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Please cite this article as: Javad Lessan, Selçuk Karabatı, A Preference-Based, Multi-Unit Auc-
tion for Pricing and Capacity Allocation, Computers and Operations Research (2017), doi:
10.1016/j.cor.2017.09.024

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.cor.2017.09.024 © 2018. This manuscript version is 
made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.cor.2017.09.024
https://doi.org/10.1016/j.cor.2017.09.024
https://dx.doi.org/10.1016/j.cor.2017.09.024
https://creativecommons.org/licenses/by-nc-nd/4.0/


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• We study a pricing and allocation problem of a seller of multiple units of

a homogeneous item.

• We consider a setting where buyers expect “fairness” in the allocation of

the units.

• We present a semi-market mechanism in the form of an iterative ascending-

bid auction.

• We show that the proposed auction is a universally truthful mechanism.

• We demonstrate that the mechanism is an effective decision making tool

for revenue maximization.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Preference-Based, Multi-Unit Auction for Pricing
and Capacity Allocation

Javad Lessan

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo,

N2L 3G1, jlessan@uwaterloo.ca
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Abstract

We study a pricing and allocation problem of a seller of multiple units of a

homogeneous item, and present a semi-market mechanism in the form of an

iterative ascending-bid auction. The auction elicits buyers’ preferences over a

set of options offered by the seller, and processes them with a random-priority

assignment scheme to address buyers’ “fairness” expectations. The auction’s

termination criterion is derived from a mixed-integer programming formulation

of the preference-based capacity allocation problem. We show that the random

priority- and preference-based assignment policy is a universally truthful mecha-

nism which can also achieve a Pareto-efficient Nash equilibrium. Computational

results demonstrate that the auction mechanism can extract a substantial por-

tion of the centralized system’s profit, indicating its effectiveness for a seller who

needs to operate under the “fairness” constraint.

Keywords: Multi-Unit Auctions; Pricing and Capacity Allocation; Mixed-

Integer Programming.
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1. Introduction

Decisions on capacity/inventory allocation and pricing are among the key is-

sues in the revenue management process of a seller of exchangeable items (Fleis-

chmann et al., 2003). Specifically, when the aggregate demand from potential

buyers exceeds the available capacity, employing a mechanism that captures5

the choice dynamics of the buyers can help the seller achieve a higher revenue.

When buyers’ valuations are private, however, computing near-optimal alloca-

tions requires the extraction of pertinent information from the potential buyers.

Mechanism design seeks efficient protocols to elicit such information, to allocate

the available capacity to the potential buyers, and to determine the respective10

payment schemes. Auctions, as a market mechanism, have long been a common

method for business transactions, and they are being increasingly used in price

discovery and discrimination for selling diverse items ranging from artworks to

billion-dollar spectrum licenses for radio or mobile telephony, wireless networks,

and emission permits (Ausubel, 2003; Krishna, 2009).15

In the allocation of certain public goods, the pertinent political and social

constraints can restrict institutions from pursuing self-serving policies (Con-

dorelli, 2012). In such cases non-price mechanisms, such as lotteries, priority

lists, and queuing rules, can be used to address the fairness and equity expec-

tations of the stakeholders involved in the allocation process.20

In this study, we focus on short-term pricing and the capacity allocation deci-

sions of a seller facing demand from potential buyers who express their “ordered

preferences” over the options provided (by the seller) in the form of a price menu.

We design a semi-market mechanism that is capable of meeting buyers’ fairness

and equity expectations while delivering a satisfactory revenue performance for25

the seller. In other words, we propose an incentive-compatible mechanism for a

seller who needs to operate under the “fairness” constraint. Through the pref-

erence lists, the mechanism combines buyers’ preferences, within a multi-bid

bidding policy, with the incentive-compatibility (IC) constraints. To develop

a termination criterion for the iterative auction mechanism, we introduce the30
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preference-based capacity allocation problem and model it as a mixed-integer

programming (MIP) formulation. We combine the capacity allocation model

within successive interactions of price update and provisional assignment de-

cisions to get close to the market-clearing prices and the corresponding allo-

cations. We show that our random priority- and preference-based assignment35

protocol leads to an auction mechanism that is universally truthful, enforces an

ex post truth-telling bidding behavior, and can achieve Pareto efficiency (PE)

in capacity allocation.

The preference-based multi-unit auction scheme proposed in this study can

be employed in a multitude of practical settings. Burtraw et al. (2011) review40

market-based allocations of sulfur dioxide, nitrogen oxide, and carbon diox-

ide emissions, and state that emissions allowance auctions provide information

about the marginal cost of reducing emissions. Borghesi (2014) presents case

studies on water management, and argues that the tradable permits can play a

key role in setting a price for water pollution, and creating an artificial market45

for a common good, such as clean water. For an ecosystem under considera-

tion, the water management authority can establish the maximum amount of

emissions, and allocate permits via an auction. Borghesi (2014) states that an

auction mechanism that generates revenue for the water management authority

can be instrumental in reducing distortionary taxes, and bring about more in-50

centives for innovation. Ohler et al. (2014) list a diverse set of publicly-managed

natural resources, ranging from public market space for vendors to hunting and

rafting permits that are sometimes distributed by lottery. Ohler et al. (2014)

argue that prohibition of post-lottery permit transfers discourages applicants

from entering the lottery solely for profitable permit sale. On the other hand,55

when trade is restricted, non-transferrable permits may not be used by those

who value them most. The auction mechanism we present can be an effective

instrument in addressing the “fairness” and “efficiency” concerns alluded to by

Ohler et al. (2014). Wada and Akamatsu (2013) address a dynamic traffic as-

signment problem, and propose an auction mechanism where the market goods60

are tradable permits to travel links in a network. In the auction mechanism,
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each user purchases a bundle of permits corresponding to her preferred path on

the network. Wada and Akamatsu (2013) demonstrate that the proposed mech-

anism is strategy-proof, and converges to the maximum social surplus when the

number of users is large.65

This paper is structured as follows. The next section presents a brief overview

of the related literature and the concepts used in this study, and summarizes

our contributions. Section 3 describes the problem setting. Section 4 summa-

rizes the steps involved in the auction and details its components, including

the preference-based capacity allocation problem which establishes the termi-70

nation criterion of the proposed auction mechanism. Benchmark models that

will be used to evaluate the performance of the proposed auction mechanism are

introduced in Section 5. Section 6 presents the setting for the computational

experiments and reports the performance of the proposed auction mechanism.

Finally, Section 7 summarizes our contributions and discusses future research75

directions.

2. Literature Review

Capacity allocation mechanisms are protocols that map informing messages

or signals from agents into a solution, such as the unit price of the considered

good (Bichler, 2001), and can be classified as individually responsive (IRes)80

and individually unresponsive (IU). In the former class of methods, when an

agent receives a positive share of the seller’s capacity she can still ask for and

receive additional units if she has not been assigned all of the capacity. In the

latter one, the seller sets each agent’s share, however, the agent might order

less than her share (Cho and Tang, 2014). The most popular IRes mechanisms85

are the proportional, the linear, and the Pareto allocation rules, while the lex-

icographic, the uniform, and the competitive allocation schemes are the most

popular ones in the IU class (Cachon and Lariviere, 1999a,b; Cho and Tang,

2014). The proportional allocation, the linear allocation, the Pareto alloca-

tion, and the lexicographic allocation are not truth-inducing or strategy-proof,90
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and they cannot eliminate the gaming effect (Sprumont, 1991; Cho and Tang,

2014). The uniform allocation can avoid the gaming effect when the competing

sellers are local monopolists (Cachon and Lariviere, 1999b). However, when

the sellers engage in demand competition, the uniform allocation is no longer

truth-inducing (Liu, 2012). In this study, we consider buyers’ preferences over95

a list of available options offered in the form of a price menu as a new demand

acquisition mechanism. To the best of our knowledge, the buyers’ preferences

(or priorities) have not been considered in the context of allocation mechanisms,

particularly in the private information setting.

As an allocation mechanism, multi-unit auctions are used to award multi-100

ple units of some homogeneous goods, such as oil or wine bottles (of the same

taste and size), or heterogeneous items, such as different sizes or flavors of wine

(Mochón and Sáez, 2015). A multi-unit auction can be held either in dynamic

(iterative ascending or descending formats) or the sealed bid format. The main

advantages of dynamic auctions are transparency, a simpler valuation discov-105

ery method, reduced uncertainty, and lower computation costs. Moreover, the

efficiency, and the ability to avoid the winner’s curse effect are other poten-

tial advantages compared to their static counterparts (Cramton, 1998; Ausubel,

2004; Manelli et al., 2006).

Ausubel (2004) proposes a multi-unit, ascending-bid auction for homoge-110

neous goods, in which, as the price rises in successive rounds, bidders with

low valuations drop out of the competition. With the “clinching” concept, the

Ausubel auction sequentially implements the Vickrey rule (Vickrey, 1961), un-

der which each bidder pays the opportunity cost of the items (Ausubel, 2004).

Ausubel (2006) extends and generalizes this approach to a setting with multiple115

heterogeneous items where bidders have market power. The “clinching” rule

has been extended to additional settings as well: for homogeneous goods with

bidders having independent values and downward-sloping demand in Perry and

Reny (2005), for multi-unit homogeneous items with bidders with non-increasing

marginal values in Bikhchandani and Ostroy (2006); for multiple identical per-120

ishable goods, with bidders with non-increasing marginal values in Mishra and
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Parkes (2009), and to the cases where bidders have increasing marginal utilities

in Iwasaki et al. (2005).

When a market mechanism is not a feasible choice because of legal or eth-

ical considerations, non-price allocation mechanisms, such as lotteries, can be125

employed. Taylor et al. (2003) analyze the problem of allocating identical and

indivisible objects to a group of consumers through a non-price mechanism, and

show that a lottery is more socially efficient than a waiting-line auction. In

addition to the non-price mechanisms, semi-market mechanisms have emerged

to play a prominent role in the allocation of public goods. Evans et al. (2009)130

study the theoretical and empirical properties of “hybrid” mechanisms that al-

locate a portion of available units via auction and the remainder through a

lottery, and demonstrate that the opportunity to obtain a homogeneous good

in a subsequent lottery does not compromise the efficiency of the auction com-

ponent. Benning and Dellaert (2013) study a case where price-based priority135

access is offered in a publicly funded health care system, and illustrate that of-

fering individuals the option to pay for faster access to treatment can positively

influence an individual’s attitude toward a health care allocation policy in the

case where treatment takes place outside the regular working hours of the health

care facility.140

To design truthful mechanisms and deal with incentive-compatibility con-

straints, recent mechanism design research considers releasing these constraints

and incorporating randomization techniques into the auctions. Indeed, ran-

domization, particularly the maximal-in-distributional range (MIDR) algorithm

(Dobzinski and Dughmi, 2013), has been found helpful for designing polynomial-145

time truthful mechanisms with good approximation factors. Lavi and Swamy

(2011) establish a general technique that optimizes over a range of allocation

distributions and applies the Vickrey-Clarke-Groves (VCG) prices to the dis-

tributions to obtain truthful-in-expectation approximation mechanisms. Using

randomization, Dobzinski and Dughmi (2013) present a fully polynomial-time150

approximation scheme (FPTAS) for multi-unit auctions that is truthful in ex-

pectation. Vöcking (2013) develops a universally-truthful approximation scheme
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for multi-unit auctions.

In this study, we present an alternative approach to tackle the restrictions

imposed by the incentive-compatibility constraints. Our mechanism offers a155

set of options in the form of a price menu and integrates buyers’ incentive-

compatibility constraints into the mechanism by having them announce their

preferred options over the price menu. With this approach, the incentive-

compatibility constraints are embedded in the buyers’ preference lists. More-

over, our randomization technique does not entail a rounding task, as it is per-160

formed through provisional winner determination and capacity allocation steps.

We show that this approach helps us to design a universally truthful mechanism.

3. Preliminaries and Problem Setting

We consider a setting where a seller (interchangeably, auctioneer) wants to

sell M identical items, i.e., his “capacity,” to N bidders (interchangeably, buyers165

or agents). The items are offered to the buyers as L = |O| = |P | ≤ M many

(quantity, price) couples in a price menu (O,P ), where O = (o1, ..., oL) is the set

of available options (1 ≤ ol ≤M, l = 1, 2, ..., L) and P = (p1, ..., pL) is the set of

corresponding prices (pl > 0, l = 1, 2, ...L). Without any loss of generality, we

assume that ol < ol+1, l = 1, 2, ..., L − 1. The price menu features an all-units170

quantity discount, i.e., the price per unit decreases as the quantity purchased

increases: pl

ol
≥ pl+1

ol+1
, l = 1, 2, ..., L− 1.

Given a price menu with (O,P ), each buyer i, i = 1, 2, ..., N, is allowed to

bid for as many options as are offered in the price menu. Let ui(x) be the

net utility of buyer i, i = 1, ..., N, when she purchases and consumes x units.175

We assume that ui(0) = 0, and ui(x) > 0 when x > 0, i = 1, ..., N. We then

let oi = (oi,1, ..., oi,L) be the preference list of buyer i, i = 1, 2, ..., N, where

ôi,l = arg maxk∈o1,...,oL\{oi,1,...,oi,l−1} ui(k), l = 1, ..., L, and

oi,l =




ôi,l ui(ôi,l) ≥ 0,

0 otherwise.
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We also assume that when ui(ok)=ui(ol), for some k and l where 1 ≤ k <

l ≤ L, buyer i, i = 1, 2, ..., N , lists option ok higher in her preference list. The180

preference list of buyer i, i = 1, 2, ..., N , is ordered based on her private utility

function, and forms an order relation “�i” that satisfies transitive relations,

and specifies her preferences over the set of options O. In other words, oi,l �i

oi,l+1, i = 1, 2, ..., N ; l = 1, 2, ..., L− 1.

A preference-based mechanism consists of a pair (q, p̂), such that q : o 7→185

ZN
≥0 is the allocation rule, and p̂ : o 7→ RN

≥0 is the payment rule, where o =

(o1, ...,oN ) represents buyers’ preference matrix. A feasible allocation of the

items to the buyers is a vector of non-negative integers q = (q1, ..., qN ), such

that
∑N

i=1 qi ≤ M , where either qi ∈ oi or qi = 0, i = 1, 2, ..., N . The vector

p̂ = (p̂1, ..., p̂N ) is the payment vector, where p̂i ≥ 0, i = 1, 2, ..., N, indicates190

the price that buyer i, i = 1, 2, ..., N , should pay.

Consider now a randomized allocation rule qRandom where a priority list of

buyers is randomly formed, and each buyer is assigned to her highest preference

that can be supplied with the remaining units after the buyers with the higher

priorities have been allocated.195

Lemma 3.1. Under the allocation rule qRandom, it is ex post Nash equilibrium

for each buyer to reveal her order of preferences truly. (See Appendix A for a

proof.)

Lemma 3.1 states that a rational buyer cannot benefit from not reporting

her dominant preference list, i.e., the buyers cannot manipulate the outcome of200

the randomized allocation scheme to get a higher payoff by supplying preference

lists which are not in line with their true preferences.

Next, we restate the definition of universal truthfulness (Lavi and Swamy,

2011; Dobzinski and Dughmi, 2013) as it applies to our model and show that

our auction mechanism is universally truthful under the randomized allocation205

rule qRandom:

Definition 3.1. [Universal Truthfulness] A mechanism (q, p̂), is universally

truthful if it is a probability distribution over truthful deterministic mechanisms.

9
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In a deterministic truthful mechanism, bidders always get their maximum

utility by bidding truthfully (expressing their true type) and no randomization210

is allowed (Lavi and Swamy, 2011; Dobzinski and Dughmi, 2013). A univer-

sally truthful mechanism is a probability distribution over deterministic truthful

mechanisms, in which each player maximizes her utility by bidding truthfully

for every realization of the random mechanism (Vöcking, 2013).

Theorem 3.1. Preference-based bidding under a random-priority allocation215

scheme is universally truthful, i.e., it is a dominant strategy for each player

to report her preferences truthfully. (See Appendix B for a proof.)

Since bidders declare their types truthfully, our next theorem states that

the preference-based allocation’s outcomes sustain a Pareto efficient allocation,

in which no bidder can be better off unless at least one bidder is worse off by220

giving up her current allocation and replacing it with one of her less-favored

preferences.

Theorem 3.2. A randomized preference-based capacity allocation is Pareto ef-

ficient ex post. (See Appendix C for a proof.)

4. Preference-Based, Multi-Unit Iterative Auction225

In this section we present the steps of the preference-based multi-unit itera-

tive auction. In every iteration of the auction, the seller announces a price menu

and collects the buyers’ preference lists (Section 4.1). The seller then processes

the buyers’ preference lists to decide whether to continue with the random allo-

cation rule qRandom (see Section 3 for the description of the random allocation230

rule) or to conclude the auction with the provisional assignments generated in

the random allocation step of the previous iteration of the auction. In other

words, the seller checks whether the termination criterion has been met (Sec-

tion 4.2). If the seller decides to proceed with the next iteration of the auction,

capacity is assigned in line with the allocation rule qRandom (Section 4.3).235

In Figure 1, we present a graphical representation of the proposed auction

mechanism. To simplify the exposition, we assume that the solution of (PCA)

10
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Figure 1: Graphical representation of the auction mechanism.

with the initial prices and bidders’ preferences in response to the initial prices

generates a positive revenue for the auctioneer, and the “Set Provisional Allo-

cation with qrandom” step of the flow diagram is visited at least once.240

4.1. Formation of the Price Menu

The objective of the price update (or formation) step of the iterative auction

is to direct the mechanism toward a competitive equilibrium. In a typical iter-

ative auction, the pricing can be based on the information that can be inferred

from the winner determination problem (e.g., the analysis of the dual of the245

winner determination problem, if it is conceived as an optimization problem).

However, due to the randomized nature of its allocation step, our mechanism

does not provide meaningful information that can be processed to update the

prices. The termination criterion we introduce in Section 4.2 is actually de-

rived from a winner determination problem that considers the worst outcome250

the seller can end up with when the allocation rule qRandom is executed with

the prices announced to the buyers. Due to its mixed-integer programming na-

ture, the optimization problem on which the termination criterion is based does

not provide duality information, either. An alternative is to increase the prices

with a fixed or dynamically changing increment while maintaining the all-units255
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discounts feature of the mechanism. In our computational experiments (Section

6), we employ a simple price update mechanism to focus more on the revenue

impact of the termination criterion, which we discuss in the next subsection.

4.2. Termination Criterion

The iterative auction mechanism we propose in this paper relies on a random-260

ized allocation rule, therefore the seller’s revenue in any iteration of the auction

is a random variable. In other words, because the allocation rule qRandom can

result in a different allocation contingent on the random seed used, the solution

provided by the proposed method is not necessarily unique.

Although the allocation rule qRandom helps the seller respond to the buy-265

ers’ “fairness” expectation throughout the auction, the revenue uncertainty it

brings about has to be managed carefully. Therefore, we propose a termination

criterion that compares the provisional revenue the seller has achieved with the

allocation generated in the previous iteration of the auction with the lowest

revenue the seller may end up with in the current iteration of the auction. In270

other words, with the help of an optimization problem, which we will refer to as

the preference-based capacity allocation (PCA) problem, we identify the low-

est revenue the allocation rule qRandom has the potential to generate with the

updated prices and the preference lists the buyers form as a response to the

updated prices. Assuming that the auctioneer is risk neutral, the termination275

criterion can be based on the outcome of the optimization problem: the random

allocation is not continued with and the auction is terminated with the most

recent provisional allocation if the current minimum possible revenue falls short

of the provisional revenue that could be achieved with the provisional allocation

generated in the previous iteration.280

We first list the parameters and decision variables of (PCA):

• Parameters:

M : is the amount of available capacity at the start of the auction,

oi,l: is the lth, l = 1, 2, ..., L, preference of buyer i, i = 1, 2, ..., N ,

12
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pi,l: is the price of lth, l = 1, 2, ..., L, preference of buyer i, i = 1, 2, ..., N ,285

BM : a large positive number (Big M).

• Decision Variables:

xi,s,l: binary variable that takes the value of one if buyer i, i = 1, 2, ..., N,

is assigned to her lth, l = 1, 2, ..., L, preference in step s, s = 1, 2, ..., N ;

zero otherwise.290

zi,s,l: binary variable that takes the value of one if the number of units in

the lth, l = 1, 2, ..., L, preference of buyer i, i = 1, 2, ..., N, is less than the

remaining capacity in step s, s = 1, 2, ..., N ; zero otherwise.

hi,s: binary variable that takes the value of one if buyer i, i = 1, 2, ..., N,

has at least one preference that is less than the remaining capacity in step295

s, s = 1, 2, ..., N ; zero otherwise.

ei,s: binary variable that takes the value of one if buyer i, i = 1, 2, ..., N,

has not been allocated yet and she is eligible to be allocated in step s, s =

1, 2, ..., N ; zero otherwise.

rcs: the remaining capacity at the beginning of step s, s = 1, 2, ..., N , with300

rc1 = M .

Using the above parameters and decision variables, we model the preference-

13
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based capacity allocation problem as follows:

(PCA) : min
N∑

i=1

N∑

s=1

L∑

l=1

xi,s,lpi,l (1)

s.t. rcs = M −
s−1∑

j=1

N∑

i=1

L∑

l=1

xi,j,loi,l, s = 1, 2, ..., N, (2)

oi,l +BM(zi,s,l) ≥ rcs, i, s = 1, 2, ..., N ; l = 1, 2, ..., L, (3)

oi,l +BM(zi,s,l − 1) ≤ rcs, i, s = 1, 2, ..., N ; l = 1, 2, ..., L, (4)

hi,s ≥ zi,s,l, i, s = 1, 2, ..., N ; l = 1, 2, ..., L, (5)

hi,s ≤
L∑

l=1

zi,s,l, i, s = 1, 2, ..., N, (6)

ei,s ≤ hi,s, i, s = 1, 2, ..., N, (7)

ei,s ≥ hi,s −
s−1∑

j=1

L∑

l=1

xi,j,l, i, s = 1, 2, ..., N, (8)

ei,s ≤ 1−
s−1∑

j=1

L∑

l=1

xi,j,l, i, s = 1, 2, ..., N, (9)

L∑

l=1

xi,s,l ≤ ei,s, i, s = 1, 2, ..., N, (10)

xi,s,l ≤ zi,s,l, i, s = 1, 2, ..., N ; l = 1, 2, ..., L, (11)

BM(
n∑

i=1

L∑

l=1

xi,s,l) ≥
n∑

i=1

ei,s, s = 1, 2, ..., N, (12)

(1− zi,s,l) + xi,s,l ≥ xi,s,k − (1− zi,s,k), i, s = 1, 2, ..., N ;

l = 1, 2, ..., L; k = l + 1, ..., L, (13)
n∑

s=1

L∑

l=1

xi,s,l ≤ 1, i = 1, 2, ..., N, (14)

xi,s,l, zi,s,l, hi,s, ei,s ∈ {0, 1}, i, s = 1, 2, ..., N ; l = 1, 2, ..., L, (15)

rcs ≥ 0, s = 1, 2, ..., N. (16)

(PCA) finds the allocation with the lowest revenue among all the possible alloca-

tion outcomes that the allocation rule qRandom can generate, i.e., it determines305

the worst-case revenue for the seller if the seller decides to proceed with the

allocation rule qRandom using the current prices and buyer preferences.
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Equation (2) calculates the remaining capacity in each allocation step s =

1, 2, ..., N , starting with a capacity ofM in the first step of the allocation scheme.

The constraint sets (3) and (4) force the variables zi,s,l, in each step s, to take310

a value of one if the remaining capacity is higher than the number of units

in the lth preference of buyer i; and 0 otherwise. Constraint sets (5) and (6)

consider all the zi,s,l decision variables for buyer i in step s and set the value of

the hi,s equal to one if buyer i has at least one preference that is less than the

remaining capacity in step s, and zero otherwise. Once the hi,s values are set,315

we consider the overall eligibility of buyer i in step s by considering hi,s values

and the allocation that could have been made to buyer i in the previous steps

of the allocation scheme (constraint sets (7), (8) and (9)). We note that buyer

i can be allocated in step s if no allocation has been made to her in the earlier

steps. Finally, with constraint set (10) through (14), we complete the allocation320

decisions where constraint set (12) guarantees that an allocation is made when

eligible buyers exist in step s, and constraint set (13) guarantees that if buyer

i is allocated in step s the allocation is made for her highest ranking eligible

preference. We restrict the decision variables xi,s,l, zi,s,l, hi,s and ei,s to be

binary to avoid partial allocations, and the control variables rcs to be positive,325

using the constraint sets (15) and (16), respectively.

Theorem 4.1. Preference-based capacity allocation problem is NP-hard. (See

Appendix D for a proof.)

Theorem (4.1) practically means a polynomial-time algorithm for computing

the optimal allocation does not exist. Despite the computational intractability330

of (PCA), in Section 6, we demonstrate that it can be solved for problem sizes

that can shed light on the performance of the proposed auction mechanism.

4.3. Capacity Allocation

Identifying the set of buyers whose bids will be accepted is part of the winner

determination problem. Generally, the winner determination protocol depends335

on the auctioneer’s objective, e.g., maximizing the profit or maximizing the
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social welfare. Due to the buyers’ fairness expectation in the setting we con-

sider, and to induce a truth-telling bidding behavior, the winner determination

problem is based on the random allocation rule qRandom. More explicitly, we

randomly form a priority list of the buyers that have not already been allocated340

and allocate them units in line with each buyer’s highest preference that does

not violate the capacity constraint. Thus each buyer gets her highest preference

that is less than or equal to the on-hand capacity. This step is repeated until

either there remains no eligible buyer whose preference is less than the available

capacity or the capacity is exhausted.345

5. Benchmark Models: Seller’s and System’s Net Profit Under Full

Information

In this section, we present two models for the purpose of establishing the

benchmark revenue levels to be used in the performance evaluation of the pro-

posed auction mechanism. Without loss of generality, we assume that the auc-350

tioneer is a seller whose unit cost is normalized to zero. We first discuss the

seller’s net profit maximization problem (SP ) as a Stackelberg game under full

information. We then present the system’s net profit maximization problem

(CP ), i.e., we consider the case where the seller and the buyers operate as

a centralized business unit, again under full information. For simplicity and355

tractability, we present the models with the quadratic form of the buyers’ util-

ity function. Specifically, we assume that with x units purchased at a price of

p(x), buyer i will have a net utility of

ui(x) = aix− bix2 − p(x), i = 1, ..., N, (17)

where the parameter ai ∈ R>0 captures the intrinsic marginal, and the quadratic

term with parameter bi ∈ R>0 captures the decreasing marginal returns from360

consuming each unit of the good for buyer i, i = 1, ..., N . As noted by Candogan

et al. (2012), the quadratic form serves as a good second-order approximation

of the broader class of concave utility functions.
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In the Stackelberg setting, the seller’s objective is to select the options ol, l =

1, ..., L, that he will provide to the buyers along with the corresponding price365

pl of option l, l = 1, ..., L. The options and prices form a price menu with

an all-units quantity discount, i.e., pl

ol
≥ pl+1

ol+1
, l = 1, 2, ..., L − 1. In selecting

the options and the prices that will be part of the price menu, the seller takes

into consideration the buyers’ potential responses to the price menu. Given

a price menu, buyer i, i = 1, ..., N, solves a simple search problem over the370

available options to determine its option with the highest utility: ui(o
∗
l ) =

maxl=1,...,L ui(ol) = maxl=1,...,L(aiol− bio2l − pl). Given o∗l , buyer i, i = 1, ..., N,

participates in the game if and only if ui(o
∗
l ) ≥ 0.

We formulate the seller’s profit-maximization problem as a non-linear mixed-

integer programming model. In this formulation, we set the xi,l, i = 1, 2, ..., N ; l =375

1, 2, ..., L, as the allocation decision variable, where xi,l takes value 1 if the buyer

i, i = 1, ..., N, is allocated ol units:

(SP ) : max
n∑

i=1

L∑

l=1

plxi,l (18)

s.t.
L∑

l=1

xi,l ≤ 1, i = 1, 2, ..., N, (19)

n∑

i=1

L∑

l=1

olxi,l ≤ M, (20)

a(

L∑

k=1

okxi,k)− bi(
L∑

k=1

okxi,k)2 −
L∑

k=1

pkxi,k ≥ aiol − bi(ol)2 − pl −BM(1−
L∑

k=1

xi,k),

i = 1, 2, ..., N ; l = 1, 2, ..., L, (21)

ai(

L∑

k=1

okxi,k)− bi(
L∑

k=1

okxi,k)2 −
L∑

k=1

pkxi,k ≥ 0, i = 1, 2, ..., N, (22)

pl/ol ≥ pl+1/ol+1, l = 1, 2, ..., L− 1, (23)

xi,l ∈ {0, 1}, i = 1, 2, ..., N ; l = 1, 2, ..., L,(24)

pl ≥ 0, l = 1, 2, ..., L. (25)

In (SP ), the objective function is non-linear and includes both the pricing
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and allocation decision variables. The inequality (19) states that a buyer can

be assigned at most to one option. In the same way, constraint (20) observes380

the capacity limit. Constraint sets (21) and (22) are the IC and the individual

rationality (IR) constraints, respectively, by which we ensure the participation

of the buyers. We note that constraint set (21) is activated for buyer i, i =

1, 2, ..., N, only when she is assigned to one of the options. With constraint

(23), we offer a price menu in line with the all-units quantity discount scheme,385

i.e., we guarantee a (weakly) lower wholesale unit price on every unit purchased

on the higher quantity options.

The (SP ) problem also reflects the symmetric information case. We note

that in the solution of the (SP ) problem each buyer is assigned to at most one

of the options, and, if assigned to an option, the price menu guarantees that the390

option assigned to a buyer is her utility maximizing option. The (SP ) problem,

as formulated above, does not entail a random priority-based allocation scheme.

When randomization is introduced to determine the sequence through which the

allocations will be made, the revenue of the auctioneer does not change, because,

in the optimal solution of (SP ), every buyer is assigned to her top preference395

(guaranteed by the IC and IR constraints), and the total assigned capacity is

less than or equal to the available capacity. On the other hand, buyers’ having

information on the number of units to be auctioned has no effect on the pricing

process simply due to the auctioneer’s price setter role in the Stackelberg game

setting we study.400

The (SP ) problem can be readily transformed to the (CP ) problem just

by changing the objective function as in (26) and removing the IC and IR

constraints (21) and (22), and the pricing constraints (23) and (25):

(CP ) : max
n∑

i=1


ai

(
L∑

k=1

okxi,k

)
− bi

(
L∑

k=1

oixi,k

)2

 (26)

s.t. (19), (20), and (24).
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6. Computational Experiments

In this section we present a revenue performance analysis of the preference-405

based, multi-unit auction vis-à-vis the benchmark revenue levels developed in

Section 5. We consider a total of 12 problem sets with combinations of N =

6, 9, 12, and 15, and M = 9, 12, and 15. We also set L = 9, i.e., we let the price

menu have nine offers in all of the test problems. As given in Equation (17) of

Section 5, we assume that the buyer i’s utility function is in the quadratic form410

with parameters ai and bi, i = 1, 2, ..., N . In the test problems, we randomly

generate the parameters of the quadratic functions under two scenarios: 1) ai ∼
U(N, 2N), i = 1, 2, ..., N, and bi = N/6, and 2) ai ∼ U(N, 2N), i = 1, 2, ..., N,

and bi ∼ U(N/6, N/3), i = 1, 2, ..., N . As summarized in Table 1, we consider

50 (30) randomly generated problems for each of the Problem Sets 1-9 (10-12),415

and 9× 50× 2 + 3× 30× 2 = 1080 problems in total. All problem instances are

solved with GAMS 22.5 optimization software (using CPLEX solver for (PCA),

and BARON solver for (CP ) and (SP )) integrated with Matlab 2012a on an

Intel®2.60 GHz Core™5i-3320 processor with 8 GB of RAM in a Windows 7

operating system.420

Throughout the auction iterations, discounted prices are incremented and

updated using the following relationship:

ptl =




pl(1− αl) t = 0; l = 1, ..., L,

pt−1l + p0l (1− αl)
(l−1)(t)/L t = 1, 2, ..., T ; l = 1, ..., L,

(27)

where t is the iteration index (with T being the maximum number of auction

iterations allowed), αl is the marginal discount that corresponds to the lth option

in the price menu, i.e., a quantity of ol units, p is the base price of a single unit,425

and ptl is the price of ol = l units at the tth iteration of the auction. While

the base unit price of Equation (27), i.e., p, can be a function of the iteration

number and increasing throughout the auction, for simplicity, and without loss

of generality, we set p = 3. Table (2) illustrates the discount factors applied for

different units in the quantity discount price menu. The price update scheme430
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guarantees that the price menu is in the form of an all-units quantity discount

menu, i.e.,
pt
l

otl
≥ pt

l+1

otl+1
, l = 1, ..., L− 1; t = 0, 1, ..., T .

In our computations, we first solve (CP ) to compute the centralized system’s

net profit under full information. Next, we solve (SP ) to determine the seller’s

maximum net profit when full information is available. We then focus on the435

private information setting where the seller uses the auction proposed in this

study to sell his capacity.

Table 1: Parameters of the Problem Sets.
Problem Set N M L No. of Problems

1 6 9 9 50

2 6 12 9 50

3 6 15 9 50

4 9 9 9 50

5 9 12 9 50

6 9 15 9 50

7 12 9 9 50

8 12 12 9 50

9 12 15 9 50

10 15 9 9 30

11 15 12 9 30

12 15 15 9 30

Table 2: Discount Factors in the All-Units Quantity Discount.

l ol αl

1 1 0

2 2 0.05

3 3 0.05

4 4 0.05

5 5 0.1

6 6 0.1

7 7 0.15

8 8 0.15

9 9 0.2

In Tables 3-6, all profit figures are reported in percentage terms with respect

to the system’s total profit in the centralized setting. The three columns grouped

under (SP )/(CP ) report the seller’s, the buyers’, and the system’s total profit,440

respectively, when the seller designs the price menu to maximize his profit under
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full information. Similarly, the three columns grouped under (Auction)/(CP )

report the seller’s, the buyers’, and the system’s total profit, respectively, when

the auction mechanism we propose in this study is implemented in the private

information setting.445

For Problem Sets 1-9, the results for scenario ai ∼ U(N, 2N) and bi = N/6,

and ai ∼ U(N, 2N) and bi ∼ U(N/6, N/3) are provided in Tables 3 and 4,

respectively. For Problem Sets 10-12, the results are provided in Tables 5 and

6.

The average values in the last rows of the (SP )/(CP ) columns in Tables 3-6450

indicate that the average efficiency of the system drops by around 5 percent when

pricing under the IC and IR constraints is introduced into the system. However,

the seller’s average revenue performance remains strong (in the 82.25%-88.49%

range); a very small portion of the system’s profits is transferred to the buyers

(in the 8.95%-12.63% range) to satisfy the IC and IR constraints. This is a clear455

indicator of why buyers may choose not to share their private information with

the seller; under full information, the seller can extract a significant part of the

system’s profit, allocating a small part to the buyers.

The average values in the last rows of the (Auction)/(CP ) columns in Tables

3-6 indicate that the average efficiency of system drops slightly further when the460

seller implements the auction mechanism we propose in this study. However,

the seller and the buyers are collectively able to extract 89.20 to 95.35 percent of

the system’s profit, depending on the group of problem sets and the distribution

parameters of the buyers’ utility functions. The fact that the buyers do not share

their private information with the seller and force him to implement a market465

mechanism brings about a 100% increase in their extracted share of the system’s

profit: 9.06 vs 21.53 percent, 12.63 vs 25.85 percent, 8.95 vs 15.14 percent, and

9.91 vs 18.14 percent. We also note that, although the auction we propose in

this study is actually a semi-market mechanism due to its random allocation

component, it is still able to help the seller extract a very substantial part of470

system’s profit while meeting buyers’ fairness expectations.

We now turn to the impact of other problem parameters on the revenue
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performance of the auction mechanism. A comparison of Tables 3 and 4 reveals

that the seller’s average profit drops approximately by 7 percent when more

heterogeneity is introduced into the buyers’ utility functions with the inclusion475

of a distribution for the bi parameter (Table 4). With increased heterogeneity,

the buyers compete for diverse quantities, and this eventually decreases the

level of competition among the buyers, leading to a lower level of profit for the

seller. The comparison of the average seller profit figures in Tables 5 and 6 also

supports this observation.480

With more buyers (e.g., Problem Sets 1-3 vs 10-12) the level of competition

increases and, as expected, the seller extracts a higher part of the system’s profit.

For example, in Problem Sets 1-3 of Table 4, where we have six buyers, the

average seller profit is around 53 percent; in problems with 12 buyers (Problem

Sets 7-9 in the same table) the average seller profit goes up to 72 percent.485

In a similar vein, we observe a substantial impact of the number of auctioned

units (i.e., M) on the seller’s profit. The higher the number of auctioned items,

the lower the level of competition, and therefore the lower the seller’s share of the

system’s profit. A comparison of Problem Sets 1, 2, and 3, for example in Table

4, reveals that the seller’s share of the system’s profit drops by approximately490

10 percent.

Table 3: Performance Comparisons for ai ∼ U(N, 2N) and bi = N/6.

(SP )/(CP ) (Auction)/(CP )

Problem

Set Seller Buyers Total Seller Buyers Total

No of

Iterations

Time

(sec.)

1 88.30 8.02 96.32 68.87 23.12 91.99 3.00 13.50

2 85.61 11.37 96.98 62.53 25.99 88.52 3.37 9.39

3 73.53 12.77 86.30 57.33 23.04 80.37 3.00 28.88

4 90.72 7.09 97.81 74.51 17.50 92.01 4.52 98.63

5 87.98 9.23 97.21 71.74 22.40 94.14 4.12 764.65

6 83.39 10.79 94.18 66.79 25.85 92.64 3.82 1181.36

7 92.11 5.92 98.03 80.16 16.57 96.73 5.90 526.86

8 89.48 8.23 97.80 75.31 18.24 93.55 5.60 1876.17

9 80.66 8.01 88.67 73.52 21.00 94.52 5.30 3415.16

Avg. 85.75% 9.06% 94.81% 70.08% 21.53% 91.61% 4.29 897.40

In Figure 2, we illustrate how the prices evolve as we update them in the
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Table 4: Performance Comparisons for ai ∼ U(N, 2N) and bi ∼ U(N/6, N/3).

(SP )/(CP ) (Auction)/(CP )

Problem

Set
Seller Buyers Total Seller Buyers Total

No of

Iterations

Time

(sec.)

1 81.88 13.06 94.94 58.80 25.07 83.87 2.76 6.89

2 78.68 15.37 94.05 52.07 32.79 84.86 3.48 4.21

3 70.88 14.76 85.60 48.40 31.05 79.45 3.48 2.56

4 87.41 10.27 97.68 70.71 22.45 93.16 3.96 147.71

5 83.41 12.87 96.28 63.64 27.44 91.08 4.56 449.95

6 79.86 15.45 94.31 60.83 28.32 89.15 4.48 1026.58

7 88.96 8.49 97.45 76.21 18.20 94.41 6.44 327.58

8 85.94 10.65 96.59 72.34 22.30 94.64 5.98 1540.46

9 83.23 12.76 95.99 67.17 25.01 92.18 5.64 2787.71

Avg. 82.25% 12.63% 94.88% 63.35% 25.85% 89.20% 4.35 699.29

Table 5: Performance Comparisons for ai ∼ U(N, 2N) and bi = N/6.

(SP )/(CP ) (Auction)/(CP )

Problem

Set
Seller Buyers Total Seller Buyers Total

No of

Iterations

Time

(sec.)

10 92.46 6.03 98.49 83.02 12.89 95.91 7.63 1978.71

11 90.83 7.37 98.02 79.51 15.47 94.98 7.13 3306.51

12 82.19 13.45 95.64 78.11 17.04 95.15 6.93 5488.75

Avg. 88.49% 8.95% 97.44% 80.21% 15.14% 95.35% 7.23 3591.32

Table 6: Performance Comparisons for ai ∼ U(N, 2N) and bi ∼ U(N/6, N/3).

(SP )/(CP ) (Auction)/(CP )

Problem

Set
Seller Buyers Total Seller Buyers Total

No of

Iterations

Time

(sec.)

10 89.36 8.20 97.56 81.11 14.17 95.28 6.67 1517.89

11 87.91 10.13 98.04 75.08 18.46 93.54 6.57 2745.01

12 85.54 11.41 96.95 74.05 21.79 95.84 6.17 4547.29

Avg. 87.60% 9.91% 97.51% 76.75% 18.14% 94.89% 6.47 2936.73

consecutive auction iterations, starting with the initial prices when t = 0. As

an example, we consider the Problem Set 4 of Table 4 with 9 buyers and 9 units

of the item to be auctioned (i.e., N = 9 and M = 9), and ai ∼ U(N, 2N) and495

bi ∼ U(N/6, N/3). We note that the price per unit decreases as the number of

purchased units increases, reflecting the all-units quantity discount feature of

the price menus. In Figure 2, we also report the probability that a buyer lists an
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Figure 2: Prices and bidders’ top preferences.

option available in the price menu as her top preference when her utility function

is randomly generated with parameters ai ∼ U(N, 2N) and bi ∼ U(N/6, N/3).500

For example, when t = 2, a buyer lists the second option in the price menu as

her top preference with a probability of 33.6%, and the expected total demand

that corresponds to buyers’ top preferences is equal to 9(0.392)1 + 9(0.336)2 +

9(0.030)3 = 10.386. Since the buyers report their second, third etc. preferences

in addition to their top preferences, the total demand the auctioneer faces is505

much larger than the available units (i.e., M = 9), and the solution of the

problem (PCA) is not very likely to satisfy the termination criterion, and the

auction proceeds with the next iteration. This observation is reflected in the

average number of iterations reported in Table 4 for Problem Set 4, which is

equal to 3.96.510

We finally turn to the analysis of the computational effort required to ad-

minister the auction mechanism proposed in this study. Although the auction

is terminated in less than seven iterations, on average, the computational effort

grows as the number of buyers who participate in the auction increases. In the
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largest problems with N = 15, and M = 15 (i.e., Problem Set 12), an iteration515

of the auction is completed, on average, in around 800 seconds.

7. Concluding Remarks

In this paper, we develop a semi-market, multi-unit auction mechanism for

settings where buyers’ “fairness” expectations have to be addressed along with

the efficiency objective of the seller. The bidding language of the proposed520

mechanism allows the buyers to present prioritized multiple bids at each auc-

tion iteration. The incentive-compatible mechanism uses a random-priority and

preference-based capacity allocation scheme that eliminates the gaming effect

and leads to a Pareto optimal Nash equilibrium.

The proposed auction mechanism relies on an optimization-based termina-525

tion criterion. The optimization problem links the non-market dimension of

the auction mechanism (i.e., equity-oriented, random priority-based allocation)

with the market-based aspect of the problem (i.e., the seller’s objective of profit-

maximization). The computational results indicate that the auction mechanism

can be an effective tool for pricing and capacity allocation decisions in settings530

where a pure market mechanism is not feasible due to either legal or ethical

considerations or buyers’ expectations.

In this paper we focus on a risk neutral auctioneer, i.e., a decision maker

who is indifferent between two price menus that have the same expected rev-

enue, and seeks to design a price menu that maximizes her expected revenue.535

The termination criterion of the auction mechanism focuses on the worst case

scenario and guarantees that the revenue of the next iteration is greater than or

equal to the revenue achieved with the provisional allocation. In other words,

the termination criterion ascertains that the expected revenue increases until

the last iteration of the auction is realized. A risk seeking auctioneer, on the540

other hand, may be willing to offer a price menu that has a higher level of un-

certainty (e.g., higher probabilities for the low- and high-return scenarios) in

anticipation of higher returns. The assessment of the probabilities for the low-
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and high-return scenarios can be performed with a Monte Carlo simulation of

the random priority-based allocation component of the proposed auction. With-545

out a guarantee on the minimum revenue the auctioneer will receive in the next

iteration, however, this approach may result in relatively poorer revenue per-

formance, and we leave the extension of the proposed mechanism to the case of

a risk seeking auctioneer as a future research problem.

In the proposed auction mechanism, as we have shown earlier, a rational550

buyer cannot benefit from not reporting her dominant preference list. In other

words, the properties of the proposed auction holds true even when a buyer is

risk averse. Although we do not consider the case of risk-averse buyers in the

current study, the iterative ascending-bid format allows buyers to dynamically

change their valuation functions, and therefore to modify their bids in successive555

auction iterations, based on other buyers’ observable behaviors. As another

future research topic, to avoid the “winner’s curse” effect (Cramton, 1998),

the flexibility that the proposed auction mechanism offers can be exploited to

allocate the capacity to those who value them the most.

Due to the computationally intractable nature of the optimization problem560

from which the termination criterion is derived, a limitation of the proposed

mechanism is the computational burden of the preference-based capacity al-

location step, particularly when the number of buyers is large. As a future

research topic, an approximate solution of the MIP model can be studied to

pave the way for the implementation of the mechanism in settings where the565

number of buyers is much larger. Future research topics also include extensions

of the proposed mechanism to a setting where multiple sellers or auctioneers

compete in a common market, and to the case of multiple non-identical items.
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Appendix A. Proof of Lemma 3.1

Proof. With the allocation rule qRandom, a random priority list of the buyers is

formed, and when it is the turn of buyer i,i = 1, 2, ..., N , the allocation scheme

goes through her preferences, and makes an allocation according to her highest

preference that is less than (or equal) to the available number of units. As660

discussed in Section 3, a buyer’s choice behavior is equivalent to her net utility

maximization, and oi,1 � oi,2 � ... � oi,L is equivalent to u(oi,1) ≥ u(oi,2) ≥
... ≥ u(oi,L). Therefore, reporting the order of preferences in any fashion other

than her priorities would not help the buyer to fare better and, as her preferences

do not have any effect on the order of the buyers through which the allocations665

are realized, her preferences do not have any effect on the quantities that will

be allocated to the buyers that are listed higher on the priority list. Therefore,

because a buyer cannot benefit from not reporting her dominant preference list,

there is only one ex post Nash equilibrium in which each buyer provides her true

preference order over the available options. In other words, the buyers cannot670

manipulate the outcome of the random priority-based allocation scheme to get

a higher payoff by supplying preference lists which are not in line with their

true preferences.

Appendix B. Proof of Theorem 3.1675

Proof. According to definition (3.1), a randomized mechanism (q, p̂) is univer-

sally truthful if in every outcome of the random mechanism the buyers reveal

their true types. In qRandom, every realization of the priority list corresponds to
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a certain quantity of the remaining capacity when it is a specific buyer’s turn in

the allocation process, however, independent of the number of remaining units,680

each buyer will be better off if she reveals her true type. Suppose that all buyers

have reported their true preferences; however, one “rational” buyer is informed

of the remaining capacity when it is her turn in the allocation process and she

is allowed to change her preferences. In Lemma (3.1) we have shown that the

buyer would definitely find it irrational to change her preferences. Therefore,685

the preference-based random allocation is a universally truthful mechanism.

Appendix C. Proof of Theorem 3.2

Proof. In a Pareto efficient allocation outcome, no buyer i can be better off

unless some buyer is worse off by giving up a part of her allocation and trans-690

ferring that part to buyer i to make her better off. Since our buyers’ preference

ordering relations are associated with their utilities over the available options,

any buyer who is going to give up a part of her allocation (which would be an

integer-valued quantity in our setting) would be worse off by switching to one

of her lower priority bids that eventually results in lower utility for her. Hence,695

the preference-based allocation is a Pareto efficient allocation.

Appendix D. Proof of Theorem 4.1

Proof. We prove the computational complexity of the special case of the problem

with a polynomial-time reduction from the Subset Sum (SSum) problem which700

is shown to be NP-complete (Garey and Johnson (1990)). The SSum problem

is defined as follows:

Let A = {a1, a2, ..., an} be a finite set, where ai ∈ Z>0 is the size of element

i, i = 1, 2, ..., n. Given a positive integer S, is there a subset E ⊆ A such that
∑

ai∈E ai = S?705
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For the transformation to the (PCA) problem, without any loss of generality,

we assume that ai ≤ ai+1, i = 1, 2, ..., n − 1. We set the number of buyers to

n+ 1, and assume that the seller with a total capacity of S units announces the

following price menu with exactly L = n+ 1 quantity-price options:

Options

0 1 2 ... n− 1 n

Quantity 1 a1 a2 an−1 an

Price nS a1 a2 an−1 an

710

We note that the above price menu has (weakly) decreasing unit prices. We

then define the utility function of buyer i, i = 1, 2, ..., n, as follows:

ui(x) =





ai + 1 if x = ai,

0 otherwise.
(D.1)

We then define buyer “0” with the following utility function:

u0(x) =





nS + 1 if x = 1,

0 otherwise.
(D.2)

With the above price menu and utility functions, buyer i, i = 0, 1, 2, ..., n, will

present a preference list which consists of option i only. When the seller makes715

random priority-based allocations with the price menu she has announced and

the preferences the buyers have presented, any solution where buyer “0” is

assigned one unit of the capacity will have a revenue of at least nS. We note

that the objective of the (PCA) problem is to determine the worst-case revenue

while using the available capacity as much as possible, and, therefore, a revenue720

which is smaller than nS can only be obtained when buyer “0” is not assigned

one unit of the capacity. On the other hand, since the demand of buyer “0” is

only one unit, this is possible if and only if there exists a complete allocation of

the S units to a subset of buyers 1 through n. In the SSum problem, if there

exists no subset E ⊆ A such that
∑

ai∈E ai = S, then the (PCA) problem725

will try to assign as many units as possible to buyers 1 through n, however, the
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total assignment will be strictly smaller than S, and eventually buyer “0” will get

assigned one unit, increasing the revenue above nS. If, on the other hand, there

exists a subset E ⊆ A such that
∑

ai∈E ai = S, the (PCA) problem will assign

exactly S units to buyers whose preferences match with the ai values in subset730

E, creating a revenue of S. In other words, a solution to the (PCA) problem

with an objective function value of exactly S indicates that there exists a subset

E ⊆ A such that
∑

ai∈E ai = S, and a solution with an objective function value

greater than nS indicates that no such subset exists.

Since the above outlined reduction can be performed in polynomial-time, we735

can now claim that (PCA), too, is NP-complete.
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