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Abstract 

Computer numerical controlled (CNC) machines have become an integral part of the manufacturing 

industry, allowing companies to increase the accuracy and productivity of their manufacturing lines. The 

next step to improving and accelerating the development process of a part is to involve virtual prototyping 

during the design phases. Virtual manufacturing has become an invaluable tool to process planners and 

engineers in recent years to model the manufacturing environment in a virtual setting to determine the final 

geometry and tolerances of new parts and processes. For a virtual twin of a CNC machine to be built, the 

dynamics of the drive and CNC controller must be identified. Traditionally, these identification techniques 

require several intrusive tests to be run on the machine tool, causing valuable time lost on production 

machines. In this thesis, three new techniques of developing virtual models of machine tools are discussed.  

The first model presented is a quasi-static model which is suitable for trajectory tracking error 

prediction. This technique is used to determine the contributions of the commanded velocity, acceleration, 

and jerk to the tracking errors of each axis of the machine tool. After determining these contributions, 

process planners can modify the axis feedrates in a virtual environment during trajectory optimization to 

find the best parameters for the shortest cycle time. This method was validated using a laser drilling machine 

tool from Pratt and Whitney Canada (P&WC) and was able to predict the root mean square (RMS) of the 

tracking error within 2.62 to 11.91 µm. A simple graphical user interface (GUI) was developed so that 

process planners and engineers can import data collected from the FANUC and Siemens CNC controllers 

to identify quasi-static models. 

The second model presented is a single input – single output (SISO) rigid body rapid identification 

model. In previous literature, a rapid identification method was proposed where a short G-code was run on 

machine tools, the input and output signals were collected from the controller and the dynamics were 

reverse engineered from the gathered data. However there were some shortfalls with this older method, the 

new proposed rapid identification model addresses these by improving parameter convergence and using 

commanded signal derivatives for identification. Tests were conducted on a five-axis machine tool located 

at the University of Waterloo (UW) to verify and compare the new rapid identification model to the previous 

model. It was determined that the model is able to predict the RMS of the tracking errors with 50-76% 

improvement and maximum contour error discrepancy with 22-35% improvement. Another GUI was 

developed for the SISO rigid body rapid identification model that allows users to import data collected from 

different machine tools and identify a model. 

 



 

iv 

The third model that is discussed in this thesis is a multi input – multi output (MIMO) model. This 

model builds upon the SISO rigid body model and is able to capture vibratory and elastic dynamics. 

Relations between inputs, such as reference and disturbance signals, can be related to a variety of 

measurable outputs. The model is used to predict the relationship between the inputs of commanded 

position and disturbance to the outputs of tracking error and velocity of the x- and y- axes of a P&WC five 

axis milling machine tool. Three different models were identified using this algorithm, two 1-axis 3rd order 

decoupled models and two 2-axis 6th order coupled model are compared in this thesis. The two 6th order 

models have different search spaces, the first has a search space defined from the 3rd order decoupled 

identified parameters while the second has a more general search space. Overall, the 6th order model with 

a larger search space was able to predict the RMS and maximum tracking error more closely, with a 

maximum improvement of 19% for both metrics. However it should be noted that 6th order model with a 

smaller search space was still able to predict the RMS and maximum tracking error similarly to the 6th 

order model with the larger search space. The smaller search space configuration can save on computational 

time which can be advantageous in real world applications. 

In order to verify that the MIMO rapid identification technique would be able to identify a vibration 

mode, an experimental setup was designed and machined. A flexure mount with known vibration modes 

was designed, built and tested to validate Solidworks frequency simulation results. It was concluded that 

the simulation results were able to estimate the frequencies of the flexure with 95-98% accuracy and with 

a maximum absolute difference of 2.87 Hz.  

The flexure was mounted onto the five-axis machine tool at UW to introduce vibratory dynamics. 

Since there is a flexible mode being introduced at the tool-workpiece interface, the motor encoders would 

not be able to capture these dynamics, therefore a two-dimensional grid encoder (KGM) and two 3-axis 

accelerometers (one located on the tool head and the other on the workpiece table) were also placed on the 

machine tool to record the true tool-workpiece response. The data collected from the accelerometers were 

corrected for possible roll, pitch and yaw misalignments before synchronizing the accelerometer and KGM 

data to the motor encoder data. This data was then used to build MIMO rapid identification models with 

the commanded position (recorded from the motor encoders) and normalized Coulomb disturbance as the 

inputs to the system and the true tool-workpiece position or acceleration and machine tool feed drive 

velocity as the outputs to the model. The model estimated from the position measurements from the KGM 

yielded better results 19-1496% improvement in RMS tracking error prediction over the acceleration based 

models. The contouring error estimated using the KGM position model also has an improvement of 233-

370% over the acceleration models. Using the transfer functions estimated from the accelerometer data, 
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there was a 16-33% improvement in the RMS tracking error prediction and an 11-51% improvement in the 

maximum tracking error prediction over the KGM acceleration based model. The RMS contour prediction 

error also improved 4-5% and the maximum contour error prediction improved by 1-6% between the two 

models.  

Further development into the MIMO LTI algorithm is currently being done in the laboratory, including 

research into more complex friction models. It is also recommended to machine an actual part on the five-

axis machine tool and to measure the contouring error of the part on the coordinate measuring machine to 

verify the predictions presented in this thesis. 
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Chapter 1 

Introduction 

In the manufacturing industry, many companies use computer numerical controlled (CNC) machines 

to mass produce parts that have complex geometries. These machines are able to achieve very high 

productivity rates and are capable of creating components with high precision and repeatability. However, 

before the CNC machines can be used to produce these parts, it is essential for the manufacturing process 

and the performance of the machine tool to be optimized through prototyping and production trials. A 

program must be defined, tested and verified that it can create a part with the desired quality. Only then can 

the program be run with confidence that the components will be manufactured within the given 

specifications, usually with periodic human intervention for verification. Unfortunately, this prototyping 

process can be very time consuming, resulting in downtime on the manufacturing line and in wasted 

materials.  

The manufacturing sector is currently moving towards its fourth revolution, often called “Industry 

4.0”, and one of the main goals is to provide companies with complete digitalization of their facilities and 

processes. There are many benefits to the digitalization of businesses such as shortening products time to 

market, improving the quality of the parts, and increasing the flexibility and efficiency of the plant [1]. To 

do this, digital twins of the machine tools and processes must be created in a cyber-physical environment. 

By creating these digital twins, virtual manufacturing/prototyping can be used to minimize cost and time 

losses when developing new processes or improving older ones, reducing overall turnaround time. This 

prototyping method can be used to determine the shortest cycle time for these processes while keeping the 

part within the specified tolerances, which in turn results in the lowest manufacturing cost.  Powerful 

computers that are capable of performing these simulations have become more readily available, making 

this method more appealing to companies.  

Virtual CNC (VCNC) [2] software, as seen in Figure 1-1, has been developed to predict the tracking 

and contouring performance of machine tools. In order for virtual manufacturing to be effective in its 

predictions, it is critical for an accurate model of the actual machine tool to be created. These models must 

account for several different factors, such as the actual process (trajectory, velocity, acceleration, and jerk), 

the dynamics of the machine tool, the controller, and the relationships between the three. Traditionally, 

these models are very time consuming and costly to develop, requiring a qualified dynamics and controls 

engineer to run several tests on the machine tool. Some of these tests require certain controller settings, 

such as the servo loop or the trajectory interpolator, to be turned off while some identification signals are 
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injected into the servo system. These tests are not practical for manufacturing companies, as these tests 

often cause significant downtime on the machines. 

 

Figure 1-1 Overview of VCNC system [2] 

An alternative technique called “rapid identification” was proposed in [3], where a model was 

identified by executing a short G-code, and collecting the input and output data using the oscilloscope 

function of the machines (further discussed in Chapter 2). In this thesis, three new rapid identification 

techniques, which use in-process gathered data to identify models, will be discussed. The first method is a 

quasi-static model, which can be identified very quickly and can predict the instantaneous tracking error of 

rigid machine tools. The second is a single input – single output (SISO) rigid body model, which takes into 

account the poles and friction of the machine tool and is able to predict the tracking error. The final model 

is a multi input – multi output (MIMO) model that is able to predict vibration modes as well as several 

outputs (current, tracking error, position, etc.) using several inputs (commanded position, friction, velocity, 

acceleration, etc.). 
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Chapter 2 

Literature Review 

2.1 Introduction 

In the manufacturing industry, computer aided design and computer aided manufacturing software, or 

more commonly known as CAD/CAM software, have become an irreplaceable tool that assists designers, 

process planners, and engineers to expedite the design and production of new parts. Ever since powerful 

computers capable of performing the complex calculations and simulations required for these tools have 

become more accessible to the general public, several software companies have been moving towards an 

end-to-end, fully digital manufacturing environment. These newer software updates often include modules 

that allow designing, simulation, optimization and quality assurance to occur all within a virtual 

environment.  

Some CAD/CAM packages, such as MasterCAM [4] and GibbsCAM [5], contain general features for 

collision detection, trajectory and feedrate optimization, and toolpath visualization. Other programs, such 

as Autodesk Fusion [6] and Vericut [7] [8], also include an option to create CNC probing subroutines, 

which can maximize the productivity of the machine tools, while minimize the risk of breaking an expensive 

probe tool on the machine floor. However, these software solutions only provide a simulation of what would 

occur in an ideal manufacturing environment. The effects of the machine tool dynamics and the controller 

must also be included in the computations for more accurate simulation of the actual manufacturing process. 

Some companies have started to include these important factors into their software packages, allowing users 

to create a digital twin of their CNC in a virtual environment. 

2.2 Virtual CNCs 

The Virtual CNC (VCNC) platform developed by the Manufacturing Automation Laboratory at the 

University of British Columbia [9] [10] and Siemen’s Virtual NC Kernel [11], include the machine tool 

dynamics and CNC control systems, and the interaction between the two to provide accurate simulations 

and predictions. These software packages allow for a digital twin of a machine tool to be created, which 

allows engineers and process planners to design and fully optimize a process in a virtual environment. The 

main goal of this virtual prototyping process is to have the first part fabricated on the machine tool to be 

within the specified tolerances, with very little or no alterations to the manufacturing procedures on the 

production floor. 
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In the University of British Columbia’s VCNC, there are three main modules: 1) toolpath interpolation, 

2) drive response simulation, and 3) evaluation of performance. This thesis focuses on the model that will 

be used for the simulation of the drive response. The software includes several libraries where the user can 

configure the drive model, for both ball screw and direct feed drives. For the servo controller configuration, 

several control laws are included in the libraries, such as simple P, PID, P-PI cascade controllers to more 

complex structures such as pole-placement [12], generalized predictive [13], adaptive slide mode [14] [15] 

[16], and feedforward controller. Users can also supply a transfer function to the software, without any 

physical parameters/meanings, in either the s- or z-domain. 

2.2.1 Tracking and Contouring Error 

In the VCNC, the contouring accuracy of the part program is estimated and can be used for further 

optimization by doing more prototyping within the virtual environment. In Figure 2-1 below, the tracking 

error and contour error of a trajectory is illustrated.  

 

Figure 2-1 Tracking vs. contouring error 

The tracking error is defined as the difference in distance between the commanded tool position and 

the actual tool position at a specific time step. The contour error is the minimum normal distance between 

the commanded toolpath and the actual toolpath at any point in time. There are two main methods to 

improve the control the performance of drive systems: 1) tracking control, and 2) contouring control [17]. 

The tracking control approach only focuses on reducing the tracking error in each individual axis, which 
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indirectly also reduces the overall contouring error. The contouring control method instead focuses on 

estimating the real-time contouring error and injects this signal into the feedback controller. In [18], it was 

shown that when different axes have matched dynamics, the contouring error of the machine tool is 

minimized. However, when the dynamics of the different axes are not well matched, due to a gain mismatch 

that can be caused by several factors, the system accuracy is affected and the contour errors become 

unacceptable in a manufacturing environment. Taking into account both the tracking and contouring errors 

of a process is very important in the quality of the final manufactured product and should be monitored 

during the processes planning and design phases. 

2.3 Modelling and Identification of Feed Drives 

In order for virtual prototyping to create accurate simulations of the manufacturing process, an accurate 

model of the machine tool must be constructed. The most widely used basic rigid body model is found in 

[19] [20], and a simplified diagram can be seen in Figure 2-2. 

 

Figure 2-2 Rigid body model 

The commanded current input, 𝑢 (V), is applied to the current amplifier gain, 𝐾𝑎 (A/V). This produces 

the current in the motor armature, 𝑖 (A), which is then multiplied by the motor gain, 𝐾𝑡 (N·m/A), to produce 

the motor torque, 𝑇𝑚 (N·m). The model also includes a disturbance torque, 𝑇𝑑 (N·m), which can originate 

from many sources including the guideway, bearing, ball screw friction, and cutting forces. The actual 

torque, 𝑇 (N·m), is then applied to the mechanical system, which is represented by the equivalent inertia, 𝐽 

(kg·m2), and the viscous damping, 𝐵 (kg·m2/s). This results in an angular velocity, 𝜔 (rad/s), of the motor 

shaft, which is integrated to obtain the angular position, 𝜃 (rad). The gear ratio, 𝑟𝑔 (mm/rad), is then applied 

to calculate the linear axis movement, 𝑥 (mm).  

One major downfall of rigid body models are that they are not able to capture the effect of structural 

vibrations that occur at higher bandwidths. In literature, several researchers have proposed finite element 
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models of ball screw drives, and have identified torsional and axial vibrations from frequency response 

experiments [21] [22] [23] [24].  

In literature, there are three main groups of system identification techniques: subspace, nonparametric 

correlation and spectral analysis, and prediction error based techniques [25]. System identification 

experiments are usually carried out in closed-loop or partially closed-loop conditions for safety, economic, 

and quality reasons [25] [26]. Although the subspace and nonparametric methods work well with open-loop 

data, one major drawback is that they do not work well with closed-loop data due to the difficulties of 

correlating measurement noise with the applied input [25] [26]. The prediction error based methods can be 

separated into three categories: direct, indirect, and joint input-output [27]. All the prediction error based 

techniques require a control input of sufficient excitation to be applied to the closed-loop system, such as 

step or pseudo random binary sequence (PRBS) input. However, this type of input is difficult to execute on 

a CNC machine tool since motion commands are usually interpolated to be continuous at the acceleration 

and/or jerk level. This can result in a lack of excitation in the machine tool which makes the identification 

of multiple transfer function parameters very difficult as they may not converge [28].  

Aside from cutting and process forces, one of the main disturbances in machine tools that causes 

positioning errors is friction. Therefore, modeling and identifying the friction of a feed drive is essential to 

the accuracy of a VCNC. In literature, friction models are grouped into two categories: static (classic) and 

dynamic (memory based) [29]. In the classic static model, the applied (input) force and velocity is used to 

calculate the instantaneous friction force [9] [30]. For the memory based models, the sticking and sliding 

regimes must be characterized, for which several models have been proposed in literature [31] [32] [33] 

[34]. Friction models that require experimentally gathered time domain data have been studied extensively 

in [20] [35] [36], while frequency domain friction models have also been studied in [37] [38] [39]. In 

previous VCNC studies, it has been shown that simple Coulomb friction models provide sufficient accuracy 

in predicting quadrant glitch servo errors caused by motion reversals [3] [28]. 

2.4 Rapid Identification  

The modeling and identification methods mentioned in the previous section can provide accurate 

models of machine tools. However, one major shortfall of these models are that they require several time 

and frequency domain tests using several different control loops to be conducted by an experienced controls 

engineer [40] [41] [42]. These time consuming tests can cause downtime on production machine tools, 

which results in lost profits for companies. In this thesis, three rapid identification models that do not require 

invasive testing on the machines will be presented:  
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1) Quasi-Static Model 

2) SISO and Rigid Body Model 

3) MIMO and Flexible Dynamics Model 

Each model has its pros and cons. In [43], a motion control trajectory pre-filter theory was proposed 

which is extended in this thesis to estimate machine tool’s quasi-static dynamics in a practical way using 

in process gathered data. This method will be discussed in Chapter 3. The quasi-static model has the fastest 

computation time, however it does not take into account the poles (natural response) or the friction of the 

system. The SISO model takes into account the machine’s natural response, however it only considers rigid 

body dynamics. In previous literature, a rapid identification strategy was proposed, where a short G-code 

is executed on a machine tool, and the commanded position (input) and actual position (output) are collected 

using the motion capture feature that is available on most controllers. This data was then taken offline and 

used to reverse engineer the equivalent tracking and disturbance transfer functions. Several techniques have 

been used to identify the transfer functions, such as constrained least squares (LS) [3], genetic algorithm 

[44], and particle swarm optimization [28]. The constrained least squares method will be explained further 

in Section 4.2, and will be used to benchmark against the proposed model. There were two main 

shortcomings for this constrained LS method: 1) inaccurate or unstable models could be identified due to 

lack of persistent excitation of the machine tool, and 2) numerical derivatives of the encoder readings are 

 

Figure 2-3 Overview of virtual drive model 
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used in the regressor matrix, which can lead to noise issues on low resolution encoders. These issues are 

mitigated using the newer proposed SISO model in this thesis as seen in Figure 2-3 and discussed further 

in Chapter 4. The MIMO model can be used to identify the transfer functions between several inputs and 

several outputs and can account for vibratory dynamics, however it is more computationally intensive, and 

this method will be discussed in Chapter 5. 

2.5 Conclusions 

In this chapter, the importance of virtual CNCs to the manufacturing industry and to academia have 

been discussed. Several different modeling and identification techniques were discussed, including a variety 

of friction models. It is clear that an accurate model of the machine tool is required in order to accurately 

simulate processes in a virtual environment, however the more traditional ways of building these models 

are too time consuming and causes significant downtime on machines. Additionally, the previous 

commonly used constrained LS rapid identification method has shortcomings that must be solved. In the 

following chapters of the thesis, three new rapid identification techniques will be proposed, discussed and 

validated using experimental results.  
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Chapter 3 

Quasi-Static Model for Rapid Identification 

3.1 Introduction 

In some situations, such as in trajectory tracking error prediction, virtual models do not need to take 

into account the drive’s natural response (i.e. poles). For certain feed drives that have rigid body dominant 

dynamics, a simple and quick model can be used in trajectory tracking prediction. In this chapter, a practical 

model that predicts the instantaneous tracking error of a machine tool related to the time derivatives of the 

position command will be discussed. 

3.2 Quasi-Static Model 

The error transfer function, 𝐺𝑒𝑟, can be defined by Eqn. (3.1), where 𝐺𝑡𝑟𝑎𝑐𝑘 is the tracking transfer 

function between the commanded and actual position of the machine tool. 

𝐺𝑒𝑟 = 1 − 𝐺𝑡𝑟𝑎𝑐𝑘 (3.1) 

The instantaneous positioning error, 𝐺𝑒𝑟(𝑠), can be approximated by a Taylor series expansion around zero 

frequency (𝑠 = 0) as seen in Eqn. (3.2) where 𝑥𝑟(𝑠) is the commanded position, 𝑥(𝑠) is the actual position, 

𝑒(𝑠) = 𝑥𝑟(𝑠) − 𝑥(𝑠) is the tracking error of the machine tool, and 𝐺𝑒𝑟
′ , 𝐺𝑒𝑟

′′ , 𝐺𝑒𝑟
′′′ are the first three 

derivatives of 𝐺𝑒𝑟 with respect to 𝑠. These derivative terms will be finite at 𝑠 = 0 because there are no 

integrators in 𝐺𝑒𝑟. In this equation, 𝐺𝑒𝑟(0) = 0 because 𝐺𝑡𝑟𝑎𝑐𝑘 is designed to have zero steady-state error 

in response to position commands. A Butterworth filter is used to filter the derivative profiles to reduce the 

noise in the signals. 

𝐺𝑒𝑟(𝑠) =
𝑒(𝑠)

𝑥𝑟(𝑠)
= 𝐺𝑒𝑟(0)⏟  

=0

+ 𝐺𝑒𝑟
′ (0)⏟  𝑠
𝐾𝑣𝑒𝑙

+
1

2!
𝐺𝑒𝑟
′′ (0)

⏟      
𝑠2

𝐾𝑎𝑐𝑐

+
1

3!
𝐺𝑒𝑟
′′′(0)

⏟      
𝑠3

𝐾𝑗𝑒𝑟𝑘

+⋯ 
(3.2) 

For this model, the low frequency dynamics of the machine tool will be estimated by 𝐺𝑒𝑟, which only 

contains the first three derivative terms as seen in Eqn. (3.3). 

𝐺𝑒𝑟 =
𝑒̂(𝑠)

𝑥𝑟(𝑠)
= 𝐾𝑣𝑒𝑙𝑠 + 𝐾𝑎𝑐𝑐𝑠

2 + 𝐾𝑗𝑒𝑟𝑘𝑠
3 (3.3) 

By rearranging Eqn. (3.3) to isolate the term 𝑒̂(𝑠) and taking the inverse Laplace transform, the tracking 

error of the machine tool can be estimated using Eqn. (3.4).  
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𝐿−1{𝑒̂(𝑠)} ⇒ 𝑒̂(𝑡) =̃ 𝐾𝑣𝑒𝑙𝑥̇𝑟(𝑡) + 𝐾𝑎𝑐𝑐𝑥̈𝑟(𝑡) + 𝐾𝑗𝑒𝑟𝑘𝑥𝑟(𝑡) (3.4) 

To build this simplified model for machine tool drives, the commanded and actual positions are 

collected from the CNC controller. The data is then taken offline, where the commanded position is 

differentiated and filtered to reduce the noise of the signal and the tracking error is calculated. Using the 

least squares (LS) formulation in Eqn. (3.5), 𝐾𝑣𝑒𝑙, 𝐾𝑎𝑐𝑐, and 𝐾𝑗𝑒𝑟𝑘 can be estimated, where 𝑌 is the output 

vector containing tracking error measurements, 𝜃 is the model parameter vector, Φ is the regressor matrix 

containing experimentally gathered command signals, and 𝑁 is the total number of samples collected. 

Minimize 𝑓 =
1

2
(𝑌 −Φ𝜃)𝑇(𝑌 − Φ𝜃)

𝑌 = [𝑒1 𝑒2…𝑒𝑁]
𝑇

𝜃 = [𝐾𝑣𝑒𝑙 𝐾𝑎𝑐𝑐 𝐾𝑗𝑒𝑟𝑘]
𝑇

Φ =

[
 
 
 
𝑥̇𝑟,1 𝑥̈𝑟,1 𝑥𝑟,1
𝑥̇𝑟,2 𝑥̈𝑟,2 𝑥𝑟,2
⋮ ⋮ ⋮
𝑥̇𝑟,𝑁 𝑥̈𝑟,𝑁 𝑥𝑟,𝑁]

 
 
 

}
 
 
 
 

 
 
 
 

 

𝜃 = (Φ𝑇Φ)−1Φ𝑇𝑌 

(3.5) 

3.2.1 Feedrate Optimization 

This quasi-static model can be used for practical feedrate optimization by process planners. As seen in 

Eqn. (3.4), the servo errors due to the velocity, acceleration, and jerk commands can be predicted for each 

axis. If a maximum servo error, 𝑒𝑚𝑎𝑥, is specified for the part or process, the kinematic limits imposed on 

the feedrate optimization for the axis velocity, acceleration and jerk can be modulated, as seen in Eqn. (3.6). 

By implementing different combinations of limits on the axes, the planner is able to determine what cycle 

time optimization can be achieved in a virtual environment. 

𝑒̂(𝑡) ≤ |𝐾𝑣𝑒𝑙𝑥̇𝑟,𝑚𝑎𝑥| + |𝐾𝑎𝑐𝑐𝑥̈𝑟,𝑚𝑎𝑥| + |𝐾𝑗𝑒𝑟𝑘𝑥𝑟,𝑚𝑎𝑥| ≤ 𝑒𝑚𝑎𝑥 (3.6) 

3.3 Experimental Validation 

Experimental validation of the quasi-static model has been carried out on a laser drilling machine from 

the Pratt and Whitney Canada (P&WC) manufacturing line in Longueil, Quebec. The servo data was 

collected using the software Sinucom from the Siemens 840D SL controller. The concept of the 

experimental identification process can be seen in Figure 3-1. 



 

11 

 

Figure 3-1 Experiment identification process for quasi-static model (representative picture of 

machine tool obtained from [45]) 

Data was collected for a gas turbine component at a sampling rate of 2 ms, as shown in Figure 3-2. 

Due to confidentiality reasons, the real machine tool, part dimensions, and process cycles times of P&WC 

related tests cannot be disclosed in this thesis. 

 

Figure 3-2 Hole locations for gas turbine engine combustion chamber panel  

3.3.1 Results 

The results of the identification and verification can be seen in Figure 3-3, where “Err. of Pred.” (or 

error of prediction) is the difference between the actual and predicted tracking error. The black lines show 

the commanded trajectory, the blue lines show the measured (actual) servo response from the encoders, the 

red lines show the data used for identifying the quasi-static model and the green lines show the data used 

for verification of the model. 10000 points of the collected data were used for identifying the model and 

45000 points were used for model verification. The quasi-static identification method works well with 

commanded acceleration data that contains non-zero velocity, acceleration and jerk components, which is 

common with most CNC trajectories. 
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Figure 3-3 Results of quasi-static model for the laser drilling machine 

The tracking error prediction results can be seen in Table 3-1. It can be seen from the figure and table 

that the quasi-static model can predict the machine tool’s RMS tracking error between 2.62 to 11.91 µm of 

the actual RMS tracking error. Also the model is able to predict the maximum tracking error within 11.40 

to 69.05 µm. 

Table 3-1 Tracking error prediction for the laser drilling machine 

Discrepancy in Servo 

Error Prediction 

X Axis 

[µm] 

Y Axis 

[µm] 

Z Axis 

[µm] 

B Axis 

[µdeg] 

C Axis 

[µdeg] 

Actual tracking error: 

RMS (MAX)  

259.53 

(3555.00) 

861.77 

(4915.50) 

907.13 

(4060.80) 

320.68 

(1689.40) 

1039.10 

(4302.40) 

Predicted tracking error: 

RMS (MAX) 

259.45 

(3552.40) 

861.81 

(4921.30) 

907.65 

(4057.60) 

320.51 

(1689.20) 

1038.50 

(4308.10) 

Prediction error: 

RMS (MAX) 

2.62 

(40.27) 

3.44 

(15.05) 

11.91 

(69.05) 

2.83 

(11.40) 

6.41 

(63.15) 
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3.4 GUI Development  

A graphical user interface (GUI), as seen in Figure 3-4, was developed for the process planners and 

engineers at P&WC to be able to identify quasi-static machine models for both Siemens controlled and 

FANUC controlled machine tools.  

 

Figure 3-4 Graphical user interface for quasi-static model 

This GUI allows users to import data collected directly from the different controller software, Sinucom 

(Siemens) and Servo Guide/Servo Viewer (FANUC), without any need for post-processing. The users are 

able to select a data range for identification, as well as the order and cutoff frequency of the Butterworth 

filter to be applied to the collected data. A model is then identified from the user specified parameters and 

used to simulate the response of the machine tool for the data set. Users can also vary the identified 𝐾𝑣𝑒𝑙, 
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𝐾𝑎𝑐𝑐, and 𝐾𝑗𝑒𝑟𝑘 parameters by changing the red highlighted fields, as seen in Figure 3-4, to visualize the 

effect of the gains on the model. 

3.5 Conclusions 

In this chapter, a practical quasi-static model was presented. The model is able to determine the 

tracking errors contributed from the velocity, acceleration, and jerk commands of each axis of the machine 

tool from in-process gathered data. This method can be used by process planners to modify feedrate 

optimization axis limits, to determine which combination of limits results in the shortest cycle time during 

the virtual prototyping stage. The quasi-static model has been experimentally verified using data measured 

from a laser drilling machine. A GUI has also been created to aid engineers and technicians in the 

identification of a quasi-static model.   
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Chapter 4 

SISO and Rigid Body Model for Rapid Identification 

4.1 Introduction 

In this chapter, a single input – single output (SISO) rigid body model will be discussed. This model 

takes into account the machine tool’s natural response (i.e. poles) and includes a simplified friction model. 

In Chapter 3, the quasi-static model only considers the kinematics of the machine tool (i.e. how the velocity, 

acceleration and jerk affects the tracking error of a process). While the quasi-static model is useful for 

trajectory tracking prediction, a higher fidelity model is needed to build a virtual twin of machine tools for 

virtual CNCs and process planning. In this chapter, the proposed model is able to identify and capture key 

dynamics of the feed drives using in-process gathered data. This model improves on the rapid identification 

technique proposed in [3], which was able to simulate key dynamics of a large group of CNC drives, 

however there were some deficiencies in this method. The model that is discussed in this chapter only 

considers the low frequency response of the tools that originate from rigid body dynamics.  

In Section 4.2, the previous constrained rapid identification model from [3] is described. The proposed 

pole search with least squares projection is explained in Section 4.3. Experimental results and discussion 

are presented in Section 4.4, followed by conclusions in Section 4.6. The work presented in this chapter 

was done in collaboration with Mr. Mustafa Hakan Turhan and Dr. Kaan Erkorkmaz, testing of the 

algorithm and experimental results were done by the author, while Mr. Turhan developed further theory 

and more advanced friction modelling [46] [47]. 

4.2 Full Least Squares Based Model 

In this section, the rapid identification model proposed in [3] will be discussed in detail as it will be 

used for benchmarking at the end of this chapter. A large selection of CNC drives, which usually have a 

ball screw or direct feed drive, can be modelled using a third order transfer function. These drives can have 

a variety of feedback controllers such as P, PI, PD, PID and/or P-PI cascade control, and can also 

incorporate feedforward dynamics or friction compensation, as seen in Figure 4-1. This model makes three 

main assumptions: 

1. The machine is modelled as a rigid body since the machine’s structural resonances are avoided 

during the usage of the machine (Machine tools are designed to have structural resonances beyond 

the servo bandwidth). 
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2. The motor and amplifier are operating in their linear range (being run under the saturation limit). 

3. The machine tool’s nonlinearities have little influence on the motion (e.g. backlash). 

 

Figure 4-1 Frequently used control structures in CNC drives 

From these assumptions, a closed loop transfer function can be modelled using Eqn. (4.1), where 𝑥𝑟(𝑠) 

is the commanded position, 𝑥(𝑠) is the actual position, 𝑑(𝑠) is the disturbance of the system, 𝐽 is the open-

loop inertia of the feed drive, and 𝐾 is the combined motor torque, current amplifier, and ball screw gear 

transmission gain. 𝐺𝑡𝑟𝑎𝑐𝑘 and 𝐺𝑑𝑖𝑠𝑡 are the equivalent command tracking transfer function and disturbance 

transfer function, respectively.  

𝑥(𝑠) =
𝑏0𝑠

2 + 𝑏1𝑠 + 𝑏2 + 𝑎3
1
𝑠
 

𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1
𝑠⏟              

Gtrack(𝑠)

∙ 𝑥𝑟(𝑠) −
𝐾/𝐽

𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1
𝑠⏟            

Gdist(𝑠)

∙ 𝑑(𝑠) 
(4.1) 

A Coulomb friction model is used to approximate the overall friction effect and is expressed using 

Eqn. (4.2). 𝑃𝑉() is a binary function which has a value of 1 when the axis velocity is positive and is 

otherwise 0. 𝑁𝑉() is a similar binary function which has a value of 1 when the axis velocity is negative and 
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is 0 otherwise. 𝑑+ and 𝑑− are the control signal equivalent values for the positive and negative directions 

of motion respectively for the Coulomb friction.  

𝑑(𝑠) = 𝑑+ ∙ 𝑃𝑉(𝑥̇) + 𝑑− ∙ 𝑁𝑉(𝑥̇) (4.2) 

By combining Eqns. (4.1) and (4.2), the closed-loop dynamics can be written as Eqn. (4.3), where 𝑑𝑛
+ 

and 𝑑𝑛
− are the positive and negative normalized friction values respectively and can be calculated using 

Eqn. (4.4). 

[𝑠2 + 𝑎1𝑠 + 𝑎2 + 𝑎3
1

𝑠
] ∙ 𝑥 = [𝑏0 + 𝑏1𝑠 + 𝑏2 + 𝑎3

1

𝑠
] ∙ 𝑥𝑟 − [𝑃𝑉(𝑥̇) ∙ 𝑑

+ +𝑁𝑉(𝑥̇) ∙ 𝑑−]  (4.3) 

𝑑𝑛
+ −⁄ = (

𝐾

𝐽
) 𝑑+ −⁄  (4.4) 

In discrete-time form, after normalizing the model parameters in Eqn. (4.3) with respect to 𝑎2, the 

actual position of the machine tool at sample 𝑘 can be predicted using Eqn. (4.5). In this equation, 𝑥𝑘 =

𝑥(𝑘𝑇𝑠), where 𝑇𝑠 is the sample period of the collected data.  

𝑥𝑘 = 𝛼𝑖𝑒𝑖,𝑘 − 𝛼1𝑥̇𝑘 − 𝛼2𝑥̈𝑘 + 𝛽0𝑥𝑟,𝑘 + 𝛽1𝑥̇𝑟,𝑘 + 𝛽2𝑥̈𝑟,𝑘 − 𝑃𝑉(𝑥̇𝑘)𝛿
+ −𝑁𝑉(𝑥̇𝑘)𝛿

− 

(4.5) 
𝛼2 =

1

𝑎2
, 𝛼1 =

𝑎1
𝑎2
, 𝛼𝑖 =

𝑎3
𝑎2
,

𝛽2 =
𝑏0
𝑎2
, 𝛽1 =

𝑏1
𝑎2
, 𝛽3 =

𝑏2
𝑎2
,

𝛿+ =
𝑑𝑛
+

𝑎2
, 𝛿− =

𝑑𝑛
−

𝑎2 }
  
 

  
 

 

The integrated tracking error, 𝑒𝑖, can be approximated using Eqn. (4.6): 

𝑒𝑖,𝑘 = 𝑇𝑠 ∑(𝑥𝑟,𝑚 − 𝑥𝑚)

𝑘

𝑚=1

 (4.6) 

The eight model parameters can be estimated using classical least squares (LS) by minimizing the 

problem in Eqn. (4.7), where 𝑁 is the total number of samples, 𝑌 is the vector containing actual position 

measurements, 𝜃 is the parameter vector containing the unknown model parameters, and Φ is the regressor 

matrix containing the signals from the experimental measurements.  
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Minimize 𝑓 =
1

2
(𝑌 −Φ𝜃)𝑇(𝑌 − Φ𝜃)

𝑌 = [𝑥1 𝑥2 … 𝑥𝑁]𝑇

𝜃 = [𝛼𝑖 𝛼1 𝛼2 𝛽0 𝛽1 𝛽2 𝛿+ 𝛿−]𝑇

Φ =

[
 
 
 
𝑒𝑖,1
𝑒𝑖,2
⋮
𝑒𝑖,𝑁

−𝑥̇1
−𝑥̇2
⋮

−𝑥̇𝑁

−𝑥̈1
−𝑥̈2
⋮

−𝑥̈𝑁

𝑥𝑟,1
𝑥𝑟,2
⋮
𝑥𝑟,𝑁

𝑥̇𝑟,1
𝑥̇𝑟,2
⋮
𝑥̇𝑟,𝑁

𝑥̈𝑟,1 

𝑥̈𝑟,2
⋮
𝑥̈𝑟,𝑁

−𝑃𝑉(𝑥̇1)

−𝑃𝑉(𝑥̇2)
⋮

−𝑃𝑉(𝑥̇𝑁)

−𝑁𝑉(𝑥̇1)

−𝑁𝑉(𝑥̇2)
⋮

−𝑁𝑉(𝑥̇𝑁)]
 
 
 

}
 
 
 
 

 
 
 
 

 

𝜃 = (Φ𝑇Φ)−1Φ𝑇𝑌 

 

(4.7) 

Using this method, a short numerical control (NC) code with varying distance linear interpolation 

movements must be executed on the machine tool to observe the performance over a range of different 

feedrates. Executing these back and forth trajectories with varying accelerations and velocities, the model 

is able to capture the Coulomb friction dynamics caused by the motor torque/force amplitude dependency 

fairly well. There were, however, two main short comings to this model: 

1. The prediction accuracy of the identified model can decline or even lead to unstable models due 

to the lack of persistent excitation of the machine tool while collecting data. This occurs because 

CNC systems usually have commanded signals that are acceleration-continuous and can cause 

the identified parameters to not converge.  

2. The regressor matrix in Eqn. (4.7) contains numerical derivatives of the measured encoder signals. 

If the machine tool has low resolution encoders or the significant digits is limited in the collected 

data, the differentiation could cause noise issues. 

To avoid unstable models due to the lack of persistent excitation, bounds are imposed during the 

estimation process that ensure the identified model has pole locations away from the imaginary axis of the 

s-plane. The characteristic polynomial can be written using Eqn. (4.8), and the constraints imposed of the 

problem can be expressed using Eqn. (4.9). 

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3 = (𝑠 + 𝑝)(𝑠

2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2) (4.8) 

Constraints: 
𝑝 ≥ 𝑝𝑚𝑖𝑛  𝜔𝑛 ≥ 𝜔𝑛,𝑚𝑖𝑛
𝜁 ≥ 𝜁𝑚𝑖𝑛 𝜁 ≤ 𝜁𝑚𝑎𝑥

 (4.9) 

Where 𝑝𝑚𝑖𝑛 > 0, 𝜔𝑛,𝑚𝑖𝑛 > 0, and 𝜁𝑚𝑎𝑥 > 𝜁𝑚𝑖𝑛 > 0 to ensure stability of the system. It is also assumed 

that 𝜁𝑚𝑎𝑥 > 1. 

In previous studies, it was found that in most cases the unconstrained estimation using Eqn. (4.7) would 

yield a model that also satisfied the imposed constraints in Eqn. (4.9). In this thesis, the full LS method was 
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implemented by solving the unconstrained eight parameter estimation from Eqn. (4.7) and the identified 

parameters were verified to fall within the constraints specified in Eqn. (4.9). This previous model, which 

will be referred to as the “Full LS Solution”, will be used as a benchmark for the new proposed model, 

subsequently referred to as the “Pole Search with LS Projection” model. 

4.3 Pole Search with LS Projection 

The pole search with LS projection method can identify a model of the machine tool using in-process 

gathered data. This means that the data collection process no longer has to interrupt the production 

machine’s operation. In Figure 4-2, the block diagram for the new proposed model can be seen.  

 

Figure 4-2 Closed-loop model for predicting tracking error and feed drive position 

The proposed model predicts the instantaneous tracking error, 𝑒(𝑠) using Eqns. (4.10) and (4.11), 

rather than the instantaneous axis position, 𝑥, like the full LS solution discussed in Section 4.2.  

𝑒(𝑠) =
(𝑐0𝑠

2 + 𝑐1𝑠 + 𝑐2)𝑠

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3⏟              
𝐺𝑒,𝑥𝑟(𝑠)

𝑥𝑟(𝑠) +
(𝐾 𝐽⁄ )𝑠

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3⏟              
𝐺𝑒,𝑑(𝑠)

𝑑(𝑠) 
(4.10) 

𝑐0 = 1 − 𝑏0
𝑐1 = 𝑎1 − 𝑏1
𝑐2 = 𝑎2 − 𝑏2

} (4.11) 

𝑑(𝑡) is the friction disturbance, and is estimated at small velocities, as being viscous using a Coulomb 

friction model as seen in Eqn. (4.12), where 𝑣̃ is the velocity transition band and 𝑑0
′  is the normalized 

control Coulomb friction input for positive and negative motion.  

𝑑(𝑡) = 𝑑0
′ 𝑠𝑎𝑡(𝑥̇/𝑣̃) (4.12) 

By grouping together the 𝑑0
′  and the gain of the disturbance response, 𝐾/𝐽, a single gain for the scaled 

friction input between -1 and +1 can be calculated using Eqn. (4.13).  
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𝑑0 = 𝑑0
′ (
𝐾

𝐽
) (4.13) 

Numerical differentiation of the measured encoder readings are noisy, even after filtering. Many 

solutions have been investigated to alleviate this problem. The first solution was to use a pure 𝑠𝑖𝑔𝑛() 

function, however, the noisy signals could lead to a false detection of sudden friction force transitions. 

Another solution that was explored for simulations was to use a block diagram like the one in Figure 4-2 to 

estimate the axis position and tracking errors. However, when this model was coupled with a feedback loop, 

this resulted in limit cycle type oscillations due to the discontinuous transitions around zero velocity. The 

last solution, which is implemented in the proposed method, is to use a saturation function. By using this 

function, the model acts as viscous friction around the small velocities while still being able to estimate the 

friction parameter and predict the tracking error due to the friction force.  

Substituting Eqns. (4.12) and (4.13) into Eqn. (4.10), the expression in Eqn. (4.14) is obtained, where 

𝑃(𝑠) is the characteristic polynomial. In this equation, the pole locations are chosen such that 𝑃(𝑠) = 𝑠3 +

𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3 = (𝑠 + 𝑝)(𝑠

2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2). The pole locations 𝑝,𝑤𝑛, and 𝜁 are chosen from within a 

search space that the user specifies, to ensure that the model does not become unstable. In the proposed 

method, the numerators and lumped friction coefficients can be estimated by a LS sub-problem as seen in 

Eqn. (4.15).  

(𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3)⏟              
𝑃(𝑠)

∙ 𝑒 = (𝑐0𝑠
2 + 𝑐1𝑠 + 𝑐2) ∙ 𝑠 ∙ 𝑥𝑟 + 𝑠 [𝑑0𝑠𝑎𝑡 (

𝑥̇

𝑣̃
)] (4.14) 

𝑒 =
𝑐0𝑠

3

𝑃(𝑠)
𝑥𝑟 +

𝑐1𝑠
2

𝑃(𝑠)
𝑥𝑟 +

𝑐2𝑠

𝑃(𝑠)
𝑥𝑟 +

𝑠

𝑃(𝑠)
[𝑑0𝑠𝑎𝑡 (

𝑥̇

𝑣̃
)] 

= 
𝑠3𝑥𝑟
𝑃(𝑠)⏟
𝑥𝑟𝑓

𝑐0 +
𝑠2𝑥𝑟
𝑃(𝑠)⏟
𝑥̈𝑟𝑓

𝑐1 +
𝑠𝑥𝑟
𝑃(𝑠)⏟
𝑥̇𝑟𝑓

𝑐2 +
𝑠

𝑃(𝑠)
𝑠𝑎𝑡 (

𝑥̇

𝑣̃
)

⏟        
𝑑𝑛𝑓

𝑑0 
(4.15) 

The actual axis velocity, 𝑥̇, is estimated using the measured velocity, 𝑥̂̇𝑓, which is calculated by 

numerically differentiating and filtering the measured encoder position readings. A moving average filter 

is used to ensure that there is zero phase shift with respect to time. By using this substitution, the noise 

issues are diminished when determining the direction of the instantaneous friction force, specifically during 

small velocities. 

𝑃(𝑠) is a third order polynomial since the model only considers the rigid body dynamics and integral 

action in the controller. This means that as long as the commanded position, 𝑥𝑟, is continuous, the filtered 

derivatives of the command profile 𝑥̇𝑟𝑓, 𝑥̈𝑟𝑓, and 𝑥𝑟𝑓 are also continuous. The saturation function’s output 
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is 0th degree continuous, but after passing it through 𝑠/𝑃(𝑠), two degrees of continuity will be added. The 

resulting signal is the normalized friction force (between -1 and +1), 𝑑𝑛𝑓, that has been differentiated once 

and filtered through the system’s closed-loop characteristic polynomial. 

The four model parameters can be estimated by minimizing the LS problem in Eqns. (4.16), where 𝑌 

is the vector containing the tracking error measurements, 𝜃2 is the parameter vector containing the unknown 

model parameters, and Φ2 is the regressor matrix containing the signals from the experimental 

measurements. 

𝑌 = [𝑒1 𝑒2…𝑒𝑁]
𝑇

𝜃2 = [𝑐0 𝑐1 𝑐2 𝑑0]
𝑇

Φ2 =

[
 
 
 
𝑥𝑟𝑓,1 𝑥̈𝑟𝑓,1
𝑥𝑟𝑓,2 𝑥̈𝑟𝑓,2

𝑥̇𝑟𝑓,1 𝑑𝑛𝑓,1
𝑥̇𝑟𝑓,2 𝑑𝑛𝑓,2

⋮ ⋮
𝑥𝑟𝑓,𝑁 𝑥̈𝑟𝑓,𝑁

⋮ ⋮
𝑥̇𝑟𝑓,𝑁 𝑑𝑛𝑓,𝑁]

 
 
 

}
  
 

  
 

 

𝜃2 = (Φ2
𝑇Φ2)

−1Φ2
𝑇𝑌 

(4.16) 

The step by step implementation of the proposed model is illustrated in Figure 4-3. 

1. Characteristic polynomials are constructed using candidate poles chosen from within a pre-

established stable search space. 

2. Construct the regressors by filtering the experimental data through the characteristic polynomials to 

estimate the numerator terms. 

3. Apply LS to solve for the numerator and friction parameters. 

4. Each candidate model is evaluated by the objective function which penalizes the root mean square 

(RMS) of the prediction error, as seen in Eqn. (4.17), where 𝑁 is the total number of samples, 𝑒𝑎𝑐𝑡𝑢𝑎𝑙 

is the measured tracking error and 𝑒𝑝𝑟𝑒𝑑 is the predicted tracking error. The pole set, and the 

numerator and friction parameters with the lowest RMS value is chosen as the model. The global 

search function [48] from MATLAB’s Global Optimization Toolbox was used to minimize the 

objective function. This search function was used as it provided the best and most robust parameter 

convergence. 

𝑓 = √
1

𝑁
∑(𝑒𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑒𝑝𝑟𝑒𝑑)

2
𝑁

𝑘=1

 (4.17) 
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Figure 4-3 Proposed SISO procedure for identifying virtual feed drive dynamics 
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4.4 Experimental Validation 

The Deckel Maho 80P hi-dyn five-axis machining center, seen in Figure 4-4, was used to validate the 

proposed method. The machine tool has a Heidenhain TNC 430N controller with a built-in scope function 

which was used to collect the commanded position and measured position of the linear encoder with 0.1 

µm resolution. The scope function allows for 4096 samples to be collected at a sampling period of 0.6 ms.  

 

Figure 4-4 Experiment identification process for SISO model 

Three different trajectories were captured on this machine tool: a diamond shaped toolpath with 20 

mm edge length, a circle shaped toolpath with 20 mm radius, and a varying distance linear interpolation 

(pseudo-random) toolpath. The diamond toolpath is used for model identification, while the circle and linear 

interpolation toolpaths are used for model verification. The trajectory data range selected for fitting the 

model started when the machine was in motion and stopped a few seconds after the machine finished 

moving to capture the settling response.  

4.4.1 Results 

The bounds for the stable search space can be seen in Table 4-1, where 833.33 Hz corresponds to the 

Nyquist frequency of the experimental data. It should be noted that the tracking errors are relatively large 

on this experimental setup because the feedforward action on the CNC controller is turned off, which was 

verified by checking the TNC 430N controller parameters. Aggressive trajectories were tested on this 

machine tool, with tangential feedrate, acceleration and jerk values reaching up to 137 mm/s, 5764 mm/s2, 

and 5.51×106 mm/s³, respectively. 
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Table 4-1 SISO pole search bounds for X- and Y- axes of Deckel Maho 80P 

Parameters Min Max 

𝑝 [Hz] 1 833.33 

𝜔 [Hz] 1 833.33 

𝜁[] 0.2 2 

 

The estimated parameters can be seen in Table 4-2. The x- and y- axes have relatively close natural 

frequencies, 𝑤𝑛, at 15.79 and 11.18 Hz respectively, as well as close damping ratios, 𝜁, at 1.12 and 1.22 

respectively. The higher frequency x- and y- poles, 𝑝, at 88.55 and 209.74 Hz are not similar, however these 

poles do not have a large influence on the overall response, which indicates that the machine tool has 2nd 

order dominate dynamics. Since there is no pole-zero cancellation, it is evident that there is no feedforward 

control being used by the machine tool (which is true in this experimental case). During some of the LS 

projection cases, some of the pole set candidates lead to 𝑑0 having a negative value, these instances were 

excluded from being potential models.  

Table 4-2 SISO identified parameters for X- and Y- axes of Deckel Maho 80P 

Parameters  X Axis Y Axis 

𝑝 [Hz] 88.55 209.74 

𝜔 [Hz] 15.79 11.18 

𝜁[] 1.12 1.22 

𝑐0 0.01 1.04 

𝑐1 1.21E+03 2.34E+03 

𝑐2 6.89E+04 8.19E+04 

𝑑0 699.04 714.99 

Tracking TF 

Zeros  

Freq. 

[Hz] 

Damp. 

[ ] 

Freq. 

[Hz] 

Damp. 

[ ] 

𝑧1 48.8 -0.8 3326.3 1.0 

𝑧2 48.8 -0.8 33.3 -1.0 

𝑧3 9.3 1.0 5.8 1.0 

 

The full LS based model is used as a benchmark for the new pole search LS projection method. The 

measured and predicted axis positions and tracking errors for the diamond, circle and pseudo-random 

trajectories can be seen in Figure 4-5, Figure 4-6, and Figure 4-7, respectively. The contour error prediction 

results for the diamond and circle toolpaths can be seen in Figure 4-8. Summaries for the prediction of full 

LS and LS projection method can be found in Table 4-3. 
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Figure 4-5 Actual and SISO predicted servo performance for a 20mm length diamond toolpath 
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Figure 4-6 Actual and SISO predicted servo performance for a 20mm radius circle toolpath 
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Figure 4-7 Actual and SISO predicted servo performance for a varying distance linear 

interpolation toolpath 

Table 4-3 SISO tracking and contouring error prediction for Deckel Maho 80P 

Discrepancy in Servo 

Error of Prediction 

Diamond Circle 
Varying Dist. Linear 

Interpolation 

Proposed 

Method 
Full LS 

Proposed 

Method 
Full LS 

Proposed 

Method 
Full LS 

X axis tracking error: 

RMS (MAX) [µm] 

1.16 

(6.45) 

4.07 

(10.29) 

1.56 

(8.45) 

6.49 

(16.97) 

2.09 

(7.41) 

4.17 

(11.96) 

Y axis tracking error: 

RMS (MAX) [µm] 

1.59 

(9.09) 

4.36 

(12.65) 

1.73 

(10.68) 

6.47 

(14.62) 

1.71 

(8.70) 

4.21 

(10.35) 

Contouring error: 

RMS (MAX) [µm] 

0.90 

(6.93) 

1.16 

(6.61) 

1.39 

(7.94) 

2.14 

(11.19) 
- - 
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It can be seen from Figure 4-5 and Table 4-3, that the proposed method is able to more consistently 

predict the tracking error when compared to the full LS method. Based on the maximum values, the 

discrepancy in tracking error prediction was reduced from 10.3 to 6.5 µm for the x axis, and 12.7 to 9.1 µm 

for the y axis. Therefore, there has been a 28-37% improvement in the prediction of the tracking error. 

While this improvment may not seem significant, it can be seen from the bottom panels of Figure 4-5, 

which shows the error of prediction, that the largest prediction errors occur during the velocity reversals 

where frictional effects are dominant. Although not a focus of this thesis, there is thorough research being 

conducted in the Precision Controls Laboratory to develop a more accurate friction model that will be 

coupled with the presented rapid identification methods. When comparing the RMS values of the prediction 

discrepancy, the x-axis prediction error was reduced from 4.1 to 1.2 µm while the y-axis error was decreased 

from 4.4 to 1.6 µm, improving the prediction by 64-71% for both axes.  

Similar trends can be seen in Figure 4-6 and Table 4-3 for the circular trajectory. In this case, it can be 

seen that the prediction discrepancy due to the dynamic response of the sinusoidal inputs of both the x- and 

y- axes have more influence than the discrepancy due to the friction transitions. For the circle trajectory, 

the maximum and RMS prediction error has decreased by 27-50% and 73-76%, respectively. The same 

observations can be made for the varying distance linear interpolation toolpath, as seen in Figure 4-7 and 

Table 4-3. In this case, the maximim prediction discrepancy has been reduced by 16-38% and the RMS 

discrepancy has been reduced by 50-59%. 

 

Figure 4-8 Contour errors for diamond and circle toolpaths on Deckel Maho 80P 

From Figure 4-8 and Table 4-3, it can be observed that the proposed method’s maximum prediction 

discrepancy for the contour error of the diamond trajectory is marginally worse than the full LS model. 
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Nonetheless, the RMS prediction error has improved by 22%. This is due to the well-matched x-y dynamics 

of the machine tool, which means that the contour errors are already very small to begin with. For the circle 

trajectory case, there is clear improvement for both maximum and RMS prediction discrepancy (35% and 

29%, respectively). 

In machine tools that have well matched dynamics, like the Deckel Maho 80P, improving the contour 

error prediction is more challenging than improving the tracking error prediction. This is because the 

instantaneous tool position has the tendency to follow the commanded tool path during linear and low 

curvature paths. However, increasing the accuracy of the tracking error prediction is still a key step to 

increasing the accuracy of the contour error prediction, especially in trajectories that have large velocity, 

acceleration and jerk magnitudes or have a high curvature. 

4.5 GUI Development 

A series of GUI modules have been developed for the SISO rapid identification method for process 

planners and engineers to use in industry. The first module is used to identify a model for a single axis from 

data collected from the machine tool. The next interface is used to verify the models identified in the first 

module from a second data set collect from the machine tool. The third and final GUI is then used by the 

process planners to simulate new trajectories using the identified model. 

4.5.1 Rapid Identification GUI 

In the first GUI, as seen in Figure 4-9, a SISO rigid body model can be fit from experimental data 

gathered from a FANUC or Siemens controller. There are six main steps to this module: 

1. The figure seen in section 1 of the GUI is updated throughout the rapid identification process with the 

tracking error (mm) and the position (mm), shown in the top and bottom plot respectively.  

2. In section 2, the user can load experimental data gathered through a .txt file. The file must contain the 

time (sec), measured position (mm), and tracking error (mm) to be used for training the model. The 

derivatives of the experimental data are calculated and filtered through an averaging filter of nth order, 

which is user defined in the GUI, to reduce the encoder quantization.  

3. The user is able to select the upper and lower bounds for optimization in this step. This search space 

table will automatically be populated with suggested values once the experimental data is loaded into 

the GUI, however it is also editable if the user wishes to change the values. 
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4. In section 4, the user can select up to four data ranges to use to train the rapid identification model. 

After the user selects the number of data ranges they wish to include in the identification, cross hairs 

will appear in the GUI which are used to select the start and endpoints of the data ranges. The users 

can also further modify and update these data ranges in the “Selected Data Range(s)” table. 

5. In the fifth section, the user can choose between three different optimization methods that is included 

in MATLAB: 1) pattern search [49], 2) multi search [50], or 3) global search [48]. After the user selects 

which optimization method to use, the rapid identification process will begin.  

6. In the final section, the identified parameters will be shown in the “Identified Parameters” table along 

with the initial and final root mean squared error (RMS) once the optimization is completed. The 

identified parameters can be saved into a .txt file for future use. 

4.5.2 Verification GUI 

The verification module, as seen in Figure 4-10, will be used to verify the model identified in the rapid 

identification module. In this module, trajectories that have movements in two axes will be required, to 

determine the contouring accuracy of the models. Note that A1 = axis 1 and A2 = axis 2. 

 

Figure 4-9 SISO rapid identification GUI 
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Figure 4-10 SISO verification GUI 

1. The main figure in section 1 will be updated during the verification process with position (mm) data.  

2. The user can select a .txt file that contains the experimental data that will be used for verification. The 

file structure should be as follows: time (sec), A1 measured position (mm), A1 tracking error (mm), 

A2 measured position (mm), and A2 tracking error (mm). Next the user must load in the identified 

parameters, saved from the first module, for axis 1 and axis 2. After all of the required files have been 

selected, the verification process can be started. 

3. Once the verification has finished, the RMS and maximum contour error and tracking error will be 

populated in the right hand side of the GUI. A popup window will appear to show the position, 

tracking, and contour error for the commanded, measured and simulated profiles. 

4.5.3 Simulation GUI 

In the last module, as seen in Figure 4-11, the user can simulate a new process on the virtual machine 

tool given a trajectory. This module has 3 main parts: 

1. The main figure in this section will be populated throughout the simulation process with the 

commanded and simulated trajectory.  

2. In this step, the user imports an inverse time NC code [51] from the “Feedrate Optimization Module” 

developed in the lab [52]. After importing the trajectory, the user must import axis parameters for the 
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two axes that will be simulated, which have been identified and verified from the two previous 

modules. 

 

Figure 4-11 SISO simulation GUI 

3. After the simulation has been completed, the RMS and maximum contour error and tracking error will 

be populated in the right hand side of the GUI. The results of this simulation can be saved for future 

plotting. A popup window will appear that displays the position, tracking and contour error for the 

commanded and simulated profiles. 

4.6 Conclusions 

In this chapter an improved single input – single output rigid body rapid identification model is 

presented. There are two main improvements from the previously researched full LS method, the first is 

improved parameter convergence characteristics and the second is the use of commanded signal derivatives 

in the regressor matrix. The new method was validated experimentally on a Deckel Maho five-axis machine 

tool. From the three different trajectory cases collected from the feed drive, it is observed that the measured 

servo errors can be predicted with an improvement of 16-50% when comparing the magnitudes of the 

tracking errors. The model is also able to predict the contouring error with 22-35% improvement in RMS 

error. However, there is still room for improvement, specifically with regards to the friction model that is 

important when modelling the dynamics during velocity reversal portions of the trajectory  
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Chapter 5 

MIMO and Flexible Dynamic Model for Rapid Identification 

5.1 Introduction 

In newer machine tools, the performance of the feed drives are evolving to become more productive 

while still meeting part and process accuracy requirements. These developments in machine tool technology 

indicate that the digital twins of these tools should also become more advanced to include important 

phenomena such as elastic and vibratory dynamics, multi input – multi output (MIMO) coupling, etc. In 

this chapter, a MIMO model that builds upon the SISO model introduced in Chapter 4 is presented. In 

Section 5.2, the new proposed model will be outlined in detail, and in Section 5.3 experimental results and 

discussion will be presented. 

5.2 Scaled MIMO LTI System 

In the new model, as seen in Figure 5-1, the nonlinear (friction) dynamics are separated from the linear 

time-invariant (LTI) dynamics, 𝑷, of the machine tool. The input and output signals from the machine tool 

are scaled to ensure that the MIMO transfer functions are estimated without any bias. 𝒘(𝑡) are the scaled 

inputs, which include the reference signals 𝒘𝒓(𝑡) (such as position, velocity, and/or acceleration 

commands), and disturbance signals 𝒘𝒅(𝑡) (such as friction and process forces). 𝒛(𝑡) are the scaled outputs 

such as position, velocity, acceleration, control signal, motor current, servo regulation error or any other 

output that can be measured and related to the inputs.  

 

Figure 5-1 MIMO LTI feed drive model coupled with nonlinear dynamics 

A more detailed view of the generalized dynamics can be seen in Figure 5-2. The new model is able 

to capture the mechanics of the motion system, sensor and actuator dynamics (𝑴), as well as dynamics 

from the controls (such as the feedback control (𝑲), feedforward control (𝑭) and trajectory pre-filter (𝑻)). 

The feedback and feedforward dynamics are typically unaffected during the execution of G01 (linear 
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interpolation), G02 (clockwise circular interpolation), and G03 (counter-clockwise circular interpolation) 

commands on machine tools. This allows the LTI assumption for the model to remain valid.  

 

Figure 5-2 Overview of the dynamics of various feed drive system components captured by the 

scaled MIMO LTI model 

Some possible feed drive models that can be identified using the proposed MIMO LTI rapid 

identification model can be seen in Figure 5-3. From this figure, it can be seen that the model is able to 

identify both coupled and decoupled models for a variety of both inputs and outputs. 

 

Figure 5-3 Possible feed drive model structures 

The scaled and unscaled dynamics of the MIMO system can be expressed using Eqn. (5.1), where 𝑷̃ 

is the unscaled dynamics, and 𝑾𝑤 and 𝑾𝑧 are the input and output scaling matrices, respectively. Like in 

Chapter 4, it is assumed that the poles of the system are stable, as the pole locations are subject to constraints 
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to ensure model stability, however complex poles will also be considered in this model. These poles can 

come from mechanical flexibilities (which lead to vibratory responses), trajectory prefiltering, and 

actuator/sensor dynamics. The denominator (characteristic) polynomial, 𝐴(𝑠) as seen in Eqn. (5.2), contains 

a specified combination of the total number of real poles, 𝑛𝑟, and the total number of complex conjugate 

poles, 𝑛𝑐, which make the polynomial nth order. 𝑝𝑘 represents the real poles, and 𝜔𝑘 and 𝜁𝑘 correspond to 

the natural frequency and the damping ratios of the complex poles, respectively. 

𝒛(𝑠) = 𝑷(𝑠) ∙ 𝒘(𝑠) Scaled dynamics

𝒛̃(𝑠) =  𝑷̃(𝑠) ∙ 𝒘̃(𝑠) = 𝑾𝑧𝑷(𝑠)𝑾𝑤 ∙ 𝒘̃(𝑠) Unscaled dynamics
} (5.1) 

𝐴(𝑠) = 𝐴𝑟(𝑠) ∙ 𝐴𝑐(𝑠) = 𝑠
𝑛 + 𝑎1𝑠

𝑛−1 + 𝑎2𝑠
𝑛−2 +⋯+ 𝑎𝑛−1𝑠 + 𝑎𝑛 

𝐴𝑟(𝑠) =∏ (𝑠 − 𝑝𝑘)
𝑛𝑟

𝑘=1
, 𝐴𝑐(𝑠) =∏ (𝑠2 + 2𝜁𝑘𝜔𝑘𝑠 + 𝜔𝑘

2)
𝑛𝑐

𝑘=1
 

(5.2) 

The generalized plant 𝑷(𝑠) has 𝑁𝑖 inputs and 𝑁𝑜 outputs. The concurrent application of inputs 𝑘𝑖 =

1, 2,… ,𝑁𝑖 results in the response of a single output 𝑘𝑜 seen in Eqn. (5.3). Every transfer function that relates 

the output, 𝑘𝑜, to the input, 𝑘𝑖, each have their own distinct numerator terms 𝑏0, 𝑏1, … , 𝑏𝑛. The denominator 

polynomial is assumed to be common for all input/output (i/o) transfer functions because they correspond 

to the same LTI system. 

𝑧𝑘𝑜(𝑠) =  ∑ [
𝑏0
𝑘𝑜,𝑘𝑖𝑠𝑛 + 𝑏1

𝑘𝑜,𝑘𝑖𝑠𝑛−1 +⋯+ 𝑏𝑛
𝑘𝑜,𝑘𝑖𝑠0

𝑠𝑛 + 𝑎1𝑠
𝑛−1 +⋯+ 𝑎𝑛

]𝑤𝑘𝑖(𝑠)

𝑁𝑖

𝑘𝑖=1

  (5.3) 

Rearranging Eqn. (5.3), Eqn. (5.4) can be derived below. It can be seen that the numerator terms are 

linearly arranged unknowns and they are the participation factors of the input, 𝑘𝑖, on the output, 𝑘𝑜. Each 

line in the equation below corresponds to the response of a single input for 𝑘𝑖 = 1, 2,… ,𝑁𝑖.  

𝑧𝑘𝑜(𝑠) =  
𝑠𝑛

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑0
1

∙ 𝑏0
𝑘𝑜,1 +

𝑠𝑛−1

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑1
1

∙ 𝑏1
𝑘𝑜,1 +⋯+

𝑠0

𝐴(𝑠)
𝑤1(𝑠)

⏟      
𝜑𝑛
1

∙ 𝑏𝑛
𝑘𝑜,1 

             +
𝑠𝑛

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑0
2

∙ 𝑏0
𝑘𝑜,2 +

𝑠𝑛−1

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑1
2

∙ 𝑏1
𝑘𝑜,2 +⋯+

𝑠0

𝐴(𝑠)
𝑤2(𝑠)

⏟      
𝜑𝑛
2

∙ 𝑏𝑛
𝑘𝑜,2 

           +⋯ 

             +
𝑠𝑛

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑0
𝑁𝑖

∙ 𝑏0
𝑘𝑜,𝑁𝑖 +

𝑠𝑛−1

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑1
𝑁𝑖

∙ 𝑏1
𝑘𝑜,𝑁𝑖 +⋯+

𝑠0

𝐴(𝑠)
𝑤𝑁𝑖(𝑠)⏟        

𝜑𝑛
𝑁𝑖

∙ 𝑏𝑛
𝑘𝑜,𝑁𝑖 

(5.4) 

If 𝐴(𝑠) is known or a candidate model has been defined, a least squares (LS) parameter estimation can be 

used to calculate the optimal solution for the numerator parameters. The regressors, 𝜑𝑛
𝑘𝑖  , can be computed 
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through simulations as shown in Figure 5-4. The predetermined characteristic polynomial 𝐴(𝑠) is used to 

form the single input – multi output (SIMO) elemental transfer function 𝑮0(𝑠). If one or more of the pole 

locations are known, these poles can be specified and locked to be excluded from the optimization process. 

For computational stability, the regressors are calculated using discrete-time state-space models (𝑮0 →

𝑮0,𝑠𝑠𝑑). 

 

Figure 5-4 Estimation of regressors for solving the numerator polynomials 

5.2.1 Construction of Regressors via Discrete-Time State-Space Model 

𝑮0 is the SIMO continuous transfer function which is transformed to the state space model 𝑮0,𝑠𝑠𝑑 and 

discretized using the Tustin (bilinear) approximation. 𝑮0,𝑠𝑠𝑑 has only 𝑛 = 𝑛𝑟 + 2𝑛𝑐 states, this means that 

only (𝑛 + 1) regressors must be calculated for each LS problem. This saves a significant amount of 

computational load over using 𝑛 + 1 transfer functions, each of an 𝑛𝑡ℎ order. The 𝑠𝑠() command in 

MATLAB is used to convert the transfer function into a controllable canonical form (CCF) state space 

model using Eqn. (5.5) [53]. The 𝑠𝑠() function is similar to the 𝑡𝑓2𝑠𝑠() function in MATLAB, however 

the 𝑏𝑎𝑙𝑎𝑛𝑐𝑒() function is used to rescale the state vector, which improves the eigenvalue accuracy in 

subsequent calculations [53] [54].  

𝐻(𝑠) =
𝐸(𝑠)

𝐹(𝑠)
=
𝑒1𝑠

𝑔−1 +⋯+ 𝑒𝑔−1𝑠 + 𝑒𝑔

𝑓1𝑠
𝑗−1 +⋯+ 𝑓𝑗−1𝑠 + 𝑓𝑗

= 𝐶(𝑠𝐼 − 𝐸)−1𝐹 + 𝐷 

𝑥̇ = 𝐸𝑥 + 𝐹𝑢 

      𝑦 = 𝐶𝑥 + 𝐷𝑢 [55] 

(5.5) 

The Tustin approximation was used since it allows for a system with a full order numerator to be 

discretized (𝐷 ≠ 0 type of state space system) and has the best match in the frequency domain between the 

continuous and discretized models [56]. Since the transformations are dependent on the state space matrices 

and time delays in the system, the states are not preserved using the Tustin approximation which may lead 

to deviations in the true pole locations. However, the LS problem still finds a best fit model based on the 

generated regressor profile, which guarantees the inclusion of the dynamics that produce the regressors and 
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the corresponding responses in the model. Using Eqn. (5.6), the 𝑠 and 𝑧 domain transfer functions can be 

approximated and the continuous transfer functions can be discretized [56], as seen in Eqn. (5.7).  

𝑧 = 𝑒𝑠𝑇𝑠 ≈
1 + 𝑠𝑇𝑠/2 

1 − 𝑠𝑇𝑠/2
 (5.6) 

𝐻𝑑(𝑧) = 𝐻(𝑠
′), 𝑠′ =

2

𝑇𝑠
∙
𝑧 − 1

𝑧 + 1
 (5.7) 

5.2.2 Scaling of the Regressors in Computing the Numerator Term 

Regressors that are computed using the original discrete-time state-space system, 𝜑𝑜
𝑘𝑖 , … , 𝜑𝑛

𝑘𝑖, will be 

very different in magnitude. This is due to the signals being time derivatives of each other, (𝜑𝑛
𝑘𝑖 = 𝑒𝑎𝑡, 

𝜑𝑜
𝑘𝑖 = 𝑎𝑛𝑒𝑎𝑡), for example if 𝑎 = 10 and 𝑛 = 5, then 𝑎𝑛 will result in 105 which is 100000 times larger 

than the initial signal. In order to counteract this phenomenon, the weighting factor 𝑟𝑙
𝑘𝑖 is calculated to 

normalize the original regressors between −1 and +1. The weighting factor can be calculated using Eqn. 

(5.8), where 𝑙 is the order, 𝑘𝑖 is the input number, 𝑘 is the sample number, and 𝜑 is the original regressor. 

From this equation, the scaled regressor, 𝜑̅, can be calculated using Eqn. (5.9). 

𝑟𝑙
𝑘𝑖 =

1

‖𝜑𝑙
𝑘𝑖‖

∞

 

‖𝜑𝑙
𝑘𝑖‖

∞
= max{|𝜑𝑙

𝑘𝑖(𝑘)|: 𝑘 = 1, 2, … , 𝑛} 

(5.8) 

𝜑̅𝑙
𝑘𝑖 = 𝑟𝑙

𝑘𝑖 ∙ 𝜑𝑙
𝑘𝑖 (5.9) 

After scaling the regressor matrix, using a given data set 𝑡 = 1,… ,𝑁𝑡, where 𝑁𝑡 is the total number of 

samples for output number 𝑘𝑜, the scaled numerator term(s), 𝑏̅𝑘𝑜,  can be estimated using Eqn. (5.10) with 

a LS approximation. A visual representation of how the numerator is structured can be seen in Figure 5-5. 

[

𝑧𝑘𝑜(1)

⋮
𝑧𝑘𝑜(𝑁𝑡)

]

⏟      
𝑧𝑘𝑜: measured

scaled output

=

[
 
 
 
 
 
 

𝜑̅0
1(1) ⋯ 𝜑̅𝑛

1(1)
⋮ ⋱ ⋮

𝜑̅0
1(𝑁𝑡) ⋯ 𝜑̅𝑛

1(𝑁𝑡)

⏞              

scaled regressors in
response to input: #1

⋮ ⋯ ⋮
⋮ ⋯ ⋮
⋮ ⋯ ⋮

𝜑̅0
𝑁𝑖(1) ⋯ 𝜑̅𝑛

𝑁𝑖(1)

⋮ ⋱ ⋮

𝜑̅0
𝑁𝑖(𝑁𝑡) ⋯ 𝜑̅𝑛

𝑁𝑖(𝑁𝑡)

⏞              

scaled regressors in
response to input: #𝑁𝑖

]
 
 
 
 
 
 

⏟                                  
𝜱: regressor matrix

[
 
 
 
 
 
 
 𝑏̅0
𝑘𝑜,1 
⋮

𝑏̅𝑛
𝑘𝑜,1

⋮

𝑏̅0
𝑘𝑜,𝑁𝑖

⋮

𝑏̅𝑛
𝑘𝑜,𝑁𝑖]

 
 
 
 
 
 
 

⏟    
𝑏̅𝑘𝑜: scaled
numerator

+ [

𝑒𝑘𝑜(1)

⋮
𝑒𝑘𝑜(𝑁𝑡)

]

⏟      
𝑒𝑘𝑜: model 

prediction error

 

min
1

2
𝑒𝑘𝑜
𝑇 𝑒𝑘𝑜 ⇒ 𝑏̂̅𝑘𝑜 = (𝜱𝑇𝜱)−1𝜱𝑇𝑧𝑘𝑜 

(5.10) 
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Figure 5-5 Numerator term matrix visualization 

Once the scaled numerator terms have been estimated, the parameters must be unscaled which results 

in the participation factors of the regressors being calculated, so that Eqn. (5.11) remains valid. 

𝑧𝑘𝑜 = 𝜑̅0
1𝑏̅0
𝑘𝑜,1 + 𝜑̅1

1𝑏̅1
𝑘𝑜,1 +⋯+ 𝜑̅𝑛

1𝑏̅𝑛
𝑘𝑜,1 

             + 𝜑̅0
2𝑏̅0
𝑘𝑜,2 + 𝜑̅1

2𝑏̅1
𝑘𝑜,2 +⋯+ 𝜑̅𝑛

2𝑏̅𝑛
𝑘𝑜,2 

             +⋯+ 𝜑̅0
𝑁𝑖𝑏̅0

𝑘𝑜,𝑁𝑖 + 𝜑̅1
𝑁𝑖𝑏̅1

𝑘𝑜,𝑁𝑖 +⋯+ 𝜑̅𝑛
𝑁𝑖𝑏̅𝑛

𝑘𝑜,𝑁𝑖 

𝑧𝑘𝑜 = ∑ ∑𝜑𝑙
𝑘𝑖𝑏𝑙

𝑘𝑜,𝑘𝑖

𝑛

𝑙=0

𝑁𝑖

𝑘𝑖=1 ⏟          
unscaled form

= ∑ ∑𝜑̅𝑙
𝑘𝑖(𝑘)𝑏̅𝑙

𝑘𝑜,𝑘𝑖

𝑛

𝑙=0

𝑁𝑖

𝑘𝑖=1 ⏟            
scaled form

 

(5.11) 

This is achieved by noting Eqn. (5.9) and that 𝜑̅𝑙
𝑘𝑜,𝑘𝑖𝑏̅𝑙

𝑘𝑜,𝑘𝑖 = 𝜑𝑙
𝑘𝑜,𝑘𝑖𝑏𝑙

𝑘𝑜,𝑘𝑖. From these two equations, Eqn. 

(5.12) can be formulated to calculate the final participation factors.  

𝑏𝑙
𝑘𝑜,𝑘𝑖
⏟  

denormalized
numerator
term(s)

= 𝑟𝑙
𝑘𝑖
⏟

regressor
normalization

factor

𝑏̅𝑙
𝑘𝑜,𝑘𝑖
⏟  

normalized
numerator
term

 

(5.12) 

 

In some cases, the numerator structure for the MIMO transfer function component 𝑃𝑘𝑜,𝑘𝑖 is known 

ahead of time, i.e. some of the 𝑏𝑙 (𝑙 = 0,… , 𝑛) terms are zero. To simplify the problem, these terms and 

their corresponding regressors will be excluded from the LS estimation. 
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Figure 5-6 Pole search based estimation of MIMO LTI portion of model 

The main scheme for the MIMO LTI algorithm can be seen above in Figure 5-6 and is implemented 

with the following steps: 

1. Pole locations from the pre-defined stable search space are used to generate candidate models. 

2. Construct the scaled SIMO discrete-time state-space regressors. 

3. Apply LS and solve for the participation factors. 

4. Reconstruct the predicted outputs and evaluate the RMS of the output prediction errors. The 

candidate pole set that has the lowest RMS error value is chosen as the identified model. As 

discussed in Chapter 4, MATLAB’s internal global search was used to minimize the objective 

function. 

5.2.3 D.C. Gain Condition 

To derive models between the mechanical response to position commands using data collected from 

an accelerometer (or vibrometer) and the displacement response, a double (or single) integrator must be 

appended to the model estimated from the experimental data. This integration can cause drift issues in the 

resulting position response, therefore in this model the user is able to impose a d.c. gain (0th, 1st, 2nd, ... 

order) to the transfer functions. The necessary d.c. gain for the scaled transfer function, 𝑑𝑘𝑜,𝑘𝑖, can be 

calculated using Eqn. (5.13), where 𝑑̃𝑘𝑜,𝑘𝑖 is the d.c. gain specified for the unscaled MIMO LTI transfer 

function entry. 
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𝑑𝑘𝑜,𝑘𝑖 =
1

𝑊𝑧(𝑘𝑜) ∙ 𝑊𝑤(𝑘𝑖)
𝑑̃𝑘𝑜,𝑘𝑖 (5.13) 

Considering the denormalized numerator form 𝑏0…𝑏𝑛 and Eqn. (5.3), the relations in Eqn. (5.14) can 

be written for the 0th, 1st, and 2nd order d.c. gain conditions. These relations can then be generalized to the 

d.c. gain condition of order 𝑞, as seen in Eqn. (5.15). 

0th order d.c. gain condition: 

[𝑃𝑘𝑜,𝑘𝑖(𝑠)]𝑠=0 =
𝑏𝑛
𝑎𝑛
= 𝑑𝑘𝑜,𝑘𝑖 = desired d.c. gain 

1st order d.c. gain condition (assuming 𝑏𝑛
𝑘𝑜,𝑘𝑖 = 0): 

[
1

𝑠
𝑃𝑘𝑜,𝑘𝑖(𝑠)]

𝑠=0
=
𝑏𝑛−1
𝑘𝑜,𝑘𝑖

 𝑎𝑛
= 𝑑𝑘𝑜,𝑘𝑖 

2nd order d.c. gain condition (assuming 𝑏𝑛−1
𝑘𝑜,𝑘𝑖 = 𝑏𝑛

𝑘𝑜,𝑘𝑖 = 0): 

[
1

𝑠2
𝑃𝑘𝑜,𝑘𝑖(𝑠)]

𝑠=0
=
𝑏𝑛−2
𝑘𝑜,𝑘𝑖

𝑎𝑛
= 𝑑𝑘𝑜,𝑘𝑖   

(5.14) 

[
1

𝑠𝑞
𝑃𝑘𝑜,𝑘𝑖(𝑠)]

𝑠=0
=
𝑏𝑛−𝑞
𝑘𝑜,𝑘𝑖

𝑎𝑛
= 𝑑𝑘𝑜,𝑘𝑖 , assuming 𝑏𝑛−(𝑞−1)

𝑘𝑜,𝑘𝑖 = ⋯ = 𝑏𝑛−1
𝑘𝑜,𝑘𝑖 = 𝑏𝑛

𝑘𝑜,𝑘𝑖 = 0 (5.15) 

When there is a d.c. gain correction of order 𝑞, the numerator terms 𝑏𝑛, 𝑏𝑛−1, … , 𝑏𝑛−(𝑞−1) are set to zero 

and combined with Eqns. (5.13) and (5.15), 𝑏𝑛−𝑞 can be calculated as seen in Eqn. (5.16).  

𝑏𝑛−𝑞
𝑘𝑜,𝑘𝑖 =

𝑑̃𝑘𝑜,𝑘𝑖 ∙  𝑎𝑛
𝑊𝑧(𝑘𝑜) ∙ 𝑊𝑤(𝑘𝑖)

 

𝑏𝑛
𝑘𝑜,𝑘𝑖 = 0

𝑏𝑛−1
𝑘𝑜,𝑘𝑖 = 0

⋮

𝑏𝑛−(𝑞−1)
𝑘𝑜,𝑘𝑖 = 0}

 
 

 
 

 

(5.16) 

Since 𝑏𝑛−𝑞 , … , 𝑏𝑛 are excluded from the LS estimation problem, as seen in Eqn. (5.17) , the corresponding 

𝜑𝑛−𝑞
𝑘𝑖 𝑏𝑛−𝑞

𝑘𝑜,𝑘𝑖 terms must be applied as offsets to the output measurement vector 𝑧𝑘𝑜. 

𝜑0𝑏0 +⋯+ 𝜑𝑛−(𝑞+1)𝑏𝑛−(𝑞+1) + 𝜑𝑛−𝑞𝑏𝑛−𝑞⏟      
fixed→remove
from parameter
estimation

+ 0 +⋯+ 0 = 𝑧 

(5.17) 

 

Below is the pseudo code for how the d.c. gain offset correction has been implemented:  

for 𝑘𝑜 = 1 to 𝑁𝑜 

offset_correction = 0 

for 𝑘𝑖 = 1 to 𝑁𝑖 
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if d.c. gain constraint of order “𝑞” is requested for input channel 𝑘𝑖 

 offset_correction =  offset_correction+
𝜑̅𝑞
𝑘𝑖

𝑟𝑞
𝑘𝑖
∙ 𝑏𝑞
𝑘𝑜,𝑘𝑖 

end 

end 

𝑧𝑘𝑜 = 𝑧𝑘𝑜 − offset_correction 

Estimate numerator terms → 𝑏̂𝑘𝑜 = (Φ
𝑇Φ)−1Φ𝑇𝑧𝑘𝑜 

Output prediction for channel → 𝑧̂𝑘𝑜 = Φ ∙ 𝑏̂𝑘𝑜⏟  
response due to 

estimated
numerator terms

+ offset_correction⏟          
response due to d.c. gain 

constraint estimated
numerator term(s)

 

Prediction error for output channel → 𝑒𝑘𝑜 = 𝑧𝑘𝑜 − 𝑧̂𝑘𝑜   

end 

calculate the overall RMS error for normalized MIMO LTI model prediction → 

𝑒 = [𝑒1
𝑇 , 𝑒2

𝑇 , … , 𝑒𝑁𝑜
𝑇 ],  𝐽 = 𝑟𝑚𝑠(𝑒) 

5.2.4 Assembling Final Unscaled MIMO LTI Model 

The regressor response due to the input 𝑤𝑘𝑖(𝑡) is 𝜑𝑘𝑖(𝑡) = [𝜑𝑜
𝑘𝑖(𝑡)…𝜑𝑛

𝑘𝑖(𝑡)]
𝑇

or in the z-domain, 

𝜑𝑘𝑖(𝑧) = 𝐺0,𝑠𝑠𝑑(𝑧)𝑤𝑘𝑖(𝑧). To compute the regressor response to 𝑁𝑖 inputs, 𝑁𝑖 state-space realizations are 

needed, as seen in Eqn. (5.18).  

𝜑1(𝑧) = 𝐺0,𝑠𝑠𝑑(𝑧)𝑤1(𝑧)

⋮
𝜑𝑁𝑖(𝑧) = 𝐺0,𝑠𝑠𝑑(𝑧)𝑤𝑁𝑖(𝑧)

} 𝑁𝑖 × 𝑛 state systems (5.18) 

However, when constructing each output 𝑧𝑘𝑜, the regressors may be weighted differently. For example, 

when 𝑁𝑜 = 2 and 𝑁𝑖 = 3: 
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𝑧1 = 𝑏
1,1𝐺0,𝑠𝑠𝑑𝑤1 + 𝑏

1,2𝐺0,𝑠𝑠𝑑𝑤2 + 𝑏
1,3𝐺0,𝑠𝑠𝑑𝑤3 

𝑧1 = [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − − −

𝑏1,1𝐶𝑜𝑑 | 𝑏1,1𝐷𝑜𝑑

]

⏟              
discrete-time

state space system

𝑤1 + [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − − −

𝑏1,2𝐶𝑜𝑑 | 𝑏1,2𝐷𝑜𝑑

]𝑤2 + [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − − −

𝑏1,3𝐶𝑜𝑑 | 𝑏1,3𝐷𝑜𝑑

]𝑤3 

𝑧2 = [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − − −

𝑏2,1𝐶𝑜𝑑 | 𝑏2,1𝐷𝑜𝑑

]𝑤1 + [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − −−

𝑏2,2𝐶𝑜𝑑 | 𝑏2,2𝐷𝑜𝑑

]𝑤2 + [

𝐴𝑜𝑑 | 𝐵𝑜𝑑
−−− | − − −

𝑏2,3𝐶𝑜𝑑 | 𝑏2,3𝐷𝑜𝑑

]𝑤3 

(5.19) 

Defining Eqn. (5.20), where 𝜉 is the state vector, these terms (i.e. states) are common for both outputs 𝑧1 

and 𝑧2. 

𝜉1(𝑡 + 1) = 𝐴𝑜𝑑𝜉1(𝑡) + 𝐵𝑜𝑑𝑤1(𝑡)

𝜉2(𝑡 + 1) = 𝐴𝑜𝑑𝜉2(𝑡) + 𝐵𝑜𝑑𝑤2(𝑡)

𝜉3(𝑡 + 1) = 𝐴𝑜𝑑𝜉3(𝑡) + 𝐵𝑜𝑑𝑤3(𝑡)
} (5.20) 

For a single input, as illustrated in Figure 5-7(a), the component of output 𝑘𝑜 due to the input 𝑘𝑖 can 

be written as Eqn. (5.21), where the candidate models have been transformed into their state space 

equivalents 𝐺0,𝑠𝑠𝑑. In Figure 5-7(b), a schematic on how to combine a multi input – single output assembled 

system is shown. 

𝑧𝑘𝑜,𝑘𝑖 = [𝑏0
𝑘𝑜,𝑘𝑖  𝑏1

𝑘𝑜,𝑘𝑖 …𝑏𝑛
𝑘𝑜,𝑘𝑖]⏟              

vector of numerator 

terms 𝑏𝑘𝑜𝑘𝑖

{𝑪𝑜𝑑(𝑠𝐼 − 𝑨𝑜𝑑)
−1𝑩𝑜𝑑 +𝑫𝑜𝑑} 

= {𝑏𝑘𝑜,𝑘𝑖𝑪𝑜𝑑⏟      

𝐶𝑑
𝑘𝑜,𝑘𝑖

(𝑠𝐼 − 𝑨𝑜𝑑)
−1𝑩𝑜𝑑 + 𝑏

𝑘𝑜,𝑘𝑖𝑫𝑜𝑑⏟      

𝐷𝑑
𝑘𝑜,𝑘𝑖

} 

(5.21) 

 

 
 

(a) (b) 

Figure 5-7 Elemental discrete-time state-space model(s) (a) SIMO (b) MIMO 
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The overall state-transition and input matrices for the assembled MIMO scaled system can be written as 

seen in Eqn. (5.22), where 𝐴𝑑 is a (𝑁𝑖 × 𝑛) × (𝑁𝑖 × 𝑛) matrix and 𝐵𝑑 is a (𝑁𝑖 × 𝑛) × 𝑁𝑖  matrix. 

[
 
 
 
𝜉1(𝑡 + 1)

𝜉2(𝑡 + 1)
⋮

𝜉𝑁𝑖(𝑡 + 1)]
 
 
 

⏟        
𝜉(𝑡+1)

= [

𝐴𝑜𝑑
0
⋮
0

0
𝐴𝑜𝑑
⋮
0

⋯
⋯
⋱
⋯

0
⋮
0
𝐴𝑜𝑑

]

⏟                
𝐴𝑑

[
 
 
 
𝜉1(𝑡)

𝜉2(𝑡)
⋮

𝜉𝑁𝑖(𝑡)]
 
 
 

⏟    
𝜉(𝑡)

 + [

𝐵𝑜𝑑
0
⋮
0

0
𝐵𝑜𝑑
⋮
0

⋯
⋯
⋱
⋯

0
⋮
0
𝐵𝑜𝑑

]

⏟                
𝐵𝑑

[
 
 
 
𝑤1(𝑡)

𝑤2(𝑡)
⋮

𝑤𝑁𝑖(𝑡)]
 
 
 

⏟    
𝑤(𝑡)

 
(5.22) 

The output 𝑧𝑘0 can be written in terms of the state vector 𝜉𝑘𝑖 of the elemental SIMO systems 𝐺0,𝑠𝑠𝑑, 

where each system receives one input channel 𝑤𝑘𝑖, as seen in Eqn. (5.23). In this equation 𝐶𝑑 is a 

𝑁𝑜 × (𝑁𝑖 × 𝑛) matrix and 𝐷𝑑 is a 𝑁𝑜 × 𝑁𝑖 matrix. 

𝑧𝑘0 = 𝑏
𝑘0,1(𝐶𝑜𝑑𝜉1 + 𝐷𝑜𝑑𝑤1) + 𝑏

𝑘0,2(𝐶𝑜𝑑𝜉2 + 𝐷𝑜𝑑𝑤2) + ⋯

+ 𝑏𝑘0,𝑁𝑖(𝐶𝑜𝑑𝜉𝑁𝑖 + 𝐷𝑜𝑑𝑤𝑁𝑖) 

[
 
 
 
𝑧1(𝑡)

𝑧2(𝑡)
⋮

𝑧𝑁𝑜(𝑡)]
 
 
 

⏟    
𝑧(𝑡) normalized
output variables

=

[
 
 
 
 
 𝑏

1,1𝐶𝑜𝑑

𝑏1,2𝐶𝑜𝑑
⋮

𝑏𝑁𝑜,1𝐶𝑜𝑑

𝑏1,2𝐶𝑜𝑑

𝑏2,2𝐶𝑜𝑑
⋮

𝑏𝑁𝑜,1𝐶𝑜𝑑

⋯
⋯
⋱
⋯

𝑏1,𝑁𝑖𝐶𝑜𝑑

𝑏2,𝑁𝑖𝐶𝑜𝑑
⋮

𝑏𝑁𝑜,𝑁𝑖𝐶𝑜𝑑 ]
 
 
 
 
 

⏟                          
𝐶𝑑

[
 
 
 
𝜉1(𝑡)

𝜉2(𝑡)
⋮

𝜉𝑁𝑖(𝑡)]
 
 
 

⏟    
𝜉(𝑡)

 

                                +

[
 
 
 
 
 𝑏

1,1𝐷𝑜𝑑

𝑏1,2𝐷𝑜𝑑
⋮

𝑏𝑁𝑜,1𝐷𝑜𝑑

𝑏1,2𝐷𝑜𝑑

𝑏2,2𝐷𝑜𝑑
⋮

𝑏𝑁𝑜,1𝐷𝑜𝑑

⋯
⋯
⋱
⋯

𝑏1,𝑁𝑖𝐷𝑜𝑑

𝑏2,𝑁𝑖𝐷𝑜𝑑
⋮

𝑏𝑁𝑜,𝑁𝑖𝐷𝑜𝑑 ]
 
 
 
 
 

⏟                          
𝐷𝑑

[
 
 
 
𝑤1(𝑡)

𝑤2(𝑡)
⋮

𝑤𝑁𝑖(𝑡)]
 
 
 

⏟    
𝑤(𝑡)

 

(5.23) 

From Eqns. (5.22) and (5.23), the final normalized MIMO LTI model can be assembled, as seen in Eqn. 

(5.24). The unscaled MIMO model can then be calculated using Eqn. (5.25). 

𝑃 = [

𝐴𝑑 | 𝐵𝑑
− | −
𝐶𝑑 | 𝐷𝑑

] (5.24) 

𝑃̃ = 𝑊𝑧𝑃𝑊𝑤 = 𝑊𝑧{𝐶𝑑(𝑧𝐼 − 𝐴𝑑)
−1𝐵𝑑 + 𝐷𝑑}𝑊𝑤 

𝑃̃ = 𝑊𝑧𝐶𝑑⏟  
𝐶̃𝑑

(𝑧𝐼 − 𝐴)−1 𝐵𝑑𝑊𝑤⏟  
𝐵̃𝑑

+𝑊𝑧𝐷𝑑𝑊𝑤⏟      
𝐷̃𝑑

 

𝑃̃(𝑧) = 𝐶̃𝑑(𝑧𝐼 − 𝐴)
−1𝐵̃𝑑 + 𝐷̃𝑑 

(5.25) 
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5.2.5 Numerical Implementation of D.C. Gain 

When trying to predict a position response from an MIMO LTI acceleration (or vibration) model, a double 

(or single) integrator must be appended to the identified model. For example, if a plant 𝑃𝑘𝑜represents the 

normalized acceleration response, 𝑥̈, to the normalized commanded velocity, 𝑥̇𝑟, and the normalized 

Coulomb friction approximation, 𝑑𝑛𝑓, in order to obtain the normalized position response, a double 

integrator would need to be appended to the model, as seen in Figure 5-8. Since the numerator terms 𝑏0𝑠
𝑛 +

𝑏1𝑠
𝑛−1 +⋯+ 𝑏𝑛−1𝑠

1 + 𝑏𝑛𝑠
0 are estimated using regressors that are generated via discrete-time state 

space models which emulate the responses of 
𝑠𝑛

𝐴(𝑠)
,
𝑠𝑛−1

𝐴(𝑠)
, … ,

𝑠0

𝐴(𝑠)
, the effect of appending integrator(s) to a 

certain output can be achieved by shifting the numerator terms belonging to that output channel to lower 

orders. For example, consider the expected position response to position command and disturbance input 

as seen in Eqn. (5.26). Investigating the acceleration response of Eqn. (5.26) yields Eqn. (5.27). The higher 

order terms can be neglected, or the non-causal terms can also be estimated by applying the commanded 

acceleration directly as an additional input, as seen in Figure 5-8. 

𝑥(𝑠)⏟
output #1

=
𝑏𝑜
1,1𝑠3 + 𝑏1

1,1𝑠2 + 𝑏2
1,1𝑠 + 𝑏3

1,1

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3⏟              
𝐴(𝑠)

𝑥𝑟(𝑠)⏟  
𝑖𝑛𝑝𝑢𝑡 #1

+
𝑏𝑜
1,2𝑠3 + 𝑏1

1,2𝑠2 + 𝑏2
1,2𝑠 + 𝑏3

1,2⏞
=0

𝐴(𝑠)
𝑑𝑛𝑓(𝑠)⏟  
𝑖𝑛𝑝𝑢𝑡 #2

 (5.26) 

𝑥̈(𝑠) =
𝑏0
1,1𝑠5 + 𝑏1

1,1𝑠4 + 𝑏2
1,1𝑠3 + 𝑏3

1,1𝑠2

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3

𝑥𝑟(𝑠) +
𝑏0
1,2𝑠5 + 𝑏1

1,2𝑠4 + 𝑏2
1,2𝑠3 + (0)𝑠2

𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3

𝑑𝑛𝑓(𝑠) 
(5.27) 

 

 

Figure 5-9 Applying commanded acceleration to estimate higher order terms 

To simplify the acceleration response estimation, the 𝑠5 and 𝑠4 terms are neglected as seen in Eqn. 

(5.28). Afterwards, Eqn. (5.29) is achieved by applying double integration to construct the position 

response. The shifting caused by the addition of the two integrators is illustrated in Figure 5-10. 

 

Figure 5-8 Example feed drive model structure with double integrator 
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𝑥̈(𝑠) ≅
𝑏0
1,1𝑠3 + 𝑏1

1,1𝑠2 + (0)𝑠1 + 0𝑠0

𝐴(𝑠)
𝑥𝑟(𝑠) +

𝑏0
1,2𝑠3 + (0)𝑠2 + (0)𝑠1 + 0𝑠0

𝐴(𝑠)
𝑑𝑛𝑓(𝑠) 

𝑥̈(𝑠) ≅
𝑏0
1,1𝑠3 + 𝑏1

1,1𝑠2

𝐴(𝑠)
𝑥𝑟(𝑠) +

𝑏0
1,2𝑠3

𝐴(𝑠)
𝑑𝑛𝑓(𝑠) 

(5.28) 

𝑥 =
1

𝑠2
𝑥̈ =

𝑏0
1,1𝑠1 + 𝑏1

1,1

𝐴(𝑠)
𝑥𝑟 +

𝑏0
1,2𝑠1

𝐴(𝑠)
𝑑𝑛𝑓 (5.29) 

 

 

Figure 5-10 Shifting polynomial numerators after double integration 

After the necessary numerator vectors are updated, the normalized MIMO LTI system is reassembled, and 

the model can be denormalized once again. 

5.3 Experimental Validation 

This new MIMO model has been validated experimentally on a five axis milling machine from the 

P&WC manufacturing line in Longueil, Quebec. The servo data was collected at a sampling time of 1ms 

using the software Servo Viewer from the FANUC controller. The concept of the experimental 

identification process can be seen in Figure 5-11. 

Two different trajectories were tested on this machine, a spiral trajectory with movements in the x- 

and y- axes, and a roughing operation for an air foil blade. The spiral trajectory will be used for parameter 

identification and the air foil blade process will be used for validation of the model. Only the x- and y-axes 

were identified for this machine tool. 
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Figure 5-11 Experiment identification process for MIMO LTI model (representative picture of 

machine-tool obtained from [57]) 

5.3.1 Results  

Three models will be considered in this analysis, which are illustrated in Figure 5-12 below, a 3rd 

order decoupled model (the x- and y-axes will be identified separately) and two 6th order coupled model 

(x- and y-axes will have the same denominator but different numerator terms). The decoupled model (model 

1) has two inputs, the commanded axis position and normalized Coulomb friction, and two outputs the axis 

tracking error and the axis velocity. The 6th order model has four inputs, the commanded position and 

normalized Coulomb friction for both the x- and y-axes, and four outputs, the tracking error and axis 

velocity for both axes. Model 2 has search bounds based on the model 1 parameters, while model 3 has 

search bounds that are more general. This was done to determine if the algorithm is able to identify similar 

dynamics with different search spaces and to determine if the identified parameters are able to predict 

similar dynamics if the parameters are not similar. Also by limiting the search space for model 2, this 

shortens the time spent on identification. The bounds for the stable search space are seen in Table 5-1, 

where 500 Hz is the Nyquist frequency of the data.  

 

Figure 5-12 Different models considered for the five axis milling machine 
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Table 5-1 MIMO pole search bounds for X- and Y- axes of the five axis milling machine  

Parameters 
Model 1 Model 2 Model 3 

Min Max Min Max Min Max 

𝑝𝑟,1 [Hz] 0.016 500.0 2.00 7.00 0.016 500.00 

𝑝𝑟,2 [Hz] - - 1.00 6.00 0.016 500.00 

𝑤𝑘,1 [Hz] 1.592 500.0 15.00 30.00 1.59 500.00 

𝜁𝑘,1 [] 0.01 2 0.10 2.00 0.010 4.00 

𝑤𝑘,2 [Hz] - - 20.00 35.00 1.59 500.00 

𝜁𝑘,2 [] - - 0.10 2.00 0.010 4.00 

 

The estimated parameters for both models can be seen in Table 5-2 below. In model 1, the decoupled 

model, it can be seen that the x- and y-axes have close real poles, at 5.23 and 4.23 Hz respectively, and 

relatively close natural frequencies, at 20.68 and 28.04 Hz respectively. It is also observed that the zeros 

for both axes are also similar, this indicates that the axes have well-tuned dynamics between both axes. 

However, there is a slight discrepancy in the damping ratio for model 1, this can be from using smooth 

trajectories to tune the control system in time-domain, which can prevent oscillatory behaviours from 

occurring.  

Comparing model 1 and model 2, it can be seen that similar dynamics have been captured. The x- and 

y-axis natural frequencies identified in model 1 are also captured by model 2, with a difference of 1- Hz, 

with similar damping ratios. The real poles identified by model 2 are also similar to the independently 

identified poles from model 1, the first real pole in model 2, 𝑝𝑟,1, is very similar to the x-axis real pole, 5.23 

and 4.90 Hz respectively. There is a bigger discrepancy between the second pole in model 2, 𝑝𝑟,2, and the 

y-axis real pole. 

Observing model 3, it can be seen that there are some similarities when comparing to model 1 and 2. 

The two real poles, 29.642 and 29.640 Hz, has a similar frequency to the complex conjugate poles identified 

in model 1 and 2, 28.04 Hz identified for the y-axis of model 1 and 30.74 Hz for model 2. The first complex 

pole of model 3, 𝑤𝑘,1 = 3.73 Hz, is similar to the real poles identified of both model 1, 4.23 Hz for the real 

pole of the y-axis, and model 2, 2.53 and 4.90 Hz. The second complex pole of model 3, 𝑤𝑘,2 = 22.15 Hz, 

is similar to the complex poles identified by model 1, 20.68 Hz for the x-axis, and model 2, 22.08 Hz. It 

should also be noted that the zeros for model 2 and 3 are very similar, approximately 1-20% difference. 

Therefore, although the real and complex conjugate poles are not exact matches between all three models, 

it can be seen that similar dynamics are captured between the different configurations. 
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Table 5-2 MIMO identified parameters for X- and Y- axes of the five axis milling machine  

Param. 
Model 1 Model 2 Model 3 

X Axis Y Axis X Axis Y Axis X Axis Y Axis 

𝑝𝑟,1 [Hz] 5.23 4.23 4.90 29.642 

𝑝𝑟,2 [Hz] - - 2.53 29.640 

𝑤𝑘,1 [Hz] 20.68 28.04 22.08 3.73 

𝜁𝑘,1 [] 0.29 0.76 0.10 1.10 

𝑤𝑘,2 [Hz] - - 30.74 22.15 

𝜁𝑘,2 [] - - 0.87 0.08 

Track. 

TF 

Zeros 

Freq 

[Hz] 

Damp 

[] 

Freq 

[Hz] 

Damp 

[] 

Freq 

[Hz] 

Damp 

[] 

Freq 

[Hz] 

Damp 

[] 

Freq  

[Hz] 

Damp 

[] 

Freq 

[Hz] 

Damp 

[] 

𝑧1 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 

𝑧2 1.24 0.24 1.07 0.18 27.19 0.38 22.61 0.22 26.38 0.35 22.54 0.21 

𝑧3 1.24 0.24 1.07 0.18 27.19 0.38 22.61 0.22 26.38 0.35 22.54 0.21 

𝑧4 - - - - 2.74 1.00 2.52 1.00 2.83 1.00 2.61 1.00 

𝑧5 - - - - 1.14 0.26 1.13 0.13 1.14 0.26 1.12 0.13 

𝑧6 - - - - 1.14 0.26 1.13 0.13 1.14 0.26 1.12 0.13 

Below in Table 5-3 summaries for the tracking and contour prediction can be seen for the training 

spiral trajectory and the verification roughing operation. In Figure 5-13 and Figure 5-14, the commanded, 

measured, and predicted axis positions for all the models are shown for the spiral and the roughing 

trajectories respectively. The contouring error prediction results can be seen in Figure 5-15.  

From Table 5-3, it can be seen that model 2 and model 3 are able to predict the RMS and maximum 

tracking and contouring errors very similarly, however model 3 has a slight improvement in prediction 

between 0.1 to 1.3% improvement. The 6th order model with the smaller search space converges onto 

parameters more quickly than the configuration with the larger search space, however the 3rd order 

decoupled parameters would have to be identified first to determine the smaller search space. 

Table 5-3 Tracking and contouring error prediction for Deckel Maho 80P MIMO 

Discrepancy in Servo 

Error of Prediction 

Spiral Air Foil Blade 

Model 1 - 

Decoupled 

Model 2 - 

Coupled 

Model 3 - 

Coupled 

Model 1 - 

Decoupled 

Model 2 - 

Coupled 

Model 3 - 

Coupled 

X axis tracking error: 

RMS (MAX) [µm] 

0.34 

(2.65) 

0.30 

(2.84) 

0.30 

(2.84) 

1.82 

(20.33) 

1.79 

(19.94) 

1.79 

(19.88) 

Y axis tracking error: 

RMS (MAX) [µm] 

0.30 

(1.96) 

0.26 

(1.68) 

0.26 

(1.65) 

1.25 

(11.36) 

1.06 

(11.17) 

1.05 

(11.19) 

Contouring error: 

RMS (MAX) [µm] 

0.31 

(2.05) 

0.27 

(2.01) 

0.27 

(1.98) 

1.88 

(22.72) 

1.83 

(22.60) 

1.82 

(22.53) 
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From Figure 5-13 and Table 5-3, it can be seen that all the models are able to predict the tracking 

response to the machine tool. However, it is evident that both model 2 and 3 is able to more closely predict 

both the tracking and contour error, with model 3 having a slight advantage. For model 2 and 3, there is a 

14 and 17% improvement from model 1 when comparing the RMS value of tracking error prediction of the 

x-and y-axes respectively. When comparing the maximum value of tracking error prediction, there is an 

improvement when using the coupled models, approximately 7 to 19% for the x- and y-axes respectively.  

Observing Figure 5-14 and Table 5-3, it can be seen that by using the identified transfer functions from 

the spiral trajectory, the tracking response of a production part can be estimated. It should be noted that the 

tracking and contour error of the air foil has a high initial prediction discrepancy for the measured 

experimental data, this is due to the trajectory not having zero initial conditions which is an assumption that 

is made during simulation. From Table 5-3, it can be seen that the estimation of the x-axis prediction is 

similar between all the models, about 2% improvement in both the RMS tracking error prediction and in 

maximum tracking error prediction using model 3. However model 3 provides a better estimation for the 

y-axis positioning from 1.25 to 1.05 µm, about 19% improvement in RMS tracking error estimation. 
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Figure 5-13 Spiral identification P&WC results 
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Figure 5-14 Air foil blade verification P&WC results 
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Figure 5-15 Contour error for spiral and fanbalde trajectories 

The contouring error and contour error prediction can be seen in Figure 5-15. For the contouring error 

of the spiral trajectory, there is a 17% improvement for when using model 3 comparing the RMS contour 

prediction error and 4% improvement when estimating maximum contour error over model 1. When 

predicting the tracking of the air foil, the RMS tracking error prediction improved by 3% while the 

maximum prediction error improved by 1% when using model 3 instead of model 1. 

5.4 Conclusions 

A MIMO model with the capability of identifying flexible dynamics is presented in this chapter, which 

is a generalized algorithm built on the SISO model from Chapter 4. Transfer functions between different 

input and outputs can be identified for machine tools, provided that the relationships are linear-time 

invariant. Two trajectories were run on a five axis milling machine, a spiral trajectory used for identification 

of transfer functions and an air foil roughing operation used for parameter verification. Three different 

models were identified from the experimental data, the first is a 3rd order decoupled model (one model was 

identified per axis) and two 6th order coupled models were identified using different search bounds. Both 

models are able to capture the dynamics of the machine tool, however the 6th order model with a larger 

search space has reduced tracking and contour prediction error, 2-19% improvement in estimating both the 

RMS tracking error and the maximum tracking error. It should be noted that the 6th order model with a 

smaller search space is also able to predict the same metrics as the 6th order model with the larger search 

space, within 0.1 to 0.4%. Since the smaller search space is able to converge to parameters more quickly, 
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it could be advantageous to use this configuration in real world applications where parameters have already 

been identified for a machine tool. 
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Chapter 6  

Experimental Setup for MIMO Rapid Identification 

6.1 Introduction 

A simplification that is often made when developing new identification models is that machine tools 

are rigid. However, for large machine tools and machine tools with large overhang, this simplification is 

not well founded. Vibratory modes could also be introduced by the end user of machine tools, from the 

fixturing, tooling or even materials used in the process. A new model was proposed in Chapter 5 that can 

take into consideration the vibrations of machine tools while developing a dynamic model. This new model 

was able to identify the vibration modes in simulations, however this capability has yet to be verified with 

experimental data. The small/medium sized machine tools that are readily available in the lab to run 

experimental tests do not exhibit vibratory dynamics. To achieve the goal of gathering data which contains 

a vibration mode on a rigid machine tool, an interface is needed between the feed drive and the spindle to 

simulate the dynamics, which can be achieved by a flexure. 

The flexure mount design in this chapter is based on the design of another flexure designed for chatter 

testing in the lab by Kenneth Wong [58]. The main goal of this flexure is to provide an experimental setup 

that is both repeatable and safe to use to collect data on machine tools. This setup is to be compatible with 

two test beds available to the lab, the Deckel Maho machining center (DMG) (a 5-axis machine tool), and 

the Precision Machine Tool (PMT) (a 3 to 5 axis reconfigurable platform).  

6.2 Designing the Experimental Setup 

The flexure mount is designed to be able to adapt to different experimental setups, with one or two 

modes of vibrations that occur in one or two axes, as illustrated in Figure 6-1. There are three configurations 

for the flexure mount: a) one flexible mode in one direction, b) two flexible modes both in the same 

direction, and c) two flexible modes in opposite directions. These modes of vibration are achieved by 

making the bending directions stiffer in two directions by using sheet metal side plates between the base 

plates. 
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Figure 6-1 Preliminary sketch of different flexure mount configurations 

6.2.1 Base Plate Design 

Several design constraints were placed for the base plate design of the flexure, particularly the thicker 

plates of metal that will give mass to the flexure setup. The flexure would either have two or three base 

plates (depending on the experimental setup). The material used for the base plates is aluminum for easier 

machining and to ensure that the setup would not rust in a laboratory environment. The major constraints 

were the size of the KGM, a 2D grid encoder that will be used for model verification, and the hole locations 

of the machine tools that will be used to secure the flexure. The KGM has a length of 204 mm and a width 

of 180 mm, as seen in Figure 6-2.  

 

Figure 6-2 KGM grid encoder dimensions [59] 

The bottom base plate would need to be secured to the two machine tools. The PMT table, in Figure 

6-3 (a), has M8 holes that are in a grid pattern 50 mm apart. The DMG machine tool has slots that are 63 

mm apart along with 1/2" holes in a circular pattern, as seen in Figure 6-3 (b). Therefore, it was decided 
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that the length and width of the flexure would be 250 by 250 mm with different hole patterns for the M8 

and 1/2" holes for mounting. 

  
(a) (b) 

Figure 6-3 Table dimensions for (a) PMT stage [mm], (b) Deckel Maho machining center [mm] [60] 

The maximum force the flexure was designed to withstand is the peak force of the PMT stage. The 

feed drive in the PMT stage is an ETEL ILM-60-060 linear magnetic motor, which has a peak force of 1270 

N [61]. Class 12.9 metric screws, which have a minimum yield strength of 1100 MPa [62], will be used 

throughout the design on the flexure. The maximum transverse shear stress the bolts will encounter under 

the peak force is calculated using Eqn. (6.1), where 𝜏𝑚𝑎𝑥 is the maximum transverse shear stress for a 

circular cross section, 𝑉 is the shear force, and 𝑑 is the diameter.  

𝜏𝑚𝑎𝑥 =
4𝑉

3𝐴
=
16𝑉

3𝜋𝑑2
 (6.1) 

After substituting the corresponding values and adding a factor of safety of 1.5, the maximum 

transverse shear stress for a single M8 fastener would be 50.5MPa, which is less than the minimum yield 

strength of a single bolt.  

M6 bolts are used in the flexure design to secure the side plates to the base plates because they are 

readily available and meet the minimum required tensile strength. The maximum tensile stress, 𝜎𝑇𝑆, these 

bolts will encounter is 67 MPa which is calculated using Eqn. (6.2), where 𝐹 is the maximum force and 𝐴𝑡 

is the bolt tensile area. This tensile stress is less than the minimum yield strength of each bolt. 
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𝜎𝑇𝑆  =
𝐹

𝐴𝑡
 (6.2) 

6.2.2 Side Plate Design 

The material used for the side plates is stainless steel so that the setup would not rust over time. The 

thickness of the plates is 16 gauge. The height of the sheet metal plates will be varied in the next section to 

get the desired modes of flexibility. To simulate frequency response in Solidworks, the joint stiffness of the 

setup must be calculated. The parameters for the side plate fasteners calculations can be found in Table 6-1. 

Table 6-1 Parameters for side plate design 

Parameter Value 

Fastener head diameter (𝐷) 10 mm 

Bolt diameter (𝑑) 6 mm 

Steel modulus of elasticity (𝐸) 207 GPa 

Unthreaded cross-sectional area (𝐴𝑑) 28.7 mm² 

Threaded cross-sectional area (𝐴𝑡) 20.1 mm² 

Washer thickness 1.75 mm 

Side plate thickness 1.52 mm 

Total material thickness (𝑡) 3.27 mm 

Threaded grip (𝑙𝑡) 20 mm 

Unthreaded grip (𝑙𝑑) 0 mm 

 

First the bolt stiffness, 𝑘𝑏, must be calculated with Eqn. (6.3) using the parameters above. The bolt 

stiffness is calculated as 208 kN/mm per bolt.  

𝑘𝑏 =
𝐴𝑑𝐴𝑡𝐸

𝐴𝑑𝑙𝑡+𝐴𝑡𝑙𝑑
 [62] (6.3) 

Next, the material stiffness, 𝑘𝑚, must be calculated. Since the frustum of the bolt does not exceed the 

diameter of the washer and the washer and side plate have the same modulus of elasticity, the two items are 

considered as one thickness. The material stiffness is calculated as 4974 kN/mm per bolt.  

𝑘𝑚 =
0.5774𝜋𝐸𝑑

𝑙𝑛
(1.155𝑡+𝐷−𝑑)(𝐷+𝑑)

(1.155𝑡+𝐷+𝑑)(𝐷−𝑑)

 [62] (6.4) 

The bolt and material stiffness are applied in Solidworks over a contact surface rather than at the bolt 

locations. Therefore, the contact surface area between the baseplate and the sideplates was also taken into 

account during the simulation to determine an equivalent stiffness, as seen in Eqn. (6.5).  
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𝑘𝑚𝑠𝑖𝑚
=
𝑘𝑚 × 𝐴𝑏𝑜𝑙𝑡
𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑘𝑏𝑠𝑖𝑚 =
𝑘𝑏 × 𝐴𝑏𝑜𝑙𝑡
𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 }

 
 

 
 

 (6.5) 

The top mass and the bottom mass were designed with different hole patterns and therefore have 

different total bolt and material stiffness values, as seen in Table 6-2. 

Table 6-2 Total bolt and material stiffness for different configurations 

 4 bolts 5 bolts 

Total bolt stiffness [kN/mm] 192 300 

Total material stiffness [kN/mm] 4595 7179 

 

Finally, the joint stiffness 𝑘 can be calculated using Eqn. (6.6), and the final results can be seen in 

Table 6-3. 

1

𝑘
=
1

𝑘𝑏
+
1

𝑘𝑚
 (6.6) 

Table 6-3 Joint stiffness for different configurations 

 4 bolts 5 bolts 

Joint stiffness [kN/mm] 18.45 28.82 

6.2.3 Solidworks Simulation 

The thicknesses and size of the base plates are fixed in this design (based on the constraints and 

available thicknesses of stock material). The only parameter that could be varied was the height of the sheet 

metal side plates to get the different frequency modes. There were three main criteria for determining the 

frequency modes, 1) the modes should be greater than 20 Hz, 2) the modes should be more than 20 Hz apart 

and 3) the modes should not be multiples of each other. By varying the heights of the sheet metal side 

plates, the natural frequencies are simulated in Solidworks, and the results can be seen in Table 6-4. 

Additionally, the final side plate heights can be seen in Table 6-5. 

Table 6-4 Frequency simulation results for flexure 

Frequency One Mode 
Two-Mode 

Same Direction Opposite Direction 

1 27.33 Hz 23.07 Hz 27.60 Hz 

2 - 59.70 Hz 64.87 Hz 
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Table 6-5 Final side plate height 

Side Plate Height Single Mode 
Two-Mode 

Same Direction Opposite Direction 

Side plate 1 130 mm 130 mm 130 mm 

Side plate 2 - 100 mm 70 mm 

 

In Figure 6-4, Figure 6-5, and Figure 6-6, the simulated deformations of the single mode, two-mode 

same direction, and two-mode opposite direction flexures can be seen. In can be seen in the two-mode same 

direction flexure, that both the top and middle base plates are moving in the same direction for the first 

mode, while for the second mode, the plates are moving in opposite directions. For the two-mode opposite 

direction flexure, the simulations show that the only the top base plate moves during the first mode, however 

both the top and middle base plates move as one mass for the second mode. 

 

Figure 6-4 Simulated deformation for single mode flexure 

  
(a) (b) 

Figure 6-5 Simulated deformation for two-mode flexure same direction (a) 1st and (b) 2nd mode 
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(a) (b) 

Figure 6-6 Simulated deformation for two-mode flexure opposite direction (a) 1st and (b) 2nd mode 

6.3 Verification of Design 

To verify the simulation results, impact hammer testing was performed on the different configurations 

to determine the real frequencies of the flexure, the roving hammer method was used in these tests. The 

experimental setup was mounted on the PMT stage and marked with multiple points as seen in Figure 6-7, 

where the red boxes indicate the location of the accelerometer, the green dots show the locations of impact, 

and the arrows indicate the direction of impact. Note that in the two flexible modes (opposite direction) 

setup, there are also impact locations in the middle and bottom base plates directly below the locations of 

the top base plate in the y-axis, however they are not shown in the figure. 

 

Figure 6-7 Impact points for tap testing of flexure 
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The peak picking method was used to determine the dynamics of the flexure. Frequency response 

function (FRF) measurements were taken using the software CutPRO. The complete peak picking data 

results can be found in 0, a summary of these results can be seen in Table 6-6. 

Table 6-6 Actual modes for flexures 

Frequency One Mode 
Two-Mode 

Same Direction Opposite Direction 

1 28 Hz 23.5 Hz 29 Hz 

2 - 61 Hz 62 Hz 

 

In Table 6-7, Table 6-8 and Table 6-9, the mode shapes sketched from the peak picking method for 

the one mode flexure, the two-mode same direction flexure and the two-mode opposite direction flexure 

can be seen, respectively. The red and blue box is the outline of the flexure structure and the black box is 

the displacements of the mode shape (with a scaling factor).  

From the simulated deformations above, the mode shape sketches below, and the modes seen in Table 

6-4 and Table 6-6, it can be seen that the simulations from Solidworks have accurately predicted both the 

mode shapes and the frequency of the modes of the actual flexure. For the single mode flexure, the 

Solidworks simulation estimated the frequency would occur at 27.33 Hz and in the actual flexure, the mode 

was measured to be at 28 Hz. The mode shapes for the two-mode flexures have also been simulated 

accurately with Solidworks. During the first mode of the two-mode same direction flexure, it can be seen 

in both the simulation and the actual setup that both the top and middle base plates are moving in the same 

direction. However, in the second mode, the top plate is moving in the direction of impact while the middle 

plate is moving against the direction. For the two-mode opposite direction flexure, it can be seen that in 

both the simulation and the real flexure that only the top base plate shows any movement during the first 

mode. However, in the mode shape sketch of the second mode for the opposite direction flexure, the 

deflection is very small and cannot be seen clearly. The simulations were able to predict the vibration modes 

of the flexure with 95-98% accuracy, with a maximum absolute difference of 2.87 Hz. 
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Table 6-7 Sketches of actual modes for one mode configuration 

Top Mass Bottom Mass 

  
 

Table 6-8 Sketches of actual modes for two-mode same direction configuration 

Mass Mode 1 (23.5 Hz) Mode 2 (61 Hz) 

Top 
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Middle 

  

Bottom 

  

 

Table 6-9 Sketches of actual modes for two-mode opposite direction configuration 

Mass Mode 1 (29 Hz) Mode 2 (62 Hz) 

Top 
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Middle 

  

6.4 Conclusions 

In this chapter, a flexure was designed to have different configurations and to be mountable on two 

different machine tools. The designs were simulated in Solidworks to determine the frequency modes and 

mode shapes, which are dependent on the height of the side plates. The flexure was then built based on the 

design and tap testing was conducted on the flexure to analyze the actual vibration modes and mode shapes. 

It was determined that the Solidworks simulation was able to accurately predict the actual frequency modes 

and mode shapes. This flexure will be used in the next chapter for experimental validation of the MIMO 

LTI model presented in Chapter 5 in order to predict vibration modes on a rigid machine tool.  
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Chapter 7 

Use of Acceleration Sensors for MIMO Rapid Identification 

7.1 Introduction 

To verify that the model discussed in Chapter 5 can identify distinct vibration modes in machine tools, 

the flexure experimental setup in Chapter 6 was built and tested to show that it has distinct vibration modes. 

The flexure was then installed onto the Deckel Maho 80P hi-dyn five-axis machining center, which has 

rigid body dominant dynamics, to collect experimental data that contains one vibratory mode for 

verification of the MIMO LTI model.  

To collect experimental data for the flexible models, measurements on the machine tool were taken 

using three different acquisition systems as seen in Figure 7-1. The first system is the encoder readings 

taken from the feed drive’s controller. The second acquisition system is two 3-axis accelerometers, one 

mounted onto the table of the machine tool and the other mounted on the spindle head. The final acquisition 

system is a KGM grid encoder. The second and third acquisition systems are able to measure the true 

response of the machine tool at the tool-workpiece interface, which is important for more accurate 

predictions of the final part that will be machined. 

 

Figure 7-1 Sketch of flexible experimental setup 

A KGM grid encoder is a 2D encoder that is used to calculate the contouring accuracy of a machine 

tool within ±2 µm [59]. The grid encoder has two main components, a grid plate which is mounted to the 

machine tool table and the scanning head which is placed into the spindle holder. The scanning head does 
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not make contact with the grid plate during measurements, instead there is a gap of 0.5±0.05 mm between 

the two components [59].  

The purpose of this experimental setup is twofold, the first is to use the grid encoder to verify that the 

MIMO model can identify a vibratory model using the KGM acceleration measurements, and the second is 

to use accelerometer signals to identify a model. The KGM, although it is a very precise measurement tool, 

it is not practical to setup in a manufacturing environment as coolant or lubricant can drop onto the encoder 

surface and it is very time consuming to calibrate. However, accelerometers are more durable and are very 

quick and easy to setup onto the machine tools, therefore providing a more practical way of collecting true 

tool-workpiece motion data on the manufacturing floor. 

7.2 Experimental Setup 

The flexure was mounted onto the table of the machine tool, with sideplates facing the y direction, as 

seen in Figure 7-2. The motor encoder positions were collected using the internal oscilloscope of the 

Heidenhain TNC 430N controller at a sampling rate of 0.6 ms for 4096 samples. The KGM grid encoder 

relative position measurements were captured using the Heidenhain software ACCOM at a sampling rate 

of 0.1 ms for 60000 samples. The 6 different channels of the accelerometers 

(𝑥ℎ𝑒𝑎𝑑, 𝑦ℎ𝑒𝑎𝑑 , 𝑧ℎ𝑒𝑎𝑑, 𝑥𝑡𝑎𝑏𝑙𝑒 , 𝑦𝑡𝑎𝑏𝑙𝑒 , and 𝑧𝑡𝑎𝑏𝑙𝑒) were gathered using the Siemens software LMS Signature 

Acquisition at a sampling rate of 0.488 ms for 22528 samples.  

 

Figure 7-2 Setup for testing MIMO high-order rapid identification 
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The trajectories captured in these experiments only move in the x- and y-axes. The DMG machine tool 

head only moves in the x-direction and the machine table only moves in the y-direction. Therefore, the 

accelerometer mounted onto the tool head should theoretically only register accelerations in the x-axis and 

the accelerometer on the table should only register accelerations in the y-axis, while both accelerometers 

should not register any accelerations in the z-direction. However, since the axes are driven by ball screw 

drives, there can be a coupling effect between the axes resulting in accelerations captured in the other axes.  

7.2.1 Data Processing 

Since the data was collected on three separate data acquisition setups, processing of the raw data must 

be performed before using the MIMO LTI algorithm presented in Chapter 5. First the KGM grid encoder 

data and the accelerometer data was processed using the process seen in Figure 7-3. The KGM position 

data was down sampled to match the accelerometer data’s sample time and was shifted by a small time 

increment. The shifted KGM data was then double differentiated to estimate the true tool-workpiece 

acceleration. 

 

Figure 7-3 KGM and accelerometer data processing flowchart 

The KGM, during installation and initialization on the machine tool, is calibrated for angular position [63]. 

To calibrate the angular position of the accelerometer measurements, both the head and table accelerometer 
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data were rotated by small angle increments using the rotation matrices in Eqn. (7.1). The diamond 

trajectory tests with 20 mm length sides were used to determine the rotation angles of the accelerometers 

since both the x- and y-axes were moving in these tests. 

𝑅𝑥𝑦𝑧 = 𝑅𝑥(𝛾) ∙ 𝑅𝑦(𝛽) ∙ 𝑅𝑧(𝛼) 

= [
1 0 0
0 cos 𝛾 − sin𝛾
0 sin𝛾 cos𝛾

] [
cos𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
] [
cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

]  

= [

cos𝛼 cos 𝛽 −sin𝛼 cos𝛽 sin𝛽
sin𝛼 cos 𝛾 + cos𝛼 sin𝛽 sin 𝛾 cos𝛼 cos𝛾 − sin𝛼 sin𝛽 sin 𝛾 − cos𝛽 sin 𝛾
sin𝛼 sin𝛾 − cos𝛼 sin𝛽 cos 𝛾 cos𝛼 sin𝛾 + sin𝛼 sin𝛽 cos 𝛾 cos𝛽 cos 𝛾

] 

(7.1) 

Then the relative acceleration was calculated by subtracting the accelerations measured at the head of the 

machine tool by the accelerations measured at the table. The shifted KGM acceleration is then used as the 

output vector in a simple LS estimation to calculate the calibration and offset factors for the relative 

acceleration to more closely match with the “true value”. The RMS prediction error of the three axes are 

then calculated and added together to be used to minimize the optimization problem. MATLAB’s global 

search function in the Global Optimization Toolbox was used for determining these parameters. The 

𝛼, 𝛽, and 𝛾 rotations for the table and head accelerometers as well as the timing shifts can be seen in Table 

7-1. The final results for the accelerometer and KGM alignment can be seen in Figure 7-4 and Figure 7-5 

below. 

Table 7-1 Accelerometer and KGM alignment parameters 

 Head Table  

𝜶 [deg] -2.58 10.00 

𝜷 [deg] -0.77 -7.00 

𝜸 [deg] -0.64 0.02 

Random   

KGM [sec] 2.5935 2.8477 

Accelerometer [sec] -3.3867 -3.4257 

Diamond   

KGM [sec] 3.6374 

Accelerometer [sec] -3.5797 
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Figure 7-4 Accelerometer and KGM alignment for diamond with 20 mm length sides 

 

Figure 7-5 Accelerometer and KGM alignment for pseudo-random trajectory 
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The KGM and accelerometer data were also aligned to the Heidenhain encoder data’s timing using the 

global search optimization function in MATLAB. The alignment results for the diamond and random 

trajectories can be seen in Figure 7-6 and Figure 7-7, respectively. It can be seen in Figure 7-6, that the 

position, tracking error and acceleration for the x-axis of the Heidenhain motor encoders and the KGM 

match well. However, although the accelerometer data does have a similar profile to the encoder and KGM 

acceleration signals, there is a slight mismatch as seen in the two bottom plots. Since the flexure is mounted 

in the y direction, the position, tracking error, and acceleration of the encoder and KGM for the y-axis do 

not match well, due to the additional vibratory dynamics. However, it can be seen that the acceleration 

calculated by double differentiation of the KGM position data and the accelerometer data match very well, 

in amplitude and timing. For the random trajectories in Figure 7-7, there seems to be less significant drift 

between the KGM acceleration and the accelerometer data, this could be due to the fact that these 

trajectories were executed one axis at a time. 
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Figure 7-6 Diamond 20 mm length aligned data 
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Figure 7-7 Random x and y movements - tested independently, with aligned data 
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7.2.2 Results 

In Figure 7-8, the configuration of the identification model is shown. Both the x- and y-axes have two 

inputs: 1) normalized (Coulomb-type) friction and 2) the position command captured from the CNC 

controller, and each axis has two outputs: 1) CNC feed drive velocity response (used  to estimate the friction 

state) and 2) the true response of the machine tool at the tool-workpiece level. Three models were identified 

for this experimental setup: model 1 is identified through KGM position measurements, model 2 is 

identified through KGM acceleration measurements and model 3 is identified through accelerometer 

measurements. These models will be referred to as KGM-position, KGM-acceleration, and accelerometer 

throughout the rest of the chapter. 

 

Figure 7-8 Structure for MIMO model identification on machining center 

It was decided that the x-axis would have a 3rd order rigid body model with the pole search bounds 

defined in Table 7-2 and that the y-axis would have a 5th order model with the search space defined in 

Table 7-3. It is commonly known that a rigid body model with an integrator in the controller will have a 

3rd order transfer function [44], and that any additional flexible mode will add two extra orders per mode 

[64]. The maximum value for both 𝑝 and 𝑤𝑘,1 are the Nyquist frequency of the sampling data. Since the 

flexure mode is known to be around 28Hz, the second frequency, 𝑤𝑘,2, has a search space between 20 and 

40.  

Table 7-2 Pole search bounds for X axis of Deckel Maho 80P and flexure setup 

Parameters Min Max 

𝑝 [Hz] 0.02 833.33 

𝜔𝑘,1 [Hz] 0.02 833.33 

𝜁𝑘,1 [] 0.01 2 
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Table 7-3 Pole search bounds for Y axis of Deckel Maho 80P and flexure setup 

Parameters Min Max 

𝑝 [Hz] 0.02 833.33 

𝜔𝑘,1 [Hz] 0.02 833.33 

𝜁𝑘,1 [] 0.01 4 

𝜔𝑘,2 [Hz] 20 40 

𝜁𝑘,2  [] 0.001 0.5 

 

To identify parameters for the experimental setup, pseudo-random movements were used to train the 

model. The identified parameters for both the x- and y-axes for the KGM-position, KGM-acceleration and 

accelerometer are shown in Table 7-4. It should be noted that the local minima were stored during the 

optimization process, and all local minima were tested to ensure the best position response. All three models 

have similar dynamics in the x-axis, the identified complex pole frequencies are very similar, with natural 

frequencies identified at 25.25 Hz, 28.72 Hz, and 28.64 Hz for the KGM-position, KGM-acceleration, and 

accelerometer models respectively. However the real poles are quite different, with identified parameters 

at 14.22, 25.68, and 98.88 Hz for the KGM-position, KGM-acceleration, and accelerometer configurations 

respectively.  

It can be observed that all of the models were able to capture the flexible dynamics of the flexure in 

the y-axis. All three models were able to identify the natural frequency at 25.76 Hz, with very similar 

damping ratios of 0.0052 [] for the KGM-position model, 0.0055 [] for the KGM-acceleration model and 

0.0057 [] for the accelerometer model. Therefore it has been verified that the MIMO LTI algorithm can 

identify flexible modes in machine tools.  

Again the real pole and first natural frequency are quite different between the three models, however 

these are not the dominate dynamics in the y-axis, therefore these contributions would be more difficult to 

capture. Although both KGM models have real and complex poles that are similar. The frequencies of the 

higher order zeros of the tracking transfer function for the y-axis are also very similar, 31.65, 36.43 and 

35.27 Hz for the KGM-position, KGM-acceleration and accelerometer models respectively. 
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Table 7-4 Identified parameters for X- and Y- axes of Deckel Maho 80P and flexure setup 

Param. 
KGM - Position KGM - Acceleration Accelerometer 

X Axis Y Axis X Axis Y Axis X Axis Y Axis 

𝒑𝒓 14.22 17.58 25.68 14.18 98.88 368.65 

𝒘𝒌,𝟏 25.25 33.18 28.72 25.15 28.64 74.58 

𝜻𝒌,𝟏 0.24 0.24 0.36 0.17 0.85 1.40 

𝒘𝒌,𝟐 - 25.76 - 25.76 - 25.76 

𝜻𝒌,𝟐 - 0.0052 - 0.0055 - 0.0057 

Track. 

TF 

Zeros 

Freq. 

[Hz] 

Damp. 

[] 

Freq. 

[Hz] 

Damp. 

[] 

Freq. 

[Hz] 

Damp. 

[] 

Freq. 

[Hz] 

Damp. 

[] 

Freq. 

[Hz] 

Damp

. [] 

Freq. 

[Hz] 

Damp. 

[] 

𝒛𝟏 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 

𝒛𝟐 26.29 0.72 31.65 -0.12 0.00 -1.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 

𝒛𝟑 26.29 0.72 31.65 -0.12 48.89 -1.00 56.32 -1.00 172.59 -1.00 2220.94 -1.00 

𝒛𝟒 - - 26.57 0.72 - - 36.43 0.41 - - 35.27 -0.68 

𝒛𝟓 - - 26.57 0.72 - - 36.43 0.41 - - 35.27 -0.68 

 

In Figure 7-9, Figure 7-10, and Figure 7-11, the commanded, measured, and KGM and accelerometer 

simulated axes positions are presented for the pseudo-random, diamond and circle trajectories respectively.  

The contouring error and prediction error of the diamond and circle trajectories can be seen in Figure 7-12. 

In Table 7-5, the tracking and contouring prediction errors can be found for all three trajectories.  

Overall it can be seen that the KGM-position identified model is has the best prediction characteristics. 

For the diamond trajectory, the RMS tracking error prediction is 771-953% closer for the x-axis and 85-

123% closer for the y-axis, with an improvement of 349-370% in the RMS contour error prediction when 

compared to the accelerometer and KGM-acceleration models The same can be seen for the circle trajectory 

where the maximum tracking error discrepancy is 676-828% closer for the x-axis and 56-83% closer for 

the y-axis. The RMS contour prediction error is improved by 233-245% and the maximum contour 

prediction error is improved by 148-164% when comparing to the accelerometer and KGM-acceleration 

models. There is also similar improvements when using the KGM-position model over the KGM-

acceleration and accelerometer models in the pseudo-random trajectories, with an improvement between 

19-758% for the RMS tracking error prediction and 28-500% for the maximum prediction error. In the rest 

of the result section, the KGM-acceleration and accelerometer models will be compared to determine if a 

model built from acceleration measurements is feasible.  

The reconstructed position response of the pseudo-random trajectory can be seen in Figure 7-9. It can 

be seen in the figure that the MIMO LTI model is able to predict the position response from the acceleration 
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input in the y-axis very well. However, there is a significant discrepancy for both the KGM and 

accelerometer reconstruction in the x-axis. One possible reason for this discrepancy is the alignment of the 

data collected from the three different data acquisition systems. Since the y-axis has a more distinct 

sinusoidal signal due to the flexure, it was easier to align the data, however the x-axis has a smoother 

movement, therefore there could be a slight time shift in the data that affected the identification of 

parameters. It is recommended in future testing to include a rapid movement before the execution of the 

NC code to more easily align the data. From Table 7-5, it can be seen that the accelerometer model overall 

provides a better prediction of both the RMS and maximum tracking prediction error for both the x- and y- 

axes. The accelerometer model is able to predict the tracking error with 33 and 16% improvement in RMS 

tracking error prediction, as well as 51% and 11% improvement in predicting the maximum value of the 

tracking error for the x- and y-axes respectively. 

Table 7-5 Tracking and contouring prediction for Deckel Maho 80P and flexure setup 

Discrepancy in 

Servo Error 

Prediction [µm] 

Diamond 20 Circle 
Varying Dist. Linear 

Interpolation 

KGM: 

Pos 

KGM: 

Acc 
Acc 

KGM: 

Pos 

KGM: 

Acc 
Acc 

KGM: 

Pos 

KGM: 

Acc 
Acc 

X axis track. 

error: RMS 

(MAX) 

2.64 27.84 23.02 2.73 43.57 36.37 1.88 16.14 12.12 

(8.56) (56.63) (47.87) (11.46) (106.33) (88.88) (6.48) (38.92) (25.70) 

Y axis track. 

error: RMS 

(MAX) 

5.57 12.44 10.31 8.77 16.37 13.07 7.26 10.04 8.66 

(17.19) (30.34) (25.03) (23.43) (42.79) (36.60) (16.93) (24.19) (21.71) 

Contour error: 

RMS (MAX) 

3.28 15.40 14.72 5.26 18.15 17.52 
- - - 

(15.94) (42.74) (42.31) (23.17) (61.14) (57.54) 

 

The identified transfer functions from the pseudo-random trajectories were then used for verification 

for the diamond and circle trajectories. Comparing the prediction errors for the diamond trajectories, it can 

be seen that the accelerometer has improved prediction characteristics over the KGM model for both the x- 

and y-axes. The RMS tracking error prediction for the x-axis decreased from 27.84 to 23.02 µm, a 21% 

improvement, and decreased from 12.44 to 10.31 µm in the y-axis, a 21% improvement. The maximum 

tracking error prediction also is improved while using the accelerometer data, by 18 and 21% for the x- and 

y-axes respectively. The RMS contouring error prediction has a 5% improvement when using the 

accelerometer model, and the maximum contour error prediction increases by 1% when using the same 

model. The circle trajectory results also have the same trend, where the RMS tracking error prediction has 

improved by 20 and 25% by using the accelerometer model and the maximum prediction error has improved 
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by 20 and 17% for the x- and y-axes respectively. Again, the RMS contouring error has improved by 4% 

for the accelerometer model and the maximum contouring prediction error has increased by 6% over the 

KGM model. 

 

Figure 7-9 Actual and predicted servo performance for a varying distance linear interpolation 

toolpath using MIMO LTI Rapid Identification 
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Figure 7-10 Actual and predicted servo performance for a 20mm length diamond toolpath using 

MIMO LTI Rapid Identification 
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Figure 7-11 Actual and predicted servo performance for a 20mm radius circle toolpath using 

MIMO LTI Rapid Identification 
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Figure 7-12 Contour errors for diamond and circle toolpaths on Deckel Maho 80P and flexure 

setup 

7.3 Conclusions 

In this chapter, the use of accelerometer sensors for identifying MIMO models, presented in Chapter 

5, was discussed. To validate that the MIMO model is able to capture vibration modes, a 2D KGM grid 

encoder was also used to identify a model. The flexure design in Chapter 6 was mounted on the five-axis 

Deckel Maho machine tool, to induce a flexible mode on the rigid machine tool. The data for this 

experimental setup was collected on three different data acquisition systems, therefore angle and time 

calibration was required before the experimental data could be used for model identification. A pseudo-

random trajectory was executed on the five-axis machining center and was used for identifying the 

parameters for all the models: position measurements from LGM, acceleration measurements from KGM 

and accelerometer models. The MIMO algorithm was able to capture a vibratory mode at 25.76 Hz for all 

the models in the y-axis and were able to reconstruct the position response accurately from the both the 

position and acceleration data. However, the x-axis reconstruction has a higher discrepancy for the models 

identified using acceleration data, which could be caused by time alignment issues from the pre-processing 

step. Overall, the accelerometer model was able to estimate the RMS tracking prediction error with 16-33% 

improvement, and an improvement of 11-51% for the maximum tracking prediction error. There was also 

a 4-5% improvement in RMS contour error prediction when using the accelerometer model, and there was 

an improvement in maximum contour error prediction, about 1 to 6%. 
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Chapter 8 
Conclusion and Future Work 

8.1 Conclusions 

In this thesis three methods for identifying digital twins of feed drives for virtual process planning are 

presented with minimal intervention to the machine tool. The quasi-static method is a quick and simple 

model that can be used for machine tools that are known to have decoupled and rigid body dynamics. The 

feed drive’s natural response is not taken into account in this model and it is able to predict the tracking 

response from the time derivatives of the position commands collected from the CNC controller. This 

method was experimentally validated using data collected from a Siemens 840D controller on a laser 

drilling machine tool. This method was able to predict the RMS tracking error within 2.62 to 11.91 µm and 

the maximim tracking error within 11.40 to 69.05 µm. 

The second method presented in this thesis is the SISO rigid body model, which provided 

improvements from the previous rapid identification method proposed in literature, such as better 

convergence characteristics and the elimination of the use of derivatives of measured signals during 

estimation. The two methods were compared using experimentally gathered data on a five-axis Deckel 

Maho machining center from the Heidenhain TNC 430N controller. The RMS tracking prediction error has 

improved 50-76% and prediction of the maximum values has also improved by 16-50%. The contour 

prediction error has also improved by using the new method, between 22-35%. A set of GUIs was developed 

for this algorithm to be delivered to P&WC to allow the process planners and engineers to use this method 

to simulate the tracking and contouring capabilities of new trajectories. 

The final algorithm discussed in this thesis is the MIMO model, which is an extension of the new SISO 

method. This method provides the user the capability of determining transfer functions between several 

different inputs and outputs, which is of interest to create higher fidelity models of machine tools. Using 

this algorithm, flexible modes of the machine tool or process can also be identified. This method was tested 

on two different testbeds, a five axis milling machine with a FANUC controller and the Deckel Maho with 

a flexure to induce a flexible mode. For the first experimental setup, three different models were considered, 

a decoupled 3rd order model and two coupled 6th order model, one with a smaller search space. It was 

observed that overall, the 6th order model with the more general search space was able to more closely 

predict the tracking and contouring response of the machine tool, between 2-19% RMS prediction error and 

maximum prediction error.  
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A flexure was designed and constructed to induce a repeatable and safe flexible mode on a rigid 

machine tool. The flexure was designed to be mountable on two different feed drives and was also designed 

to be reconfigurable (one-mode, two-mode same direction, and two-mode opposite direction). Simulations 

were done in Solidworks to determine the height of the sideplates to get the desired flexible modes. Tap 

testing was done after the flexure was built to verify that the simulations were correct. The simulations were 

able to predict the correct mode shapes and were able to predict the frequencies with 95-98% accuracy. 

This flexure was installed on the five-axis Deckel Maho along with a 2D KGM grid encoder and two 

3-axis accelerometers. Three models were tested on this machine tool, a model identified from the position 

measurements from the KGM, a model identified from the acceleration estimated from the KGM and a 

model identified from the accelerometer signals. Since data was collected using three different acquisition 

systems, time and angle alignment was done before the data was used for identification purposes. All three 

models were able to identify a flexible mode at 25.75Hz, however, overall the model identified using the 

KGM position measurements had the best prediction characteristics. The accelerometer identified model 

was able to more closely predict the axis positioning of this experimental setup, with a 16-33% 

improvement in predicting the RMS tracking error and 11-51% improvement in predicting the maximum 

tracking error over the model identified with KGM acceleration measurements. The RMS contouring error 

prediction has also improved by 4-5% and the maximum contour error prediction improved by 1-6% 

between the accelerometer and the KGM acceleration models. 

8.2  Future Work 

Future improvements to this work include conducting more experiments using the flexure, KGM, and 

accelerometer setup to determine if the large discrepancy in the x-axis identification can be reduced. This 

may be done by introducing a quick motion at the beginning of the NC code, as to provide a marker for 

timing alignment purposes. Further research into using different types of friction models with the MIMO 

algorithm should also be considered, this can improve the overall accuracy of the tracking error prediction, 

specifically during velocity reversals in the trajectory. This research has been commenced in the lab [65]. 

Due to time limitations, no part has been machined on the experimental setup with the induced flexible 

mode. In future work, a part will be made while the flexure is attached to the Deckel Maho, which will then 

be measured on a coordinate measuring machine (CMM) to verify the contouring error of the part, to 

validate the simulated true tool-workpiece motion.  
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Appendix A: Peak Picking Method Data 

Table A-1 Single mode top base plate flexure peak picking data 

Mode Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

1 1 28 27.5 28.5 0.0179 126.7 
 2 28 27.5 28.5 0.0179 123.9 
 3 28 27.5 28.5 0.0179 123.6 
 4 28 27.5 28.5 0.0179 126.1 
 5 28 27.5 28.5 0.0179 126.9 
 6 28 27.5 28.5 0.0179 123 

Table A-2 Single mode bottom base plate flexure peak picking data 

Mode Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

1 1 28 27.5 28 0.0092 1.199 
 2 28 27.5 28 0.0092 0.6416 
 3 28 27.5 28.5 0.0179 1.384 
 4 28 27.5 28 0.0092 1.526 
 5 28 27.5 28.5 0.0179 1.353 
 6 28 27.5 28 0.0092 1.707 

Table A-3 Two mode same direction top base plate flexure peak picking data 

Mode Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

1 1 23.5 23.5 24 0.0103 46.08 
 2 23.5 23.5 24 0.0103 45.65 
 3 23.5 23.5 24 0.0103 44.57 
 4 23.5 23.5 24 0.0103 46.92 
 5 23.5 23.5 24 0.0103 45.28 
 6 23.5 23.5 24 0.0103 44.48 

2 1 61 61 61.5 0.0040 13.5 

 2 61 61 61.5 0.0040 13.58 

 3 61 61 61.5 0.0040 13.52 

 4 61 61 61.5 0.0040 13.91 

 5 61 61 61.5 0.0040 14.21 

 6 61 61 61.5 0.0040 14.12 

Table A-4 Two mode same direction middle base plate flexure peak picking data 

Mode Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

1 1 23.5 23.5 24 0.0103 46.08 
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 2 23.5 23.5 24 0.0103 45.65 
 3 23.5 23.5 24 0.0103 44.57 
 4 23.5 23.5 24 0.0103 46.92 
 5 23.5 23.5 24 0.0103 45.28 
 6 23.5 23.5 24 0.0103 44.48 

2 1 61 61 61.5 0.0040 13.5 

 2 61 61 61.5 0.0040 13.58 

 3 61 61 61.5 0.0040 13.52 

 4 61 61 61.5 0.0040 13.91 

 5 61 61 61.5 0.0040 14.21 

 6 61 61 61.5 0.0040 14.12 

Table A-5 Two mode same direction bottom base plate flexure peak picking data 

Mode Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

1 1 23.5 23.5 24 0.0103 1.485 
 2 23.5 23.5 24 0.0103 1.369 
 3 23.5 23.5 24 0.0103 1.428 
 4 23.5 23.5 24 0.0103 1.447 
 5 23.5 23.5 24 0.0103 1.362 
 6 23.5 23.5 24 0.0103 1.44 

2 1 61 60.5 61.5 0.0082 -2.378 

 2 61 60.5 61.5 0.0082 -2.348 

 3 61 60.5 61.5 0.0082 -2.347 

 4 61 60.5 61.5 0.0082 -2.309 

 5 61 60.5 61.5 0.0082 -2.459 

 6 61 60.5 61.5 0.0082 -2.561 

 

Table A-6 Two mode opposite direction flexure peak picking data x-direction 

Base Plate Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

Top 1 62 59 66 0.0555 7.044 

 2 62 58.5 66 0.0602 7.32 

 3 62 59 66 0.0555 6.948 

 4 62 58.5 66 0.0602 7.015 

 5 62 58.5 66 0.0602 7.059 

 6 62 59 66 0.0555 6.811 

Middle 1 62 59 66 0.0555 6.516 

 2 62 58.5 66.5 0.0635 6.312 

 3 62 58.5 65 0.0534 7.482 
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 4 62 59 65 0.0486 8.051 

 5 62 59 65.5 0.0521 7.376 

 6 62 58.5 65.5 0.0568 7.802 

 

Table A-7 Two mode opposite direction flexure peak picking data y-direction 

Base Plate Point wn [Hz] wr,1 [Hz] wr,2 [Hz] Zeta [] Q 

Top 1 29 29 29.5 0.0084 82.63 

 2 29 29 29.5 0.0084 89.904 

 3 29 28.5 29.5 0.0173 81.134 

 4 29 28.5 29.5 0.0173 94.223 

 5 29 28.5 29.5 0.0173 82.087 

 6 29 28.5 29.5 0.0173 82.087 

Middle 1 29 28.5 29 0.0088 -0.2691 

 2 29 28.5 29 0.0088 -0.6245 

 3 29 28.5 29 0.0088 -0.2206 

 4 29 28.5 29 0.0088 -0.069 

 5 29 28.5 29 0.0088 1.1 

 6 29 28.5 29 0.0088 0.8791 

 


