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Abstract: Investments in wind and solar power are driven by the aim to maximize the utilization of 9 
renewable energy (RE). This results in an increased concentration of wind farms at locations with higher 10 
average wind speeds and of solar panel installations at sites with higher average solar insolation. This is 11 
unfavourable for energy suppliers and for the overall economy when large power output fluctuations occur. 12 
Thus, when evaluating investment options for spatially distributed RE systems, it is necessary to model 13 
resource fluctuations and power output correlations between locations. In this paper, we propose a 14 
methodology for analyzing the spatial dependence, accurate modeling, and forecasting of wind power 15 
systems with special consideration to spatial dispersion of installation sites. We combine vine-copulas with 16 
the Kumaraswamy distribution to improve accuracy in forecasting wind power from spatially dispersed 17 
wind turbines and to model solar power generated at each location. We then integrate these methods to 18 
formulate an optimization model for allocating wind turbines and solar panels spatially, with an end goal 19 
of maximizing overall power generation while minimizing the variability in power output. A case study of 20 
wind and solar power systems in Central Ontario, Canada is also presented. 21 

Keywords: renewable energy; wind and solar power; Kumaraswamy distribution; C-Vine copula 22 
 23 

1. Introduction 24 

Wind power is one of the world’s largest and most accessible high intensity renewable energy resource, 25 
with solar power fast becoming a widely implemented renewable resource [1]. Globally, there are 26 
increasing efforts to tap more into these renewable energy sources; however, their intermittent availability 27 
presents one barrier for the renewable energy-based systems to entirely meet energy demands [2]. Wind 28 
fluctuations can be abrupt and significant, causing problems with the ability to generate steady energy 29 
outputs. Also, due to the stochastic nature of wind, it is difficult to accurately forecast wind power 30 
generation by considering only temporal wind behavior when other factors such as wind farm topology and 31 
turbine characteristics are equally important [3]. On the other hand, while the availability of solar energy is 32 
relatively constant, solar power output exhibits high sensitivity to slight changes in solar insolation [4]. 33 

 34 
Another challenge associated with renewable energy systems is their integration into the main power 35 

grid. Renewable energy installations can be geographically sparsely distributed despite being part of the 36 
same power grid, leading to sub-optimal power transactions within the grid [5]. Decisions on where to place 37 
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these installations are often based on the availability of wind and solar resources in order to maximize 38 
perceived power outputs [6]. This leads to localized concentrations of installations in areas of high wind or 39 
solar availability, which can become highly unfavourable for energy suppliers due to increased power 40 
fluctuations and overall system instability [6].  41 

 42 
Previous researchers have examined the possibility of smoothing fluctuations in wind power 43 

generation through employing geographically dispersed systems, or by interconnecting existing dispersed 44 
systems [7, 8]. For example, system reliability has been found to increase with turbine size in wind farms 45 
[9], while interconnection has been shown to greatly impact the reliability and stability of renewable energy 46 
systems [10].   47 

 48 
In this paper, we propose a methodology for analyzing the spatial dependence, accurate modeling, and 49 

forecasting of wind power generation with special consideration to temporal variations in power output and 50 
spatial dispersion of installation sites. The rest of this paper is organized as follows: Section 2 provides a 51 
brief review of literature related to wind and solar power systems modeling. Section 3 introduces the three 52 
mathematical concepts that serve as the foundations of our proposed methodology: the Kumaraswamy 53 
distribution, the theory of copulas, and vine-copulas. Section 4 discusses our proposed model for the 54 
optimal allocation of renewable energy generation technologies while Section 5 presents a case application 55 
of the proposed methodology. Finally, Section 6 summarizes the findings and intellectual contributions of 56 
this study. 57 

2. Literature Review 58 

Linear correlation coefficients provide general information about the interdependence of wind power 59 
generated at spatially distributed sites [11]; however, they do not uniquely describe the structure of this 60 
dependence [11]. Further, they do not provide actionable information that is helpful to system planners and 61 
operators. For example, linear correlation coefficients are not useful in determining the duration in a year 62 
when the aggregate wind power in a system will be above or below a specified threshold value even when 63 
coupled with data on the marginal distributions of wind power at each installation, as dependence relations 64 
are nonlinear. A potential method for mathematically describing the dependency structure among wind 65 
power systems involves using joint distribution functions [12]. However, multivariate distribution models 66 
are currently not available for such systems, and common joint distributions do not accurately fit wind 67 
power data [12]. A possible workaround suggested by Kroese et al [13] involves decomposing the assumed 68 
correlation matrix using Cholesky decomposition, but this is only applicable if random variables are linearly 69 
correlated.  70 

 71 
It has been demonstrated that wind speeds are characterized by non-normal distributions and non-72 

linear dependence [6]. This becomes problematic in multivariate analysis; when multivariate data are not 73 
normally distributed, accurate quantiles of the sums of margins cannot be calculated from the sums of 74 
variances and covariances which makes modeling these random variables (wind speeds in our case) more 75 
challenging.  76 
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 77 
Goethe and Schnieders [6] modeled the univariate time series of wind speed at several wind farms in 78 

Germany using a seasonal autoregressive moving average (ARMA) model proposed by Benth and Benth 79 
[14]. To model the correlation between multiple wind farm locations, they analyzed the correlation between 80 
the residuals of the various univariate time series and fit copulas to the residuals, thus developing copula-81 
GARCH (generalized autoregressive conditional heteroskedasticity) models. 82 

 83 
A more appropriate approach for modeling non-linear, non-normal and more complex dependency 84 

structure in data is by directly using appropriate copulas [6, 15-18]. Copulas are applied widely in finance 85 
[19, 20], and they possess unique characteristics that make them highly attractive in modeling wind power 86 
[18]. Of these characteristics, the most important is the ability of copulas to model the dependence structure 87 
of data independent of the marginal distributions of the participating variables. This feature is very critical 88 
because wind power outputs at different locations are often significant at the grid nodes they are infused 89 
and modeling them using single marginal distribution is not possible. Therefore, finding this dependence 90 
in power outputs independent of marginal distributions is of great advantage for system planners as it allows 91 
modeling wind power generation more accurately.  92 

 93 
The correlations among wind power generated at different locations are usually estimated from 94 

parameters such as separation distance and averaging period, among others [21, 22, 23]. If only basic 95 
information is available about the locations of wind turbines, an accurate model of the dependency structure 96 
of wind power generated at these locations can be produced using copulas. Consequently, the selection of 97 
an appropriate copula function is very important, as inappropriate selection can lead to unacceptable errors. 98 
Of all copulas, the Gaussian copula is the most commonly used copula due to its computational 99 
convenience; however, its suitability in wind power analysis has not been rigorously investigated. The 100 
standard Gaussian copula has been previously used to model wind power in Europe based on a qualitative 101 
assessment of Q-Q plots [17]. Louie (2012) adopted a more comprehensive approach by first testing a 102 
number of standard copulas on wind speed data, and then eventually selecting Archimedean copulas [23].   103 

 104 
In modeling wind power, copulas have the highest utility in forecasting and in generating scenarios for 105 

optimization simulations [19]. These scenarios are necessary in stochastic programming, which is a critical 106 
decision tool in power systems analysis and planning research. For example, Gaussian copulas have been 107 
used to evaluate short-term scenarios for wind power generation [24], while empirical copulas have been 108 
used in modeling the dependency structure between the wind speed and the wind power output [25]. A 109 
quantile-copula kernel density estimator has also been used to improve probabilistic wind power forecasts 110 
[26].  111 

 112 
With respect to solar energy, temporal modeling of solar power generation has been done using 113 

generalized distribution functions that were subsequently optimized to ensure reliable and higher power 114 
outputs [27]. Solar irradiation is most often modeled using the Hollands and Huggets distribution, which 115 
can be approximated by the Gamma distribution [28]. To our knowledge, there has been no attempt to date 116 
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to model solar power generation using other types of probability distributions. Similar to wind power 117 
generation, the dependence structure of solar systems is usually quantified by measures of association such 118 
as linear correlation coefficients [29]. But in contrast to wind power generation, the spatial variability in 119 
solar power generation in reasonably sized grids is not significant; thus modeling the spatial dependence of 120 
solar power generated between dispersed locations is not necessary [30] but can be done with the method 121 
we propose for wind power. 122 

3. Methodology 123 

Wind speed patterns and their spatial dependencies are generally non-Gaussian and non-linearly 124 
correlated [14].  Since system planners are more interested in modeling wind power generation than wind 125 
speeds, this presents a challenge because there is no standardization in modeling wind power using a 126 
specific probability distribution. Therefore, in the present study, we use the Kumaraswamy distribution 127 
for the temporal modeling of wind power generated at each site, and applied the concept of vine-copulas 128 
to model wind power dependencies. 129 

3.1 Kumarawamy Distribution 130 

First introduced in 1980, the double bounded Kumaraswamy distribution is a continuous probability 131 
distribution that was originally developed for hydrology applications [26]. It is equivalent to the Beta 132 
distribution but has a simpler analytical formulation, making it more efficient in computational 133 
simulations. More importantly for this study, the Kumaraswamy distribution is selected because (i) 134 
renewable power is a non-linear transformation of its resource (ex. wind power from wind speed) and (ii) 135 
its simple analytical form allows for its easy integration with copulas. 136 

 137 
The probability density function (PDF, ( ( ) ) and cumulative density function (CDF, ( ( ) ) 138 

formulations of the Kumaraswamy distribution are given in Eq. 3.1 and Eq. 3.2, respectively, where a and 139 
b are shape parameters describing the distribution. 140 

 141 ( ) = (1 − )  (3.1)

Where, 142 > 0, > 0 and [0,1] (3.2)

 143 
It has many of the same properties as the Beta distribution but has some advantages in terms of 144 

tractability. The Kumaraswamy densities have similar behavior as the Beta densities such as they are 145 
unimodal, uniantimodal, increasing, decreasing or constant depending on the parameters. Therefore, based 146 
on the values of the shape parameters the densities take specific shape and exhibit certain properties such 147 
as, if a > 1 and b > 1 then the density is unimodal, if a > 1 and b ≤ 1 then the density is increasing, a < 1and 148 
b < 1 then the density is uni-antimodal, and a ≤ 1 and b > 1 then the density is decreasing. The densities are 149 
log-concave if and only if the shape parameters are greater than or equal to 1. 150 
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In addition to hydrology, Kumaraswamy distribution is now widely used including in                 151 
finance, statistical design centering of integrated systems, among others [31, 32] .  152 

3.2 Methodology 153 

3.2.1 Copulas and the Sklar Theorem 154 

Copulas were first introduced in 1959 by the mathematician Abe Sklar [33] and have since become 155 
popular in describing the dependencies between random variables. Copulas are mathematical functions that 156 
allow us to combine univariate distributions to obtain a joint distribution with a particular dependence 157 
structure. The utility of a copula is most easily demonstrated in the use of distributions in probabilistic 158 
analysis. To illustrate, recall that the CDF of a distribution is used to draw a random variate. Most commonly, 159 
to draw a random value from a distribution, one starts by sampling from a uniform distribution, (0,1). 160 
This sample is treated as an observation of the variable`s CDF; a sample can be drawn from the PDF by 161 
generating a uniform random number and transforming it using the CDF to a random value.  162 

 163 
Sklar’s theorem is the theoretical foundation of copulas. It states that for a given joint multivariate 164 

distribution function and relevant marginal distributions for the corresponding random variables, there 165 
always exists a copula function that relates the marginal distributions of the variables. Mathematically, this 166 
can be derived as follows. 167 

 168 
Let Fxy be a joint distribution with margins Fx and Fy.; then there exists a copula : [0,1] 	→ [0,1] such 169 

that 170 ( ) = (1 − )  
3.3

 171 
If the random variables, X and Y are continuous, then copula, C is unique; otherwise, C is uniquely 172 

determined on the (range of X) × (range of Y). 173 
 174 
Conversely if C is a copula and Fx and Fy are distribution functions, then the function Fxy is a joint 175 

distribution with margins Fx and Fy. 176 
C must be a function of particular type with certain properties as described by [33] and explained 177 

further in [19]. 178 
 179 
The copula is further defined as follows. 180 

C is a copula if : [0,1] 	→ [0,1] and  181 (0, ) 	= 	 ( , 0) 	= 	0	182 (1, ) 	= 	 ( , 1) 	= 	  183 ( , ) − 	 ( , ) − 	 ( , ) + 	 ( , ) ≥ 0	for all < , <  184 
If C is differentiable once in its first argument and once in its second then, C is equivalent to 185 	≥ 0 for all 	 < , <  186 
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where um, vm, umi, vmi are marginal distribution functions. 187 
This definition of a copula simply states that a copula is itself a distribution function, defined on 188 

[0,1]2 with a uniform marginal. Each of the marginal distributions produces a probability of one-189 
dimensional events. The copula function takes these probabilities and maps them to a joint probability, 190 
enforcing a relationship on the probabilities. Therefore, using copulas to build multivariate distributions is 191 
a very flexible and powerful technique as it separates choice of dependence from the choice of marginal 192 
[19].  193 

Sklar’s theorem establishes one of the easiest ways of constructing copulas. In this case, if Fx and Fy 194 
are the marginal distributions, then a copula is given by the formulation in Eq. 3.4. 195 ( , ) = ( ( ), ( )) 

3.4

3.2.2 Selection of the Appropriate Copula 196 

A critical step in modeling data using copulas is the selection of the appropriate copula function from 197 
among the family of copulas that best describes the given data set. The selection process is often based on 198 
the analytical tractability of the copula function [34]. Three types of copulas are considered in this study: 199 
Gumbel, Joe-Frank, and the Student t. The Gumbel copula is most suited for extreme distributions while 200 
the Joe-Frank and Student t copulas are more suited for applications with heavy dependence on tails [19, 201 
35]. 202 

The Gumbel copula is a bivariate Archimedean copula. It is an asymmetric copula that exhibits greater 203 
dependence on the positive tail than on the negative tail. This copula is given by Eq. 3.5, where	  is the 204 
parameter controlling the dependence between the marginal distributions  and .   205 ( , ) = exp	(−[(− log ) + (− log ) ] ⁄ ) 3.5 

The Joe-Frank copula, sometimes called the BB8 copula, is a two-parameter copula also from the 206 
Archimedean family of copulas. The copula CDF is given by Eq. 3.6, where the parameter  illustrates 207 
the degree of dependence between the marginal distributions  and , and the parameter  is the degree 208 
of freedom. 209 , ( , ) = 	 1 − 1 − 1 − (1 − ) 1 − (1 − ) ⁄

 3.6 

where  210 ≥ 1	 	0 ≤ ≤ 1 211 = 1 − (1 − )  and 0 ≤ , ≤ 1 212 
 213 
The Student t copula allows for joint fat tails and an increased probability of joint extreme events 214 

compared with the other copulas. Increasing the value of	  decreases the tendency to exhibit extreme co-215 
movements. The copula formulation is expressed in Eq. 3.7, where 	and  are the parameters of the 216 
copula, and 	is the inverse of the standard univariate t-copula with  degrees of freedom, expectation 217 
0 and variance    [35]. The variables s and t are the random vectors obtained from the two marginal 218 

distributions. 219 

, ( , ) = 12 (1 − ) /( )( ) 1 + − 2 +(1 − ) ( )⁄
 3.7 
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 220 

3.2.3 C-Vine Copulas 221 

Joe [35] presented the first construction of a multivariate copula using (conditional) bivariate copulas, 222 
while Bedford and Cooke [36] developed a more general construction method of multivariate densities and 223 
introduced regular vines to organize different pair-copula constructions (PCCs). Vines are a graphical 224 
representation of constraints in high dimensional probability distributions. They are used to specify so-225 
called PCCs, as introduced by Aas et al. [37].  226 

 227 
Conventionally, a copula model is limited to a 1-parameter or 2-parameter specification of the 228 

dependence structure, which represents a potentially severe empirical constraint. Clearly, when modeling 229 
the joint distribution of multiple variables, such limited parameter models are unlikely to adequately capture 230 
the dependence structure between variables. For example, the Gaussian copula lacks tail dependence. 231 
Similarly, while the multivariate Student t copula is able to generate different tail dependence for each pair 232 
of variables, it imposes the same upper and lower tail dependence across all pairs. These limitations are 233 
overcome by the canonical vine (C-vine) model by building bivariate copulas of conditional distributions. 234 
C-vine copulas are flexible multivariate copulas that are generated via hierarchical construction and can be 235 
decomposed into a cascade of bivariate copulas. The basic principle is to model dependence using simple 236 
local building blocks (pair-copulas). 237 

4. Spatial and Temporal Modeling of Renewable Energy Resources  238 

4.1 Algorithm for Temporal Modeling of Wind Power and for Scenario Generation 239 

This section discusses the procedure for modeling wind power generation in various spatially 240 
dispersed sites using the generalized Kumaraswamy distribution and C-Vine copulas. 241 

 242 
Firstly, given temporal data sets (daily and seasonal) on the wind power generated at different 243 

installations, we use the Kumaraswamy model to describe the probability distribution of each data set. We 244 
obtain the model parameters for each hour of the day and for three seasons in the year lets call them Season 245 
1, Season 2, and Season 3 using the Maximum Likelihood Estimate (MLE) method for distribution fitting 246 
with historical data. This ensures that both hourly and seasonal variations are embodied in the distribution 247 
models. Therefore, we create for each hour of the day within each of the three seasons a distribution from 248 
all the measurements at that hour of day for all days within that season across a number of year. This leads 249 
us to create 3 (season) × 24 (hours) = 72 distributions for each location. These distributions are then used 250 
to choose a  C-Vine model for the installation site under consideration.  251 

 252 
In order to develop the C-Vine tree, one location must first be selected as the root node of the tree and 253 

the others its children (nodes). This is accomplished by generating the Kendall rank correlation matrix, and 254 
summing the correlations across each location with respect to the other locations. The location with the 255 
maximum value of the Kendall rank correlation is chosen as the root node.  256 
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 257 
Once the C-vine tree is constructed, various families of bivariate copulas are then fitted to model the 258 

dependence between the root node and each one of its children. We again use the MLE method to fit the 259 
copulas, and use AIC/BIC (Akaike Information Criterion/ Bayesian Information Criteria) to evaluate the 260 
goodness of fit. In this, pair-copula construction approach, a bivariate copula is fitted to the root node and 261 
the child. Finally, we utilize the PCC-based tree to produce scenarios by drawing data from the PCC 262 
followed by Kumaraswamy distribution for each hour of the day or season.  263 

. 264 
The algorithm for modeling of wind power is summarized in Table 1. 265 

Step Specific Action 

1 Fit Kumaraswamy distribution to each location’s hourly data for the three seasons 

(Season 1, Season 2 and Season 3) and obtain parameters for the distribution. 

2 Compute the Kendall rank correlation matrix with correlation values  where   

Correlation Values,   location with respect to   location 

3 Formulate the Vine tree, where root is the location with max(∑ ),: . 

4 Compute the Pair Copula Construction using the various copula options available 

5 Generate scenarios from the PCC followed by inverse of Kumaraswamy CDF. 

 266 
For scenario simulations using C-Vine, we generate the Vine matrix that defines the connections and 267 
parameter matrices containing the parameters of each of the copulas defined by each link. 268 

4.2 Algorithm for Spatial Modeling of Solar Power Generation 269 

Similar to the procedure outlined in Section 4.1, we also use PCC for the spatial modeling of solar 270 
power generation. Our goal here is to develop a standardized approach for spatial modeling of renewable 271 
power sources. The procedure consists of two steps, as indicated in Table 2. Firstly, given the hourly (power 272 
generation) data at each location for the three seasons (Season 1, Season 2, and Season 3), we use the 273 
Kumaraswamy distribution to model hourly solar power outputs. We then generate scenarios by drawing 274 
random variables from the Kumaraswamy CDF for each day for the three seasons. Although, solar power 275 
is given by a strong deterministic component, and limiting the upper limit of the power output for each 276 
hour in the year, moderated by a stochastic process can be justified given the random behavior in solar 277 
insolation due to cloud cover, wind direction, smog, and other environmental factors.  278 

 279 
 280 
 281 
 282 
 283 

Table 1. Steps in Modeling Solar Power Generation 284 

Steps Specific Action 
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Step 1 Fit Kumaraswamy distribution to each location’s hourly data for the three seasons (Season 1, 

Season 2 and Season 3) and obtain parameters for the distribution. 

Step 2 Generate scenarios from the Kumaraswamy CDF for each hour of day for the three seasons. 

 285 

4.3 Model Optimization for the Optimal Allocation of Wind Turbines and Solar Panels 286 

Once we obtain: (i) the model parameters for simulating data for a given site based on the marginal 287 
distributions (i.e., Kumaraswamy distribution), and (ii) the dependence structure model parameters using 288 
Vine-copulas, we can find an optimal allocation of wind power and solar power at each location in a given 289 
space. For system planners, this information is important in deciding on the number of wind turbines and 290 
solar panels that needs to be installed at each location to optimize power output. 291 

 292 
In this study, our goal is to investigate the lower quantiles of the distribution of the overall renewable 293 

energy (wind and solar) produced within a power system. These quantiles should be maximized to design 294 
an optimal placement of the renewable energy installations. Because our approach is based on probability 295 
distribution and the persistence in the hourly wind power is found to be not so strong in our data and we 296 
can consider it to be independent for each hour. Similarly, for solar power since solar insolation follows a 297 
daily pattern and the insolation at each hour can be considered independent. This allows us to model the 298 
data using Kumaraswamy distribution and considered hourly variations as independent.  299 

 300 
Suppose we have  locations in a given space (site). We need to make allocations of wind power and 301 

solar panel installations at each location such that the allocation maximizes the overall power generation 302 
and smoothens the total system power output. To reiterate, fluctuations in the total system output are due 303 
to the erratic nature of the renewable sources as discussed in Sections 1 and 2. Thus, the overall objective 304 
of the optimization problem is to minimize the negative effects of the erratic nature of the renewable energy 305 
(wind and solar).  306 

 307 
The optimization model is depicted in Eq. 3.8, where  and 	  are weightages of solar power and 308 

wind power allocation at each location, respectively. ,  and 	 ,  are solar and wind generation 309 

scenarios, respectively, for each location  in the total  locations. 310 
 311 max ,  3.8

where 312 , = × , + ( × , )  ∈ 1… , , s.t.  = 1 
 

= 1 
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 0 ≤ , ≤ 1  

 313 
Eq. 3.8 represents the joint quantile optimization for solar and wind power allocation at a given site. 314 

Such an approach tries to smoothen the power output in the entire power system by choosing an optimal 315 
scheme for allocating solar and wind power resources.  It also results in a more accurate modeling of the 316 
renewable resources, as it considers not only the temporal but spatial features of wind power. Optimizing 317 
the formulation in Eq. 3.8 will ensure that (1 − )	∗ 100% of all cases, the total power produced will be 318 
above the α-quantile. 319 

5. Ontario Case Study 320 

5.1 Location 321 

The modeling methodology proposed in Section 4 has been applied in the case study of wind and solar 322 
power systems in four sites in Central Ontario, Canada: Pearson, Toronto, BillyBishop, and Buttonville 323 
(see Figure 1). These sites are important and unique due to their proximity to a densely-populated city (City 324 
of Toronto) and a large water body (Lake Ontario), and their association with the main power grid in the 325 
Greater Toronto Region. The power demand in this region is very high (27,000 MW /day on peak demand), 326 
therefore it is critically important to achieve a stable power supply in the region. Increasing the penetration 327 
of renewable energy-based systems, specifically wind power, may lead to instability in the available power 328 
in the grid.  329 

 330 
Figure 1: Central Ontario with all four locations under consideration 331 

5.2 Fitting Probability Distribution Models to Wind and Solar Power Data 332 

For the case study, we used data on solar power using the hourly solar insolation data for 3 years, 333 
available through RETScreen [38]) and similarly data on wind power was generated using a wind turbine 334 
[39] model for hourly wind speeds for 3 years for Toronto. Weibull is used as a standard for modeling wind 335 
speed, log normal has been used at times as well and Gamma distribution has been sparingly used for 336 
modelling solar insolation but there has been no standard distribution for fitting wind or solar power 337 
generated.  It is important as both wind speed and solar insolation undergo a non-linear transformation and 338 
hence cannot be fit using either Weibull distribution for wind power or Gamma distribution for solar power. 339 
Therefore, there is a need for a generalized distribution such as the Beta distribution that be used for fitting 340 
both solar and wind power. We tested the Kumaraswamy distribution for fittingboth solar power and wind 341 
power data sets given its ability as a general distribution. It gives the flexibility and avoids the numerical 342 
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intractability that inhibit the use of the Beta distribution. The Kumaraswamy model best describes the 343 
probability distribution of the data (see Figure 2) and hence will be used for the further study with copulas.  344 

 

(a) 
 

 (b) 

Figure 2: Probability distribution models fitted to data from Toronto, Ontario for Season 3 for the three year period 345 

(a) Wind Power generated from Whisper 500 3kW wind turbine (b) to solar power from a 0.18kWp solar panel 346 

5.3 Analysis of Wind Power for Dependence Modeling 347 

We also performed a pair-wise comparison of wind power data (by transforming the wind speed 348 
information obtained from RETScreen to power using the Whisper 500 wind turbine model at each of the 349 
four sites. It is a Type 1 wind turbine.) for the four sites to determine the correlation between power data at 350 
the sites (see Figure 3). Since the correlations appeared non-linear and data distribution was non-Gaussian, 351 
we chose Kendall rank correlation as our correlation parameter. To ensure that the wind power data were 352 
non-linearly correlated, we further grouped the data set for each paired site into 3 equal subsets. For each 353 
site pairing, data were randomly assigned to a sub-group. An analysis of the data correlations in the subsets 354 
independently revealed that the correlations varied markedly and were not constant for the sub-groups of 355 
each paired site (see Figure 3). With the exception of one sub-group for the Toronto-Pearson paired location, 356 
the Kendall rank values for all other sub-groups indicate non-linear behavior. For example, the sub-plot 357 
between Buttonville and BillyBishop has an overall correlation of 0.26 whereas the corresponding three 358 
subsets (low, medium, and high values) have varying correlation values of 0.06, 0.23 and 0.11.  359 

5.4 C-Vine Copula Generation 360 

Based on the observations of wind power behavior in Section 5.3, the wind power output at each 361 
site are modeled using the Kumaraswamy distribution for each of the four sites in the case study to 362 
generate pair-copula construction. We employed vine copulas to model the spatial dependence of wind 363 
power production sites; this choice of copula was influenced by the following factors, as seen in Figure 364 
3: 365 

• the wind power in each location was non-normally distributed; 366 
• the Kendall rank correlations of wind power between sites varied (the correlation coefficients 367 

of the subplots of Figure 3 differ); and 368 
• the wind power outputs at the sites were non-linearly dependent 369 
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 370 
The Kumaraswamy distribution was fitted to historical wind power data from each site. Maximum 371 

likelihood estimates were used to obtain the distribution parameters.  To model the dependence of 372 
wind power generated from the four sites with C-vine copula, we first converted the wind power data 373 
from the real domain to copula data, which lie inside the [0,1] hypercube. This was accomplished by 374 
taking the Kumaraswamy CDF of the individual data series.  375 

 376 
As described earlier in Section 4.1 (Step 3), we need to identify the root node of the C-Vine tree. 377 

To do this, we generated the Kendall correlation matrix for the sites and added together the correlation 378 
coefficients of each site (rightmost column of Table 3). This sum is an indicator of the strength of the 379 
correlation of a site’s wind power output to other locations’ wind power outputs. Consequently, the 380 
site with the highest the sum is selected as the root node of the C-vine tree. In our case study, the root 381 
node of the C-vine tree is the Pearson site.  382 

 383 
Table 2: Kendall Correlation Matrix for the Four Sites 384 

 385 

 386 

 387 

 388 

 389 

The C-vine tree representation of our power generation sites is shown in Figure 5. The three other sites 390 
(Toronto, BillyBishop and Buttonville) are connected to the root node (Pearson) by a link representing the 391 
pair-copula construction between the root node and the site connected to it.  392 

 393 
We used bivariate copulas to formulate the PCC for the three links. Each link represents a copula 394 

describing the dependence in the marginal distributions of wind power at each site. We used the marginal 395 
distribution (Kumaraswamy distribution) for each of the three site pairs and generated scenarios of power 396 
production for each site. These generated data were then used to estimate the copula parameters. The choice 397 
of the copula function was based on analytical tractability and simplicity and best fit to data. Copula fitting 398 
was performed in R statistical software package (R version 3.2.4) using the CDVine package. We fitted the 399 
data generated from the scenarios to a set of 24 copulas using maximum likelihood estimates and ranked 400 
them based on the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). 401 

 402 
For each link, the copulas with the largest AIC and BIC values were chosen for that particular link. 403 

Figure 6 shows the results of the copula fitting. The Gumbel copula describes the dependence of the 404 
marginal distributions of wind power between Pearson and Toronto, the Student-t copula describes the 405 
Pearson-BillyBishop pair, and the Joe-Frank copula describes the Pearson-Buttonville pair. 406 
 407 

Index  Toronto Pearson BillyBishop ButtonVille Sum 

1 Toronto 1.000 0.811 0.561 0.213 2.585 

2 Pearson 0.811 1.000 0.566 0.233 2.610 
3 BillyBishop  0.561 0.566 1.000 0.255 2.382 
4 Buttonville 0.213 0.233 0.255 1.000 1.701 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2017                   doi:10.20944/preprints201709.0053.v1

http://dx.doi.org/10.20944/preprints201709.0053.v1


13 
 

 408 

Figure 3: Tree Estimated using Maximum Likelihood Estimates 409 

Node labels represent the four sites in this case study: V1 (Pearson), V2 (Toronto), V3(Billybishop) 410 
and V4 (Buttonville) represent the four locations in our study. Link labels represent the copula chosen for 411 
modeling the spatial dependence of wind power generation between the sites based on the maximum 412 
likelihood estimates: BB8 (Joe-Frank), G (Gumbel) and t (Student-t). 413 
 414 

5.5 Optimization of Power Allocation 415 

Once the model of the probability distributions of renewable power is determined (wind, using 416 
Kumaraswamy distribution and copulas; and solar, using Kumaraswamy distribution) the next step is to 417 
find an optimal allocation (distribution of the total capacity of solar panels and wind turbines among sites) 418 
of renewable energy technologies among the four sites (see Section 4.3). Table 4 shows the results of this 419 
optimization. For solar power, the distribution of weights across the four sites tends to remain constant even 420 
in cases where high reliability is desired ( 	values range from 0.05 to 0.10). This implies low variations in 421 
solar power generation across sites (i.e., stable power source). In contrast, for high reliability cases ( 	values 422 
range from 0.05 to 0.10), wind power distributions across the four sites exhibit more pronounced variations. 423 
This implies that different power allocation strategies must be implemented to achieve higher and stable 424 
power output from the 4 sites.  425 

 426 
 427 
 428 
 429 
 430 

 431 

Table 3: Wind and Solar Allocation Weightages 432 
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0.05 0.2556 0.2541 0.2619 0.2284 0.2498 0.2498 0.2505 0.2498

0.10 0.2670 0.2537 0.2381 0.2412 0.2500 0.2500 0.2500 0.2500

0.11 0.2486 0.2507 0.2492 0.2515 0.2500 0.2500 0.2500 0.2500

0.12 0.2499 0.2457 0.2587 0.2458 0.2500 0.2500 0.2500 0.2500

0.13 0.2529 0.2498 0.2538 0.2435 0.2485 0.2546 0.2485 0.2485

0.14 0.2609 0.2402 0.2588 0.2402 0.2486 0.2519 0.2508 0.2486

0.15 0.2551 0.2498 0.2484 0.2467 0.2496 0.2511 0.2496 0.2496

 433 

 :Reliability factor, , , , : Weightage of allocation for wind power technology at a site and 434 

, , , :  Weightage of allocation for solar power technology at a site, where 1: Toronto, 2: Pearson, 435 

3:Billybishop and 4: Buttonville 436 
To illustrate the advantage of using this technique for allocating renewable energy technologies, we 437 

compared the overall power generation (from wind and solar) when equal weightage across the four sites 438 
is used, and when optimal allocation is used for = 0.05. A snapshot of power production for a 24-hour 439 
period for the Season 3 months is shown in Figure 7. The optimized allocation technique results in 440 
significantly higher and accurate overall power output during periods of peak power production. 441 

 442 

Figure 7: Power production for various allocation schemes during the Season 3 443 
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 444 

Figure 4: Pair-wise comparison of correlations in wind power data from 4 locations in Central Ontario. In the plots above the figures 

in black in each sub-plot represents the correlation coefficient for the entire data. Besides Pearson vs Toronto all other datasets are 

highly non-linear. Pink lines are least-square regression line whose slope is the correlation coefficient for the entire dataset. The panels 

in the main diagonal represent the histograms of the variables. 
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 445 

6. Conclusions 446 

Copulas are one of the most sophisticated tools for modeling the dependence structure of 447 
between variables when their correlation is non-linear. In this paper, we present a methodology for 448 
modeling the non-linear spatial dependence in wind power generation using copulas. We modeled 449 
the temporal distributions of both wind and solar power for each individual location using the 450 
Kumaraswamy distribution. The data for solar and wind power generated from these probabilistic 451 
models is used in an optimization model for obtaining an appropriate allocation of solar and wind 452 
power technologies in a spatially dispersed landscape to maximize the overall power output and 453 
minimize the effect of random nature of the renewable sources of energy. We find that this approach 454 
is useful in increasing the overall reliability of energy production as well as accurate modeling of 455 
renewable resources.  456 

Acknowledgement 457 

This work was supported by the Natural Sciences and Engineering Research Council of Canada 458 
(NSERC). NSERC had no inputs in the study design, model development and implementation, and 459 
in the preparation of this manuscript.  460 

References 461 

1. D.E. Newton, World Energy Crisis: A Reference Handbook, ABC-CLIO, 2013 . 462 
2. K. GILLINGHAM and J. SWEENEY, "BARRIERS TO IMPLEMENTING LOW-CARBON       463 

TECHNOLOGIES," Climate Change Economics, vol. 03, pp. 1250019, 2012. 464 
3. F. Ribeiro, P. Salgado and J. Barreira, "Engineering Applications of Neural Networks: 13th International 465 

Conference, EANN 2012, London, UK, September 20-23, 2012. Proceedings," pp. 254-263, 2012. 466 
4. D.L. King, W.E. Boyson and J.A. Kratochvil, "Analysis of factors influencing the annual energy production 467 

of photovoltaic systems," in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-468 
Ninth IEEE, pp. 1356-1361, 2002. 469 

5. T. Hammons, "Integrating renewable energy sources into European grids," International Journal of 470 
Electrical Power & Energy Systems, vol. 30, pp. 462-475, 2008. 471 

6. O. Grothe and J. Schnieders, "Spatial dependence in wind and optimal wind power allocation: A copula-472 
based analysis," Energy Policy, vol. 39, pp. 4742-4754, sep. 2011. 473 

7. B. Hasche, "General statistics of geographically dispersed wind power," Wind Energy, vol. 13, pp. 773-784, 474 
2010. 475 

8. A. Gerber, M. Qadrdan, M. Chaudry, J. Ekanayake and N. Jenkins, "A 2020Â GB transmission network 476 
study using dispersed wind farm power output," Renewable Energy, vol. 37, pp. 124, 2012. 477 

9. E. Kahn, "The reliability of distributed wind generators," Electr.Power Syst.Res., vol. 2, pp. 1, 1979. 478 
10. A. Abdollahi and M.P. Moghaddam, "Investigation of Economic and Environmental-Driven Demand 479 

Response Measures Incorporating UC," IEEE Transactions on Smart Grids, vol. 3, pp. 12-25, 2012. 480 
11. D. D. Le, G. Gross and A. Berizzi, "Probabilistic Modeling of Multisite Wind Farm Production for Scenario-481 

Based Applications," IEEE Transactions on Sustainable Energy, vol. 6, pp. 748-758, July. 2015. 482 
12. K. Veeramachaneni, X. Ye and U. O’Reilly, "Statistical Approaches for Wind Resource Assessment," 483 

Computational Intelligent Data Analysis for Sustainable Development, pp. 303, 2013. 484 
13. D. P. Kroese, T. Taimre and Z.I. Botev, Handbook of Monte Carlo Methods, Wiley, 2013, . 485 
14. J. S. Benth and F.E. Benth, "Analysis and modelling of wind speed in New York," Journal of Applied 486 

Statistics, vol. 37, pp. 893-909, 2010. 487 
15. R. T. Clemen and T. Reilly, "Correlations and Copulas for Decision and Risk Analysis," Management 488 

Science, vol. 45, pp. 208-224, 1999. 489 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2017                   doi:10.20944/preprints201709.0053.v1

http://dx.doi.org/10.20944/preprints201709.0053.v1


 17 

 

16. H. Valizadeh Haghi, M. Tavakoli Bina, M.A. Golkar and S.M. Moghaddas-Tafreshi, "Using Copulas for 490 
analysis of large datasets in renewable distributed generation: PV and wind power integration in Iran," 491 
Renewable Energy, vol. 35, pp. 1991-2000, 9. 2010. 492 

17. S. Hagspiel, A. Papaemannouil, M. Schmid and G. Andersson, "Copula-based modeling of stochastic wind 493 
power in Europe and implications for the Swiss power grid," Appl.Energy, vol. 96, pp. 33, 2012. 494 

18. G. Papaefthymiou and D. Kurowicka, "Using Copulas for Modeling Stochastic Dependence in Power 495 
System Uncertainty Analysis," Power Systems, IEEE Transactions On, vol. 24, pp. 40-49, Feb. 2009. 496 

19. R.B. Nelsen, An introduction to copulas, New York : Springer, c2006, 2006, . 497 
20. P. Joubert, "Modelling Copulas : An Overview," pp. 1-27, . 498 
21. Yih-Huei Wan, "Wind power plant behaviors: Analyses of long-term wind power data," NREL., Tech. Rep. 499 

NREL/TP-500-36551, 2004. 500 
22. Bernhard Ernst, Yih-Huei Wan, Brendan Kirby, "Short-term power fluctuation of wind turbines: Analyzing 501 

data from the German 250-MW measurement program from the ancillary services viewpoint," NREL., 502 
Tech. Rep. NREL/CP-500-26722, 1999. 503 

23. H. Louie, "Evaluating Archimedean Copula models of wind speed for wind power modeling," in Power 504 
Engineering Society Conference and Exposition in Africa (PowerAfrica), 2012 IEEE, pp. 1-5, 2012. 505 

24. P. Pinson and R. Girard, "Evaluating the quality of scenarios of short-term wind power generation," 506 
Appl.Energy, vol. 96, pp. 12, 2012. 507 

25. S. Gill, B. Stephen and S. Galloway, "Wind Turbine Condition Assessment Through Power Curve Copula 508 
Modeling," Sustainable Energy, IEEE Transactions On, vol. 3, pp. 94-101, Jan. 2012. 509 

26. R. J. Bessa, J. Mendes, V. Miranda, A. Botterud, J. Wang and Z. Zhou, "Quantile-copula density forecast for 510 
wind power uncertainty modeling," in PowerTech, 2011 IEEE Trondheim, pp. 1-8, 2011. 511 

27. D. Heinemann, E. Lorenz and M. Girodo, "Forecasting of solar radiation," Solar Energy Resource 512 
Management for Electricity Generation from Local Level to Global Scale.Nova Science Publishers, New 513 
York, 2006. 514 

28. G. Tina, S. Gagliano and V.A. Doria, "Probability Analysis of Weather Data for Energy Assessment of 515 
Hybrid Solar / Wind Power System University of Catania," in 4th IASME/WSEAS Interantional Conference 516 
on ENERGY, ECOSYSTEMS and SUSTAINABLE DEVELOPEMNT, pp. 217-223, 2008. 517 

29. A. Sfetsos, "A comparison of various forecasting techniques applied to mean hourly wind speed time 518 
series," Renewable Energy, vol. 21, pp. 23-35, 2000. 519 

30. B. Tarroja, F. Mueller and S. Samuelsen, "Solar power variability and spatial diversification: implications 520 
from an electric grid load balancing perspective," Int.J.Energy Res., vol. 37, pp. 1002-1016, 2013. 521 

31. A. Seifi, K. Ponnambalam and J. Vlach, "A unified approach to statistical design centering of integrated 522 
circuits with correlated parameters," Circuits and Systems I: Fundamental Theory and Applications, IEEE 523 
Transactions On, vol. 46, pp. 190-196, Jan. 1999. 524 

32. A. Seifi, K. Ponnambalam and J. Vlach, "Optimization of filter designs with dependent and asymmetrically 525 
distributed parameters," Journal of the Franklin Institute, vol. 350, pp. 378, 2013. 526 

33. A. Sklar, "Distribution functions of n dimensions and margins," Publications of the Institute of Statistics of 527 
the University of Paris, vol. 8, pp. 229-231, 1959. 528 

34. W. Hurlimann, "Fitting bivariate cumulative returns with copulas," Computational Statistics \& Data 529 
Analysis, vol. 45, pp. 355-372, 2004. 530 

35. H. Joe, Multivariate Models and Multivariate Dependence Concepts, Taylor \& Francis, 1997, . 531 
36. T. Bedford and R. Cooke, Probabilistic Risk Analysis: Foundations and Methods, Cambridge University 532 

Press, 2001, . 533 
37. K. Aas, C. Czado, A. Frigessi and H. Bakken, "Pair-copula constructions of multiple dependence," 534 

Insurance: Mathematics and Economics, vol. 44, pp. 182-198, 2009. 535 
38. G. J. Leng, A. Monarque, R. Alward, N. Meloche and A. Richard, "Canada's Renewable Energy Capacity 536 

Building Program & Retscreen International," in Proceedings of the World Renewable Energy Congress 537 
VII, Cologne, Germany, 2002. 538 

39. Southwest Energy, "Specification Sheet Whisper 500,"  539 
 540 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 September 2017                   doi:10.20944/preprints201709.0053.v1

http://dx.doi.org/10.20944/preprints201709.0053.v1

