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MepiAnym

AkpLBn povtéAa BLBALOBNKwWY TOU XpNOLUOTIOLOUVTOL Yia Vo TIEpLYpAouV TN
ouvBetn ouumneplpopd twv tpaviiotop Twv standard cells, e8IKA 0 UIKPEC
texvoloyleg, umopoUv va mapoxBouv pe xopaktnplopd. O  pnxavikol
urnoAoylotwv Bacilovtal, oe peyalo Babuod, oe auti tnv akpifela wote va
uAomotoouv Yndlakn oxedlaon Kol MPEMEL va €lval amoOAUTA olyoupol OTL
XPNOLUOTIOOUV  aLoTioTeG TinyéC. Auotuxwg ol PBLpAloBrnkeg avolxtou
nieplexopévou Sev umopouv va npoodépouv mAnpn Composite Current Source
(CCS) xapaktnplopo, n omnola eivat pLo texvoloyia oxeSlaopol HOVIEAWVY TTOU
npoodépouv pla mMANRpn Avon PBaclopévn OTO peEVUMA yla XPOVOo, LoXU Kal
Bopupo.

To kivntpo yla autr tnv SutAwpatik §60nke amod tnv avaykn yla va KaAupOel
To Kevo otov CCS xapakinplopd Kol HOVTIEAOTOLNON. XTI TEPLOCOTEPEC
TIEPUTTWOELG, ME MO OUTTAN TIOPATAPNON OTLG avolXteC BLBALOONAKEG pmopolpe
Vo TIOPOTNPAOOUUE OTL N Hoviehomoinon €006wv Kol &Eaptnong
KATAOTACEWV TapaAeimeTal yia tov CCS power, odnywvtag £€ToL 0 avakpLpn
HOVTEAQ.

MNpoomaBolpe OxL amAd va KAVOUUE €vav owotd CCS xapaktnplopo aAAd kot
va dnuloupynooupe €va oAokAnpwuévo poviédo BLBAoBnkng, oe doun
Liberty, to omoio Ba cupmeplAapBAavel pn ypappLlkd povtéAo kabuotépnong
(NLDM), pn ypaupiké povtého oxvog (NLPM), CCS timing kat CCS power. MNa
Vv vAomoinon xpnowlomnoloUue to epyaldeio Siliconsmart, mapéxetat ano tnv
Synopsys, To omoio mapdysl akppr povtéda BLBAoBnkwy eite and to pundév
eite Eavayapaktnpilovrag éva umapxwv. MNa va dtapopdwooupe To epyaleio
KOL VO TIPAYUATOTOLOOUME OAn  tnv  Swadlkaoia  xapoKTnpLopoU
XPNOoLUoToloU UE oKpUTTaKLa o€ tcl.

NEEELG KAELOLAL:
Standard Cell, Xapaktnplopog, Composite Current Source, Liberty, Mn pappiko
Movtého KaBuotépnong, Mn MNpappikoé Movtého loxvog, Siliconsmart, Synopsys, Tcl
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Abstract

Accurate library models used to describe complex transistor behavior of cells,
especially in small process nodes, can be produced by the process of
characterization. Computer engineers rely, to a large extent, on this accuracy
in order to implement their digital designs and must be totally sure that they
use reliable sources. Unfortunately open libraries cannot deliver a completed
Composite Current Source (CCS) characterization, a modeling technology which
delivers a complete current based solution for timing, power and noise.

This thesis was motivated by the need for filling the gap on CCS power
characterization and modeling. In most cases, by a simple observation in open
libraries we can see that state dependency and input-only modeling is omitted
for CCS power, leading to inaccurate models.

We try not only to make a correct CCS power characterization, but also to
create a completed library model, in Liberty format, including Non Linear Delay
Model (NLDM), Non Linear Power Model (NLPM), CCS timing and CCS power.
For the implementation we use the Siliconsmart tool, provided by Synopsys,
which generates accurate model libraries either from scratch or by
recharacterizing an existing once. In order to configure the tool and run the
characterization process we use tcl scripts.

Keywords:
Standard Cell, Characterization, Composite Current Source, Liberty, Non Linear Delay
Model, Non Linear Power Model, Siliconsmart, Synopsys, Tcl script
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Chapter 1

Introduction

1.1. Problem description

Designing at nanometer process technologies, especially at advanced nodes,
requires high accuracy and therefore library models must accurately capture the
complex transistor behavior of cells. Composite Current Source (CCS) is a state of the
art industry gate level model which delivers a complete current-based solution for
timing, noise and power. While there are many open-source standard cell libraries
available which deliver a full CCS-timing and noise characterization, CCS-power is
deficient and imprecise. Power analysis of integrated circuits based on these libraries
is untrustworthy and the need for accuracy is increasingly rising.

1.2. Thesis contribution

Through a detailed characterization not only for CCS-power but also for NLDM,
NLPM and CCS-timing, this thesis forms a complete guide that anyone can use to
implement his own characterization including timing and power analysis. Our
experiments were conducted on NanagateOpenCellLibrary PDK45 [1] and
Globalfoundries 40nm low power (LP) [2].

For the implementation we used the Siliconsmart tool, provided by Synopsys, which
is a comprehensive characterization solution for standard cells and supports for the
latest modeling formats including all CCS models. SiliconSmart is ready for
characterizing and modeling libraries at advanced technology nodes, such as 16-nm
and 14-nm. Its built-in FineSim™ simulation technology and tight integration with the
gold-standard HSPICE® circuit simulator enable characterization and signoff accuracy

[3].

Starting from setting up Siliconsmart on our pc, we created and executed tcl scripts
in order to call and give the suitable parameters to the tool. The results of
characterization are stored in Liberty modeling format (.lib) and can be easily
accessible.



1.3. Formation of the thesis

In chapter 2 we give background material on standard cell libraries and
characterization. We also introduce Siliconsmart, explaining all available
characterization flows and choosing the one that we are going to use in this thesis. In
chapter 3 we give information about timing characterization analyzing NLDM and
CCS-timing. Furthermore, in chapter 4 we give information about power
characterization analyzing NLPM and CCS-power. We provide also in chapter 5
detailed information about how characterization is done so that anyone with basic
characterization knowledge can run a flow. Finally in chapter 6 we make a conclusion
and give some tips for further future improvements of our implementation.



Chapter 2

Characterization of Standard Cell Library

2.1. Standard cell

A Standard cell [4] is a group of transistor and interconnect structures that provides
a Boolean logic function (e.g., AND, OR, XOR, NOR gate) or a storage function
(flipflop or latch). The simplest cells are direct representations of the element NAND,
NOR and XOR Boolean function, although cells of much greater complexity are
commonly used (such as a 2-bit full-adder, or muxed D-input flipflop). The cell's
boolean logic function is called its logical view: functional behavior is captured in the
form of a truth table or Boolean algebra equation (for combinational logic), or a
state transition table (for sequential logic).

2.2.  Standard cell Library

A standard cell library is a collection of low-level electronic logic functions such as
AND, OR, INVERT, flip-flops, latches, and buffers. These cells are realized as fixed-
height, variable-width full-custom cells. The key aspect with these libraries is that
they are of a fixed height, which enables them to be placed in rows, easing the
process of automated digital layout. The cells are typically optimized full-custom
layouts, which minimize delays and area.

A typical standard-cell library contains two main components:

e Library Database - Consists of a number of views often including layout,
schematic, symbol, abstract, and other logical or simulation views. From this,
various information may be captured in a number of formats including the
Cadence LEF format, and the Synopsys Milkyway format, which contain
reduced information about the cell layouts, sufficient for automated "Place
and Route" tools.

e Timing Abstract - Generally in Liberty format, to provide functional
definitions, timing, power, and noise information for each cell.



2.3. Library Characterization

Cell library characterization is a process of analyzing a circuit using static and
dynamic methods to generate models suitable for chip implementation flows. It is
needed because accurate library characterization is the cornerstone of successful
digital implementation. Synthesis, place-and-route, verification and signoff tools rely
on detailed model libraries to accurately represent the timing, noise and power
performance of digital and memory designs. The complexity of cell libraries
dramatically increases as designs migrate to smaller process nodes. Process
variability on these nodes requires fast characterization on hundreds of corners.
Furthermore, foundries are constantly updating SPICE models, requiring repeated
characterization runs. Low-power SoC design further complicates the
characterization process by introducing complex cells such as multi-bit flip-flops,
multivoltage level shifters and retention logic, which must be accurately
characterized to ensure effective digital implementation across multiple power
domains.

2.4. Software Tool for Characterization

The Siliconsmart tool [3] is used for the process of characterization in this thesis. It is
a comprehensive characterization solution for standard cells, 1/0, complex cells and
memory. It generates accurate model libraries tightly correlated with Synopsys’
digital implementation tools. Its built-in FineSim simulation technology and tight
integration with the gold-standard HSPICE® circuit simulator enable characterization
and signoff accuracy. SiliconSmart supports all of the standard models, including
NLDM (non-linear delay model), CCS (composite current source) and AOCV
(advanced on-chip variation) models.

2.5. Characterization Flows

A critical point is the selection of the characterization flow. There are two sections to
determine it as described below [5]:



2.5.1.Selection by starting point

Figure 2.1 Selecting Characterization Flow



As we can notice in figure 2.1 that there are six different paths depending on the
Liberty model availability and the function extraction from the netlist or the Liberty.

2.5.2.Selection by characterization approach
The basic approaches for characterizing with the Siliconsmart tool are:

e Recharacterization Flow -- This approach will recharacterize data in an
existing Liberty model or add new data to an existing Liberty model.

= Pure Recharacterization Flow -- this flow extracts all necessary data from
an existing Liberty model. It requires minimal input from the user.

= Functional Recognition Flow -- this specialized flow recognizes the
function from the netlist of a cell and extracts the slews/loads/timing arcs
from an existing Liberty model, removing the dependency on the function
attributes in a Liberty model.

= Skeleton Liberty-Based Flow -- this flow generates a new Liberty model
from scratch (employing user inputs for load/slope/when conditions)
while preserving the attributes and other groups from the reference
Liberty. Any processing performed previously on the reference Liberty
can be carried over into the brand new Liberty model.

* Incremental Characterization Flow -- this is another specialized form of
the Recharacterization flow which allows the user to only characterize a
new view and adds to an existing Liberty model while preserving all the
original data as is. An example would be to add CCS-Noise to an existing
NLDM Liberty.

e Function-Based Flow -- The function-based approach uses functions to
automatically determine configuration.

e Structure-Based Flow -- A function-based approach that uses functions and
automatic vector simulation based on the structure of the circuit.

e Sequence-Based Flow -- The sequence based approach adds a user defined
input stimulus to specify arcs to be characterized and the sequence to be
performed, without using automated methods.

In this thesis we work with skeleton liberty-based flow. This flow maintains only the
attributes and structure of the Liberty while using recharacterization to create a new
Liberty model. This is primarily useful in flows where the user can provide custom
load/slope/when conditions but wants to keep the attributes, custom library
modifications, headers, comments, etc., from the imported Liberty. This flow uses
the -skeleton switch, available for the import and model commands, which does the
following:



e The SiliconSmart tool will discard all timing, constraint, internal_power, and CCS
timing/power/noise tables from the reference Liberty.

e As usual, an instance file will be created in the Scharpoint/control directory for
each cell with the interface and functional information. All of the load/
slope/when conditions from the reference Liberty will be discarded.






Chapter 3

Timing Models and Characterization

3.1. Timing Models

The techniques that Siliconsmart uses, and we are interested in, to capture the
timing characteristics of standard cells in a library are [5]:

¢ Timing Measurements
e Constraints

3.1.1. Timing Measurements

The most basic timing measurements are the propagation delay through a cell from
an input to an output and the output signal transition time. For basic combinational
cells, this means applying a range of input transitions to the cells over a range of
output loads and measuring the delay and output transition times. The results are
two-dimensional tables, as we can see in figure 3.1, of delays and transition times
indexed by input transition time and output load [6].

lu table template (waveform template) |

variable 1 : input net transition;

variable 2 : normalized voltage;

index 1 ("0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7");

index 2 ("0.1, 0.2, 0.3, 0.4, 0.5, 0O0.e, 0.7, 0.8, 0.83");

Figure 3.1 Lu_table_template Structure

Propagation delays are measured from the time when the input transition crosses
the logic delay threshold to when the output transition crosses the same threshold.
The threshold is specified as a fraction of the voltage swing of the pin by setting the
pin type parameter logic low_threshold to 50% (default value) in the Pin Type
Definitions block of the configure file.

Similarly the output transition time is measured from the time when the output
signal crosses the low (high) threshold to when the signal crosses the high (low)
threshold for rising (falling) transitions. The thresholds are specified by setting the
pin type parameters logic_low_threshold to 30% and logic_high_threshold to 70% in
the Pin Type Definitions block of the configure file. In figure 3.2 we can see how they
are modeled as a part of the cell library.



/* threshold definitions */

slew lower threshold pct fall : 30.0;

slew upper threshold pct fall : 70.0;
slew lower threshold pct rise : 320.0;
slew upper threshold pct rise : 70.0;
input threshold pet fall : 50.0;
input threshold pct rise : 50.0;
output threshold pct fall : 530.0;
output threshold pct rise : 50.0;

Figure 3.2 Threshold Definitions Model

A timing arc is positive unate if a rising transition on an input causes the output to
rise or not to change and a falling transition on an input causes the output to fall or
not to change as we see in figure 3.3. A negative unate timing arc occurs when a
rising transition on an input causes the output to have a falling transition and a
falling transition on an input causes the output to have a rising transition or no
change. A non-unate timing arc occurs when the output transition cannot be
determined only from the direction of input but will also depend on the state of the
side inputs.

Output: Falling Edge; atB=10

-==n
*
b
L T
AT Cutput: Rising Edge; at B=1
e i #__ _“ ,'———_

!
- I

" Output: Falling Edge; at A=0

X
.F
’
—

Output: Rising Edge; at A=1

Figure 3.3 Timing Arc

An other group of timing measurements is current course models which describes
transitions as a waveform instead of as a single transition time. The format that we
choose to implement is CCS, which is supported by Synopsys, and it stores current
waveforms, originated from converted voltage waveforms, for each point in the
transition tables. CCS waveforms record, specifically, the current through the load
capacitor at a set of time points during the transition and the data is stored in the
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standard Liberty units as we can see in figure 3.4 for output_current_rise block for
different reference times. The reference_time attribute represents the time at which
the input waveform crosses the rising of falling input delay threshold. Index_1 refers
to input transition, index_2 to output capacitance and index_3 to time.

timing{) |

output current rise () |
vector (template name;q) |
reference time : float;

index 1 (float);
index 2 (float);
index 3 ("float,..., float
values (" flcat,..., flocat™);

Figure 3.4 output_current Model

The last timing measurements, that we are interested in, are timing receiver models
which can be divided to arc-level where models are modeled inside a timing() group
and can be modeled for all input pins from where a timing arc originates and pin-
level where models are modeled inside a pin() group and typically modeled for all
those input pins from where no direct timing arc originates.

Timing modeling with CCS is composed of a driver model and a receiver model. The
CCS timing receiver model uses two capacitance values to model the variation of cell
input capacitance during the input signal transition. In conventional two-segment
receiver capacitance models, which we are going to use in this thesis, the voltage
rise (or fall) at in input or inout is divided into two segments and the corresponding
capacitance  values are stored in the receiver_capacitancel_rise/
reciver_capacitancel_fall and receiver_capacitance2_rise/ reciver_capacitance2_fall
groups as we can see in figure 3.5 for an output pin.

11



pin{pin name) |

direction : output; /* or "inout" */
timing({) |

when : "Boolean expression";
mode (mode name, mode val
receiver capacitance() |
receiver capacitancel rise (lu template name) |
index 1("float, ..., float"™);
index 2("float, ..., float");
values("float, ..., float");
1

receiver capacitancel fall (lu template name

receiver capacitancel rise (lu template name

Figure 3.5 receiver_capacitance Model

3.1.2.Constraints

Timing constraints examine the relative timing between two input transitions. The
transitions may occur on two different pins, such as in setup and hold
measurements, or on a single input as in minimum pulse width measurements. In all
cases the measurement seeks to find the minimum spacing that can occur between
the two edges before the cell fails to operate as expected.

As we do not focus on these measurements in this thesis, default constraints
measurements are quite sufficient for us. As a matter of fact, setup, hold, removal
and recovery falling/rising measurements are held in the library. In figure 3.6 we can
see an example of recovery rising case.
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related pin : "CK" ;

sdf_cond : "ENABLE SN === 1'bl" ;
timing type : recovery rising ;
when : "SN" ;

rise constraint(Hold 2 3} {
index_1("0.86117378, 0.08449324, 8.19 5
index 2("0.008117378, 0.08449324, 0.19 5
values("-0.10126, -0.18726, -0.112173",\
"-0.113965, -0.11683, -0.126945",
"_§.180873, -0.183365, -0.18872");

oo e

Figure 3.6 Constraint Measurements

3.2. CCS Timing Characterization

CCS Timing consists of a driver model and a receiver model. The driver model
describes how a timing arc propagates a transition from input to output, and how it
can drive arbitrary RC networks. The receiver model describes the capacitance that
an input pin presents to driving cells [7]

CCS Timing delay calculation uses advanced interpolation technology to determine a
current waveform when the input slew and/or output load values do not match
those used during cell characterization. Additionally, interpolation is used for
intermediate values of VDD and temperature by using data from multiple libraries.

Figure 3.7 Timing Model
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Characterizing a cell timing arc for CCS Timing is very similar to characterization for
nonlinear delay models (NLDM): an input stimulus is chosen to produce a specific
input slew time (Sinp); a load capacitance (Cout) is connected to the output pin; and a
circuit simulation is run in the same way as for NLDM. But instead of measuring
voltage thresholds at the output pin, current is measured through the load capacitor
and into the input pin. The current through Cou: is used for the driver model, and the
current into the input pin is used to determine the receiver model.

Iinp

——-

IC‘,out

Sinp Cout 1

Figure 3.8 CCS Timing Characterization Measurements

These characterization experiments are repeated for a table of different Sinp and Cout
combinations. The current through Cout is saved for every circuit simulation timestep
and then reduced to a much smaller set of current and time (i, t) points. The points
are chosen such that Vou(t) can be accurately reproduced for every timestep during
the transition. Figure 3.9 shows an example of the complete i(t) waveform and a
reduced set of points.

i(t)
008
007
006 I[\\ -
\\
005 7 \\_
/ N

mA

) i —
0.02 \
0.01 \

0.00 T T T T
1.00 1.01 102 103 1.04 105 1.06 1.07
ns

Figure 3.9 Current Waveform from Circuit Simulation and Reduced Current Points
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The current and voltage at the input pin are saved and then used to determine C1
and C2 values such that gate-level delay calculation can closely match times to the
delay threshold and to the second slew threshold at the input pin.

An additional piece of information, input reference time, is needed in order to
calculate cell delays. The reference time is the simulation time at which the
waveform at the input pin crosses the rising or falling delay threshold (often this is
50% of VDD).

Benefits of CCS Timing:

The CCS Timing delay calculation provides a high accuracy response for cell
delay, interconnect delay, and pin slew.

The CCS Timing receiver model produces excellent results on single-stage
cells with large Miller effect. Furthermore, the stage delay and slew results
are typically within 2% of the golden circuit simulation values.

The CCS Timing enables scaling for intermediate VDD and temperature
values. Synopsys delay calculation with CCS Timing includes powerful
nonlinear Vdd scaling for timing check arcs. This results in better correlation
to circuit simulation than with simple linear interpolation approaches.

The current waveforms are expected to consume larger space in terms of
data size compared to the NLDM models. Therefore, a “Compact CCS” is used
to represent the current waveforms in a very compact form. The compact
CCS takes advantage of similarity of 1/V curves in the library. The compact
CCS modeling uses a common set of I/V curves (known as base-curves) for
the entire library and each instantiation of the current waveform is derived
from one of these base curves. This technique allows for high accuracy while
reducing the library size by up to 3 to 4x compared to the expanded (non-
compact) CCS timing library.

CCS timing also allows, for accurate representation of current characteristics
of the library subjected to the process, variation. The variation-aware
extension of CCS timing captures the current waveforms as the cell is
subjected to process variation with respect to the process parameters.
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In figure 3.10 we can see an example of an output_current section for a CCS timing
characterization.

Figure 3.10 Example of output_current Section
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Chapter 4

Power Models and Characterization

4.1. Power Models

Siliconsmart uses the following library characterization for power [8]:

e Non Linear Power Model (NLPM) format based on the voltage-source circuit
elements.

e Composite Current Source (CCS) Power format based on the current-source
circuit elements.

The NLPM power model is an abstract power model for a cell with leakage power
information and internal power information in the form of internal energy data for
power analysis.

The CCS power model is an advanced current-based modeling technology data on
the PG pins with the leakage current for leakage power and instantaneous power
data in the form of current waveform data form for internal power. It includes also
the gate leakage information. The following are features of this approach as
compared to the nonlinear power model:

e Creates a single unified power library format suitable for power optimization,
power analysis and rail analysis.

e Captures a supply current waveform for each power or ground pin

e Provides finer time resolution.

e Offers full multivoltage support.

e Captures equivalent parasitic data to perform fast and accurate rail analysis.

e Reduces the characterization time.

The power consumption of a standard cell is categorized into the following:

e static or leakage power
e dynamic power

4.1.1.Static or Leakage Power

Leakage power is the power consumed by a cell when it is in a steady-state
condition. The liberty syntax [6] represents leakage power information in the library
as:

e Library-level leakage power with the default cell leakage power attribute
for NLPM.
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e Cell-level state-independent leakage power with the cell_leakage_power
attribute for NLPM. If this attribute is missing or negative, the value of the
default_cell _leakage power attribute is used.

e Cell-level state-dependent leakage power with the leakage_power group for
NLPM. Related pg_pin attribute is used to associate a power and ground pin
with leakage power, when specifies the state-dependent condition that
determines whether the leakage power is accessed and value represents the
leakage power for the given state.

e Cell-level state-dependent leakage current with the leakage_current attribute
for CCS power. Pg_current group specifies a power or ground pin where
leakage current is to be measured.

e Cell-level state-dependent leakage current with the gate_leakage attribute
for CCS power. This group specifies the cell’s gate leakage current on input or
inout pins. Input_low_value attribute specifies gate leakage current when the
pinisin a low state and input_high_value when is in a high sate.

e Cell-level state state-dependent intrinsic parasitic model with
intrinsic_parasitic attribute for CCS power. The mode attribute pertains to a
individual cell. The cell is active when the mode attribute is instantiated with
a name and a value.

e The associated library-level attributes that specify scaling factors, units and a
default for both leakage and power density.

Syntax for NLPM:

library (my lib nlpm)

cell (cell name)

leakages_power () |
related pg pin : pg pinl;
when : " boolean sxpression ";
value : float;

}

cell leakage power : float;

Figure 4.1: NLPM Modeling for Leakage Power

18



Syntax for CCS power:

cell (cell names) {

leakage current() |
when : "beoolean sxpressicon";
pg_current (pg pin names) {
valus : float;

}

leakage_current() { /* without the when statement
/* default state */

}

gate_leakage(input pin names)
input low wvalus : float;
input _high wvalue : float;

Figure 4.2: CCS Power Modeling for Leakage Power

cell (cell name) |
mode definition (mode name) |
mode value(namestring) |
when : "Boolean expression";
sdf cond : "Boolean expression";

}

intrinsic parasitic{} {

mode (mode name, mode value);

when : "Boolean expression";

intrinsic resistance({pg pin name) |
related output : cutput pin name;
value : float;

1

intrinsic capacitance(pg pin name) |
value : float;

intrinsic parasitic{) {
J*without when statement */
J* default state */

Figure 4.3: Intrinsic Parasitic Model for CCS Power
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4.1.2.Dynamic Power

Dynamic power is the power consumed by a cell when it is active. It includes :

internal power
switching power

Internal power is the power dissipated by the charging or discharging of any existing
capacitances internal to the cell. The liberty syntax represents internal power
information in the library as:

Library-level power_lut_template group for NLPM. It creates a template of
the index used by the internal_power group.

Pin-level internal energy tables with the internal_power group for NLPM.
Rise_power group is accessed when the pin has a rise transition. If we have a
rise_power, we must have a fall_power as well.

Library-level pg_current_template group for CCS power.

Pin-level current waveform tables with the dynamic_current group for CCS
power. Switching_group group is used to specify a current waveform vector
when the power and ground current is dependent on pin switching
conditions. The input_switching_condition attribute specifies the sense of the
toggling input and its valid values are rise and fall.rise represents a rising pin
and fall represents a falling pin. Same apply for output_switching_condition
but for output. Furthermore the pg current group specifies current
waveform data in a vector group. This group represents a single current
waveform based on specified input slew and output load. The index
attributes specify values for variables specified in the pg_current_template.
The associated library-level attributes that specify the scaling factors and a
default.

The internal power tables use the following indexes:

The related input transition time for the non-propagating input pins.
The related input transition time and the output capacitive load for the
propagating output pins.
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Syntax for NLPM:

cell (cell nams) {

pin ( pin nams) {

internal powsr() {

related pin : " pin nams "
related pg pin : "pg pinl";
rise_pmwer{ power template nams ) {

)i
1
fall powsr( power template names | {

Vi
}

}/* end of internal power */

Figure 4.4: NLPM Model for Internal Power

Syntax for CCS power:

pg_current template(template name 1) {
variable 1 : input net transition;
variable 2 : total output net capacitance;
variable 3 : time;
index 1 (float, ); /* optional */
index 2(float, ); /* optional */
index 3(float, ); /* opticnal */

Figure 4.5: CCS Power pg_current Template

cell (cell name) {

power cell type : enum(stdcell, macro)
dynamic current () {
when : "Boolean expression";
related inputs : input pin name;
related outputs : output pin name;
typlical capacitances (float, );/* applied for cross type;/*

switching group() {
input switching condition(enum(rise, fall));

output switching condition(enum(rise,

fall));

pg current (pg pin name) |
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vector(template_name)
reference time
index output

{
float;
output pin name

; /* applied for
cross type;/*
index 1(float);

index n(float);
index n+l (float, );
values(float, );
} /* vector */
} /pg_current */
} /* switching group */

} /* dynamic current */

} /% cell */
Figure 4.6: CCS Power Model for Internal Power

Switching power, or capacitance power, of a driving cell is the power dissipated by
the charging and discharging of the load capacitance at the output of a cell. The
Liberty power models store only internal power component of the dynamic power.
The switching power component is calculated during power analysis using the output
switching activity and capacitive load.

4.2. Power Characterization

The CCS Power characterization process is very similar to NLPM characterization [9]:

1. First, the leakage currents are measured with simple DC analysis.

2. Next, the dynamic current waveforms are acquired with a transient analysis.

3. Finally, the equivalent parasitics is measured with fast AC and DC analysis
runs.

We can perform most of the characterization for timing and power simultaneously
to reduce the characterization runtime.

4.2.1.Leakage Power and Current

The leakage current and leakage power are related:

Pleak = Ileak*Vsupply (4 1)
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For multi-supply pins we consider general case where there are multiple PG pins. The
current of each pin is defined as the current that flows into the cell. For ground pins
the current is negative. The total current for all pins must sum up to zero (current
conservation). The power of a pin is defined as the product of the pin’s current and
its voltage relative to the reference node. The total leakage power of the cell is the
sum of the leakage power of each pin:

Pieak (pg_pin) = lieak (Pg pin) * Vsuppiy (Pg_pin) (4.2)
Pieak = ZPIeak(pg_pin) (43)

The reference voltage impacts the power of the individual pins, but its value does
not matter for the total leakage power because of current conservation.

The typical simulation setup for leakage characterization is shown in figure 4.7. This
measurement is usually performed as part of the simulation setup for timing analysis

Figure 4.7: Leakage Current Measurement

While gate leakage current is quite insignificant in 100nm and higher technologies, it
will gradually become a more significant current component in more advanced
technology nodes.

Gate leakage is defined as a static current from a driver cell to transistor gates in a
load cell. If the gate is driven high, the current flows from the power pin of the driver
cell by way of the gate to the ground pin of the load cell. The current can also flow
back from the power pin on the load cell via the gate to the ground pin of the driver
cell. During the characterization process the leakage currents on the input and
power/ground pins are measured for the cell in an open configuration, that is, with
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outputs that do not drive other cells. It is important that the cells’ outputs do not
conduct static current during the measurement.

The leakage currents are state dependent. The leakage current measurement is very
similar to the measurement for the conventional model with only channel leakage:
for combinational cells the inputs are driven at certain levels depending on the state,
while for sequential cells a sequence of states may be required to bring the cell to a
certain state. Once the transition is complete, the currents on the power/ground
pins and input pins are measured.

Figure 4.8 Gate Leakage Measurement

The direction of the current depends on the state of the input pin that is connected
to the transistor gates. The magnitude of the current depends on the state of the
other input pins of the load cell. During leakage power measurement you can
measure the gate leakage currents on the input pins together with the channel
leakage currents on the PG pins, as shown in figure 4.8. It is important to note that
this measurement should be performed with open output pins so that no current is
drawn from the outputs.

Current conservation still holds, but now the gate leakage of the input pins must be
taken into account as well:

Slieak(pg_pin) + Slheak(input_pin) = 0 (4.4)

When a cell is present in a netlist, the output currents will not be zero. Instead, a
certain constant current will be supplied to maintain the gate leakage of the driven
cell. The application adds the gate leakage current of the driven cell to the
power/ground pins of the driving cell to calculate the actual leakage currents in
operation.
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In figure 4.9 we can see an example of leakage current measurement for two states
of a Dflipflop cell.

Figure 4.9 Example of leakage_current Section
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4.2.2.CCS Decoupling Capacitance

To characterize intrinsic parasitics [5], a small sinusoidal voltage perturbation is
applied to each PG pin separately. All outputs are connected with tiny loading
capacitance vales (that is, 1fF) such that the measured intrinsic capacitance is purely
PG pin capacitance, and it does not depend on loading. The recommended voltage
magnitude is 0.1V or 10% of power supply.

By measuring the magnitude and phase of the current response, the capacitance is
calculated by the following formula:

where:

w is the sinusoidal waveform frequency,

Vo is the magnitude of the perturbation voltage waveform,
lo is the magnitude of the current response and

¢ is the phase of the current response.
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In figure 4.10 we can see how intrinsic parasitic modeled for two states of a Dflipflop
cell.

Figure 4.10 Example for Intrinsic Parasitic Model

27



4.2.3.Dynamic and Internal Current

Dynamic energy that occurs during a transition is derived from the total charge
associated with that transition and the voltage over which charge was transferred:

Edyn = Qdyn * Vsupply (44)
The charge is the integral of the dynamic current:
Qdyn = I0+OO |dyn(t)dt (45)

Similar to internal energy, we can derive the internal current from the dynamic
current by subtracting the switching component. The switching current corresponds
to the output current that drives the load that is being (dis)charged.

lint = |dyn - lsw (46)

The dynamic current waveforms are acquired by performing a transient analysis as
shown in figure 4.11. This setup is identical to that used for timing characterization
and therefore we can perform timing and power characterization simultaneously:

Figure 4.11 Dynamic Current Waveform Measurement
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In figure 4.12 we can see an example of dynamic current waveform measurement
for a Dflipflop cell.

dynamic current() {
when : "I1D&RN"
related inputs ;
related outputs : "Q OQN"

F

typical capacitances(0.3656160,

input switching condition(rise);
output switching condition{fall, rise);

pg_current(vDD) {

vector{ccsp_switching _ntin_oload time) {

reference time : 0.001465 ;

index output : ON ;

index_1("0.08117378");

index_2("0.365616");

index 3("0.0000808, 0.0082697386, 0.001389732, 0.002929833, ONLELElNCTINNTEYE

p.B9159156" ) ;

values("6.712961e-05, -8.1378809, -0.1158831, 0.01806308, 0.
6.106123, 0.10053564, 9.1271671, 0.06496212, 0.0749000KE
6.1384409, 0.1129664, 0.1197261, 0.10886114, 0.0856170
0.01649263, 6.460360e-05");

1

vector({ccsp_switching ntin_oleoad time) {

reference_time : 0.001465 ;

index_output : Q ;

index_1("0.08117378");

index_2("0.365616");

index 3("0.000000, 0.0082697386, 0.001389732, 0.002929833, OPELELElNCTIN-NTETE)

p.09159156" ) ;

values("6.712961e-05, -8.1378809%, -0.1158831, 0.01806308, 0.
0.166123, 0.1005564, 0.1271671, 0.06496212, 0.074960HEKN
0.1384489, 0.112%9664, 0.1197261, 0.1086114, 0.056170ELN
0.01649263, ©6.4603608e-05");

1

vector{ccsp_switching_ntin_oleoad_ time) {
reference_time : 0.001465 ;
index output : ON ;
index_1("0.00117378");
index_2("1.883510");
index 3("0.000000, 0.0082697386, 0.001389732, 0.002929833, OERELElNCTINNTETE
0.0783797, 0.09386597");
values("6.712961e-05, -0.1375112, -0.1160277, 0.009809223, OfERLFIFN
0.1061587, 0.10328992, 0.1271752, 0.07332047, 0.06440E NS
0.1477951, 0.166480, 0.1843972, 0.203026, 0.190781, [FEFICTENN
0.8736155, 0.05042385, 0.081929772, 6.460360e-05");

Figure 4.12 Example of dynamic_current Section
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Chapter 5

Characterization Process

The steps that someone has to follow in order to make a complete characterization
are described and analyzed in the subchapters below [5].

5.1. Tool Installation

At first, a license must be obtained from Synopsys (or the existing be upgraded) and
the tool must be installed following the instructions in the installation file.

5.2. Necessary Files
We must have a number of necessary files in order to be able the tool to run:

e A netlist for each cell to be characterized.

e A reference Liberty model which is not necessary in some flows but we will
need it in our (skeleton liberty-based flow).

e A process model library which contains information about the technology of
transistors.

e Arun.tcl script which calls and provides information to Siliconsmart.

e A configure.tcl script which sets some global parameters to all cells for a
given characterization directory. There is a default file in the Siliconsmart
installation directory.

All these files must be in our working directory where Siliconsmart will run and
create a characterization directory.

5.3.  Editing the configure.tcl File

The default file has already the most necessary parameters that we are going to
need, so we only have to modify some of them and probably add some more.

The configure.tcl file has several sections in it and includes the following major
parameter blocks:

e OPERATING CONDITIONS DEFINITION - This section includes the global
parameters that control high-level characterization settings and integration
with third-party tools (SPICE, load sharing, and so on).
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e GLOBAL CONFIGURATION PARAMETERS - This section includes the global
parameters that control high-level characterization settings and integration
with third-party tools (SPICE, load sharing, and so on).

e DEFAULT PIN CONFIGURATION PARAMETERS — The parameters in this
section control the characterization settings for a class of pins—for example,
setting the output load range for a set of pins.

e LIBERTY MODEL GENERATION PARAMETERS — The parameter in this section
add Liberty header attributes for use with “model —create_new_model”. We
will not use this command in this thesis so it will not be further analyzed.

The changes that we have to make are:

1.

w

Set the suitable values for vdd, vss and temperature and the location of the
process model library in our design with the command (in OPERATING
CONDITIONS DEFINITION block):

set_opc_process op_cond {

{.lib "/home/location/example.lib" TT}

}

Include the name of operation conditions, that were made by
create_operation_condition , in set_active_pvts {} command.

Select a simulator and a job scheduler as described in the next two subchapters
Include the right supply and ground names in the set
power_meas_supplies/grounds {} commands.

Add the command set model rise_fall capacitance 1 through which the
SiliconSmart tool will use rise/fall_capacitance Liberty attributes.

Add the command set Model_significant_digits 7 in order to increase the the
demical accuracy of the results.

Add the command set gate _leakage_time_scaling_factor 50.0 to scale the total
simulation time by 50 times. This is necessary because the simulation time may
be not sufficiently long to capture the slowly changing gate leakage current. If a
similar warning message is appeared in sis.log file after using this command we
have to increase the value to 100.0 etc.

Add the command set auto_fix 0 in order not to let Siliconsmart retry to execute
failed tasks again. By this way the characterization is not slowed down.

Add the command set enable_cell_leackage_power_modeling 1. When enabled,
the cell_leakage_power attribute will be modeled for the cell even if the value of
the liberty_multi_rail_format is set to vl or v2. The last eight changes refer to
GLOBAL CONFIGURATION PARAMETERS block. Generally we can modify
parameters in this section with the set command: set parameter value.
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5.4. Selecting Simulator
The next task is to select the simulator. The available choices are:

e FineSim

e FineSim Multi-CPU Simulation

e FineSim-Embedded which upgrades each characterization engine to include a
copy of the embedded version of FineSim SPICE.

e HSPICE

e HSPICE in Client Server Mode

e HSPICE-Embedded

After testing all the simulators we found out that the quickest one is FineSim-
Embedded. We must include the followed command in the configure.tcl file:

set simulator finesim_embedded

Simulator options do not need to be separately defined because Siliconsmart will use
the default finesim options.

5.5.  Setting a Job Scheduler

The available job schedulers are:

e Stand-Alone

e Load Sharing Facility (LSF) which must be separately installed and set up.
e Sun Grid Engine which must be separately installed and set up.

e RTDANC

As we do not want to use exterior programs, we use stand-alone scheduler. We must
also include two commands in configure.tcl file in order to use this scheduler:

set job_scheduler standalone
set run_list_maxsize 8

The last command is used in order to run eight jobs simultaneously and fully take
advantage of the capabilities of our machine (eight cores).

5.6. Characterization Directory Structure

It is very important to know what there is in the characterization directory that
Siliconsmart creates and how are files parceled out. In figure 5.1 we can see the
directory structure:
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Figure 5.1 Characterization Directory Structure

The most important directories are char_dir/:

config — It contains the copied configure.tcl script which we use for
characterization.

model — It contains the models that we made after running Siliconsmart.
results — It is considered the cache storage of current characterization run.
Siliconsmart takes characterization plans that has made for each cell and
generates the file necessary to describe each measurement to be configured,
so each cell has afile.

validation — It contains the results of validation process which we will not use
in this thesis.

netlists — It contains copies of all the netlists we used.

report — It contains datasheets for each cell for operating point. The
command model generated_datasheet is required.

control — It contains the instance files of the cells. They define the behavior of
the cell, including information, function, characterization and modeling
configuration options.

etc/templates — It contains characterization plans for each cell created after
configure command. The characterization plan describes each of the
measurements to be performed, the stimulus to be applied, and other
pertinent information.

etc/stats — It contains a report for specified cells and precharacterization
simulation and it is activated with the command report_sim_stats. If nothing
is specified, it runs the report for all cells.

etc/database — It contains the status (done/failed) of each cell and need the
status command.

runtime — It contains log files from each cell which help for debugging.
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5.7. Siliconsmart Run Process

The final part is to create and run a tcl script which executes the entire
characterization flow. This is an automated way to run and re-run the
characterization flow which we can see below.

Figure 5.2 Basic Characterization Flow
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The structure of the script for the skeleton liberty-based flow that we use in this

thesis is:

1. Prepare for characterization:

Set/create charpoint — The SiliconSmart tool works within a
predefined characterization directory structure. Relevant files are
expected to reside within this structure and are generated in specific
subdirectories.

Set log file — This file contains all information printed out from
Siliconsmart during characterization. It includes also warnings/errors
encountered by the tool, which allows for easy parsing and debugging
Copy configure.tcl file in char_dir.

Set location — It is used to specify the target characterization directory
for all characterization-related data files. The path specified can be
absolute or relative and must refer to a valid SiliconSmart directory
structure generated by the create command. Furthermore if we
modify the configure.tcl file after we copy it in char_dir, we must use
this command to re-read it. Also the command get_location returns
the current char_dir location.

Commands:

set charpoint char_dir

create Scharpoint

set_log_file Scharpoint/sis.log

exec cp configure.tcl S{charpoint}/config/configure.tcl
set location Scharpoint

2. Import the following:

An existing Liberty model that contains the information you wish to
preserve.

The netlist.

The cells to be recharacterized.

Command: import — liberty our_lib.lib —skeleton —extension .spi —netlists/ all

-extension switch is used to specify the extension of the netlists.

3. Configure options - The set_config_opt command provides a mechanism for
setting global parameters and pin type parameters on a per-cell, per-
measurement, or permeasurement-type basis. If we want also to apply some
options to a set of cells we must group them with the set command and use a
name through which we will be able to refer to them (cells).

Commands:

set cells {cell_list}
set cells2 {cell_list}
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set_config_opt -cells Scells -type type of measurement state
partitions all
set_config_opt ccs_power_optimize_waveform 0

where:

state_partitions all means that the tool will make measurements for all
possible states and

ccs_power_optimize_waveform 0 is used in order to be many time points
included to the final waveforms.

Configure — This command generates a characterization plan for each cell and
prepares it for characterization.
Command: configure -timing -ccs -power —ccs_power all

We use these swithes to make NLDM, NLPM, CCS-timing and CCS-power
characterization.

Characterize — It performs the simulations needed to characterize timing, and
power for all cells.

Command: characterize all

Model the specified data. When invoked with the -skeleton switch, the
Liberty produced will be a as if a brand new Liberty but with all the attributes,
custom groups, test cell, statetable, header, etc., information from the
imported Liberty preserved at library/cell/pin-level.

Command: model -timing -ccs -power -ccs_power -output completed all

By this way the generated Library will contain all the characterizations that
we need and it will be named completed_nameofopcondition.
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In figure 5.3 we can see an example flow as it has already described:

Figure 5.3 Complete Characterization Process

In order to run the script we must, first, change our working directory to the one
where all necessary files are (5.2 subchapter) and then execute from the terminal
the command siliconsmart run_script.tcl to call Siliconsmart.

5.8. Driver Mode

So far we used a simple linear piecewise-linear (PWL) source for driving input
transitions which leads to inaccurate models. That is because the shape and slew of
the driving waveform significantly affects intrinsic delay and effective input pin
capacitance.

We have to use true active drivers using an actual cell to drive the transition. The
SiliconSmart tool requires either a non-inverting buffer cell (or combinational cell
configured as a buffer) or an inverter to be used as the active driver. The
disadvantage of using an active driver is that it slows down characterization
significantly due to the additional driver cell transistors being simulated for every
measurement.

In order to solve this problem we use active waveform drivers. This method
eliminates the performance problem while still maintaining accuracy. Particularly it
recreates the driver waveform and applies it as a multi-point piecewise linear
waveform (PWL) which is derived by curve fitting the actual driver cell waveform,
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and thus achieving significant performance improvements will little or no accuracy
penalty.

The implementation of this method is quite simple:

In DEFAULT PINTYPE PARAMETERS section of configure.tcl file we change the
driver_mode parameter to active-waveform and the driver to the cell that we
want to be the driver, for example the name of an inverter.

We can, optionally, use the driver_waveform points parameter which
contains a list of floating points number between 0 and 1.0 in ascending
order. The default value is {0.02 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
0.90 0.95 0.98}. Specifying more points will cause the waveform to be more
similar to the actual driver waveform. In general, the defaults for this
parameter shows good correlation when compared to active driver mode, so
we use this value.

When we provide your driver_waveform_points to be too close,for example {
0.05 0.10 0.20 0.30 0.40 0.45 0.5 0.55 0.6 0.7 0.8 0.9 0.95}, then the
driver_waveform_min_dt will be activated. The SiliconSmart tool will
determine  that two voltage points should be at least
driver_waveform_min_dt interval apart to satisfy the spice engine. If voltage
point separation is too close, the second point will be moved so that the
separation is at least driver_waveform_min_dt, for example 0.5e-13.

In our run process tcl script, we have to import the driver through
import_driver cell_name -netlist netlist_file -input_pin pin -output_pin pin. If
we use an inverter we must include the -inverting switch to import_driver
parameter.
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In figure 5.4 we can see how is driver waveform modeled.

Figure 5.4 Driver Waveform Template

5.9. After Characterization

When Siliconsmart is done with characterization, we should open the sis.log file to
check if the flow is correctly executed and then search for warnings and errors that
may have occurred. Then, we can open the generated files, for example the Liberty,
to check if there is all the expected data in them.

If there is still something missing we can recharacterize the generated library with
different configure options.
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Chapter 6

Conclusion

In conclusion, given the key role of accurate library models in digital implementation,
there has been a significant interest in standard cell library characterization. This
thesis reports our effort to conduct a completed characterization of any library used
in industry.

Specifically, we focused on the power characterization and especially on CCS power
which is incomplete in most open standard cell libraries. For our experiments we
used the Siliconsmart tool which is provided by Synopsys and generates accurate
model libraries, using Liberty format, for all types of characterization.

In order to run all the characterization flow and give the suitable configuration
parameters to the tool, we used tcl scripts. As soon as there are no errors (lack of
warnings is also desirable) after characterization, the new extracted libraries can be
easily reconfigured and recharacterized.

6.1. Future work

Possible extensions in this project may be the following:
e CCS noise characterization

CCS Noise is an advanced current-based driver model that enables accurate
noise analysis with results very close to Spice simulation. It not only precisely
models injected crosstalk noise bumps, but also allows more advanced
analysis, such as propagated noise bumps and the driver weakening.

e Process Variation (AOCV)

Advanced on-chip variation (AOCV) [10] uses techniques for context specific
derating instead of a single global derate value, thus reducing the excessive
design margins and leading to fewer timing violations. This represents a more
realistic and practical method of margining, alleviating the concerns of
overdesign, reduced design performance, and longer timing closure cycles.

¢ Integration into an in-house VLSI optimization flow

The goal is to be integrated to an in-house VLSI continuous resizing algorithm.
Specifically, the algorithm finds the best sizes for each cell, thus an online cell
characterization is required for each new cell size which is not part of current
library.
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