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Πεπίλητη 

 
Η αλάιπζε ρξνληζκνύ είλαη κία από ηηο πην δηαδεδνκέλεο δηαδηθαζίεο επαιήζεπζεο ελόο 

θπθιώκαηνο. Τπάξρνπλ πάξα πνιιέο κέζνδνη επαιήζεπζεο ελόο θπθιώκαηνο, κία από ηηο 

νπνίεο είλαη ε ΢ηαηηθή Αλάιπζε Υξνληζκνύ (STA). Απηή ε κέζνδνο όρη κόλν είλαη κία από 

ηηο πην γλσζηέο ηερληθέο, αιιά επηηαρύλεη επίζεο ηε δηαδηθαζία ηεο πξνζνκνίσζεο θαζώο 

δίλεη ην δηθαίσκα λα γίλεη ζε ζηνρεπκέλα κνλνπάηηα θαη όρη ζε νιόθιεξν ην θύθισκα. 

Μόιηο ηα ηειεπηαία ρξόληα αλαπηύρζεθε ν OpenTimer, έλα ινγηζκηθό αλνηρηνύ θώδηθα 

΢ηαηηθήο Αλάιπζε Υξνληζκνύ. Ο ΟpenTimer είλαη έλα ζύγρξνλν εξγαιείν, πνπ 

ρξεζηκνπνηεί ην Με-Γξακκηθό Μνληέιν Καζπζηέξεζεο (NLDM) γηα λα δηεμάγεη αλάιπζε 

θαζπζηέξεζεο νινθιεξσκέλσλ θπθισκάησλ. 

 

΢θνπόο απηήο ηεο δηπισκαηηθήο είλαη λα επηηύρεη θαιύηεξα απνηειέζκαηα, όζνλ αθνξά 

ηελ αθξίβεηα ηνπ OpenTimer, κε ηελ ελζσκάησζε ελόο αθξηβέζηεξνπ κνληέινπ, ηεο 

΢ύλζεηεο Πεγήο Ρεύκαηνο (CCS). Απηό ην κνληέιν απνηειείηαη από δύν επηκέξνπο κέξε-

κνληέια· ην έλα είλαη ην κνληέιν νδεγνύ θαη ην άιιν ην κνληέιν απνδέθηε. Σν κνληέιν 

νδεγνύ ραξαθηεξίδεηαη από ηελ θαηαγξαθή ηεο θπκαηνκνξθήο ξεύκαηνο ζηνπο ππθλσηέο 

θνξηίνπ εμόδνπ ησλ ππιώλ. Η αληίζηνηρε θπκκαηνκνξθή ξεύκαηνο, εμαξηάηαη από ηνλ 

ρξόλν κεηάβαζεο ηεο εηζόδνπ, ην θνξηίν εμόδνπ θαη ηηο θαηαζηάζεηο ησλ ππόινηπσλ 

εηζόδσλ. Σν κνληέιν απνδέθηε είλαη ζρεδόλ αληίζηνηρν κε απηό ηνπ NLDM, κε ηε 

δηαθνξά όηη πξνζζέηεη πεξηζζόηεξε αλάιπζε γηα λα αληηθαξνπηξίζεη επαηζζεζίεο όπσο ην 

θαηλόκελν ηνπ Μίιιεξ. Γηα λα ιάβεη ππόςε κε αθξίβεηα ην θαηλόκελν Miller ζηελ 

ρσξεηηθόηεηα εηζόδνπ θαη ζηελ θαζπζηέξεζε θαισδίσλ,  ρσξίδεη ηελ ρσξεηηθόηεηα πνπ 

νδεγεί ε πύιε ζε δύν κέξε – ηα C1 θαη C2.  

 

Σα απνηειέζκαηα ηεο παξνύζαο δηπισκαηηθήο δείρλνπλ πσο ε αληηθαηάζηαζε ηνπ 

κνληέινπ θαζπζηέξεζεο NLDM κε ην CCS ζηνλ OpenTimer επηηπγράλεη 1.02% θαηά κέζν 

όξν θαη κέρξη 1.7% ην κέγηζην, αθξηβέζηεξε εθηίκεζε ηεο θαζπζηέξεζεο ησλ κνλνπαηηώλ 

ηνπ θπθιώκαηνο ζπγθξηηηθά κε ηα απνηειέζκαηα πνπ ππνινγίζηεθαλ ρξεζηκνπνηώληαο σο 

ζεκείν αλαθνξάο ηελ αλάιπζε κέζσ ηνπ εξγαιείνπ PrimeTime ηεο Synopsys. 
 

Λέξειρ Κλειδιά: 

΢ηαηηθή Αλάιπζε Υξνληζκνύ, Μνληέια Καζπζηέξεζεο, CCS, OpenTimer 
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Abstract 
 

Timing simulation is one the most popular verification procedures of a design. There are 

many methods to put a circuit under testing, one of them is Static Timing Analysis (STA). 

This method not only is one of the well-known techniques, but also provides the ability to 

speed up the simulation by designating the simulation path, making that way possible to 

avoid simulation of the whole circuit. The first open-source STA tool called OpenTimer, 

was developed only recently. OpenTimer is a state-of-the-art timer, using the Non-Linear 

Delay Model (NLDM) to carry through with timing simulation. 

 

In this thesis, the goal is to achieve better results, in the terms of accuracy, by integrating a 

more accurate timing model, Composite Current Course (CCS). This model consists of two 

aliquot model-parts; one is a driver model and the other is a receiver model. The driver one 

is characterized by capturing current waveform flowing into the load capacitor of the cell. It 

also has sensitivity to input transition time, output load and side input states. The receiver 

model is quite similar to the NLDM one, with the difference of adding additional 

granularity to reflect sensitivities such as miller capacitance. To accurately reveal the miller 

effect on input capacitance and net-delay, it is divided into two parts - C1 and C2. 

 

The results of this thesis exhibit that the integration of CCS delay model into OpenTimer 

contributes to 1.02% on average and up to 1.7% accuracy enhancement, concerning the 

evaluation of the circuit‟s paths delays. 

 
Keywords: 

Static Timing Analysis, Delay Models, CCS, OpenTimer 
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Chapter 1  

Introduction 
 

 

 

1.1 Motivation 
 

Timing simulation is one of the most commonly used methods in the industry in order to 

validate a circuit under evaluation. Static Timing Analysis (STA) comes to play a vital role 

in this time-consuming procedure, by using simplified timing models and by mostly 

ignoring logical interaction in circuits but yet, maintaining the accuracy and speedup in 

high levels. The need of higher accuracy, especially in sub-20nm technology nodes is rising 

exponentially, thus new models or even methods are necessary to be found. The 

opportunity to study graphs, build a parser and have a first touch with Static Timing 

Analysis was already from the beginning an inevitable offer. Furthermore, what could be 

better than the existence of a highly appreciated open-source timing tool, which allows 

experiment on any level someone wants and why not integrate their work, if it does worth. 

OpenTimer, this state-of-the-art tool, apart from the above, provides the opportunity to get 

used to employing advanced coding skills, as each new version utilizes many new features 

of C++. 

 

 

1.2 Thesis Contribution 
 

As for this thesis, its purpose was to study and attempt adding something extra into this 

timing tool, in the matter of STA. This addition refers to accuracy. OpenTimer already 

utilizes an accurate enough timing model named Non Linear Delay Model (NLDM). There 

is analysis on the model in a later chapter, as also for the timing model which has been 

chosen to replace it. This model is Composite Current Source (CCS) and it is going to be 

explained why it was chosen and what it offers. Another ambition is to encourage anyone 

who wants to experiment with OpenTimer and STA generally, regardless of any results.  
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1.3 Outline 

 
Starting with Chapter 2, an adumbration of Static Timing analysis will take place, giving a 

general idea of what it is and why should be used. A description of how standard cells are 

shaped and how delay propagation is performed will be given, along with some STA tools. 

Moving on, a further analysis of the mentioned timing models will take place at Chapter 3. 

On Chapter 4, an introduction to OpenTimer will be given, depicting its structure and a part 

of its design flow. There will be also a representation of the NLDM timing model and its 

data structures in the tool. Finally, the 5th Chapter concerns the integration of CCS timing 

model into OpenTimer, describing how the corresponding data structures are formed and 

providing a sample of the timing engine routines along with our findings and results, in 

Chapter 6. 
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Chapter 2  

Static Timing Analysis 
 

 

2.1 What is Static Timing Analysis? 
 

STA is one of the most commonly used techniques to validate the timing of a digital 

design, and for the purpose of this thesis of a Very-Large Scale Integration circuit (VLSI). 

Another timing verification method is the timing simulation which can not only verify the 

timing, but also the functionality of the design. With the term timing analysis, one can be 

referred to either of these methods. Thus, the use of the term alludes to timing issues of the 

design. 

The STA is static, meaning that the analysis of the design does not depend upon the data 

values being applied at the input pins, while it is carried out statically. On the other hand, 

simulation-based timing analysis perform a loop, where a stimulus is applied on input 

signals and then the outcoming behavior is observed and verified, and finally time proceeds 

to the next step with new input stimulus and the procedure starts over. 

The purpose of static timing analysis is to examine if the given design along with a set of 

input clock definitions and the definition of the external environment can operate at the 

rated speed. This validation measures how safely the design can operate at the specified 

frequencies of the clock without any timing violations. The basic functionality of static 

timing analysis is shown in figure 2.1. The design under analysis is called DUA. There are 

many timing checks, two of them are setup and hold checks. A setup check ensures that a 

flip-flop is provided with the data needed within the given clock period. A hold check 

ensures that a flip-flop captures the intended data correctly; meaning that the data is held 

for at least a minimum time so that there is no unexpected pass-through of data through a 

flip-flop. Thus, these checks are performed in order to ensure that the proper data is ready 

and available for capture and latched in for the new state. 
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Figure 2.1: Static Timing Analysis 

 

These required timing checks are performed for all possible paths and scenarios of the 

design, thus the entire design has to be analyzed. Having considered all these, it is easily 

understood that STA is a complete and exhaustive method for timing verification of a 

design. 

The DUA is typically specified using a hardware description language such as VHDL or 

Verilog HDL. The external environment, including the clock definitions, is specified using 

SDC or an equivalent format. SDC is a timing constraint specification language. The timing 

reports are in ASCII form, typically with multiple columns, with each column showing one 

attribute of the path delay. 

Given the opportunity, here is provided the first contact with STA for this thesis, which 

came from TAU 2016 Contest [1]. 
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Figure 2.2: Generic circuit (left) and delay model representation of a circuit element (right). 

 

Timing analysis computes the amount of time signals propagate in a circuit from its 

primary inputs (PIs) to its primary outputs (POs) through various circuit elements and 

interconnect. Signals at the output(s) of an element will be available via its inputs at some 

later time. This indicates a delay during signal propagation at each element. Furthermore, 

assume that signal transitions are characterized by their input slew and output slew, which 

is defined as the amount of time required for a signal too transition from hi-to-low and vice 

versa. For instance, as shown in Figure 2.2 (right), at this circuit element the delay from 

input A to output Y is labeled by dA→Y, the input slew at A by siA, and the output slew at Y 

by soY. Here, both the delay and the output slew are functions of input slew. 

 

2.2 Why Static Timing Analysis? 
 

As already said static timing analysis is a complete and exhaustive method of timing 

verification and all timing checks of a design. Simulation, which was previously introduced 

as an alternate analysis method, can only validate the portions of the design which get 

exercised by stimulus. Verification through timing simulation can be only as exhaustive as 

the test vectors used. Simulation and verification of all timing conditions of a design with 

10-100 million gates is literally slow and the timing cannot be verified completely. Thus, 

exhaustive verification through timing simulation is very difficult and rare to happen. 

On the other hand, static timing analysis as already said provides a quicker and simpler way 

of validating and analyzing all the possible timing paths in a design for any violations. 

Given the complexity of present day Application-Specific Integrated Circuit (ASICs), 

which may contain 10 to 100 million gates, the static timing analysis has become a 

necessity to exhaustively verify the timing of a design. 
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Crosstalk and Noise 

Unfortunately, there is always an obstacle which needs to be overpassed; and one can be 

noise. Noise can limit the functionality and the performance of a design. It can occur due to 

crosstalk with other signals or due to noise on primary inputs or the power supply. 

Functional failures and frequency of operation limitation can occur due to noise. Thus, a 

design implementation has to be verified to be robust, meaning that it can withstand the 

noise without affecting the rated performance of the design. Verification based upon logic 

simulation cannot handle the effects of crosstalk, noise and on-chip variations. 

  

2.3 Standard Cells and Propagation Delay 

 

2.3.1 Standard Cells 
 

In a chip most of the complex functionality is usually designed utilizing basic building 

blocks, that implement simple logic functions such as and, or, not, nand, nor, and-or-invert, 

or-and-invert and flip-flop. These basic building blocks are pre-designed and referred to as 

standard cells [2]. These standard cells have an already pre-characterized functionality and 

timing which are available to the designer. Using the standard cells as the main building 

blocks, the designer then can implement the required functionality. 

All digital CMOS cells are designed in such way that no current can be drawn from power 

supply (except for leakage) when the inputs are in a stable logic state. Therefore, the main 

reason of power dispersal is related to the activity in the design and is prompted by the 

charging and discharging of the inputs of CMOS cells in the design. 

As for CMOS cells, logic-1 and logic-0 are considered with the following way; two values 

VIHmin and VILmax define the limits of the cell. Meaning that, any voltage value which 

surpasses VIHmin is considered as logic-1 and any voltage value below VILmax is 

considered as logic-0 respectively (Figure 2.3). Representative values for a CMOS 0.13κm 

inverter cell with 1.2V Vdd supply are 0.465V for VILmax and 0.625V for VIHmin. The 

VIHmin and VILmax values are derived from the DC transfer characteristics of the cell. 
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Figure 2.3: CMOS logic levels. 

 

2.3.2 Propagation Delay 
 

Considering a CMOS inverter cell as previously referred and its input and output 

waveforms, propagation delay of the cell is defined by using some measurement points on 

the switching waveforms. In order to define these points, the following four variables are 

used: 

# Threshold point of an input falling edge: 
 input_threshold_pct_fall : 50.0; 
 # Threshold point of an input rising edge: 
 input_threshold_pct_rise : 50.0; 
 # Threshold point of an output falling edge: 
 output_threshold_pct_fall : 50.0; 
 # Threshold point of an output rising edge: 
 output_threshold_pct_rise : 50.0; 
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Figure 2.4: CMOS output waveforms. 

 

These variables belong to a description command set of a cell library. When someone refers 

to these threshold specifications, they actually refer to the terms of percentage of Vdd, or 

the power supply. Usually, for most cell libraries, 50% threshold is used for delay 

measurement. 

Rising edge is the transition from logic-0 to logic-1 and falling edge is the transition from 

logic-1 to logic-0 respectively. 

Consider the example inverter cell and the waveforms at its pins shown in Figure 2.5. The 

propagation delays are represented as: 

i. Output fall delay (Tf) 
ii. Output rise delay (Tr) 
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Generally, these two values are different. Figure 2.5 illustrates how these two propagation 

delays are measured. 

 

Figure 2.5: Propagation delays. 

 

Ideally, propagation delay would simply be the delay between the two edges. This could 

happen only if we had ideal waveforms. A situation like this is shown if figure 2.6. 

 

Figure 2.6: Propagation delay using ideal waveforms. 
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2.4 Static Timing Analysis Tools 
 

This section of the chapter presents some of the well-known and commonly used STA 

tools. Two of them, that are going to be discussed, are Synopsys PrimeTime and Cadence 

Tempus. The tool which this thesis employs is OpenTimer, but it is going to be presented 

on another chapter. 

 

2.4.1 PrimeTime 
 

Synopsys PrimeTime is one of the famous tools and probably one of the most accurate. The 

simple version can perform core static timing analysis and multi-scenario analysis. Adding 

some extra versions like PrimeTime SI or PrimeTime PX one can carry out crosstalk delay 

and signal integrity analysis or even dynamic power analysis respectively and many other 

analyses (see Figure 2.7). 

Some of its primary benefits are that provides accurate results and minimizes over-design; 

also the high capacity approach reduces hardware costs, the integrated design environment 

improves productivity and many more. 

PrimeTime STA solution as Synopsys report on their datasheet, “provides designers with 

extensive timing analysis checks, on-chip variation analysis techniques, golden delay 

calculation, advanced modeling, unmatched productivity and ease-of-use” [3] and a user-

friendly GUI. 

PrimeTime‟s basic flow is the following: 

1. Set library path (search and link path) 

2. Read the design (Verilog) 

3. Link library and the design 

4. Add design constraints (Rise/Fall time, gate delay) 

5. Add constant value to input port (for timing simulation) 

6. Report (constraints and timing) 
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Figure 2.7: Galaxy Signoff Solutions. 

 

 

2.4.2 Tempus 
 

Cadence Tempus Timing Signoff Solution is also a well-known and accurate tool. It 

distributes silicon-accurate timing signoff and signal integrity analysis which ensures 

operational chips after tapeout. With the timing signoff environment combined with the 

implementation environment, the Tempus solution greatly decreases the time to design 

closure and improves timing convergence throughout the design flow [4]. 

The industry uses the ILMs (Interface Logic Models) [5] and with Tempus they provide a 

novel way of automatically breaking the design into semi-autonomous cones of logic each 

of which could be run on different threads (MTTA – multi-threaded timing analysis) and 

across multiple machines (DSTA – distributed static timing analysis). As part of this, 

methods for inter-client communications have been worked out which enabled the tool to 

pass vital information such as timing windows between associated cones of logic. 
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Figure 2.8: Interface Logic Model (ILM) concept. 

 

Tempus speed is quite amazing and also allows someone to effectively run blocks of up to 

40 million cells in a single client, distributing that it can handle huge designs. Furthermore, 

once Tempus could automatically identify cones of logic which were dependent upon each 

other for accurate timing analysis, it was also realized that the inverse was also true. 

Tempus can recognize which blocks can safely be ignored for any selected block that is to 

be timed; meaning that Tempus can automatically carve out just enough logic around a 

selected block to ensure an accurate analysis without having to time the entire netlist. 

An example flow is firstly the building of the blocks, then the pass back to the top-level for 

assembly and routing. Once context is set, blocks could then be passed back down for final 

timing optimization. In conclusion, one of its primary benefits is that the same timing 

scripts, constraints and use-model for flat timing analysis can be used for top-level and 

block-level optimizations and scope-based analysis can be run in parallel either by multiple 

designers or through Tempus distributed processing. 

 

Figure 2.9: Timing scope can be used for individual blocks or top-level distributed STA. 
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Chapter 3  

Timing Models 

 

3.1 Gate and Interconnect Modeling 

3.1.1 Interconnect Modeling 

The word interconnect is used in order to describe wires used in a design, which basic 

instance is a net. Nets usually have an input pin which is called port and at least one output 

pin, called taps. Parasitic RC trees only contain grounded capacitors and floating resistors. 

Delay. Electrical simulation can be an accurate tool for computation of port-to-tap delays. 

Nonetheless, Elmore delay model [6] will be assumed because of its simplicity and speed, 

where the delay is approximated by the symmetric of the value of the first moment of the 

impulse response. A summary of the topological method which is used in order to compute 

the delay of RC tree networks is provided in [7]. 

Consider any two nodes e and k in an RC network. Let Ck be the lumped capacitance at 

node k, and let Rk→e be the total resistance of the common path intermediate to the paths 

from Port to e and Port to k. For instance, the resistance between nodes 1 and T2 (R1→T2), in 

Figure 2.1, is RA, as that is the only common resistor among the paths Z to 1 and Z to T2. 

The Elmore delay at node e is the following:  

de = ∑                                           (1) 

 

where N is the set of all nodes in the RC network. For the example net illustrated in Figure 

2.1 (right), the delay at node T2 (tap) is (visiting in order nodes 1, T1, 3, 2, T2): 

dT2 = RAC1 + RAC3 + RAC4 + (RA + RB)C2 + (RA + RB + RE)C5                  (2) 

                   = RA(C1 + C3 + C4) + (RA + RB)C2 + (RA + RB + RE)C5 

 

Output slew. The value of the output slew (so) can be approximated on any given tap node 

T by a two-step process. The first step is to calculate the output slew of the impulse 

response on T, which was observed [6],[8] to be well-approximated by:  

   ŜoT ≈ √                                                   (3) 
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where βΣ is the second moment of the input response at node T and dT is the corresponding 

Elmore delay from equation 1. The second step is to calculate the slew of the response to 

the input ramp by the expression given in [9]: 

soT ≈ √                     (4)

   

where si is the input slew. 

 

 

Figure 3.1: Modified RC network for output slew calculation. 

 

The efficient path-tracing algorithm for moment computation suggested in [10], which is a 

generalization of the algorithm proposed in [6], can be the expedient to compute the value 

of βT. To calculate βΣ, two steps are required; the first step is to replace all capacitance 

values Ck in the RC network by Ckdk, where dk is the Elmore delay from Equation (1) (see 

Figure 3.1). The second step, is to follow the identical procedure as before in order to find 

βΣ: 

                  βΤ = ∑     k→TCkdk                                    (5) 

Following the example in Figure 3.1, at node T2  

βΤ2 = RA(C1d1 + C3d3 + C4d4) + (RA + RB)C2d2 + (RA + RB + RE)C5d5     (6) 

 

3.1.2 Circuit Element Modeling 
 

As for delay and output slew calculations between two pins, the information will be given 

as two-dimensional tables in the .lib file. Extrapolation or interpolation will be essential in 

order to find the equivalent timing information. 
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If the table contains a single value, i.e., a 1x1 table (Figure 3.2 left), no interpolation is 

needed. In other word, regardless of input x and y, the corresponding value is constant. If 

the table is one-dimensional, i.e., a 1xn table or a mx1 table (Figure 3.2 center), then the 

value will depend only on the non-scalar dimension. For instance, consider the 1x4 table in 

Figure 4. The methodology is the following. If y < y1, then the corresponding output z value 

will be the linear extrapolation between z1 and z2. If y2 ≤ y ≤ y3, then z will be the linear 

interpolation between z2 and z3. If y4 < y, then z will be the linear extrapolation between z3 

and z4. 

       z1 – (y1 – y) 
     

     
  if  y < y1             (7) 

                                        z1   if  y = y1       (8) 

 z1 + (y – y1) 
     

     
 if  y1 < y < y2                  (9) 

      z2   if y = y2              (10) 

              z2 + (y – y2) 
     

     
   if  y2 < y < y3          (11) 

z3   if  y = y3                                                      (12) 

 z3 + (y – y3) 
     

     
   if  y3 < y < y4          (13) 

      z4  if  y = y4         (14) 

z4 + (y – y4) 
     

     
   if  y > y4                                         (15) 
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Figure 3.2: Illustration of different tables: scalar, one-dimensional and two-dimensional. 

 

In case that the table is two-dimensional, perform linear interpolation on the x values first, 

and then perform interpolation on y values. For example again, take into account the 3x4 

table in Figure 4. If x2 < x < x3 and y2 < y < y3, then (i) determine zfirst by linear interpolation 

on z22 and z32, (ii) determine zsecond by linear interpolation on z23 and z33, and then (iii) 

determine z by linear interpolation using zfirst and zsecond. 

Combinational elements. Given any combinational cell, e.g., OR gate, let the delay d and 

output slew so for a input/output pin-pair (see Figure 3.3) be calculated by NLDM model 

interpolation/extrapolation. These delay and output slew are referenced by the input slew 

(x) and driving load (y) and are stored in the .lib. CL denotes the equivalent downstream 

capacitance seen from the output pin of the cell. A few intellectually complex models have 

been suggested for computing CL. For simplicity, the application of a simpler model is 

adopted in terms of this thesis. CL is assumed to be the sum of all the capacitances in the 

parasitic RC trees, containing the cell pin capacitances at the taps of the interconnect 

network. 

 

 

Figure 3.3: Combinational OR gate (left), its timing model (center) and capacitances (right). 
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Sequential elements. Sequential circuits consist of combinational blocks interleaved by 

registers, most frequently implemented with flip-flops (FFs). Usually, sequential circuits 

are composed of several stages, where a register captures data from the outputs of a 

combinational block from a previous stage, and injects it into the inputs of the 

combinational block in the next stage. Clock signals generated by one or multiple clock 

sources are used to achieve register operation synchronization. Clock signals that reach 

distinct flip-flops, e.g., sinks in the clock tree, are delayed from the clock source by a clock 

latency l. 

A (D) flip-flop is a storage element that captures a given logic value at its input data pin D, 

when a given clock edge is detected at its clock pin CK, and subsequently presents the 

captured value and its complement at the output pins Q and  ́. The flip-flop also enables 

asynchronous preset (set) and clear (reset) of the output pins through the respective S and R 

input pins.
 

 

 

Figure 3.4: Generic D flip-flop and its timing model (left), and two FFs in series and their timing models 

(right). 

 

Setup and hold constraints. The logic value of the input data pin is required to be stable 

for a specific period of time before the capturing clock edge in order to achieve proper 

operation of a flip-flop. This period of time is designated by the setup time tsetup. 

Furthermore, the logic value of the input data pin must also be stable for a specific period 

of time after the capturing clock edge. This period of time is designated by the hold time 

thold. The flip-flop timing models are depicted in Figure 3.4 (left). The test time are given in 

the .lib as two-dimensional tables, and are referenced by the clock-side input slew (x) and 

the data-side input slew (y). 

Signal propagation. Figure 3.4 (right) illustrates how the standard signal transition 

between two flip-flops is performed. Supposing that the clock edge is generated at the 

source at time 0, it will reach the injecting (launching) flip-flop FF1 at time li, making the 

data available at the input of the combinational block dCK→Q time late. Assuming that the 

propagation delay in the combinational block is dcomb, then the data will be available at the 

input of the capturing flip-flop FF2 at time li + dCK→Q + dcomb. Let the clock period to be a 
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constant T. Then the next clock edge will reach FF2 at time T + lo. For correct operation, the 

data have to be available at the input pin D of FF2 tsetup time before the next clock edge. As 

a consequence, at the data input pin D of FF2 applies the following: 

   
     =   

    + dCK→Q +      
        (16) 

     ratsetup =          = T +   
      – tsetup         (17) 

A similar state can be derived for ensuring that the hold time is respected. The data input 

pin D of FF2 must remain stable for at least thold time after the clock edge reaches the 

corresponding CK pin. Therefore, the following applies to the data input pin D of FF2:  

   
      =   

      + dCK→Q +      
          (18) 

        =     
      =   

     +           (19) 

Note that when computing the required arrival times in equations (17) and (19) the value lo 

is exact to Figure 3.4. In the general case, lo should be replaced with atC. The previous 

arrival times and required arrival times induce setup and hold slacks, which can be 

computed from the following equations  

slackearly = atearly – ratearly                                  (20) 

slacklate = ratlate - atlate                        (21) 

For the clock pins of the flip-flop, the required arrival time is derived from the test slack. 

For early mode, the slack at the clock pin is the setup or late test slack, and for late mode, 

the slack at the clock pin is the hold or early test slack. From the corresponding test slack 

and arrival time, the clock required arrival time can be derived, and suitably propagated. 

 

3.2 Non-Linear Delay Model (NLDM) 

Table models are included by most of the cell libraries in order to specify the delays and 

timing checks for various timing arcs of the cell. Some newer timing libraries for 

nanometer technologies also provide current source based advanced timing models (such as 

CCS, ECSM, etc.). The table models are referred to as NLDM and are used for delay, 

output slew, or other timing checks. The table models capture the delay through the cell for 

various combinations of input transition at the cell input pin and total output capacitance at 

the cell output. 

An NLDM model for delay is presented in a two-dimensional form, with the two 

independent variables being the input transition time and the output load capacitance, and 

the entries in the table denoting the delay. An example of such a table for a typical inverter 

cell is following: 
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pin (OUT) { 

max_trinsition : 1.0; 

timing() { 

related_pin : "INP1"; 

timing_sense : negative_unate; 

cell_rise(delay_template_3x3) { 

index_1 ("0.1, 0.3, 0.7");   /* Input transition */ 

index_2 ("0.16, 0.35, 1.43");   /* Output capacitance */ 

values ( /*  0.16  0.35  1.43  */ \ 

   /* 0.1 */    "0.0513,  0.1537, 0.5280", \ 

   /* 0.3 */    "0.1018,  0.2327, 0.6476", \ 

   /* 0.7 */    "0.1334,  0.2973, 0.7252"); 

} 

cell_fall(delay_template_3x3) { 

index_1 ("0.1, 0.3, 0.7");   /* Input transition */ 

index_2 ("0.16, 0.35, 1.43");   /* Output capacitance */ 

values ( /* 0.16  0.35  1.43 */ \ 

/* 0.1 */     "0.0617, 0.1537, 0.5280", \ 

/* 0.3 */     "0.0918, 0.2027, 0.5676", \ 

/* 0.7 */     "0.1034, 0.2273, 0.6452"); 

} 

} 

} 

 

The delays of the output pin OUT are described in the above example. This portion of the 

cell description contains the rising and falling delay models for the timing arc from pin 

INP1 to pin OUT, in addition to the max_transition allowed time at pin OUT. The labels 

cell_rise and cell_fall describe the separate models for the rise and fall delays (for the 

output pin) respectively. The type of indices and the order of table lookup indices are 

described in the lookup table (LUT) template delay_template_3x3. 

lu_table_template(delay_template_3x3) { 

 variable_1 : input_net_transition; 

 variable_2 : total_output_net_capacitance; 

 index_1 ("1000, 1001, 1002"); 
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 index_2 ("1000, 1001, 1002"); 

} /* The input transition and the output capacitance can be in either order, that is, 

variable_1 can be the output capacitance. However, these designations are usually 

consistent across all templates in a library. */ 

 

This LUT template specifies that the first variable in the table is the input transition time 

and the second variable is the output capacitance. The table values are specified like a 

nested loop with the first index (index_1) being the outer (or least varying) variable and the 

second index (index_2) being the inner (or most varying) variable and so on. There are 

three entries for each variable and thus it corresponds to a 3-by-3 table. In most cases, the 

entries for the table are also formatted like a table and the first index (index_1) can then be 

treated as a row index and the second index (index_2) becomes equivalent to the column 

index. The index values (for example 1000) are dummy placeholders which are overridden 

by the actual index values in the cell_fall and cell_rise delay tables. An alternate way of 

specifying the index values is to specify the index values in the template definition and to 

not specify them in the cell_rise and cell_fall tables. Such a template would look like this: 

 

 lu_table_template(delay_template_3x3) { 

  variable_1 : input_net_transition; 

  variable_2 : total_output_net_capacitance; 

  index_1 ("0.1, 0.3, 0.7"); 

  index_2("0.16, 0.35, 1.43"); 

 } 

 

Based upon the delay tables of this LUT template, an input fall transition time of 0.3ns and 

an output load of 0.16pf will correspond to the rise delay of the inverter of 0.1018ns. Since 

a falling transition at the input results in the inverter output rise, the table lookup for the 

rise delay involves a falling transition at the inverter input. 

 

This form of representing delays in a table template as a function of two variables, 

transition time and capacitance, is called the NLDM, since non-linear variations of delay 

with input transition time and load capacitance are expressed in such tables. 

 

The table models can also be 3-dimensional – an example is a flip-flop with 

counterbalancing outputs, Q and QN. 

 

The NLDM models are used not only for the delay but also for the transition time at the 

output of a cell which is characterized by the input transition time and the output load. 

Therefore, there are distinct two-dimensional tables for computing the output rise and fall 

transition times of a cell. 
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 pin (OUT) { 

  max_transition : 1.0; 

  timing() { 

   related_pin : "INP"; 

   timing_sense : negative_unate; 

   rise_transition(delay_template_3x3) { 

    index_1 ("0.1, 0.3, 0.7");   /* Input transition */ 

    index_2 ("0.16, 0.35, 1.43");  /* Output capacitance */ 

    values ( /* 0.16  0.35  1.43 */ \ 

      /* 0.1 */   "0.0417, 0.1337, 0.4680", \ 

      /* 0.3 */   "0.0718, 0.1827, 0.5676", \ 

      /* 0.7 */   "0.1034, 0.2173, 0.6452"); 

} 

fall_transition(delay_template_3x3) { 

 index_1 ("0.1, 0.3, 0.7");   /* Input transition */ 

 index_2 ("0.16, 0.35, 1.43");  /* Output capacitance */ 

 values ( /* 0.16  0.35  1.43 */ \ 

   /* 0.1 */   "0.0817, 0.1937, 0.7280", \ 

   /* 0.3 */   "0.1018, 0.2327, 0.7676", \ 

   /* 0.7 */   "0.1334, 0.2973, 0.8452"); 

} 

… 

} 

  … 

} 

 

There are two such tables for transition time: rise_transition and fall_transition. The 

transition times are measured based on the specific slew thresholds, usually 10%-90% of 

the power supply. 

 

As depicted above, an inverter cell with an NLDM model has the following tables: 

 

 Rise delay 

 Fall delay 

 Rise transition 

 Fall transition 

 

Assuming a cell with these characteristics and given the input time and output capacitance, 

as illustrated in Figure 3.5, the rise delay is acquired from the cell_rise table for 15ps input 

transition time (falling) and 10fF load, and the fall delay is acquired from the cell_fall table 

for 20ps input transition time (rising) and 10fF load. 
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Figure 3.5: Transition time and capacitance for computing cell delays. 

 
Where is the information which specifies that the cell is inverting? This information is 

specified as part of the timing_sense field of the timing arc. In some cases, this field is not 

specified but is expected to be derived from the pin function. 

 

For the given example inverter cell, the timing arc is negative_unate which insinuates that 

the output pin transition direction is opposite (negative) of the input pin transition direction. 

Therefore, the cell_rise table lookup corresponds to the falling transition time at the input 

pin. 

 

 

3.2.1 Example of Non-Linear Delay Model Lookup 

 
In this section an illustration of the lookup of the table models takes place through an 

example. If the input transition time and the output capacitance correspond to a table entry, 

the table lookup is trivial since the timing value matches directly to the value in the table. 

The example below corresponds to a general case where the lookup does not match to any 

of the entries available in the table. In such cases, two-dimensional interpolation is utilized 

to supply the resulting timing value. For the table interpolation, the two nearest table 

indices are chosen. Consider the table lookup for fall transition (example table specified 

above) for the input transition time of 0.15ns and an output capacitance of 1.16pF. The 

corresponding section of the fall transition table relevant for two-dimensional interpolation 

is reproduced below: 

 

 fall_transition(delay_template_3x3) { 

  index_1 ("0.1, 0.3 . . ."); 

  index_2 (". . . 0.35, 1.43"); 

  values ( \ 

   ". . . 0.1937, 0.7280", \ 

   ". . . 0.2327, 0.7676") 

   . . . 

} 

 

In the formulation below, the two intex_1 values are denoted as x1 and x2; the two index_2 

values are denoted as y1 and y2 and the corresponding table values are denoted as T11, T12, 

T21 and T22 respectively. 
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If the table lookup is required for (x0, y0), the lookup value T00 is obtained by interpolation 

and is given by: 

 
T00 = x20 * y20 * T11 + x20 * y01 * T12 + 

    x01 * y20 * T21 + x01 * y01 * T22 

 

Where: 

 

x01 = (x0 – x1) / (x2 – x1) 

x20 = (x2 – x0) / (x2 – x1) 

y01 = (y0 – y1) / (y2 – y1) 

y20 = (y2 – y0) / (y2 – y1) 

 

Substituting 0.15 for index_1 and 1.16 for index_2 results in the fall_transition value of: 

 

T00 = 0.75 * 0.25 * 0.1937 + 0.75 * 0.75 * 0.7280 + 

        0.25 * 0.25 * 0.2327 + 0.25 * 0.72 * 0.7676 = 0.6043 

 

Note that the equations above are valid for interpolation as well as extrapolation – that is 

when the indices (x0, y0) lie outside the characterized range of indices. As an example, for 

the table lookup with 0.05 for index_1 and 1.7 for index_2, the fall transition value is 

obtained as: 

 

T00 = 1.25 * (-0.25) * 0.1937 + 1.25 * 1.25 * 0.7280 + 

(-0.25) * (-0.25) * 0.2327 + (-0.25) * 1.25 * 0.7676 

     = 0.8516 

 

 

 

3.3 Composite Current Source Timing Model 

 

3.3.1 Introduction 
 

Delay calculation is performed for one stage at a time, where a stage consists of the driving 

cell arc, the output RC network and the capacitance of the network load pins. The goal is to 

compute the response at the driver output and at the network load pins, given an input slew 

or waveform at the driver input, as shown in Figure 3.6. The computed responses are then 

used to determine the cell delay of the driver and the input slews at the load pins. 
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Figure 3.6: Stage Delay Calculation. 

 

 

 

To perform stage delay calculation efficiently, three models are created: 

 The driving cell arc is replaced by a driver model 

 The interconnect RC network is replaced by a reduced order model (such as Block 

Arnoldi) 

 The load pins are replaced by a receiver model 

These models are depicted in Figure 3.7. 

 

 

 

Figure 3.7: Stage represented by driver model, ROM and receiver models. 



25 
 

Note that the receiver model must represent the complex input capacitance of a cell input 

pin. The transistors do not present a constant input capacitance to a driver. The equivalent 

capacitive load (from I = C * dv/dt) can vary depending on the rise/fall direction of the 

transition, the input slew at the pin, the output load, and the state of the cell. In addition, 

this capacitance can change during the transition. The receiver model must be able to 

represent all these effects. 
 
 
 

3.3.2 Previous Approaches 

 

Thevenin and Norton Models 
 

Previous driver models used either a time-dependent voltage source in a series with a 

resistor (Thevenin model) or a time-dependent current source in parallel with a resistor 

(Norton model). The resistor in those models is typically referred to as the “drive resistor” 

and is used to express the timing arc‟s sensitivity to output capacitance, whereas the 

waveform shape itself is primarily expressed by the voltage or current source. 

 

Refinements to these models to account for complex aspects of transistor behavior have 

typically dealt with making the time-dependent nature of the voltage/current source more 

complex. Other approaches have dealt with multiple drive resistances and arbitrary 

dynamic impedances. 

 

 
Figure 3.8: : The Rd << Znet problem. (a) shows a transistor circuit driving a detailed parasitic network at 

node „B‟. (b) The network presents an impedance Znet to the Thevenin driver model. When Rd << Znet, Vout 

approaches Vin and the driver model can lose accuracy. 



26 
 

Unfortunately, a major limitation occurs when conventional models are used to drive an 

interconnect network with an impedance Znet much greater than the drive resistance Rd. 

Consider the Thevenin model driving a detailed parasitic network as shown in Figure 3.8. 

Note that the circuit forms a voltage divider with 

 
    

   
 = 

    

       
 

 
which approaches unity when Rd << Znet.This points out that a driver model based upon a 

drive resistance (or arbitrary impedance) that is set independent of the network load will be 

ineffective in this regime. 

 

Since the transistor behavior deviates from the Thevenin voltage source nearest the power 

rails, this situation is usually worst when the network delay is greater than the output 

transition time. 
 

 

Previous Receiver Models 

 
The traditional receiver model is a single value of capacitance for an input pin. More 

recently, separate values have been allowed for rising vs. falling transitions, and a min/max 

range has been introduced that can bind the complex capacitance effects, but which leads to 

pessimism during analysis. 

Using a single capacitance value for the entire transition results in inaccuracy for single-

stage cells where the Miller effect is significant, affecting the calculation of both cell delay 

and slew. Figure 3.9 shows that the voltage waveform for the input of a single-stage cell, 

such as an inverter, cannot be approximated well by any single capacitance value. 
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Figure 3.9: A single capacitance value is insufficient when Miller effect is large.  

 

 

 

3.3.3 The CCS Timing Solution 
 

CCS Timing consists of a driver model and a receiver model. The driver model describes 

how a timing arc propagates a transition from input to output, and how it can drive arbitrary 

RC networks. The receiver model describes the capacitance that an input pin presents to 

driving cells. 

 

The CCS Timing driver model is a time and voltage dependent current source with an 

essentially infinite drive-resistance, which provides high accuracy even when Rd is much 

less than Znet. The model achieves this accuracy by mapping the arbitrary transistor 

behavior for lumped loads to the behavior for an arbitrary detailed parasitic network, 

instead of modeling the transistor behavior. The following figure illustrates how the 

mapping algorithm basically works. 



28 
 

 
Figure 3.10: Output current and voltage responses for a timing arc. Transition-level simulation results are 

shown for different values of load capacitance (1fF, 10fF, 100fF, 1pF, 10pF). (a) Inverted current responses. 

(b) Voltage responses. 

 

 

Consider a set of pre-characterization measurements of the output current as a function of 

time for a specific input slew and a set of output capacitances (Figure 3.10). When these 

currents are applied to their respective capacitances, the voltage waveforms can be 

reconstructed. If an output capacitance is presented, which was not pre-characterized with, 

then interpolation can be performed between the currents to predict the resulting waveform. 

Similarly, if an input slew is presented, that was not used for pre-characterizing, 

interpolation can also take place. 

 

Now consider driving a detailed parasitic network. The output currents from pre-

characterization can be applied to the network at a given timestep. There will be a unique 
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current that will elicit the same voltage on both a lumped capacitance and the network at 

the given timestep. This current is the chosen value for the given timestep, and this 

procedure is reapplied at every subsequent timestep. In other words, there is nothing more 

than application of Iout(Vout)(t). 

 

CCS Timing delay calculation uses advanced interpolation technology to determine a 

current waveform when the input slew and/or output load values do not match those used 

during cell characterization. Additionally, interpolation is used for intermediate values of 

Vdd and temperature by using data from multiple libraries. 

 

 

3.3.4 Characterization for CCS Timing 

Characterizing a cell timing for CCS Timing is very similar to characterization for NLDM: 

an input stimulus is chosen to produce a specific input slew time (Sinp); a load capacitance 

(Cout) is connected to the output pin; and a circuit simulation is run in the same way as 

NLDM. But instead of measuring voltage thresholds at the output pin, current is measured 

through the load capacitor and into the input pin. The current through Cout is used for the 

driver model, and the current into the input pin is used to determine the receiver model. 

 

Figure 3.11: CCS Timing characterization measurements. 

 

These characterization experiments are repeated for a table of different Sinp and Cout 

combinations. The current through Cout is saved for every circuit simulation timestep and 

then reduced to a much smaller set of current and time (i, t) points. The points are chosen 

such that Vout(t) can be accurately reproduced for every timestep during the transition. 

Figure 3.12 provides an example of the complete i(t) waveform and a reduced set of points. 
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Figure 3.12: Current waveform from circuit simulation, and reduced current points. 

The current and voltage at the input pin are saved and then used to determine C1 and C2 

values such that gate-level delay calculation can closely match times to the delay threshold 

and to the second slew threshold at the input pin. 

An additional piece of information, input reference time, is necessary in order to calculate 

cell delays. The reference time is the simulation time at which the waveform at the input 

pin crosses the rising or falling delay threshold (often this is 50% of Vdd). 
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Chapter 4  

OpenTimer: A High-Performance Timing 

Analysis Tool 

 

4.1 Introduction 

The lack of accurate and fast algorithms for high-performance timing analysis tool with 

incremental capability has been recently pointed out as a major weakness of existing timing 

optimization flows [11]. In deep submicron era, timing-driven operations are imperative for 

the success of optimization flows. Optimization transforms change the design and therefore 

have the potential to significantly affect timing information. The timer must reflect such 

changes and update timing information incrementally and accurately in order to ensure 

slack integrity as well as reasonable turnaround time and performance. However, such 

process requires extremely high complexity especially when path-based analysis is 

configured. A high-quality incremental timer capable of path-based analysis is definitely 

advantageous in speeding up the timing closure. 

 

Figure 4.1: Performance improvement of incremental timing to full timing on one benchmark from. 

 

The significance of incremental timing is demonstrated in Figure 4.1. It is observed that the 

runtime improvement keeps growing as the number of optimization transforms increases. 

One obvious reason is that once the critical paths in a design have been reported, the 

optimization tool would optimize the logic (e.g., gate sizing, buffer insertion) so as to 

overcome the timing violations. This subtle change can affect up to the majority of a 

circuit, whereas in reality, depending on the trace of critical paths, the timing update may 

only involve a small portion of the circuit. Since an optimization tool can perform millions 

of logic transformations, it is important that the timing profile is kept up-to-date in an 
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incremental fashion. Otherwise, optimization tools cannot support fast turnaround for 

timing-specific improvement, which dramatically degrades the productivity. 

 

 

Figure 4.2: Program flow of OpenTimer. 

 

Besides being incremental, one important feature of a practical timer is the capability of 

common path pessimism removal (CPPR). CPPR is a path-specific timing update that 

intends to remove redundant pessimism incurred by common segments between data paths 

and clock paths. Unwanted pessimism might force designers and optimization tools to 

waste an unnecessary yet significant amount of efforts on fixing paths that meet the 

intended clock frequency. This problem becomes even more critical when design comes to 

deep submicron era where data paths are shorter, clocks are faster, and clock networks are 

longer to accommodate larger and complex chips. However, the real problem is the amount 

of pessimism that needs to be removed is path-specific. Computational complexity and 

space requirements for CPPR typically grows exponentially as the design size increases, 

not to mention the challenge in conjunction with incremental timing analysis. 

Consequently, an open-source high-performance timing analysis tool, OpenTimer, is 

presented here and an overview of it is shown in Figure 4.2. Three key features of 

OpenTimer are highlighted below: 

 Parallel framework. OpenTimer applies a pipeline task scheduler as the central engine. 

Critical tasks such as timing propagation and endpoint slack calculation are scheduled 

into the pipeline so as to overlap their runtimes. 

 Incremental capability. OpenTimer precisely and minimally captures the features that 

are key to incremental timing. With lazy evaluation, one can be able to keep computation 

as minimum as necessary. 

 Path-based analysis. OpenTimer represents the path implicitly using efficient and 

compact data structure, yielding a significant saving in both search space and search time 

for CPPR. 
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4.2 Incremental Timing Analysis and CPPR 

Various stages of the design flow such as logic synthesis, placement, routing, physical 

synthesis, and optimization facilitate a need for incremental timing analysis. During these 

stages, local operations such as gate sizing, buffer insertion, or net rerouting can modify 

small fractions of the design and significantly change both local and global timing 

landscape. As the example shown if Figure 4.3, a change on gate B3 has the potential to 

affect up to the majority of the circuit (downstream timing). Nevertheless, depending on the 

trace of critical paths, only a small portion of the timing would need to be updated. For 

instance, if such a change does not affect the arrival time at I1:o, then every downstream 

timing after I1:o is unaffected. 

 

Figure 4.3: An example of sequential circuit network.  

 

In addition to incremental processing, the capability of CPPR is another important 

component for modern timing analysis tools. Optimization transforms on the data network 

have no impact on CPPR credit (or CPPR adjustment) for any given launch-capture flip-

flop (FF) pairs. Because the clock paths are not changed, any cached value for CPPR credit 

can be reused. However, in reality many optimization transforms are applied to the clock 

network, such as resizing a buffer or adding or deleting buffers on the clock tree in order to 

meet slack or skew targets. These changes can potentially affect a large number of data 

paths and slacks, and these data points must be recomputed with updated CPPR credits. 

Further, in some cases, changes on the clock network may not even impact CPPR for any 

data paths at all. As the example shows in Figure 4.3, the change on B3 can impact the 

CPPER credit for the launch-capture FF pair FF2 and FF3, while a change on B4 does not 

affect the CPPR credit for any FF pair. Therefore, the challenge of incremental CPPR is 

correctly identifying what data points are affected by which changes in an incremental 

manner. 
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4.3 NLDM Representation and Data Structures 

In this chapter, a presentation of how OpenTimer utilizes the NLDM model, along with the 

respective data structures, will take place. It will illustrate how graphs are constructed, and 

analyze briefly the structure of its members. 

 First of all, comes the template of the LUT. It consists of two variables, variable_1 

and variable_2, along with two indexes, index_1 and index_2. The valid types of the 

two variables are input_net_transition and total_output_net_capacitance and each 

of them can be assigned either on the first or the second variable. Index values have to 

be floats considering the corresponding value of the variable. Such a table template 

would be like this: 

lu_table_template (a_template_3x3) { 

       variable_1 : input_net_transition; 

       variable_2 : total_output_net_capacitance; 

       index_1 (“0.1, 0.3, 0.7”); 

       index_2 (“0.16, 0.35, 1.43”); 

} 

and the LUT in OpenTimer is stored in a struct with optional enum variables and 

vectors of floats indices like this: 

struct LutTemplate { 

       std::optional<LutVar> variable1; 

       std::optional<LutVar> variable2; 

       std::vector<float> indices1; 

       std::vector<float> indices2; 

} 

 Moving on to graphs, an introduction to cells will take place. After reading the LUT 

templates, the first instance the parser reads from the liberty file is a cell. Every early 

and late library has an equal number of cells with each other, in order to undergo a 

valid timing simulation. Cells “hold” the information referring to every pin of the gate 

described. These pins are members of an std::unorderd_map. 

 Pins now, can be input, output, or inout. Thus, they have optional members, mostly 

float, which describe the min and max capacitance and the max transition they can 

supply. Furthermore, most importantly pins have a vector of timings, each of them 

characterizing timing information for a certain timing arc. 

 This timing information is nothing more than delay and transition values concerning a 

respective arc. So, a NLDM timing example should be like this: 
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timing () { 

related_pin : “INP1”; 

timing_sense : negative_unate; 

cell_rise : (a_template_3x3)   { 

index_1 (“0.1, 0.3, 0.7”); 

index_2 (“0.16, 0.35, 1.43”); 

values (“0.0513, 0.1537, 0.5280”, \ 

“0.1018, 0.2327, 0.6476”, \ 

“0.1334, 0.2973, 0.7252”); 

} 

rise_transition (a_template_3x3) { 

index_1 (“0.1, 0.3, 0.7”); 

index_2 (“0.16, 0.35, 1.43”); 

values (“0.0417, 0.1337, 0.4680”, \ 

“0.0718, 0.1827, 0.5676”, \ 

“0.1034, 0.2173, 0.6452”); 

} 

cell_fall (a_template_3x3) { 

index_1 (“0.1, 0.3, 0.7”); 

index_2 (“0.16, 0.35, 1.43”); 

values (“0.0617, 0.1537, 0.5280”, \ 

“0.0918, 0.2027, 0.5676”, \ 

“0.1034, 0.2273, 0.6452”); 

} 

fall_transition (a_template_3x3) { 

index_1 (“0.1, 0.3, 0.7”); 

index_2 (“0.16, 0.35, 1.43”); 

values (“0.0817, 0.1937, 0.7280”, \ 

“0.1018, 0.2327, 0.7676”, \ 

“0.1334, 0.2973, 0.8452”); 

} 

. . . 

} 

 

Similarly for setup/hold constraint. These are stored in a timing struct with the 

following optional members: 
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struct Timing { 

std::optional<TimingLut> cell_rise; 

std::optional<TimingLut> cell_fall; 

std::optional<TimingLut> rise_transition; 

std::optional<TimingLut> fall_transition; 

std::optional<TimingLut> rise_constraint; 

std::optional<TimingLut> fall_constraint; 

} 

 

Where TimingLut being another struct, which holds the name of the LUT 

template, as also the indices and values with the form of vectors of floats. 

 

For further explanation an illustration of class hierarchy and how the timing information is 

stored is given in Figure 4.4. As it can be seen, a celllib contains all cells characterized in a 

liberty file, which are stored in an unordered map using as key their name. 

  

Each cell, contains a group of pins, called cellpins, that characterize the input inner or 

output pins of the cell. These pins are also stored in an unordered map. 

 

A cellpin now, contains every timing member utilized by any timing arc which contains 

this pin. Timings are stored in a vector.  

 

Moving on, a timing includes any necessary information for the STA engine, such as rise 

and fall delays, transitions and constraints. As seen in the figure, these members are 

optional, meaning that a timing may or may not contain any of them. That is, a timing 

characterized in the liberty file can be read without any of these members without 

producing an error.  

 

Finally, each of these timing members is a TimingLut, a LUT model containing a pointer to 

the LUT template, the value of the two indexes; index1 and index2 which can either be 

input net transition or total output capacitance and the table which keeps the values. 

Indexes are stored in the indices, which along with the table are vector types. Of course 

these are not the only members of each instance, as shown be the three dots at the end of 

each one. 
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It is essential to illustrate how graphs are constructed. A depiction of it is given in Figure 

4.5. Graphs are constructed through a Verilog (.v) input file, starting with a gate.  

 

A gate apart from its name includes the main parts of the graph. These are the gate‟s pins 

and the arcs between them. It also contains a CellView instance, where CellView is of type 

std::array<const Cell*, MAX_SPLIT>, meaning it is a pointer to a Cell depending on 

transition enum value (RISE/FALL). 

 

Pins can relate to primary inputs, primary outputs or Cellpins of the corresponding cell of 

the early/late CellLib. This is described by the member handle which is a variant of type 

Figure 4.4: Liberty timing information storage. 
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<PrimaryInput*, PrimaryOutput*, CellpinView>, where CellpinView is a similar to the 

Cell array, std::array<const Cellpin*, MAX_SPLIT>. Pins also contain two lists, one for 

their input arcs and another for their output ones. 

 

Arcs finally, apart from members, contain another handle variant. This is of type 

variant<Net*, TimingView>, meaning it can either be a net arc or a cell arc. TimingView is 

another array similar to CellView and CellpinView ones‟, which is of type array<const 

Timing*, MAX_SPLIT>. The use of it will be explained shortly. 

 

Each timing has a correspondence with an arc, either early or late. This relation has to be 

unique, meaning one arc indicates to an exact timing and vice versa. An arc can be a net 

arc, or a cell arc, having difference between them in calculating the output delay and slew 

respectively. 

 

 

Figure 4.5: Graph construction from Verilog file. 

 

An introduction of how graph construction and liberty information relate is shown in Figure 

4.6. A Gate points to a Cell, a Pin relates to a Cellpin only if the variant has the 

corresponding value. Finally, if an arc is considered as a Cell arc, then it utilizes the 

relevant timing in order to perform any timing procedure, such as slew or delay 

propagation, using the respective LUT instances. 
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Figure 4.6: Liberty information and graph construction correlation. 

 

Conclusively, a peek on how STA engine is working will be given briefly. While the 

circuits‟ graph is traversed, in a pipelined way, any timing information of each node is 

propagated through Arcs. If an arc is considered a cell arc, then timing information is used 

to calculate the arrival time, arc delay and slew at pins, based on the NLDM model. On the 

other hand, if this arc is a Net arc, then the Elmore Delay model is used. 

 

 

 

 

 

 

 

 



40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Chapter 5  

Integration of CCS Timing Model into 

OpenTimer 

 

5.1 The Need for Better Timing Accuracy 
 

The necessity of higher accuracy in modern industry has already been mentioned. 

Efficiency and speed have been constantly rising, along with power reduction.  

In this thesis the goal is to provide a state-of-the-art timing tool, OpenTimer, with an even 

more accurate delay model; and this is nothing else than CCS. 

 

5.2 CCS Timing Information and Data Structures 
 

The idea was to keep timing and NLDM data structures intact and just extend the timing 

structures with the CCS information and the corresponding timing (slew/delay and C1/C2 

capacitance) calculation methods. As shown on a previous chapter CCS timing model is 

described by two major parts; the driver model which replaces the input driving cell arc 

and the output receiver model which replaces the output load pins. 

In this section, a demonstration will be given of how the driver and receiver CCS timing 

information is stored and used inside the STA engine. 

Starting with the LUT templates, an introduction to a new variable takes place, meaning 

there is now a variable_3, which can only have one valid value; time. Time is essential 

because along with the values of the LUT, correspond to the CCS current waveforms 

(which are used to calculate output slew, cell delay and C1/C2 receiver capacitances). 

These time values are float values and are stored in an indices_3, which has to come along 

with the third variable. Thus, the CCS LUT templates (output current templates) must 

comply to the following structure: 

output_curret_template (ccs_template) { 

variable_1 : input_net_transition; 

variable_2 : total_output_capacitance; 

variable_3 :  time; 

} 
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To achieve that in OpenTimer, there has been an addition to the enum class LutVar of a 

new TIME value. Therefore, struct LutTemplate now having this form: 

struct_LutTemplate { 

std::optional<LutVar> variable1; 

std::optional<LutVar> variable2; 

std::optional<LutVar> variable3; 
 

std::vector<float> indices1; 

std::vector<float> indices2; 

std::vector<float> indices3; 

} 
 

 
 

Driver Model 
 

Timing arcs, as already mentioned have a 1-1 relation with a unique timing, kept hold in a 

vector of timings by the referenced pin. To support the CCS driver model, timing has to be 

supplied with output current information with its reference time, indicated by the respective 

transition and capacitance values. 
 

To achieve this, the solution was found in a form of a map, actually map of maps, with the 

first key being transition and points to the inner map. As for the inner map, the key is 

capacitance and the value is a pointer to a struct. To be more precise, two of these maps 

were added, one for rise transition and one for fall, exactly like the all the other members of 

the timing struct. This is the CCS form of timing struct: 
 

struct Timing { 

std::optional<TimingLut> cell_rise; 

std::optional<TimingLut> cell_fall; 

std::optional<TimingLut> rise_transition; 

std::optional<TimingLut> fall_transition; 

std::optional<TimingLut> rise_constraint; 

std::optional<TimingLut> fall_constraint; 
 

current_map output_current_rise; 

current_map output_current_fall; 

} 

 
Because of lack of space, where current_map : 

std::map<float, std::map<float, OutputCurrentWaveform*>> 

 
OutputCurrentWaveform is another struct, which contains the mentioned reference time as 

a float value and a TimingLut member, where TimingLut has also an indices3 now. This is 

the struct: 
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struct OutputCurrentWaveform { 

float reference_time; 

TimingLut output_current; 

} 

 
The corresponding information from the liberty file is member  of timing related to a pin: 

 
timing { 

related_pin : “INP”; 

. 

. 

. 

output_current_rise () { 

vector (output_current_template) { 

reference_time : float; 

index_1 (float); 

index_2 (float); 

index_3 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

} 

} 

 
Notice that index1 and index2 are one dimensional and the matrix containing 

the values has the size of index3. This affects the corresponding indices.  

 
Furthermore, when the parcer reads the keyword vector, a new element inserts 

to the map, containing the information of the vector. 

 
 
 

Receiver Model 
 

Moving on to receiver model, in order to represent the capacitance that an input pin 

presents to driving cells, four TimingLut objects where added considering the respective 

transition: 

 
 std::optional<TimingLut> receiver_capacitance1_rise; 

 std::optional<TimingLut> receiver_capacitance1_fall; 

 std::optional<TimingLut> receiver_capacitance2_rise; 

 std::optional<TimingLut> receiver_capacitance2_fall; 

 
This capacitance information can either be characterized as a two-dimensional 

LUT in a timing arc or as a one-dimensional LUT in an input pin. If the 

characterization takes place in timing the LUT will have two-dimensional 

values and two indexes, while otherwise one-dimensional and one index. 



44 
 

An example of each case will be given: 

 
 characterization in timing-level 

 
timing { 

. . . 
receiver_capacitance1_fall (template_name) { 

index_1 (“float, . . ., float”); 

index_2 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

receiver_capacitance1_rise (template_name) { 

index_1 (“float, . . ., float”); 

index_2 (“float, . . ., float”); 

values (“float, . . ., float”); 

}  

receiver_capacitance2_fall (template_name) { 

index_1 (“float, . . ., float”); 

index_2 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

receiver_capacitance2_rise (template_name) { 

index_1 (“float, . . ., float”); 

index_2 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

} 

 
 characterization in pin-level 

 
pin (PinName) { 

direction : input;  /* or “inout” */ 

receiver_capacitance1_fall (template_name) { 

index_1 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

receiver_capacitance1_rise (template_name) { 

index_1 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

receiver_capacitance2_fall (template_name) { 

index_1 (“float, . . ., float”); 

values (“float, . . ., float”); 

} 

receiver_capacitance2_rise (template_name) { 

index_1 (“float, . . ., float”); 
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values (“float, . . ., float”); 

} 

} 

 

The data structs which have to be changed in order to support the CCS timing information 

are the following: 

 
 
 
 
 
 
 
 

 

 

 

1. The Cellpin struct (Figure 5.1): must contain the 1-dimension receiver capacitances. 

2. The Timing struct (Figure 5.2): must include the 2-dimension receiver capacitances   

and the output current maps. 

 

 

 

It is essential to mention that the STA engine procedure, timing information storage and 

graph construction remain the same as the initial NLDM-based version. 

Figure 5.1:  CCS information added to Cellpin. 

Figure 5.2: CCS information added into Timing. 
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However, new methods had to be implemented in order to calculate slew, delay and C1/C2 

capacitance values based on the CCS Timing models. Those methods include: 

 Methods to find the closer CCS Timing currents (from Liberty) for any (transition, 

capacitance) breakpoints during the STA algorithm. 

 

 Transformation of CCS Timing current waveforms to Voltage waveforms (in order 

to compute slew and delay). 

 

 Advanced interpolation techniques for interpolating on closer waveforms. 

 

 An iterative algorithm for computing C1/C2 receiver capacitances that lead to the 

worst (min or max slew/arrival time) on each pin during the STA algorithm. 

 

Concerning the STA engine, the only thing that changes is that the calculation of C1/C2 

capacitances is added, while the routines calculate the worst arrival time, slew and delay at 

pins using our new CCS timing methods. 

 

5.3 Results 

In order to evaluate the methodology we followed to integrate CCS in OpenTimer, we tried 

to test its results compared to the results of the golden STA timer, Synopsys PrimeTime. 

They were both tested on the same circuits and the reported results were on the same 

critical path. The goal was to compare the reported Arrival Times (AT) on the endpoint of 

the critical path and figure whether they were close enough or not. Both NLDM and CCS 

models were used for each of the two tools so that we could come to an overall deduction.  

Tables 5.1 and 5.2 show the computed NLDM/CCS AT at the endpoint of the critical path 

for both OpenTimer and Synopsys PrimeTime for a subset of ISCAS benchmarks. Each of 

these circuit were synthesized using the NANGate 45nm [12]. 

Unfortunately, the full path cannot be given, because its width is prohibitive for the table 

size. Therefore, only the startpoint and endpoint of each circuit are given along with their 

respective transitions and the path‟s split. 
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Circuit 

 

 

Critical Path 

Endpoint AT (ns) 

With SPEF Parasitics 

NLDM CCS 

OpenTimer PrimeTime OpenTimer PrimeTime 

 

c17 

Split: late 

Startpoint: nx6 fall 

Endpoint: nx22 rise 

 

0.0649447 

 

0.06421547 

 

0.0653241 

 

0.06488016 

 

c2670 

Split: late 

Startpoint: n2104 rise 

Endpoint: n329 rise 

 

0.692842 

 

0.67869568 

 

0.701103 

 

0.70696133 

 

c7552 

Split: late 

Startpoint: n18 fall 

Endpoint: n338 fall 

 

1.02616 

 

0.98675621 

 

1.03168 

 

1.08759308 

 

s27 

Split: early 

Startpoint: G3 fall 

Endpoint: G17 rise 

 

0.0588331 

 

0.05837075 

 

0.0593287 

 

0.05886924 

  

 

s1196 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: G550 rise 

 

0.724291 

 

0.70778012 

 

0.733295 

 

 0.71854591 

 

s1494 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: v13_D_24 rise 

 

0.662193 

 

0.65124935 

 

0.673248 

 

0.70559676 

Table 5.1: OpenTimer and PrimeTime  STA results including SPEF parasitics. 
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Circuit 

 

 

Critical Path 

Endpoint AT (ns) 

Without SPEF Paracitics 

NLDM CCS 

OpenTimer PrimeTime OpenTimer PrimeTime 

 

c17 

Split: late 

Startpoint: nx6 fall 

Endpoint: nx22 rise 

 

0.0592147 

 

0.05849564 

 

0.059541 

 

0.06233476 

 

c2670 

Split: late 

Startpoint: n2104 rise 

Endpoint: n329 rise 

 

0.627649 

 

0.61069620 

 

0.634376 

 

0.66361535 

 

c7552 

Split: late 

Startpoint: n18 fall 

Endpoint: n338 fall 

 

0.828644 

 

0.82024121 

 

0.833932 

 

0.92549127 

 

s27 

Split: early 

Startpoint: G3 fall 

Endpoint: G17 rise 

 

0.0545482 

 

0.05405520 

 

0.0550113 

 

0.05700241 

 

s1196 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: G550 rise 

 

0.618879 

 

0.61076224 

 

0.625704 

 

0.63556525 

 

s1494 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: v13_D_24 rise 

 

0.569857 

 

0.56639723 

 

0.578867 

 

0.61416802 

Table 5.2: OpenTimer and PrimeTime STA results without SPEF parasitics. 

 

Experimental results illustrate that by embedding CCS Timing model into OpenTimer we 

can achieve a better timing accuracy, especially when not using SPEF parasitics. As we can 

observe, for every circuit the AT using the OpenTimer‟s CCS model is closer to the golden 

CCS AT of PrimeTime, than the one computed using the OpenTimer‟s NLDM model. 

Note that for the above results, C1/C2 capacitances are computed using the NLDM model 

because we were confronted with a small issue using the iterative algorithm for computing 

C1/C2 capacitances based on the CCS model. Thus, for the case where SPEF is used, CCS 

ATs computed by OpenTimer and PrimeTime are not fairly comparable. The accuracy 

would be even better if the C1/C2 were computed based on the CCS model. Nonetheless, 

the results seem to have a similar behavior to the PrimeTime ones‟, meaning that both 

increase/decrease from NLDM to CCS in a same manner. 

Also, we have to mention that for the case that no SPEF is given for the current circuit, 

PrimeTime by default uses NLDM C1/C2 capacitances if CCS Timing model is chosen for 

STA. This means that for this case OpenTimer and PrimeTime results are obtained using 

the same methodology and the results are directly comparable. 
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Another reason to enforce us not to use SPEF parasitcs is the difference on how the two 

timers model the interconnect timing. OpenTimer utilizes the Elmore delay model while 

PrimeTime on the other hand, uses advanced techniques in modeling the interconnect 

delay. 

On the last table (5.3), we provide the accuracy improvement between OpenTimer‟s 

NLDM and CCS results in regard to the golden STA result, coming from PrimeTime‟s 

CCS model. The resulting accuracies are derived from the percentage error calculation 

method and refer to the results without SPEF parasitics. 

 

 

 

 

Circuit 

 

 

Critical Path 

 

Accuracy Error (%) 

OT NLDM / PT 

CCS 

OT CCS / PT 

CCS 

 

c17 

Split: late 

Startpoint: nx6 fall 

Endpoint: nx22 rise 

 

5.3 

 

4.7 

 

c2670 

Split: late 

Startpoint: n2104 rise 

Endpoint: n329 rise 

 

5.7 

 

4.7 

 

c7552 

Split: late 

Startpoint: n18 fall 

Endpoint: n338 fall 

 

11.7 

 

11 

 

s27 

Split: early 

Startpoint: G3 fall 

Endpoint: G17 rise 

 

4.5 

 

3.6 

 

s1196 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: G550 rise 

 

2.7 

 

1.5 
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s1494 

Split: late 

Startpoint: blif_clk_net rise 

Endpoint: v13_D_24 rise 

 

7.8 

 

6.1 

Table 5.3: Accuracy error between OpenTimer NLDM-CCS and the golden CCS                                             

PrimeTime. 

 

As it can be easily seen, OpenTimer‟s CCS is much closer to the golden PrimeTime‟s CCS, 

being 1.02%, on average and up to 1.7% more accurate than OpenTimer‟s NLDM. 

Furthermore, we should keep in mind that the accuracy improvement would be even more 

prominent for large industrial designs where the critical path consists of thousands or even 

millions of gates. Finally, even better results are expected for smaller process geometries, 

since for sub-20nm technologies the NLDM model is insufficient. 
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Chapter 6  

Conclusion 

 

In conclusion, Static Timing Analysis is a commonly used simulation method in order to 

compute the expected timing of a digital circuit without requiring to simulate the full 

circuit, using a transistor level simulator. The attempts to achieve higher accuracy, more 

efficiency, faster models and better results generally have been continuously and 

consistently going on. 

In the matter of accuracy, NLDM is an efficient one, but CCS has even better results, as 

this thesis managed to prove, with the successful integration of CCS timing model to 

OpenTimer. As shown in the results, higher accuracies can be accomplished with the use of 

it. Using circuits without SPEF parasitics, it can produce 1.02% on average and up to 1.7% 

more accurate results than NLDM model.  

 

6.1 Future Work 
 

An interesting addition to this project could probably be the integration of a more accurate 

wire delay model, rather than Elmore delay, thus providing even better results to the final 

timing simulation of the circuit. 
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