View metadata, citation and similar papers at core.ac.uk brought to you by iCORE

provided by University of Thessaly Institutional Repository

I[TANEIIIXTHMIO OE2XAATAX
[TOAYTEXNIKH XXOAH
TMHMA HAEKTPOAOI' QN

MHXANIKQN KATI MHXANIKQN
YIIOAOI'TXTQN

Evoopdatmon tov Movtéiov Kabvotépnong CCS o Epyaieio
>1atikng AvaAivong Xpoviopov Orokinpopévov Kukioudtov
VLSI

Integration of CCS Timing Model into STA Tool

Autdopatikn Epyocio

Mnvéc Zravormoviog Kapaie&ion

Emprénovreg KaOnyntésg : ['edpyrog Xtapoving
Kabnmmg

Néotop Evpopeomoviog
Eniovpoc Kadnyntic

Béiog, Oxtopprog 2018

https://core.ac.uk/display/161657489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[TANEIIIXTHMIO OEXXAATAX
ITOAYTEXNIKH XXOAH
TMHMA HAEKTPOAOI'QN MHXANIKQN
KAI MHXANIKQN YIIOAOT'IXTQN

Evoopdatmon tov Movtéhov Kabvotépnong CCS oe Epyaieio
Xtatikng Avaivong Xpoviopov Orokinpopévov Kukioudtov
VLSI

Aumdopatikn Epyacia

Mnvéc Zravormoviog Kapaie&ionc

Emprénovreg : ['edpyrog Xtapoving
Kabnmmg

Néotop Evpoppoémoviog
Enikovpog Kabdnyntg
EykpiOnke amd tnv dwuedf e€gtactikn emrponn v 11" OxtmpBpiov 2018

["'edpyrog Xtapoving N. Evpoppoémoviog
Kabnyntg Enikovpog Kanyntng

Authopotikny Epyacia yio v andkmon tov Aummdopatog tov Hiektpodldyov Mnyovikon
Kot Mnyavikod Yrnoroyiotdv, tov [avemomuiov @eccariog, ota mAaicio Tov
[Tpoypappoatog Ipontuytokdv Xrovdmv tov Tununoatog Hiektpoddywv Mnyovikdv kot
Mnyovikév Ymoloyiotadv tov [avemotnuiov @sccariog.

Mnvég Znavénoviog Kapoare&iong

Authopoatovyog Hiektpoldyog Mnyavikog kot Mnyoavikdég Ymoroyiotdv Iavemotnuiov
Oeccoliog

Copyright © Minas Spanopoulos Karalexidis, 2018

Me empOroén mavtoc dwarmdporoc. All rights reserved.

Amoyopgvetol 1 ovTiypor), omofnKeLon Kol SVOUN NG TOpoVCHS £pYAciog, €&
OAOKANPOL 1 TUNUOTOS OVTNG, Y. eUmOPKO okomd. Emupénetan m avartdnoon,
amoONKELOT KO SLOVOUT] Y10 GKOTO U1 KEPOOGKOTIKO, EKTTALOEVTIKNG 1] EPEVVITIKNG PVOTG,
vd Vv mpobmdBeon v avaPEpeTat 1 TNYN TPOEAELONG Kot v dTnpeital to TopdV
unvopa. Epotmuoata mov agopodv T xpnon e epyaciog Yo KEPOOGKOTIKO GKOTO TPEMEL
va amevfHvovTal TPOg TOV GLYYPUPEQ.

To my family and friends

2TV 0KOYEVELQ OV KOt TOVG GIAOVG LoV

Evyoprotieg

Me v mepdTmon ¢ Tapovcas SIMAMUATIKNG epyaciag, Ba NOska va gvyapiomiom Beppd
toug emPAETOVTEG KaONYNTES K. [emdpyro ZtopodAin kot k. Nukolao Evpopedmovro yuo v
EUMIGTOGVVI] TOVG GTO TPACMOTO OV, UE TNV avaBeon avtov Tov BEpatog, kabdg Kot ™)
cLVEPYAGiN TOVG Kot TNV EKaoTn BonBetd ToLg OTOTE TNV YPEIGCTNKAL.

[TapdAinia Ba nOela va guyaplotnom Tovg PiIAovg Kot cuvepYdteg Tov gpyactnpiov ES ko
€101KA TOV ddakTopkd eortnt K. Anuntpro I'apvedirov, kabng yopic v vrepmrolvTiun
Kot apéprotn Ponfeld Tov, N TEPATOON AVTNG TG Epyaciag Ba tav Tpopepd SVGKOAN.

Téhog, o€ Ba TV €6A0Y0 va Tapaieiy® TOVG PacTIKOVG Kot LOVILLOVS VTOGTNPIKTEG OV GE
KkéOe Pua mov KAvw, OG0 PdAlov ce OAM aVTA T XPOVIKL TV GTOLd®V Hov. ‘Eva
TEPAGTIO EVYAPLGTM GTNV OKOYEVELD LLOV.

Mnvdc Znavoémoviog Kapare€iong
Boélog, 2018

Contents

LIST OF TADIES. ...ttt bttt b et v
LSE OF FIGUIES ..ottt ettt et b e bbbt st e b et et et e st eaeebeebeneenes vi
L INEFOTUCTION ..ttt h e bbbt ettt e st e bt bt sb et et et et eaeeaeeseebeneennes 1
1.1 IMIOTIVALION <.ttt ettt h bbbttt et et seeb e bt e bt s bt et e e e s e e e e eseesesbenneebeneens 1
1.2 THESIS CONTIIDULION ...ttt sttt 1
1.3 OULIINE ..ottt b bbbt bbbttt 2

2 StAtiC TIMING ANGIYSISveitiitieieieeteste ettt et e e e et este et e besaeesesbeessesteeseensesseessensesssensessennees 3
2.1 What is Static Timing ANAIYSIS?c..cueiriririrtirierteteeee ettt st et sse b e 3
2.2 Why Static Timing ANAIYSIS?......cueieieiriietirtestert ettt ettt b e st s et sse b e 5
2.3 Standard Cells and Propagation DEIAYccereruerieieirinineriesteieieee ettt 6
2.3.1 SEANAAND ClIS......eeeiiieiieteetee ettt 6
2.3.2 Propagation DEIAYcceeueeiiiiieiecteceete sttt st ettt st e e s teere et e s teesb e beeas e tesraenresteennens 7

2.4 Static TIMiNG ANAIYSIS TOOIScoiiieiiiicece ettt st s re e be s reensesreeneas 10
2.4, L PIIMETIIMIE ...ttt sttt b bt b ettt e e st e bt e bt e b e s b et et et et e s e e st enenbeneenen 10
242 TRIMPUS ...ttt ettt e sttt et e b bt et e s bt ehe et e s bt eab e s bt s ab e b e sbeeabeebeemt e bt sab et e sbeeasenbeebeenbesaeenes 11

I I T 070 N oo TSR 13
3.1 Gate and InterconNeCt MOAEIINGcvieuieiiicee ettt st eanas 13
3.1.1 INtercONNECt MOAEIINGceeovieiieieciieee ettt st st e et e s beeaesbeessenbesanenes 13
3.1.2 Circuit EIemMent MOUEIINGoceeiirieeeeceees ettt sttt s saesreeseenesneenes 14

3.2 Non-Linear Delay MOl (NLDIM)ocveiirieieierieesieetesie s eee s e sae st sae e sseesesresssesssssnensassnsnees 18
3.2.1 Example of Non-Linear Delay Model LOOKUP.........cccueviiiiriericeeececese e 22

3.3 Composite Current Source Timing MOElcovoiveeieiiceeeeceeeee e 23
3.3 L INEFOTUCTION ..ttt b ettt b et b e eb e b e enes 23
3.3.2 PreViouS APPIOACHESeceeiicteetecteet ettt ettt sttt ettt e b et e s te et e beeab e tesbeenbesteeseenbeeaeenes 25
3.3.3The CCS TimiNg SOIULIONccueeiiitieiee ettt ettt et e s ae s reeseenesaeenes 27
3.3.4 Characterization for CCS TiMING.......cecieieeeerieierieeee et sre et eeste e ae e eseebesneenes 29

4 OpenTimer: A High-Performance Timing Analysis TOOI.........cccovivieiiiieiiricere e 31
AL INEFOTUCTION ..ttt b et ees e bt bt bt b et e s e e e e e e eseebeebeenenaens 31
4.2 Incremental Timing Analysis ant CPPR..........ci oo sre e sre e te e s e e saeesnne e 33

4.3 NLDM Representation and Data STTUCLUIES............eecveriereeriseeiesieeeesieseeecre e seeesae e eaessessnessesseennas 34

5 Integration of CCS Timing Model into OPeNTIMENcveveiviecieieceece et 41
5.1 The Need for Better TIMING ACCUIACYcceruerueierrieiirieriessestesteseeeseesessessessestessesseeeseesessessesseneens 41
5.2 CCS Timing Information and Data StrUCTUIESccceirereririeieieieeeesese et 41

B CONCIUSTON ...ttt bbbttt a bt bbb et e e st e bt b e e b e sb e b et et et eneeseebeebeneennen 51
B.1 FULUIE WOTK ...ttt sttt 51

RETEIBICES ...ttt bbbt h et bbbttt b et b et b et b et b et et n et 53

List of Tables

Table 5.1: OpenTimer and PrimeTime STA results including SPEF parasitics..........cccccevveeveerereevvesveennn. 47
Table 5.2: OpenTimer and PrimeTime STA results without SPEF parasitics.c.ccocevereinenenenennenn 48
Table 5.3: Accuracy error between OpenTimer NLDM-CCS and the golden CCS

L AT L= T [T PSP PO P P PP PUPPPPTPIRE 50

List of Figures

Figure 2.1: Static TimINg ANGIYSIS.......cccviiiiieieceeeseeeese ettt s a e st e e raebeereesesreeneas 4
Figure 2.2: Generic circuit (left) and delay model representation of a circuit element (right)..................... 5
Figure 2.3: CMOS [0GIC BVEIS. ..ottt 7
Figure 2.4: CMOS OULPUL WAVETOIMS.ooviieieiiiieesteeeee ettt sttt sttt st sttt e besre e e e reennas 8
Figure 2.5: Propagation GelAYS.co oottt 9
Figure 2.6: Propagation delay using ideal WavefOrmsS.cccooeirirerinenieieeeeeeneseseeeee s 9
Figure 2.7: Galaxy Signoff SOIULIONS.cc.oiuiiieiiceeeeeeee et st ean s 11
Figure 2.8: Interface Logic Model (ILM) CONCEPL.cveveiemieieirieneretesteeeee et 12
Figure 2.9: Timing scope can be used for individual blocks or top-level distributed STA........cccccverennene 12
Figure 3.1: Modified RC network for output slew calCulation.............cccooveveeiieeeveieecece e 14
Figure 3.2: lllustration of different tables: scalar, one-dimensional and two-dimensional.c..c.cc..... 16
Figure 3.3: Combinational OR gate (left), its timing model (center) and capacitances (right).c........ 16
Figure 3.4: Generic D flip-flop and its timing model (left), and two FFs in series and their timing models

(FTGNIE) e a et a e a e a bt s btk b ettt a bbbt b e b et et et n e ea e be b e enen 17
Figure 3.5: Transition time and capacitance for computing cell delays.ccooveviiieceiicieciceeee e, 22
Figure 3.6: Stage Delay CalCUIALION.c..coveieieirerieeiee et 24
Figure 3.7: Stage represented by driver model, ROM and receiver models..........ccccooevevereneieeeninenennens 24

Figure 3.8: : The Rd << Znet problem. (a) shows a transistor circuit driving a detailed parasitic network at
node ‘B’. (b) The network presents an impedance Znet to the Thevenin driver model. When Rd << Znet,
Vout approaches Vin and the driver model can 10S8 @CCUIACYcccvevverieierieieeiereeeee e 25
Figure 3.9: A single capacitance value is insufficient when Miller effect is large.........cccoceveveeininencnnns 27
Figure 3.10: Output current and voltage responses for a timing arc. Transition-level simulation results
are shown for different values of load capacitance (1fF, 10fF, 100fF, 1pF, 10pF). (a) Inverted current

respoNSES. (D) VOILAGE FESPONSES.eiviireeiecieeteeteeteeteste et este s e et e stesteesbesbeesaesbesssessestessessesssensesteessensessnanes 28
Figure 3.11: CCS Timing characterization MeasUreMENTS.ccccevereerrererreerteeeereeseeseeseeseeessessesseessesseenes 29
Figure 3.12: Current waveform from circuit simulation, and reduced current points.ccccceveeverveeneene. 30
Figure 4.1: Performance improvement of incremental timing to full timing on one benchmark from. 31
Figure 4.2: Program flOW Of OPENTIME........cceeciieieieeeeee sttt sre e e e sreenes 32
Figure 4.3: An example of sequential CIrCUIt NEIWOIK.ceoueeieiiiieiececeece et 33
Figure 4.4: Liberty timing information SLOFAQE.ccueiuieieiiieeece ettt st ereens 37
Figure 4.5: Graph construction from Verilog file.cooveiiiecireceece e 38
Figure 4.6: Liberty information and graph construction correlation.cccceceieiieeienienceseseeee e 39
Figure 5.1: CCS information added t0 Cellpin.ccoouieieriieeee e e 45
Figure 5.2: CCS information added int0 TIMING.......cccocieieriieeeiese ettt see e 45

Vi

file:///C:/Users/Minas/Desktop/Spanopoulos_Karalexidis_Minas.docx%23_Toc527108144
file:///C:/Users/Minas/Desktop/Spanopoulos_Karalexidis_Minas.docx%23_Toc527108147
file:///C:/Users/Minas/Desktop/Spanopoulos_Karalexidis_Minas.docx%23_Toc527108148

IHepiinyn

H avdivon ypoviopov eivar pio amd tic mo dradedopéves dadtkacieg emaindevons evog
KUKAOLOTOG. YTapyovv mtapa moAAEG néBodot emarnBevong evog KUKAMUOTOG, pia amd Tig
omoieg etvon 1 Xtatikny AvéAvon Xpoviopov (STA). Avth n nébodog oyt uovo eivor pio oo
TIC TTO YVOOTEG TEXVIKESG, OALA EMLTAYVVEL EMIONG TN SLAOIKOAGIN TNG TPOCOUOIMONG KabmG
dtvel to dikaimpa va yivel 6 GTOYXELUEVO LOVOTTATIO Kot Oyl 6€ OAOKANPO TO KOKAMLA.
Moh¢ ta televtaia ypovia avamtdydnke o OpenTimer, évo AOYIoCUIKO OvVOLYTOD KMOLKOL
Ytatikng Avaivon Xpoviopod. O OpenTimer eivoar éva oOyypovo epyoaleio, mov
ypnowonolel to Mn-I'pappikd Movtého Kabvotépnong (NLDM) yua va diegdyet avaivon
KoBLGTEPNOMG OAOKANPOUEVOY KUKAOUAT®V.

2KomdG avThG TS OUWTAMUOTIKNG €lvol va EMITUYEL KAADTEPO, OTOTEAEGLATO, OGOV QPOPA
™mv akpifeia Tov OpenTimer, pe v evoOUATOOT €VOG OKPIBECTEPOV HOVTELOV, TNG
2HvOetng I[Inyng Pedpatog (CCS). Avtd to povtéro amotedeiton amd 600 EMPUEPOVG HEPT)-
povtéda: to éva givor To HovtéAo 0dnyov Kot 1o A0 1o povtédo amodéktn. To poviéro
001 YoV yopakINPileTon amd TNV KOTaypa®n TG KUUOTOUOPENS PEVLOTOC GTOVG TUKVMTEG
eoptiov €£6dov tv muimv. H avtictoyn wxvppatopopen peopatog, eEaptdtor and tov
xpOVo peTAPaocmg TG €16000V, T0 QOPTio €£600V Kol TIG KOTAGTAGELS TWV LIOAOUTWV
€10600v. To povtého amodéktn eivor oyeddv avtiotoryo pe owtd tov NLDM, pe
dpopd 6Tl TPochHETEL TEPIOTOTEPT OVAAVOT] Y10 VO, AVTIKAPOTTPIGEL EvancHncieg OT®G TO
eowvopevo tov Midkep. T va AdPer vadyn pe akpifeia to eowvopevo Miller oty
YOPNTIKOTNTO €600V Kol 6TV Kabvotépnon kodlmdinv, ywpilel v yopnTIKOTNTO TOL
oonyet n moAn og dvo pépn — ta C1 kon C2.

Ta amoteAéopato TG TOPOVGOS OUTAMUATIKNAG OElyvouV TG 1 OVIWKOTAGTAGT TOL
povtélov kabvotépnong NLDM pe to CCS otov OpenTimer emttvyydver 1.02% kotd péco
opo kot peypt 1.7% 1o péyroto, akpipéotepn eKTipnomn e KoBuoTEPNONG TOV LOVOTOTIOV
TOV KUKADUOTOG GUYKPITIKG LE TO OITOTEAEGLLATO TTOV VITOAOYICTNKOV YPTCULOTOUDVTOG MG
onueio avagopdg Ty avdivon pécw tov gpyaieiov PrimeTime tng Synopsys.

A&Earg Kherond:
Ytotikn Avaivon Xpoviopod, Movtéha Kabvotépnong, CCS, OpenTimer

vii

Abstract

Timing simulation is one the most popular verification procedures of a design. There are
many methods to put a circuit under testing, one of them is Static Timing Analysis (STA).
This method not only is one of the well-known techniques, but also provides the ability to
speed up the simulation by designating the simulation path, making that way possible to
avoid simulation of the whole circuit. The first open-source STA tool called OpenTimer,
was developed only recently. OpenTimer is a state-of-the-art timer, using the Non-Linear
Delay Model (NLDM) to carry through with timing simulation.

In this thesis, the goal is to achieve better results, in the terms of accuracy, by integrating a
more accurate timing model, Composite Current Course (CCS). This model consists of two
aliquot model-parts; one is a driver model and the other is a receiver model. The driver one
is characterized by capturing current waveform flowing into the load capacitor of the cell. It
also has sensitivity to input transition time, output load and side input states. The receiver
model is quite similar to the NLDM one, with the difference of adding additional
granularity to reflect sensitivities such as miller capacitance. To accurately reveal the miller
effect on input capacitance and net-delay, it is divided into two parts - C1 and C2.

The results of this thesis exhibit that the integration of CCS delay model into OpenTimer

contributes to 1.02% on average and up to 1.7% accuracy enhancement, concerning the
evaluation of the circuit’s paths delays.

Keywords:
Static Timing Analysis, Delay Models, CCS, OpenTimer

viii

Chapter 1
Introduction

1.1 Motivation

Timing simulation is one of the most commonly used methods in the industry in order to
validate a circuit under evaluation. Static Timing Analysis (STA) comes to play a vital role
in this time-consuming procedure, by using simplified timing models and by mostly
ignoring logical interaction in circuits but yet, maintaining the accuracy and speedup in
high levels. The need of higher accuracy, especially in sub-20nm technology nodes is rising
exponentially, thus new models or even methods are necessary to be found. The
opportunity to study graphs, build a parser and have a first touch with Static Timing
Analysis was already from the beginning an inevitable offer. Furthermore, what could be
better than the existence of a highly appreciated open-source timing tool, which allows
experiment on any level someone wants and why not integrate their work, if it does worth.
OpenTimer, this state-of-the-art tool, apart from the above, provides the opportunity to get
used to employing advanced coding skills, as each new version utilizes many new features
of C++.

1.2 Thesis Contribution

As for this thesis, its purpose was to study and attempt adding something extra into this
timing tool, in the matter of STA. This addition refers to accuracy. OpenTimer already
utilizes an accurate enough timing model named Non Linear Delay Model (NLDM). There
is analysis on the model in a later chapter, as also for the timing model which has been
chosen to replace it. This model is Composite Current Source (CCS) and it is going to be
explained why it was chosen and what it offers. Another ambition is to encourage anyone
who wants to experiment with OpenTimer and STA generally, regardless of any results.

1.3 Outline

Starting with Chapter 2, an adumbration of Static Timing analysis will take place, giving a
general idea of what it is and why should be used. A description of how standard cells are
shaped and how delay propagation is performed will be given, along with some STA tools.
Moving on, a further analysis of the mentioned timing models will take place at Chapter 3.
On Chapter 4, an introduction to OpenTimer will be given, depicting its structure and a part
of its design flow. There will be also a representation of the NLDM timing model and its
data structures in the tool. Finally, the 5th Chapter concerns the integration of CCS timing
model into OpenTimer, describing how the corresponding data structures are formed and
providing a sample of the timing engine routines along with our findings and results, in
Chapter 6.

Chapter 2
Static Timing Analysis

2.1 What is Static Timing Analysis?

STA is one of the most commonly used techniques to validate the timing of a digital
design, and for the purpose of this thesis of a Very-Large Scale Integration circuit (VLSI).
Another timing verification method is the timing simulation which can not only verify the
timing, but also the functionality of the design. With the term timing analysis, one can be
referred to either of these methods. Thus, the use of the term alludes to timing issues of the
design.

The STA is static, meaning that the analysis of the design does not depend upon the data
values being applied at the input pins, while it is carried out statically. On the other hand,
simulation-based timing analysis perform a loop, where a stimulus is applied on input
signals and then the outcoming behavior is observed and verified, and finally time proceeds
to the next step with new input stimulus and the procedure starts over.

The purpose of static timing analysis is to examine if the given design along with a set of
input clock definitions and the definition of the external environment can operate at the
rated speed. This validation measures how safely the design can operate at the specified
frequencies of the clock without any timing violations. The basic functionality of static
timing analysis is shown in figure 2.1. The design under analysis is called DUA. There are
many timing checks, two of them are setup and hold checks. A setup check ensures that a
flip-flop is provided with the data needed within the given clock period. A hold check
ensures that a flip-flop captures the intended data correctly; meaning that the data is held
for at least a minimum time so that there is no unexpected pass-through of data through a
flip-flop. Thus, these checks are performed in order to ensure that the proper data is ready
and available for capture and latched in for the new state.

Figure 2.1: Static Timing Analysis

These required timing checks are performed for all possible paths and scenarios of the
design, thus the entire design has to be analyzed. Having considered all these, it is easily
understood that STA is a complete and exhaustive method for timing verification of a
design.

The DUA is typically specified using a hardware description language such as VHDL or
Verilog HDL. The external environment, including the clock definitions, is specified using
SDC or an equivalent format. SDC is a timing constraint specification language. The timing
reports are in ASCII form, typically with multiple columns, with each column showing one
attribute of the path delay.

Given the opportunity, here is provided the first contact with STA for this thesis, which
came from TAU 2016 Contest [1].

Figure 2.2: Generic circuit (left) and delay model representation of a circuit element (right).

Timing analysis computes the amount of time signals propagate in a circuit from its
primary inputs (PIs) to its primary outputs (POs) through various circuit elements and
interconnect. Signals at the output(s) of an element will be available via its inputs at some
later time. This indicates a delay during signal propagation at each element. Furthermore,
assume that signal transitions are characterized by their input slew and output slew, which
iIs defined as the amount of time required for a signal too transition from hi-to-low and vice
versa. For instance, as shown in Figure 2.2 (right), at this circuit element the delay from
input A to output Y is labeled by da-v, the input slew at A by sia, and the output slew at Y
by sov. Here, both the delay and the output slew are functions of input slew.

2.2 Why Static Timing Analysis?

As already said static timing analysis is a complete and exhaustive method of timing
verification and all timing checks of a design. Simulation, which was previously introduced
as an alternate analysis method, can only validate the portions of the design which get
exercised by stimulus. Verification through timing simulation can be only as exhaustive as
the test vectors used. Simulation and verification of all timing conditions of a design with
10-100 million gates is literally slow and the timing cannot be verified completely. Thus,
exhaustive verification through timing simulation is very difficult and rare to happen.

On the other hand, static timing analysis as already said provides a quicker and simpler way
of validating and analyzing all the possible timing paths in a design for any violations.
Given the complexity of present day Application-Specific Integrated Circuit (ASICs),
which may contain 10 to 100 million gates, the static timing analysis has become a
necessity to exhaustively verify the timing of a design.

Crosstalk and Noise

Unfortunately, there is always an obstacle which needs to be overpassed; and one can be
noise. Noise can limit the functionality and the performance of a design. It can occur due to
crosstalk with other signals or due to noise on primary inputs or the power supply.
Functional failures and frequency of operation limitation can occur due to noise. Thus, a
design implementation has to be verified to be robust, meaning that it can withstand the
noise without affecting the rated performance of the design. Verification based upon logic
simulation cannot handle the effects of crosstalk, noise and on-chip variations.

2.3 Standard Cells and Propagation Delay

2.3.1 Standard Cells

In a chip most of the complex functionality is usually designed utilizing basic building
blocks, that implement simple logic functions such as and, or, not, nand, nor, and-or-invert,
or-and-invert and flip-flop. These basic building blocks are pre-designed and referred to as
standard cells [2]. These standard cells have an already pre-characterized functionality and
timing which are available to the designer. Using the standard cells as the main building
blocks, the designer then can implement the required functionality.

All digital CMOS cells are designed in such way that no current can be drawn from power
supply (except for leakage) when the inputs are in a stable logic state. Therefore, the main
reason of power dispersal is related to the activity in the design and is prompted by the
charging and discharging of the inputs of CMOS cells in the design.

As for CMOS cells, logic-1 and logic-0 are considered with the following way; two values
VIHmIn and VILmax define the limits of the cell. Meaning that, any voltage value which
surpasses VIHmin is considered as logic-1 and any voltage value below VILmax is
considered as logic-0 respectively (Figure 2.3). Representative values for a CMOS 0.13um
inverter cell with 1.2V Vdd supply are 0.465V for VILmax and 0.625V for VIHmin. The
VIHmin and VILmax values are derived from the DC transfer characteristics of the cell.

vdd

Logic-1 $
——————————— VIHmin
___________ VILmax
Logic-0 $ Vs

Figure 2.3: CMOS logic levels.

2.3.2 Propagation Delay

Considering a CMOS inverter cell as previously referred and its input and output
waveforms, propagation delay of the cell is defined by using some measurement points on
the switching waveforms. In order to define these points, the following four variables are
used:

Threshold point of an input falling edge:
input_threshold_pct_fall : 50.0;

Threshold point of an input rising edge:
input_threshold_pct_rise : 50.0;

Threshold point of an output falling edge:
output_threshold_pct_fall : 50.0;

Threshold point of an output rising edge:
output_threshold_pct_rise : 50.0;

Figure 2.4: CMOS output waveforms.

These variables belong to a description command set of a cell library. When someone refers
to these threshold specifications, they actually refer to the terms of percentage of Vdd, or
the power supply. Usually, for most cell libraries, 50% threshold is used for delay
measurement.

Rising edge is the transition from logic-0 to logic-1 and falling edge is the transition from
logic-1 to logic-0 respectively.

Consider the example inverter cell and the waveforms at its pins shown in Figure 2.5. The
propagation delays are represented as:

i. Output fall delay (Tf)
ii. Output rise delay (Tr)

Generally, these two values are different. Figure 2.5 illustrates how these two propagation
delays are measured.

Figure 2.5: Propagation delays.

Ideally, propagation delay would simply be the delay between the two edges. This could
happen only if we had ideal waveforms. A situation like this is shown if figure 2.6.

A

Figure 2.6: Propagation delay using ideal waveforms.

2.4 Static Timing Analysis Tools

This section of the chapter presents some of the well-known and commonly used STA
tools. Two of them, that are going to be discussed, are Synopsys PrimeTime and Cadence
Tempus. The tool which this thesis employs is OpenTimer, but it is going to be presented
on another chapter.

2.4.1 PrimeTime

Synopsys PrimeTime is one of the famous tools and probably one of the most accurate. The
simple version can perform core static timing analysis and multi-scenario analysis. Adding
some extra versions like PrimeTime Sl or PrimeTime PX one can carry out crosstalk delay
and signal integrity analysis or even dynamic power analysis respectively and many other
analyses (see Figure 2.7).

Some of its primary benefits are that provides accurate results and minimizes over-design;
also the high capacity approach reduces hardware costs, the integrated design environment
improves productivity and many more.

PrimeTime STA solution as Synopsys report on their datasheet, “provides designers with
extensive timing analysis checks, on-chip variation analysis techniques, golden delay
calculation, advanced modeling, unmatched productivity and ease-of-use” [3] and a user-
friendly GUI.

PrimeTime’s basic flow is the following:

Set library path (search and link path)

Read the design (Verilog)

Link library and the design

Add design constraints (Rise/Fall time, gate delay)

Add constant value to input port (for timing simulation)
Report (constraints and timing)

oukrwdE

10

Figure 2.7: Galaxy Signoff Solutions.

2.4.2 Tempus

Cadence Tempus Timing Signoff Solution is also a well-known and accurate tool. It
distributes silicon-accurate timing signoff and signal integrity analysis which ensures
operational chips after tapeout. With the timing signoff environment combined with the
implementation environment, the Tempus solution greatly decreases the time to design
closure and improves timing convergence throughout the design flow [4].

The industry uses the ILMs (Interface Logic Models) [5] and with Tempus they provide a
novel way of automatically breaking the design into semi-autonomous cones of logic each
of which could be run on different threads (MTTA — multi-threaded timing analysis) and
across multiple machines (DSTA — distributed static timing analysis). As part of this,
methods for inter-client communications have been worked out which enabled the tool to
pass vital information such as timing windows between associated cones of logic.

11

Figure 2.8: Interface Logic Model (ILM) concept.

Tempus speed is quite amazing and also allows someone to effectively run blocks of up to
40 million cells in a single client, distributing that it can handle huge designs. Furthermore,
once Tempus could automatically identify cones of logic which were dependent upon each
other for accurate timing analysis, it was also realized that the inverse was also true.
Tempus can recognize which blocks can safely be ignored for any selected block that is to
be timed; meaning that Tempus can automatically carve out just enough logic around a
selected block to ensure an accurate analysis without having to time the entire netlist.

An example flow is firstly the building of the blocks, then the pass back to the top-level for
assembly and routing. Once context is set, blocks could then be passed back down for final
timing optimization. In conclusion, one of its primary benefits is that the same timing
scripts, constraints and use-model for flat timing analysis can be used for top-level and
block-level optimizations and scope-based analysis can be run in parallel either by multiple
designers or through Tempus distributed processing.

Figure 2.9: Timing scope can be used for individual blocks or top-level distributed STA.

12

Chapter 3
Timing Models

3.1 Gate and Interconnect Modeling

3.1.1 Interconnect Modeling

The word interconnect is used in order to describe wires used in a design, which basic
instance is a net. Nets usually have an input pin which is called port and at least one output
pin, called taps. Parasitic RC trees only contain grounded capacitors and floating resistors.

Delay. Electrical simulation can be an accurate tool for computation of port-to-tap delays.
Nonetheless, EImore delay model [6] will be assumed because of its simplicity and speed,
where the delay is approximated by the symmetric of the value of the first moment of the
impulse response. A summary of the topological method which is used in order to compute
the delay of RC tree networks is provided in [7].

Consider any two nodes e and k in an RC network. Let Cy be the lumped capacitance at
node k, and let Ry, be the total resistance of the common path intermediate to the paths
from Port to e and Port to k. For instance, the resistance between nodes 1 and T, (R;_ 1), In
Figure 2.1, is Ra, as that is the only common resistor among the paths Z to 1 and Z to T,.
The Elmore delay at node e is the following:

de = Yen Rk — eCk @
where N is the set of all nodes in the RC network. For the example net illustrated in Figure
2.1 (right), the delay at node T, (tap) is (visiting in order nodes 1, Ty, 3, 2, Ty):
dr2 = RaC1 + RaC3 + RaCsa + (Ra + Rg)C2+ (Ra+ R + Rg)Cs (2)
=Ra(C1+ C3+ C4) + (Ra+ Rp)C2+ (Ra+ R+ Rg)Cs
Output slew. The value of the output slew (s,) can be approximated on any given tap node

T by a two-step process. The first step is to calculate the output slew of the impulse
response on T, which was observed [6],[8] to be well-approximated by:

Sor = 28T — dT2 (3)

13

where Bris the second moment of the input response at node T and d+ is the corresponding
Elmore delay from equation 1. The second step is to calculate the slew of the response to
the input ramp by the expression given in [9]:

Sor < Vsi2 + §20T 4)

where s; is the input slew.

Figure 3.1: Modified RC network for output slew calculation.

The efficient path-tracing algorithm for moment computation suggested in [10], which is a
generalization of the algorithm proposed in [6], can be the expedient to compute the value
of Br. To calculate Br, two steps are required; the first step is to replace all capacitance
values Cy in the RC network by Cydk, where dy is the EImore delay from Equation (1) (see
Figure 3.1). The second step, is to follow the identical procedure as before in order to find

Pr:
Br = Yken Rio1Crdk)
Following the example in Figure 3.1, at node T,

Br2 = Ra(C1d1 + C3d3z + C4d4) + (Ra + Rg)C2d2 + (Ra+ Re + Rg)Csds (6)

3.1.2 Circuit Element Modeling

As for delay and output slew calculations between two pins, the information will be given
as two-dimensional tables in the .lib file. Extrapolation or interpolation will be essential in
order to find the equivalent timing information.

14

If the table contains a single value, i.e., a 1x1 table (Figure 3.2 left), no interpolation is
needed. In other word, regardless of input x and y, the corresponding value is constant. If
the table is one-dimensional, i.e., a 1xn table or a mx1 table (Figure 3.2 center), then the
value will depend only on the non-scalar dimension. For instance, consider the 1x4 table in
Figure 4. The methodology is the following. If y <y;, then the corresponding output z value
will be the linear extrapolation between z; and z,. If y, <y <ys, then z will be the linear
interpolation between z, and z3. If y4 <y, then z will be the linear extrapolation between z3
and z,.

z1-(y1-y) ;z:ill if y <y (7)
z1 if y=y1 (8)

z1+ (y-y1) ;z:ill if yi<y<ye 9)
z2 ify=y (10)

z2+ (V- y2) ;z:izz if ya<y<ys (11)
z3 if y=y3 (12)

z3+ (y - y3) ;::i‘z if y3<y <y (13)
zs if y=ys (14)

Za+ (y - ya) ii:z if y>y4 (15)

15

Figure 3.2: Hlustration of different tables: scalar, one-dimensional and two-dimensional.

In case that the table is two-dimensional, perform linear interpolation on the x values first,
and then perform interpolation on y values. For example again, take into account the 3x4
table in Figure 4. If x, < x <xzand y, <y <Yyjz, then (i) determine zs.s; by linear interpolation
on zy; and z3, (ii) determine Zycong Dy linear interpolation on zp3 and z33, and then (iii)
determine z by linear interpolation using Zsirst aNd Zsecond-

Combinational elements. Given any combinational cell, e.g., OR gate, let the delay d and
output slew s, for a input/output pin-pair (see Figure 3.3) be calculated by NLDM model
interpolation/extrapolation. These delay and output slew are referenced by the input slew
(x) and driving load (y) and are stored in the .lib. C._ denotes the equivalent downstream
capacitance seen from the output pin of the cell. A few intellectually complex models have
been suggested for computing C.. For simplicity, the application of a simpler model is
adopted in terms of this thesis. Cy is assumed to be the sum of all the capacitances in the
parasitic RC trees, containing the cell pin capacitances at the taps of the interconnect
network.

Figure 3.3: Combinational OR gate (left), its timing model (center) and capacitances (right).

16

Sequential elements. Sequential circuits consist of combinational blocks interleaved by
registers, most frequently implemented with flip-flops (FFs). Usually, sequential circuits
are composed of several stages, where a register captures data from the outputs of a
combinational block from a previous stage, and injects it into the inputs of the
combinational block in the next stage. Clock signals generated by one or multiple clock
sources are used to achieve register operation synchronization. Clock signals that reach
distinct flip-flops, e.g., sinks in the clock tree, are delayed from the clock source by a clock
latency .

A (D) flip-flop is a storage element that captures a given logic value at its input data pin D,
when a given clock edge is detected at its clock pin CK, and subsequently presents the
captured value and its complement at the output pins Q and @. The flip-flop also enables
asynchronous preset (set) and clear (reset) of the output pins through the respective S and R
input pins.

Figure 3.4: Generic D flip-flop and its timing model (left), and two FFs in series and their timing models
(right).

Setup and hold constraints. The logic value of the input data pin is required to be stable
for a specific period of time before the capturing clock edge in order to achieve proper
operation of a flip-flop. This period of time is designated by the setup time tsewyp.
Furthermore, the logic value of the input data pin must also be stable for a specific period
of time after the capturing clock edge. This period of time is designated by the hold time
thoid. The flip-flop timing models are depicted in Figure 3.4 (left). The test time are given in
the .lib as two-dimensional tables, and are referenced by the clock-side input slew (x) and
the data-side input slew (y).

Signal propagation. Figure 3.4 (right) illustrates how the standard signal transition
between two flip-flops is performed. Supposing that the clock edge is generated at the
source at time 0, it will reach the injecting (launching) flip-flop FF; at time [;, making the
data available at the input of the combinational block dck—.q time late. Assuming that the
propagation delay in the combinational block is d¢omb, then the data will be available at the
input of the capturing flip-flop FF; at time |; + dck—.q + deompb. Let the clock period to be a

17

constant T. Then the next clock edge will reach FF, at time T + l,. For correct operation, the
data have to be available at the input pin D of FF; tew, time before the next clock edge. As
a consequence, at the data input pin D of FF, applies the following:

atp® = "+ dek-o + degimy (16)
ratsetup :ratll)ate = T+ lsarly - tsetup (17)

A similar state can be derived for ensuring that the hold time is respected. The data input
pin D of FF, must remain stable for at least tnoq time after the clock edge reaches the
corresponding CK pin. Therefore, the following applies to the data input pin D of FF;:

early — jearly early
atp 4 +dek-o t dcomb (18)
Fatpoa = raty™? = 119 + ty,, (19)

Note that when computing the required arrival times in equations (17) and (19) the value |,
is exact to Figure 3.4. In the general case, |, should be replaced with atc. The previous
arrival times and required arrival times induce setup and hold slacks, which can be
computed from the following equations

slackearly = atearly — rgtearly (20)

slacklate = ratlate - gtlate (21)

For the clock pins of the flip-flop, the required arrival time is derived from the test slack.
For early mode, the slack at the clock pin is the setup or late test slack, and for late mode,
the slack at the clock pin is the hold or early test slack. From the corresponding test slack
and arrival time, the clock required arrival time can be derived, and suitably propagated.

3.2 Non-Linear Delay Model (NLDM)

Table models are included by most of the cell libraries in order to specify the delays and
timing checks for various timing arcs of the cell. Some newer timing libraries for
nanometer technologies also provide current source based advanced timing models (such as
CCS, ECSM, etc.). The table models are referred to as NLDM and are used for delay,
output slew, or other timing checks. The table models capture the delay through the cell for
various combinations of input transition at the cell input pin and total output capacitance at
the cell output.

An NLDM model for delay is presented in a two-dimensional form, with the two
independent variables being the input transition time and the output load capacitance, and
the entries in the table denoting the delay. An example of such a table for a typical inverter
cell is following:

18

pin (OUT) {
max_trinsition : 1.0;
timing() {
related_pin : "INP1";
timing_sense : negative_unate;
cell_rise(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */

values (/* 0.16 0.35 1.43 */\
[*0.1%*/ "0.0513, 0.1537, 0.5280",\
[*0.3*/ "0.1018, 0.2327, 0.6476",\
[*0.7*/ "0.1334, 0.2973, 0.7252");

}
cell_fall(delay_template_3x3) {

index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */

values (I* 0.16 0.35 1.43 */\
/*0.1* "0.0617, 0.1537, 0.5280",\
[*0.3* "0.0918, 0.2027, 0.5676",\
[*0.7* "0.1034, 0.2273, 0.6452");

The delays of the output pin OUT are described in the above example. This portion of the
cell description contains the rising and falling delay models for the timing arc from pin
INP1 to pin OUT, in addition to the max_transition allowed time at pin OUT. The labels
cell_rise and cell_fall describe the separate models for the rise and fall delays (for the
output pin) respectively. The type of indices and the order of table lookup indices are
described in the lookup table (LUT) template delay template 3x3.

lu_table_template(delay_template 3x3) {
variable 1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 (1000, 1001, 1002");

19

index_2 ("1000, 1001, 1002");

} /* The input transition and the output capacitance can be in either order, that is,
variable_1 can be the output capacitance. However, these designations are usually
consistent across all templates in a library. */

This LUT template specifies that the first variable in the table is the input transition time
and the second variable is the output capacitance. The table values are specified like a
nested loop with the first index (index_1) being the outer (or least varying) variable and the
second index (index_2) being the inner (or most varying) variable and so on. There are
three entries for each variable and thus it corresponds to a 3-by-3 table. In most cases, the
entries for the table are also formatted like a table and the first index (index_1) can then be
treated as a row index and the second index (index_2) becomes equivalent to the column
index. The index values (for example 1000) are dummy placeholders which are overridden
by the actual index values in the cell fall and cell _rise delay tables. An alternate way of
specifying the index values is to specify the index values in the template definition and to
not specify them in the cell_rise and cell_fall tables. Such a template would look like this:

lu_table_template(delay template 3x3) {
variable_1 : input_net_transition;
variable_2 : total_output_net_capacitance;
index_1 ("0.1, 0.3,0.7");
index_2("0.16, 0.35, 1.43");

¥

Based upon the delay tables of this LUT template, an input fall transition time of 0.3ns and
an output load of 0.16pf will correspond to the rise delay of the inverter of 0.1018ns. Since
a falling transition at the input results in the inverter output rise, the table lookup for the
rise delay involves a falling transition at the inverter input.

This form of representing delays in a table template as a function of two variables,
transition time and capacitance, is called the NLDM, since non-linear variations of delay
with input transition time and load capacitance are expressed in such tables.

The table models can also be 3-dimensional — an example is a flip-flop with
counterbalancing outputs, Q and QN.

The NLDM models are used not only for the delay but also for the transition time at the
output of a cell which is characterized by the input transition time and the output load.
Therefore, there are distinct two-dimensional tables for computing the output rise and fall
transition times of a cell.

20

pin (OUT) {
max_transition : 1.0;
timing() {
related_pin : "INP";
timing_sense : negative_unate;
rise_transition(delay_template_3x3) {
index_1 ("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */

values (/* 0.16 0.35 1.43 */\
/*0.1* "0.0417, 0.1337, 0.4680", \
[*0.3* "0.0718, 0.1827, 0.5676",\
[*0.7* "0.1034, 0.2173, 0.6452");

}
fall_transition(delay_template_3x3) {

index_1("0.1, 0.3, 0.7"); /* Input transition */
index_2 ("0.16, 0.35, 1.43"); /* Output capacitance */

values (/* 0.16 0.35 1.43 */\
[*0.1*/ "0.0817, 0.1937, 0.7280",\
[*0.3* "0.1018, 0.2327, 0.7676",\
[*0.7* "0.1334, 0.2973, 0.8452");

}

There are two such tables for transition time: rise_transition and fall_transition. The
transition times are measured based on the specific slew thresholds, usually 10%-90% of
the power supply.

As depicted above, an inverter cell with an NLDM model has the following tables:

Rise delay
Fall delay
Rise transition
Fall transition

Assuming a cell with these characteristics and given the input time and output capacitance,
as illustrated in Figure 3.5, the rise delay is acquired from the cell_rise table for 15ps input
transition time (falling) and 10fF load, and the fall delay is acquired from the cell_fall table
for 20ps input transition time (rising) and 10fF load.

21

/L

20ps 15ps LofF

1

Figure 3.5: Transition time and capacitance for computing cell delays.

Where is the information which specifies that the cell is inverting? This information is
specified as part of the timing_sense field of the timing arc. In some cases, this field is not
specified but is expected to be derived from the pin function.

For the given example inverter cell, the timing arc is negative_unate which insinuates that
the output pin transition direction is opposite (negative) of the input pin transition direction.
Therefore, the cell_rise table lookup corresponds to the falling transition time at the input

pin.

3.2.1 Example of Non-Linear Delay Model Lookup

In this section an illustration of the lookup of the table models takes place through an
example. If the input transition time and the output capacitance correspond to a table entry,
the table lookup is trivial since the timing value matches directly to the value in the table.
The example below corresponds to a general case where the lookup does not match to any
of the entries available in the table. In such cases, two-dimensional interpolation is utilized
to supply the resulting timing value. For the table interpolation, the two nearest table
indices are chosen. Consider the table lookup for fall transition (example table specified
above) for the input transition time of 0.15ns and an output capacitance of 1.16pF. The
corresponding section of the fall transition table relevant for two-dimensional interpolation
is reproduced below:

fall_transition(delay_template_3x3) {
index_1("0.1,0.3...");
index_2 (... 0.35, 1.43");
values (\
"...0.1937,0.7280", \
" ..0.2327,0.7676")

¥

In the formulation below, the two intex_1 values are denoted as x; and X,; the two index_2
values are denoted as y; and y, and the corresponding table values are denoted as Tii, Tio,
To1 and T, respectively.

22

If the table lookup is required for (o, Yo), the lookup value Ty is obtained by interpolation
and is given by:

Too=X20™ Y20 * T11 + Xo0 * Yo1 * T12 +
Xo1™* Y20 ™ To1+ Xo1 * Yo1 * T2z

Where:

Xo1 = (Xo— X1) / (X2—X1)
Xog = (Xz — Xo) / (Xz — X1)
Yor = (Yo— Y1) / (Y2— Y1)
Y20 = (Y2—Yo) / (Y2~ Y1)

Substituting 0.15 for index_1 and 1.16 for index_2 results in the fall_transition value of:

Too=0.75*0.25*0.1937 + 0.75* 0.75* 0.7280 +
0.25*0.25*0.2327 + 0.25 * 0.72 * 0.7676 = 0.6043

Note that the equations above are valid for interpolation as well as extrapolation — that is
when the indices (Xo, Yo) lie outside the characterized range of indices. As an example, for
the table lookup with 0.05 for index_1 and 1.7 for index_2, the fall transition value is
obtained as:

Too = 1.25 * (-0.25) * 0.1937 + 1.25 * 1.25 * 0.7280 +
(-0.25) * (-0.25) * 0.2327 + (-0.25) * 1.25 * 0.7676
=0.8516

3.3 Composite Current Source Timing Model

3.3.1 Introduction

Delay calculation is performed for one stage at a time, where a stage consists of the driving
cell arc, the output RC network and the capacitance of the network load pins. The goal is to
compute the response at the driver output and at the network load pins, given an input slew
or waveform at the driver input, as shown in Figure 3.6. The computed responses are then
used to determine the cell delay of the driver and the input slews at the load pins.

23

Figure 3.6: Stage Delay Calculation.

To perform stage delay calculation efficiently, three models are created:

e Thedriving cell arc is replaced by a driver model

e The interconnect RC network is replaced by a reduced order model (such as Block
Arnoldi)

e The load pins are replaced by a receiver model

These models are depicted in Figure 3.7.

Figure 3.7: Stage represented by driver model, ROM and receiver models.

24

Note that the receiver model must represent the complex input capacitance of a cell input
pin. The transistors do not present a constant input capacitance to a driver. The equivalent
capacitive load (from | = C * dv/dt) can vary depending on the rise/fall direction of the
transition, the input slew at the pin, the output load, and the state of the cell. In addition,
this capacitance can change during the transition. The receiver model must be able to
represent all these effects.

3.3.2 Previous Approaches

Thevenin and Norton Models

Previous driver models used either a time-dependent voltage source in a series with a
resistor (Thevenin model) or a time-dependent current source in parallel with a resistor
(Norton model). The resistor in those models is typically referred to as the “drive resistor”
and is used to express the timing arc’s sensitivity to output capacitance, whereas the
waveform shape itself is primarily expressed by the voltage or current source.

Refinements to these models to account for complex aspects of transistor behavior have
typically dealt with making the time-dependent nature of the voltage/current source more
complex. Other approaches have dealt with multiple drive resistances and arbitrary
dynamic impedances.

Jr:— (a)
_|
T T T T T
| j !
: illr Vin Rd i Vout
- —¢8 ®)
: (=12 i znn';*l
i T

Figure 3.8: : The Rd << Znet problem. (a) shows a transistor circuit driving a detailed parasitic network at
node ‘B’. (b) The network presents an impedance Znet to the Thevenin driver model. When Rd << Znet, Vout
approaches Vin and the driver model can lose accuracy.

25

Unfortunately, a major limitation occurs when conventional models are used to drive an
interconnect network with an impedance Zner much greater than the drive resistance R.
Consider the Thevenin model driving a detailed parasitic network as shown in Figure 3.8.
Note that the circuit forms a voltage divider with

Vout _ Znet
Vin Rd+Znet

which approaches unity when Ry << Zn.This points out that a driver model based upon a
drive resistance (or arbitrary impedance) that is set independent of the network load will be
ineffective in this regime.

Since the transistor behavior deviates from the Thevenin voltage source nearest the power
rails, this situation is usually worst when the network delay is greater than the output
transition time.

Previous Receiver Models

The traditional receiver model is a single value of capacitance for an input pin. More
recently, separate values have been allowed for rising vs. falling transitions, and a min/max
range has been introduced that can bind the complex capacitance effects, but which leads to
pessimism during analysis.

Using a single capacitance value for the entire transition results in inaccuracy for single-
stage cells where the Miller effect is significant, affecting the calculation of both cell delay
and slew. Figure 3.9 shows that the voltage waveform for the input of a single-stage cell,
such as an inverter, cannot be approximated well by any single capacitance value.

26

Miller Effect 1-Cap Model. Sinp=10p

Viout2)

£.2 1 1 1
] He-11 Te-10 1.5e-10 2810
Time
inv_1x load —— 23 lpad —--—- Mfload ------—

Figure 3.9: A single capacitance value is insufficient when Miller effect is large.

3.3.3 The CCS Timing Solution

CCS Timing consists of a driver model and a receiver model. The driver model describes
how a timing arc propagates a transition from input to output, and how it can drive arbitrary
RC networks. The receiver model describes the capacitance that an input pin presents to
driving cells.

The CCS Timing driver model is a time and voltage dependent current source with an
essentially infinite drive-resistance, which provides high accuracy even when Ry is much
less than Z,.. The model achieves this accuracy by mapping the arbitrary transistor
behavior for lumped loads to the behavior for an arbitrary detailed parasitic network,
instead of modeling the transistor behavior. The following figure illustrates how the
mapping algorithm basically works.

27

Figure 3.10: Output current and voltage responses for a timing arc. Transition-level simulation results are
shown for different values of load capacitance (1fF, 10fF, 100fF, 1pF, 10pF). () Inverted current responses.
(b) Voltage responses.

Consider a set of pre-characterization measurements of the output current as a function of
time for a specific input slew and a set of output capacitances (Figure 3.10). When these
currents are applied to their respective capacitances, the voltage waveforms can be
reconstructed. If an output capacitance is presented, which was not pre-characterized with,
then interpolation can be performed between the currents to predict the resulting waveform.
Similarly, if an input slew is presented, that was not used for pre-characterizing,
interpolation can also take place.

Now consider driving a detailed parasitic network. The output currents from pre-
characterization can be applied to the network at a given timestep. There will be a unique

28

current that will elicit the same voltage on both a lumped capacitance and the network at
the given timestep. This current is the chosen value for the given timestep, and this
procedure is reapplied at every subsequent timestep. In other words, there is nothing more
than application of lou(Vour)(t).

CCS Timing delay calculation uses advanced interpolation technology to determine a
current waveform when the input slew and/or output load values do not match those used
during cell characterization. Additionally, interpolation is used for intermediate values of
Vg and temperature by using data from multiple libraries.

3.3.4 Characterization for CCS Timing

Characterizing a cell timing for CCS Timing is very similar to characterization for NLDM:
an input stimulus is chosen to produce a specific input slew time (Sip); a load capacitance
(Cout) Is connected to the output pin; and a circuit simulation is run in the same way as
NLDM. But instead of measuring voltage thresholds at the output pin, current is measured
through the load capacitor and into the input pin. The current through C,, is used for the
driver model, and the current into the input pin is used to determine the receiver model.

Figure 3.11: CCS Timing characterization measurements.

These characterization experiments are repeated for a table of different Sip, and Coy
combinations. The current through Cg is saved for every circuit simulation timestep and
then reduced to a much smaller set of current and time (i, t) points. The points are chosen
such that Vou(t) can be accurately reproduced for every timestep during the transition.
Figure 3.12 provides an example of the complete i(t) waveform and a reduced set of points.

29

i{t)

0.08 -
007
?,
0.06 | \\
0.05 -
4 e
|ll "‘
g oo4 - -
LY

‘ AY
0.03
\
0.02 . \
0.01 bt

0.00

ns

Figure 3.12: Current waveform from circuit simulation, and reduced current points.

The current and voltage at the input pin are saved and then used to determine C1 and C2
values such that gate-level delay calculation can closely match times to the delay threshold
and to the second slew threshold at the input pin.

An additional piece of information, input reference time, is necessary in order to calculate

cell delays. The reference time is the simulation time at which the waveform at the input
pin crosses the rising or falling delay threshold (often this is 50% of Vgg).

30

Chapter 4
OpenTimer: A High-Performance Timing
Analysis Tool

4.1 Introduction

The lack of accurate and fast algorithms for high-performance timing analysis tool with
incremental capability has been recently pointed out as a major weakness of existing timing
optimization flows [11]. In deep submicron era, timing-driven operations are imperative for
the success of optimization flows. Optimization transforms change the design and therefore
have the potential to significantly affect timing information. The timer must reflect such
changes and update timing information incrementally and accurately in order to ensure
slack integrity as well as reasonable turnaround time and performance. However, such
process requires extremely high complexity especially when path-based analysis is
configured. A high-quality incremental timer capable of path-based analysis is definitely
advantageous in speeding up the timing closure.

Figure 4.1: Performance improvement of incremental timing to full timing on one benchmark from.

The significance of incremental timing is demonstrated in Figure 4.1. It is observed that the
runtime improvement keeps growing as the number of optimization transforms increases.
One obvious reason is that once the critical paths in a design have been reported, the
optimization tool would optimize the logic (e.g., gate sizing, buffer insertion) so as to
overcome the timing violations. This subtle change can affect up to the majority of a
circuit, whereas in reality, depending on the trace of critical paths, the timing update may
only involve a small portion of the circuit. Since an optimization tool can perform millions
of logic transformations, it is important that the timing profile is kept up-to-date in an

31

incremental fashion. Otherwise, optimization tools cannot support fast turnaround for
timing-specific improvement, which dramatically degrades the productivity.

Figure 4.2: Program flow of OpenTimer.

Besides being incremental, one important feature of a practical timer is the capability of
common path pessimism removal (CPPR). CPPR is a path-specific timing update that
intends to remove redundant pessimism incurred by common segments between data paths
and clock paths. Unwanted pessimism might force designers and optimization tools to
waste an unnecessary yet significant amount of efforts on fixing paths that meet the
intended clock frequency. This problem becomes even more critical when design comes to
deep submicron era where data paths are shorter, clocks are faster, and clock networks are
longer to accommodate larger and complex chips. However, the real problem is the amount
of pessimism that needs to be removed is path-specific. Computational complexity and
space requirements for CPPR typically grows exponentially as the design size increases,
not to mention the challenge in conjunction with incremental timing analysis.
Consequently, an open-source high-performance timing analysis tool, OpenTimer, is
presented here and an overview of it is shown in Figure 4.2. Three key features of
OpenTimer are highlighted below:

e Parallel framework. OpenTimer applies a pipeline task scheduler as the central engine.
Critical tasks such as timing propagation and endpoint slack calculation are scheduled

into the pipeline so as to overlap their runtimes.

e Incremental capability. OpenTimer precisely and minimally captures the features that
are key to incremental timing. With lazy evaluation, one can be able to keep computation

as minimum as necessary.

e Path-based analysis. OpenTimer represents the path implicitly using efficient and
compact data structure, yielding a significant saving in both search space and search time

for CPPR.

32

4.2 Incremental Timing Analysis and CPPR

Various stages of the design flow such as logic synthesis, placement, routing, physical
synthesis, and optimization facilitate a need for incremental timing analysis. During these
stages, local operations such as gate sizing, buffer insertion, or net rerouting can modify
small fractions of the design and significantly change both local and global timing
landscape. As the example shown if Figure 4.3, a change on gate B3 has the potential to
affect up to the majority of the circuit (downstream timing). Nevertheless, depending on the
trace of critical paths, only a small portion of the timing would need to be updated. For
instance, if such a change does not affect the arrival time at 11:0, then every downstream
timing after I11:0 is unaffected.

Figure 4.3: An example of sequential circuit network.

In addition to incremental processing, the capability of CPPR is another important
component for modern timing analysis tools. Optimization transforms on the data network
have no impact on CPPR credit (or CPPR adjustment) for any given launch-capture flip-
flop (FF) pairs. Because the clock paths are not changed, any cached value for CPPR credit
can be reused. However, in reality many optimization transforms are applied to the clock
network, such as resizing a buffer or adding or deleting buffers on the clock tree in order to
meet slack or skew targets. These changes can potentially affect a large number of data
paths and slacks, and these data points must be recomputed with updated CPPR credits.
Further, in some cases, changes on the clock network may not even impact CPPR for any
data paths at all. As the example shows in Figure 4.3, the change on B3 can impact the
CPPER credit for the launch-capture FF pair FF2 and FF3, while a change on B4 does not
affect the CPPR credit for any FF pair. Therefore, the challenge of incremental CPPR is
correctly identifying what data points are affected by which changes in an incremental
manner.

33

4.3 NLDM Representation and Data Structures

In this chapter, a presentation of how OpenTimer utilizes the NLDM model, along with the
respective data structures, will take place. It will illustrate how graphs are constructed, and
analyze briefly the structure of its members.

First of all, comes the template of the LUT. It consists of two variables, variable 1
and variable_2, along with two indexes, index_1 and index_2. The valid types of the
two variables are input_net_transition and total _output_net_capacitance and each
of them can be assigned either on the first or the second variable. Index values have to
be floats considering the corresponding value of the variable. Such a table template
would be like this:

lu_table_template (a_template_3x3) {
variable_1 : input_net_transition;
variable_2 : total output _net_capacitance;
index_1 (0.1, 0.3, 0.77);
index_2 (“0.16, 0.35, 1.43”);

¥

and the LUT in OpenTimer is stored in a struct with optional enum variables and
vectors of floats indices like this:

struct LutTemplate {
std::optional<LutVar> variablel;
std::optional<LutVar> variable2;

std::vector<float> indicesl;
std::vector<float> indices2;

}

Moving on to graphs, an introduction to cells will take place. After reading the LUT
templates, the first instance the parser reads from the liberty file is a cell. Every early
and late library has an equal number of cells with each other, in order to undergo a
valid timing simulation. Cells “hold” the information referring to every pin of the gate
described. These pins are members of an std::unorderd_map.

Pins now, can be input, output, or inout. Thus, they have optional members, mostly
float, which describe the min and max capacitance and the max transition they can
supply. Furthermore, most importantly pins have a vector of timings, each of them
characterizing timing information for a certain timing arc.

This timing information is nothing more than delay and transition values concerning a
respective arc. So, a NLDM timing example should be like this:

34

timing () {
related_pin : “INP1”;

timing_sense : negative_unate;

cell_rise : (a_template_3x3) {
index_1 (0.1, 0.3, 0.77);
index_2 (“0.16, 0.35, 1.43”);
values (“0.0513, 0.1537, 0.5280”, \
“0.1018, 0.2327, 0.6476”, \
“0.1334, 0.2973, 0.7252”);

}

rise_transition (a_template_3x3) {
index_1 (0.1, 0.3, 0.77);
index_2 (“0.16, 0.35, 1.43”);
values (“0.0417, 0.1337, 0.4680”, \
“0.0718, 0.1827, 0.5676”, \
“0.1034, 0.2173, 0.6452”);

}

cell_fall (a_template_3x3) {
index_1 (“0.1, 0.3, 0.7”);
index_2 (“0.16, 0.35, 1.43”);
values (“0.0617, 0.1537, 0.5280”, \
“0.0918, 0.2027, 0.5676”, \
“0.1034, 0.2273, 0.6452”);

¥

fall_transition (a_template_3x3) {
index_1 (“0.1, 0.3, 0.7);
index_2 (“0.16, 0.35, 1.43”);
values (“0.0817, 0.1937, 0.7280”, \
“0.1018, 0.2327, 0.7676”, \
“0.1334, 0.2973, 0.8452”);

}

Similarly for setup/hold constraint. These are stored in a timing struct with the
following optional members:

35

struct Timing {
std::optional<TimingLut> cell_rise;
std::optional<TimingLut> cell_fall;
std::optional<TimingLut> rise_transition;
std::optional<TimingLut> fall_transition;
std::optional<TimingLut> rise_constraint;
std::optional<TimingLut> fall_constraint;

}

Where TimingLut being another struct, which holds the name of the LUT
template, as also the indices and values with the form of vectors of floats.

For further explanation an illustration of class hierarchy and how the timing information is
stored is given in Figure 4.4. As it can be seen, a celllib contains all cells characterized in a
liberty file, which are stored in an unordered map using as key their name.

Each cell, contains a group of pins, called cellpins, that characterize the input inner or
output pins of the cell. These pins are also stored in an unordered map.

A cellpin now, contains every timing member utilized by any timing arc which contains
this pin. Timings are stored in a vector.

Moving on, a timing includes any necessary information for the STA engine, such as rise
and fall delays, transitions and constraints. As seen in the figure, these members are
optional, meaning that a timing may or may not contain any of them. That is, a timing
characterized in the liberty file can be read without any of these members without
producing an error.

Finally, each of these timing members is a TimingLut, a LUT model containing a pointer to
the LUT template, the value of the two indexes; index1 and index2 which can either be
input net transition or total output capacitance and the table which keeps the values.
Indexes are stored in the indices, which along with the table are vector types. Of course
these are not the only members of each instance, as shown be the three dots at the end of
each one.

36

Figure 4.4: Liberty timing information storage.

It is essential to illustrate how graphs are constructed. A depiction of it is given in Figure
4.5. Graphs are constructed through a Verilog (.v) input file, starting with a gate.

A gate apart from its name includes the main parts of the graph. These are the gate’s pins
and the arcs between them. It also contains a CellView instance, where CellView is of type
std::array<const Cell*, MAX_SPLIT>, meaning it is a pointer to a Cell depending on
transition enum value (RISE/FALL).

Pins can relate to primary inputs, primary outputs or Cellpins of the corresponding cell of
the early/late CellLib. This is described by the member handle which is a variant of type

37

<Primarylnput*, PrimaryOutput*, CellpinView>, where CellpinView is a similar to the
Cell array, std::array<const Cellpin*, MAX_SPLIT>. Pins also contain two lists, one for
their input arcs and another for their output ones.

Arcs finally, apart from members, contain another handle variant. This is of type
variant<Net*, TimingView>, meaning it can either be a net arc or a cell arc. TimingView is
another array similar to CellView and CellpinView ones’, which is of type array<const
Timing*, MAX_SPLIT>. The use of it will be explained shortly.

Each timing has a correspondence with an arc, either early or late. This relation has to be
unique, meaning one arc indicates to an exact timing and vice versa. An arc can be a net
arc, or a cell arc, having difference between them in calculating the output delay and slew
respectively.

Figure 4.5: Graph construction from Verilog file.

An introduction of how graph construction and liberty information relate is shown in Figure
4.6. A Gate points to a Cell, a Pin relates to a Cellpin only if the variant has the
corresponding value. Finally, if an arc is considered as a Cell arc, then it utilizes the
relevant timing in order to perform any timing procedure, such as slew or delay
propagation, using the respective LUT instances.

38

Figure 4.6: Liberty information and graph construction correlation.

Conclusively, a peek on how STA engine is working will be given briefly. While the
circuits’ graph is traversed, in a pipelined way, any timing information of each node is
propagated through Arcs. If an arc is considered a cell arc, then timing information is used
to calculate the arrival time, arc delay and slew at pins, based on the NLDM model. On the
other hand, if this arc is a Net arc, then the EImore Delay model is used.

39

40

Chapter 5
Integration of CCS Timing Model into
OpenTimer

5.1 The Need for Better Timing Accuracy

The necessity of higher accuracy in modern industry has already been mentioned.
Efficiency and speed have been constantly rising, along with power reduction.

In this thesis the goal is to provide a state-of-the-art timing tool, OpenTimer, with an even
more accurate delay model; and this is nothing else than CCS.

5.2 CCS Timing Information and Data Structures

The idea was to keep timing and NLDM data structures intact and just extend the timing
structures with the CCS information and the corresponding timing (slew/delay and C1/C2
capacitance) calculation methods. As shown on a previous chapter CCS timing model is
described by two major parts; the driver model which replaces the input driving cell arc
and the output receiver model which replaces the output load pins.

In this section, a demonstration will be given of how the driver and receiver CCS timing
information is stored and used inside the STA engine.

Starting with the LUT templates, an introduction to a new variable takes place, meaning
there is now a variable_3, which can only have one valid value; time. Time is essential
because along with the values of the LUT, correspond to the CCS current waveforms
(which are used to calculate output slew, cell delay and C1/C2 receiver capacitances).

These time values are float values and are stored in an indices_3, which has to come along
with the third variable. Thus, the CCS LUT templates (output current templates) must
comply to the following structure:

output_curret_template (ccs_template) {
variable_1 : input_net_transition;
variable_2 : total_output_capacitance;
variable 3 : time;

41

To achieve that in OpenTimer, there has been an addition to the enum class LutVar of a
new TIME value. Therefore, struct LutTemplate now having this form:

struct_LutTemplate {
std::optional<LutVar> variablel,;
std::optional<LutVar> variable2;
std::optional<LutVar> variable3;

std::vector<float> indicesl;
std::vector<float> indices2;
std::vector<float> indices3;

Driver Model

Timing arcs, as already mentioned have a 1-1 relation with a unique timing, kept hold in a
vector of timings by the referenced pin. To support the CCS driver model, timing has to be
supplied with output current information with its reference time, indicated by the respective
transition and capacitance values.

To achieve this, the solution was found in a form of a map, actually map of maps, with the
first key being transition and points to the inner map. As for the inner map, the key is
capacitance and the value is a pointer to a struct. To be more precise, two of these maps
were added, one for rise transition and one for fall, exactly like the all the other members of
the timing struct. This is the CCS form of timing struct:

struct Timing {
std::optional<TimingLut> cell_rise;
std::optional<TimingLut> cell_fall;
std::optional<TimingLut> rise_transition;
std::optional<TimingLut> fall_transition;
std::optional<TimingLut> rise_constraint;
std::optional<TimingLut> fall_constraint;

current_map output_current_rise;
current_map output_current_fall;

}

Because of lack of space, where current_map :
std::map<float, std::map<float, OutputCurrentWaveform*>>

OutputCurrentWaveform is another struct, which contains the mentioned reference time as

a float value and a TimingLut member, where TimingLut has also an indices3 now. This is
the struct:

42

struct OutputCurrentWaveform {
float reference_time;
TimingLut output_current;

}

The corresponding information from the liberty file is member of timing related to a pin:

timing {
related_pin : “INP”;

output_current_rise () {
vector (output_current_template) {
reference_time : float;
index_1 (float);
index_2 (float);
index_3 (“float, . . ., float™);
values (‘“float, . . ., float”);

}

Notice that index1 and index2 are one dimensional and the matrix containing
the values has the size of index3. This affects the corresponding indices.

Furthermore, when the parcer reads the keyword vector, a new element inserts
to the map, containing the information of the vector.

Receiver Model

Moving on to receiver model, in order to represent the capacitance that an input pin
presents to driving cells, four TimingLut objects where added considering the respective
transition:

std::optional<TimingLut> receiver_capacitancel_rise;
std::optional<TimingLut> receiver_capacitancel_fall;
std::optional<TimingLut> receiver_capacitance2_rise;
std::optional<TimingLut> receiver_capacitance2_fall;

This capacitance information can either be characterized as a two-dimensional
LUT in a timing arc or as a one-dimensional LUT in an input pin. If the
characterization takes place in timing the LUT will have two-dimensional
values and two indexes, while otherwise one-dimensional and one index.

43

An example of each case will be given:

e characterization in timing-level

timing {

receiver_capacitancel fall (template_name) {
index_1 (“float, . . ., float”);
index_2 (“float, . . ., float™);
values (“float, . . ., float”);

¥

receiver_capacitancel rise (template_name) {
index_1 (“float, . . ., float”);
index_2 (“float, . . ., float™);
values (“float, . . ., float”);

}

receiver_capacitance2_fall (template_name) {
index_1 (“float, . . ., float™);
index_2 (“float, . . ., float™);
values (“float, . . ., float”);

¥

receiver_capacitance2_rise (template_name) {
index_1 (“float, . . ., float”);
index_2 (“float, . . ., float™);
values (“float, . . ., float”);

}

e characterization in pin-level

pin (PinName) {

direction : input; /* or “inout” */

receiver_capacitancel fall (template_name) {
index_1 (“float, . . ., float™);
values (“float, . . ., float”);

}

receiver_capacitancel rise (template_name) {
index_1 (“float, . . ., float™);
values (“float, . . ., float”);

}

receiver_capacitance2_fall (template_name) {
index_1 (“float, . . ., float”);
values (“float, . . ., float”);

}

receiver_capacitance2_rise (template_name) {
index_1 (“float, . . ., float”);

44

values (“float, . . ., float”);

}

The data structs which have to be changed in order to support the CCS timing information
are the following:

Figure 5.1: CCS information added to Cellpin.
1. The Cellpin struct (Figure 5.1): must contain the 1-dimension receiver capacitances.

2. The Timing struct (Figure 5.2): must include the 2-dimension receiver capacitances
and the output current maps.

Figure 5.2: CCS information added into Timing.

It is essential to mention that the STA engine procedure, timing information storage and
graph construction remain the same as the initial NLDM-based version.

45

However, new methods had to be implemented in order to calculate slew, delay and C1/C2
capacitance values based on the CCS Timing models. Those methods include:

e Methods to find the closer CCS Timing currents (from Liberty) for any (transition,
capacitance) breakpoints during the STA algorithm.

e Transformation of CCS Timing current waveforms to Voltage waveforms (in order
to compute slew and delay).

e Advanced interpolation techniques for interpolating on closer waveforms.

e An iterative algorithm for computing C1/C2 receiver capacitances that lead to the
worst (min or max slew/arrival time) on each pin during the STA algorithm.

Concerning the STA engine, the only thing that changes is that the calculation of C1/C2
capacitances is added, while the routines calculate the worst arrival time, slew and delay at
pins using our new CCS timing methods.

5.3 Results

In order to evaluate the methodology we followed to integrate CCS in OpenTimer, we tried
to test its results compared to the results of the golden STA timer, Synopsys PrimeTime.
They were both tested on the same circuits and the reported results were on the same
critical path. The goal was to compare the reported Arrival Times (AT) on the endpoint of
the critical path and figure whether they were close enough or not. Both NLDM and CCS
models were used for each of the two tools so that we could come to an overall deduction.

Tables 5.1 and 5.2 show the computed NLDM/CCS AT at the endpoint of the critical path
for both OpenTimer and Synopsys PrimeTime for a subset of ISCAS benchmarks. Each of
these circuit were synthesized using the NANGate 45nm [12].

Unfortunately, the full path cannot be given, because its width is prohibitive for the table
size. Therefore, only the startpoint and endpoint of each circuit are given along with their
respective transitions and the path’s split.

46

Circuit

Critical Path

Endpoint AT (ns)

With SPEF Parasitics

NLDM

CCS

OpenTimer

PrimeTime

OpenTimer

PrimeTime

cl7

Split: late
Startpoint: nx6 fall
Endpoint: nx22 rise

0.0649447

0.06421547

0.0653241

0.06488016

c2670

Split: late
Startpoint: n2104 rise
Endpoint: n329 rise

0.692842

0.67869568

0.701103

0.70696133

c7552

Split: late
Startpoint: n18 fall
Endpoint: n338 fall

1.02616

0.98675621

1.03168

1.08759308

s27

Split: early
Startpoint: G3 fall
Endpoint: G17 rise

0.0588331

0.05837075

0.0593287

0.05886924

51196

Split: late
Startpoint: blif_clk_net rise
Endpoint: G550 rise

0.724291

0.70778012

0.733295

0.71854591

s1494

Split: late
Startpoint: blif_clk_net rise
Endpoint: v13_D_24rise

0.662193

0.65124935

0.673248

0.70559676

Table 5.1: OpenTimer and PrimeTime STA results including SPEF parasitics.

47

Endpoint AT (ns)

Without SPEF Paracitics

Circuit Critical Path
NLDM CCS
OpenTimer | PrimeTime | OpenTimer | PrimeTime
Split: late
cl7 | Startpoint: nx6 fall 0.0592147 | 0.05849564 | 0.059541 | 0.06233476
Endpoint: nx22 rise
Split: late
€2670 |Startpoint: n2104 rise 0.627649 | 0.61069620 & 0.634376 | 0.66361535
Endpoint: n329 rise
Split: late
c7552 | Startpoint: n18 fall 0.828644 | 0.82024121 | 0.833932 | 0.92549127
Endpoint: n338 fall
Split: early
s27 | Startpoint: G3 fall 0.0545482 |0.05405520 0.0550113 |0.05700241

Endpoint: G17 rise

Split: late

s1196 | Startpoint: blif_clk_net rise 0.618879 | 0.61076224 | 0.625704 | 0.63556525

Endpoint: G550 rise

Split: late

s1494 | Startpoint: blif_clk_net rise 0.569857 | 0.56639723 | 0.578867 | 0.61416802

Endpoint: v13_D 24 rise

Table 5.2: OpenTimer and PrimeTime STA results without SPEF parasitics.

Experimental results illustrate that by embedding CCS Timing model into OpenTimer we
can achieve a better timing accuracy, especially when not using SPEF parasitics. As we can
observe, for every circuit the AT using the OpenTimer’s CCS model is closer to the golden
CCS AT of PrimeTime, than the one computed using the OpenTimer’s NLDM model.

Note that for the above results, C1/C2 capacitances are computed using the NLDM model
because we were confronted with a small issue using the iterative algorithm for computing
C1/C2 capacitances based on the CCS model. Thus, for the case where SPEF is used, CCS
ATs computed by OpenTimer and PrimeTime are not fairly comparable. The accuracy
would be even better if the C1/C2 were computed based on the CCS model. Nonetheless,
the results seem to have a similar behavior to the PrimeTime ones’, meaning that both
increase/decrease from NLDM to CCS in a same manner.

Also, we have to mention that for the case that no SPEF is given for the current circuit,
PrimeTime by default uses NLDM C1/C2 capacitances if CCS Timing model is chosen for
STA. This means that for this case OpenTimer and PrimeTime results are obtained using
the same methodology and the results are directly comparable.

48

Another reason to enforce us not to use SPEF parasitcs is the difference on how the two
timers model the interconnect timing. OpenTimer utilizes the Elmore delay model while
PrimeTime on the other hand, uses advanced techniques in modeling the interconnect

delay.

On the last table (5.3), we provide the accuracy improvement between OpenTimer’s
NLDM and CCS results in regard to the golden STA result, coming from PrimeTime’s
CCS model. The resulting accuracies are derived from the percentage error calculation
method and refer to the results without SPEF parasitics.

Circuit

Critical Path

Accuracy Error (%)

OT NLDM /PT OT CCS/PT
CCS CCS

cl/

Split: late
Startpoint: nx6 fall
Endpoint: nx22 rise

5.3 4.7

c2670

Split: late
Startpoint: n2104 rise
Endpoint: n329 rise

5.7 4.7

c7552

Split: late
Startpoint: n18 fall
Endpoint: n338 fall

11.7 11

s27

Split: early
Startpoint: G3 fall
Endpoint: G17 rise

4.5 3.6

51196

Split: late

Startpoint: blif_clk_net rise

Endpoint: G550 rise

2.7 1.5

49

Split: late
51494 Startpoint: blif_clk_net rise 7.8 6.1
Endpoint: v13_D 24 rise

Table 5.3: Accuracy error between OpenTimer NLDM-CCS and the golden CCS
PrimeTime.

As it can be easily seen, OpenTimer’s CCS is much closer to the golden PrimeTime’s CCS,
being 1.02%, on average and up to 1.7% more accurate than OpenTimer’s NLDM.
Furthermore, we should keep in mind that the accuracy improvement would be even more
prominent for large industrial designs where the critical path consists of thousands or even
millions of gates. Finally, even better results are expected for smaller process geometries,
since for sub-20nm technologies the NLDM model is insufficient.

50

Chapter 6
Conclusion

In conclusion, Static Timing Analysis is a commonly used simulation method in order to
compute the expected timing of a digital circuit without requiring to simulate the full
circuit, using a transistor level simulator. The attempts to achieve higher accuracy, more
efficiency, faster models and better results generally have been continuously and
consistently going on.

In the matter of accuracy, NLDM is an efficient one, but CCS has even better results, as
this thesis managed to prove, with the successful integration of CCS timing model to
OpenTimer. As shown in the results, higher accuracies can be accomplished with the use of
it. Using circuits without SPEF parasitics, it can produce 1.02% on average and up to 1.7%
more accurate results than NLDM model.

6.1 Future Work

An interesting addition to this project could probably be the integration of a more accurate
wire delay model, rather than Elmore delay, thus providing even better results to the final
timing simulation of the circuit.

51

52

References

[1] TAU Contest 2016. [2016].
Available: https://sites.qoogle.com/site/taucontest2016/

[2] J. Bashker, Rakesh Chadha, Static Timing Analysis for Nanometer Designs a Practical
Approach, 20009.

[3] Synopsys PrimeTime Golden Signoff Solution.
Available:
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html

[4] Cadence Tempus Timing Signoff Solution.
Available:
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-
design-and-signoff/silicon-signoff/tempus-timing-signoff-solution.html

[5] VLSI Physical Design: Interface Logic Models — VLSI Junction. [2015].
Availble: http://www.vlsijunction.com/2015/11/interface-logic-models.html

[6] W. C. Elmore, “The Transient Response of Damped Linear Networks with Particular
Regard to Wide-band Amplifiers”, Journal of Applied Physics, 19(1)(1948), pp. 55-63.

[7] P. Penfield Jr. and J. Rubinstein, “Signal Delay in RC Tree Networks”, Proc. Design
Automation Conference, 1981, pp. 613-617.

[8] R. Gupta, B. Tutuianu and L. T. Pileggi, “The EImore Delay as a Bound for RC Trees
with Generalized Input Signals”, IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 16(1)(1997), pp. 95-104.

[9] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “Closed-form Expressions for
Extending Step Delay and Slew Metrics to Ramp Inputs for RC Trees”, IEEE
Transactions on Computer-aided Design of Integrated Circuits and Systems,
23(4)(2004), pp. 509-516.

[10] C. L. Ratzlaff and L. T. Pillage, “RICE: Rapid Interconnect Circuit Evaluation Using
AWE”, IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems,13(6)(1994), pp. 763-776.

[11] T. Huang and M. D. F. Wong, "OpenTimer: A high-performance timing analysis tool,
"2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2015.

[12] NanGate FreePDK45 Open Cell Library. [2008].
Available: http://www.nangate.com/?page_id=2325

53

https://sites.google.com/site/taucontest2016/
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-%20%20%20%20%20%20design-and-signoff/silicon-signoff/tempus-timing-signoff-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-%20%20%20%20%20%20design-and-signoff/silicon-signoff/tempus-timing-signoff-solution.html
http://www.vlsijunction.com/2015/11/interface-logic-models.html
http://www.nangate.com/?page_id=2325

