
Nonlinear and Geometric Controllers for

Rigid Body Vehicles

by

Adeel Akhtar

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2018

© Adeel Akhtar 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

External Examiner Dr. Youmin Zhang

Professor

Supervisor(s) Dr. Steven L. Waslander

Associate Professor

Internal Member Dr. Kaan Erkorkmaz

Professor

Internal Member Dr. Sean Peterson

Associate Professor

Internal-external Dr. Christopher Nielsen

Associate Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In this thesis we investigate the motion control problem for a class of vehicles CV , which includes

satellites, quadrotors, underwater vehicles, and tailsitters. Given a globally represented model of

CV , and a curve, the motion control problem entails following the curve using control inputs. In

this thesis the motion control problem is viewed under two settings, 1) as a local path following

problem, 2) as a geometric trajectory tracking problem. We provide solutions to both problems

by designing controllers based on the concept of feedback linearization.

In the local path following problem, the CV class of vehicles is represented by a local chart.

The problem is solved in a monolithic control setting, and the path that needs to be followed is

treated as a set to be stabilized. The nonlinear model under study is first dynamically extended

and then converted into a fully linear form through a coordinate transformation and smooth feed-

back. This approach achieves path invariance. We also design a fault tolerant local controller that

ensure path following and path invariance in the presence of a one rotor failure for a quadrotor.

The second major problem addressed is the geometric trajectory tracking problem, which is

treated in an inner-outer loop setting. Specifically, we design a controller class for the attitude dy-

namics of the CV class of vehicles. The novel notion of Lie algebra valued functions are defined

on the Special Orthogonal group SO(3), which constitutes a family of functions. This family

of functions induces a novel geometric controller class, which consists of almost globally stable

and locally stable controllers. This class is designed using the idea of feedback linearization, and

is proven to be asymptotically stable through a Lyapunov-like argument. This allows the system

to perform multiple flips. We also design geometric controllers for the position loop, which are

demonstrated to work with the attitude controller class through simulations with noisy sensor

data.

iv

Acknowledgements

I would like extend my thanks first and foremost to my supervisor, Dr. Steven L. Waslander for

all of his support, suggestions, our many insightful conversations, and the amazing opportunity

I have had to work with him at the University of Waterloo. I could not have asked for a better

arrangement. I would like to thank my committee, especially Dr. Christopher Nielsen for his

help and support, and I sincerely appreciate all of his guidance. Furthermore I appreciate the

love, patience, and support of my family and my parents. I would be remiss if I did not also

acknowledge my friends, and my colleagues at the Waterloo Autonomous Vehicle Laboratory

(WAVELab) for their help and support in completing this thesis.

v

Dedication

To my parents!

vi

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Literature review . 3

1.1.1 Feedback linearization and transverse feedback linearization 4

1.1.2 Local quadrotor control . 6

1.1.3 Geometric quadrotor control . 8

1.2 Thesis organization and contributions . 11

1.2.1 Statement of contributions . 14

1.3 Notation . 16

2 Mathematical Modeling 18

2.1 Rigid body . 18

2.1.1 Rotation of a rigid body . 19

2.2 Representation of attitudes . 23

vii

2.2.1 Cardan angles . 24

2.2.2 Cayley parameters . 26

2.2.3 Geodesic polar coordinates . 27

2.2.4 Angle-axis representation . 27

2.2.5 Unit quaternions . 28

2.2.6 Translation of a rigid body . 29

2.3 Class of vehicles CV . 30

2.3.1 Space vehicle or satellite . 30

2.3.2 Unmanned Aerial Vehicle (UAV) or quadrotor 31

2.3.3 Under Water Vehicle (UWV) or submarine 36

2.3.4 Flying wing tailsitter vehicle . 36

3 Path Following Control Implementation on a Car-like Robot 40

3.1 Example of path following control for a car-like robot 41

3.2 Linear control design in transformed coordinates 48

3.3 Experimental implementation . 49

3.3.1 Experimental platform and setup . 49

3.3.2 Experimental results . 51

4 Path Following for the CV Class of Vehicles 56

4.1 Local representation of rigid body model . 56

4.2 Problem formulation . 58

4.2.1 Problem statement . 60

viii

4.3 Dynamic extension . 60

4.4 Path following controller design . 64

4.4.1 Auxiliary controller design . 69

4.5 Simulation results . 70

4.6 Application of path following controller on a quadrotor 72

4.6.1 Without sensor noise . 73

4.6.2 Sensor Noise . 73

4.6.3 Noise on augmented states . 77

5 Fault Tolerant Path Following of a Quadrotor 80

5.1 Introduction . 81

5.2 Mathematical model . 82

5.3 Problem statement . 84

5.4 Dynamic extension . 84

5.5 Path following controller design . 86

5.6 Internal dynamics . 89

5.7 Simulation . 93

6 Controller Class CR for Attitude Tracking of CV Vehicles 96

6.1 Mathematical model . 97

6.2 Problem formulation . 98

6.2.1 Problem statement . 98

6.3 Derivatives on SO(3) . 99

ix

6.4 Function family FR . 105

6.4.1 Class CR feedback controllers . 107

6.5 Almost global controller simulation . 113

6.5.1 Stabilization . 113

6.5.2 Sinusoidal signal tracking . 115

6.5.3 Multiple flips . 118

6.6 Local controller simulation . 120

6.6.1 Stabilization with noise . 121

6.6.2 Multiple flips with noise . 121

7 Application of CR Controller Class on CV Class of Vehicles 124

7.1 Tracking position control . 125

7.1.1 Thrust and attitude extraction . 126

7.2 Path following position control . 128

7.2.1 Height controller . 129

7.2.2 x− y Position controller . 129

7.3 Simulation results . 131

7.3.1 Tracking position control . 131

7.3.2 Path following position control . 133

8 Conclusion and Future Work 140

8.1 Conclusion . 140

8.2 Future work . 143

x

8.2.1 Function family FR,Ω . 143

8.2.2 Stability of the cascade system . 144

8.2.3 Geometric path following . 145

8.2.4 Practical implementation . 145

A Basic Concepts and Notations 146

A.1 Review of Algebra, Analysis and Differential Geometry 146

A.1.1 Vector fields and their Derivatives . 149

A.2 Nonlinear Control Systems . 150

A.3 Elementary results . 152

Bibliography 154

xi

List of Tables

2.1 Attitude Representation . 25

3.1 Controller gains used in Section 3.3 . 51

3.2 Steady-state path following error. 54

4.1 Quadrotor noise levels . 75

xii

List of Figures

2.1 Rigid body, with inertial frame I, and body frame B attached to the rigid body . . 19

2.2 Kinematic and dynamic model of a rigid body with inputs and outputs 23

2.3 Block diagram representing a rigid body moving in free space 29

2.4 Block diagram representing class of vehicles . 31

2.5 A typical Satellite . 32

2.6 Unmanned Aerial Vehicle, quadrotor . 32

2.7 AscTec Pelican’s sensors and computers . 34

2.8 An Under Water Vehicle (UWV) or submarine 35

2.9 Tail-sitter . 37

3.1 The kinematic model of the car-like robot. 41

3.2 Convergence of system’s output and transformed states 47

3.3 Robot following a speed profile. 48

3.4 The Chameleon R100 robot and the experimental setup with IPS 49

3.5 Chameleon R100 robot following circular curve and tracking a profile. 51

3.6 Chameleon R100 following the desired speed profile. 52

xiii

3.7 Chameleon R100 robot following a non-closed path. 53

3.8 The Robot maintaining a desired speed of 0.3 m/sec along the path 53

3.9 Chameleon R100 robot following a non-closed path. 54

3.10 Zoomed view of the path following error . 55

4.1 Velocity profile simulation . 71

4.2 Comparison between reference and actual states. 72

4.3 path following without noise . 73

4.4 Transformed states without noise . 74

4.5 Augmented states without noise . 74

4.6 Path following in the presence of sensor noise 76

4.7 Transformed states in the presence of sensor noise 76

4.8 Augmented states without noise . 77

4.9 Path following in the presence of sensor and motor noise 78

4.10 Transformed states with noise . 78

4.11 Augmented states with noise . 79

5.1 Quadrotor following a desired path . 93

5.2 The quadrotor is traversing the curve at the desired velocity of 0.3 m/sec. 94

5.3 The yaw rate µ̇1 remains bounded as the quadrotor traverses the desired path. . . 94

6.1 Attitude control scheme . 108

6.2 det(D) . 112

6.3 Attitude errors . 114

xiv

6.4 Euler angles and system inputs . 115

6.5 Attitude errors in the presence of noise . 116

6.6 Attitude errors . 116

6.7 Euler angles and system inputs . 117

6.8 Attitude errors in the presence of noise . 118

6.9 Attitude errors . 119

6.10 Euler angles showing multiple flips . 119

6.11 Attitude errors in the presence of noise . 120

6.12 Attitude errors in the presence of noise . 121

6.13 Attitude errors in the presence of noise . 122

6.14 Euler angles showing multiple flips . 123

7.1 Block diagram showing inner-outer loop control scheme 125

7.2 Translational errors in the presence of noise . 132

7.3 Attitude errors in the presence of noise . 132

7.4 Desired and actual attitude, represented in local coordinates 133

7.5 Translational errors in the presence of noise . 134

7.6 Attitude errors in the presence of noise . 134

7.7 Desired and actual attitude, represented in local coordinates 135

7.8 Translational errors in the presence of noise . 136

7.9 Attitude errors in the presence of noise . 136

7.10 Desired and actual attitude, represented in local coordinates 137

xv

7.11 Translational errors in the presence of noise . 138

7.12 Attitude errors in the presence of noise . 138

7.13 Desired and actual attitude, represented in local coordinates 139

xvi

Chapter 1

Introduction

The study of mobile robotics is of central importance because of its vast scale of applications in

the commercial, industrial, and defense sectors. Mobile robots, as the name suggests, are capable

of moving freely in the environment without being attached to a fixed base. These mobile robots

can be classified, broadly, into two groups based on the environment in which they move around.

In the first group, the robots’ motion is restricted to planar (two-dimensional) movement. In

the second group, the robots are capable of moving in three dimensional space. In this thesis

we focus on certain mobile robots belonging to the second group that are capable of producing

thrust along one of their body axes by a propeller, and of inducing torques about each body

axis. Examples of some of the robots that fall under this category are multi-rotor robots, such

as quadrotors, hexa-copters; satellites; underwater vehicles, such as submarines; and tailsitters.

These mobile robots constitute a large class of vehicles, denoted by CV in this thesis, and are

presented in detail in Chapter 2.

An important problem in mobile robotics is to move the robot in a desired manner. In most

applications, each vehicle belonging to CV is required to follow a given path or trajectory in

three dimensional space. In the literature, the path following or trajectory tracking problem is

sometimes referred to as the motion control problem. The CV class of vehicles constitutes a class

1

of under-actuated systems because six degrees of freedom (three positions and three orientations)

must be controlled by four inputs (a thrust, and three torques)1. This makes the motion control

problem challenging.

The difference between the trajectory tracking problem and the path following problem is

crucial. In the path following problem, the main task of the controller is to follow a path with

no a priori time parameterization. In the trajectory tracking problem, the task of the controller

is to follow a path with a pre-specified timing law associated with the motion. Thus, tracking

can be thought of as a special case of path following. One advantage of path following is that

cases exist where the trajectory tracking problem is unsolvable; yet the associated path following

problem has a solution [2]. The main advantage of adopting the path following approach is that

it is possible to guarantee that the resulting feedback control is invariant with respect to the path.

This means that if the mobile robot is initialized on the path with the appropriate orientation,

it will stay on the path for all future time. A trajectory tracking controller cannot ensure path

invariance [3].

In this thesis we consider the local and geometric motion control problems for the CV class of

vehicles, and design controllers based on the idea of feedback linearization. We call the control

problem local when the dynamics of the system under study are represented by a local chart,

and geometric otherwise. Intuitively, feedback linearization is the following: given a nonlinear

system, the idea is to “cancel out” all (or some) of the nonlinearities and convert the system into

a linear (or partially linear) form, if possible. Mainly we solve two problems for the CV class of

vehicles: a path following problem when the system dynamics are represented by a local chart,

and a trajectory tracking problem when the system dynamics are represented in a coordinate-free

way. We call the latter the geometric tracking control problem.

In the first problem, i.e., the local path following problem, given dynamics of the CV class of

vehicles represented by a local chart (such as Euler angles) and a path, the goal is to follow the

1A similar class of vehicles are considered in [1], but we have broadened the vehicle class in this thesis.

2

path, while satisfying some other secondary tasks such as maintaining a specific speed profile

along the path. The problem is treated in a monolithic (or unified) way, i.e., the problem is not

divided into two or more stages. Moreover, using feedback linearization, we treat the problem as

a set stabilization problem by treating the path to be followed as a set to be stabilized. This setting

allows each vehicle in the class CV to achieve path invariance. Despite attractive characteristics

such as path invariance, the monolithic approach poses some practical challenges. This motivates

us to formulate and solve the second major problem in this thesis.

The second problem, i.e., the geometric tracking problem, is solved using the cascade (or

inner-outer loop) approach. Intuitively, the outer loop (also called the position loop) controls

the system’s position and velocity, while assigning a desired attitude and body rates to the inner

loop (also called the attitude loop). The task of the inner loop is to “track” the desired attitude

and body rates. Because of this inner-outer loop structure, it is natural to treat the inner loop

problem as a trajectory tracking problem, and not as a path following problem. The inner-outer

loop approach allows us to relax some of the practical limitations caused by the unified approach.

The heart of inner-outer loop tracking control is the design of the inner-loop controller. Using

the idea of feedback linearization, we design a novel class of geometric tracking controllers that

stabilizes the attitude dynamics of the CV vehicle class. After designing inner loop, we design

both tracking and following controllers for the outer loop, and each of these controllers assign a

desired attitude to the inner loop. In the next section we present some of the main approaches

to solving motion control problems, and highlight major differences between the approaches

followed in this thesis.

1.1 Literature review

Primarily the controller design of this thesis is based on the idea of feedback linearization. We

treat two instances of feedback linearization: 1) the transverse feedback linearization, which

3

allows one to solve the path following problem, and 2) the feedback linearization when the

system dynamics are defined on a Lie group. First we present a literature review on feedback

linearization which focuses on transverse feedback linearization and path following. Then we

present some state of the art controller design techniques for one of the vehicles in the CV class

of vehicles, i.e., a quadrotor. We conclude the section by presenting the existing geometric

control methods, and highlight some key differences with ours.

1.1.1 Feedback linearization and transverse feedback linearization

Feedback linearization is a popular technique in the field of nonlinear control, and much work

has been done in the last decade in control design using this technique. Conceptually speaking,

feedback linearization allows a given nonlinear system, whenever possible, to be converted into

a fully linear form using coordinate transformation and feedback. More details on feedback

linearization can be found at [4, 5]. In [6], the authors propose a path following method for a class

of nonlinear systems which divides the path following problem into two tasks: one geometric and

the other dynamic. The former forces the system to converge to the desired path, while the latter

involves objectives such as tracking speed or velocity profiles. One of the drawbacks in this

work is that the system must be fully feedback linearizable, i.e., differentially flat [7]. Since

most mobile robots do not satisfy differential flatness, this work is not directly applicable to

most mobile robots.

In exact feedback linearization, a given nonlinear system is converted into a fully linear sys-

tem using a coordinate and feedback transformation. In [4, 5], the authors present the necessary

and sufficient conditions for a system to be feedback linearizable. It is not always possible to

fully feedback linearize all nonlinear systems. If that is the case, the system dynamics can be

converted into a partially linear form via partial feedback linearization. In [8] the authors use the

notion of transverse feedback linearization to linearize the dynamics of a system transverse to a

closed orbit in the state space and propose a method of solving the path following problem using

4

transverse feedback linearization.

In [9], the authors show that it is possible to make a desired path invariant through transverse

feedback linearization. The authors in [10] provide the necessary and sufficient conditions for

the linearization of dynamics transverse to the curve. In [11], the authors solve a path following

problem for the planar vertical takeoff and landing of a fixed wing UAV for smooth Jordan curves.

The proposed controller enjoys the property of path invariance. In [10], it has been shown that

using transverse feedback linearization, path following can be achieved for a maglev positioning

system. This control methodology is applied to a five degree-of-freedom maglev positioning

system. The authors demonstrate with their experimental results the effectiveness of the control

design. Path following controller design for a mechanical system is discussed in [12], where

an input-output feedback linearization approach is applied to a planar five-bar linkage robot and

an under-actuated five-bar robot with a flexible link. It has been shown experimentally by the

authors that the behavior of a path following controller is fundamentally different from that of

standard tracking control. In [13], the authors propose a path following controller for the two

input kinematic model of a car-like robot. A smooth dynamic feedback control law is designed

to make the car’s position follow a large class of curves with a desired velocity, which guarantees

invariance of the path.

The first problem considered in this thesis, i.e., local path following of CV , and fault tol-

erant path following control for quadrotors, is solved using the concept of transverse feedback

linearization proposed in [9]. The key difference between our work and the work considered

in [9, 12, 10, 11] is the design of dynamic feedback controllers. Moreover, as a first step of

this thesis, we implement dynamic feedback controllers on a car-like robot that was proposed in

our previous work [13]. To the best of the author’s knowledge, these are the first experimental

results of implementing a dynamic feedback linearized path following controller on a mobile

robotic platform, although static transverse feedback linearized controllers were implemented on

a robotic arm and a maglev system in [12] and [10], respectively. The added difficulty in the

5

implementation of the dynamic feedback linearized controller lies in the construction of “vir-

tual” states. Virtual states will be discussed in detail in the following chapters. Furthermore,

we consider a quadrotor with a single rotor failure, and design a path following controller using

dynamic transverse feedback linearization. Next we present a literature review of one of the most

popular vehicles belonging to the vehicle class, the quadrotor.

1.1.2 Local quadrotor control

Broadly speaking, in literature the control design problem of a quadrotor is studied under two dif-

ferent settings: 1) A cascade, or an inner-outer loop setting, 2) A unified, or monolithic setting.

As the name suggests, the cascade structure uses two (or more) loops. The main advantages

to using this approach are the simplicity of the control design, and ease of tuning of control

parameters. For quadrotors, the outer loop deals with position and velocity, and generates a ref-

erence signal for the inner loop. Given a reference attitude signal, the main task of the inner

loop is to track the given reference attitude signal. Under cascade settings, a large class of linear

control techniques have been proposed that rely on a plant model linearized about hover flight

conditions. PD, PID or LQR controllers have all been tested on a range of platforms, and have

demonstrated reliable and precise performance near hover conditions [14, 15, 16]. In [17] the au-

thors presented PID, and LQR controller for quadrotors using the inner-outer loop approach, and

demonstrate successful experimental results. Theoretically speaking, one of the main drawbacks

of the inner-outer loop structure is that the stability of each loop does not guarantee stability

of the overall system. The stability of the overall system is a typical stability problem of cas-

cade control [18, 19, 20, 21], and is beyond the scope of this thesis, as it has been practically

demonstrated by [17, 15] that under the inner-outer loop approach, the controller works reason-

ably well. In [22] the authors use feedback linearization under the cascade setting for quadrotor

control design.

A wide range of nonlinear techniques have also been proposed to address the envelope re-

6

strictions inherent in linear controller designs. Backstepping [23], sliding mode [24, 25] and

feedback linearization [26, 27] methods have been presented, with varying choices on the con-

troller structure being explored to deal with the under-actuated nature of the quadrotor platform.

Many researchers have been attracted to sliding mode controllers because of their robustness

properties [28]. Sliding mode controller design requires finding a sliding surface on which the

system exhibits desirable behavior. Once such a surface is identified, the goal is to design a feed-

back controller so that the system trajectories converge to the sliding surface in a finite period of

time [25]. In [27], the authors compare the performance of an adaptive sliding mode controller

with that of a feedback linearized controller through simulations. The authors claim that the

adaptive sliding mode controller performs better than the feedback linearized controller; how-

ever, the sliding mode controller consists of a discontinuous feedback control that switches on

the desired path. The switching of control occurs at an infinitely high frequency to eliminate de-

viations from the path. Such switching is both unrealistic and undesirable since practical systems

are not infinite bandwidth and rapidly oscillating actuator commands may actually cause damage

to the actuators. Several techniques have been introduced in the literature to deal with the chat-

tering issue [29]. However, to the best of the author’s knowledge, no one has claimed reliable

path following experimental results on a quadrotor system using sliding mode control. Further,

sliding mode path following controllers are not able to guarantee path invariance. Under a unified

control scheme, most of the quadrotor controllers are trajectory tracking controllers. In [30] the

authors present a path following controller for quadrotors to follow splines in the output space.

The control scheme is based on the cascaded design scheme and the path is represented using

Frenet-Serret (FS) frames. The resulting controller achieves path invariance.

In [31] the authors present a path following controller for a quadrotor, similar to our work

presented in Chapter 4 and [32]. However, we propose the following three extensions. First, the

controller allows the quadrotor to move along the path in any desired manner, including stopping

along the curve as well as changing the direction of traversal along the path. Second, we fully

linearize the system, and the dimension of the zero dynamics is therefore zero. Finally, both

7

closed and non-closed curves can be used for the path definition, resulting in a more general

class of paths that can be followed. One of the major limitations is that this gives controllers

that suffer the so-called gimbal lock. In [33] the authors present a path following methodology

combined with a obstacle avoidance scheme for quadrotors capable of working in cluttered and

hazardous environments. A new cross-track error prediction based mechanism is proposed for the

path following scheme. The authors show in simulation the effectiveness of the path following

controller in cluttered scenarios.

1.1.3 Geometric quadrotor control

Most of the geometric control methods for quadrotors are designed based on the inner outer loop

structure. The dynamics of the inner loop (or the attitude loop) is defined on the Special Or-

thogonal group SO(3), and this poses a challenge as standard nonlinear tools cannot be used for

controller design. Compared to the inner loop, the controller design of the outer loop (position

loop) is simpler. Under reasonable assumptions, any stable outer loop controller can work fairly

well with a stable inner loop controller, while maintaining overall stability of the closed loop

system. In this thesis we focus on designing novel geometric inner loop controllers. Theoreti-

cally speaking, for a general cascade control system, given each subsystem is stable, the overall

stability of the system is of central importance. However, in the case of quadrotors (or CV class

of vehicles), this is relatively less crucial as the attitude dynamics are “faster” compared to the

translational dynamics, and from a practical viewpoint the separation principle holds. Roughly

speaking, the separation principle holds when the inner loop dynamics are at least three to five

times faster than the outer loop dynamics.

Attitude dynamics can be represented by various parameterizations that can be Euclidean

or non-Euclidean [34]. An example of a Euclidean parameterization is the famous set of Euler

angles which lie in R3. An example of a non-Euclidean parameterization is the unit quaternion,

which lie on a three sphere S3. As outlined in [34], regardless of the choice of parameterization, a

8

rigid body attitude cannot be represented either globally or uniquely. As discussed earlier, a local

representation, although unique, suffers singularities such as gimbal lock. On the other hand,

quaternions are not unique. In other words, quaternions do not have singularities but double-

covers SO(3), i.e., one attitude may be represented by two antipodal points. This ambiguity

should be carefully resolved in quaternion-based attitude control systems. Otherwise, they may

exhibit unwinding, in which a rigid body unnecessarily rotates through a large angle even if the

initial attitude error is small [35]. The focus of our work presented in Chapter 6 is control design

in a coordinate-free setting, i.e., when the attitude is defined on SO(3).

The shortcomings of attitude control using local parameterization can be overcome by non-

linear geometric control techniques. In [34] the authors consider the problem of attitude stabiliza-

tion in great detail and underscore the fact that no continuous time invariant feedback controller

can globally asymptotically stabilize to a desired equilibrium point. In addition, the authors

present controllers for a rigid body represented in terms of both reduced attitude and full atti-

tude. A reduced attitude control problem deals with the configuration of a rigid body defined on

a two-sphere S2. In this case, the objective is to point a body-fixed object, such as an antenna, in

a specified direction in the body fixed reference frame, where the rotation about that body fixed

axis is irrelevant [34]. In our work, we focus on the full attitude control problem.

Local attitude control methods, although nonlinear, can only be applicable in a small neigh-

borhood around the desired attitude. For unmanned aerial vehicles, such as a multi-rotor system,

with a restricted flight envelope or near hover flight conditions, these local control methods are

sufficient, as long as the attitude of the system is in the neighborhood of the desired attitude

for all time. Local controllers fail to handle sufficiently large initial errors (such as a quadrotor

initialized upside down) or large attitude errors during flight. Therefore, almost global attitude

controllers are required for applications involving acrobatic maneuverability of a rigid body, such

as a UAV performing single or multiple flips. In this work, we propose a class of controllers that

leads to both local and almost global attitude controllers, and depending on the application, a

9

suitable controller can be selected.

In [36] the authors investigate the Almost Global Attitude Stabilization (AGAS) problem of

a rigid body on a Lie group. The authors construct potential functions V : SO(3) → R, that

satisfy certain properties to find controllers to solve the AGAS problem. A similar approach is

used in [37], in which the authors present error functions for UAV control. In [38] the authors

propose AGAS of a rigid satellite in a circular orbit by using Lyapunov methods to analyze

closed loop almost global stability on SO(3). A global attitude stabilization of a rigid aircraft

with unknown actuator time delay is considered in [39]. Based on Lyapunov theory, it has

been proven that the controller proposed by the authors forces the trajectories of the closed loop

system to converge to a small neighborhood of the origin. In [40] the authors analyze AGAS

on Lie groups. They consider an optimal control problem on SO(3) of minimizing the distance

traveled by the reduced attitude while stabilizing the full attitude. They give a two-step solution,

to first stabilize the reduced attitude, and then to align the remaining two vectors by means of

a planar rotation. Their work is based on potential functions, which leads to a class of error

functions. In [41], the authors design a geometric tracking control of a quadrotor UAV on the

Special Euclidean group, SE(3). The analysis is based on a globally defined model of the UAV.

Through simulations, it has been shown that the quadrotor can recover from an initial almost

upside down position. A quadrotor model defined using Euler angles cannot perform similarly

as the UAV has to pass through a singularity point in the rotation parameterization. Similar to

this work, in [42, 35, 43, 44], the authors design geometric tracking controllers using an inner-

outer loop approach. Each of this work is inspired by the definition of one particular real-valued

error-looking function on SO(3). Using this error function, controllers are designed that range

from simple PID controllers to adaptive and robust geometric controllers. This is unlike our

work presented in Chapter 6, in which our main contribution is the generalization of a class of

error-looking functions. Moreover, our function family is not real-valued, but Lie algebra valued

functions.

10

Primarily, the results presented in Chapter 6 are motivated by the work of Bullo and Mur-

ray [45]. In their work, the authors present a general framework for the control of fully actuated

Lagrangian systems. The authors propose a geometric design algorithm for the tracking control

of mechanical systems, and give a notion of an error function. The main contribution of our

work is the nontrivial expansion of the class of error functions introduced in [45]. This has been

achieved by relaxing some of the restrictions on the class of error functions. In particular we de-

fine a broader family of functions, such that any error function chosen from this family leads to a

controller that stabilizes a rigid body. Our broader class of controllers, depending on the choice

of error function, can almost globally or locally stabilize the inner loop on SO(3). For attitude

dynamics, we highlight that in terms of the region of convergence, almost global stability is the

strongest possible result.

1.2 Thesis organization and contributions

This thesis is organized as follows. After presenting a literature review and a statement of contri-

butions in Chapter 1, we present a brief overview of global kinematic and dynamic modeling of

a rigid body on SO(3) in Chapter 2. Then we give a summary of some of the most famous local

methods of representing an element of SO(3), which can be used to formulate local kinematic

and dynamic models of a rigid body. We conclude Chapter 2 by presenting a class of vehicles

denoted by CV . The class CV includes satellites, quadrotors, underwater vehicles, and tail-sitters.

We show that each vehicle in this class can be represented by the rigid body model, and an input

map. This chapter underscores that the rigid body dynamics are the central part of the mathe-

matical description of each system in CV . Specifically, once a controller is designed for a rigid

body, it can be easily applied to any system contained in the class CV .

In Chapter 3, we present an example of a path following control design for a car-like robot.

This example is taken from the author’s master’s work and is presented in this thesis only for

11

illustrative purposes and to support the experimental results. This chapter introduces the path

following problem in a somewhat less formal and conceptual way, and highlights the fact that

path following controllers can be used to achieve path invariance through the easy example of a

car-like robot. This path following controller gives the desired performance in simulated envi-

ronments in the absence of sensor noise. This raises a natural and important question: how will

this controller perform on an actual platform? We answer this crucial question by implement-

ing the path following controller on a Chameleon R100 robot. The controller is implemented

in ROS, and the system is tested under an indoor positioning system. We conclude this chap-

ter by presenting experimental results that demonstrate accurate path following performance on

both closed and non-closed paths. This chapter highlights that these path following controllers

which are based on the concept of feedback linearization can practically perform well irrespec-

tive of the need of dynamic extension2, which require computation of virtual states in some cases.

Moreover, the controller provides path invariance which is an attractive feature from the motion

control point of view.

In Chapter 4, we consider the motion control problem for the class of vehicles CV . A local

representation of the rigid body dynamics is selected for controller design. Since path following

controllers are demonstrated to work well on a car-like robot, a controller, based on a similar idea,

is designed for the class of vehicles CV . We show by a diffeomorphism that the nonlinear dynam-

ics of the rigid body, expressed in terms of Euler angles, can be transformed into a fully linear

system, which allows us to easily design a controller in a linear domain. This local controller

gives each system belonging to the class CV the capability to follow both closed and non-closed

curves, and achieve path invariance. The controller is tested thoroughly, through simulations,

on a quadrotor platform by considering almost all practical aspects of a real quadrotor platform

(the AscTec Pelican), including sensor noise. The controller gives satisfactory performance in

the presence of noise on each state. We conclude this chapter by highlighting the fact that after

adding sensor noise on the inputs, the noise on one of the augmented states gets amplified, which

2Dynamic extension is discussed in detail in Chapter 4

12

degrades the performance of the controller significantly. This makes the controller infeasible for

practical implementations.

In Chapter 5, we consider the fault tolerant path following control problem. We specifically

consider a quadrotor in this chapter and study the case when one of the rotors of the quadrotor

fails. The control design task is challenging as it is required to control the under-actuated six

degree of freedom system with only three inputs. It has been shown that, without sensor noise,

the quadrotor still performs the task of following the desired path with the desired speed, but is

unable to follow a desired yaw profile. However, the internal dynamics of the quadrotor in the

three rotor case remain bounded. This controller also requires dynamic extension, and can suffer

degraded performance in the face of large input noise levels.

The aim of Chapter 6 is to select a control scheme for the class of systems that does not

require dynamic extension, and computation of derivatives of the inputs. This can be achieved

by adopting an inner-outer loop control approach. From the controller design prospective, the

inner loop, also called the attitude loop, is the heart of the control design process, and is presented

in this chapter. We propose a family of functions FR that induces a class of geometric controllers

CR that contains both almost-global and local controllers. Since the controllers are geometric,

they are designed directly on the manifold SO(3). This chapter provides detailed derivations

of some of the controllers from this class. We prove the asymptotic stability of the whole class

using Lyapunov theory, and conclude the chapter by presenting simulation results in the presence

of noise. These almost-global geometric attitude controllers allow the CV class of vehicles to

perform multiple flips.

In Chapter 7, we design two geometric outer loop controllers: a geometric trajectory tracking

outer loop controller, and a geometric path following outer loop controller. Practically speaking,

under certain limitations, the modular structure allows one to pick any stable outer loop controller

ranging from a simple PID controller, to nonlinear controllers, or geometric controllers to work

with the controller class CR of the inner loop. We discuss asymptotic stability of these outer loop

13

controllers and test it in simulation with an inner-outer loop controller belonging to the controller

class CR. We conclude the thesis with some future directions in Chapter 8.

1.2.1 Statement of contributions

The following is the list of original contributions made in this thesis:

1. Experimental implementation of a path following controller on a car-like robot (published

in the IEEE Transactions on Robotics [46]). This involves showing:

• Control implementation in ROS, and practically demonstrating the path following

controller working on a Chameleon R100 (a car-like) robot in the presence of sensor

noise, and modeling inaccuracies, for the first time.

• A series of experiments showing the repeatability and accuracy of a path following

controller that allows the robot to follow a given path with a small path following

error of about 1 cm.

2. Path following for a quadrotor using dynamic extension and transverse feedback lineariza-

tion (published in the IEEE Conference on Decision and Control [32]). This involves

showing:

• The CV class of vehicles fail to have a well defined vector relative degree anywhere

in the state space, Lemma 4.3.1.

• The CV class of vehicles can achieve a well defined vector relative degree in the

neighborhood of a point via dynamic extension, Lemma 4.4.3.

• A diffeomorphism that transforms the extended system into a fully linear system,

Corollary 4.4.4.

3. Fault tolerant path following for a quadrotor (published in the IEEE Conference on Deci-

sion and Control [47]). This involves showing:

14

• The quadrotor system, with one fully broken rotor, has a well defined vector relative

degree, Lemma 5.5.1.

• A diffeomorphism that transforms the quadrotor, with one broken rotor, into a partial

linear system, Corollary 5.5.2.

• For bounded inputs, all internal states are bounded, Lemma 5.6.3.

4. A class of geometric attitude controllers of rigid bodies (to be submitted to the IEEE Trans-

actions on Automatic Control). This involves showing:

• Derivatives of certain log functions of product of elements of SO(3), Proposition 6.3.10.

To the best of the author’s knowledge these closed form expressions are derived for

the first time in this thesis.

• A novel notion of skew-symmetric valued error-like functions that form a family of

functions FR, see Definition 6.4.1.

• The family FR induces a novel controller class CR. This novel controller class is

geometric, and contains both almost-global and local controllers.

• Two detailed step by step controller derivations (see Example 6.4.2, and Exam-

ple 6.4.3) from the controller class CR. One controller leads to almost global results,

while the other controller gives local results.

• The main result: Lyapunov stability of the whole controller class CR, Theorem 6.4.5.

• A detailed simulation study of both of these controllers from the class CR, that shows

desired attitude tracking even in the presence of noise. Since these controllers are

geometric, the system can perform multiple flips, as shown in the simulations.

15

1.3 Notation

In this thesis R denote the set of real numbers, N, the set of natural numbers, and Z the set of

integers. The symbol := is used to represent equal by definition. Let Rn, where n ∈ N denotes

the n–fold Cartesian product. An element x ∈ Rn is considered as an n-tuple of real numbers.

Moreover, we consider x ∈ Rn denote a column vector by col(xi, . . . , xn) :=
[
xi · · · xn

]⊤

where ⊤ denotes transpose.

A point-to-set distance from a point x ∈ Rm to a set Γ ⊂ Rn is denoted by ‖x‖Γ :=

infp∈Γ ‖x− p‖ where ‖ · ‖ is the Euclidean norm. Given two vectors x, y ∈ Rn the inner product

is denoted by 〈x, y〉 and, when n = 3, the vector (cross) product is denoted by x × y. Trigono-

metric functions are abbreviated as Si := sin (xi), Ci := cos (xi) and Ti := tan(xi). Given a

C1 map f : Rn → Rm and a point p ∈ Rn, the Jacobian of f evaluated at p is denoted dfp. If

f, g : Rn → R
n and λ : Rn → R are smooth, we use the following standard notation for iterated

Lie derivatives L0
gλ := λ, Lkgλ := Lg(L

k−1
g λ), LgLfλ := Lg(Lfλ). Let σ : R → Rn represents

a parameterized curve. We use the symbol D to denote the domain of σ. For non-closed curves

D = R. For closed curves with finite length L, this means that D = RmodL and σ is L-periodic,

i.e., for any λ ∈ D, σ(λ+ L) = σ(L).

Given two manifolds M, and N , and a function f : M → N , for χ ∈ M, the differential of

f with respect to χ is represented as dχ f . The Euclidean norm of a vector v ∈ Rn is represented

as ||v||. For a matrix A ∈ Rn×n, the 2-norm and Frobenius norm are represented as ||A||2, and

||A||F , respectively. Let 0n represent a column vector of dimension n where all of the elements

are zero. Let In represent an n by n identity matrix. When the dimension is 3, we often drop

the subscript for notational compactness. The trace of a matrix A ∈ Rn×n is represented by

trace(A). For any natural number n ∈ N, an n− sphere of radius r is defined as

S
n := {x ∈ R

n+1 : ‖x‖ = r}.

A circle is an example of a 1−sphere, and is denoted by S1.

16

The Special Orthogonal group SO(3) is the set of all orthonormal three by three matrices,

with unit determinant,

SO(3) =
{
R ∈ R

3×3 : R⊤R = RR⊤ = I, det(R) = 1
}
.

The manifold SO(3) is a matrix Lie group and its associated Lie algebra is the real vector space

of 3× 3 skew symmetric matrices

so(3) =
{
A ∈ R

3×3 : A = −A⊤
}
,

equipped with the matrix commutator [A,B] := AB−BA as its binary operation, for all A,B ∈
so(3). As a vector space, so(3) is isomorphic to R3. The isomorphism is denoted by3 ·̂ : R3 →
so(3) and its inverse is denoted (·)∨ : so(3) → R3. For v ∈ R3, and A ∈ so(3), we write

(v̂)∨ = ((v)∧)∨ = v, and ((A)∨)∧ = A. Assuming the natural basis {e1, e2, e3} for R3, then

{ê1, ê2, ê3} is a basis for so(3) and, in these bases, with v = (v1, v2, v3) ∈ R3 we have

v̂ =




0 −v3 v2

v3 0 −v1
−v2 v1 0



,




0 −v3 v2

v3 0 −v1
−v2 v1 0




∨

= v.

Routine calculations verify that for any v, w ∈ R3, v̂w = v × w where × is the usual cross

product in R3. For x ∈ R3, and A ∈ R3×3, the following property holds [44],

x̂A+ A⊤x̂ = ({trace(A)I − A}x)∧ . (1.1)

3Given v ∈ R3, we write v̂ or equivalently (v)∧ for the corresponding element of so(3).

17

Chapter 2

Mathematical Modeling

In this chapter we consider motion of a rigid body in three-dimensional space, and give a brief

introduction of kinematic and dynamic modeling of a rigid body. The purpose of this modeling

section is not to present the most complete picture of mathematical modeling of rigid bodies,

but rather an introductory background for the chapters to follow. We enlist some of the most

famous ways of representing orientation of a rigid body, and highlight the advantages of common

methods over the other. We conclude this chapter by presenting a class of vehicles CV , which

include quadrotors, underwater vehicles, satellites, tail-sitter, and mono-rotors. Each system

in this class can fit under the umbrella of rigid bodies, and we underscore why studying the

kinematic and dynamic models of a rigid body rotating in three-dimensional space is crucial in

robotics. For details about modeling of a rigid body, see [48, 49, 50].

2.1 Rigid body

A body is considered rigid if the distance between all points in the body remains fixed for all

time, and under all motions (transforms). The rigid body motion can be divided into two parts,

rotation, and translation. Consider a rigid body moving in free space as shown in Figure 2.1. Let

18

I := {i1, i2, i3} denote a fixed reference frame. To specify the position and orientation of the

rigid body let B := {b1, b2, b3} be a frame attached to its center of mass which shares the same

orientation as I. First we look at the kinematic and dynamics of a rigid body under pure rotation.

Figure 2.1: Rigid body, with inertial frame I, and body frame B attached to the rigid body

2.1.1 Rotation of a rigid body

We first consider rotation (without translation) of a rigid body in space. In other words, we

first present the motion of a rigid body such that there is a point in the body that stays fixed

during motion. Each orientation or attitude of the rigid body is an element of the set of all

orthonormal frames in the three-dimensional space with positive orientation. As shown in [51],

this set can be identified with Special Orthogonal group SO(3). The definition of SO(3) readily

implies that R−1 = R⊤ for each R ∈ SO(3). Throughout this thesis, we assume that the

19

rotational matrix R ∈ SO(3) is time dependent, i.e., R(t) ∈ SO(3), unless stated otherwise. For

simplification purposes, and a slight abuse of notation, we drop the time dependent argument t to

represent a time varying rotation matrix by R ∈ SO(3). However, to avoid confusion in certain

sections, we add the argument t with the rotation matrix, whenever necessary. It is well-known

that SO(3) is a three-dimensional, compact, connected, embedded submanifold of R3×3. In other

words, SO(3) is not only a matrix group, but also a differentiable manifold, and is called a Lie

group. More detail about matrix groups, Lie groups, and differentiable manifolds can be found

in [50, 5, 49], and other standard text books on differential geometry, and smooth manifolds. The

matrix exponential, denoted by exp, is an analytic diffeomorphism between

Uso(3) :=
{
ω̂ ∈ so(3) : ω ∈ R

3, ‖ω‖2 < π
}

and

USO(3) := {R ∈ SO(3) : trace (R) 6= −1} .

The inverse map from USO(3) → Uso(3) is the principle matrix logarithm and is denoted Log.

For R(t) ∈ SO(3), the first constraint of the set SO(3) can be written in the form of the

following two equations.

R⊤(t)R(t) = I. (2.1)

R(t)R⊤(t) = I. (2.2)

To formulate an ordinary differential equation representing the kinematics of a rotating rigid

body, we take the time derivative of both (2.1), and (2.2). By taking derivative of both sides

of (2.1)

d

dt
(R⊤(t)R(t)) =

d

dt
(I)

Ṙ⊤(t)R(t) +R⊤(t)Ṙ(t) = 0

R⊤(t)Ṙ(t) = −Ṙ⊤(t)R(t)

R⊤(t)Ṙ(t) = −(R⊤(t)Ṙ(t))⊤

20

It is easy to see that R⊤(t)Ṙ(t) ∈ so(3), or in other words, a skew symmetric matrix. This

means, there exists a vector Ω(t) := col(Ω1(t),Ω2(t),Ω3(t)) such that,

R⊤(t)Ṙ(t) = Ω̂(t),

where Ω̂(t) represents the body angular velocity. Left multiplying both sides of the above equa-

tion by R(t), we get,

Ṙ(t) = R(t)Ω̂(t). (2.3)

The above system (2.3) represents a kinematic model of a rigid body rotation in free space,

sometimes also called “left-handed” system, because of the fact that the rotation matrix acts

from the left in (2.3). Similarly, by taking the derivative of (2.2)

d

dt
(R(t)R⊤(t)) =

d

dt
(I)

Ṙ(t)R⊤(t) +R(t)Ṙ⊤(t) = 0

Ṙ(t)R⊤(t) = −R(t)Ṙ⊤(t)

Ṙ(t)R⊤(t) = −(Ṙ(t)R⊤(t))⊤

Ṙ(t)R⊤(t) = ω̂(t),

for a vector ω(t) := col(ω1(t), ω2(t), ω3(t)), called spatial angular velocities. Right multiplying

both sides of the above equation by R(t), we get,

Ṙ(t) = ω̂(t)R(t). (2.4)

Again, for simplification of notation we drop the time dependent argument t of Ω(t), and ω(t)

to represent time-varying rates, in rest of the thesis. The above system (2.4) represents the

kinematic model of a rigid body rotating in free space, sometimes also called as “right-handed”

system, because of the fact that the rotation matrix acts from the right in (2.4). It should be noted

that in the kinematic model (2.3), Ω̂(t) is the body angular velocity. The kinematic model (2.4)

represents the same rigid body; however, the angular velocities ω̂ are given in the spatial frame.

21

Most practical robotic systems are equipped with an Inertial Measurement Unit (IMU), which

gives body angular velocities Ω̂(t). Therefore, for the rest of the thesis we consider “left-handed”

kinematic model (2.3) of the rigid body. From the point of view of analysis and controller design

the “right-handed” is not any different. Moreover, throughout the thesis Ω̂(t) ∈ so(3) represents

body angular velocities, while, ω̂(t) ∈ so(3) represents spatial angular velocities. Body angular

velocity Ω̂(t), and spatial angular velocity ω̂(t) represent the same physical quantity expressed in

different reference frames. It is easy to see from (2.3), and (2.4) that the body angular velocities

and spatial angular velocities are related by,

ω̂(t) = R(t)Ω̂(t)R⊤(t),

or more formally it can be written in terms of adjoint map. Given a rigid body with orientation

R(t) ∈ SO(3), the transformation from body to spatial reference frames is called the adjoint map

and is given by1

AdjR : so(3) → so(3) (2.5)
(
R, Ω̂

)
7→ RΩ̂R⊤.

The dynamic model of a rotating rigid body is a well studied topic, and can be derived either

using energy-based approach i.e., Euler-Lagrange, or Newton-Euler method. i.e., by balancing

torques. For details on dynamic modeling, the readers are referred to [50, 49, 52, 15, 14, 41, 16,

34]. Let J ∈ R3×3 represent the inertia matrix of the rigid body in the body fixed frame. Let

τ := (τp, τq, τr) denote the total moments about the body axes. Then the angular accelerations of

the rigid body evolve according to

JΩ̇(t) = τ(t)− (Ω(t)× JΩ(t)). (2.6)

Together equations (2.3) and (2.6) constitute a model of a rigid body rotating in free space as

shown by a block diagram in Figure 2.2. It is easy to see that the states of the kinematic model

1Note, the argument t has been dropped for simplification purposes

22

τp

τq

τr

R ∈ SO(3)

Ω ∈ R
3

Rotational System

(2.3)
(2.6)

Figure 2.2: Kinematic and dynamic model of a rigid body with inputs and outputs

of the rigid body (2.3) are on a manifold, i.e., R ∈ SO(3), while the states of the dynamic model

of the rigid body (2.6) are on Euclidean space, i.e., Ω ∈ R3.

2.2 Representation of attitudes

The kinematic model of the rigid body (2.3) is an ordinary differential equation, and to control

the attitude of a given rigid body one needs to work with the system given by (2.3), and (2.6). The

kinematic equation (2.3) is defined on a manifold, i.e., SO(3). This makes analysis challenging,

because we cannot directly use classical analysis tools, and standard non-linear control tool,

as these tools deal with systems defined on Rn. To over come this difficulty, it is natural to

“represent” the rotation matrixR in some other from, such that in new representation of (2.3) the

states are on Rn, or a structure (manifold) simpler than SO(3). Ideally, we want the representation

to be both global, and unique, but is it even possible? We summarize this section by answering

this question, and enlisting advantages and disadvantages of representing R in a different form.

For a complete overview of attitude representation see [53, 34].

It is well know that the Special Orthogonal group SO(3) has a group structure which is also a

differentiable manifold. It is a compact three-dimensional subgroup of the 9-dimensional group

GL(3,R). Each column vector of R poses three constraints, as each have unit length. Moreover,

these three column vectors are orthogonal to each other, which adds three more constraints. This

23

results in 9 − 3 − 3 = 3 degrees of freedom. In other words, locally, a rotation matrix can be

described by three independent parameters. Informally, we seek to find a map that defines some

portion of SO(3), if not all, by three independent coordinates. Such a map is called a coordinate

map, or a coordinate chart, which is an invertible map (or more precisely a homeomorphism)

between an open subset of a given manifold and an open subset of Rn .

Euler first showed that the group of rotations SO(3) is a three dimensional manifold. We

know that by definition for a real n-dimensional manifold M, every point of the manifold has a

neighborhood homeomorphic to R
n. Let M be a manifold, U ⊂ M, and V ⊂ R

n be open sets.

A homeomorphism Φ : U → V is called a coordinate system on U . The pair (U ,Φ) is called a

chart on M. The inverse map Φ−1 is a parameterization of U . A differentiable manifold has the

property that it can be covered by a collection of charts such that every point of the differentiable

manifold must be represented in at least one chart. Ideally, one seek to find a single chart such

that it covers the whole manifold under study, however it is not often the case. For SO(3), as

indicated in [54], at least four charts are needed to cover SO(3) completely. From the point

of view of controller design, if four or more charts are selected to cover the whole SO(3), the

advantage would be a controller can be designed for every possible attitude on SO(3), i.e., the

controller can be global. However, the main disadvantage of using a collection of charts is that

each chart requires a different controller, and a switching scheme is needed to switch controllers

as the chart changes. We give a brief summary of some of widely used coordinate charts in

literature. Properties of different representations are summarized in Table 2.1.

2.2.1 Cardan angles

A rotation matrix can be constructed by three rotations about any three body axis such that

two successive rotations are not about the same axis. This can be divided into two groups: 1)

performing rotation about all three body axes, 2) performing rotation about only two body axis.

The first group is often called Cardan angles, or Tait-Bryan angles, while the second group is

24

Table 2.1: Attitude Representation

Attitude Representation Global Unique

Cardan Angles × ×

Geodesic polar coordinates × ×

Cayley parameters × ×

Angle-axis representation X ×

Unit quaternions X ×

Rotation Matrices X X

called Proper Euler angles. Cardan angles can be constructed by performing rotation about three

different axis, and this can be achieved in six different ways x− y− z, y− z− x, z− x− y, x−
z−y, z−y−x, y−x−z. Moreover, Proper Euler angles can also be constructed by performing

rotation about two axis, and this can be achieved in six different ways z − x− z, x− y − x, y −
z − y, z − y − z, x− z − x, y − x− y. Together, there are twelve different ways of representing

a rotation matrix in terms of three different angles. An abuse of terminology is quite common

in literature, and both Cardan angles and Proper Euler angles are called Euler angles. In the rest

of the thesis, by Euler angles we refer to z − y − x sequence of rotation. Here we present one

such chart by following z − y − x sequence of rotation. We define roll-pitch-yaw (φ, θ, ψ) ∈ R3

angles. Generally, roll is a rotation about x-axis Rx
φ, pitch is a rotation about y-axis Ry

θ , and yaw

is a rotation about z-axis Rz
ψ. We pick a chart Φc : V ⊂ R3 → SO(3)

Φc(φ, θ, ψ) = Rz
ψR

y
θR

x
φ

Φc(φ, θ, ψ) =




Cψ −Sψ 0

Sψ Cψ 0

0 0 1







Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ







1 0 0

0 Cφ −Sφ
1 Sφ Cφ




25

R = Rz
ψR

y
θR

x
φ =




CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ

CθSψ SψSθSφ + CφCψ CφSψSθ − SφCψ

−Sθ CθSφ CθSφ



,

where Ci := cos(i), and Si := sin(i), for i = {φ, θ, ψ}. The map Φc is surjective since it

generate the entire SO(3). It is easy to see that the map is not unique because it generates the

same rotation matrix for each 2π multiple of roll, pitch and yaw angles. This map is 1-to-many

map, for example Φc(0, 0, 0) = Φc(2nπ, 0, 0), for {n = 1, 2, 3, . . .}. The map Φc becomes

injective, in fact diffeomorphic [1], by setting the domain V to the following open set,

V = {(−π, π)× (−π/2, π/2)× (−π, π)} .

A differential equation representing kinematics of a rigid body by Cardan angles representation

can be found in [32, 34, 55], and will be presented in Chapter 4.

2.2.2 Cayley parameters

Similar to the Cardan angles, we seek to represent SO(3) by three parameters. This can be

achieved by exploiting the fact that so(3) is isomorphic to R3 via the “hat” and “inv-hat” oper-

ators. By Cayley transform, which is a mapping between skew symmetric matrices so(3) and

special orthogonal matrices SO(3), i.e.,

C : so(3) → SO(3)

ω̂ 7→ (I + ω̂)(I − ω̂)−1,

for ω̂ ∈ so(3). It is easy to check the (I + ω̂)(I− ω̂)−1 is always orthogonal. The inverse Cayley

transform C−1 is only defined for rotation matrices such that trace(R) 6= −1, and is given by

C−1 : SO(3) \C(so(3)) → so(3)

R 7→ (R + I)−1(R − I),

26

for R ∈ SO(3). Cayley parameters are not global nor unique [54]. A differential equation

representing kinematics of rigid body using Cayley parameters can be found in [55].

2.2.3 Geodesic polar coordinates

Geodesic polar coordinates is another way to map SO(3) to so(3). It uses the idea of matrix

exponential. For t ∈ R, the matrix exponential is given by,

exp : Uso(3) → SO(3)

(tω̂) 7→
∑

n≥0

1

n!
(tω̂)n.

The inverse of matrix exponential is given by matrix log,

exp−1 := Log : USO(3) → so(3)

R 7→
∑

n≥0

−1n+1

n
(R− I)n.

Similar to the Cayley parameters, by geodesic polar coordinates a rotation matrix can be rep-

resented by three parameters. Geodesic polar coordinates are not global nor unique [54]. A

differential equation representing kinematics of a rigid body using geodesic polar coordinates

can be found in [55].

2.2.4 Angle-axis representation

Another way to represent the attitude of a rigid body is by angle-axis representation. The mo-

tivation comes from the so called Euler theorem, which informally means that any rigid body

undergoing a rotation can be represented by an axis (or vector) and a rotation by some angle

about that axis. Let the axis be v ∈ R3, and the angle be θ ∈ R. We call the pair (v, θ) be

angle-axis representation, or the exponential coordinates, i.e., R = exp(v̂θ). It is easy to see that

R = exp(v̂θ) = exp ((−v)∧(−θ)), i.e., the map is surjective, but not injective. In other words,

27

the representation is global but not unique. For more details on angle-axis and representing

dynamics of rigid body in this form, the readers are referred to [53, 1, 34].

2.2.5 Unit quaternions

Quaternions, which can be interpreted as a vector of four elements, can be used to encode the

angle-axis representation by four parameters. Clearly, this looks like an over parameterization

of SO(3). In fact, quaternions is a double covering of SO(3) in a sense that each attitude cor-

responds to two different quaternions. Rotation matrix representation by quaternions is a well

studied topic, for more details see [34, 31, 56, 53, 1]. Quaternions provide a global but non-

unique parameterization of SO(3). Global representation of quaternions seem nice from the

point of view of controller design, but the failure of uniqueness may result in unwinding effects

if controllers are not designed carefully [34]. A differential equation representing kinematics of

rigid body using quaternions can be found in [55, 34, 1].

Remark 2.2.1. As seen from Table 2.1 the only way to represent the attitude of a rigid body both

globally and uniquely is by rotation matrices. Therefore, from the point of view of analysis or

controller design a natural choice is to represent the rigid body attitude using rotation matrices

as the resulting representation is both global and unique. However, by doing so the analysis

becomes challenging as the system states are not on a Euclidean space. Controller design using

rotation matrices are discussed in Chapter 6. Some practical situations do not require global

properties of a controller, such as a quadrotor during a near hover flight. In these situation one

can represent kinematics of a rigid body using a non-global representation such as Euler angles,

and design a controller. A controller design using Euler Angles is presented in Chapter 4, and 5.

28

τp

τq

τr

R

Ω

Rotational System

(2.3)
(2.6)

ut
(2.7)

Translational System
χ

v

Figure 2.3: Block diagram representing a rigid body moving in free space

2.2.6 Translation of a rigid body

In this section we consider the rigid body shown in Figure 2.1, such that the body goes under

some translation as well as rotation. We suppose, without loss of generality that b3 is in the

direction of the magnitude of the thrust vector, and the magnitude of thrust can be controlled

externally. The thrust input is represented by ut. It is further assumed that the vehicle is equipped

with some mechanism that provides body torques about three body axis, which can be externally

controlled. The input body torques τ along the body axis b1, b2, and b3, are represented by τp,

τq, τr, respectively. Let χ := col(xI , yI , zI) ∈ R3 and χ̇ := col(ẋI , ẏI , żI) ∈ R3 represent the

position and velocity of the vehicle in the frame I, respectively. Let m be the mass, and g be the

acceleration due to gravity. Using Newton’s law, the translational model of the vehicle is given

by,

χ̇ = v

mv̇ = mgb3 − utRb3.
(2.7)

29

The states of the translational model are on Euclidean space, i.e., (χ, v) ∈ R6. It can be easily

seen that (2.3), (2.6), and (2.7) are coupled differential equations, and represent a rigid body

moving in free space as shown by the block diagram in Figure 2.3. A broad class of vehicles CV
can be represented under this description.

2.3 Class of vehicles CV

As shown previously, a rigid body capable of moving (i.e., rotation and translation) in free space,

can be modeled globally by (2.7), (2.3), and (2.6). Let URB := (ut, τ) ∈ R4 be the input of the

rigid body. A large class of unmanned vehicles, with four inputs, fits in this class, such as space

vehicles or satellite, unmanned aerial vehicles or quadrotors, underwater vehicles, and flying

wing tailsitter vehicles. Let Ui for i = {S,Q, UW, T} be the input of a vehicle of this class, i.e.,

US, UQ, UUW and UT be the inputs of the satellite vehicle, quadrotor, underwater vehicle, and

tailsitter vehicle, respectively. We show that each vehicles of this class can fit under the system

represented by (2.7), (2.3), and (2.6) by mapping the inputs of the class of vehicles Ui ∈ R4 to

the inputs of the rigid body moving in free space, URB ∈ R4,

Mi : Ui → URB,

for i = {S,Q, UW, T}, such that this map is bijective. The overall scheme is shown in Figure 2.4.

Next we present a short description of each vehicle and give Mi.

2.3.1 Space vehicle or satellite

A typical satellite or space vehicle, as shown in Figure 2.5, is a rigid body attached with some

mechanism that is capable of providing torques τx, τy, and τz about all three body axis. In a

typical satellite application only attitude control is required, but in some cases position control is

also required. For such cases, a satellite is attached with a mechanism of providing thrust along

30

τp

τq

τr

R

Ω

Rotational System

(2.3)
(2.6)

ut

ut
(2.7)

Translational System
χ

v

Ui ∈ R4

Mi

Class of Vehicles

Figure 2.4: Block diagram representing class of vehicles

one of the body axis. Without the loss of generality, it is assumed that this thrust uth is provided

along z-axis of the satellite body, which together with three body torques constitute all four inputs

of the satellite, i.e., US = col(uth, τx, τy, τz) ∈ R
4. The satellite inputs are related to the inputs

of the rigid body by MS(US) = URB , which can be equivalently written as URB = NSUS , where

NS is a four by four identity matrix. Trivially, this map is invertible. With this definition of URB ,

the satellite is globally modeled by (2.7), (2.3), and (2.6), and therefore belong to the class of

vehicles.

2.3.2 Unmanned Aerial Vehicle (UAV) or quadrotor

A quadrotor is a mechatronic system with four propellers attached with four motors which are

setup in a cross configuration, as shown in Figure 2.6a, and the schematic diagram is represented

in Figure 2.6b. It is a nonlinear system consisting of four inputs (the thrust provided by each pro-

31

Figure 2.5: A typical Satellite

(a) AscTec Pelican

front

−i3
i1

i1
I

f1
f4

f3
f2

b1

b2b3 B

τp

τq

τr

(b) Quadrotor Model

Figure 2.6: Unmanned Aerial Vehicle, quadrotor

peller) and six degrees-of-freedom (the motion in three translational and three rotational DOFs),

and is therefore an under-actuated system. Let fi, i ∈ {1, · · · 4} represents the thrust provided by

the ith motor mi, i ∈ {1, · · ·4}. These four thrust forces fi provided by each propeller constitute

the input control vector UQ := (f1, f2, f3, f4) ∈ R4 of the quadrotor system. Two diagonally

opposed motors, m1 and m3, rotate in one direction while the other two, m2 and m4, rotate in the

opposite direction. Because of this configuration the gyroscopic effects and aerodynamic effects

tend to balance each other. Moreover, it provides an advantage over a conventional helicopter

in terms of mechanical complexity, because no swashplate is needed and fixed pitch blades can

32

be used. A positive (negative) roll moment is obtained by increasing (reducing) the speed of m2

and reducing (increasing) the speed of m4. This allows the quadrotor to move in the y direction.

Similarly, a positive (negative) pitch movement is obtained by increasing (reducing) the speed of

m3 and reducing (increasing) the speed of m1. This allows the quadrotor to move in the x di-

rection. Yaw movement is obtained by increasing (decreasing) the speed of the diagonal motors.

The quadrotor inputs are related to the inputs of the rigid body by MQ(UQ) = URB , which can

be equivalently written as URB = NQUQ, where

NQ =




1 1 1 1

0 −l 0 l

−l 0 l 0

d −d d −d




, (2.8)

and, l is the distance from the center of mass to the rotors, d is the ratio between the drag and

the thrust coefficients of the blade. With the above definition of URB , the quadrotor is globally

modeled by (2.7), (2.3), and (2.6), and fits under the class of rigid bodies. It is easy to verify that

the map MQ is invertible. For more details about quadrotor modeling the readers are referred

to [14, 52, 15, 44, 16, 57].

A quadrotor system is shown in 2.6a called AscTec2 Pelican3. The vehicle dimension is

651 x 651 x 188 mm. It is equipped with a real-time autopilot board that has the capability

to communicate with an onboard Intel Core i7 embedded computer called mastermind.4 The

mastermind computer is capable of running a standard Linux distribution and Robot Operating

System (ROS)5, and communicates with autopilot board via a UART connection [58, 59]. The

autopilot consists of two ARM micro-controllers. One is called a closed source Low Level Pro-

cessor (LLP), and the other is called a open source High Level Processor (HLP). The pelican

2Ascending Technologies, is a part of Intel.
3http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
4The onboard computer is AscTec Mastermind.
5ROS

33

http://www.asctec.de
http://www.intel.com
http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-pelican/
http://www.asctec.de/en/asctec-mastermind/
www.ros.org

system is equipped with standard sensors such as Inertial Measurement Unit (IMU), that is capa-

ble of giving attitude information of the pelican. The IMU data, i.e., R,Ω, is first processed and

filtered at LLP and then transmitted to HLP at 1 kHz for control and other purposes, which can

be further accessed by mastermind in ROS. The sensors and overall communication structure is

shown in Figure 2.76. The position and velocity of the pelican system is measured by a precise

Figure 2.7: AscTec Pelican’s sensors and computers

Indoor Positioning System (IPS) at 100 Hz using a set of 16 Vantage camera system and Vicon

motion capture system. The position and velocity data is sent to the onboard mastermind via a

wireless router. In summary, all the state information of the pelican system is accessible to the

mastermind in ROS. We will consider practical aspect of the AscTec pelican such as sensor up-

date rates, and sensor noise for simulations in the chapters to follow. The AscTec pelican system

is attached with four motors, which can be controlled by a Pulse Width Modulated (pwm) signal

6The picture is taken from AscTec documentation

34

http://wiki.asctec.de/display/AR/AscTec+AutoPilot

(a) Bluefin SandShark Autonomous Underwa-

ter Vehicle by General Dynamics (b) Under Water Vehicle [1]

Figure 2.8: An Under Water Vehicle (UWV) or submarine

ranging between 0 to 200. The output of each motor is motor speed ωmi
, for i = {1, · · · , 4}.

We observed by performing the standard system identification of the motor that the motor dy-

namics are fast enough to be ignored for all practical purposes. Motor speeds ωmi
are measured

by hall effect sensors on the pelican system, and the motor speed data is available at HLP and

mastermind at an update rate of up to 1 kHz. It should be noted that the inputs of the quadro-

tor system are forces fi generated by motor mi, however, the inputs of AscTec pelican is pwm.

Experimentally, we determine a relationship between input of each motor pwm and the resulting

force generated by each motor by attaching the pelican with a heavy (10 kg) weight. The pelican

attached with the weight was placed on a precision scale and the pelican was given pwm values

from 0 to 200 at a step of 5 units. Reading from the precision scale and the input values give a

relation between input, i.e., pwm and force generated by each motor,

fi = 0.053 + 0.000030153pwm2
i . (2.9)

The controllers designed for rigid bodies in the chapters to follow will be tested on a quadrotor

system in simulation by considering actuator limitations, sensor noise, and sensor update rate.

35

2.3.3 Under Water Vehicle (UWV) or submarine

A submarine or a UWV is illustrated in Figure 2.8b, and Figure 2.8a. Generally, a submarine

system such as Bluefin SandShark, is equipped with a pumping system that fills water in a water

tank attached to the vehicle, which makes the vehicle go down in the water. Similarly, the vehicle

can be brought back to the surface of the water by pumping the water out of the water tank. As

seen in the Figure 2.8a a propeller is attached at the back of the vehicle that produces a thrust

uthrust ∈ R along the z-axis. The rear end of the vehicle is attached with a rudder and stern

system which is capable of applying torques about the body axis. Let the axial position of the

rudder be xR, the density of water be ρ, the rudder lift coefficient be cL, the rudder platform

area be SR, the rudder angle be δR, and the effective rudder speed be vR. Similarly, the axial

position of the stern is xS , the stern platform area is SS , the stern angle is δS , and the effective

stern speed is vS . As shown in [1] the torque induced about xb−axis, and yb−axis are given

by τx = 1
2
xRρcLSRδRv

2
R, and τy = 1

2
xSρcLSSδSv

2
S , respectively. For the vehicle under study,

the torque is not applied about the z-axis (i.e., τz = 0). Instead, the vehicle remains upright

by having more weight at the bottom. The vehicle is balanced by the stern and sail planes [1].

Similar to the previous case, the inputs of the under water vehicle can be mapped to the inputs of

the rigid body, i.e., (2.7), (2.3), and (2.6) by

ut = uthrust

τp = τx

τq = τy

τr = τz = 0.

2.3.4 Flying wing tailsitter vehicle

A flying wing tail-sitter is equipped with two rotors on the top left and top right part of the

vehicle as shown in Figure 2.9a, and 2.9b. More details can be found in [60]. We assume zero

36

(a) Unmanned tail-sitter during a flight (b) Schematic model

Figure 2.9: Tail-sitter

free stream velocity. Moreover, we assume that the left propeller rotates counter-clockwise, and

the right propeller clockwise. Each rotor produces a force fr, and fl which combined together

produces a thrust force along the body z-axis b3. The tail-sitter has two flaps at the bottom part

which produces an aerodynamic force and torque by deflecting the airflow behind the wings.

The left and right flap angles are represented by δr, and δl, respectively. The four input of the

tail-sitter are UT := (fr, fl, δr, δl) ∈ R4. Let τ = (τp, τq, τr) ∈ R3 be the total applied torque on

the tail-sitter, with τp, τq, and τr are the torques about body axis b1, b2, and b3, respectively. This

torque can be divided into two aerodynamic torque τaero, and propeller torque τprop,

τ = τaero + τprop. (2.10)

Let vbx,vby, and vbz represent body velocity in each direction, then the angle of attack α, and

reference air speed can be given by,

α = arctan(vbx, vby),

v =
√
(vbx)2 + (vby)2.

37

Let s ∈ {l, r} represent left and right side of the vehicle. As shown in [60], for the vehicle flying

forward, for each side s, the reference airspeed over the flap is give by,

vs,bz =

√
2fs
ρd

+max(0, vbz)2,

where ρ denotes the density of air, and d is the propeller disk area. The total reference airspeed

over the flap is given by

vs =
√

(vby)2 + (vs,bz)2.

Following [60], the aero dynamic torque can be written as,

τaero =




(kx + pxδl)v
2
l + (kx + pxδl)v

2
r

kyv
2
l − kyv

2
r

(kz + pzδl)v
2
l − (kz + pzδl)v

2
r



, (2.11)

where kx, ky, kz, px,and pz are wing and flap constants. The propeller torques τp is given by,

τprop =




0

l(fr − fl)

κ(fr − fl)



, (2.12)

where κ denotes the torque-to-thrust ratio of the propellers [60].

By assuming negligible drag and lift forces, the forces produced by two propellers can be

written as,

ut = fl + fr. (2.13)

In summary, by using (2.11), (2.12), and (2.13), the relation between the control inputs of the

tail-sitter UT ∈ R4 and the control inputs of the rigid body URB can be written as,

URB =


 ut

τ


 =


 fl + fr

τaero + τprop


 . (2.14)

38

With the above definition of URB , the tailsitter is globally modeled by (2.7), (2.3), and (2.6).

This completes the derivation of four example systems that are all members of the vehicle

class CV . The focus of the rest of the thesis is on controller design of rigid bodies, with detailed

application on AscTec pelican system. However, the rigid body controller can be implemented

on any vehicle in this class by applying the input map Mi : Ui → URB .

39

Chapter 3

Path Following Control Implementation on

a Car-like Robot

In this chapter we present a simple system, i.e., a car-like robot, and illustrate the idea of path

following, and a procedure of path following controller design. Since the idea of control design

in this thesis is based on feedback linearization, the resulting controller may raise questions about

the viability of implementation on a real platform, as mostly the controllers based on feedback

linearization have a reputation of degraded performance in the face of sensor noise, and modeling

uncertainties. The car-like robot controller was originally proposed as part of the author’s masters

research. However, the implementation on a ground vehicle under IPS system and ROS is part

of the author’s PhD work.

40

3.1 Example of path following control for a car-like robot

This section presents an example of a path following controller for a car-like robot on a circular

path [61]. Consider the kinematic model of a car-like robot, Figure 3.1,

ẋ = f(x) + g1(x)v + g2(x)ω

=




0

0

0

0




+




cosx3

sin x3

1
ℓ
tanx4

0




v +




0

0

0

1




ω
(3.1)

where x ∈ R4 is the state, the input v ∈ R is the translational speed and ω ∈ R is the angular

velocity of the steering angle. We take the car’s position in the plane as the output of (3.1)

y = h(x) =
[
x1 x2

]⊤
. (3.2)

Suppose the desired path is a unit circle and is given as a regular parameterized curve. It should

y2 = x2

y1 = x1

ℓ

x4

x3

Figure 3.1: The kinematic model of the car-like robot.

be noted that the path is parameterized by a path parameter λ, instead of by time t, so that

41

evolution of the vehicle motion along the path need not proceed at a predefined rate.

σ : S → R
2

λ 7→




cosλ

sinλ


 ,

(3.3)

We desire to solve the following path following problem,

• For each initial condition in the neighborhood of the path, the system asymptotically con-

verges to the path.

• Once the robot is initialized on the path (or reaches the path) with the heading vector

tangent to the path, the system will stay on the path for all future times.

• On the path, the mobile robot tracks a desired velocity or acceleration profile.

In order to solve the path following problem a procedure similar to feedback linearization is

adopted. Roughly speaking, in feedback linearization we differentiate the outputs of the given

system until the control input appears and then use that control input to cancel out the nonlin-

earities to express the system in fully or partial linear form. Unlike feedback linearization, we

select functions of outputs and take derivatives of these functions until the control input appears.

However, it should be noted that the output functions are not just arbitrary functions rather these

functions are selected from the given path. In this example one function is selected from the zero-

level set representation of the path, while the other is selected from the parametric representation

of the path.

The path given in this example is a regular curve,

(∀ λ ∈ S) ‖σ′(λ)‖ =
√

cos2 λ+ sin2 λ = 1.

It can be seen that there exists a smooth map s : R2 → R1 such that 0 is a regular value of s and

σ(D) = s−1(0), where D is the domain. Let γ := s−1(0),

γ = {y ∈ R
2 : y21 + y22 − 1 = 0}.

42

Therefore, γ represents the zero level set representation of the path (3.3). The map h : R4 → R2

is transversal [62] to γ and the path γ when expressed in state space takes the following form,

Γ := (s ◦ h)−1 (0) =
{
x ∈ R

4 : s(h(x)) = x21 + x22 − 1 = 0
}

Define α(x) := s ◦ h(x) = x21 + x22 − 1. Intuitively, making x → Γ is equivalent to making

y → γ. The path following manifold, denoted by Γ⋆, associated with the curve γ is the maximal

controlled invariant subset of the manifold Γ. Physically it consists of all those motions of

the car-like robot (3.1) for which the output signal (3.2) can be made to remain on the curve

γ by suitable choice of control signal [10]. The path following manifold is the key object that

allows one to treat the path following problem as a set stabilization problem. The first two

path following objectives can be achieved by making the path following manifold attractive and

controlled invariant. In order to identify the largest controlled invariant manifold of Γ, we start

taking the derivatives of the function α until the control input appears,

α̇ =
∂α(x)

∂x
ẋ

=
∂α(x)

∂x
f(x) +

∂α(x)

∂x
g1(x)v +

∂α(x)

∂x
g2(x)ω

= Lfα(x) + Lg1α(x)v + Lg1α(x)ω

= v(2x1 cosx3 + 2x2 sin x3).

It can be seen that Γ⋆ = Γ. This is because one can trivially make the entire set Γ controlled

invariant by setting the translational speed v to zero. From the point of view of mobile robots,

this is not a useful characterization because such a controller causes the system to stop and hence

not traverse the curve.

Instead, the problem can be solved by dynamic extension [13]. Let v = v + ζ1, where ζ1 is

the first state of our dynamics controller. In general [4] we are free to choose any dynamics for

ζ̇1 but we take the simplest possible structure for the control law (4.8) and let ζ̇1 = ζ2. In order

to finish defining the control law we let ζ̇2 = u1 where u1 is a new, auxiliary input that we will

43

use to indirectly change the translational velocity v. The structure of the control law so far is

ζ̇1 = ζ2

ζ̇2 = u1

v = v + ζ1

ω = u2.

(3.4)

To simplify notation we will no longer distinguish between states of the system (x1, x2, x3, x4)

and states of the controller (ζ1, ζ2). Let x5 := ζ1, x6 := ζ2. Therefore the system we study is

given by

ẋ = f(x) + g1(x)u1 + g2(x)u2

=




(v + x5) cosx3

(v + x5) sinx3

(v+x5)
ℓ

tanx4

0

x6

0




+




0

0

0

0

0

1




u1 +




0

0

0

1

0

0




u2.
(3.5)

For the extended system the path following manifold is given by

Γ⋆ =
{
x ∈ R

6 : α(x) = α̇(x) = α̈(x) = 0
}

To this end we select outputs functions equal to the number of the inputs to check the vector

relative degree of the system. Let ̟ = tan−1(y2/y1), π(x) = ̟ ◦ h(x), and α = s ◦ h(x). We

define a “virtual” output function,

ŷ =


 π(x)

α(x)


 =


 tan−1

(
x2
x1

)

x21 + x22 − 1 = 0


 . (3.6)

44

We check the vector relative degree of the car-like robot (3.5) with output (3.6). Consider an

arbitrary point x⋆ ∈ Γ. Direct calculations show that

Lg1L
i
fπ(x) = Lg2L

i
fπ(x) = Lg1L

i
fα(x) = Lg2L

i
fα(x) = 0.

Moreover, the determinant of the decoupling matrix simplifies to,

det(D(x⋆)) =



Lg1L

2
fπ(x

⋆) Lg2L
2
fπ(x

⋆)

Lg1L
2
fα(x

⋆) Lg2L
2
fα(x

⋆)


 =

2(v + x5)
2

ℓ cos2 x4
. (3.7)

The determinant goes to zero if either v + x5 goes to zero, or ℓ cos2 x4 goes to infinity. ℓ is a

finite constant. Since x4 represents wheel angle and for typical cars the wheel angle can never

goes to ±900. So it is assumed that x4 ∈ (−π/2, π/2). The decoupling matrix loses rank if

x5 = −v. Physically this condition means stopping the robot along the path. In other words,

with this controller the robot cannot achieve point stabilization, but still it allows the robot to

maneuver along the path and follow speed profiles bounded away from zero. We can now define

a coordinate transformation. Let x⋆ ∈ Γ\{x ∈ R6 : x5 + v = 0}. There exists a neighbourhood

U ⊂ R
6 containing x⋆ such that the mapping T : U ⊂ R

6 → T (U) ⊂ R
6, defined by




η1

η2

η3

ξ1

ξ2

ξ3




= T (x) =




π(x)

Lfπ(x)

L2
fπ(x)

α(x)

Lfα(x)

L2
fα(x)




(3.8)

is a diffeomorphism onto its image. Using the coordinate transformation T from (3.8), in a

45

neighbourhood of any point x⋆ ∈ Γ, the system (3.5) in (η, ξ) coordinates reads

η̇1 = η2

η̇2 = η3

η̇3 = L3
fπ + Lg1L

2
fπu1 + Lg2L

2
fπu2

∣∣
x=T−1(η,ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = L3
fα + Lg1L

2
fαu1 + Lg2L

2
fαu2

∣∣
x=T−1(η,ξ)

(3.9)

Stabilizing ξ = 0 stabilizes the path following manifold Γ⋆, because α(x), α̇(x) and α̈(x) con-

verge to zero. This implies the car will converge onto the desired path with heading velocity

tangent to the path. On the path following manifold the motion of the car-like robot on the path

is governed by the η-dynamics. When the robot is on the path following manifold, i.e., ξ = 0

then η1 determines the position of the robot on the path, η2 represent velocity of the robot along

the path and η3 represent acceleration of the robot along the path. Consider the regular feedback

transformation,


u1

u2


 := D−1(x)





−L

3
fπ

−L3
fα


+



v‖

v⋔


 ,


 (3.10)

where (v‖, v⋔) ∈ R2 are auxiliary control inputs. The controller is well defined in a neighbour-

hood of every x⋆ ∈ Γ\{x ∈ R6 : x5 + v = 0}. Thus in a neighbourhood of x⋆, the closed-loop

system becomes

η̇1 = η2

η̇2 = η3

η̇3 = v‖

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = v⋔

(3.11)

46

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Unicycle Following circle with different initial conditions

x
1

x
2

(a) Car-like robot following a circle

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t(sec)

ξ 1
,ξ

2
,ξ

3

ξ
1

ξ
2

ξ
3

(b) ξ-states converging to zero.

Figure 3.2: Convergence of system’s output and transformed states

Where v⋔ and v‖ are the transversal and tangential input. The control law (3.10) has decou-

pled the transversal and tangential subsystems which makes designing (v‖, v⋔) to solve the path

following problem particularly easy. In summary, dynamic extension and transverse feedback

linearization allows us to represent the system as a linear time-invariant system (LTI) and use

LTI controller design techniques to design the controller for system (3.11). In this simulation the

car-like robot is following a unit circular path as shown in Figure 3.2a. It can be seen in Fig-

ure 3.2b that all the ξ-states converge to zero. While the robot follows the circular path a desired

speed profile is achieved as shown in Figure 3.3. We now investigate the performance of this,

apparently well behaved, controller on an experimental platform. The control implementation is

challenging because of two reasons. First, although, the controller poses some robustness prop-

erties because of feedback design, it is not obvious how the controller will perform in the face on

sensor noise. Second, the control implementation entails computation of ζ1, and ζ2 states. The

augmented state ζ2 which needs to be computed by taking a numeric derivative of ζ1 have a rela-

tively larger level of noise compared to other states. Despite of these challenges, we demonstrate

that path following performance and convergence to the path are reliably achieved in practice.

47

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

t(sec)

η
2

speed (η
2
) of unicycle along the curve with respect to time

Figure 3.3: Robot following a speed profile.

3.2 Linear control design in transformed coordinates

As shown in the previous section that given a circular path the nonlinear model of a car-like can

be transformed into a fully linear system (3.11). The linear system has two parts: the transversal

subsystem and the tangential subsystem. Since the system is linear, the controller can be de-

signed using the well known theory of Linear Time Invariant (LTI) systems. For the transversal

subsystem a controller can be chosen that stabilizes the origin of the transversal subsystem.

v⋔(ξ) = k1ξ1 + k2ξ2 + k3ξ3, (3.12)

with ki < 0, i ∈ {1, 2, 3}. It is easy to observe that the controller (3.12) exponentially stabilizes

the LTI transversal subsystem and forces all the ξ-states go to zero. Physically, since ξ = 0 is an

equilibrium of the closed-loop transversal subsystem, if the robot is initialized on the path with

the initial velocity tangent to the path, then it will remain on the path for all future time. Hence,

the property of path invariance is achieved.

In order to achieve the goal of controlling the speed of the robot on the curve, the following

controller is used,

v‖(η) = k4(η1 − ηref1) + k5(η2 − ηref2) + k6η3, (3.13)

48

(a) The Chameleon R100 robot. (b) Experimental Setup.

Figure 3.4: The Chameleon R100 robot and the experimental setup with IPS

where ki < 0, i ∈ {4, 5, 6}. The parameter ηref1 is the desired reference position on the path and

ηref2 is a desired reference velocity profile. Note however that whenever x5 = −v, the robot has

no translational velocity. In that case, the decoupling matrix loses rank and the control law (4.23)

is not well defined. Hence, we cannot stabilize a particular point on the curve using this control

law and henceforth we set k4 = 0.

3.3 Experimental implementation

In this section we present experimental verification of the effectiveness of the proposed con-

trollers.

3.3.1 Experimental platform and setup

The Chameleon R100 built by Clearpath Robotics Inc., see Figure 3.4a, is a low cost car-like

robot for testing control and estimation algorithms. A DC motor is attached to the rear axle

of the robot. A servo motor is used to control the steering angle of the robot. The maximum

steering angle is approximately 27 degrees. The wheels of the robot provide sufficient friction

49

with the ground to make the rolling without slipping assumption implicitly made in (3.1) hold.

However, the steering linkage to front wheels permits up to ± 7 degrees of error. This error

source is not captured by the mathematical model (3.1) used for control design. The chassis of

the robot measures 30 × 22 × 20 cm (l/w/h) and is controlled from an Intel Atom Notebook.

Onboard electronics provide low-level commands to the motors while the proposed control algo-

rithm is implemented on the notebook, hereafter called the control computer, running the Robot

Operating System (ROS) in Linux.

To implement the path following controller, all of the robot’s states are needed. To this end, an

Indoor Positioning System (IPS) is employed using the NaturalPoint OptiTrack local positioning

system. The IPS uses sixteen near-infra red cameras. Infra red (IR) reflectors are attached to the

robot’s chassis to make the position (x1, x2) and orientation x3 available for feedback, via the

IPS, over WiFi. The control computer uses multithreaded Publish/Subscribe model to read the

position and orientation of the robot at 100Hz from the IPS.

In many car-like robot platforms, the steering angle can be directly measured using a po-

tentiometer or an absolute optical encoder; however the Chameleon R100 lacks this feature.

Furthermore, the steering angle of the robot cannot be measured by the IPS. Therefore a stan-

dard Extended Kalman Filter (EKF) is used to obtain estimate (x1, x2, x3, x4, x5, x6) from the

measurements (x1, x2, x3) and the control inputs (u1, u2). The control inputs of the Chameleon

are its steering angle and translational speed. However, the control inputs of (3.1) are the rate of

change of the steering angle and translational speed. The steering control input can be computed

from the rate of change of steering angle by integration. The signals from the proposed con-

troller (rate of change of steering angle and translational speed) are used to compute the steering

angle, which is the control input of the experimental platform. The controller gains used in all

the experiments are given in Table 3.1.

50

Table 3.1: Controller gains used in Section 3.3

Description Symbols Values

Transversal gains (3.12) {k1, k2, k3} {30, 20, 10}
Tangential gains (3.13) {k4, k5, k6} {0, 30, 20}

−1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

x
1
(m)

x
2
(m

)

(a) Chameleon R100 following circular

path

0 5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0

2

4

6

8

t(sec)

ξ 1
,ξ

2
,ξ

3

ξ1
ξ2
ξ3

(b) Convergence of ξ1, ξ2, ξ3 states.

Figure 3.5: Chameleon R100 robot following the circular curve σ : [0, 2.6π) → R2, λ 7→
col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).

3.3.2 Experimental results

In the first experiment the Chameleon R100 robot is asked to follow a circular path of radius

r = 1.3 meters while maintaining a constant speed of ηref2 = 0.3 m/sec along the path. The

robot’s initial position is indicated by a solid green dot in Figure 3.5a. The desired circle is

represented by a dotted line in the figure.

The position of the robot along the path is given by the transformed state η1 ∈ [0, 2.6π). In

this example the path is closed and has arc-length 2.6π; therefore D = [0, 2πr) = [0, 2.6π) and

η1 remains bounded between 0 to 2πr as shown in Figure 3.6a. The transformed state η2 equals

51

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

t(sec)

η
1
(m

)

(a) Position η1 of the robot along the path.

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t(sec)

η
2
(m

/
se

c)

(b) Chameleon R100 maintaining a de-

sired speed of 0.3 m/sec along the path.

Figure 3.6: Velocity and position of the Chameleon R100 robot while following the circular

curve σ : [0, 2.6π) → R
2, λ 7→ col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).

the rate of change of the arc-length at the robot’s position on the circle. It is shown in Figure 3.6b.

In the second experiment the Chameleon R100 robot is made to follow a non-closed sinu-

soidal path. Figure 3.7a shows that the robot first converges to the desired path and follows it.

Due to limited lab space the robot is asked to follow only a small portion of the sinusoidal path.

All the transversal states (the ξ states) converge to zero, as required, as shown in Figure 3.7b.

As the robot follows the sinusoid path a desired speed of 0.3 m/sec is achieved as shown in

Figure 3.8.

In the third experiment the performance of the proposed path following controller is rigor-

ously tested on a circular path of radius 1.3 meters. The experiment is repeated six times and

the convergence of the path following error is analyzed. In each test the robot converges to the

desired path starting from an initial point away from the path as shown in Figure 3.9a. The path

following error ePF :=
√
x21 + x22 − 1.3, is shown in Figure 3.9b. The initial pose (position and

orientation) and steady-state path following error |ePFss | := limt→∞ sup |ePF| of the robot in each

run is presented in Table 3.2. Figure 3.10 gives a zoomed in view of the path following error.

We see that the path following error in each run remains within ±0.015m or, in other words, less

52

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

x
1
(m)

x
2
(m

)

Starting point
Actual Path
Desired Path

(a) Chameleon R100 following a sinusoid

path.

0 5 10 15 20 25
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

t(sec)

ξ 1
,ξ

2
,ξ

3

ξ1
ξ2
ξ3

(b) Convergence of ξ1, ξ2, ξ3 states.

Figure 3.7: Chameleon R100 robot following the non-closed, non-unit speed, sinusoidal path

σ̃(λ) = col(λ, 0.8 cos (λ)).

0 5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t(sec)

η
2

Figure 3.8: The Chameleon R100 maintaining a desired speed of 0.3 m/sec along the sinusoidal

path.

than 1.15%. It can be concluded that path following controller gives fairly accurate and reliable

results as the mean path following error of the six runs is 1.0689cm with a standard deviation of

0.154cm.

53

−3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1
(m)

x
2
(m

)

(a) Convergence of robot’s position to the

circle

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

1.5

2

t(sec)

eP
F
(m

)

(b) Path following error.

Figure 3.9: Multiple experiments following circular path σ : [0, 2.6π) → R
2, λ 7→

col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).

Table 3.2: Steady-state path following error. The initial conditions (x1(0), x2(0)) and x3(0) are

given in metres and radians, respectively. The path following error is given in centimeters.

Test (x1(0), x2(0)) x3(0) |ePFss |

1 (3.0267, 0.4083) 1.8153 1.0580

2 (−0.1675,−1.7628) 0.1440 1.3766

3 (2.7383, 1.2309) 2.3205 0.9556

4 (1.4719, 1.8907) 2.9793 1.0089

5 (−0.0971,−0.3565) −0.6987 1.0148

6 (−2.2894,−0.4131) −1.0454 0.9992

54

22 24 26 28 30 32 34 36 38 40

−0.01

−0.005

0

0.005

0.01

t(sec)

eP
F
(m

)

Figure 3.10: Zoomed view of the path following error after the convergence of the robot to the

desired path.

During experimentation, it was observed that the closed-loop performance is very sensitive

to IPS calibration errors. In particular, a small misalignment between the origin of the coordinate

frame defined by the IR reflectors, and center of the rear axle, i.e., (x1, x2), is reflected in the

path following error. Moreover, we observed that the error is reduced by a few centimeters if

an EKF is used, as described above, on all six states of the system. An adaptive path following

controller may perform better in the face of calibration errors.

Despite having dynamically extended states, the path following controller investigated in this

chapter, not only demonstrates path invariance, but also performs well in the presence of real

world disturbances and robot performance limitations. This motivates us to adopt a similar con-

troller design scheme for the class of vehicles CV . In the next chapter we design path following

controller for CV , which is a non-trivial extension of the path following controller investigated in

this chapter.

55

Chapter 4

Path Following for the CV Class of Vehicles

This chapter presents a path following controller for the CV class of vehicles modeled in Chap-

ter 2. A smooth, dynamic, feedback controller is designed that allows the CV class of vehicles to

follow both closed and non-closed embedded curves while maintaining a desired speed, a desired

acceleration or while stabilizing desired points along the curves. The system dynamics are trans-

formed into a linear system via a coordinate and feedback transformation. Once transformed, a

path following controller is designed that guarantees invariance of the path while enforcing the

desired motion along the path. The controller designed for CV class of vehicles is applied to one

of the systems, a quadrotor, belonging to this class.

4.1 Local representation of rigid body model

As shown in Chapter 2, the dynamics of the CV class of vehicles under rotation and translation

is given by (2.3), (2.6), and (2.7). A convenient choice is to pick a local chart to represent the

dynamics of the rigid body. Obviously, a local representation of rigid body dynamics will lead

to a local controller, but in most practical scenarios these local controllers are sufficient for most

practical applications. Using Euler angles, a rotation matrix can be represented by three angles.

56

Let these three Euler angles be Φ = col(φ, θ, ψ). We use the following compact notation to

represent trigonometric functions; Si := sin(i), Ci := cos(i), Ti := tan(i) for i = {φ, θ, ψ}. The

kinematics equation (2.3) can be represented in local coordinates as [14, 52, 15],

Φ̇ =M(Φ)Ω, (4.1)

where M is given by,

M =




1 SφTθ CφTθ

0 Cφ −Sφ
0 Sφ secθ Cφ secθ



. (4.2)

In summary, the dynamics of CV class of vehicles, i.e., (2.3), (2.6), and (2.7), can be repre-

sented as,

Φ̇ =M(Φ)Ω

JΩ̇ = τ − (Ω× JΩ)

χ̇ = v

v̇ = mgb3 − utRb3,

(4.3)

where R can be represented in terms of Euler angles as,

R =




CθCψ CψSθSφ − CφSψ CφCψSθ + SφSψ

CθSψ SψSθSφ + CφCψ CφSψSθ − SφCψ

−Sθ CθSφ CθSφ



. (4.4)

Let the state vector of the rigid body be x := col(x1, . . . , x12) = col(Φ,Ω, χ, χ̇) ∈ R12. With

a slight abuse of notation, we represent Si := sin(xi), Ci := cos(xi), Ti := tan(xi). By direct

57

substitution of (4.2), and (4.4), in (4.3) dynamics can be written as,

ẋ1 = x4 + x5S1T2 + x6C1T2

ẋ2 = x5C1 − x6S1

ẋ3 = sec (x2)(x5S1 + x6C1)

ẋ4 = −((Jz − Jy)/Jx)x5x6 + (1/Jx)τp

ẋ5 = −((Jx − Jz)/Jy)x4x6 + (1/Jy)τq

ẋ6 = −((Jy − Jx)/Jz)x4x5 + (1/Jz)τr

ẋ7 = x10

ẋ8 = x11

ẋ9 = x12

ẋ10 = (1/m)(C1S2C3 + S1S3)uf

ẋ11 = (1/m)(C1S2S3 − S1C3)uf

ẋ12 = g − (1/m)(C1C2)uf ,

(4.5)

The control inputs are τp, τq, τr, and ut. The model (4.5) can be written compactly in control

affine form as ẋ = f(x)+ g(x)u. The output of the system is the position of the center of gravity

of the rigid body in the inertial frame

y(x) = h(χ) =
[
x7 x8 x9

]⊤
. (4.6)

4.2 Problem formulation

Informally, path following entails making the output of the system approach and move along a

given path with no pre-specified timing law associated with the motion along the path. Before

analyzing the path following problem, we present a formal definition of a “path” in this context.

58

Definition 4.2.1. A path is a smooth parameterized curve in R3

σ : D → R
3

λ 7→




σ1(λ)

σ2(λ)

σ3(λ)



,

(4.7)

such that it satisfies the following assumptions.

1. The desired path σ is regular which implies it can be parameterized by its arc length.

2. The set σ(D) is assumed to be an embedded submanifold of R3. There exists a smooth map

s : R3 → R2 so that σ(D) = s−1(0) with 0 as regular value of s. This condition implies

that rank (dsy) = 2 for all y ∈ γ.

Since σ is a regular curve, therefore, without loss of generality, we henceforth assume that

σ is parameterized by its arc length, i.e., ‖σ′‖ ≡ 1. If σ(D) is an embedded submanifold of

R3, then it is always possible to locally represent the curve as the zero level set of a function.

The assumption ensures that the entire path can be represented as the zero level set of a smooth

function. Let γ := s−1(0), then, in the case of the system belonging to the class of vehicles (4.5),

the path is represented in the output space as

γ :=
{
y ∈ R

3 : s1(y) = s2(y) = 0
}
.

Similar to the previous work [10], the lift of the path γ to R12 is defined as

Γ :=
{
x ∈ R

12 : s1(h(x)) = s2(h(x)) = 0
}
.

The control objective is to make the output y of the system (4.5) asymptotically converge and

then follow the path. Making y → γ is equivalent to making x → Γ. However, we will see that

in general Γ can not be made invariant and hence we will try to stabilize a subset of Γ.

59

4.2.1 Problem statement

Given a path presented in Definition 4.2.1, we seek a smooth dynamic feedback law

ζ̇ = A(x, ζ) + B(x, ζ)u

u = C(x, ζ) +D(x, ζ)u,
(4.8)

with1 ζ ∈ Rq̃, u = (u1, u2, u3, u4) ∈ R4 and an open subset of initial conditionsU×V ∈ R12×Rq̃

with γ ⊂ h(U), such that for any initial condition (x(0), ζ(0)) ∈ U × V the corresponding

solution x(t) for the closed-loop system is defined for all t ≥ 0 and

PF1 The rigid body approaches the path, ‖h(x(t))‖γ → 0 as t→ ∞.

PF2 The level set s(y) is output invariant, i.e., if the rigid body is initialized on the path with

output velocity tangent to the path, it remains on the path for all t ≥ 0.

PF3 On the path, the system meets additional application specific requirements such as

– Stabilizing a desired point along the path

– Tracking a desired speed and/or acceleration profile along the curve.

– Tracking a desired yaw angle value or reference profile along the curve.

4.3 Dynamic extension

To solve the path following problem we seek to find the largest controlled invariant subset of

Γ. As discussed in [10, 63, 13], the largest controlled invariant submanifold Γ⋆ contained in Γ

is called the path following manifold. It consists of all those trajectories of the system whose

associated output signal can be made to remain on the desired path by a suitable choice of the

1The dimension q̃ of the controller state ζ is not fixed a priori.

60

control input. The path following manifold plays a key role in designing path following con-

trollers because if Γ⋆ can be made attractive then PF1 and PF2 are achieved. In order to find Γ⋆

we first define

α := s ◦ h(x) =


 s1 ◦ h(x)

s2 ◦ h(x)


 =


 α1(x)

α2(x)


 . (4.9)

With this definition we have that Γ = α−1(0) and as a result, we can apply the zero dynamics

algorithm to the function α to obtain a local characterization of Γ⋆.

Given that the system has four inputs, it is natural to augment the function (4.9) with two

additional “virtual outputs” and then check if this resulting virtual output has a well-defined

vector relative degree. To this end let π1(χ) : R
3 → R be a map defined in the output space of

the rigid body. A refined definition of π1 will be presented in the following section. We choose

π2(x3, χ) : R
4 → R. This choice is motivated by the fact that, according to PF3 , we would like

the yaw angle ψ = x3 to be virtually constrained by the position of the rigid body along the path,

which is completely specified by the values of χ.

Assumption 1. The function π2(x3, χ) : R
4 → R satisfies

∂π2
∂x3

6= 0

for every x3 ∈ [0, 2π) and every χ ∈ R3 such that h(x) ∈ γ.

Assumption 1 ensures that, at each point along the path, we can apply the implicit function

theorem on y4 = π2(x3, χ) and express x3 as a function of χ and y4. In other words, this ensures

that π2 represents a valid, positionally dependent, constraint on the yaw angle along the path.

In summary, motivated by the path following problem, we define the “virtual” output function

by

y =




α(χ)

π1(χ)

π2(x3, χ)



. (4.10)

61

The output function is intuitively appealing for the purposes of meeting PF1, PF2 and PF3, the

following result shows that it fails to yield a well-defined relative degree.

Lemma 4.3.1. System (4.5) with output (4.10) does not have a well-defined vector relative degree

at any x ∈ R
12.

Proof. Since α and π1 are functions of χ and π2 is a function of x3, χ it is easy to check, in light

of the model (4.5) that

Lgiπ1(x) = Lgiπ2(x) = Lgiα1(x) = Lgiα1(x) ≡ 0

for i ∈ {1, 2, 3, 4}. Direct calculations also reveal that LgiLfπ1(x) = Lgiα1(x) = Lgiα2(x) ≡ 0

for i ∈ {2, 3, 4} while Lg1Lfπ1(x), Lg1α1(x) and Lg1α2(x) are not identically equal to zero in

any open set of R12. In other words, the only control input that is not always multiplied by zero

in the second derivative of the functions α1, α2, π1 is τf .

Similar calculations show that Lg2Lfπ2(x) ≡ 0 while LgiLfπ2(x), i ∈ {1, 3, 4} are not all

identically zero in any open subset of R12. From these calculations we deduce that the decoupling

matrix for the quadrotor (4.5) with output (4.10) has, at each point of R12, the form

D(x) =




Lg1Lfα1(x) 0 0 0

Lg1Lfα2(x) 0 0 0

Lg1Lfπ1(x) 0 0 0

Lg1Lfπ2(x) 0 Lg3L
2
fπ2 Lg4L

2
fπ2




. (4.11)

Clearly D(x) is rank deficient for all x in R12.

One possible interpretation of Lemma 4.3.1 is that the decoupling matrix loses rank because

the control input τp does not appear.This problem is overcome by delaying the appearance of

the control input ut with the help of two integrators, which are included through two additional

62

states ζ = (ζ1, ζ2). Let x13 := τf and x14 := τ̇f . This dynamic extension generates the dynamic

control law

ζ̇1 = ζ2

ζ̇2 = ud

τf = ζ1.

(4.12)

To simplify notation, we no longer distinguish between the quadrotor’s states (x1, · · · , x12) and

the controller states (ζ1, ζ2). Let x13 := ζ1, x14 := ζ2, ud = üt, u := col(u1, u2, u3, u4) =

col(ud, up, uq, ur) ∈ R4, where ur := τr, up := τp and uq := τq. The model of the rigid body

after dynamic extension gets the form,

ẋ1 = x4 + x5S1T2 + x6C1T2

ẋ2 = x5C1 − x6S1

ẋ3 = sec (x2)(x5S1 + x6C1)

ẋ4 = −((Jz − Jy)/Jx)x5x6 + (1/Jx)up

ẋ5 = −((Jx − Jz)/Jy)x4x6 + (1/Jy)uq

ẋ6 = −((Jy − Jx)/Jz)x4x5 + (1/Jz)ur

ẋ7 = x10

ẋ8 = x11

ẋ9 = x12

ẋ10 = (1/m)(C1S2C3 + S1S3)x13

ẋ11 = (1/m)(C1S2S3 − S1C3)x13

ẋ12 = g − (1/m)(C1C2)x13

ẋ13 = x14

ẋ14 = ud.

(4.13)

63

With a slight abuse of notation we write the extended model compactly as

ẋ = f(x) +

4∑

i=1

gi(x)ui.

By applying the zero dynamics algorithm to the output (4.9), the extended system yields the path

following manifold

Γ⋆ =
{
x ∈ R

14 : Lifα(x) = 0, i = 0, 1, 2, 3, 4
}
. (4.14)

4.4 Path following controller design

In this work the path following problem is treated as an instance of the set stabilization problem

and the general approach for solving path following problem is applied to a rigid bodies [64, 13,

10]. In contrast to the differential flatness based controller which involves finding an output such

that the resulting feedback linearized system is fully linear, we have chosen flat outputs that are

physically meaningful for the path following problem. We now refine the definition of π1 in the

virtual output (4.10) by choosing a specific function. A mapping is introduced that associates to

a point y in the output space of the rigid body system, sufficiently close to the path, a number in

the domain D that minimizes the distance from the path γ. This mapping was used in [63] for

curves in R2. Let γǫ ⊂ R3 be a tubular neighbourhood of the path γ and define the map

̟ :γǫ → D

y 7→ arg inf
λ∈D

‖y − σ(λ)‖.
(4.15)

The above function is smooth so long as γǫ is a sufficiently small “tube” around the curve γ.

With these definitions and Assumption 4.2.1, we refine the “virtual output” function ŷ to be

ŷ =




α1(χ)

α2(χ)

π1(χ)

π2(x3, χ)




=




s1 ◦ h(χ)

s2 ◦ h(χ)

̟ ◦ h(χ)

π2(x3, x7, x8, x9)




. (4.16)

64

The next two results are presented to support our claim that the extended system has a well-

defined vector relative degree at each point on the path following manifold. The first is presented

without proof as it is the well known triple product result from linear algebra.

Lemma 4.4.1 ([65]). If v1,v2,v3 are linearly independent vectors in R
3 then 〈v1, (v2 × v3)〉 6= 0.

Let

dχαi := col

(
∂αi
∂x7

,
∂αi
∂x8

,
∂αi
∂x9

)

for i = {1, 2}, and

σ′ := col

(
∂σ

∂λ
,
∂σ

∂λ
,
∂σ

∂λ

)

Lemma 4.4.2. Let α1 and α2 be as defined in (4.9). Then, for all χ ∈ γ,

span{dχα1, dχα2, σ
′} = R

3.

Proof. We first show that each of the vectors dχα1, dχα2, σ
′ are non zero. By assumption, σ

is regular which means σ′ 6= 0. Also by definition 4.2.1, at each y ∈ γ, dsy has rank two.

Since dhx = I this shows, using the chain rule, that at each χ⋆ ∈ Γ, dχα has rank two.

Since σ′ is a tangent vector and dχα1, dχα2 are non-zero gradient vectors, we conclude that

span{dχα1, dχα2, σ
′} = R3 as claimed.

It is claimed that state x13, which represents thrust ut, can not be zero. In fact, x13 is zero if

and only if thrust applied by rigid bodies is zero. For system belonging to the class of vehicles

such as quadrotors, tailsitter, and satellite, this means all the rotors of the system stop spinning

at the same time. Therefore, for almost all practical purposes x13 6= 0 is a valid assumption.

Moreover, we assume that the rigid body does not encounter gimbal lock situation2, i.e., φ =

θ 6= ±900.

2The singularity associated with gimbal lock is due to Euler angle parameterization on SO(3).

65

Lemma 4.4.3. The extended model of the rigid body (4.13) with output (4.16) yields a well-

defined vector relative degree of {4, 4, 4, 2} at each point on Γ⋆ ∩ {x ∈ R14 : x13 6= 0, φ = θ 6=
±900}.

Proof. Let x⋆ ∈ Γ⋆ ∩ {x ∈ R14 : φ = θ 6= ±900, x13 6= 0} be arbitrary. By definition of Γ, and

since Γ⋆ ⊆ Γ, the output h(x⋆) is on the path γ. Let λ⋆ ∈ D be such that h(x⋆) = σ(λ⋆). By the

definition of vector relative degree we must show that

LgiL
j
fπ1(x) = Lgiπ2(x) = LgiL

j
fαk(x) ≡ 0 (4.17)

for i ∈ {1, 2, 3, 4}, j ∈ {0, 1, 2} in a neighbourhood of x⋆ and that the 4× 4 decoupling matrix

D(x⋆) =




LgL
3
fα1(x

⋆)

LgL
3
fα2(x

⋆)

LgL
3
fπ1(x

⋆)

LgLfπ2(x
⋆)




, (4.18)

is non-singular. It is easy to check, by direct computations, that the first condition holds and

det (D(x)) =

(
l2(x13)

2 cos(x1)

IxIyIzm3 cos(x2)

)(
∂

∂x3
π2

)
〈dχα1, (dχα2 × σ′)〉 . (4.19)

The determinant goes to zero if and only if any term in the numerator of (4.19) is zero or any term

in the denominator is infinity. The terms Ix, Iy, Iz, l andm are finite constants. By assumption, at

x⋆ ∈ Γ⋆ ∩ {x ∈ R
14 : φ = θ 6= ±900, x13 6= 0}, the combined thrust x13 6= 0. By Lemma 4.4.2,

span{dχα1, dχα2, σ
′}(x⋆) = R3 and therefore, by Lemma 4.4.1 〈dχα1, (dχα2 × σ′)〉 6= 0 at

x⋆. By Assumption 1 ∂π2/∂x3 6= 0. It is further assumed that the system does not encounter

gimbal lock situation, therefore cos xi 6= 0 for i = {1, 2}. Thus we have shown that for any

x⋆ ∈ Γ⋆ ∩ {x ∈ R14 : φ = θ 6= ±900, x13 6= 0}, det (D(x⋆)) 6= 0, therefore the extended system

has a well defined vector relative degree at x⋆.

66

The singularities at x1 = x2 = θ = ±90◦ are not intrinsic to the physics of rigid body system,

and arise due to singularities in the local chart i.e., Euler angle representation. These singularities

could potentially be eliminated by using rotation matrices. In other words by designing a con-

troller on SO(3) directly, such singularities can be avoided, and one can achieve global results.

In Chapter 6 we eliminate such singularities and present global controllers. Since the extended

system (4.13) has a well defined vector relative degree of {4, 4, 4, 2}, this implies that the dimen-

sion of the zero dynamics is zero. In other words, we can fully linearize the extended system of

the quadrotor. This leads to the definition of a local coordinate transformation.

Corollary 4.4.4. Let x⋆ ∈ Γ⋆ ∩ {x ∈ R14 : φ = θ 6= ±900, x13 6= 0}. There exists a neigh-

bourhood U ⊂ R14 containing x⋆ such that the mapping T : U ⊂ R14 → T (U) ⊂ R14, defined

by 


ξji

η1i

η2k



= T (x) =




Li−1
f αj(x)

Li−1
f π1(x)

Lk−1
f π2(x)



, (4.20)

for i ∈ {1, 2, 3, 4}, j ∈ {1, 2} and k ∈ {1, 2} is a diffeomorphism.

Proof. Let x⋆ ∈ Γ⋆ ∩ {x ∈ R14 : φ = θ 6= ±900, x13 6= 0}. By Lemma 4.4.3, system (4.13)

with output (4.16) yields a well-defined vector relative degree of {4, 4, 4, 2} at x⋆. By [4, Lemma

5.2.1] the row vectors

dα1(x
⋆), dLfα1(x

⋆), dL2
fα1(x

⋆, dL3
fα1(x

⋆)

dα2(x
⋆), dLfα2(x

⋆), dL2
fα2(x

⋆, dL3
fα2(x

⋆)

dπ1(x
⋆), dLfπ1(x

⋆), dL2
fπ1(x

⋆, dL3
fπ1(x

⋆)

dπ2(x
⋆), dLfπ2(x

⋆),

(4.21)

are linearly independent. These are the rows of the 14× 14 Jacobian matrix dTx⋆ which implies

that dTx⋆ is non-singular. By the inverse function theorem [66, Theorem 5.23] T is a diffeomor-

phism onto its image.

67

Using the coordinate transformation T from Corollary 4.4.4, the system is transformed in

(η, ξ) coordinates

ξ̇j1 = ξj2

ξ̇j2 = ξj3

ξ̇j3 = ξj4

ξ̇j4 = L4
fαj +

4∑

i=1

LgiL
3
fαjuj

∣∣∣∣∣
x=T−1(η,ξ)

η̇11 = η12

η̇12 = η13

η̇13 = η14

η̇14 = L4
fπ1 +

4∑

i=1

LgiL
3
fπ1u3

∣∣∣∣∣
x=T−1(η,ξ)

η̇21 = η22

η̇22 = L2
fπ2 +

4∑

i=1

LgiLfπ2u4

∣∣∣∣∣
x=T−1(η,ξ)

,

(4.22)

for j ∈ {1, 2}. This model (4.22) suggests a natural choice of feedback transformation




u1

u2

u3

u4




:= D−1(x)







−L4
fα1

−L4
fα2

−L4
fπ1

−L3
fπ2




+




vξ1

vξ2

vη1

vη2







, (4.23)

where (vξ1, vξ2 , vη1, vη2) are auxiliary control inputs. By Lemma 4.4.3 this controller (4.23) is

well-defined in a neighbourhood of every x⋆ ∈ Γ\{x ∈ R14 : x10 = x11 = ±900}. Thus in

a neighbourhood of x⋆, the closed loop system is simply reduced to four decoupled chains of

68

integrators

˙ξ11 = ξ12 ˙ξ21 = ξ22 ˙η11 = η12 ˙η21 = η22

˙ξ12 = ξ13 ˙ξ22 = ξ23 ˙η12 = η13 ˙η22 = vη2 .

˙ξ13 = ξ14 ˙ξ23 = ξ24 ˙η13 = η14

˙ξ14 = vξ1 ˙ξ24 = vξ2 ˙η24 = vη2

(4.24)

and linear control techniques can be used. The output (4.16) is a flat output [67] for the rigid

body system (4.13) because these outputs transform the system to a fully linear system.

4.4.1 Auxiliary controller design

After applying the coordinate and feedback transformations (4.20), (4.23) to the extended sys-

tem (4.13) the auxiliary controller design is straight forward. Stabilizing the origin of the first

two chain of integrators, collectively called the ξ-subsystem, corresponds to the stabilization of

path following manifold Γ⋆. When ξ = 0 the states of the system are restricted to stay on the

path. We propose the following controller to control the ξ-subsystem.

vξj =

4∑

i=1

kiξji, (4.25)

with ki < 0, j ∈ {1, 2}. This controller exponentially stabilizes ξ = 0 . Since ξ = 0 is an

equilibrium of the ξ-subsystem, the origin is exponentially stable. Moreover, we stabilize the

path following manifold Γ⋆ and hence path invariance is achieved. In other words, PF1 and PF2

are satisfied.

To achieve the goal of point stabilization along the curve, controlling the speed along the

curve, and forcing the rigid body to follow a given acceleration profile along the curve we propose

the following controller

vη1 =
4∑

i=1

ki(η1i − ηref1i), (4.26)

69

where ki < 0, η11 is the path parameter. By setting ηref11 to the desired value, point stabilization

is achieved. By choosing k1 = 0 and setting ηref12 to the desired velocity profile the rigid body

follows the given velocity profile. Similarly, by choosing k1 = k2 = 0 and setting ηref13 to the

desired acceleration profile the system follows the given acceleration profile. Therefore, by the

auxiliary controller given by (4.26), PF3 has been achieved.

The yaw angle of the rigid body can be controlled by designing a similar controller for the

fourth chain of integrator.

vη2 = k1(η21 − ηref21) + k2(η22 − η̇ref21) + η̈ref21 , (4.27)

where k1, k2 < 0. By stabilizing the origin of the η2-subsystem, the yaw angle of the rigid body

converges to the desired yaw angle reference function, satisfying the yaw objective in PF3.

4.5 Simulation results

For simulation purposes, it is assumed that the rigid body has a mass of m = 4.493 kg, and

inertias Jx = Jy = 0.177 kg.m2 and Jz = 0.344 kg.m2, and acceleration due to gravity is g = 9.8

m/sec2. It is further assumed that due to modeling uncertainties there is 10% error in Jx, Jy, Jz.

The error in the mass of the rigid body is assumed to be 1% because the mass of the quadrotor

can be accurately measured by a precise weight measuring instrument. The initial position of

the rigid body is indicated by a solid dot. The rigid body is following a curve represented by

a fourth order spline. The controller allows the system to follow a spline of any order greater

than 1. Moreover, each vehicle belonging to the class of vehicles is capable of following any

closed or non-closed curve satisfying Definition 4.2.1. The path chosen for this simulation is a

general 4th order spline given by σ : R → R3, λ 7→ col(λ, a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0, 3).

The implicit representation of the same curve is given by γ = {s1(y) = s2(y) = 0}, where

s1(y) = x3−a4x41+a3x31+a2x21+a1x1+a0 = 0 and s2 = x3−3 = 0. In Figure 4.1, the system

70

−1

0

1

2

0

10

20

30
1

1.5

2

2.5

3

3.5

4

x
1
 = xx

3
 = y

x
5
 =

 z

Figure 4.1: Velocity profile simulation. The path followed by the rigid body is represented by a

bold red line and the desired path is represented by a solid green line.

is following the desired path and tracking a velocity profile given by ηref12 = 1 for t ∈ [0, 20),

ηref12 = 0, for t ∈ [20, 40) and ηref12 = −1 for t ≥ 40.

The above velocity profile forces the rigid body to maintain a velocity of 1 unit/sec for 20

seconds, stopping along the curve for the next 20 seconds, and then reverse the direction of

the motion with a velocity of −1 unit/second. This indicates that with the proposed controller,

the system is capable of stopping along the curve and changing direction along the curve while

staying on the path. The system’s velocity is compared to the desired velocity in Figure 4.2.

Moreover, the rigid body is following a yaw profile ηref21 = sin(t) while following the desired

path as shown in Figure 4.2. Stabilizing the yaw angle to a desired value or forcing it to follow a

given profile can be of practical importance for certain system belonging to the class of vehicles

such as quadrotors, and satellite systems.

71

0 10 20 30 40 50 60
-2

-1

0

1

2

12

ref

12

0 10 20 30 40 50 60

-2

-1

0

1

21

ref

21

Figure 4.2: Comparison between reference and actual states.

4.6 Application of path following controller on a quadrotor

Next we analyze performance of the path following controller (4.23), designed in the previous

section, on one of the vehicles belonging to the class of vehicles presented in Chapter 2 i.e., a

quadrotor. The inputs of the quadrotor are motor pwm, which is a natural number between 0 to

200. The control inputs u1, u2, u3, u4 are converted to motor pwm by the mapping give by (2.9).

Moreover, to make the simulation more realistic a first order motor model in also included in

simulation. In each simulation the desired path is a unit circle in x, y plane, and the quadrotor is

desired to maintain a constant height of 10m in z axis, and a constant speed along the path.

72

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

(a) Following desired path in x, y plane

-5

2

0

2

5

1

10

1

15

0
0

-1 -1

(b) Following desired path in 3D

Figure 4.3: path following without noise

4.6.1 Without sensor noise

We first simulate the controller (4.23) on the quadrotor in the absence of sensor noise. A first

order motor model is added in the simulation, and as expected the motor dynamics are fast

enough to not have any significant effect on the path following. In the absence of sensor noise, the

quadrotor precisely follow the desired path, as shown in Figure 4.3a, and Figure 4.3b. Moreover,

all the transformed states, ξij , for i = {1, 2}, and j = {1, 2, 3, 4}, converge to zero, as shown in

Figure 4.4a, and Figure 4.4b. We introduce actuator saturation, in simulation, to cap the motor

pwm inputs to 1603, as shown in Figure 4.5b. Thrust, i.e., ζ1, and rate of change of thrust, i.e., ζ2

are shown in Figure 4.5a.

4.6.2 Sensor Noise

Now we simulate quadrotor system, just like the previous case, but in the presence of sensor

noise. We assume that the quadrotor states are sensed by either an IMU, or Indoor Position-

ing System (IPS) or both. The noise is assumed to be a zero mean Gaussian, and is given in

3The rotor speed that results from a PWM command of 160 is as large as is safe for indoor flight.

73

0 5 10 15 20 25 30

-40

-30

-20

-10

0

10

20

30

40

(a) Transformed states ξ1i

0 5 10 15 20 25 30

-20

-10

0

10

20

30

40

50

60

70

80

(b) Transformed states ξ2i

Figure 4.4: Transformed states without noise

0 5 10 15 20 25 30

-40

-20

0

20

40

60

80

100

120

140

160

(a) Augmented states ζ1, ζ2

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

m1

m2

m3

m4

(b) Motor pwm values

Figure 4.5: Augmented states without noise

74

Table 4.1: Quadrotor noise levels

State Source Range Standard Deviation σ

Position (x, y, z) IPS ±50e−6m 10e−6m

Velocity (ẋ, ẏ, ż) IPS ±2e−3m/sec 3e−4m/sec

Angles (φ, θ, ψ) IPS ±0.02 deg. 0.005 deg.

Angles (φ, θ, ψ) IMU ±0.1 deg. 0.01 deg.

Body rates (p, q, r) IMU ±0.08 rads/sec 0.02 rads/sec.

Table 4.1 [68, 58, 15] 4. It should be noted that the quadrotor platform AscTec provides basic

filtered IMU data at an update rate of up to 1kHz. Although, feedback linearized controllers,

sometimes, suffer performance limitations in the presence of sensor noise, the controller (4.23)

performs fairly well in terms of path following, as shown in Figure 4.6a, and Figure 4.6b. It

can be easily seen in these figures that the performance has degraded compared to the previ-

ous case when all the states are known precisely. However, these results are good enough for

most of the practical purposes. It can be seen that the transformed states ξij , for i = {1, 2},

and j = {1, 2, 3, 4} get noisy but converge to zero, as shown in Figure 4.7a, and Figure 4.7b.

It is interesting to see in Figure 4.8a, and Figure 4.8b that the augmented states ζ1 and ζ2, and

motor pwn values remain noise free. It should be noted that thrust, i.e., ζ1 is input of the non-

extended quadrotor system, but is the state of the extended system. Moreover, for implementing

controller (4.23), thrust or ζ1, and ζ2 must be known, or in other words must be measured by

some sensor. Therefore, in the next simulation we add noise on these states.

4http://www.dis.uniroma1.it/˜oriolo/fda/matdid/ControlOfAQuadrotorUAV.pdf

75

 http://www.dis.uniroma1.it/~oriolo/fda/matdid/ControlOfAQuadrotorUAV.pdf

-1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Following desired path in x, y plane

-5

2

0

1 2

5

10

0 1

15

-1 0

-2 -1

(b) Following desired path in 3D

Figure 4.6: Path following in the presence of sensor noise

0 5 10 15 20 25 30

-40

-30

-20

-10

0

10

20

30

40

(a) Transformed states ξ1i

0 5 10 15 20 25 30

-20

-10

0

10

20

30

40

50

60

70

80

(b) Transformed states ξ2i

Figure 4.7: Transformed states in the presence of sensor noise

76

0 5 10 15 20 25 30

-40

-20

0

20

40

60

80

100

120

140

160

(a) Augmented states ζ1, ζ2

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

m1

m2

m3

m4

(b) Motor pwm values

Figure 4.8: Augmented states without noise

4.6.3 Noise on augmented states

The quadrotor system is capable of measuring motor speed with hall effect sensors mounted on

the Pelican system. The motors speeds can be converted to thrust ζ1, and numerically differen-

tiating thrust gives ζ2. We add realistic noise levels to ζ1, and ζ2. It should be noted that ζ1 is

not filtered at low level processor of Pelican, unlike IMU values which are filtered at low level

processor. Numerical differentiation of a noisy ζ1 results in a larger noise level on ζ2. The noise

levels of these augmented states has a large impact on path following performance as shown in

Figure 4.9a, 4.9b, 4.10a , and Figure 4.10b. Finally, the noisy augmented states, and motor pwm

values are show in Figure 4.11a, and Figure 4.11b. One can perform some basic online filtering,

such as low pass filtering or Kalman filtering, to reduce noise on augmented states, but it leads to

delay the input signal, and that can further effect the path following performance. We conclude

this chapter with the following comment,

Remark 4.6.1. In the light of Lemma 4.3.1, and Lemma 4.4.3 the CV class of vehicle entails

dynamic extension, which forces the system to have two more states ζ1, ζ2. As shown by the

simulation results, these noisy augmented states greatly affects the path following control per-

formance. This brings up a natural question: can dynamics extension be avoided? Yes, it can be

77

-1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Following desired path in x, y plane

-5

1

0

0.5 2

5

10

0 1

15

-0.5 0

-1 -1

(b) Following desired path in 3D

Figure 4.9: Path following in the presence of sensor and motor noise

0 5 10 15 20 25 30

-80

-60

-40

-20

0

20

40

60

(a) Transformed states ξ1i

0 5 10 15 20 25 30

-50

0

50

100

(b) Transformed states ξ2i

Figure 4.10: Transformed states with noise

78

0 5 10 15 20 25 30

-100

-50

0

50

100

150

200

(a) Augmented states ζ1, ζ2

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

m1

m2

m3

m4

(b) Motor pwm values

Figure 4.11: Augmented states with noise

avoided by adopting an all together different control scheme. In other words, we used a mono-

lithic control design approach in this chapter, that requires dynamic extension. By adopting an

“inner-outer loop” approach, dynamic extension can be avoided. The idea of inner-outer loop

control in not new, for example see [15]. In Chapter 6, we present a class of novel geometric

controllers for rigid bodies on SO(3) by exploiting the inner-outer loop approach. Before this,

we consider an interesting problem of path following control for quadrotor in case of a rotor

failure in the next chapter.

79

Chapter 5

Fault Tolerant Path Following of a

Quadrotor

In the previous chapter we have shown that the path following controller gives satisfactory per-

formance in the presence of low sensor noise, and under close to ideal conditions the controller

allows the system to follow the given curve closely. Using a similar controller design procedure

used in the previous chapter we present a path following controller for a specific vehicle in the

CV class of vehicle, i.e., a quadrotor UAV, and consider the case when the quadrotor experience

a single rotor failure. In the single rotor failure case, or when one of the rotor is fully broken

we call it a three-rotor case, and when all the four rotors are working without any failure we call

it a four-rotor case. Similar to the four-rotor case presented in Chapter 4, we design a smooth,

dynamic feedback control law that allows the quadrotor to follow both closed and non-closed

embedded curves while maintaining a desired velocity profile along the path when one out of

four motors is completely disabled. Unlike the four-rotor case, this quadrotor model is not fully

feedback linearizable. Therefore, the nonlinear model of the quadrotor is transformed into a par-

tially linear model by a coordinate and feedback transformation. We prove that even with three

rotors path invariance is achieved, and the controller gives satisfactory performance with no sen-

80

sor noise. We further show that the uncontrolled nonlinear portion of the dynamics (internal

dynamics) are bounded.

5.1 Introduction

Informally, a fault tolerant control (FTC) system is a system that can maintain stability in the

presence of particular faults. In the literature, fault tolerant controllers can be broadly classified

into two groups: active fault tolerant controllers (AFTC), and passive fault tolerant controllers

(PFTC). AFTC relies on a fault diagnosis system, which detects a fault and makes an active

change to the controller to manage the faulty state control. With a PFTC no switching occurs,

rather a continuous controller is designed and optimized for the fault-free situation, while satisfy-

ing some degraded performance for the faulty case [69]. The fault tolerant path following control

considered in this chapter is based on the assumption that path following must be maintained in

the event one of the rotors no longer provides any thrust or moment. Such a scenario gener-

ally may occurs when a rotor collides with a static object in the environment, causing the rotor

blade to break, a propeller loss, or an electrical failure. During typical operation the quadrotor

flies in a fault-free fashion and the path following controller designed in Chapter 4 can be used.

However, when a failure occurs, the goal of path following becomes more challenging because

the requirements of path invariance and pre-defined velocity profile tracking must be maintained

using only three motors. The controller is of practical importance because it allows a quadrotor

to recover from a single rotor failure and maintain path invariance at the expense of independent

control over yaw angle. The result is a vehicle that spins about its body z-axis while travelling

along the path. The rate at which the yaw varies can be bounded, allowing for safe operation in

the presence of such a failure.

Compared to the fault-free case, less research has been done for fault tolerant control of

quadrotors. In [70] the authors compare existing methods of fault tolerant control systems.

81

In [71, 72, 73] the authors propose a fault tolerant controller for quadrotors using sliding mode

control. In [74] the authors present a learning-based fault tolerant controller for the quadrotors.

The authors show in simulation that the proposed method is effective for optimizing the fuzzy

tracking controller on-line and counteracting the side effects of actuator faults. In [75] the au-

thors discuss the problem of fault detection and diagnosis of an unmanned quadrotor helicopter

in the presence of actuator faults. Moreover, the authors discuss three fault cases: loss of control

effectiveness in one signal actuator, loss of control effectiveness in two actuators, and loss of con-

trol effectiveness in three actuators, and show experimentally the effectiveness of the proposed

method. In [76] the authors proposed a fault tolerant controller based on trajectory linearization

when one rotor of the quadrotor fails. In [77] the authors applied feedback linearization and

discussed the problem of trajectory tracking by following the inner-outer loop control structure.

In this work, a path following controller is proposed for the case when one rotor of the

quadrotor encounters a failure. The control design process is challenging because it requires the

controller to manage six degrees of freedom using only three control inputs instead of four. It

is shown in this work that using fault tolerant path following, the system can be made to stay

precisely on the path, in other words path invariance can be achieved while the quadrotor is

running only on three rotors. Unlike the controller designed in the last chapter for the case of

fault-free system where the system was shown to be differentially flat, the three rotor system

is not differentially flat, but instead presents uncontrolled internal dynamics. Nonetheless, it is

shown that the vehicle is still able to follow the given path, maintain the desired speed along the

path, and does not rotate at an unbounded rate.

5.2 Mathematical model

Without loss of generality, assume the second motor M2 fails due to collision. A fault diagnosis

system detects a severe effect on the vehicle roll control, and triggers the switch from the fault-

82

free state to the faulty state and turns off M2 completely. The new control inputs are τf , τq, τr,

and (2.8) becomes




ut

τp

τq

τr




=




1 1 1

0 0 l

−l l 0

d d −d







f1

f3

f4



. (5.1)

The expression τp = lf4 = ut − τr
d

can be substituted into the quadrotor model (4.5). We add

translational and rotational drag terms in (4.5), and the quadrotor model for the fault tolerant case

can be obtained as,

ẋ1 = x4 + x5S1T2 + x6C1T2

ẋ2 = x5C1 − x6S1

ẋ3 = sec2(x5S1 + x6C1)

ẋ4 = −((Jz − Jy)/Jx)x5x5 − (krx4/Jx) + (1/Jx)
(
τf −

τr
d

)

ẋ5 = −((Jx − Jz)/Jy)x4x6 − (krx5/Jy) + (1/Jy)τq

ẋ6 = −((Jy − Jx)/Jz)x4x5 − (krx6/Jz) + (1/Jz)τr

ẋ7 = x10

ẋ8 = x11

ẋ9 = x12

ẋ10 = (−ktx10/m) + (1/m)(C1S2C3 + S1S3)ut

ẋ11 = (−ktx11/m) + (1/m)(C1S2S3 − S1C3)ut

ẋ12 = (−ktx12/m) + g − (1/m)(C1C2)ut.

(5.2)

The output of the quadrotor is the position of the center of gravity of the quadrotor in the inertial

frame.

83

5.3 Problem statement

Given a path presented in Defintion 4.2.1, we seek a smooth dynamic feedback law

ζ̇ = A(x, ζ) + B(x, ζ)u

u = C(x, ζ) +D(x, ζ)u,
(5.3)

with1 ζ ∈ Rq̃, u ∈ R3 and an open subset of initial conditions in a neighborhood of the lift of the

path, such that the quadrotor with one damaged rotor meets the following goals,

G1 The system asymptotically approaches the path, ‖h(x(t))‖γ → 0 as t→ ∞.

G2 The zero level set s(y) is output invariant for all t ≥ 0.

G3 On the path, the system follows a desired speed profile along the curve.

G4 The body rates p, q, r remain bounded, i.e., |p| <∞, |q| <∞, and |r| <∞ for all t ≥ 0.

G5 The system does not spin at unbounded rate about its axis, i.e., |ψ̇| <∞ for all t ≥ 0.

5.4 Dynamic extension

As discussed in the last chapter, the largest controlled invariant submanifold Γ⋆ contained in Γ

can be obtained by applying the zero dynamics algorithm [4] to the functionα, as defined in (4.9).

Since the faulted quadrotor has only three inputs it is natural to augment the function (4.9) with

one additional function to make the number of output functions equal to the number of control

inputs and then check the relative degree of the system with respect to the augmented output.

To this end let π(x7, x8, x9) be any smooth real-valued function. It is easy to show, similar to

Lemma 4.3.1, that the “virtual” output ȳ = (α, π(x)) fails to yield a well-defined relative degree

for the system (5.2) because the decoupling matrix is always rank deficient.

1The dimension q̃ of the controller state ζ is not fixed a priori.

84

This problem is overcome by delaying the appearance of the control input ut with the help of

two integrators, which are included through two additional states x13 := ut and x14 := u̇t. Let

ud = üt and u = col(ud, uq, ur) ∈ R3, where ur := τr and uq := τq .

ẋ1 = x4 + x5S1T2 + x6C1T2

ẋ2 = x5C1 − x6S1

ẋ3 = sec (x2)(x5S1 + x6C1)

ẋ4 = −((Jz − Jy)/Jx)x5x5 − (krx4/Jx) + (lx13/2Jx)−
(

l

2Jxd

)
ur

ẋ5 = −((Jx − Jz)/Jy)x4x6 − (krx5/Jy) + (1/Jy)uq

ẋ6 = −((Jy − Jx)/Jz)x4x5 − (krx6/Jz) + (1/Jz)ur

ẋ7 = x10

ẋ8 = x11

ẋ9 = x12

ẋ10 = (−ktx10/m) + (1/m)(C1S2C3 + S1S3)x13

ẋ11 = (−ktx11/m) + (1/m)(C1S2S3 − S1C3)x13

ẋ12 = (−ktx12/m) + g − (1/m)(C1C2)x13

ẋ13 = x14

ẋ14 = ud.

(5.4)

With a slight abuse of notation we write the extended model compactly as

ẋ = f(x) +
3∑

i=1

gi(x)ui.

As in [32], applying the zero dynamics algorithm to the output (4.9) and the extended system

yields the path following manifold

Γ⋆ =
{
x ∈ R

14 : Lifα(x) = 0, i = 0, 1, 2, 3, 4
}
. (5.5)

85

The path following manifold in the faulted case equals the path following manifold for the fault-

free case. Once again, by making the path following manifold attractive and invariant, G1 and

G2 are satisfied.

5.5 Path following controller design

Similar to the fault free case, we define a “virtual output” function ŷ to be

ŷ =




α1(x7, x8, x9)

α2(x7, x8, x9)

π(x7, x8, x9)



=




s1 ◦ h(χ)

s2 ◦ h(χ)

̟ ◦ h(χ)



. (5.6)

Now we check the vector relative degree of the system (5.4),

Lemma 5.5.1. The extended model of the quadrotor with output (5.6) yields a well-defined vector

relative degree of {4, 4, 4} at each point on Γ⋆ ∩ {x ∈ R14 : x13 6= 0}.

Proof. The proof is similar to the proof of Lemma 4.4.3.

The extended system has a well defined vector relative degree of {4, 4, 4}, which implies that

the dimension of the internal dynamics is 14 − (4 + 4 + 4) = 2. Two additional functions are

needed to define a complete coordinate transformation.

Corollary 5.5.2. Let x⋆ ∈ Γ⋆\{x ∈ R14 : x1 ± 900, x13 6= 0}. There exists a neighbourhood

U ⊂ R14 containing x⋆ such that the mapping T : U ⊂ R14 → T (U) ⊂ R14, defined by




ξji

ηi

µk



= T (x) =




Li−1
f αj(x)

Li−1
f π(x)

µ(x)



, (5.7)

for i ∈ {1, 2, 3, 4}, j ∈ {1, 2} and k ∈ {1, 2}, is a diffeomorphism.

86

Proof. The choice of (ξ, η) ∈ R12 is clear from (5.7). However, the relative degree of the

extended system is 2 less than the dimension of the state space. Therefore we must select two

additional real-valued functions µ1, µ2 to complete the definition of T . The distributionG0(x) :=

span{g1, g2, g3}(x) is constant and therefore involutive. By [4, Proposition 5.1.2] there exist real-

valued functions µ1 and µ2 whose differentials belong to the annihilator of G0(x) and complete

the coordinate transformation T . Two possible choices are

µ1 := x3,

µ2 := −−x4
Jz

− Lx6
2Jxd

.
(5.8)

With the above choice of µ1 and µ2 it is sufficient to check the rank of the 14 × 14 Jacobian

matrix. The determinant of Jacobian matrix dT
dx

is given by

det

(
dT

dx

)
=

−l(x13)4C1

2Jxm6d
〈dχα1, (dχα2 × σ′)〉. (5.9)

By arguments similar to given in Lemma 4.4.3, Equation (5.9) equals zero at x⋆ ∈ Γ⋆ ∩ {x ∈
R14 : x13 6= 0} if and only if C1 = 0. However, by hypothesis, the gimbal lock condition φ =

θ = ±900 does not hold at x⋆. Therefore, the Jacobian of T is non-singular in a neighbourhood

of x⋆ and T is a local diffeomorphism.

Using the coordinate transformation T from Corollary 5.5.2, the system is differentially

87

equivalent in a neighbourhood of x⋆ to

ξ̇11 = ξ12

ξ̇12 = ξ13

ξ̇13 = ξ14

ξ̇14 = L4
fα1 + Lg1L

3
fα1uf

∣∣
x=T−1(η,ξ,µ)

ξ̇21 = ξ22

ξ̇22 = ξ23

ξ̇23 = ξ24

ξ̇34 = L4
fα2 + Lg2L

3
fα2ur

∣∣
x=T−1(η,ξ,µ)

η̇1 = η2

η̇2 = η3

η̇3 = η4

η̇4 = L4
fπ + Lg3L

3
fπuq

∣∣
x=T−1(η,ξ,µ)

µ̇j = bj(η, ξ, µ)|x=T−1(η,ξ,µ)

(5.10)

for i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈ {1, 2} and where bk are smooth nonlinear functions. The

structure of (5.10) suggests the feedback transformation




uf

ur

uq



:= D−1(x)







−L4
fα1

−L4
fα2

−L4
fπ



+




vξ1

vξ2

vη






, (5.11)

where (vξ1, vξ2, vη) are auxiliary control inputs. By Lemma 5.5.1 the feedback transforma-

tion (5.11) is well-defined in a neighborhood of every x⋆ ∈ Γ⋆ ∩ {x ∈ R14 : x13 6= 0}. Thus in a

neighborhood of x⋆, the closed-loop system is reduced to 3 decoupled chains of integrators and

88

the nonlinear internal dynamics of the system.

˙ξ11 = ξ12 ˙ξ21 = ξ22 η̇1 = η2 µ̇1 = b1(ξ, η, µ)

˙ξ12 = ξ13 ˙ξ22 = ξ23 η̇2 = η3 µ̇2 = b2(ξ, η, µ).

...
...

...

˙ξ14 = vξ1 ˙ξ24 = vξ2 η̇4 = vη

(5.12)

After applying the coordinate and feedback transformations (5.7), (5.11) to the extended system

the auxiliary controller design is straight forward for the linear subsystems. A linear controller,

similar to the last chapter, can be designed to stabilize the origin of the ξ. Similarly a linear

controller can be designed for the η−subsystem to satisfy G3.

5.6 Internal dynamics

The µ-subsystem represents the internal dynamics

µ̇1(η, ξ, µ) = sec (x2)(x6C1 + x5S1)|x=T−1(η,ξ,µ) ,

µ̇2(η, ξ, µ) = −0.5lx13
JxJz

+
lkrx6
2JxJzd

+
krx4 + x5x6(Jx − Jz)

JxJz

∣∣∣∣
x=T−1(η,ξ,µ)

.
(5.13)

In order to prove boundedness of the internal dynamics (Lemma 5.6.3), we need the following

preliminary results. We first analyze the stability of the set of differential equations involving the

dynamics of the body rates from when the control inputs are set to zero.

Lemma 5.6.1. The origin (x4, x5, x6) = (0, 0, 0) of

ẋ4 = −((Jz − Jy)/Jx)x5x6 − (krx4)/Jx

ẋ5 = −((Jx − Jz)/Jy)x4x6 − (krx5)/Jy

ẋ6 = −((Jy − Jx)/Jz)x4x5 − (krx6)/Jz.

(5.14)

is globally exponentially stable.

89

Proof. We assume, without the loss of generality, that Jx ≥ Jy ≥ Jz, and let

a1 :=
Jy − Jz
Jx

, a2 :=
Jx − Jz
Jy

, a3 :=
Jx − Jy
Jz

k4 :=
kr
Jx
, k5 :=

kr
Jy
, k6 :=

kr
Jz
.

If Jx ≥ Jy ≥ Jz does not hold, a1, a2, a3 can be redefined, so that these constants are non-

negative. With these definitions, (5.14) becomes

ẋ4 = a1x5x6 − k4x4

ẋ5 = −a2x4x6 − k5x5

ẋ6 = a3x4x5 − k6x6.

(5.15)

Equation (5.15) can be written as ẋ = f(x), for x := col(x4, x5, x6). Choose as a candidate

Lyapunov function V : R3 → R

V (x) = x⊤Px := p1x
2
4 + p2x

2
5 + p3x

2
6 (5.16)

where P := diag (p1, p2, p3). If p1, p2, p3 are positive then V is a positive definite quadratic form.

The Lie derivative of V along the vector field (5.15) is

LfV = 2x4x5x6 (a1p1 − a2p2 + a3p3)− 2x⊤ diag (k4p1, k5p2, k6p3)x.

Now choose p1, p2, p3 > 0 so that a1p1 − a2p2 + a3p3 = 0. This is always possible, for example

p1 = Jx, p2 = Jy, p3 = Jz works. In summary we have that

(i) For all x ∈ R3,

min {p1, p2, p3}‖x‖2 ≤ V (x̄) ≤ max {p1, p2, p3}‖x‖2

90

(ii) For all x ∈ R3,

LfV = −2x⊤ diag (k4p1, k5p2, k6p3)x

≤ −2min {k4p1, k5p2, k6p3}‖x‖2

= −2min {k4p1, k5p2, k6p3}
max {p1, p2, p3}
max {p1, p2, p3}

‖x‖2

≤ −2
min {k4p1, k5p2, k6p3}

max {p1, p2, p3}
V (x)

Conditions (i) and (ii) imply, by [78, Theorem 3.1], that x = 0 is globally exponentially

stable.

Next we analyze the stability of the body rate equations and show that they are input-to-state

stable (ISS-stable) [79]. Let k7 := l/2Jx, k8 := −1/dJx, k9 := 1/Jy, k10 := 1/Jz.

Lemma 5.6.2. The system (5.17)

ẋ4 = a1x5x6 − k4x4 + k7x13 + k8u2

ẋ5 = −a2x4x6 − k5x5 + k9u3

ẋ6 = a3x4x5 − k6x6 + k10u2,

(5.17)

is input-to-state stable.

Proof. To be consistent with the notation we used for (5.15), write system (5.17) as ẋ = f(x) +

Bw where w := col (x13, ur, uq). To prove that the system (5.17) is ISS-stable we show that the

function (5.16) is an ISS-Lyapunov function. As in the proof of Lemma 5.6.1, choose p1, p2,

p3 > 0 so that a1p1 − a2p2 + a3p3 = 0. Then Q := diag (k4p1, k5p2, k6p3) and we have

V̇ = −2x⊤Qx+ 2x⊤PBw

= −2(1− θ)x⊤Qx− 2θx⊤Qx+ 2x⊤QBw, (∀ θ ∈ (0, 1))

≤ −2(1− θ)x⊤Qx− 2θmin {k4p1, k5p2, k6p3}‖x‖2 + 2x⊤QBw

≤ −2(1− θ)x⊤Qx− 2θmin {k4p1, k5p2, k6p3}‖x‖2 + 2‖x‖‖Q‖‖B‖‖w‖.

91

Thus

∀ ‖x‖ ≥ ‖Q‖2‖B‖2
θmin {k4p1, k5p2, k6p3}

‖w‖,

V̇ ≤ −(1− θ)x⊤Qx

where θ ∈ (0, 1). This shows, by [80, Theorem 4.19], that (5.17) is ISS stable.

In summary, by Lemmas 5.6.1 and 5.6.2 we have shown that the body rates x4, x5, x6 are

bounded.

Lemma 5.6.3. If the control inputs uf , ur, uq of the quadrotor are bounded and the quadrotor

avoids the gimbal lock condition (x1 = x2 = ±900), then µ̇1 and µ̇2 in (5.13) are bounded.

Moreover, µ2 is bounded.

Proof. By Lemma 5.6.2 we have shown that for any bounded inputs, the body rates x4, x5, x6 are

bounded. By hypothesis the system is bounded away from Euler angle singularities (x1 = x2 =

±900). From the expressions (5.13) we have that

|µ̇1| ≤ sec (x2) (|x5|+ |x6|) ,

|µ̇2| ≤
lkr

2dJxJz
|x6|+

l

2JxJz
|x13|+

kr
JxJz

|x4|+
Jz − Jx
JxJz

|x5||x6|,

|µ2| ≤
1

Jz
|x4| −

l

2dJx
|x6|,

(5.18)

which is bounded because the body rates are bounded and x2 6= 0 during the flight.

In summary, all the goals G1-G5 are achieved. It is interesting to note that the internal state

µ1 which represent the yaw angle may become unbounded. This implies that the quadrotor is

spinning about its body z-axis while traveling along the path, which is not surprising as there is

an imbalance in torques that results when one of the four rotors fails. However, we have shown

that the rate at which the quadrotor spins µ̇1 = ψ̇ is bounded, which is a result of the rotational

drag term about the body z-axis that resists overly fast rotation, regardless of the path traveled.

The result is a physically meaningful path following controller that sacrifices yaw angle control

to maintain path invariance and keep the quadrotor safe when a failure occurs.

92

5.7 Simulation

The initial position of the quadrotor is indicated by a solid dot. The values of kt and kr used in

the simulation are taken from the rotational and translational drag models presented in [57, 81].

We consider a curve at varying height given by sin(x7) + 3 units represented as σ : R → R3,

λ 7→ col(λ, cos(λ), sin(λ) + 3). The implicit representation of the same curve is given by γ =

{s1(y) = s2(y) = 0}, where s1(y) = y2−cos(y1) = 0 and s2 = y3+sin(y1)−3. The quadrotor is

initialized at (x7, x8, x9) = (0, 0.9, 0). The results are shown in Figure 5.1. While following the

0

5

10

15

20

−2

−1

0

1

2
−1

0

1

2

3

4

x7 = x(m)x8 = y(m)

x
9
=

z
(m

)

Figure 5.1: The path followed by the quadrotor is represented by a bold red line and the desired

path is represented by a dashed green line. The initial position of the quadrotor is represented by

a solid dot.

path γ the quadrotor is following the curve at a desired constant speed of 0.3 m/sec, as presented

93

in Figure 5.2.

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

t(sec)

η
2
(m

/
s)

η2

Figure 5.2: The quadrotor is traversing the curve at the desired velocity of 0.3 m/sec.

In Figure 5.3 the internal state µ̇1 is shown. It represents the rate at which the quadrotor is

spinning about its axis which remains bounded.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

t(sec)

µ̇
1
(r
a
d
/
se
c)

µ̇1

Figure 5.3: The yaw rate µ̇1 remains bounded as the quadrotor traverses the desired path.

This controller also requires dynamic extension, and an implementation needs the knowledge

of augmented states ζ1, and ζ2. In ideal or close to ideal situations with none or very little sensor

noise levels, such controllers perform very well. However, in case of very low sensor noise, it

94

should be noted that ζ2 is computed by taking derivative of the thrust, which results in a signal

with a relatively large noisy signal. This noisy signal may degrade the overall performance of

closed loop system significantly in practical scenarios. In the next chapter, we overcome this

issue by adopting a control strategy that does not require dynamic extension, and the need to use

augmented states for controller design.

95

Chapter 6

Controller Class CR for Attitude Tracking

of CV Vehicles

In Chapter 4, and Chapter 5 a monolithic controller design approach is employed which seeks

to stabilize and track all states simultaneously. The result for rigid bodies from the CV class of

vehicles is that the controller relies on dynamic extension, leading to sensitivity to model errors,

and sensor noise. An alternative approach is to design a cascaded control system, also known as

“inner-outer loop” control, wherein the inner-loop stabilizes a rigid body’s attitude, and the outer

loop its position and velocity by requesting desired attitudes (and thrust) from the inner loop. In

an effort to eliminate the sensitivity of these control designs to noise, this chapter proposes an

attitude stabilization and tracking approach for inner loop control that avoids dynamic extension.

Further, the design operates directly on SO(3), eliminating concerns over local chart limitations

such as gimbal lock. A Lie algebra valued function family is presented that induces a class of

geometric controllers on SO(3), for which stability is proven.

96

6.1 Mathematical model

Consider, once again, a rigid body moving in free space. As shown in Chapter 2, the rigid body

dynamics are represented by (2.3), and (2.6), and are given here again for convenience,

d

d t
R(t) = R(t)Ω̂(t) (6.1)

J
d

d t
Ω(t) = τ(t)− (Ω(t)× JΩ(t)). (6.2)

We apply a preliminary feedback to the system

τ = Ω(t)× JΩ(t) + Ju

where u ∈ R3 is an auxiliary control input to be designed. This feedback simplifies (6.2) and we

obtain

Ω̇(t) = u. (6.3)

Given the attitude dynamics of a rigid body (6.1), (6.3) and a desired attitude Rd : [0,∞) →
SO(3) generated by the exogenous system

Ṙd(t) = Rd(t)Ω̂d(t)

Ω̇d(t) = ud(t),
(6.4)

where ud : [0,∞) → R3 is assumed to be continuously differentiable, we seek a feedback

control law for the input u in (6.3) such that R(t) asymptotically approaches Rd(t) when the

initial “tracking error” R(0) − Rd(0) is sufficiently small. We further assume that the reference

frameRd(t) does not move “too quickly” in a sense to be made precise. We allow our controllers

to depend on the plant states R,Ω as well as the exosystem states Rd,Ωd and ud. Thus we call

this an attitude tracking problem with full information. With a slight abuse of notion, we omit

time dependency of R, and Ω̂, unless explicitly mentioned for the sake of simplification of time

dependent expressions of R, and Ω̂ and their derivatives. Next we present some basic, yet useful,

results essential for the controller design section.

97

6.2 Problem formulation

First we present a notion of distance on SO(3). The distance on SO(3) cannot be defined in a

usual Euclidean sense, because SO(3) is a manifold. To compare the “difference” between two

rotation matrices R1, R2 ∈ SO(3), a distance function or a metric on SO(3) can be defined, as

shown in [56] ,

Λ: SO(3)2 → [0, 2
√
2] ⊂ R

+ (6.5)

(R,Rd) 7→ ||I − R⊤
1 R2||F ,

where ||.||F is the Frobenius norm of the matrix. It can be proven that Λ is a metric on SO(3),

see [56] for details. It should be noted that Λ gives a measure of rotation required to apply to R1

to align it with R2.

6.2.1 Problem statement

Consider a rigid body represented by (6.1), (6.3), and an exosystem given by (6.4), there ex-

ists dΛ ∈ [0, 2
√
2), we seek a smooth feedback control law u(R,Rd, Ω̂, Ω̂d) such that if, ||I −

R⊤
d R|| < dΛ for all t ≥ 0, the rigid body satisfies the following tracking goals,

T1 The attitude of the rigid body tracks the desired attitude of the exosystem, ||I−R⊤
d R||F →

0, as t→ ∞.

T2 The body rates of the rigid body tracks the desired body rates of the exosystem, ||Ω −
Ωd|| → 0, as t→ ∞.

T3 The rigid body is capable of performing multiple flips.

We call this the attitude tracking problem. We characterize dΛ precisely in the sections to follow.

98

6.3 Derivatives on SO(3)

The controller design process presented in this chapter requires computing derivatives of certain

function, and some key definitions.

Definition 6.3.1. [5] The matrix exponential function, exp : Rn×n → Rn×n, is defined in terms

of the Taylor series expansion of the exponential,

exp(A) := eA = I + A +
A2

2!
+
A3

3!
+ · · · .

Definition 6.3.2. [5] The matrix log is defined only for matrices close to the identity matrix I ,

Log(X) := (X − I)− (X − I)2

2
+

(X − I)3

3
−+ · · · .

As shown in Chapter 2, the matrix exponential (exp) is an analytic diffeomorphism between

Uso(3) :=
{
ω̂ ∈ so(3) : ω ∈ R

3, ‖ω‖2 < π
}

and

USO(3) := {R ∈ SO(3) : trace (R) 6= −1} .

The inverse of exponential map denoted by Log : USO(3) → Uso(3) is the principle matrix loga-

rithm defined by 6.3.2.

Proposition 6.3.3. Given R ∈ SO(3), and Ω̂ ∈ so(3), satisfying Ṙ = RΩ̂, then

d

d t
(R⊤) =

(
d

d t
R

)⊤

. (6.6)

Proof. Since R ∈ SO(3), by definition,

R⊤R = I,

99

by taking derivate of both sides,

d

d t
(R⊤)R +R⊤Ṙ = 0 (6.7)

d

d t
(R⊤)R = −R⊤Ṙ

d

d t
(R⊤)R = −R⊤(RΩ̂)

d

d t
(R⊤) = −R⊤(RΩ̂)R⊤

d

d t
(R⊤) = −Ω̂R⊤, by associativity of matrix product

d

d t
(R⊤) =

(
d

d t
R

)⊤

.

Proposition 6.3.4. Given R,Rd ∈ SO(3), and Ω̂, Ω̂d ∈ so(3), satisfying Ṙ = RΩ̂, and Ṙd =

RdΩ̂d, then

(i)

d

d t
(R⊤

d R) = (R⊤
d R)Ω̂− Ω̂d(R

⊤
d R),

(ii)

d

d t
(R⊤Rd) = (R⊤Rd)Ω̂d − Ω̂(R⊤Rd),

(iii)

d

d t
(R⊤

d R)−
d

d t
(R⊤Rd) ∈ so(3),

(iv)

d

d t
(RR⊤

d) = RΩ̂R⊤
d − RΩ̂dR

⊤
d ,

(v)

d

d t
(RdR

⊤) = RdΩ̂dR
⊤ − RdΩ̂R

⊤,

100

(vi)

d

d t
(RR⊤

d)−
d

d t
(RdR

⊤) ∈ so(3),

Proof. We prove (i) by taking time derivative of R⊤
d R,

d

d t
(R⊤

d R) = Ṙ⊤
d R +R⊤

d Ṙ, by Proposition 6.3.3

=
(
RdΩ̂d

)⊤
R +R⊤

d

(
RΩ̂
)

= −
(
Ω̂dR

⊤
d

)
R +R⊤

d

(
RΩ̂
)

= −Ω̂d
(
R⊤
d R
)
+
(
R⊤
d R
)
Ω̂, by associativity of matrix product

This completes the proof of (i). Proof of (ii) follows by Proposition 6.3.3. To prove (iii), let

A =
d

d t
(R⊤

d R)−
d

d t
(R⊤Rd).

It can be easily seen that A is a skew symmetric matrix by definition, i.e., A + A⊤ = 0. Hence

A ∈ so(3), which proves (iii). Proofs of (iv), (v), and (vi) are similar to the proofs of (i), (ii),

and (iii), respectively. This completes the proof.

Definition 6.3.5. Let A ∈ R
n×n. Then the sequence {Sn}n≥0 defined by

Sn = I + A+ · · ·An−1

is called the geometric series generated by A. The series converges if the sequence {Sn}n≥0

converge.

Next we state a well known result of linear algebra.

Theorem 6.3.6. [82, Theorem 7.14] The geometric series generated by A ∈ R
n×n converges if

and only if |λi| < 1, for each eigenvalue λi of A. If this condition holds, then I − A is invertible

and we have

Sn :=
n−1∑

k=0

Ak = (I − A)−1(I − An),

101

and hence the series converges to

∞∑

k=0

Ak = (I −A)−1.

Remark 6.3.7. Given R ∈ SO(3), it is easy to check that each eigenvalue of (I − R) is strictly

less than 1, and by Theorem 6.3.6

∞∑

k=0

(I − R)k = (I − I +R)−1 = R−1 = R⊤. (6.8)

Proposition 6.3.8. Let R(t) ∈ SO(3) satisfying

Ṙ(t) = R(t)Ω̂(t),

then d
d t

Log(R(t)) =
(
R⊤
)
Ṙ = Ω̂(t)

Proof. Let I by the 3 by 3 identity matrix. We prove the result by construction, and applying

definition 6.3.2. To simplify notation, time dependency of R and Ω̂ are omitted,

Log(R) = Log(I + (R− I))

=

∞∑

n=1

(−1)n+1

n
(R− I)n

=
(−1)2

1
(R − I) +

(−1)3

2
(R− I)2 +

(−1)4

3
(R− I)3 + · · · ,

102

by taking time derivative of both sides of the equation we get,

d

d t
Log(R) = Ṙ +

(−1)3

2
2(R− I)Ṙ +

(−1)4

3
3(R− I)2Ṙ +

(−1)5

4
4(R− I)3Ṙ + · · ·

=
(
I + (−1)3(R− I) + (−1)4(R− I)2 + (−1)5(R− I)3

)
Ṙ + · · ·

=
(
I + (−1)(R− I) + (−1)2(R− I)2 + (−1)3(R− I)3

)
Ṙ + · · ·

=

(
∞∑

n=0

(−1)n(R− I)n

)
Ṙ

=

(
∞∑

n=0

(−R + I)n

)
Ṙ

=
(
R⊤
)
Ṙ, by (6.8)

=
(
R⊤
)
(RΩ̂)

= Ω̂.

Proposition 6.3.9. Let R(t) ∈ SO(3) satisfying

Ṙ(t) = R(t)Ω̂(t),

then d
d t

Log(R⊤(t)) = −Ω̂(t)

Proof. The proof is similar to the proof of proposition 6.3.8.

Proposition 6.3.10. Given R,Rd ∈ SO(3), and Ω̂, Ω̂d ∈ so(3), satisfying Ṙ = RΩ̂, and Ṙd =

RdΩ̂d, then

(i)

d

d t

(
Log(R⊤

d R)
)
= Ω̂− (R⊤Rd)Ω̂d(R

⊤
d R),

(ii)

d

d t

(
Log(R⊤Rd)

)
= Ω̂d − (R⊤

d R)Ω̂(R
⊤Rd),

103

(iii)

d

d t

(
Log(RR⊤

d)
)
= RdΩ̂R

⊤
d −RdΩ̂dR

⊤
d = AdjRd

Ω̂− AdjRd
Ω̂d,

(iv)

d

d t

(
Log(RdR

⊤)
)
= RΩ̂dR

⊤ −RΩ̂R⊤ = AdjR Ω̂d −AdjR Ω̂,

(v) Each of the derivatives listed above, i.e., (i), (ii), (iii), (iv), is an element of so(3).

Proof. We start by proving (i). Let A = (R⊤
d R). By Proposition 6.3.8, we can write

d

d t
Log(A) =

(
A⊤
)
Ȧ

= (R⊤
d R)

⊤

(
d

d t
(R⊤

d R)

)

= (R⊤Rd)
(
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

)
, by Proposition 6.3.4

= Ω̂− (R⊤Rd)Ω̂d(R
⊤
d R)

= Ω̂−Adj(R⊤Rd)
Ω̂d.

By definitionAdj(R⊤Rd)
Ω̂d ∈ so(3), and so(3) is closed under addition, therefore the above

expression is an element of so(3), which proves (i). The proof of (ii) follows a similar sequence.

To prove (iii), similar to (i), we write,

d

d t

(
Log((RR⊤

d))
)
=
((
RR⊤

d

)⊤)
(

d

d t
(RR⊤

d)

)

= (RdR
⊤)
(
RΩ̂R⊤

d − RΩ̂dR
⊤
d

)
, by Proposition 6.3.4

= RdΩ̂R
⊤
d −RdΩ̂dR

⊤
d

= AdjRd
Ω̂− AdjRd

Ω̂d.

By definition the above expression is in so(3). The proof of (iv) follows the similar sequence of

(iii) and is not included to avoid repetition of the arguments, which proves (v), This completes

the proof.

104

6.4 Function family FR

To solve the attitude tracking problem, we consider a family of function FR. We call this family

FR because it consists of functions that depends only on position, i.e., rotation matrices R, and

Rd.

Definition 6.4.1. A function f : U ⊆ (SO(3))2 → so(3) is said to belong to FR if there exists

an open set U ⊆ (SO(3))2 containing (I, I) such that

P1 It is twice continuously differentiable on U .

P2 f−1(0) = {(R,Rd) ∈ U : R = Rd}.

P3 For all X = (I, Rd, 0, Ω̂d) ∈ U × so(3)2, the differential of d
d t
f(R,Rd) with respect to Ω̂

is non-singular.

Example 6.4.2. Consider the function

f : U ⊆ SO(3)2 → so(3)

(R,Rd) 7→ log(R⊤
d R).

Take the open set U to be

U :=
{
(R,Rd) ∈ (SO(3))2 : trace (R⊤

d R) 6= −1
}
.

Since the matrix logarithm is analytic in U , P1 holds. Also, it’s clear that f−1(0) is the subset

of U in which R = Rd. To check P3, we take the derivative of f . By Proposition 6.3.10

d

d t
f(R,Rd) = Ω̂− (R⊤Rd)Ω̂d(R

⊤
d R). (6.9)

From the expression above it is easy to check that dΩ̂(
d
d t
f(R,Rd)) is non-singular everywhere in

U , satisfying P3. N

105

Example 6.4.3. Consider the function

f : U → so(3)

(R,Rd) 7→ R⊤
d R− R⊤Rd

with

U :=
{
(R,Rd) ∈ SO(3)2 : Λ(R,Rd) < 2

}
.

Similar to Example 6.4.2, one can check that this function satisfies both P1 and P2. Using the

results from Proposition 6.3.4 the first time derivative can be written as,

d

d t
f(R,Rd) =

d

d t
(R⊤

d R− R⊤Rd)

= (R⊤
d R)Ω̂− Ω̂d(R

⊤
d R) + Ω̂(R⊤Rd)− (R⊤Rd)Ω̂d.

(6.10)

which, using property (1.1), can be written as

dΩ̂(
d

d t
f(R,Rd)) = trace(R⊤Rd)I − (R⊤Rd).

It can be seen that {trace(R⊤Rd)I − (R⊤Rd)} ∈ GL(3,R) only when R, is a neighborhood of

Rd. In other words dΩ̂(
d
d t
f(R,Rd)) is non-singular in some neighborhood of Rd, hence P3 is

also satisfied. At R = Rd, {trace(R⊤Rd)I − (R⊤Rd)} = diag(2, 2, 2). N

Some other examples of functions belonging to the family FR are:

1. f = a(R⊤
d R− R⊤Rd), a ∈ R

2. f = R⊤Rd −R⊤
d R

3. f = RR⊤
d − RdR

⊤

4. f = RdR
⊤ −RR⊤

d

5. f = log
(
R⊤
d R
)

106

6. f = a log
(
R⊤Rd

)
, a ∈ R

7. f = log
(
RR⊤

d

)

8. f = log
(
RdR

⊤
)

9. f = log(R)− log(Rd)

10. f = trace(I3×3 − R⊤Rd)(R
⊤
d R −R⊤Rd).

6.4.1 Class CR feedback controllers

Let f be any function in FR. We start by taking the Lie derivative of f ∈ FR along the vector

fields of (6.1), (6.3), (6.4). Formally, this yields

d

d t
f(R,Rd) = (dR f)Ṙ + (dRd

f)Ṙd

= (dR f)RΩ̂ + (dRd
f)RdΩ̂d. (6.11)

Since the control input does not appear we take the second derivative of f ,

d2

d t2
f(R,Rd) = (dR(dR f)) ṘRΩ̂ + (dR f) ṘΩ̂ + (dR(dRd

f)) ṘRdΩ̂d

+ (dRd
(dR f)) ṘdRΩ̂ + (dRd

(dRd
f)) ṘdRdΩ̂d + (dRdf) ṘdΩ̂d

+ (dR f)R
̂̇Ω+ (dRd

f)Rd
̂̇Ωd

= (dR(dR f))RΩ̂RΩ̂ + (dR f)RΩ̂Ω̂ + (dR(dRd
f))RΩ̂RdΩ̂d

+ (dRd
(dR f))RdΩ̂dRΩ̂ + (dRd

(dRd
f))RdΩ̂dRdΩ̂d + (dRdf)RdΩ̂dΩ̂d

+ (dR f)Rû+ (dRd
f)Rdûd.

107

By property P3, dR f is nonsingular when R = I . Therefore, by property P1, it’s invertible in

a neighbourhood of R = I . Thus the feedback controller

û := ((dR f)R)
−1

{
− (dRd

f)Rdûd − (K1f
∨)∧ −

(
K2ḟ

∨
)∧

− (dR(dR f))RΩ̂RΩ̂− (dR f)RΩ̂Ω̂− (dR(dRd
f))RΩ̂RdΩ̂d

− (dRd
(dR f))RdΩ̂dRΩ̂− (dRd

(dRd
f))RdΩ̂dRdΩ̂d − (dRdf)RdΩ̂dΩ̂d

}
, (6.12)

where K1, K2 ∈ R
3×3 are Hurwitz, is well-defined in a neighbourhood of R = I . We call the

control law 6.12 a class CR feedback controller. The overall control scheme is represented by the

block diagram 6.1.

Figure 6.1: Attitude control scheme

Remark 6.4.4. The controller class CR is designed without any local chart. In other words,

the controller is designed directly on the manifold SO(3), therefore the controller class CR is

geometric.

Now we prove the main results.

Theorem 6.4.5. Given rigid body dynamics by (6.1), and (6.3), and an exogenous system satis-

fying (6.4), each controller in the class CR asymptotically stabilizes the rigid body.

108

Proof. Let f(R,Rd) belong to families of function FR. The time derivative of f(R,Rd) is given

by,

d

d t
f(R,Rd) := g = (dR f)RΩ̂ + (dRd

f)RdΩ̂d. (6.13)

We pick a real valued positive define Lyapunov function

V :
(
(SO(3))2 × (so(3))2

)
→ R (6.14)

(R,Rd, Ω̂, Ω̂d) 7→
1

2
||g∨||22 +

1

2
||K1f

∨||22.

We take the derivative of the Lyapunov function,

V̇ = (g∨)⊤
d

d t
g∨ + (K1f

∨)⊤
d

d t
f∨

= (g∨)⊤
{
(dR(dR f))RΩ̂RΩ̂ + (dR f)RΩ̂Ω̂ + (dR(dRd

f))RΩ̂RdΩ̂d

+ (dRd
(dR f))RdΩ̂dRΩ̂ + (dRd

(dRd
f))RdΩ̂dRdΩ̂d + (dRdf)RdΩ̂dΩ̂d

+ (dR f)Rû+ (dRd
f)Rdûd}∨ + (K1f

∨)
⊤
(g∨) .

(6.15)

We apply the controller CR from (6.12) in the above expression,

V̇ = (g∨)
⊤

{
− (K1f

∨)
∧ −

(
K2ḟ

∨
)∧}∨

+ (K1f
∨)

⊤
(g∨)

= (g∨)
⊤
{
− (K1f

∨)−
(
K2ḟ

∨
)}

+ (K1f
∨)

⊤
(g∨)

= (g∨)
⊤ {− (K1f

∨)− (K2g
∨)}+ (K1f

∨)
⊤
(g∨)

= − (g∨)
⊤
(K1f

∨)− (g∨)
⊤
(K2g

∨) + (K1f
∨)

⊤
(g∨)

= − (K1f
∨)

⊤
(g∨)− (g∨)

⊤
(K2g

∨) + (K1f
∨)

⊤
(g∨) , by Proposition A.3.1

= −||
√
K2g

∨||22, by Proposition A.3.2.

(6.16)

Hence, by [80, Theorem 4.1] the system is (at least locally) asymptotically stable.

Theorem 6.4.5 solves the attitude tracking problem, and satisfies T1,T2, and T3.

109

Example 6.4.6. The example is the continuation of Example 6.4.2. Following the controller

design procedure, we take the second derivative of (6.9)

d2

d t2
f(R,Rd) =

̂̇Ω−
{

d

d t
(R⊤Rd)

}
Ω̂d(R

⊤
d R)− (R⊤Rd)

̂̇Ωd(R⊤
d R)

− (R⊤Rd)Ω̂d

{
d

d t
(R⊤

d R)

}
(6.17)

Using results from Proposition 6.3.4, the above equation can be written as,

d2

d t2
f(R,Rd) = û− (R⊤Rd)

̂̇Ωd(R⊤
d R)

−
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}
Ω̂d(R

⊤
d R)

− (R⊤Rd)Ω̂d

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
.

(6.18)

It can be seen that the term multiplied by û is I , therefore by property P1 it is invertible every-

where. The closed form expression of the controller can be written as,

û = (R⊤Rd)
̂̇Ωd(R⊤

d R) +
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}
Ω̂d(R

⊤
d R)

+ (R⊤Rd)Ω̂d

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
− (K1f

∨)
∧ −

(
K2ḟ

∨
)∧

.
(6.19)

It is easy to see that the controller û ∈ CR is not global, because f = log(R⊤
d R) is not de-

fined globally. Precisely, f = log(R⊤
d R) is not defined when trace(R⊤

d R) = −1. On SO(3)

trace(R⊤
d R) = −1 at the following three points,

1. (R⊤
d R) = diag(−1,−1, 1),

2. (R⊤
d R) = diag(−1, 1,−1),

3. (R⊤
d R) = diag(1,−1,−1).

We can consider a set consisting of these three points, and since this set consists of finite ele-

ments, its Lebesgue measure is zero. By Theorem 6.4.5, the controller is asymptotically stable

everywhere except on this set of Lebesgue measure zero, hence the controller is almost globally

asymptotically stable. N

110

Remark 6.4.7. The controller û given in (6.19) is not globally stable. In fact, no continuous time-

invariant feedback controller can globally asymptotically stabilize an equilibrium attitude of a

rigid body, or globally track a reference attitude because of topological obstructions [34, 83].

The strongest stability or tracking property that can be achieved is almost global asymptotic

stability. Informally, almost global asymptotic stability is global asymptotic stability everywhere

excluding a “small” set of zero measure. In terms of global asymptotic stability (or region of

convergence), the controller (6.19) is the best possible controller. Other controllers also belong

to the class CR that enjoys almost global asymptotic property.

Remark 6.4.8. Physically, the condition when trace(R⊤
d R) = −1 happens when the desired

orientation is furtherest apart from the current orientation. In other words, when the distance

metric Λ achieves the maximum value 2
√
2. More intuitively, trace(R⊤

d R) = −1, when, for

example, a rigid body is upside down, and the desired orientation is upright. In local coordinate

(e.g., Euler Angles) this condition happens when the desired orientation is π radians apart in

either roll, pitch or yaw axis.

Example 6.4.9. This example is the continuation of Example 6.4.3. Following the controller

design procedure, we take the second derivative of (6.10)

d2

d t2
f(R,Rd) =

{
d

d t
(R⊤

d R)

}
Ω̂ + (R⊤

d R)
̂̇Ω− ̂̇Ωd(R

⊤
d R)− Ω̂d

{
d

d t
(R⊤

d R)

}

+ ̂̇Ω(R⊤Rd) + Ω̂

{
d

d t
(R⊤Rd)

}
−
{

d

d t
(R⊤Rd)

}
Ω̂d − (R⊤Rd)

̂̇Ωd.

(6.20)

Using results from Proposition 6.3.4, the above equation can be written as,

d2

d t2
f(R,Rd) =

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
Ω̂ + (R⊤

d R)û

− ̂̇Ωd(R⊤
d R)− Ω̂d

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}

+ û(R⊤Rd) + Ω̂
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}

−
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}
Ω̂d − (R⊤Rd)

̂̇Ωd.

(6.21)

111

0 1 2 3 4 5 6 7

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

6

7

8

Figure 6.2: det(D)

Combining the terms involving û, and using the property 1.1, we can write

d2

d t2
f(R,Rd) =

({
trace(R⊤Rd)I − (R⊤Rd)

}
u
)∧ − ̂̇Ωd(R⊤

d R)− (R⊤Rd)
̂̇Ωd

+
{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
Ω̂ + Ω̂

{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}

− Ω̂d

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
−
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}
Ω̂d.

(6.22)

By P3 the matrix
({

trace(R⊤Rd)I − (R⊤Rd)
})

is invertible in some neighborhood of R = I .

Let D :=
({

trace(R⊤Rd)I − (R⊤Rd)
})

. It can be shown that the matrix D is not invertible for

all R,Rd ∈ SO(3), moreover, it loses rank whenever the following conditions hold,

1. trace (R⊤Rd) = 1, and

2. trace (R⊤Rd) = −1.

The condition when D loses rank is shown in Figure 6.2. At the start of the simulation R is

aligned with Rd, i.e., R = Rd. In other words trace(R⊤Rd) = 3, then the rigid body is rotated

112

about any arbitrary axis to 2π. As seen in Figure 6.2. The matrix determinant det(D) goes to

zero, when trace (R⊤Rd) = 1, or trace (R⊤Rd) = −1, and this happens when the rotation value

is ±π/2 or π. Another way to interpret this condition is that, on the distance metric Λ, i.e., D

loses rank whenever Λ = 2 and Λ = 2
√
2. This motivates us to pick a neighborhood around Rd

such that the distance Λ between each point in the neighborhood and Rd is less than 2, i.e,

U :=
{
(R,Rd) ∈ SO(3)2 : Λ < 2

}
.

Using P1 the closed form expression of the controller can be written form (6.22)

û =
({

trace(R⊤Rd)I − (R⊤Rd)
})−1

[̂̇Ωd(R⊤
d R) + (R⊤Rd)

̂̇Ωd

−
{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
Ω̂− Ω̂

{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}

+Ω̂d

{
(R⊤

d R)Ω̂− Ω̂d(R
⊤
d R)

}
+
{
(R⊤Rd)Ω̂d − Ω̂(R⊤Rd)

}
Ω̂d (K1f

∨)
∧ −

(
K2ḟ

∨
)∧]

.

(6.23)

By Theorem 6.4.5, the controller (6.23) is asymptotically stable everywhere on U , and is local.

N

6.5 Almost global controller simulation

In this section we present simulation results of the controller (6.19) presented in Example 6.4.2,

and Example 6.4.6.

6.5.1 Stabilization

First we discuss when Rd is not moving with time. Without loss of generality, let Rd = I .

Starting from an “almost” upside down position, i.e., the initial orientation at t = 0 is R(0) =

exp((π − ǫ)ê1), where |ǫ| ≈ 0 ∈ R is close to zero but not identically zero. The target is to

achieve upright position, i.e., R = Rd = I . It can be seen in Figure 6.3a, that at t = 0 the error

113

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-8

-7

-6

-5

-4

-3

-2

-1

0

(b) Body rates error Ω−Ωd converging to zero

Figure 6.3: Attitude errors

was almost 2
√
2, which in other words is the almost upside down position. Starting from this

maximum error in attitude the error converges to zero. The body rate errors Ω − Ωd about each

body axis also converge to zero, as shown in Figure 6.3b. Finally, we represent the stabilization

of rigid body in terms of Euler angles in Figure 6.4a. It should be noted that Euler angles are

used only for representation purposes, and are not used for control design. As seen in the figure,

at t = 0 the roll angle φ is almost π, and then converges to zero. Figure 6.4b shows the control

effort required to achieve the stabilization task.

Stabilization with noise

Again, we consider the stabilization case, i.e., when the desired rigid body pose Rd is I . We

investigate the tracking errors in the presence of noise. We consider that the rigid body is attached

with an IMU, and a low level processing unit that gives full attitude information, i.e., both Ω and

R, with noise levels used in the simulation based on AscTec pelican noise level from Table 4.1.

This assumption is quite practical, as the quadrotor platform, AscTec, is equipped with such

an IMU, and a low level processing unit that is capable of giving full attitude information at

an update rate of up to 1 KHz. Figure 6.5a, and 6.5b represent attitude and body rates errors

114

0 2 4 6 8 10

0

20

40

60

80

100

120

140

160

180

(a) Euler angles converging to zero

0 2 4 6 8 10

-8

-6

-4

-2

0

2

4

6

(b) Inputs of the system τp, τq, τr

Figure 6.4: Euler angles and system inputs

converging to zero.

6.5.2 Sinusoidal signal tracking

In this section we show simulation results for the tracking case, i.e., whenRd(t) is changing with

time. Starting from an initial pose of R(0) = exp((π/2)ê2), the target is to track the desired

moving reference attitude

Rd(t) = exp ((170◦(π/180) sin(0.005)t)ê1) .

In local coordinates, the initial condition can be interpreted as a pitch angle of π/2, and the

desired reference attitude Rd can be seen as a 170◦ sinusoidal movement about roll axis. It can

be seen in Figure 6.6a that the tracking errors converge to zero. Figure 6.7a shows the rigid

body tracking the sinusoidal signal. Again, the figure shows Euler angles just for the purpose

of demonstration, as it is relatively intuitive to visualize the pose of a rigid body in terms of

Euler angles. It can be seen that the rigid body crosses the gimbal lock point. This is one of the

advantage of this geometric controller: as the controller is designed without selecting a local chart

115

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-15

-10

-5

0

5

10

15

(b) Body rates error Ω−Ωd converging to zero

Figure 6.5: Attitude errors in the presence of noise

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-8

-6

-4

-2

0

2

4

6

8

10

12

(b) Body rates error Ω−Ωd converging to zero

Figure 6.6: Attitude errors

116

0 2 4 6 8 10

-200

-150

-100

-50

0

50

100

150

200

(a) Euler angles converging to zero

0 2 4 6 8 10

-6

-4

-2

0

2

4

6

(b) Inputs of the system τp, τq, τr

Figure 6.7: Euler angles and system inputs

such as Euler angles, singularities such as gimbal lock can be avoided. Figure 6.6b represents all

of the body rates converging to zero. Figure 6.7b shows the control signals required to track the

given sinusoidal signal. As shown in figure, at t = 0 the controller applies body torques up to 6

N.m to follow the desired reference signal.

Sinusoidal tracking with noise

Now we show the simulation results of the controller tracking the same sinusoidal reference atti-

tude Rd(t) = exp ((170◦(π/180) sin(0.005)t)ê1), starting from the same initial attitude R(0) =

exp((π/2)ê2), but in the presence of noise. Figure 6.8a, and Figure 6.8b, represent the errors

converging to zero. It can be seen that even in the presence of noise the controller tracks the

desired attitude signal closely.

117

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-10

-5

0

5

10

15

(b) Body rates error Ω−Ωd converging to zero

Figure 6.8: Attitude errors in the presence of noise

6.5.3 Multiple flips

In this section we show simulation results of the rigid body performing multiple flips. Starting

from an initial pose of R(0) = exp((π/2)ê2), the target is to track the desired moving reference

attitude

Rd(t) = exp (0.05tê1) .

Informally, the controller is capable of performing multiple flips as long as the rigid body is not

moving “too fast”. Formally this is equivalent to saying that the distance between R and Rd

on the metric Λ is less than 2
√
2 for all time, i.e., Λ(R(t), Rd(t)) < 2

√
2. It can be seen in

Figure 6.10 that the rigid body is tracking a time varying signal along the roll axis, and performs

more than six flips, and the attitude error converges to zero as shown in Figure 6.9a. The body

rate errors are shown in Figure 6.9b.

Multiple flips with noise

Next we show the performance of this controller in the presence of noise. Again starting from the

same initial condition R(0) = exp((π/2)ê2), and tracking the same attitude reference Rd(t) =

118

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

(b) Body rates error Ω−Ωd converging to zero

Figure 6.9: Attitude errors

0 2 4 6 8 10

-200

-150

-100

-50

0

50

100

150

200

Figure 6.10: Euler angles showing multiple flips

.

exp (0.05tê1) the target is to track the desired moving reference attitude. Figure 6.11a, and

Figure 6.11b show the attitude and body rates errors converging to zero in the presence of noise.

119

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

(b) Body rates error Ω−Ωd converging to zero

Figure 6.11: Attitude errors in the presence of noise

6.6 Local controller simulation

In this section we present simulation results of the local controller 6.23 presented in Example

(6.4.3), and Example (6.4.9). We call this controller local because the region of convergence of

this controller is in a small neighborhood of the desired point, and not all or almost-all of the state

space. Moreover, we compare this local controller with the local controller we designed using

Euler angles in Chapter 4. Since the tracking performance of this local geometric controller is

similar to the geometric tracking controller except the region of convergence of this controller is

smaller, we provide simulation results only with sensor noise for the case of stabilization, and

multiple flips to avoid repetition of similar looking figures. Throughout this section we select the

same level of sensor noise that we selected in the previous section.

120

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-6

-5

-4

-3

-2

-1

0

1

(b) Body rates error Ω−Ωd converging to zero

Figure 6.12: Attitude errors in the presence of noise

6.6.1 Stabilization with noise

First we discuss when Rd is constant. Again, without loss of generality, let Rd = I . The rigid

body is initialized at,

R(0) = exp
(
60

π

180
ê1 + 30

π

180
ê2 + 15

π

180
ê3

)
.

The target is to achieve an upright position, i.e., R = Rd = I . It can be seen in Figure 6.12a, that

at t = 0 the error was almost 1.6 on the metric Λ. It should be noted that for all time the tracking

error has to be less than 2, unlike the almost-global case when the tracking error can be less than

2
√
2. Figure 6.12b represents the body rate errors converging to zero.

6.6.2 Multiple flips with noise

In this section we show simulation results of the rigid body performing multiple flips in the

presence of sensor noise. Although this controller is local, it can perform multiple flips, unlike a

local controller designed using a local chart such as Euler angle. Starting from an initial pose of

121

0 2 4 6 8 10

0

0.5

1

1.5

(a) Rotation matrix error converging to zero

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

(b) Body rates error Ω−Ωd converging to zero

Figure 6.13: Attitude errors in the presence of noise

R(0) = exp(60(π/180)ê1), the target is to track the desired moving reference attitude

Rd(t) = exp (0.05tê1) .

Similar to the almost global case, the controller is capable of performing multiple flips as far as

the rigid body stays “close” to the desired target. The only difference is that in this local case the

distance betweenR andRd on metric Λ needs to be less than 2 for all time, i.e., Λ(R(t), Rd(t)) <

2, unlike the almost global case when the distance between R and Rd on metric Λ needs to be

less than 2
√
2. Similar to the simulation of almost global controller, it can be seen in Figure 6.14

the rigid body is tracking a time varying signal along roll axis, and perform more than six flips,

and the convergence of attitude error to zero is shown in Figure 6.13a. The body rate errors are

shown in Figure 6.13b.

This simulation demonstrates an important point which is, although this controller is local

yet it allows the system to perform flips or multiple flips. However, it is not possible if a smooth

controller is designed using a local chart such as Euler angles. This local simulation highlights

another important point that the controller class CR contains a rich collection of both almost

global and local controllers, and depending on an application a designer can pick a suitable con-

122

0 2 4 6 8 10

-200

-150

-100

-50

0

50

100

150

200

Figure 6.14: Euler angles showing multiple flips

.

troller from this class of controllers. This make our geometric controller class CR a broader class

compared to the geometric controllers proposed in [45]. The characteristics of each controller

form this controller class such as noise sensitivity, and robustness is a future work. In summary,

we have solved the attitude tracking problem and show by simulation results in the presence of

noise as well that the rigid body satisfies T1,T2, and T3.

123

Chapter 7

Application of CR Controller Class on CV
Class of Vehicles

In this chapter we consider the class of vehicles CV , and design a controller that enables each

vehicle belonging to the class CV to track a given desired curve. We follow the inner-outer loop

control strategy, see [84, 85, 42, 15]. Generally, the inner loop runs at a faster rate, compared to

the outer loop in a typical inner-outer loop control framework. In our case, inner loop represents

the attitude of the rigid body, and we use the controller class CR for attitude control designed in

Chapter 6. This chapter focus on outer loop. Specifically, we design a controller for the outer

loop, and demonstrate through simulations that it works with the controller class CR. The overall

scheme of the inner-outer loop controller is summarized by Figure 7.1. The outer loop, also

called the position loop, assigns a desired attitude Rd to the controller class CR, and a thrust

command τf to the translational dynamics. The controller class CR assigns body torques to the

attitude dynamics.

124

Position

control
Attitude

dynamics

Translational

dynamics

Figure 7.1: Block diagram showing inner-outer loop control scheme

7.1 Tracking position control

Consider the translational dynamics of the rigid body (2.7), repeated here for convenience,

χ̇ = v

v̇ = gb3 −
1

m
utRb3.

We assume that a desired trajectory, parameterized by time, that needs to be followed is given in

three dimensional space, such that the desired position, desired velocity, and desired acceleration

is given by χd(t), χ̇d(t), χ̈d(t), respectively. The time dependency of the desired position, desired

velocity, and desired acceleration is removed for the simplification of expressions, whenever

obvious from the context. We define eχ := χ − χd, and ev := v − χ̇d. By taking the time

derivative of eχ,

ėχ = χ̇− χ̇d

ev = v − χ̇d.
(7.1)

By taking the second derivative of the above expression, we can write,

ėv = v̇ − χ̈d

= gb3 −
1

m
utRb3 − χ̈d.

(7.2)

Let,

T := − 1

m
utRb3. (7.3)

125

Using (7.2), and (7.3), the translational dynamics (2.7) can be expressed in terms of error coor-

dinates,

ėχ = ev

ėv = gb3 + T − χ̈d.
(7.4)

It is easy stabilize the origin of the above system. For example by selecting

T = −gb3 + χ̈d − k1eχ − k2ev, (7.5)

for some positive k1, and k2, the system (7.4) takes the form,

ėχ = ev

ėv = −k1eχ − k2ev.
(7.6)

It is easy to see that the above system is asymptotically stable.

7.1.1 Thrust and attitude extraction

It should be noted that the control input of the error dynamics (7.4) is T ∈ R3. We need to

extract the actual control input of the rigid body ut ∈ R. We assume that mass of the rigid is

m, and thrust produced by the propeller mechanism ut of each vehicles in CV is strictly positive.

Consider (7.3),

T = − 1

m
utRb3

‖T‖ = ‖ − 1

m
utRb3‖

‖ − gb3 + χ̈d − k1eχ − k2ev‖ =
1

m
ut‖Rb3‖, m, ut > 0

‖ − gb3 + χ̈d − k1eχ − k2ev‖ =
1

m
ut, ‖Rb3‖ = 1

m‖ − gb3 + χ̈d − k1eχ − k2ev‖ = ut.

(7.7)

It should be noted thatRb3 represent the third column of the rotation matrix, which has unit norm

by definition. This completes the thrust extraction part.

126

Next we extract the desired attitude Rd ∈ SO(3) from the control definition T . Let Rd :=

col(bd3 , bd1 , bd3) ∈ SO(3) be the desired attitude. Intuitively, the z-axis of the desired reference

frame (or in other words, the third column vector ofRd) must align with the z-body axis. Another

way of saying this is, b3d must align with the thrust produced by the rigid body. Therefore, we

pick

b3d := − T

‖T‖ = Rb3. (7.8)

This leaves us to pick two more columns of the desired rotation matrix Rd. There are infinitely

many choices to pick the other two columns of the desired rotation matrix. Let vd ∈ R3 be an

arbitrary vector of unit length such that 〈vd, b3d〉 6= 0, then we pick

b1d :=
T

‖T‖ × vd,

and

b2d := − T

‖T‖ × b1d .

By definition Rd = col bd1 , bd2 , bd3 ∈ SO(3). This completes the attitude extraction part.

Remark 7.1.1. It can be seen that the controller (7.5) asymptotically stabilizes the translational

subsystem (2.7), and the controller class CR, designed in Chapter 6, stabilizes the rotational

subsystem (2.3), (2.6). In general, asymptotic stability of each subsystem does not guarantee

asymptotic stability of over all (cascade) system, see [86, 20, 85, 18]. However, for the system

under study, i.e., rigid body, the rotational dynamics are “faster” compared to translational

dynamics, and it has been practically demonstrated by researches, see [15, 16, 87, 52, 72], that

given each subsystem is asymptotic stability the overall (cascade) system remains stable under

reasonable maneuvers. In other words, as far as the attitude control loop runs at a sufficiently

higher rate (about 5 times the speed of the translational loop or more), the over all system

practically demonstrate stable behavior.

Although, asymptotic stability of the overall system, i.e., both translational and rotational

subsystem is an interesting theoretical problem but is not very critical for the case of rigid body

127

control. The main reason is the attitude dynamics, and the sensor update rate of attitude loop, is at

least five to ten times higher than the translational loop. Most practical systems are attached with

an IMU that provides an update rate of 1 KHz. On the other hand, the translation states are either

updated by a GPS which provides an update rate of 10 Hz to 50 Hz, or an indoor positioning

system with an update rate of 100 Hz to 150 Hz. The faster attitude dynamics provide a control

design separation. i.e., one can design control of each subsystem without worrying about the

overall stability of the cascade system. We will not discuss the overall stability of the connected

system, i.e., stability of the cascade system as cascade control is beyond the scope of this thesis,

and is left as a future research topic. Since the attitude dynamics are faster compared to the

translational dynamics, one can design any translational or outer loop controller, even a standard

PID controller [15], and by selecting any controller from the controller class CR, one can achieve

desired tracking performance. In the next section we design a translational controller using the

control design procedure discuss in Chapter 3, 4.

7.2 Path following position control

In the last section the controller (7.5) allows the rigid body to track a trajectory parameterized by

time. In this section, instead of tracking a function parameterized by time the goal is to follow

a path specified as a function of state variables. Let rij be the ith row and jth column entry of

R ∈ SO(3) for i = {1, 2, 3}, and j = {1, 2, 3}. The translational subsystem (2.7) can be written

as,

ẍ =
ut
m
(r13), (7.9)

ÿ =
ut
m
(r23), (7.10)

z̈ = −g + r33
m

(ut). (7.11)

We design the position controller in two steps. In the first step we design a path following height

controller, and in the second step we design a controller that performs path following in the x−y

128

plane.

7.2.1 Height controller

To control the height dynamics given by (7.11), we stabilize a path as a function of z

fz : R → R (7.12)

z 7→ fz(z),

such that the function fz is at least C1. It should be noted that fz(z) is a function of state

variable z, and not time. We design the controller by following a procedure similar to one used

in Chapter 3, Chapter 4, and Chapter 5. By taking the second derivative of fz the control input

ut appears,

f̈z =
∂2fz
∂z2

ż +
∂fz
∂z

[
−g + r33

m
ut

]
(7.13)

for r33 6= 0, and by selecting

ut =

[
m

r33
+ g +

1

∂fz/∂z

(
∂2fz
∂z2

ż + uz

)]
. (7.14)

Let ξz1 := fz and ξz2 := ḟz. By following the procedure in [13, 32, 46], by some diffeomorphism

the height dynamics can be represented as,

ξ̇z1 = ξzz (7.15)

ξ̇z2 = uz (7.16)

The above system is a linear double integrator system, and following proofs similar to Chapter 4,

it can proven that the system is exponentially stable by some appropriate choice of uz.

7.2.2 x− y Position controller

The x − y position dynamics is given by (7.9), and (7.10). We assume that the trust control

input ut is already selected by the height controller stage, and for x−y position stage the control

129

inputs are r13, and r23. To this end designing a tracking controller for this simple subsystem,

given by (7.9), and (7.10), is straightforward, however we seek a path following controller. We

pick two functions

αi : R
2 → R (7.17)

(x, y) 7→ αi(x, y),

for i = {1, 2}. Let the gradient vectors be represented by

dxyαi := col

(
∂αi
∂x

,
∂αi
∂y

)
,

i = {1, 2}. We assume that span{dxyα1, dx,yα2} = R2. With a slight abuse of notation, (7.9),

and (7.10) can be written in the control affine form

ẋ = f(x) + g1(x)r13 + g2(x)r23, (7.18)

where, x := col(x, y, vx, vy), f(x) := col(vx, vy, 0, 0), g1(x) := col(0, 0, ut/m, 0), and g2(x) :=

col(0, 0, 0, ut/m). By following a reasoning similar to Section 4.4, it is easy to see that control

inputs r13, r23 appear by taking second derivatives of functions αi, i.e., Lgjαi = 0, for i = {1, 2},

and j = {1, 2}, and the decoupling matrix is given by,

D(x) =



Lg1Lfα1 Lg2Lfα1

Lg1Lfα2 Lg2Lfα2


 =

ut
m




∂α1

∂x
∂α1

∂y

∂α2

∂x
∂α2

∂y


 . (7.19)

Direct computations give

det(D(x) =
(ut
m

)2 [〈
dxyα1, (dxyα2)−π/2

〉]
, (7.20)

where (dxyα2)−π/2 represents the vector dxyα2 rotated by −π/2. Since span{dxyα1, dx,yα2} =

R2, this implies that the decoupling matrix (7.19) is non singular whenever ut 6= 0. To this end,

a path following controller for the x− y position can be easily designed similar to Section 4.4.

130

7.3 Simulation results

In this section we present simulation results for each of the outer loop controllers presented in

this chapter with the inner loop controller class CR. In the presence of sensor noise, we present

results under two cases: in the first case the outer loop controllers demands the vehicle to move at

a normal speed, while in the other case the vehicle is required to perform aggressive maneuvers.

For the simulation purposes, we use the global tracking controller from the controller class CR.

7.3.1 Tracking position control

In the first simulation, the system is required to track a unit circle at a relatively low speed in the

presence of practical sensor noise. Roughly, the system is required to traverse the unit circle at a

speed of 1.2m/sec. Figure 7.2a shows a 2D view of the system tracking the desired unit circle.

The desired circle is shown with the green line, and the system’s actual trajectory is shown by

the red line. The initial position is represented by a solid red dot. The figure shows that when

the system is initialized in the neighborhood of the desired trajectory it converges, and tracks it.

Figure 7.2b shows the system follows the given trajectory in 3D. The position controllers assigns

a desired attitude, and body rates to the inner loop. As seen in Figure 7.3a, and Figure 7.3b, the

rotation matrix error, and body rates error converge to zero. Figure 7.4 shows the desired and

actual attitude commands (in terms of local coordinates). It is interesting to see that tracking

controller assigns an attitude command of ±10◦ to track the circle at the desired slow speed. As

seen from the figure the controller belonging to the class CR tracks the desired angles with an

error of less than a degree.

In the second case, we test the same outer loop tracking controller, on the same trajectory,

i.e., unit circle in the presence of noise, but this time it is required to follow the trajectory at a

relatively aggressive speed of 3.3 m/sec. As shown in Figure 7.5a, and Figure 7.5b, the system

tracks the desired trajectory. Moreover, Figure 7.6a, and Figure 7.6b shows the attitude and body

131

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Tracking the desired path, planar view

0

2

5

1 2

10

0

15

0
-1

-2 -2

(b) Tracking the desired path, 3d view

Figure 7.2: Translational errors in the presence of noise

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(a) Rotation matrix error converging to zero

0 5 10 15 20 25 30

-20

-15

-10

-5

0

5

10

15

20

25

(b) Body rates error Ω−Ωd converging to zero

Figure 7.3: Attitude errors in the presence of noise

132

0 5 10 15 20 25 30

-20

-10

0

10

20

30

40

50

60

Figure 7.4: Desired and actual attitude, represented in local coordinates

rates error converge to zero. It can be seen in Figure 7.7 that in order to track the unit circle at the

desired speed the system outer loop or the tracking controllers assigns larger attitude commands

(i.e., in terms of Euler angles about ±40◦). The inner loop controller belonging to the controller

class CR tracks the desired signal in a satisfactory manner (with an attitude error of few degrees).

It should be noted that since the desired attitude angles are large, most of linear controller may

fail to perform attitude tracking.

7.3.2 Path following position control

Now we present simulation results for the outer loop path following controller. Similar to the

previous case, the outer loop path following controller assigns a desired attitude command to

the inner loop attitude tracking controller belonging to the class CR. In the first case the unit

133

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Tracking the desired path, planar view

0

2

2

4

1 2

6

8

0

10

12

0
-1

-2 -2

(b) Tracking the desired path, 3d view

Figure 7.5: Translational errors in the presence of noise

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(a) Rotation matrix error converging to zero

0 5 10 15 20 25 30

-20

-15

-10

-5

0

5

10

15

20

(b) Body rates error Ω−Ωd converging to zero

Figure 7.6: Attitude errors in the presence of noise

134

0 5 10 15 20 25 30
-80

-60

-40

-20

0

20

40

60

80

Figure 7.7: Desired and actual attitude, represented in local coordinates

circle is required to follow at a relatively slower speed, about 1.2 m/sec in the presence of sensor

noise. Figure 7.8a, and Figure 7.8b shows the system following the desired path. Compared to

the tracking case, it can be seen that the controller performance is quite similar at low speeds.

Figure 7.9a, and Figure 7.9b show rotation matrix, and body rates errors. Similar to the outer

loop tracking case, it can be seen in Figure 7.10 that the outer loop path following controller

assigns small desired attitude commands (in terms of Euler angles ±10◦) to the inner loop, and

the controller tracks the desired attitude commands within an error of less than a degree.

Now we test the outer loop path following controller at relatively higher speed around (3.3

m/sec). It can be seen from Figure 7.11a, and Figure 7.11b that at higher speed the outer loop

path following controller follows the curve “closely” when compared to the tracking controller.

The attitude errors and body rate errors are shown in Figure 7.12a, and Figure 7.12b, respec-

tively. It is interesting to note that (see Figure 7.12a) in this case, the attitude error is around

135

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Tracking the desired path, planar view

0

2

5

1 2

10

0

15

0
-1

-2 -2

(b) Tracking the desired path, 3d view

Figure 7.8: Translational errors in the presence of noise

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(a) Rotation matrix error converging to zero

0 5 10 15 20 25 30

-20

-15

-10

-5

0

5

10

15

20

(b) Body rates error Ω−Ωd converging to zero

Figure 7.9: Attitude errors in the presence of noise

136

0 5 10 15 20 25 30

-20

-10

0

10

20

30

40

50

60

Figure 7.10: Desired and actual attitude, represented in local coordinates

0.1 units at steady state, while in the tracking case (as seen in Figure 7.6a) the attitude error is

around 0.2 units. Therefore, in terms of attitude error the outer loop path following controller

is better compared to outer loop tracking controller. Similar to the outer loop tracking case at

higher speed, it can be seen in Figure 7.13 that the path following outer loop assigns an attitude

command of around ±40◦. As shown in the figure the inner loop controllers tracks the desired

attitude commands with an attitude error of up-to few degree.

In summary, as shown by the simulation results, the path following outer loop controller

performs better compared to the trajectory tracking outer loop controller in terms of attitude

tracking error. We show through simulation that, since the attitude loop operates at a higher rate

compared to the outer loop, the overall system exhibits stable behavior. Theoretically, the overall

stability of the system is a cascade control problem which is beyond the scope of this thesis, and

is left as a future direction.

137

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Tracking the desired path, planar view

0

2

5

1 2

10

0

15

0
-1

-2 -2

(b) Tracking the desired path, 3d view

Figure 7.11: Translational errors in the presence of noise

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

1.2

(a) Rotation matrix error converging to zero

0 5 10 15 20 25 30

-20

-15

-10

-5

0

5

10

15

20

(b) Body rates error Ω−Ωd converging to zero

Figure 7.12: Attitude errors in the presence of noise

138

0 5 10 15 20 25 30
-60

-40

-20

0

20

40

60

Figure 7.13: Desired and actual attitude, represented in local coordinates

139

Chapter 8

Conclusion and Future Work

In this chapter we briefly summarize the main highlights of the thesis, and conclude some of

the limitations and advantages of the controller design procedure adopted in this thesis. Both

geometric and local controllers lead to interesting future directions, and we conclude this chapter

on the future work note.

8.1 Conclusion

In this thesis we consider the motion control problem of the CV class of vehicles which includes

satellites, quadrotors, under water vehicles, and tail sitting vehicles. Informally, the motion

control problem is the following: given each vehicle from the class CV , and given a “curve” in

the three dimensional space, the task is to follow the curve using the control inputs. We treat the

curve either as a path (parameterized by a path parameter), or as a trajectory (parameterized by

time). In this thesis we consider the motion control problem under two settings: a local controller

design problem, and a global (or geometric) control problem. We call the motion control problem

local when the system’s model is represented by some local chart such as Euler angles, and

140

call the motion control problem a geometric control problem when the system dynamics are

represented without any local chart, or directly on SO(3).

Broadly, in this thesis, we solve the motion control problem in two ways: a path following

approach, and a trajectory tracking approach. In the path following problem we not only consider

the path parameterized by the path parameter, but also treat the problem in a unified setting. In

other words, under path following setting, we do not divide the problem into the so-called “inner

loop” and “outer loop” approach. A set stabilization approach is used to solve the path following

problem for the class of vehicles CV . Before presenting the path following problem for the class

of vehicles, we present, in Chapter 3, how a path following controller is design for a planar mobile

robot using the path following and set stabilization approach. This chapter has two purposes: first

it explains the controller design process by considering a system with much “simpler” dynamics

compared to CV , and second, it highlights the important fact that although the controller is based

on the concept of feedback linearization the controller enjoys precise path following when tested

on a real platform. Again, most of the theoretical contributions of this chapter is part of the

author’s masters work, but the practical implementation is part of the author’s doctoral work.

Chapter 4 presents a novel path following controller for CV . Moreover the controller is de-

signed when the system dynamics are represented by a local chart, i.e., Euler angles. The path

following controller is based on the idea on set stabilization which allows path invariance. In-

formally, path invariance means once the system is on the path it will never leave the path. This

controller allows each vehicle belonging to the class of vehicle to follow a broad class of both

closed and non-closed curves. Although, this path following controller provides invariance prop-

erty, it suffers two limitations. The first limitation is gimbal lock, which arises because of the

choice of Euler angles as a local chart. The second, practical, limitation is that the control de-

sign procedure requires dynamic extension. Dynamic extension requires finding two derivatives

of the thrust input, and treating thrust input and rate of change of thrust input as system states.

The derivatives of the thrust input (already a noisy signal) are even more noisy which, although

141

proven to be practically working well on a ground robot despite this, makes the controller for

CV practically less feasible. We believe that practically, with low-noise sensors and careful state

observer design, the controller could be used on real CV class of vehicles.

Chapter 6 addresses both limitations, i.e., gimbal lock, and sensitivity to noise caused by

dynamics extension. Gimbal lock is avoided by treating the geometric version of the problem.

Secondly, we adopt an inner-outer loop control design approach which eliminates the need to

perform dynamic extension. The heart of the inner-outer loop motion control design problem is

the inner loop control, which is the focus of this chapter. To solve the inner loop control problem,

we propose a novel family of functions FR, which induces a novel geometric class of controllers

CR. The controller class CR consists of both global and local controllers that stabilize CV . We

show in simulation that this controller class is capable of performing better in the presence of

noisy sensor data compared to the controllers that require dynamic extension. Moreover, the

geometric nature of the controller class CR allows the class of vehicle CV to perform multiple

flips.

For the class of vehicles CV under study, the inner loop or attitude dynamics are “faster”

compared to the outer loop or translational dynamics. This faster inner loop dynamics make

the so-called separation principle hold, which means one can design an asymptotically stable

outer loop controller and use it with an asymptotically stable inner loop controller without direct

consideration of overall stability of the full system. This is not strictly true, as if both the inner

loop and outer-loop are asymptotically stable, the overall system can be unstable [20]. However,

as practically previously demonstrated, such as in [15], under reasonable assumption, i.e., if the

inner-loop is running at least two to three times faster than the outer loop, the overall system

exhibits stability. In Chapter 7 we design two asymptotically stable outer loop controllers and

demonstrate in simulation that these controllers work well with the geometric controller class CR
even in the presence of sensor noise.

142

8.2 Future work

In this section we informally discuss some of the future research directions that stem from the

work considered in this thesis.

8.2.1 Function family FR,Ω

In Chapter 6 we propose a family of functions FR, i.e., a family that depends only on positions

R, here we propose another novel family of functions that depends both on positions (R,Rd), and

velocities (Ω̂, Ω̂d), and represent this family by FR,Ω. In other words FR,Ω consists of functions

that depend on all the state information, i.e, all positions and velocities. Let X = (R,Rd, Ω̂, Ω̂d)

denote a point in (SO(3))2.× (so(3))2.

Definition 8.2.1. Let fΩ be a velocity error, and fR ∈ FR. A function

f : U ⊆ (SO(3))2 × (so(3))2 → so(3)

(fΩ, fR) 7→ fΩ + fR

is said to belong toFR,Ω if there exists an open setU ⊆ (SO(3))2×(so(3))2 containing (I, I, 0, 0)

such that

A1 It is continuously differentiable on U .

A2 For all (R,Rd, 0, Ω̂d) ∈ U , the differential f with respect to Ω̂ is non-singular.

A3 fΩ is a compatible velocity error with fR.

Precise definitions of velocity error and compatible velocity errors are part of future work,

along with controller design, and stability proof.

Some other examples of functions belonging to the class FR,Ω are

143

1. f = Ω̂d − Ω̂ + log
(
R⊤Rd

)

2. f = Ω̂− AdjR⊤

d
R Ω̂d + log

(
R⊤
d R
)

3. f = Ω̂− AdjR⊤

d
R Ω̂d +R⊤

d R −R⊤Rd

4. f = Ω̂− Ω̂d + a(R⊤
d R −R⊤Rd), a ∈ R

5. f = trace(I3×3 − R⊤Rd)
(
Ω− AdjR⊤

d
R Ω̂d + log

(
R⊤
d R
))

This problem is theoretically novel and interesting because it is like partial feedback linearization

but on manifolds, and this requires careful handling of notions such as vector relative degree,

internal dynamics, and zero dynamics.

8.2.2 Stability of the cascade system

The controller class CR described in Chapter 6 asymptotically stabilizes the attitude dynamics (in-

ner loop) of the rigid body, while the position controllers presented in Chapter 7 asymptotically

stabilize the translational dynamics (outer loop) of CV . As highlighted in Chapter 7, although

both subsystem are asymptotically stable this does not guarantee stability of overall system. This

leads to an interesting theoretical cascade control problem, which is proving stability of the over-

all system when each subsystem is asymptotically stable. The problem can be approached in

two ways. The first approach is to use the so called standard techniques of cascade control that

involve proving one of the subsystem to be input to state stable, for more details see [20, 88, 21].

The second approach is to solve the attitude control problem as a geometric set stabilization

problem, which would be a nontrivial task. In other words, this requires proving the controller

class CR using set stabilization, and then using reduction theorems, and nested set scheme, as

described by [84], to prove stability of the overall system. The main challenge in both cases

would be the geometric analysis for the whole controller class. Moreover, in the second case

144

the problem is defined on a non-compact set, while the standard reduction theorems deal with

compact sets. This leads to an interesting novel research problem.

8.2.3 Geometric path following

Chapter 4 presents a path invariant controller for the rigid bodies that does not require additional

stability tools as the problem was solved in a unified approach. However, as discussed before, one

of the limitation of the controller was the gimbal lock which arises because the system’s dynamics

were represented in local coordinates. One way to avoid gimbal lock is to consider a geometric

version of the problem. It is our conjecture that the system still needs dynamics extension, or

it would be required to add virtual states to the system. This would require one to check the so

called “vector relative degree” of a system defined on a manifold, which is a challenging and

nontrivial task at this point. Moreover, rest of the analysis would require geometric tools and

may leads to a novel and almost-global path following controller.

8.2.4 Practical implementation

A natural extension of the work considered in this thesis is to implement controllers from each

controller class on an actual platform such as a quadrotor, or an underwater vehicle. This task is

quite challenging in its own ways, as these controller are novel and have never been tested and

implemented on a real platform. This can lead to more interesting practical questions. Moreover,

investigating robustness of these controllers, or stability of these controller with a geometric filter

would be an interesting and practical research direction.

145

Appendix A

Basic Concepts and Notations

This Appendix reviews some of the basic concepts used in this proposal document. Some defini-

tions from algebra, analysis and differential geometry are very briefly reviewed that is used peri-

odically in this book. The purpose of this appendix is to give an informal and intuitive review of

some of the basic tools used in this proposal. These concepts are taken from [4, 80, 5, 66, 61, 2].

A.1 Review of Algebra, Analysis and Differential Geometry

Informally a map is an operator taking elements from its domain, and generating elements in its

co-domain. Let U and V be open subsets of Rn and Rm respectively. A function f is sometimes

called a mapping, and we say that f maps a domain element a ∈ U to its codomain element

b ∈ V , sometimes called the image of a. In symbols, we might write f : U → V and f : a 7→ b.

Surjective, injective and bijective maps are the basis properties of maps.

Definition A.1.1. A map f : U ⊆ Rn → V ⊆ Rm is surjective or onto if for each y ∈ V there

exist at least one x ∈ U such that f(x) = y.

146

Definition A.1.2. A map f : U ⊆ Rn → V ⊆ Rm is injective or one-to-one if, x1, x2 ∈
U, f(x1) = f(x2) implies x1 = x2.

Definition A.1.3. A map f : U ⊆ Rn → V ⊆ Rm is bijective if it is both injective and surjective.

Definition A.1.4. A group G is a set with a binary operation (.) : G × G 7→ G, such that the

following properties are satisfied:

1. associativity: (a.b).c = a.(b.c) for all a, b, c ∈ G

2. ∃ an identity element e such that e.a = a.e = a for all a ∈ G

3. ∀a ∈ G there exists an inverse a−1 such that a.a−1 = a−1.a = e

Definition A.1.5. A homomorphism between groups, φ : G 7→ H , is a map which preserves the

group operation

φ(a.b) = φ(a).φ(b).

Definition A.1.6. An isomomorphism is a homomorphism that is bijective.

Smooth Manifold and Smooth Maps Roughly speaking, manifolds are, locally, vector spaces

but are globally curved spaces. For example the surface of a sphere is “locally flat” but glob-

ally curved and globally the surface of a sphere is not a vector field. Although manifolds re-

semble Euclidean spaces near each point (“locally”), the global structure of a manifold may be

more complicated. For example, any point on the usual two-dimensional surface of a sphere is

surrounded by a circular region that can be flattened to a circular region of the plane, as in a

geographical map. However, the sphere differs from the plane.

Let U and V be open subsets of Rn and Rm respectively. A mapping f : U 7→ V is called

smooth if f is differentiable and the derivative of the map ∂f/∂x is continuous. In this case the

function f is of class C1. If f is rth order differentiable and ∂rf/∂x is continuous then we say f

is of class Cr. If f is smooth for all finite r then we say f is smooth or of class C∞.

147

Definition A.1.7. A map f : U ⊂ Rn → V ⊂ Rm is diffeomorphism if f is a homeomorphism

(i.e., a one-to-one or injective continuous map with a continuous inverse) and if both f and f−1

are smooth.

Definition A.1.8. A subset M ⊂ R
k is called a smooth manifold of dimension m if for each

x ∈ M there is a neighborhood W ∩M , where W ⊂ Rk, that is a diffeomorphic to an open

subset U ⊂ Rm

A unit circle S1 ⊂ R2 defined by {(cos θ, sin θ)}, θ ∈ [0, 2π] is an example of a manifold. A

submanifold is simply a smaller manifold inside a larger manifold.

Definition A.1.9. A manifold M is said to be an invariant manifold if whenever y ∈ M and

t0 ≥ 0, we have

φ(t, y, t0) ∈M,

Theorem A.1.10. (Inverse Function Theorem [66]) Let U be an open subset of Rn and f : U →
R
n, a C∞ mapping. If the Jacobian, dfx⋆, is nonsingular at some x⋆ in U , then there exists an

open neighborhood V of x⋆ in U such thatW = f(U) is open in Rn and f |V is a diffeomorphism

onto W .

Regular Values Let f : M → N be a smooth map between manifolds of same dimensions.

A point x ∈ M is said to be a regular point of f if the derivative Dfx is nonsingular. If x is

a regular point it follows from the inverse function theorem that f maps a neighborhood of x

diffeomorphically onto a neighborhood of y = f(x).

Definition A.1.11. Given a map f : M → N , y ∈ N is said to be a regular value if every point

in the set f−1(y) is a regular point.

148

A.1.1 Vector fields and their Derivatives

A vector field is an assignment of a vector to each point in a subset of Euclidean space. A vector

field in the plane for instance can be visualized as an arrow, with a given magnitude and direction,

attached to each point in the plane. Vector fields are often used to model speed and direction of

a moving objects throughout space, for example speed and direction of a mobile robot. The

following demonstrates the notion of vector field,

f(x) =




x23

x2

1 + x21



=
∂x23
∂x1

+
∂x2
∂x2

+
∂(1 + x21)

∂x3
. (A.1)

The Lie derivative also called the direction derivative evaluates the change of a vector field

along the flow of another vector field. This change is coordinate invariant and therefore the Lie

derivative is defined on any differentiable manifold.

Definition A.1.12. Consider a vector field f and a real valued function,

λ : U ⊆ R
n → R, (A.2)

the derivative of λ along f is a function Lfλ : U → R defined as

Lfλ(x) := 〈dλ(x), f(x)〉 = ∂λ

∂x
f(x) =

n∑

i=1

∂λ

∂xi
fi(x), (A.3)

which is also called the Lie derivative or directional derivative of λ along f , where 〈., .〉 is the

Euclidean inner product.

Repeated use of this operator is possible and the following notation can be used,

LgLfλ(x) :=
∂Lfλ(x)

∂x
g(x) =

n∑

i=1

∂Lfλ

∂xi
gi(x). (A.4)

149

The operation can be recursively defined, such that taking the k derivatives of λ along f would

be denoted by Lkf where,

Lkfλ(x) :=
∂Lk−1

f λ(x)

∂x
f(x) =

n∑

i=1

∂Lk−1
f λ

∂xi
fi(x). (A.5)

Consider a parameterized curve σ : R → R
n. It is clear that σ(λ) represents location of a

moving point along the curve. The velocity vector of σ at point λ can be represented by σ′(λ).

The speed at λ is the length ‖σ′(λ)‖.

Definition A.1.13. The parameterization σ(λ) is unit-speed if ‖σ′(λ)‖ = 1.

Definition A.1.14. The curve σ(λ) is regular if σ′(λ) 6= 0 for all λ ∈ R.

Consider a curve σ(λ) = (aλ cosλ, aλ sinλ). It has velocity

σ′(λ) = a(cosλ− λ sinλ, sinλ+ λ cosλ),

and speed

‖σ′(λ)‖ = |a|
√
(cosλ− λ sinλ)2 + (sinλ+ λ cosλ)2 = |a|

√
1 + λ2 6= 0.

Therefore the parameterization is regular.

A.2 Nonlinear Control Systems

Consider a time-invariant, finite-dimensional, deterministic control-affine system with m inputs,

u := [u1 · · ·um]⊤ ∈ Rm and p outputs and f : Rn → Rn, gi : R
n → Rn and h : Rn → Rp are

smooth Cr maps.

ẋ = f(x) +

m∑

i=1

gi(x)ui := f(x) + g(x)u, (A.6)

(A.7)

150

and consider a function,

y = h(x) =




h1(x)

...

hp(x)



, ∀y ∈ R

p, (A.8)

which is the output of the system. The relative degree is the key concept in solving feedback

linearization problems.

Definition A.2.1. Consider system (A.6) with u ∈ R and with output function (A.8) with m =

p = 1 i.e., y = h(x), y ∈ R. The system has a relative degree of r at a point x0 if

1. LgL
k
fh(x) = 0, ∀x ∈ a neighborhood of x0 and ∀k < r − 1,

2. LgL
r−1
f h(x0) 6= 0.

The relative degree of a single input single output (SISO) system is the number of times we

need to differentiate the output before the control input appears. A notion, called the vector

relative degree can be defined for the multiple-input multiple-output (MIMO) systems.

Definition A.2.2. Consider system A.6 with m = p. We define an m×m matrix,

A(x) :=




Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...
. . .

...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)




. (A.9)

The system has a vector relative degree of {r1, . . . rm} at a point x0 if

1. LgjL
k
fhi(x) = 0, ∀1 ≤ j ≤ m for all k < ri − 1 for all 1 ≤ i ≤ m and for all x in a

neighborhood of x0.

2. The matrix A(x) is nonsingular at x = x0,

151

A.3 Elementary results

In this section we present some elementary results. Although, these results are basic and easy to

prove, yet we find them valuable for writing proofs of some of the main results of this thesis.

Proposition A.3.1.

Let k1, k2, k3 ∈ R+, and v, w ∈ R3, and K = diag(k1, k2, k3), then

v⊤(Kw) = (Kw)⊤v

Proof.

v⊤(Kw) = 〈v,Kw〉

= 〈Kw, v〉

= (Kw)⊤v.

Proposition A.3.2. If k1, k2, k3 ∈ R+ and v ∈ R3, then

v⊤(diag(k1, k2, k3)v) =
∥∥∥diag

(√
k1,
√
k2,
√
k3

)
v
∥∥∥
2

2
(A.10)

152

Proof. let K := diag(k1, k2, k3), by expanding the left hand side of (A.10)

v⊤(Kv) =
[
v1 v2 v3

]




k1 0 0

0 k2 0

0 0 k3







v1

v2

v3




=
[
v1 v2 v3

]




k1v1

k2v2

k3v3




= k1v
2
1 + k2v

2
2 + k3v

2
3

=

∥∥∥∥∥∥∥∥∥∥




√
k1 0 0

0
√
k2 0

0 0
√
k3







v1

v2

v3




∥∥∥∥∥∥∥∥∥∥

2

2

=
∥∥∥
√
Kv
∥∥∥
2

2

=
∥∥∥diag

(√
k1,
√
k2,
√
k3

)
v
∥∥∥
2

2

which proves the result.

153

Bibliography

[1] A. Roza, “Motion control of rigid bodies in SE(3),” Master’s thesis, University of Toronto,

2012.

[2] C. Nielsen, “Maneuver regulation, transverse feedback linearization and zero dynamics,”

Master’s thesis, Department of Electrical and Computer Engineering University of Toronto,

2004.

[3] M. I. El-Hawwary and M. Maggiore, “Global path following for the unicycle and other

results,” in American Control Conference (ACC), June 2008, pp. 3500 –3505.

[4] A. Isidori, Nonlinear Control Systems. Secaucus, NJ, U.S.A: Springer-Verlag New York,

Inc., 1995.

[5] S. Sastry, Nonlinear systems: analysis, stability, and control. New York: Springer, 1999.

[6] R. Skjetne, T. I. Fossen, and P. V. Kokotovié, “Robust output maneuvering for a class of

nonlinear systems,” Automatica, vol. 40, no. 3, pp. 373 – 383, 2004.

[7] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechanical control sys-

tems: A catalog of prototype systems,” in Proceedings of the ASME International Congress

and Exposition, 1995.

[8] A. Banaszuk and J. Hauser, “Feedback linearization of transverse dynamics for periodic

orbits,” Systems and Control Letters, vol. 26, no. 2, pp. 95 – 105, 1995.

154

[9] C. Nielsen and M. Maggiore, “Maneuver regulation via transverse feedback linearization:

Theory and examples,” Symposium on Nonlinear Control Systems (NOLCOS), September

2004.

[10] C. Nielsen, C. Fulford, and M. Maggiore, “Path following using transverse feedback lin-

earization: Application to a maglev positioning system,” Automatica, vol. 46, no. 3, pp.

585–590, March 2010.

[11] L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques, “Path following for the pvtol

aircraft,” Automatica, vol. 46, pp. 1284–1296, August 2010.

[12] A. Hladio, C. Nielsen, and D. Wang, “Path following for mechanical systems: Experiments

and examples,” in American Control Conference (ACC), June 2011.

[13] A. Akhtar and C. Nielsen, “Path following for a car-like robot using transverse feedback

linearization and tangential dynamic extension,” in 50th IEEE Conference on Decision and

Control and European Control Conference, (CDC)-ECC, Dec. 2011, pp. 7949 –7979.

[14] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous vehicle

test environment,” IEEE Control Systems, vol. 28, no. 2, pp. 51–64, April 2008.

[15] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Precision flight control for

a multi-vehicle quadrotor helicopter testbed,” Control Engineering Practice, vol. 19, no. 9,

pp. 1023–1036, September 2011.

[16] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and

control of quadrotor,” IEEE Robotics Automation Magazine, vol. 19, no. 3, pp. 20–32, Sept

2012.

[17] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2007, pp. 153–158.

155

[18] E. Panteley and A. Loria, “Global uniform asymptotic stability of cascaded non-

autonomous nonlinear systems,” in European Control Conference (ECC), July 1997, pp.

973–978.

[19] R. Naldi, M. Furci, R. G. Sanfelice, and L. Marconi, “Global trajectory tracking for under-

actuated vtol aerial vehicles using a cascade control paradigm,” in 52nd IEEE Conference

on Decision and Control (CDC), Dec 2013, pp. 4212–4217.

[20] V. Sundarapandian, “Global asymptotic stability of nonlinear cascade systems,” Applied

Mathematics Letters, vol. 15, no. 3, pp. 275 – 277, 2002.

[21] A. Chaillet, “On stability and robustness of nonlinear cascaded systems - Application to

mechanical systems,” Theses, Université Paris Sud - Paris XI, Jul. 2006.

[22] H. Voos, “Nonlinear control of a quadrotor micro-UAV using feedback-linearization,” in

IEEE International Conference on Mechatronics, April 2009, pp. 1–6.

[23] T. Madani and A. Benallegue, “Control of a quadrotor mini-helicopter via full state back-

stepping technique,” in 45th IEEE Conference on Decision and Control (CDC), Dec. 2006,

pp. 1515–1520.

[24] Y. Fan, Y. Cao, and Y. Zhao, “Sliding mode control for nonlinear trajectory tracking of a

quadrotor,” in 36th Chinese Control Conference (CCC), July 2017, pp. 6676–6680.

[25] R. Xu and U. Ozguner, “Sliding mode control of a quadrotor helicopter,” in 45th IEEE

Conference on Decision and Control (CDC), Dec. 2006, pp. 4957–4962.

[26] A. Mokhtari, A. Benallegue, and B. Daachi, “Robust feedback linearization and GH-∞
controller for a quadrotor unmanned aerial vehicle,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, August 2005, pp. 1198–1203.

156

[27] D. Lee, H. Jin Kim, and S. Sastry, “Feedback linearization vs. adaptive sliding mode con-

trol for a quadrotor helicopter,” International Journal of Control, Automation and Systems,

vol. 7, no. 3, pp. 419–428, 2009.

[28] V. Utkin, Sliding Mode Control in Electro-Mechanical System. CRC Press., 1999.

[29] J.-L. Chang, “Dynamic sliding mode controller design for reducing chattering,” Journal of

the Chinese Institute of Engineers, vol. 37, no. 1, pp. 71–78, 2014.

[30] S. Kumar and R. Gill, “Path following for quadrotors,” in IEEE Conference on Control

Technology and Applications (CCTA), Aug 2017, pp. 2075–2081.

[31] A. Roza and M. Maggiore, “Path following controller for a quadrotor helicopter,” in Amer-

ican Control Conference (ACC), June 2012.

[32] A. Akhtar, S. L. Waslander, and C. Nielsen, “Path following for a quadrotor using dynamic

extension and transverse feedback linearization,” in 51st IEEE Conference on Decision and

Control (CDC), Dec. 2012, pp. 3551 –3556.

[33] Z. Liu, L. Ciarletta, C. Yuan, Y. Zhang, and D. Theilliol, “Path following control of un-

manned quadrotor helicopter with obstacle avoidance capability,” in International Confer-

ence on Unmanned Aircraft Systems (ICUAS), June 2017, pp. 304–309.

[34] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body attitude control,”

IEEE Control Systems, vol. 31, no. 3, pp. 30–51, June 2011.

[35] F. Goodarzi, D. Lee, and T. Lee, “Geometric nonlinear PID control of a quadrotor UAV on

SE(3),” in European Control Conference (ECC). IEEE, 2013, pp. 3845–3850.

[36] R. Bayadi and R. N. Banavar, “Almost global attitude stabilization of a rigid body for both

internal and external actuation schemes,” European Journal of Control, vol. 20, no. 1, pp.

45 – 54, 2014.

157

[37] Y. Zhu, X. Chen, and C. Li, “Some discussions about the error functions on S0(3) and

SE(3) for the guidance of a uav using the screw algebra theory,” Advances in Mathematical

Physics, 2017.

[38] N. A. Chaturvedi and N. H. McClamroch, “Almost global attitude stabilization of an orbit-

ing satellite including gravity gradient and control saturation effects,” in American Control

Conference (ACC), June 2006.

[39] A. Safa, M. Baradarannia, H. Kharrati, and S. Khanmohammadi, “Global attitude stabiliza-

tion of rigid spacecraft with unknown input delay,” Nonlinear Dynamics, vol. 82, no. 4, pp.

1623–1640, 2015.

[40] J. Markdahl, J. Hoppe, L. Wang, and X. Hu, “A geodesic feedback law to decouple the full

and reduced attitude,” Systems and Control Letters, vol. 102, pp. 32 – 41, 2017.

[41] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control of a quadrotor uav on

SE(3),” in 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 5420–5425.

[42] T. Lee, “Global exponential attitude tracking controls on S0(3),” IEEE Transactions on

Automatic Control, vol. 60, no. 10, pp. 2837–2842, Oct 2015.

[43] K. Sreenath, T. Lee, and V. Kumar, “Geometric control and differential flatness of a quadro-

tor uav with a cable-suspended load,” in 52nd IEEE Conference on Decision and Control

(CDC), Dec 2013, pp. 2269–2274.

[44] L. Taeyoung, L. Melvin, and M. N. Harris, “Nonlinear robust tracking control of a quadrotor

UAV on SE(3),” Asian Journal of Control, vol. 15, no. 2, pp. 391–408, 2012.

[45] F. Bullo and R. M. Murray, “Tracking for fully actuated mechanical systems: A geometric

framework,” Automatica, vol. 35, no. 1, pp. 17–34, Jan 1999.

158

[46] A. Akhtar, C. Nielsen, and S. L. Waslander, “Path following using dynamic transverse

feedback linearization for car-like robots,” IEEE Transactions on Robotics, vol. 31, no. 2,

pp. 269–279, April 2015.

[47] A. Akhtar, S. Waslander, and C. Nielsen, “Fault tolerant path following for a quadrotor,” in

52nd IEEE Conference on Decision and Control (CDC), Dec 2013, pp. 847–852.

[48] V. I. Arnold, Mathematical Methods of Classical Mechanics, ser. Graduate Texts in Math-

ematics. Springer, 1989.

[49] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, ser. A Basic Ex-

position of Classical Mechanical Systems. Springer-Verlag, 1999.

[50] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, ser. Texts in Applied

Mathematics. New York-Heidelberg-Berlin: Springer Verlag, 2004, vol. 49.

[51] A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Springer, 01

2002.

[52] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor micro

quadrotor,” in IEEE International Conference on Robotics and Automation (ICRA), vol. 5,

April 2004, pp. 4393–4398 Vol.5.

[53] M. D. Shuster, “Survey of attitude representations,” Journal of the Astronautical Sciences,

vol. 41, pp. 439–517, Oct. 1993.

[54] E. W. Grafarend and W. Kühnel, “A minimal atlas for the rotation group SO(3),” Interna-

tional Journal on Geomathematics - GEM, vol. 2, no. 1, pp. 113–122, Jun 2011.

[55] J. Stuelpnagel, “On the parametrization of the three-dimensional rotation group,” SIAM

Review, vol. 6, no. 4, pp. 422–430, 1964.

159

[56] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal of Mathemati-

cal Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[57] P.-J. Bristeau, P. Martin, E. Salaün, and N. Petit, “The role of propeller aerodynamics in the

model of a quadrotor UAV,” in European Control Conference (ECC), 2009, pp. 683–688.

[58] Mohajerin, Nima, “Modeling dynamic systems for multi-step prediction with recurrent neu-

ral networks,” Ph.D. dissertation, University of Waterloo, 2017.

[59] N. Mohajerin and S. L. Waslander, “State initialization for recurrent neural network mod-

eling of time-series data,” in International Joint Conference on Neural Networks (IJCNN),

May 2017, pp. 2330–2337.

[60] R. Ritz and R. D’Andrea, “A global controller for flying wing tailsitter vehicles,” in IEEE

International Conference on Robotics and Automation (ICRA), May 2017, pp. 2731–2738.

[61] A. Akhtar, “Dynamic path following controllers for planar mobile robots,” Master’s thesis,

Department of Electrical and Computer Engineering University of Waterloo, 2011.

[62] V. Guillemin and A. Pollack, Differential Topology. Englewood Cliffs NJ: Prentice-Hall,

1974.

[63] L. Consolini, M. Maggiore, C. Nielsen, and M. Tosques, “Path following for the PVTOL

aircraft,” Automatica, vol. 46, no. 8, pp. 1284–1296, August 2010.

[64] A. Hladio, C. Nielsen, and D. Wang, “Path following controller design for a class of me-

chanical systems,” in 18th World Congress of the International Federation of Automatic

Control, Milano, Italy, Aug. 2011.

[65] G. Strang, Linear Algebra and its applications. 111 Fifth Avenue, New York, New York

10003: Academic Press, INC, 1976.

[66] C. Pugh, Real Mathematical Analysis. New York, U.S.A.: Springer, 2002.

160

[67] M. van Nieuwstadt, M. Rathinam, and R. M. Murray, “Differential flatness and absolute

equivalence of nonlinear control systems,” SIAM J. Control and Optimization., vol. 36,

no. 4, pp. 1225–1239, July 1998.

[68] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, “A study of vicon system

positioning performance,” Sensors, vol. 17, no. 7, 2017.

[69] C. Sloth, T. Esbensen, and J. Stoustrup, “Active and passive fault-tolerant LPV control of

wind turbines,” in American Control Conference (ACC), July 2010, pp. 4640–4646.

[70] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control sys-

tems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229 – 252, 2008.

[71] T. Li, “Nonlinear and fault-tolerant control techniques for a quadrotor unmanned aerial

vehicle,” Concordia University, Tech. Rep., 2011.

[72] Y. Zhang and A. Chamseddine, Fault Tolerant Flight Control Techniques with Application

to a Quadrotor UAV Testbed, Automatic Flight Control Systems. InTech, 2012.

[73] T. Li, Y. Zhang, and B. W. Gordon, “Nonlinear fault-tolerant control of a quadrotor UAV

based on sliding mode control technique,” IFAC Proceedings Volumes, vol. 45, no. 20, pp.

1317 – 1322, 2012, 8th IFAC Symposium on Fault Detection, Supervision and Safety of

Technical Processes.

[74] Z. Liu, C. Yuan, Y. Zhang, and J. Luo, “A learning-based fault tolerant tracking control

of an unmanned quadrotor helicopter,” Journal of Intelligent & Robotic Systems, vol. 84,

no. 1, pp. 145–162, Dec 2016.

[75] Y. Yi and Y. Zhang, “Fault diagnosis of an unmanned quadrotor helicopter based on particle

filter,” in International Conference on Unmanned Aircraft Systems (ICUAS), June 2017, pp.

1432–1437.

161

[76] H. Jiang, Y. Yu, X. Ding, and J. Zhu, “A fault tolerant control strategy for quadrotor UAVs

based on trajectory linearization approach,” in International Conference on Mechatronics

and Automation (ICMA), Aug. 2012, pp. 1174–1179.

[77] A. Freddi, A. Lanzon, and S. Longhi, “A feedback linearization approach to fault tolerance

in quadrotor vehicles,” in IFAC World Congress, Milan, Italy, 2011, pp. 5413–5418.

[78] W. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control. Prentice

University Press, 2008.

[79] E. Sontag, “Smooth stabilization implies coprime factorization,” IEEE Transactions on Au-

tomatic Control, vol. 34, no. 4, pp. 435–443, 1989.

[80] H. K. Khalil, Nonlinear systems, 3rd ed. Prentice Hall, 2002.

[81] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von Stryk, “Comprehensive

simulation of quadrotor UAVs using ROS and Gazebo,” in 3rd International Conference on

Simulation, Modeling and Programming for Autonomous Robots (SIMPAR), 2012.

[82] N. R. E. Kani, N. Pullman, “Lecture notes on algebraic methods,” in Lecture notes on

Algebraic Methods, ser. Course notes Math 211, 2017.

[83] S. P. Bhat and D. S. Bernstein, “A topological obstruction to continuous global stabilization

of rotational motion and the unwinding phenomenon,” Systems and Control Letters, vol. 39,

no. 1, pp. 63 – 70, 2000.

[84] M. Maggiore, “Reduction principles for hierarchical control design,” in Reduction Princi-

ples for Hierarchical Control Design, ser. Mini Course, Norwegian University of Science

and Technology, Trondheim, 2015.

[85] A. Roza and M. Maggiore, “A class of position controllers for underactuated vtol vehicles,”

IEEE Transactions on Automatic Control, vol. 59, no. 9, pp. 2580–2585, Sept 2014.

162

[86] E. D. Sontag and Y. Wang, “On characterizations of the input-to-state stability property,”

Systems & Control Letters, vol. 24, no. 5, pp. 351 – 359, 1995.

[87] M. A. Hsieh, L. Chaimowicz, A. Cowley, B. Grocholsky, J. F. Keller, V. Kumar, C. J. Taylor,

Y. Endo, R. C. Arkin, B. Jung, D. F. Wolf, G. Sukhatme, and D. C. MacKenzie, “Adaptive

teams of autonomous aerial and ground robots for situational awareness,” Journal of Field

Robotics, vol. 24, no. 11-12, p. 991 – 1014, Nov 2007.

[88] E. D. Sontag, “Input to state stability: Basic concepts and results,” in Nonlinear and Opti-

mal Control Theory. Springer, 2006, pp. 163–220.

163

	List of Tables
	List of Figures
	1 Introduction
	1.1 Literature review
	1.1.1 Feedback linearization and transverse feedback linearization
	1.1.2 Local quadrotor control
	1.1.3 Geometric quadrotor control

	1.2 Thesis organization and contributions
	1.2.1 Statement of contributions

	1.3 Notation

	2 Mathematical Modeling
	2.1 Rigid body
	2.1.1 Rotation of a rigid body

	2.2 Representation of attitudes
	2.2.1 Cardan angles
	2.2.2 Cayley parameters
	2.2.3 Geodesic polar coordinates
	2.2.4 Angle-axis representation
	2.2.5 Unit quaternions
	2.2.6 Translation of a rigid body

	2.3 Class of vehicles lg
	2.3.1 Space vehicle or satellite
	2.3.2 Unmanned Aerial Vehicle (UAV) or quadrotor
	2.3.3 Under Water Vehicle (UWV) or submarine
	2.3.4 Flying wing tailsitter vehicle

	3 Path Following Control Implementation on a Car-like Robot
	3.1 Example of path following control for a car-like robot
	3.2 Linear control design in transformed coordinates
	3.3 Experimental implementation
	3.3.1 Experimental platform and setup
	3.3.2 Experimental results

	4 Path Following for the lg Class of Vehicles
	4.1 Local representation of rigid body model
	4.2 Problem formulation
	4.2.1 Problem statement

	4.3 Dynamic extension
	4.4 Path following controller design
	4.4.1 Auxiliary controller design

	4.5 Simulation results
	4.6 Application of path following controller on a quadrotor
	4.6.1 Without sensor noise
	4.6.2 Sensor Noise
	4.6.3 Noise on augmented states

	5 Fault Tolerant Path Following of a Quadrotor
	5.1 Introduction
	5.2 Mathematical model
	5.3 Problem statement
	5.4 Dynamic extension
	5.5 Path following controller design
	5.6 Internal dynamics
	5.7 Simulation

	6 Controller Class lg for Attitude Tracking of lg Vehicles
	6.1 Mathematical model
	6.2 Problem formulation
	6.2.1 Problem statement

	6.3 Derivatives on lg
	6.4 Function family lg
	6.4.1 Class lg feedback controllers

	6.5 Almost global controller simulation
	6.5.1 Stabilization
	6.5.2 Sinusoidal signal tracking
	6.5.3 Multiple flips

	6.6 Local controller simulation
	6.6.1 Stabilization with noise
	6.6.2 Multiple flips with noise

	7 Application of lg Controller Class on lg Class of Vehicles
	7.1 Tracking position control
	7.1.1 Thrust and attitude extraction

	7.2 Path following position control
	7.2.1 Height controller
	7.2.2 lg Position controller

	7.3 Simulation results
	7.3.1 Tracking position control
	7.3.2 Path following position control

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future work
	8.2.1 Function family lg
	8.2.2 Stability of the cascade system
	8.2.3 Geometric path following
	8.2.4 Practical implementation

	A Basic Concepts and Notations
	A.1 Review of Algebra, Analysis and Differential Geometry
	A.1.1 Vector fields and their Derivatives

	A.2 Nonlinear Control Systems
	A.3 Elementary results

	Bibliography

