models to simulate impacts representative of the real world. 

This section reviews literature related to developing an integrated assessment model to analyse the 

multipollutant atmospheric impacts from freight trucks at the regional scale. 

  

2.1. Multipollutant Analysis Using Integrated Assessment Modelling 

Previous studies have employed integrated modelling approaches to analyze multipollutant impacts, 

particularly at local, national or global scales. There is a wide variety of integrated modeling methods that 

capture air quality co-benefits, and they vary in their level of detail in representing various elements of their 

respective systems (Nemet et al., 2010; Thompson et al., 2014).  

 

Local scale modelling studies of the air quality impacts of transportation often benefit from detailed 

information about transportation as well as pollutant dispersion, capturing the atmospheric transport of 

pollution at the expense of detailed atmospheric chemistry or climate feedbacks. Several Canadian 

examples illustrate this approach. Hatzopoulou et al (2007; 2010)  developed an integrated approach linking 

an activity-based travel model to an emissions model (MOBILE) and a dispersion model 

(CALMET/CALPUFF) applied to light-duty vehicles in the Greater Toronto Area (GTA). Their activity-

based travel demand model provided emissions estimates with high spatial and temporal resolution of 

certain pollutants (Hatzopoulou and Miller, 2010; Hatzopoulou et al., 2007). Another framework linked a 

traffic assignment model (VISSUM) and emissions model (MOVES), using emissions as a proxy for 

exposures in the Montreal area (Sider et al., 2015). Muresan et al. (2016) presented a trajectory-clustering 

based integrated approach, linking VISSIM to MOVES, to estimate emissions of a transportation network 

by simulating the individual vehicle’s path. However, for these and other local scale analyses, there is 
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limited representation of atmospheric chemistry (which is more important on a regional vs. local scale), 

there is no link to climate change or the effects of greenhouse gases, and the results include exposures but 

not impacts (e.g., health outcomes or economic damages).  

Conversely, studies at the global or national scales often sacrifice detail in transportation systems, while 

improving detail in the atmospheric impacts by using chemical transport models or climate-chemistry 

models. These models capture the effects on pollutant fate and transport from the atmospheric response to 

policy. For example, Thompson et al. (Thompson et al., 2014) evaluates co-benefits of capping carbon 

emissions from the transportation sector at the national scale using a chemical transport model and health 

impacts model. The transportation sector, however, is modeled within a regional computational general 

equilibrium economic model that does not model vehicle activity within the transportation network, and 

thus cannot disaggregate damages within a region. Global studies captured climate change and chemistry 

across a variety of impact categories, but used an accounting (spreadsheet) model to estimate aggregated 

transportation demands (e.g. Shindell et al. (2012, 2011)), which prevents the types of transport project and 

policy analysis typically completed with travel demand models at the regional scale (e.g., changes in travel 

demands, land use changes, changing mode shares, etc.).  

 

2.2. Marginal Damages of Transportation Policies 

Marginal damage estimates have the benefit of approximating some of the detail of the more powerful 

atmospheric models used in national or global studies. Recent studies have used various approaches to 

relate emissions to their associated multipollutant damages (Brown et al., 2017; Holland et al., 2016; Pappin 

and Hakami, 2013; Shindell et al., 2016). Applications include major reductions from energy or 

transportation sources (Brown et al., 2017; Shindell et al., 2016), blanket emissions reductions, (Pappin et 

al., 2016), or global warming goals (Shindell et al., 2016).  

 

Methods to estimate marginal damages have employed a variety of techniques, from source-receptor 

matrices, to surface response methods, integrated assessment modeling, and global climate and chemistry 

modeling (Anthoff and Tol, 2013; Fann et al., 2012, 2009; Greenstone et al., 2013; Levy et al., 2009; Muller 

et al., 2011; Muller and Mendelsohn, 2009; Shindell, 2015). A comparison of approaches reveals 

differences in their sophistication, magnitude, and applicability to various problems (Heo et al., 2016a).  

 

Some studies have included estimates of marginal damages from on-road transportation that could be 

applied in the integrated modeling framework developed in this research. A study by Fann et al. (2012) 

provides marginal damages for 17 sectors in the U.S. for NOx,  SO2, and PM2.5, including all on-road mobile 

sources in one category. The study compares benefits estimates between 2005 and 2016, and results show 
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a 34% increase in benefits per ton of direct PM2.5 emissions avoided from on-road mobile sources ($240,000 

and $370,000/ton PM2.5 for 2005 and 2016 respectively). However, this approach only yields marginal 

damage estimates in the U.S. Shindell (2015) presents the Social Cost of Atmospheric Release (SCAR), 

which is applied to evaluate the damages from major air pollutants and GHGs from fuel consumption by 

passenger vehicles. While comprehensive in the emissions and impacts it considers, it presents results only 

at the global scale, and is thus ill-suited for regional analysis. Finally, EASIUR provides marginal damage 

estimates based on the economic valuation of increased mortality risk due to emissions of fine particulate 

matter and its precursors (NOx, SO2, and ammonia). EASIUR uses the same state-of-the-art underlying 

atmospheric models as these other studies by Fann et al. (2012) and Shindell (2015), while also providing 

results for Ontario on a 36-km grid, making them suitable to this study (Heo et al., 2016b).   

 

2.3. Freight Emissions Modelling 

Recent literature, including a review of nearly 60 papers, on the atmospheric impacts of green on-road 

freight transportation, focuses on GHGs rather than air pollutants (Demir et al., 2014). Similar work 

compares freight emissions models (Demir et al., 2011). Wygonik and Goodchild (2011) developed a model 

of emissions, cost, and service quality to evaluate an urban delivery system that includes trucks, and derived 

a marginal cost of $3.50/kgCO2 (USD) (Wygonik and Goodchild, 2011).  

 

As opposed to GHGs, fewer studies analyze the impacts of multiple air pollutants from on-road freight 

transportation. Janic (2007) includes air pollution along with congestion, noise pollution, and traffic 

accidents to estimate the full costs of a simplified trans-European intermodal and road freight transportation 

network. Forkenbrock (2001) applies marginal damage estimates of multiple air pollutants and CO2 to 

compare the external costs of freight and rail on a per-ton-mile basis across the U.S. Various measurement 

studies have estimated emissions of pollutants from trucks (Dallmann et al., 2012). However, these studies 

do not appear to have estimated the multipollutant impacts of freight scenarios on a regional scale. 

 

2.4. Green Freight Alternatives 

The adoption of electric vehicles (EV) has been the focus of many countries recently, in response to air 

pollution and greenhouse abatement goals. In 2012, the global sales for EV passenger cars were over 

180,000, however this was small (0.02%), compared to the total global passenger car fleet (International 

Energy Agency, 2013). The trend in EV adoption rose, and in 2017, it was reported that approximately 3.1 

million EV passenger cars were available globally (International Energy Agency, 2018). These 

electrification trends are seen to be slower for freight transport, especially heavy-duty long-haul trucks. 

Current use of EV trucks have been more commonly used in urban municipal services such as 
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package/postal deliveries like Canada Post (Robinson, 2011), refuse trucks (Motiv Power Systems, 2017), 

or commercial delivery fleets (Pepsico, 2013). However, with the release of the Tesla Semi, which is a 

heavy-duty zero-emission freight truck (Tesla, 2018) and other future heavy-duty EV trucks, there will be 

a need to assess the associated impacts from the change in vehicle fleet composition. 

 

2.5. Summary 

The negative trends of atmospheric impacts on the environment have spurred research to mitigate these 

effects from various sources. One mitigation approach is the development of green vehicle technology. 

Recently the focus of green vehicle technology has expanded to include freight vehicles, namely heavy-

duty long-haul trucks. Evaluating vehicle emissions has previously been focused on passenger vehicles and 

at smaller, more local scales. This work is novel in the methods and analysis it develops to capture the 

damages of multi-pollutant impacts on a regional scale, while still providing the flexibility to analyze 

alternative transportation projects and policies. 
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3.0 METHODOLOGY 

3.1. Integrated Modelling 

Figure 3 shows the framework for the integrated assessment model. The application of the integrated 

modelling approach illustrates the pathway from transportation policies to the multipollutant impacts of 

transportation policies/scenarios. Given a transportation policy, a travel demand model is developed using 

various network and transportation data to represent a scenario pertaining to that policy. The transportation 

model is then linked to a transportation emissions model with vehicle activity outputs and supported with 

additional exogenous data. The transportation emissions model produces total emissions (in tonnes) that 

are then combined with marginal damages in $/tonne/year to estimate the relative damages from that 

scenario. Data collection and manipulation are considerable underlying parts to the development of the 

IAM. Data used in the application of this modelling framework came from readily available (open) sources. 

Many data sources were not consistent with each other, so great efforts were required to manipulate the 

data into acceptable formats, and provide appropriate spatial, temporal, and categorical correspondence 

across the three models. 

 

3.1.1. Transportation Model 

Policy can influence the transportation system with management strategies designed to, for example, reduce 

congestion, reduce air pollution, improve regional mobility, etc. (Meyer, 1999). The effects of policies on 

a transportation system are reflected in the transportation network through implementing various changes 

to the network attributes. The key characteristic of a transportation model for emissions purposes is to 

develop vehicle activity information such as speeds, drive cycles, travel times, etc. Vehicle activity can be 

developed from empirical methods using historical data and trends or field studies/surveys. This however, 

can be resource intensive, economically and temporally. An alternative method is to simulate the 

transportation network with a computerized software. In this research, a policy scenario that looks at 

reducing vehicle emissions at a regional scale was simulated with a transportation model. There are several 

methodological approaches and corresponding software programs to use; however selecting one is based 

on a few considerations such as the scale of the network, the capabilities of the software program, the 

readily available data, etc. 
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Figure 3 – Integrated assessment modelling framework 
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Traffic modelling can be macroscopic, microscopic, or a hybrid of the two known as mesoscopic (Sider et 

al., 2014). Macroscopic models typically simulate a large network using aggregated road characteristics 

such as average speed, density and flow. Similarly, traffic assignment models use macroscopic link-

performance (or volume-delay) functions relating flow and travel time (Sheffi, 1985). Microscopic models 

simulate the individual driving behavior of every vehicle, generating instantaneous driving cycles. The 

appropriate model for a given policy application would depend on considerations including data 

availability, traffic and population density within the region, geographic extent of the region, and the study 

scope and objectives. There are scenarios where local data are not available, so data from other regions with 

similar local conditions are used. Presented in a study by Huo et al. (2011) in Chinese cities, they estimated 

vehicle activity data such as VKT for cities that did not have locally collected data. They mentioned it was 

difficult to provide accurate estimates, and that to estimate a national inventory using a set of cities with 

readily available data was not a proper estimation of the national emission average.  

 

Given the size of the Ontario road network (approximately 35,000 links and 14,500 nodes), a traffic 

assignment model was selected. The network is presented as Figure 4 in section 3.1.3. The travel demand 

modelling software, EMME (Equilibre Multimodal – Multimodal Equilibrium) (Florian et al., 1979), was 

selected to analyse a regional-scale transportation system since it was readily available to use for this 

research. Furthermore, an existing road network of Ontario in EMME with developed transportation 

demands for freight movement and background auto demands were developed previously (Ashrafi et al., 

2016). 

 

3.1.1.1. EMME model properties 

Traditionally, travel demand modelling includes a ‘four-step process’: trip generation (total number of trips 

produced and attracted by zone), trip distribution (linking trip productions and attractions), mode split 

(determining the mode of travel for a given trip) and trip assignment (the routes taken from origins to 

destinations). For this IAM, the transportation model follows the four-step process. In a previous study, the 

existing road network, trip generation, trip distribution and mode split were already completed (Ashrafi et 

al., 2016). It is assumed that introduction of new policies to the transportation model will not change the 

behaviour of the model (i.e. will not affect the behaviour of drivers, route choice, mode choice, etc.). In the 

network, only two mode types were used, (passenger) autos and trucks. The auto demands were developed 

from the Transportation Tomorrow Survey (TTS), and the truck demands were developed from the Ontario 

Ministry of Transportation (MTO) Commercial Vehicle Survey (CVS) (Ashrafi, 2017). EMME’s Second 

Order Linear Approximation (SOLA) user equilibrium (UE) traffic assignment (TA) was used as the tool 

to model each trip’s route choice. The traffic assignment followed the principle of network user equilibrium 
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– a network is said to be in equilibrium when no single trip maker can improve their travel time by changing 

their route.  

The results from the traffic assignment were stored in two built-in tables within EMME and exported for 

each hour. Link-level assignment results including travel time, volume, average speed, and mode specific 

vehicle hours travelled (VHT) were stored in the first table. The second table contained aggregated link-

level results for the 49 zones, including vehicle kilometers travelled (VKT), but not average speed. 

Aggregation of the VHT and VKT into zones required a pre-processing step in EMME, since there were 

links that intersect multiple zone boundaries. Three assumptions were made to assign VHT and VKT to 

associated zones: 1) If one of the nodes of a link is an external node, then all allocation belongs to the 

internal zone; 2) If both nodes of a link exists in two separate zones, then 50% will be allocated to each 

zone; 3) If both nodes of a link exists in a single (internal) zone, then all will be allocated to that zone. 

MOVES requires input in miles, so an extra post-processing unit conversion was applied to the resulting 

VKT from EMME. 

 

Intrazonal demands are not assigned in network models, so a post-processing step was used to include the 

intrazonal VKT. Intrazonal trip lengths were developed separately between auto and truck modes. A TTS 

data query was exported from an online database (run by the Data Management Group, DMG, at the 

University of Toronto Transportation Research Institute (Briggs, n.d.)). This consisted of multiple 

destination tables that contained a list of origins and associated trip lengths and number of trips for auto-

passenger mode. From this data, average intrazonal trip lengths were calculated for each zone and then 

applied to the hourly intrazonal trips to get intrazonal VKT. Average intrazonal trip lengths for trucks were 

extracted from the MTO CVS based on the average distance of recorded intrazonal trips and applied to the 

hourly truck intrazonal trips. Comparatively, another method was developed to estimate the intrazonal trip 

lengths for both autos and trucks. This method took the area of each zone, set the area equivalent to the area 

equation of a circle, and calculated the radius of that circle. Evidently, this method was found to be less 

representative than using the MTO CVS estimates by approximately 10-20%. 

 

3.1.2. Transportation Emission Model 

MOVES is a widely used transportation emissions model in North America, developed by the U.S. 

Environmental Protection Agency (U.S. EPA). MOVES is the current emission modelling system 

developed by the U.S. EPA, which superseded the MOBILE model series. The version of MOVES used in 

this research is MOVES2014a (US EPA, 2016). It is an emission modelling tool that can estimate 

transportation emissions at various scales: national, county, and project. MOVES functions by simulating 

user-specific “runs” of scenarios (controlled by a so-called “runspec” file), which follows a general formula: 
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𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ×  𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦*
 

*
Depending on the emission model, vehicle activity may be replaced with vehicle operation attributes (e.g. the Comprehensive 

Modal Emission Model, CMEM) 

 

Integrating a transportation model with MOVES requires post-processing the vehicle activity data 

appropriately to the templates generated by the CDM. Vehicle activity data from EMME was output for 

two vehicle source types: auto and trucks. MOVES contains 13 vehicle source type classifications and 5 

Highway Performance Monitoring System (HPMS) source type classifications. Of the 13 types of vehicles, 

only those that are considered to be “autos” or “trucks” were selected for modelling (i.e. busses were not 

modelled). Fuel, meteorological, inspection and maintenance (I/M) program and vehicle fleet data were 

developed from online open sources from the Canadian and/or Ontario Governments. Table 1 provides a 

summary of the data requirements that are used in linking the transportation model with the emission model. 

The input data tables are presented in Appendix A. 

 

3.1.2.1. Model Run Specification Setup 

Prior to running a simulation in MOVES, a runspec was created with all the parameters associated with the 

baseline scenario. Setting up the runspec allows MOVES to prepare the proper input tables and calculations 

for use in the simulation. For the baseline scenario, the runspec was setup to perform a county-scale 

emission inventory calculation. The county domain was selected to be a custom domain since all of the 

inputs were local (and Canadian). The temporal setup was selected for an hour of a weekday in April in 

2012. This means that MOVES only required data for only the specified hour, month and year. If any other 

data was imported, it was not used. To match the transportation network, only diesel and gasoline vehicles 

were selected, excluding busses. All road types were selected. Most of the emissions estimated from 

MOVES were from running and start exhaust, however, all of the emission processes (other than 

evaporative fuel venting) was selected for some pollutants and energy consumption shown in Appendix B 

as Figure B.1. Although some of these pollutants are not analysed, MOVES required them as internal 

calculations that are related to the pollutants being analysed. 

 

Desired outputs and units were specified. The output units for the mass, energy consumption and distance 

travelled were in grams, joules and kilometers respectively. As a validation to see if the input was properly 

completed, the distance travelled as an output was included. The internal calculations of MOVES can be 

outputted at different levels of detail such as by temporal aggregation and scale. The output was set to show 

hourly results, and have the capability to organize it by zone. Additionally, other properties such as the fuel 
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type, road type and source use type were added so the output could be organised by those categories if 

needed. 

 

Table 1 – Data inputs for MOVES simulation run 

 Data Type Attributes Definitions 

E
M

M
E

 Network Attributes 

Network nodes and link positions 
Network components that represent 

the intersections and roads 

Link speeds 
Average speeds vehicles are 

travelling on each link 

Link lengths 
Distance of the link, between two 

nodes 

Link volume delay functions (VDF) 

A modified Bureau of Public Roads 

(BPR) function representing the 

relationship between the volume and 

speeds on each link type 

Transportation Demands O-D matrix (by mode) 

Matrix containing travel demands 

between each O-D pair for each 

mode defined in the network 

M
O

V
E

S
 

Vehicle Activity Data* 

Vehicle distance travelled (VDT – km 

or mi) 

Total distance a vehicle mode 

travelled within the network (in 

kilometers or miles)  

Temporal adjustments 

Adjustment factors applied to VDT. 

Total VDT is specified by month, 

day and hour 

Vehicle hours travelled (VHT) 
Total hours travelled by vehicle 

mode 

Average speed distribution 
Fraction of VDT by average speed 

bins, for vehicle, road, and day types 

Vehicle Fleet Data 

Vehicle age distribution 

Fraction of vehicle ages between 0-

30 years old for each vehicle type of 

a given year 

Vehicle types 

Vehicle types according to Highway 

Performance Monitoring System 

(HPMS) or MOVES 

Network Activity Data* 

Road type distribution 
Fraction of VDT on each road type 

by a vehicle type 

Ramp fraction 

Fraction of road types that are 

ramps, distributed by the fraction of 

VHT on each ramp 

Fuel Data 
Fuel supply 

Local fuel supply data 
Fuel formulation 

Meteorological Data 
Temperature Local temperature data 

Relative humidity Local relative humidity data 

Inspection/Maintenance 

Programs 
I/M coverage 

Local data describing inspection and 

maintenance programs 

Hotelling 
Hotelling activity distribution Fraction of time spent while 

“resting” (idle or engine off) Hotelling hours  
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3.1.2.2. Vehicle fleet 

The characteristics of the vehicle fleet such as source type population and source type by age are required 

to model the emissions released from different sources. Vehicle fleet data for Ontario were not completely 

available, so Canadian fleet characteristics were used and distributions were produced. These were then 

applied to available Ontario data for use in the baseline scenario. A vehicle registration data table from the 

Canadian Vehicle Survey (CanVS) (Government of Canada, 2017a) contained total vehicle populations for 

Ontario in 2012. However, the source types did not match perfectly with the MOVES source types, so an 

intermediate step mapping the source types to the MOVES ones was completed. The HPMS source types 

were used to map the Canadian vehicle registrations to MOVES since the HPMS source types were 

representative of the registration data. Table 2 presents the relationship of the vehicle source types from the 

Canadian registration source types (i.e. HPMS) to the MOVES source types. 

 

Table 2 – MOVES source types and the equivalent HPMS source types 

sourceTypeID Source type name HPMSVtypeID 
HPMS source type 

name 

11 Motorcycles 10 Motorcycles 

21 Passenger Cars 

25 
Light-Duty 

Vehicles 
31 Passenger Trucks (primarily personal use) 

32 
Light Commercial Trucks (primarily non-

personal use) 

41 Intercity Buses (non-school non-transit) 

40 Buses 42 Transit Buses 

43 School Buses 

51 Refuse Trucks 

50 Single Unit Trucks 
52 Single Unit Short-Haul Trucks 

53 Single Unit Long-Haul Trucks 

54 Motor Homes 

61 Combination Short-Haul Trucks 
60 

Combination 

Trucks 62 Combination Long-Haul Trucks 

*Note ‘short-haul’ and ‘long-haul’ refer to the distance the trucks drive. Short – less than 200 miles. 

 

Source types: 21, 31 and 32 were considered light-duty vehicles (LDV); single unit truck source types: 51, 

52, 53, and 54 were considered medium-duty vehicles (MDV); combination truck source types: 61 and 62 

were considered heavy-duty vehicles (HDV); and source type 11 are motorcycles. Busses were not 

modelled in this scenario, however, MOVES is capable of modelling transit vehicles. A second data table 

(Government of Canada, 2018a) from the CanVS contained the number of vehicles by vehicle type and 

type of body in 2009, which was used to distribute the total (LDV) vehicle class population to their 

respective vehicle source types. Table 3 shows the fractions that were created among each vehicle classes 
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based on the total population for that source type (e.g., passenger cars, which is the sum of ‘car’ and ‘station 

wagon’ made up 59% of the vehicle population for LDVs. For MDVs and HDVs, the distribution of the 

class population to the source type populations was developed from the MTO CVS and the EMME network. 

From the MTO CVS, the observed vehicle configuration and body type information was used to tally the 

number of vehicles in each of the MDV and HDV class’ source types. Furthermore, the EMME network 

was used to count the number of short- and long-haul vehicles, which was then applied to the single-unit 

and combination trucks. 

 

Table 3 – Population distribution among MOVES source types 

Vehicle Group Source Type ID Source Type Name Fractions 

Motorcycle 11 Motorcycles 1 

  

LDV 

21 Passenger Cars 0.590 

31 Passenger Trucks 0.408 

32 Light Commercial Trucks 0.002 

  

MDV 

51 Refuse Trucks 0.040 

52 Single Unit Short-Haul Trucks 0.828 

53 Single Unit Long-Haul Trucks 0.132 

54 Motor Homes 0.000 

  

HDV 
61 Combination Short-Haul Trucks 0.862 

62 Combination Long-Haul Trucks 0.138 

 

Another vehicle fleet characteristic required for MOVES is the vehicle age distribution (the distribution of 

vehicle ages from the simulation model year (i.e. for the year 2012, vehicle ages are 0 to 30 years old). 

Vehicle ages were retrieved from CanVS for LDV (Government of Canada, 2017b), MDV (Government 

of Canada, 2018b), and HDV (Government of Canada, 2017c) for Ontario between 2000-2009. Each of 

those years contained vehicle age data going back 18 years. Since this was the best representative data for 

the baseline scenario, 2009 was set as the scenario model year and the associated data were used (available 

up to 1991). A backwards trend was extrapolated to estimate the other 12 years for each of the three vehicle 

classes. The best fitting trend was a negative exponential with a correlation coefficient of 0.9886 0.9513, 

and 0.8913 for LDV, MDV and HDV respectively. A plot of these trendlines are presented in Appendix C. 

The trendlines were developed using a subset of the data (1991-1995) to provide a better correlation of the 

extrapolated values, without capturing the uncertain up and down trends seen in the plots. Additionally, an 

exponential trendline was fitted, because it was assumed that the number of vehicles would never reach 

zero, and never be negative. Since these extrapolated years comprised less than about 5% of the total vehicle 
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population, the effect of this approximation is expected to be relatively minor; nonetheless, the effect of 

adjusting this distribution was explored in sensitivity analysis described later in this thesis. Within each 

vehicle class, the source types have the same age distribution. Motorcycles were assigned the same age 

distribution as LDVs, since data specific to this source type was unavailable. 

 

3.1.2.3. VMT 

Vehicle miles travelled (VMT), which are required by MOVES in imperial units were used as a basis for 

multiple required inputs. VMT can be provided by source types based on the MOVES types or the HPMS 

types. The VMT is necessary for the calculation of emissions from vehicle activity such as the distance 

travelled. Daily VMT data can be entered using two tables, one that requires the total daily VMT by source 

type and day type, and the other table that distributes the daily VMT by each hour. Supplying annual VMT 

data requires additional tables to distribute the data by months, days and hours. For the baseline scenario 

used in this research, daily VMT was supplied from the results of the EMME TA. The two sources types 

from EMME were simpler to map to the HPMS types, so the VMT was distributed among the 5 HPMS 

source types. Mapping the EMME source types to HPMS was done by using the distribution of vehicle 

populations from Statistics Canada. As such, the total daily auto VMT was split among the motorcycles 

and LDV, while the daily truck VMT was split among the MDV and HDV. 

 

Hourly VMT distributions were developed by calculating the hourly fraction of VMT by source type from 

the EMME TA results. The EMME model does not have distinct road types, so within each source type and 

day type combination, the same hourly VMT distributions were assigned for each road type. 

 

3.1.2.4. Zone 

Vehicle demands (O-D matrices) were used to estimate and vary the distribution of off-road activity such 

as starts. Emissions depend on the zonal distribution for off-road (vehicle starts, hotelling, and parking) and 

on-road (source hours operating, SHO) emission processes. Off-road activity data was unavailable, so the 

zonal distribution of vehicle starts were estimated from the Ontario O-D matrices, with the assumption that 

one trip prompted one start. The 24, 1-hour O-D matrices for both autos and trucks were added together for 

each zone and then divided by the total sum of starts for the whole network to create the daily start 

distributions. This was used to vary the starts between zones. Hotelling and parking distributions were both 

estimated from vehicle population totals from EMME. To get the SHO, the daily VMT from EMME for 

both source types were added together and divided by the total VMT in the network. This was then 

distributed to the zones and applied to all road types (i.e. for each road type, the 49 zonal VMT values have 

the same distribution, and sum to 1). 
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3.1.2.5. Starts 

Vehicle starts information is required, not only zonally, but at the time scale of interest. There are four 

required MOVES input tables that were used to represent the vehicle start activity within the network.  The 

combination of tables was used in conjunction with each other (or individually) to provide start activity 

information on the network. The total number of starts per day was calculated from the O-D matrices, the 

daily sum of all vehicle starts for each zone. The other three tables distributed hourly starts within a zone, 

distributed the number of starts by the vehicle source type for the whole network, and applied a monthly 

adjustment factor to account for the seasonal activity levels (e.g. there is typically more vehicle activity in 

the summer months than the winter months). Hourly starts distributions were calculated from the O-D 

matrices, taking the fraction of each hour’s total starts in a zone, divided by the total daily starts in that 

zone. The distribution of starts by source type was for the whole network, taking the number of starts for 

autos and trucks, multiplying it by their respective source type population distributions, then dividing by 

the total starts in the network. The monthly adjustment factor was set to 1 as a default since the VMT from 

the transportation model is for a typical day in the year.  

 

3.1.2.6. Average Speed 

Subsequent to the EMME traffic assignment, the average vehicle speeds were stored on each link (i.e., 

every vehicle had the same average travel time within any given link). The distribution of average vehicle 

speeds was post-processed from the traffic assignment, composed of the fraction of VHT in one of the 16 

defined speed bins in MOVES. The distribution is stored separately by source type and varies by hour. 

Given the two modes used in EMME, each of the truck source types would have the same average speed 

distribution within the same hour (e.g. single unit trucks have the same average speed distribution as 

combination trucks for the same hour and for all road types). This is the same with auto source types. From 

the EMME traffic assignment, the average speed (in units of mph) of the link was categorized into one of 

the 16 speed bins defined in MOVES, and the associated truck and auto VHTs were stored in those bins. 

Fractions for each bin were calculated by taking the sum of each bin over the total sum of all bins. 

 

3.1.2.7. Road Types and Ramps 

MOVES uses the road type distribution table to vary the drive cycles on the different types of roadways 

(e.g. on freeways, it is assumed that there are less stop-and-go movements, less acceleration and 

deceleration periods (US EPA, 2015)). The distribution of road types and ramps were developed by 

applying a fraction of urban and rural populations for each of the 49 zones in Ontario to the road types used 

in the EMME network. EMME did not specify road types beyond identifying freeways. Effectively there 

are 5 road types used in MOVES, based on the level of restriction and urban character. For consistency 
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with MOVES, any freeway in the Ontario network is considered restricted access (i.e. a road with a ramp 

access), and non-freeway links are considered unrestricted. Census division (CD) population data contained 

rural population totals for 2011 by each CD in addition to total population by CD. Rural fractions were 

calculated for each zone, and the urban fractions were calculated as the complement of the rural fractions. 

Applying these fractions to the fraction of restricted and unrestricted roads produced a distribution of 

restricted and unrestricted, urban and rural roads.  

 

The ramp fractions table is an optional table, which can have a default of 8% of VHT. However, for this 

research, calculated ramp fractions were used and developed the same way as the road distribution fractions. 

The EMME network contained a total number of links that had ramps, so the urban and rural fractions were 

applied to it. 

 

3.1.2.8. Fuel 

Fuel characteristics and vehicle fuel usage information was organised into four input tables: AVFT, fuel 

supply, fuel formulation, and fuel usage fraction tables. The AVFT table was used to represent the 

distribution of vehicle fuel type technologies. The table showed the fraction of vehicles using a fuel type 

for each of the source type, model year and engine type combinations. It was assumed that all vehicles in 

the model were using internal combustion engines (ICEs). Data for this table was retrieved from the 2009 

Canadian Vehicle Survey (Government of Canada, 2018c) for Canada and applied to baseline scenario 

model year. From this table, the number of diesel and gasoline vehicles were extracted for LDV, MDV and 

HDV for the years 2000-2009. Similar to the vehicle fleet data, a trendline backwards was developed to 

extrapolate the missing years for both fuel types and vehicle source types. This provided a fraction of engine 

fuel usage for each year and each source type, which is presented in the figures located in Appendix C. 

 

Chemical formulations were supplied for the fuels being used in the region. The fuel formulation input table 

had many fuel characteristics that required region specific customization such as Reid vapour pressure 

(RVP), sulfur level, distillation temperatures, etc. These fuel characteristics change based on the month, so 

12 fuel formulations were created for gasoline and diesel to represent a new fuel formulation for a specific 

month. Fuel formulation data were retrieved from the National Standards of Canada for automotive gasoline 

(Canadian General Standards Board, 2016) and diesel (Canadian General Standards Board, 2017), which 

was applied to Ontario.  

 

The fuel supply table was used to associate the fuel formulations to a region, and the market share of the 

fuel formulations with a fuel type (i.e. if there are two different fuel formulations being used for gasoline, 
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the market share determines the fractions of fuel formulation 1 and 2 in use). The sum of the market shares 

for each fuel type should be 1.  

 

The fuel usage fraction table was used to describe the fraction of vehicles that are using gasoline or E-85 

given that the vehicle is capable of using E-85. The baseline scenario does not include any vehicles that use 

E-85 fuels, so the fraction given to gasoline is 1. Since the baseline scenario does not include E-85 fuels, 

this table was left as the default values that MOVES supplies. 

 

3.1.2.9. I/M Program 

An optional table that can be used in MOVES is for describing any inspection and maintenance (I/M) 

programs being used in a particular region. Table 4 summarizes the Drive Clean Program details used in 

the baseline scenario. The Drive Clean Program has different properties depending on the vehicle type and 

fuel usage. In MOVES the only corresponding I/M tests available are for gasoline vehicles. Light-duty 

gasoline vehicles (LDGV) were tested using a dynamometer under 25% load and a steady state driving 

cycle at 25mph at final cutpoints (ASM 2525 Final Cutpoints) (US EPA, 2015b). Heavy-duty gasoline 

vehicles (HDGV) were tested with the two-mode idle test, while the vehicle is idle and at 2500 rpm (US 

EPA, 2015b). 

 

Table 4 – Summary of Ontario Drive Clean Program 

Program Details Light Duty Vehicles Heavy Duty Vehicles 

Coverage Southern Ontario (Windsor – Ottawa) 
Diesel: All of Ontario 

Gasoline: Southern Ontario 

Vehicle 

Classification 

Vehicle Weight: ≤ 4.5 tonnes 

Model Year: ≥ 1988 

Exempt: “Historic” vehicles and motorcycles 

Vehicle Weight: ≥ 4.5 tonnes 

Model Year: ≥ 1982 

Exempt: “Historic” vehicles 

Testing Frequency Biennial Annual 

Testing Method(s) ASM 2525 Final Cutpoints Two-mode, 2500 RPM/Idle Test 

*Adapted from: (Eastern Research Group, Inc., 2005; Office of the Auditor General of Ontario, 2012) 

 

The I/M Program input table provided details about the I/M program and also provided the percentage of 

the total vehicle population that receive the benefits of the program – the compliance factor (US EPA, 

2015b). The compliance factor for a program was determined by the fraction of vehicles subject to the 

program (compliance rate – CR), the fraction of vehicles that failed an initial test and a retest, but still 

received a certificate of compliance (waiver rate – WR), and the regulatory class coverage adjustment 

(RCC). The RCC adjustment factor was defined in MOVES, which classified the 13 vehicle source types 

by their gross vehicle weight rating (GVWR), having associated emission rates by grouping similar vehicles 
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by their vehicle activity and their weight. The CR and WR for both LDV and HDV was 98.7% and 1.6% 

respectively (Eastern Research Group, Inc., 2005). The RCC adjustment factor used was 100% for all 

vehicles except for passenger trucks (98%) and light commercial trucks (92%). The compliance rate was 

assumed to be the same for trucks that were not registered in Ontario, but passing through (external to 

external nodes). 

 

3.1.2.10. Meteorological Inputs 

Meteorological properties (temperature and relative humidity) influence vehicle emissions directly and 

indirectly (Choi et al., 2010). These meteorological conditions were varied by month, by hour and by zone. 

Historical 2012 meteorological data were retrieved from Environment Canada (2011) as a weather station 

inventory list. From this list, data for all weather stations that contained 2012-year and contained both 

temperature and relative humidity data were extracted from the Environment Canada website by organising 

the stations by zone. Since there were multiple weather stations for each of the CD zones, meteorological 

data were averaged by zone for each hour. For certain zones, if the data was incomplete or missing, the data 

from neighbouring weather stations were used, selected by proximity.  

 

3.1.2.11. Hotelling Activity 

Hotelling refers to the time spent by truck drivers on a mandatory rest period during their long-haul trips. 

Therefore, hotelling activity only applies to source type 62 – long-haul combination trucks. There are two 

optional tables used to distribute the hotelling activity among operating modes, and to distribute the 

hotelling hours. However, lack of Ontario-specific data led to using the default values, calculated in 

MOVES based off the VMT and VHT provided from the other input tables. 

 

3.1.3. Marginal Damages Estimates 

Marginal costs developed from the EASIUR model were applied to the emission results from MOVES. 

EASIUR presented marginal social costs of primary PM2.5 and three precursors (SO2, NOX, NH3) to the 

formation of secondary PM2.5 due to atmospheric processes (Heo et al., 2016b). The spatial domain covers 

a 36km x 36km grid across America, as well as portions of Canada (including Ontario). The marginal costs 

from EASIUR were selected because it was the most applicable to the region of Ontario, and since it also 

included PM2.5 mortality in its damage cost estimates, which is known to be the most significant source of 

damages from atmospheric emissions. Developing the marginal damages per CD and total damages for all 

of Ontario required a pre-processing step to relate the emission sources to the associated costs. Figure 4 

shows the application of the EASIUR grid to Ontario. Each grid cell contains the annual and seasonal 

marginal costs of PM2.5 at three elevations. The annual ground-level costs were used for all four species. 
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Since the IAM was estimating the damages from on-road freight vehicles, only the EASIUR grids that 

contained any of the Ontario roads were considered. Using a geographic information system (GIS) 

application, QGIS (QGIS, n.d.), two spatial joins were created: the Ontario road network to the 49 CDs; 

which was then joined with the marginal damages grid. Once each road link in the network had an 

associated CD and marginal costs, a weighted average based on the link length within a zone was produced 

for each of the CDs for the annual ground-level costs of each species. These marginal costs were then 

applied to the emission outputs from MOVES at a zonal scale to estimate the total zonal impact. To include 

the impacts due to CO2, the marginal damages of which are considered to be relatively consistent across 

sources and locations, were obtained from the U.S. interagency working group exercise to estimate the 

Social Cost of Carbon (the application of which to Canada was previously endorsed by Environment and 

Climate Change Canada) (2016).  

 

 

Figure 4 – Overview of EASIUR grid overlaid on Ontario road network 
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3.1.4. Ontario Case Studies 

3.1.4.1. Baseline Scenario 

The IAM framework is used here to evaluate five policy scenarios relative to a baseline. The baseline 

scenario represents the emissions and multipollutant impacts of on-road freight movement for Ontario in 

the year 2012. The vehicles of interest modelled in MOVES include all available diesel and gasoline 

vehicles except busses.  

 

As a result of the available data, the baseline scenario was set so that the runspec simulates a 1-hour run, 

which was scaled up to represent a yearly total. In order to reduce the computational burden of simulating 

24 hours of every month in a year, an hour and month were selected. 8am-9am was selected for simulation 

hour and April as the month. This hour and month represent a time period that is not extreme in terms of 

weather. It should be noted that this hour is not typical for travel or for freight demands, however this 

represents the busiest hour of the day, with the most congestion, and lowest average speeds. Having the 

time period with the busiest hour produces the greatest emissions due to vehicle activity (all else being 

equal). The effect of this selection is later tested in sensitivity analysis by choosing different hours and 

months.  

 

3.1.4.2. Alternative Scenarios 

The IAM framework was applied to assess the multipollutant benefits of green truck technology. 

Alternative scenarios were developed to compare the effects of changing the vehicle fleet composition to 

include zero-emission (or really low emission) trucks (mainly medium-duty and heavy-duty). This 

represents a transportation policy scenario of adopting new green technology into regional vehicle fleets. 

Alternative scenarios applied various adoption rates to the medium-duty and heavy-duty source types (51-

54, 61, and 62), as shown in Table 5.  

 

Table 5 – Alternative scenarios’ adoption rates 

Alternative Scenario Adoption Rate 

1 5% 

2 25% 

3 50% 

4 75% 

5 95% 
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Alternative 1 represents Ontario’s goal of achieving 1 of 20 vehicles on the roads to be electric (Ontario 

Ministry of Transportation, 2009). Additional scenarios contain adoption rates to show the different levels 

of impacts from changing the fleet composition. To model the effects of changing a percentage of the MDV 

and HDV fleet to ZEV, the vehicle fleet emissions in these alternative scenarios were reduced by the 

adoption rates (i.e. for alternative scenario 4 – 75% adoption rate, the emissions from that number of MDVs 

and HDVs were reduced by 75%, thus only 25% of the baseline fleet emissions remained). These reductions 

are applied as a static shift, as a dynamic shift is beyond the scope of this research, and introduces more 

uncertainty. 
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4.0 RESULTS AND DISCUSSION 

The integrated assessment model described in the previous sections was applied to a baseline scenario and 

five other alternative scenarios to estimate regional emissions. The baseline represents the emissions 

produced from vehicles from the region in the year 2012. These emission estimates from air pollution (CO, 

NOX, NH3, SO2, total primary PM2.5, and VOCs) were compared to the Canadian Air Pollution Emission 

Inventory (APEI), while the GHGs in CO2 equivalent emissions were compared to the Canadian National 

Inventory Report (NIR) for Ontario.  

 

4.1. Baseline Scenario 

Table 6 is a summary of the estimated emissions of MDVs and HDVs for the baseline scenario. The model 

estimates numerous greenhouse gasses and air pollutants; however, the subset of pollutants presented in 

this table are shown because they were used to compare across scenarios and with the APEI and NIR values. 

These results represent the total emissions for both gasoline and diesel fuel type combinations of MDV and 

HDV in the model. GHG emissions can be combined based on the global warming potential of each gas 

with respect to CO2. This value, presented as CO2 equivalent (CO2e) is measured in megatonnes (Mt). The 

air pollutants are measured in tonnes. The low SO2 estimate can be attributed to the low sulphur content in 

automotive fuels in Canada, which have been decreasing over several years (Government of Canada, n.d.). 

SO2 is released into the air from burning fossil fuels that contain sulphur. NH3 is largely emitted from the 

agriculture sector; however, it is still emitted from the internal reactions from three-way catalyst engines 

(Durbin et al., 2001).  

 

Table 6 – Summary of model emissions (Baseline Scenario) 

 

GHG Air Pollutants 

CO2e [Mt] 
NOX 

[Tonnes] 

NH3 

[Tonnes] 

CO 

[Tonnes] 

SO2 

[Tonnes] 

PM2.5 

[Tonnes] 

VOC 

[Tonnes] 

Emissions 16 71,925 361 72,505 160 3,121 9,757 

 

Figure 5 disaggregates the baseline scenario results by the MOVES source types. From this figure, it can 

be seen that the largest contributions of emissions are from source type 52 (single unit short-haul) and 

source type 61 (combination short-haul). This can be attributed to these source types having a larger fraction 

of starts (16.2% and 69.3% respectively, of all MDV and HDV starts). Additionally, of all the MDV and 

HDV source types, the two short-haul trucks make up of about 84% of the vehicle population in the model. 
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Figure 5 – Baseline scenario results by MOVES source type 

 

Figure 6 shows the damages by zone, produced from the baseline estimates. The total damages in the region 

due to MDV and HDV sources is $1.82 Billion (2005 USD). The damage occurs largely in the southern 

part of Ontario, since there is a higher population and more vehicle activity. In particular, the census 

divisions of Toronto, York and Peel create the highest damages due to emissions from trucks. This is due 

to the large urban populations, high vehicle activity, and large freight hubs located in these zones. 

 

 

Figure 6 – Ontario provincial damages in millions $ (2005 USD) in 2012 (Baseline Scenario) 
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Figure 7a) and b) show the annual damages generated per capita per zone from the baseline scenario. Unlike 

the results presented in Figure 6, the 3 highest zones with regards to the damages per capita are the census 

divisions: Lennox and Addington, Oxford, and Perth. This may be attributed to the higher urban population 

and vehicle activity and a below average total population (Oxford); having one of the lowest total 

populations compared to the vehicle activity (Lennox and Addington); or above average emission output 

compared to a below average total populations (Perth). Though it may not be reflected in the per capita 

values, the census divisions that contain a high percentage of urban population had an associated total 

marginal damage estimate in the top 25th percentile. Compared to Figure 6, Figure 7 shows that, while the 

GTA produces the most damages, it produces relatively few damages per capita compared to other regions 

where truck activity is relatively high, or with conditions especially amenable to particulate matter pollutant 

formation.  

 

 

Figure 7a) – Ontario zonal annual damages per capita in 2012 
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Figure 7b) – Southern Ontario zonal annual damages per capita in 2012 

 

4.1.1. Baseline Validation 

Capturing the complex policy-impact pathway requires multiple integrated modelling components, each of 

which influences the model results. Therefore, the accuracy of the resulting impacts and the usefulness of 

the resulting insights will depend in part on overcoming challenges for each component. There is a trade-

off between complex models and data availability. Complex models require more input parameters, which 

may not be readily available. However, these models have the ability to provide a better insight in their 

results (Smit et al., 2010). Ideally, data sources should be consistent; however, to avoid strenuous data 

collection, model parameters were developed from available sources, and were applied to the network.  

 

Validation of the model outputs tests the accuracy of the representation to the real world. Real-world 

measurements related to freight emissions at the regional scale is severely limited. At the national level, 

Canada has the APEI and the NIR to report annual air pollution emissions and GHG emissions. These 

sources are not based on measured emissions, either, but on calculations and models (including MOVES). 

Comparison to these sources is imperfect and limited by important methodological differences, but serve 

at least as a comparison to Ontario-specific emission estimates. The Ontario-specific estimates are extracted 

from those national inventories. Figure 8 presents the comparison between the emission estimates from this 

research to the emission estimates produced from the national inventory.  
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Figure 8 – Comparison of emission estimates between Canadian APEI and MOVES 

 

Data availability and model-specific parameters dictate the format of the results. As presented in Figure 8, 

there are two emission estimates from the MOVES model for the air pollutant species. The results are 

presented this way because the estimates by source types are not equivalent between MOVES and the 

Canadian APEI. As labeled, the APEI emission estimates presented are of heavy-duty gasoline and diesel 

vehicles, however, their definition of “heavy-duty” also contains some MDV. These results are similar to 

the MOVES estimates when the total MDV and HDV (gasoline and diesel) source types are added together 

(3%-41% difference). When compared to the MOVES estimates of only heavy-duty (gasoline and diesel) 

vehicles, all the results are approximately 32%-85% lower than the APEI results. 

 

Figure 9 compares the MOVES estimates to the Canadian NIR estimate for GHGs in Mt CO2 equivalents. 

The MOVES estimates include both short-haul and long-haul, single-unit and combination trucks, as an 

equivalent to the NIR’s vehicle type for on-road freight vehicles. Additionally, MOVES estimates CO2, 

CH4, and N2O, whereas the NIR estimates CO2, CH4, N2O, hydrofluorocarbons (HFC), perfluorocarbons 

(PFC), sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3). The GHG emissions estimated by MOVES 

across these sources is approximately 20% higher than that of the NIR for Ontario in 2012. The differences 

in the estimates can be attributable to the different definitions of vehicle source type. 

 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

NOx NH3 CO SO2 PM2.5 VOC

T
o
n

n
es

Air Pollutants

MOVES MDV and HDV MOVES HDV Only APEI HDV



31 

 

 

Figure 9 – Comparison of CO2e emission estimates between NIR and MOVES 

 

Given the issues with mapping source types, and methodological differences, the comparison between this 

framework and these national inventories is understandable. Validation challenges are limited by the 

accuracy of the estimates used for comparison or any gaps in the collected data where it was not captured 

properly (Smit et al., 2010). This can be seen in the difference of how the vehicle types are mapped out 

between the data sets. The APEI classifies vehicles by their gross weight and fuel type (Environment and 

Climate Change Canada, 2017), however, these classifications are broad, as such, heavy-duty vehicles 

include MDVs as well. In addition to the misclassification of source types between models, the APEI also 

estimates its vehicle activity by multiplying the vehicle counts to the mileage accumulation rates 

(Environment and Climate Change Canada, 2017). The effect of this approach is to assign kilometers 

travelled, and thus, emissions, based on vehicle registration data. Conversely, the approach presented in 

this study tracks travel through and within the province. This creates a significant difference that may 

explain in particular why the pollutant emissions estimated by this framework are lower than that of the 

APEI. Namely, this framework only includes emissions from kilometers that were travelled within the 

province, excluding those due to out of province travel. Conversely, the APEI would assign all emissions 

to Ontario for any vehicle registered to this province. While this is a reasonable approach, especially for a 

national inventory perspective, it is preferred to track actual emissions based on travel when attempting to 

assign spatial damages, as in this study. From the collected travel demands, 78% of trucks travelled 

internally within the province, 20% had an origin or destination out-of-province, and 2% were travelling 

through the province. This approach captures the kilometers travelled on roads within the province, which 

includes the parts of the trips on roads even if the trip may have an external node (origin or destination out 

0

2

4

6

8

10

12

14

16

18

MOVES NIR

M
t 

C
O

2
e

Data Source

Road (Freight)

Combination - Long Haul

Combination - Short Haul

SU - Long Haul

SU - Short Haul



32 

 

of the province. Given these considerations, the level of agreement within 50% or better that we generally 

see is encouraging. The agreement for greenhouse gases is even better, within 20% of the NIR, though 

methodological differences remain, and the data also are not directly comparable as reported; for example, 

it is possible that this study’s results overestimate the NIR because it assigns all emissions from short-haul 

and long-haul, single-unit and combination trucks to compare with a single data point “on-road freight” 

from the NIR. Barring more robust and suitable validation data, a sensitivity analysis is performed 

(presented later) to assess uncertainty in the baseline emissions. 

 

4.2. Alternative Scenarios 

Table 7 summarizes the results from 6 scenario simulation runs performed in MOVES for MDV and HDV: 

Baseline, Alternative 1 (5% ZEV), Alternative 2 (25% ZEV), Alternative 3 (50% ZEV), Alternative 4 (75% 

ZEV) and Alternative 5 (95% ZEV). The table shows the four air pollutants, measured in tonnes/yr, and the 

total CO2 equivalents, measured in megatonnes/yr. The alternative scenarios differ by a comparative static 

change in the level of adoption of ZEVs. This represents potential levels of change in ZEV adoption due to 

a transportation policy, which could have an impact on the levels of vehicle emissions produced. 

 

Table 7 – Summary of emission estimates for MDV and HDV for the alternative scenarios. 

Scenarios 
Source Type 

Categories 

Pollutants 

PM2.5 

(tonnes/yr) 

NOX 

(tonnes/yr) 

SO2 

(tonnes/yr) 

NH3 

(tonnes/yr) 

CO2e 

(Mt/yr) 

Baseline 
MDV 1,009 25,113 83 199 7 

HDV 2,112 46,812 77 162 9 

 

Alternative 1 

(5% ZEV) 

MDV 959 23,857 79 189 7 

HDV 2,007 44,598 73 155 9 

 

Alternative 2 

(25% ZEV) 

MDV 757 18,835 62 149 5 

HDV 1,585 35,209 58 122 7 

 

Alternative 3 

(50% ZEV) 

MDV 504 12,556 41 99 4 

HDV 1,056 23,473 38 81 4 

 

Alternative 4 

(75% ZEV) 

MDV 252 6,278 20 49 2 

HDV 528 11,736 19 41 2 

 

Alternative 5 

(95% ZEV) 

MDV 50 1,256 4 9 0 

HDV 105 2,347 4 8 0 
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Each emission estimate sums the total emissions for each of the source type groups (MDV and HDV) across 

both gasoline and diesel fuel types and across all zones. While maintaining the distributions and fractions 

developed for the baseline scenario, for each alternative scenario, truck population and the number of starts 

per day were decreased by a ZEV adoption rate, effectively transferring a portion of the fleet from emitting 

to non-emitting. This static change is reflected in the results from the alternative scenarios. The baseline 

scenario produced the greatest vehicle emissions and, as expected, the emission levels decrease as more 

ZEV replace gasoline and diesel trucks in the fleet composition. 

 

Figure 10 presents the benefits of adopting ZEV in the MDV and HDV fleet (determined as the reduction 

in damages compared to the baseline). Two lines are shown to represent the trend of benefits: the benefits 

received from air pollutant reduction only, and the benefits received from both air pollutant and GHG 

reductions. The figure suggests that as the adoption rate increases, the benefits follow a positive linear trend. 

At 95% ZEV adoption rate, annual benefits in 2012 received solely from the effects of reducing air pollution 

is nearly $1.3 billion (2005 USD), and the benefit received from reducing both GHGs and air pollution is 

about $1.7 billion (2005 USD).  

 

 

Figure 10 – Annual benefits by ZEV adoption 

 

The 95% ZEV adoption rate scenario is not a realistic adoption rate in the near future. Evaluating the IAM 

for a more applicable and realistic scenario to Ontario in the near future can provide more valuable insight 

for shaping a potential policy of this nature. Looking at the 5% ZEV adoption rate, which represents 

Ontario’s adoption rate goals for 2020, the marginal benefits received is greatly lower than that of the 95% 
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adoption rate scenario. The regional annual benefits received from air pollution-only impacts and 

multipollutant impacts at the 5% adoption rate is $64.7 million (2005 USD) and $89 million (2005 USD) 

respectively. Given the total benefits under the 5% adoption rate, it may be possible to incentivize a shipper 

to adopt a ZEV by subsidizing $7,645 (2005 USD) per vehicle adopted. Figure 11a) present the zonal 

benefits received at the 5% adoption rate and Figure 11b) presents the same benefits, but a closer look at 

Southern Ontario. Similar to the baseline marginal damage map shown in the previous section, the top three 

census divisions that have the greatest benefits are Toronto, York and Peel. The zonal benefits at the other 

adoption rates are presented in figures located in Appendix D. 

 

 

Figure 11a) – Ontario provincial annual marginal benefits under 5% ZEV adoption in 2012 
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Figure 11b) – Annual marginal benefits of Southern Ontario zones under 5% ZEV adoption in 2012 
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5.0 SENSITIVITY ANALYSIS 

5.1. Sensitivity Analysis Scenarios Development 

The uniqueness of the integrated assessment model presented in this research relied on developing regional 

inputs from various data sources and connecting these three models. This resulted in taking readily available 

data and applying it to the specific baseline scenario. Individual model components have been previously 

evaluated, including the Ontario travel demand model (Ashrafi et al., 2016), and the marginal damages 

model (Heo et al., 2016b). The results of the integrated assessment model cannot be directly validated, as 

it is not possible to observe the economic damages of emissions directly, in part due to the complex chain 

of events between travel and damages. Thus, the robustness of results is tested using sensitivity analyses 

on multiple parameters individually. This subsection provides the methods used in developing the 

sensitivity analysis scenarios.  

 

5.1.1. Meteorological Bounds 

Two scenarios were developed to create bounds for the model sensitivity to meteorological changes by 

identifying maximum and minimum temperatures in the meteorological record. The meteorological table 

that was produced for the baseline scenario was used to determine the upper and lower bounds of 

temperature. For each month, the highest and lowest temperature was recorded, and whichever month 

corresponded to the lowest and highest temperature, was selected as the month to be used in the sensitivity 

analysis. Additionally, the associated hour containing the hottest and coldest temperature was used as the 

hour of simulation. Functionally, in MOVES, this step meant copying the minimum/maximum temperature 

and relative humidity data over into the appropriate month file, and moving the VKT being studied into the 

appropriate hour of the day.  

 

5.1.2. Average Speeds 

The change in average speeds produced four scenarios from 50% reduction in the average speeds, to 50% 

increased average speeds. These were scalar changes to the traffic assignment results for each hour. Looking 

at the validation plots for travel time from the demand model, the correlation coefficients suggest a 20-30% 

error (Ashrafi, 2017). When calculating the mean absolute error, the travel times MAE range from 27-35%. 

Thus, analysing a 50% change in average speeds is a higher bound that considers the potential errors in the 

vehicle speeds in the network. These results were then organized into the average speed bins, as was done 

to the baseline scenario. 
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5.1.3. VKT 

On its own, the change in the zero-emission vehicle adoption rates defined its sensitivity to changes in 

VKT, since the reduction in emissions was modelled by reducing VKT.  

 

5.1.4. Mean Vehicle Age 

The mean vehicle age of the baseline was calculated by a weighted sum given by the following equation, 

which was applied to the dataset used for the baseline scenario: 

 

𝑥̅ =  
∑ (𝑁𝑖 × (𝑌 − 𝑖))30

𝑖=0

∑ 𝑁𝑖
30
𝑖=0

 

Where:   𝑥̅  is the mean age (years), 

  𝑖  is the age relative to the model year (years), 

  𝑁  is the number of vehicles that are of age 𝑖, and 

  𝑌  is the model year (2009, which is based off the dataset). 

 

This weighted mean vehicle age was calculated separately among LDV, MDV and HDVs, however, the 

mean ages were all about 7 years. The sensitivity analysis for two scenarios were produced for shifting the 

mean age 1 year older and 1 year younger. This was done by partitioning the vehicle years into two groups 

by the cumulative percentage of vehicles. For each scenario, the oldest or youngest group of ages contained 

roughly a third of the number of vehicles respectively. To make the mean age older (i.e. moving it such that 

the mean age is 1 year older, from 7 years to 8 years old), younger vehicles were removed from the younger 

group and distributed to the second group. The same method was applied to shifting the mean age younger. 

The following two equations in association with the equation presented above, represent the change in mean 

ages: 

 

𝑅𝑥 = ∑ 𝑁𝑖𝑖 × 𝑓    ∀𝑖; 𝑖 ∈ 𝑥 

 

𝑥𝑖 = 𝑁𝑖 + (
𝑁𝑖

∑ 𝑁𝑖𝑖
 × 𝑅𝑥)   ∀𝑖; 𝑖 ∈ 𝑦 

 

Where: 𝑅𝑥  is the total number of vehicles removed from group 1 to be distributed to 

group 2. 

 𝑁  is the number of vehicles of age 𝑖, 

 𝑖  is the age, 
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𝑥  contains all the ages in group 1, 

𝑦  contains all the ages in group 2, and 

𝑓  is the fraction such that the mean age. 

 

5.1.5. Sensitivity Analysis Results 

As discussed, appropriate validation data are lacking. While the comparison performed with the national 

inventories is reasonable considering the methodological differences, it does not serve to quantify the 

uncertainty in the baseline or assess its underlying sources. For this, a sensitivity analysis is performed.  

The IAM developed in this research used data, which were configured to support the required input tables 

for proper estimation. However, this leads to some uncertainties with various parameters. An input 

guideline by Porter et. al (2014) included sensitivity analysis on various input parameters such as vehicle 

age, average speeds, temperature, VMT, etc. Using the parameters that were considered to have an impact 

on emissions that was “substantial” to “very substantial” in the guideline, a sensitivity analysis was 

performed on the input parameters of the IAM for the baseline scenario to assess the effect of parameter 

uncertainty on the estimated emissions.  

 

Four input parameters were analysed, which are presented in Figure 12: mean age of vehicle population 

used, average speed of vehicles, extreme temperature effects, and VMT changes. In itself, the VMT changes 

were presented in the previous section, describing the changes in the benefits (damages saved) based on the 

changes in the VMT and number of starts. Other VMT sensitivity analysis can be found in the input 

guideline (Porter et al., 2014). Each sensitivity analysis scenario kept every other input parameter the same 

as in the baseline scenario, i.e., a one-at-a-time sensitivity analysis was performed for the key parameters. 

The baseline damages were calculated and summed for NOX, NH3, SO2, PM2.5, and CO2e. Figure 12 shows 

the damages, relative to the baseline scenario, which is set at 0. Negative values are benefits (damages 

saved), while positive values are damages. 
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Figure 12 – Sensitivity analysis results (damages relative to baseline scenario = 0) 

 

5.1.5.1. Mean Vehicle Age 

Vehicle age was retrieved for the year 2009 and for Canada. The uncertainty with the unavailable data in 

addition to the application of this data set to the model in this research required an analysis to determine 

whether better data would be needed. Two scenarios were created: increasing and decreasing the mean 

vehicle population age by 1 year. The mean age for the baseline data set was 7 years old. 12 years of the 

data set was missing, so a backwards extrapolation was used to estimate the vehicle population for those 

age categories. Changing the mean age represents scenarios where some of the new vehicles were actually 

older, or older vehicles were actually newer. From Figure 12, redistributing 40% of newer vehicles to older 

age categories increased the damages by 14% ($260 million); and redistributing 35% of older vehicles to 

newer age categories decreased damages by 8% ($152 million). The different redistribution percentages 

were due to the population distribution of the age categories. Additionally, a shift of 2 years up or down 

would result in moving more than 90% of the old age categories to new or new age categories to old. This 

was not calculated as this level of misclassification in the age data was deemed unlikely. 

 

5.1.5.2. Average Speed 

The baseline vehicle average speed distributions were statically adjusted by increasing or decreasing them 

by a factor of 25% or 50%. A decrease in the average speed distributions by 25% and 50% resulted in an 

increase in the marginal damages by 8% ($141 million) and 31% ($569 million) respectively. Decreasing 

the speeds represent an increase in slower moving traffic and congestion in the network. An increase in the 

average speed distributions by the same 25% and 50% resulted in a decrease of marginal damages by 6% 
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($103 million) and 6% ($110 million) respectively. From Figure 12, the change in speeds are not symmetric 

between increasing and decreasing the distributions. Figure 13 presents the two increased average speed 

scenarios and the baseline scenario. The average speed distribution of the baseline scenario is mostly in the 

upper half of the speed bins, since the model is estimating transportation movement at a regional scale on 

the roadways, which are mostly freeways.  

 

 

Figure 13 – Average speed distribution profiles for Baseline and alternative Scenarios 

 

From this figure, it should be noted that increasing the average speeds by 25% already largely adds many 

vehicles into the 16th speed bin. This jump is even higher when increasing the average speeds by 50%. This 

shows that the vehicles are already travelling at the max speeds categorized by MOVES, and suggests that 

any increase in speeds greater than 25% will not provide a true test of average speed increase due to 

modeling limitations. Additional distribution profile plots are presented for the other parameters in 

Appendix E. 

 

5.1.5.3. Meteorological Extremes 

Emissions are very sensitive to the ambient air temperatures, as well as the emission processes. The 

temperature profile selected for the baseline scenario did not reflect any extreme temperatures (i.e. winter 

or summer). The scenarios performed on the extreme temperature profiles reflected a cold winter month 
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and a hot summer month. These scenarios were created to bound the problem and determine whether the 

emission estimates would be greatly influenced in temperature changes alone. For the high extreme, the 

average temperature of the region during the hour of simulation was increase by nearly 100%. This provided 

a benefit of 7% ($121 million). On the other spectrum, the average temperature of the region during the 

hour of simulation was decreased by approximately 50%. This increased the damages by 1% ($20 million). 

Since the baseline scenario is bounded by these two scenarios, it seems like temperature, by itself, does not 

have a major impact on the emission estimates.  

 

Emissions are affected by temperature directly, and indirectly. This sensitivity analysis only looks at the 

direct effects of temperature. However, more work can be done to adjust vehicle activity, and the fuel tables 

which are affected by changes in temperature (i.e. more vehicle activity in the hotter months; heating in the 

winter, etc). 

 

5.1.5.4. Marginal Damages 

Estimates of the marginal damages of pollutant emissions is a recent and growing field. It remains uncertain, 

largely due to epistemic uncertainty in estimates of the relationships between pollution exposures and health 

risks, and the relationship between health risks and economic damages. While this study did not seek to 

alter or improve these relationships, they could be the largest source of uncertainty in the results. The 

creators of the EASIUR model have explored the effect on marginal damages of parameter uncertainty in 

health responses (-33% to +270%) and economic valuation (-90% to +160%) (Heo et al., 2016a). This type 

of epistemic uncertainty is different than uncertainty in input parameters that were explored in the 

sensitivity analysis presented here.  They are thus not comparable. Nonetheless, this source of uncertainty 

is significant and thus worth mentioning to provide context for interpreting these results.   
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6.0 CONCLUSION 

Evaluating the multipollutant impacts of transportation policies require methods to trace the pathway from 

policy to impacts. Prior studies have estimated the co-benefits of the transportation sector at various scales, 

by estimating vehicle activity through empirical methods. In this research, an integrated assessment model 

(IAM) was developed to capture the multipollutant impacts of freight transportation at a regional scale. The 

IAM connects three components: a transportation model, a transportation emissions model, and marginal 

damage estimates. This linkage provides a method to evaluate a transportation policy such as zero-emission 

vehicle adoption.  

 

Multiple data sources were used to develop region-specific input tables for the transportation emission 

model. This process included adapting Canadian values to the province of Ontario, estimating missing 

values such as vehicle age, or weather stations with incomplete data. Vehicle activity data were generated 

through travel demand modelling, using the four-step modelling technique. Since there were only two 

modes of transportation (autos and trucks) in the travel demand model, all light-duty vehicles (LDV) were 

assumed to have the same auto activity data and all medium-duty (MDV) and heavy-duty vehicles (HDV) 

were assumed to have the same truck activity data.  

 

Vehicle emissions were estimated through a vehicle emission simulator (MOVES) for MDVs and HDVs 

for a baseline scenario of the Province of Ontario in 2012. MOVES simulated vehicle emissions for 1 day, 

and the results were statically scaled up to a yearly total. The air pollutants estimated were for primary 

PM2.5, NOX, SO2, and NH3. The GHGs (CO2, CH4, and N2O) were estimated as a total value, measured in 

CO2 equivalent. The result of the first two components of the IAM was compared to the national Air 

Pollutant Emission Inventory (APEI) and the National Inventory Report (NIR). The challenge in comparing 

the results from the baseline scenario is that the vehicle types were not exactly the same, and that the 

underlying methods calculating the national results were different with the methods presented in this 

research. Vehicle type classifications between sources (APEI, NIR, MOVES, HPMS and CanVS) prove to 

be a challenge when validating the model with real-world results. The classifications from the government 

sources were more general, so vehicles from MOVES or HPMS might be split (i.e. some light-duty 

commercial trucks may be counted as MDVs; some MDVs might be classified as HDVs, etc.). Marginal 

social costs, developed from EASIUR were applied to the emission estimates to present the regional 

damages. 

 

Adopting ZEVs will provide a marginal benefit of approximately $1.7 billion (2005 USD) at 95% adoption. 

However, this is not a realistic scenario in the near future. Evaluating the policy scenario of 5% ZEV 
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adoption, the marginal benefits received is approximately $89 million (2005 USD). This benefit represents 

the static comparison of a policy scenario (i.e., if 5% of MDV and HDVs were actually zero-emission 

vehicles in Ontario in 2012, then the multipollutant impacts from freight emissions would be about $89 

million (2005 USD) less). The majority of benefits accrue to Ontario’s population centre in the Greater 

Toronto Area.  

 

This study presents the first estimates of the multipollutant benefits of adopting zero-emission trucks in 

Ontario. Its findings are generally in line with national emissions inventories. This study agrees with prior 

work that multipollutant benefits of clean transportation are significant (Forkenbrock, 2001; Janic, 2007; 

Thompson et al., 2014). It combined state-of-the art techniques in modeling regional truck travel, emissions, 

and damages. A significant effort was involved in identifying, processing, and adapting data and 

coordinating input and output across models. With the introduction of long-haul heavy-duty electric trucks, 

more relevant data can be collected to produce more reliable estimates. Data collection is still resource 

extensive; however, updating the travel demand model to reflect more recent years may provide a better 

estimate on how close Ontario is to meeting its reduction goals.  

 

6.1. Limitations and Future Work 

Proper data collection is integral to the functionality of the model and meaningfulness of the results. Three 

model components were developed in the IAM, each with its own set of data inputs. The model parameters 

were constrained by the availability of data, and as such, some assumptions were made in developing these 

model parameters to develop a consistent database for the province. The data collected for the input tables 

in the emission model could be improved, such as by having a complete set of vehicle age distributions for 

the model year to 30 years old. Other input parameters such as the fuel-related tables were generated and 

pieced together based off various available data for Canada. This data was applied to the region of Ontario, 

but a more thorough survey may produce more accurate fuel data for the region. Most of these input 

parameters were retrieved through open source data provided by the government. 

 

Currently in the travel demand model there are two modes of travel: auto (passenger) and trucks. Further 

development in the travel demand model is needed to better validate the light-duty estimates and to provide 

more modes in the network. The correlation coefficients of the predicted to observed auto demands were 

lower than that of the truck demands, which imposes more uncertainties. Improvement of those auto 

demand estimates may lead to a more accurate estimate of truck emissions (since the change in auto demand 

will affect the travel times on the links). Development of the travel demand model to include more modes 

that are similar to the MOVES source types would provide better accuracy in the results. 
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The model developed in this research can be adapted to other transportation projects or policy scenarios. A 

potential adaptation to the current scenario could be to spatially and temporally change the model 

parameters. Further work can be done to model the current scenario at various months, thus changing the 

associated fuel profiles, vehicle activities and meteorological inputs. The results were modelled from an 

hour, which was scaled up to 24 hours; however, the time of day also has an impact on the changes in some 

input parameters such as meteorology, and vehicle activity. 

 

The versatility of this model can be used in potential scenarios to estimate the impacts of routing choices. 

The potential application of a route choice model is possible with this IAM. The scenario can evaluate the 

economic impact of selecting a different route, incorporating the economic and environmental impacts 

associated with those routes. In addition to route choice modelling, there is a possibility to adapt this model 

to evaluating the atmospheric impacts at border crossings for on-road freight vehicles. Typically, travel 

demand models include border crossings as entrance and exit nodes into the network, but realistically, the 

delay and congestion at those nodes have an impact that are not being accounted for. 

 

The scenario presented in this research models the Province of Ontario in the year 2012. Given that new 

technology is changing the vehicle fleet composition, vehicle activity, and fuel characteristics, further work 

can be done to apply this research to future years. 
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8.0 APPENDICIES 

Appendix A – MOVES Input tables (Baseline Scenario) 

Some of the tables have been shortened to highlight the key parameters in relation to the baseline scenario. 

 

Table A.1 – Zonal vehicle activity distribution table 

zoneID countyID startAllocFactor idleAllocFactor SHPAllocFactor 

1 99001 0.008338 0.009871 0.009871 

2 99001 0.034826 0.006713 0.006713 

3 99001 0.043013 0.045575 0.045575 

4 99001 0.036892 0.039537 0.039537 

5 99001 0.038788 0.023265 0.023265 

6 99001 0.009487 0.013551 0.013551 

7 99001 0.001701 1.05E-05 1.05E-05 

8 99001 0.059511 0.04627 0.04627 

9 99001 0.002712 4.36E-05 4.36E-05 

10 99001 0.007069 0.004767 0.004767 

11 99001 0.014255 0.016112 0.016112 

12 99001 0.005228 0.006935 0.006935 

13 99001 0.043887 0.049639 0.049639 

14 99001 0.007089 0.000755 0.000755 

15 99001 0.00573 0.001818 0.001818 

16 99001 0.007101 0.00962 0.00962 

17 99001 0.012258 0.011685 0.011685 

18 99001 0.077256 0.115611 0.115611 

19 99001 0.00151 0.001165 0.001165 

20 99001 0.00886 0.001616 0.001616 

21 99001 0.003708 0.001598 0.001598 

22 99001 0.009211 0.027365 0.027365 

23 99001 0.005085 0.005755 0.005755 

24 99001 0.011136 0.011086 0.011086 

25 99001 0.046954 0.044621 0.044621 

26 99001 0.009308 0.004665 0.004665 

27 99001 0.005088 0.002035 0.002035 

28 99001 0.013684 0.000581 0.000581 

29 99001 0.002219 0.001257 0.001257 

30 99001 0.052036 0.053968 0.053968 

31 99001 0.007958 0.00493 0.00493 

32 99001 0.005 0.006044 0.006044 

33 99001 0.009865 8.76E-05 8.76E-05 

34 99001 0.0093 0.0097 0.0097 
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zoneID countyID startAllocFactor idleAllocFactor SHPAllocFactor 

35 99001 0.003608 0.005166 0.005166 

36 99001 0.001089 3.53E-05 3.53E-05 

37 99001 0.006393 0.006559 0.006559 

38 99001 0.017793 0.019458 0.019458 

39 99001 0.006187 0.00626 0.00626 

40 99001 0.15185 0.222083 0.222083 

41 99001 0.007648 0.009848 0.009848 

42 99001 0.039711 0.017569 0.017569 

43 99001 0.001756 0.000104 0.000104 

44 99001 0.011761 0.013118 0.013118 

45 99001 0.014384 0.009444 0.009444 

46 99001 0.098011 0.111856 0.111856 

47 99001 0.006638 3.25E-05 3.25E-05 

48 99001 0.00462 0.000121 0.000121 

49 99001 0.01249 9.47E-05 9.47E-05 

 

Table A.2 – Zonal road type distribution table 

zoneID roadTypeID SHOAllocFactor 

1 All 0.025383 

2 All 0.011829 

3 All 0.048346 

4 All 0.043155 

5 All 0.035377 

6 All 0.023257 

7 All 0.000105 

8 All 0.030702 

9 All 0.000546 

10 All 0.011251 

11 All 0.020251 

12 All 0.015504 

13 All 0.032501 

14 All 0.001421 

15 All 0.005422 

16 All 0.025017 

17 All 0.012859 

18 All 0.092452 

19 All 0.005279 

20 All 0.007339 

21 All 0.006764 

22 All 0.035312 
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zoneID roadTypeID SHOAllocFactor 

23 All 0.009084 

24 All 0.020452 

25 All 0.042371 

26 All 0.012368 

27 All 0.008055 

28 All 0.001421 

29 All 0.002713 

30 All 0.042626 

31 All 0.020195 

32 All 0.013833 

33 All 0.000988 

34 All 0.018507 

35 All 0.018837 

36 All 0.000328 

37 All 0.023351 

38 All 0.024825 

39 All 0.011401 

40 All 0.091757 

41 All 0.01708 

42 All 0.015569 

43 All 0.002297 

44 All 0.022927 

45 All 0.014359 

46 All 0.071701 

47 All 0.000464 

48 All 0.001153 

49 All 0.001264 

 

Table A.3 – Meteorological input table 

Month ID Zone ID Hour ID 
Temperature 

(°F) 

Relative 

Humidity 

(%) 

4 1 9 40.837 68.03333 

4 2 9 46.254 68.23333 

4 3 9 43.334 60.06667 

4 4 9 42.365 67.48333 

4 5 9 40.08967 72.63333 

4 6 9 42.968 63.46667 

4 7 9 38.333 70.31667 

4 8 9 40.346 64.2 

4 9 9 32.596 74.26667 
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Month ID Zone ID Hour ID 
Temperature 

(°F) 

Relative 

Humidity 

(%) 

4 10 9 42.344 66.23333 

4 11 9 44.546 64.3 

4 12 9 39.69767 66.33333 

4 13 9 36.248 69.56667 

4 14 9 35.096 66.13333 

4 15 9 38.036 73.06667 

4 16 9 41.006 67.8 

4 17 9 41.036 66.2 

4 18 9 42.368 63.46667 

4 19 9 38.192 66.66667 

4 20 9 37.91 66.76667 

4 21 9 38.006 73.73333 

4 22 9 37.838 71.4 

4 23 9 38.15 74.06667 

4 24 9 44.387 70.16667 

4 25 9 42.548 62.96667 

4 26 9 41.17567 66.15556 

4 27 9 42.512 68.13793 

4 28 9 34.706 70.66667 

4 29 9 40.808 68.16667 

4 30 9 40.112 73.76667 

4 31 9 32 63 

4 32 9 38.084 76.33333 

4 33 9 33.524 71.06667 

4 34 9 44.468 69.9 

4 35 9 38.714 71.3 

4 36 9 38.642 71.06667 

4 37 9 39.716 70.93333 

4 38 9 39.503 70.25 

4 39 9 45.026 62.53333 

4 40 9 43.982 61.36667 

4 41 9 42.4052 68.48333 

4 42 9 44.012 66.58889 

4 43 9 32.582 67.23333 

4 44 9 39.569 66.76667 

4 45 9 40.853 66.31667 

4 46 9 43.184 61.26667 

4 47 9 29.26933 73.42381 

4 48 9 31.35067 70.14264 
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Month ID Zone ID Hour ID 
Temperature 

(°F) 

Relative 

Humidity 

(%) 

4 49 9 32.96867 77.16491 

 

Table A.4 – Total VMT by HPMS vehicle type 

HPMSVtypeID yearID monthID dayID VMT 

10 2012 4 5 8546889 

25 2012 4 5 3.07E+08 

50 2012 4 5 5156020 

60 2012 4 5 5130703 

 

Table A.5 – Hourly VMT distribution by vehicle type and road type 

SourceTypeID roadTypeID dayID hourID hourVMTFraction 

11 1 5 9 0 

11 2 5 9 0.083338 

11 3 5 9 0.083338 

11 4 5 9 0.083338 

11 5 5 9 0.083338 

21 1 5 9 0 

21 2 5 9 0.083338 

21 3 5 9 0.083338 

21 4 5 9 0.083338 

21 5 5 9 0.083338 

31 1 5 9 0 

31 2 5 9 0.083338 

31 3 5 9 0.083338 

31 4 5 9 0.083338 

31 5 5 9 0.083338 

32 1 5 9 0 

32 2 5 9 0.083338 

32 3 5 9 0.083338 

32 4 5 9 0.083338 

32 5 5 9 0.083338 

51 1 5 9 0 

51 2 5 9 0.055629 

51 3 5 9 0.055629 

51 4 5 9 0.055629 

51 5 5 9 0.055629 

52 1 5 9 0 

52 2 5 9 0.055629 

52 3 5 9 0.055629 
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SourceTypeID roadTypeID dayID hourID hourVMTFraction 

52 4 5 9 0.055629 

52 5 5 9 0.055629 

53 1 5 9 0 

53 2 5 9 0.055629 

53 3 5 9 0.055629 

53 4 5 9 0.055629 

53 5 5 9 0.055629 

54 1 5 9 0 

54 2 5 9 0 

54 3 5 9 0 

54 4 5 9 0 

54 5 5 9 0 

61 1 5 9 0 

61 2 5 9 0.055629 

61 3 5 9 0.055629 

61 4 5 9 0.055629 

61 5 5 9 0.055629 

62 1 5 9 0 

62 2 5 9 0.055629 

62 3 5 9 0.055629 

62 4 5 9 0.055629 

62 5 5 9 0.055629 

 

Table A.6 – Road type distribution table 

sourceTypeID roadTypeID roadTypeVMTFraction 

All 1 0 

All 2 0.040328 

All 3 0.1002 

All 4 0.246646 

All 5 0.612826 

 

Table A.7 – Ramp fractions by road type 

roadTypeID rampFraction 

2 0.027719 

4 0.169533 

 

Table A.8 – Total number of vehicles by source type 

yearID sourceTypeID sourceTypePopulation 

2012 11 209412 
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yearID sourceTypeID sourceTypePopulation 

2012 21 4429788 

2012 31 3068203 

2012 32 16145.93 

2012 51 6057.338 

2012 52 125265.3 

2012 53 20012.31 

2012 54 0 

2012 61 70262.9 

2012 62 11225.15 

 

Table A.9 – Vehicle age distribution table (LDV) 

yearID ageID ageFraction 

2012 0 0.047546 

2012 1 0.077771 

2012 2 0.081366 

2012 3 0.074863 

2012 4 0.075399 

2012 5 0.067999 

2012 6 0.080571 

2012 7 0.075576 

2012 8 0.064616 

2012 9 0.068988 

2012 10 0.053417 

2012 11 0.050622 

2012 12 0.04197 

2012 13 0.027122 

2012 14 0.02612 

2012 15 0.019726 

2012 16 0.014941 

2012 17 0.012805 

2012 18 0.008879 

2012 19 0.007095 

2012 20 0.005476 

2012 21 0.004226 

2012 22 0.003262 

2012 23 0.002518 

2012 24 0.001943 

2012 25 0.0015 

2012 26 0.001157 

2012 27 0.000893 
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yearID ageID ageFraction 

2012 28 0.000689 

2012 29 0.000532 

2012 30 0.000411 

 

Table A.10 – Vehicle age distribution table (MDV & HDV)  

yearID ageID ageFraction 

2012 0 0.036992 

2012 1 0.10004 

2012 2 0.088994 

2012 3 0.094102 

2012 4 0.08428 

2012 5 0.07284 

2012 6 0.07372 

2012 7 0.059275 

2012 8 0.058962 

2012 9 0.056999 

2012 10 0.061784 

2012 11 0.03687 

2012 12 0.033866 

2012 13 0.023144 

2012 14 0.027756 

2012 15 0.01929 

2012 16 0.015669 

2012 17 0.011966 

2012 18 0.011349 

2012 19 0.006968 

2012 20 0.005555 

2012 21 0.004429 

2012 22 0.003531 

2012 23 0.002815 

2012 24 0.002244 

2012 25 0.001789 

2012 26 0.001426 

2012 27 0.001137 

2012 28 0.000907 

2012 29 0.000723 

2012 30 0.000576 
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Table A.11 – Hourly average speed distribution table (LDV) 

hourDayID avgSpeedBinID avgSpeedFraction 

95 1 0.973298 

95 2 0.001168 

95 3 0.000626 

95 4 0.000389 

95 5 0.000479 

95 6 0.000468 

95 7 0.000448 

95 8 0.001321 

95 9 0.002993 

95 10 0.004694 

95 11 0.009147 

95 12 0.001571 

95 13 0.003398 

95 14 0 

95 15 0 

95 16 0 

 

Table A.12 - Hourly average speed distribution table (MDV & HDV) 

hourDayID avgSpeedBinID avgSpeedFraction 

95 1 0.90063 

95 2 0.001382 

95 3 0.00087 

95 4 0.000719 

95 5 0.000905 

95 6 0.000946 

95 7 0.000475 

95 8 0.001322 

95 9 0.004075 

95 10 0.008888 

95 11 0.028788 

95 12 0.013019 

95 13 0.037982 

95 14 0 

95 15 0 

95 16 0 
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Table A.13 – Total number of starts per day by zone 

zoneID dayID yearID startsperday 

1 5 2012 183309.2 

2 5 2012 765601.6 

3 5 2012 945581.4 

4 5 2012 811018.8 

5 5 2012 852703.2 

6 5 2012 208569.4 

7 5 2012 37384.78 

8 5 2012 1308287 

9 5 2012 59622.8 

10 5 2012 155409.4 

11 5 2012 313376.1 

12 5 2012 114924.9 

13 5 2012 964809.6 

14 5 2012 155842 

15 5 2012 125969.3 

16 5 2012 156097.4 

17 5 2012 269472 

18 5 2012 1698380 

19 5 2012 33193.72 

20 5 2012 194775.9 

21 5 2012 81522.76 

22 5 2012 202490 

23 5 2012 111782.3 

24 5 2012 244817.6 

25 5 2012 1032220 

26 5 2012 204622.2 

27 5 2012 111845.6 

28 5 2012 300828 

29 5 2012 48787.13 

30 5 2012 1143963 

31 5 2012 174938.9 

32 5 2012 109920.8 

33 5 2012 216881.2 

34 5 2012 204455.4 

35 5 2012 79316.76 

36 5 2012 23936.09 

37 5 2012 140537 

38 5 2012 391169.9 

39 5 2012 136021.3 
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zoneID dayID yearID startsperday 

40 5 2012 3338249 

41 5 2012 168124 

42 5 2012 873004.1 

43 5 2012 38614.41 

44 5 2012 258545.6 

45 5 2012 316215.2 

46 5 2012 2154669 

47 5 2012 145934.8 

48 5 2012 101555.9 

49 5 2012 274570.1 

 

Table A.14 – Hourly distribution of starts by zone 

zoneID dayID hourID allocationFraction 

1 5 9 0.06776 

2 5 9 0.067759 

3 5 9 0.071887 

4 5 9 0.067799 

5 5 9 0.066767 

6 5 9 0.067788 

7 5 9 0.067755 

8 5 9 0.067837 

9 5 9 0.067815 

10 5 9 0.067819 

11 5 9 0.068498 

12 5 9 0.067821 

13 5 9 0.070507 

14 5 9 0.067787 

15 5 9 0.06783 

16 5 9 0.067819 

17 5 9 0.067799 

18 5 9 0.079523 

19 5 9 0.067833 

20 5 9 0.067834 

21 5 9 0.067782 

22 5 9 0.067708 

23 5 9 0.067778 

24 5 9 0.067784 

25 5 9 0.068839 

26 5 9 0.067707 

27 5 9 0.067831 
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zoneID dayID hourID allocationFraction 

28 5 9 0.067819 

29 5 9 0.067811 

30 5 9 0.073998 

31 5 9 0.067827 

32 5 9 0.059426 

33 5 9 0.067795 

34 5 9 0.067767 

35 5 9 0.067827 

36 5 9 0.067832 

37 5 9 0.067794 

38 5 9 0.07401 

39 5 9 0.063239 

40 5 9 0.094354 

41 5 9 0.06779 

42 5 9 0.065738 

43 5 9 0.067795 

44 5 9 0.067798 

45 5 9 0.068265 

46 5 9 0.086353 

47 5 9 0.067684 

48 5 9 0.067742 

49 5 9 0.06775 

 

Table A.15 – Distribution of starts per day by source type 

sourceTypeID allocationFraction 

11 0.026975 

21 0.570609 

31 0.395221 

32 0.00208 

51 4.01E-05 

52 0.000829 

53 0.000132 

54 0 

61 0.003547 

62 0.000567 

 

Table A.16 – Monthly adjustment of starts 

monthID monthAdjustment 

All 1 
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Table A.17 – Inspection and maintenance coverage table 

polProcessID stateID countyID yearID sourcetypeID fuelTypeID IMProgramID inspectFreq testStandardsID begModelYearID endModelYearID useIMyn complianceFactor 

101 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

102 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

201 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

202 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

301 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

302 99 99001 2012 51 1 2112 1 12 1982 2012 'y' 97.1208 

101 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

102 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

201 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

202 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

301 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

302 99 99001 2012 52 1 2112 1 12 1982 2012 'y' 97.1208 

101 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

102 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

201 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

202 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

301 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

302 99 99001 2012 53 1 2112 1 12 1982 2012 'y' 97.1208 

101 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

102 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

201 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

202 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

301 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

302 99 99001 2012 54 1 2112 1 12 1982 2012 'y' 97.1208 

101 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 

102 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 

201 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 

202 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 

301 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 

302 99 99001 2012 61 1 2112 1 12 1982 2012 'y' 97.1208 
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Table A.18 – Sample AVFT table for source type 52 – Single Unit Short-Haul 

sourceTypeID modelYearID fuelTypeID engTechID fuelEngFraction 

52 1960 1 1 0.99 

52 1960 2 1 0.01 

52 1961 1 1 0.99 

52 1961 2 1 0.01 

52 1962 1 1 0.99 

52 1962 2 1 0.01 

52 1963 1 1 0.99 

52 1963 2 1 0.01 

52 1964 1 1 0.99 

52 1964 2 1 0.01 

52 1965 1 1 0.99 

52 1965 2 1 0.01 

52 1966 1 1 0.99 

52 1966 2 1 0.01 

52 1967 1 1 0.99 

52 1967 2 1 0.01 

52 1968 1 1 0.99 

52 1968 2 1 0.01 

52 1969 1 1 0.99 

52 1969 2 1 0.01 

52 1970 1 1 0.99 

52 1970 2 1 0.01 

52 1971 1 1 0.9705 

52 1971 2 1 0.0295 

52 1972 1 1 0.941 

52 1972 2 1 0.059 

52 1973 1 1 0.9115 

52 1973 2 1 0.0885 

52 1974 1 1 0.882 

52 1974 2 1 0.118 

52 1975 1 1 0.8525 

52 1975 2 1 0.1475 

52 1976 1 1 0.823 

52 1976 2 1 0.177 

52 1977 1 1 0.7935 

52 1977 2 1 0.2065 

52 1978 1 1 0.764 

52 1978 2 1 0.236 

52 1979 1 1 0.7345 
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sourceTypeID modelYearID fuelTypeID engTechID fuelEngFraction 

52 1979 2 1 0.2655 

52 1980 1 1 0.705 

52 1980 2 1 0.295 

52 1981 1 1 0.6755 

52 1981 2 1 0.3245 

52 1982 1 1 0.776959 

52 1982 2 1 0.223041 

52 1983 1 1 0.76991 

52 1983 2 1 0.23009 

52 1984 1 1 0.762707 

52 1984 2 1 0.237293 

52 1985 1 1 0.75535 

52 1985 2 1 0.24465 

52 1986 1 1 0.747841 

52 1986 2 1 0.252159 

52 1987 1 1 0.74018 

52 1987 2 1 0.25982 

52 1988 1 1 0.73237 

52 1988 2 1 0.26763 

52 1989 1 1 0.724412 

52 1989 2 1 0.275588 

52 1990 1 1 0.71631 

52 1990 2 1 0.28369 

52 1991 1 1 0.708065 

52 1991 2 1 0.291935 

52 1992 1 1 0.699681 

52 1992 2 1 0.300319 

52 1993 1 1 0.691161 

52 1993 2 1 0.308839 

52 1994 1 1 0.68251 

52 1994 2 1 0.31749 

52 1995 1 1 0.67373 

52 1995 2 1 0.32627 

52 1996 1 1 0.664827 

52 1996 2 1 0.335173 

52 1997 1 1 0.655805 

52 1997 2 1 0.344195 

52 1998 1 1 0.646669 

52 1998 2 1 0.353331 

52 1999 1 1 0.637425 
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sourceTypeID modelYearID fuelTypeID engTechID fuelEngFraction 

52 1999 2 1 0.362575 

52 2000 1 1 0.628078 

52 2000 2 1 0.371922 

52 2001 1 1 0.618634 

52 2001 2 1 0.381366 

52 2002 1 1 0.6091 

52 2002 2 1 0.3909 

52 2003 1 1 0.557799 

52 2003 2 1 0.442201 

52 2004 1 1 0.463084 

52 2004 2 1 0.536916 

52 2005 1 1 0.44278 

52 2005 2 1 0.55722 

52 2006 1 1 0.402845 

52 2006 2 1 0.597155 

52 2007 1 1 0.298865 

52 2007 2 1 0.701135 

52 2008 1 1 0.3001 

52 2008 2 1 0.6999 

52 2009 1 1 0.273094 

52 2009 2 1 0.726906 

52 2010 1 1 0.268685 

52 2010 2 1 0.731315 

52 2011 1 1 0.263415 

52 2011 2 1 0.736585 

52 2012 1 1 0.267558 

52 2012 2 1 0.732442 

52 2013 1 1 0 

52 2013 2 1 1 

52 2014 1 1 0 

52 2014 2 1 1 

52 2015 1 1 0 

52 2015 2 1 1 

52 2016 1 1 0 

52 2016 2 1 1 

52 2017 1 1 0 

52 2017 2 1 1 

52 2018 1 1 0 

52 2018 2 1 1 

52 2019 1 1 0 
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sourceTypeID modelYearID fuelTypeID engTechID fuelEngFraction 

52 2019 2 1 1 

52 2020 1 1 0 

52 2020 2 1 1 

52 2021 1 1 0 

52 2021 2 1 1 

52 2022 1 1 0 

52 2022 2 1 1 

52 2023 1 1 0 

52 2023 2 1 1 

52 2024 1 1 0 

52 2024 2 1 1 

52 2025 1 1 0 

52 2025 2 1 1 

52 2026 1 1 0 

52 2026 2 1 1 

52 2027 1 1 0 

52 2027 2 1 1 

52 2028 1 1 0 

52 2028 2 1 1 

52 2029 1 1 0 

52 2029 2 1 1 

52 2030 1 1 0 

52 2030 2 1 1 

52 2031 1 1 0 

52 2031 2 1 1 

52 2032 1 1 0 

52 2032 2 1 1 

52 2033 1 1 0 

52 2033 2 1 1 

52 2034 1 1 0 

52 2034 2 1 1 

52 2035 1 1 0 

52 2035 2 1 1 

52 2036 1 1 0 

52 2036 2 1 1 

52 2037 1 1 0 

52 2037 2 1 1 

52 2038 1 1 0 

52 2038 2 1 1 

52 2039 1 1 0 
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sourceTypeID modelYearID fuelTypeID engTechID fuelEngFraction 

52 2039 2 1 1 

52 2040 1 1 0 

52 2040 2 1 1 

52 2041 1 1 0 

52 2041 2 1 1 

52 2042 1 1 0 

52 2042 2 1 1 

52 2043 1 1 0 

52 2043 2 1 1 

52 2044 1 1 0 

52 2044 2 1 1 

52 2045 1 1 0 

52 2045 2 1 1 

52 2046 1 1 0 

52 2046 2 1 1 

52 2047 1 1 0 

52 2047 2 1 1 

52 2048 1 1 0 

52 2048 2 1 1 

52 2049 1 1 0 

52 2049 2 1 1 

52 2050 1 1 0 

52 2050 2 1 1 
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Table A.19 – Fuel formulations for gasoline and diesel fuels by month 

fuelFormulat

ionID 

fuelSubty

peID 
RVP 

sulfurL

evel 

ETOHVo

lume 

MTBEVo

lume 

ETBEVol

ume 

TAMEVo

lume 

aromaticCo

ntent 

olefinCo

ntent 

benzeneCo

ntent 

e2

00 

e30

0 

BioDieselEster

Volume 

CetaneI

ndex 

PAHCo

ntent 

T5

0 

T9

0 

1001 10 
14.14

121 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 185 

36

5 

1002 10 
11.60

304 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 185 

36

5 

1003 10 
11.24

045 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 185 

36

5 

1004 10 
10.29

77 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 194 

36

5 

1005 10 
8.774

799 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 

195

.8 

37

4 

1006 10 
7.759

533 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 

199

.4 

37

4 

1007 10 
7.759

533 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 

199

.4 

37

4 

1008 10 
7.759

533 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 

199

.4 

37

4 

1009 10 
8.774

799 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 

195

.8 

37

4 

1010 10 
11.24

045 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 194 

37

4 

1011 10 
11.24

045 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 185 

36

5 

1012 10 
11.60

304 
30 0 0 0 0 27.5 5.6 1 50 85 0 0 0 185 

36

5 

25001 20 
0.290

075 
15 0 0 0 0 32.6 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25002 20 
0.290

075 
15 0 0 0 0 32.6 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25003 20 
0.290

075 
15 0 0 0 0 32.6 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25004 20 
0.290

075 
15 0 0 0 0 36.9 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25005 20 
0.290

075 
15 0 0 0 0 36.9 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25006 20 
0.290

075 
15 0 0 0 0 36.9 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25007 20 
0.290

075 
15 0 0 0 0 35 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25008 20 
0.290

075 
15 0 0 0 0 35 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25009 20 
0.290

075 
15 0 0 0 0 35 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25010 20 
0.290

075 
15 0 0 0 0 20.3 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25011 20 
0.290

075 
15 0 0 0 0 20.3 0 0 1 

1.8

89 
0 0 0 0 

68

0 

25012 20 
0.290

075 
15 0 0 0 0 20.3 0 0 1 

1.8

89 
0 0 0 0 

68

0 
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Table A.20 – Fuel supply table for April 

fuelRegionID fuelYearID monthGroupID fuelFormulationID marketShare marketShareCV 

100000000 2012 4 1004 1 0.5 

100000000 2012 4 25004 1 0.5 

 

Table A.21 – Fuel formulations table 

countyID fuelYearID modelYearGroupID sourceBinFuelTypeID fuelSupplyFuelTypeID usageFraction 

99001 2012 0 1 1 1 

99001 2012 0 2 2 1 

99001 2012 0 3 3 1 

99001 2012 0 5 1 0.986574 

99001 2012 0 5 5 0.013426 

99001 2012 0 9 9 1 
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Appendix B – MOVES baseline RunSpec 

<runspec version="MOVES2014a-20151201"> 

 <description><![CDATA[Ontario 

 

BASECASE 

 

1 hour (8am-9am) 

April 

 

Pollutants: CO2 

 CH4 

 N2O 

  

 CO 

 NO2 

 PM2.5 

 SO2 

 VOC 

 NH3 

 NOx]]></description> 

 <models> 

  <model value="ONROAD"/> 

 </models> 

 <modelscale value="Inv"/> 

 <modeldomain value="SINGLE"/> 

 <genericcounty> 

  <shortid value="1"/> 

  <stateid value="99"/> 

  <description value=""/> 

  <gpafraction value="0.0"/> 

  <barometricpressure value="28.9"/> 

  <refuelvaporadjust value="0.0"/> 

  <refuelspilladjust value="0.0"/> 

 </genericcounty> 

 <geographicselections> 

  <geographicselection type="COUNTY" key="99001" description=""/> 

 </geographicselections> 

 <timespan> 

  <year key="2012"/> 

  <month id="4"/> 

  <day id="5"/> 
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  <beginhour id="9"/> 

  <endhour id="9"/> 

  <aggregateBy key="Hour"/> 

 </timespan> 

 <onroadvehicleselections> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="62" 

sourcetypename="Combination Long-haul Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="61" 

sourcetypename="Combination Short-haul Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="32" 

sourcetypename="Light Commercial Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="54" 

sourcetypename="Motor Home"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="21" 

sourcetypename="Passenger Car"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="31" 

sourcetypename="Passenger Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="51" 

sourcetypename="Refuse Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="53" 

sourcetypename="Single Unit Long-haul Truck"/> 

  <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" sourcetypeid="52" 

sourcetypename="Single Unit Short-haul Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="61" 

sourcetypename="Combination Short-haul Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="32" 

sourcetypename="Light Commercial Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="54" 

sourcetypename="Motor Home"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="11" 

sourcetypename="Motorcycle"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="21" 

sourcetypename="Passenger Car"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="31" 

sourcetypename="Passenger Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="51" 

sourcetypename="Refuse Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="53" 

sourcetypename="Single Unit Long-haul Truck"/> 

  <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" sourcetypeid="52" 

sourcetypename="Single Unit Short-haul Truck"/> 



72 

 

 </onroadvehicleselections> 

 <offroadvehicleselections> 

 </offroadvehicleselections> 

 <offroadvehiclesccs> 

 </offroadvehiclesccs> 

 <roadtypes separateramps="false"> 

  <roadtype roadtypeid="1" roadtypename="Off-Network" modelCombination="M1"/> 

  <roadtype roadtypeid="2" roadtypename="Rural Restricted Access" modelCombination="M1"/> 

  <roadtype roadtypeid="3" roadtypename="Rural Unrestricted Access" modelCombination="M1"/> 

  <roadtype roadtypeid="4" roadtypename="Urban Restricted Access" modelCombination="M1"/> 

  <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access" modelCombination="M1"/> 

 </roadtypes> 

 <pollutantprocessassociations> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="58" pollutantname="Aluminum" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="30" pollutantname="Ammonia (NH3)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="36" pollutantname="Ammonium (NH4)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="90" pollutantname="Atmospheric CO2" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="90" pollutantname="Atmospheric CO2" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="90" pollutantname="Atmospheric CO2" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="90" pollutantname="Atmospheric CO2" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="121" pollutantname="CMAQ5.0 Unspeciated (PMOTHR)" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="98" pollutantname="CO2 Equivalent" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="98" pollutantname="CO2 Equivalent" processkey="2" 

processname="Start Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="98" pollutantname="CO2 Equivalent" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="98" pollutantname="CO2 Equivalent" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="55" pollutantname="Calcium" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="2" pollutantname="Carbon Monoxide (CO)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="16" 

processname="Crankcase Start Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="51" pollutantname="Chloride" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="118" pollutantname="Composite - NonECPM" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="112" pollutantname="Elemental Carbon" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="93" pollutantname="Fossil Fuel Energy Consumption" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="93" pollutantname="Fossil Fuel Energy Consumption" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="93" pollutantname="Fossil Fuel Energy Consumption" 

processkey="90" processname="Extended Idle Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="93" pollutantname="Fossil Fuel Energy Consumption" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="119" pollutantname="H2O (aerosol)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="59" pollutantname="Iron" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="54" pollutantname="Magnesium" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="66" pollutantname="Manganese Compounds" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="5" pollutantname="Methane (CH4)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="35" pollutantname="Nitrate (NO3)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="6" pollutantname="Nitrous Oxide (N2O)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="6" pollutantname="Nitrous Oxide (N2O)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="6" pollutantname="Nitrous Oxide (N2O)" processkey="15" 

processname="Crankcase Running Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="6" pollutantname="Nitrous Oxide (N2O)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="11" processname="Evap Permeation"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="13" processname="Evap Fuel Leaks"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="18" processname="Refueling Displacement Vapor Loss"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="19" processname="Refueling Spillage Loss"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="79" pollutantname="Non-Methane Hydrocarbons" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="122" pollutantname="Non-carbon Organic Matter (NCOM)" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="1" 

processname="Running Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="111" pollutantname="Organic Carbon" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="3" pollutantname="Oxides of Nitrogen (NOx)" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="53" pollutantname="Potassium" processkey="91" 

processname="Auxiliary Power Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust PM2.5 - Total" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - Brakewear 

Particulate" processkey="9" processname="Brakewear"/> 

  <pollutantprocessassociation pollutantkey="117" pollutantname="Primary PM2.5 - Tirewear Particulate" 

processkey="10" processname="Tirewear"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="57" pollutantname="Silicon" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="16" 

processname="Crankcase Start Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="52" pollutantname="Sodium" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="115" pollutantname="Sulfate Particulate" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="15" 

processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="31" pollutantname="Sulfur Dioxide (SO2)" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="1" 

processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="2" 

processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="15" 

processname="Crankcase Running Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="16" 

processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="17" 

processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="90" 

processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="56" pollutantname="Titanium" processkey="91" 

processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy Consumption" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="1" processname="Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="11" processname="Evap Permeation"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="13" processname="Evap Fuel Leaks"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="18" processname="Refueling Displacement Vapor Loss"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="19" processname="Refueling Spillage Loss"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="1" pollutantname="Total Gaseous Hydrocarbons" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="1" processname="Running Exhaust"/> 
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  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="2" processname="Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="11" processname="Evap Permeation"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="13" processname="Evap Fuel Leaks"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="15" processname="Crankcase Running Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="16" processname="Crankcase Start Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="18" processname="Refueling Displacement Vapor Loss"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="19" processname="Refueling Spillage Loss"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="90" processname="Extended Idle Exhaust"/> 

  <pollutantprocessassociation pollutantkey="87" pollutantname="Volatile Organic Compounds" 

processkey="91" processname="Auxiliary Power Exhaust"/> 

 </pollutantprocessassociations> 

 <databaseselections> 

 </databaseselections> 

 <internalcontrolstrategies> 

<internalcontrolstrategy 

classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rateofprogress.RateOfProgressStrategy"

><![CDATA[ 

useParameters No 

 

]]></internalcontrolstrategy> 

 </internalcontrolstrategies> 

 <inputdatabase servername="" databasename="" description=""/> 

 <uncertaintyparameters uncertaintymodeenabled="false" numberofrunspersimulation="0" 

numberofsimulations="0"/> 

 <geographicoutputdetail description="ZONE"/> 

 <outputemissionsbreakdownselection> 

  <modelyear selected="false"/> 

  <fueltype selected="true"/> 

  <fuelsubtype selected="false"/> 

  <emissionprocess selected="false"/> 

  <onroadoffroad selected="true"/> 
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  <roadtype selected="true"/> 

  <sourceusetype selected="true"/> 

  <movesvehicletype selected="false"/> 

  <onroadscc selected="false"/> 

  <estimateuncertainty selected="false" numberOfIterations="2" keepSampledData="false" 

keepIterations="false"/> 

  <sector selected="false"/> 

  <engtechid selected="false"/> 

  <hpclass selected="false"/> 

  <regclassid selected="true"/> 

 </outputemissionsbreakdownselection> 

 <outputdatabase servername="" databasename="Ontario_basecase_final_out" description=""/> 

 <outputtimestep value="Hour"/> 

 <outputvmtdata value="true"/> 

 <outputsho value="false"/> 

 <outputsh value="false"/> 

 <outputshp value="false"/> 

 <outputshidling value="false"/> 

 <outputstarts value="true"/> 

 <outputpopulation value="true"/> 

 <scaleinputdatabase servername="localhost" databasename="ontario_basecase_final_in" description=""/> 

 <pmsize value="0"/> 

 <outputfactors> 

  <timefactors selected="true" units="Hours"/> 

  <distancefactors selected="true" units="Kilometers"/> 

  <massfactors selected="true" units="Grams" energyunits="Joules"/> 

 </outputfactors> 

 <savedata> 

 

 </savedata> 

 

 <donotexecute> 

 

 </donotexecute> 

 

 <generatordatabase shouldsave="false" servername="" databasename="" description=""/> 

  <donotperformfinalaggregation selected="false"/> 

 <lookuptableflags scenarioid="" truncateoutput="true" truncateactivity="true" truncatebaserates="true"/> 

</runspec> 

Figure B.1 – MOVES runspec file (Baseline Scenario)  
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Appendix C – Parameter Development 

 

Figure C.1 – Trendline for HDV age extrapolation 

 

 

Figure C.2 – Trendline for MDV age extrapolation 
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Figure C.3 – Trendline for LDV age extrapolation 

 

 

Figure C.4 – Trendlines for MDV and HDV fuel usage type by vehicle age 
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Figure C.5 – Trendlines for LDV fuel usage type by vehicle age 
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Appendix D – Provincial Benefits map (Alternative Scenarios) 

 

Figure D.1 – Ontario provincial annual marginal benefits under 25% ZEV Adoption in 2012 

 

 

Figure D.2 – Ontario provincial annual marginal benefits under 50% ZEV Adoption in 2012 
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Figure D.3 – Ontario provincial annual marginal benefits under 75% ZEV Adoption in 2012 

 

 

Figure D.4 - Ontario provincial annual marginal benefits under 95% ZEV Adoption in 2012  
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Appendix E – Sensitivity analysis distribution profile plots 

 

Figure E.1 – Vehicle age distribution profiles for Baseline and alternative Scenarios (HDV) 

 

 

Figure E.2 – Vehicle age distribution profiles for Baseline and alternative Scenarios (MDV) 
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