
Porting the Laplacian filtering application
to the Vulkan API using OpenCL and

OpenGL programming models

Υλοποίηση του Laplacian filter στην προγραμματιστική

διεπαφή Vulkan με χρήση των προγραμματιστικών μοντέλων

OpenCL και OpenGL

Gkeka Maria Rafaela

Supervisor: Assoc. Prof. Bellas Nikolaos

2nd committee member: Assoc. Prof. Antonopoulos Christos

A Thesis submitted in fulfillment of the requirements
for the degree of Diploma Thesis

in the

Computer Systems Lab (CSL)

Department of Electrical and Computer Engineering
University of Thessaly

Volos, Greece

October 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/161657484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/cda/
https://csl.e-ce.uth.gr/
https://www.e-ce.uth.gr/

Porting the Laplacian filtering application to the

Vulkan API using OpenCL and OpenGL

programming models

Υλοποίηση του Laplacian filter στην προγραμματιστική διεπαφή Vulkan

με χρήση των προγραμματιστικών μοντέλων OpenCL και OpenGL

Gkeka Maria Rafaela

Supervisor: Assoc. Prof. Bellas Nikolaos

2nd committee member: Assoc. Prof. Antonopoulos Christos

Εγκρίθηκε από την διμελή εξεταστική επιτροπή την

.............................

Ν. Μπέλλας

Αναπληρωτής Καθηγητής

.............................

Χ. Αντωνόπουλος

Επίκουρος Καθηγητής

https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/cda/
https://faculty.e-ce.uth.gr/nbellas/
https://faculty.e-ce.uth.gr/cda/

Dedicated to
my mother

Υλοποίηση του Laplacian filter στην προγραμματιστική

διεπαφή Vulkan με χρήση των προγραμματιστικών μοντέλων

OpenCL και OpenGL

Περίληψη

΄Οταν μιλάμε για GPUs στην ουσία αναφερόμαστε σε εξειδικευμένες μονάδες εκτέλε-

σης που δημιουργήθηκαν με σκοπό την επιτάχυνση διαδικασιών που αφορούν γραφικά.

Στις μέρες μας, η GPU αποτελεί βασικό μέλος των σύγχρονων υπολογιστικών συστη-

μάτων, τα οποία μπορούν να προσφέρουν σημαντικά οφέλη απόδοσης στις παράλληλες

εφαρμογές επεξεργασίας δεδομένων. Τα OpenCL, OpenGL και Vulkan είναι προ-

γραμματιστικές διεπαφές για GPUs. Σκοπός αυτής της διπλωματικής εργασίας είναι

η διερεύνηση των διαφορών μεταξύ των διαφορετικών API εφαρμόζοντας ένα σύνθε-

το αλγορίθμο επεξεργασίας εικόνας. Η OpenCL αποτελεί μία τυποποιημένη διεπαφή

για παράλληλες υπολογιστικές εφαρμογές που χρησιμοποιείται σε πάρα πολλές υλοποι-

ήσεις οι οποίες εκτελούνται σε ετερογενείς πλατφόρμες. Η OpenGL συνήθως αλλη-

λεπιδρά με τη μια GPU με στόχο την επιτάχυνση των γραφικών. Το Vulkan είναι η

ένωση των προηγούμενων δύο APIs. Αποτελεί τη νέα γενιά διεπαφών λοω-οvερηεαδ,

ςροσσ-πλατφορμ γραφικά και ςομπυτε ΑΠΙ. Το Laplacian Filter, είναι μια εφαρμογή

επεξεργασίας εικόνων που εστιάζει στην αναγνώριση ακμών της εικόνας. Συγκεκρι-

μένα, επεξεργάζεται τον τόνο ή τις λεπτομέρειες της εικόνας εισόδου εφαρμόζοντας ένα

σύνολο ισχυρών επιδράσεων χωρίς να καταστρέφει την εικόνα. Εφαρμόζωντας πλη-

θώρα βελτιστοποιήσεων στις παραλληλισμένες εκδόσεις της εφαρμογής, έχουμε την

δυνατότητα εξέτασης της απόδοσης μιας GPU . Τα αποτελέσματα της συγκεκριμένης

εφαρμογής δείχνουν ότι η OpenCL δίνει τον καλύτερο χρόνο εκτέλεσης.

Porting the Laplacian filtering application to the

Vulkan API using OpenCL and OpenGL

programming models

Abstract

A Graphics Processing Unit (GPU) is a dedicated parallel processor optimized

for accelerating graphical computations. Nowadays, GPU has become one of the

most important components in modern computer systems, that can provide signif-

icant performance benefits to data parallel applications. OpenCL, OpenGL and

Vulkan offer three different interfaces for programming GPUs. The target of this

thesis is to investigate the differences between Application Programming Interfaces

(APIs) by porting a complex image processing algorithm. OpenCL is used by a

huge variety of software projects which execute across heterogeneous platforms in

order to provide a standard interface for parallel computing. OpenGL is typically

used to interact with a GPU to achieve hardware-accelerated graphics rendering.

Vulkan is a union of the previous two APIs, new generation low-overhead, cross-

platform graphics and compute API. The Laplacian Filter is an edge aware image

processing application that produces a wide range of strong effects for both detail

manipulation and tone mapping of an image without corrupting the image. This

thesis examines the performance of a GPU in different optimizations tested in the

parallelized versions of the application. The results of the specific application show

that the OpenCL gives better execution time.

vi

Copyright c© 2018 by Gkeka Maria Rafaela.

“The copyright of this thesis rests with the authors. No quotations from it should

be published without the authors’ prior written consent and information derived

from it should be acknowledged”.

Acknowledgements

First and foremost, I would like to express my immeasurable appreciation and deep-

est gratitude to my advisor, Prof. Nikolaos Mpellas, for his continuous support, and

motivation. His guidance helped me during my research and writing of this the-

sis. I am deeply grateful to Prof. Christos Antonopoulos for his support, valuable

comments and technical advices on the department of this thesis.

To my friends, thank you for all your support, understanding and love during

the past five years. Our experiences will accompany me throughout my life.

To my parents and my sister, thank you for encouraging me and supporting me

in so many ways to do my best and always believing in me.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 2

1.1 Background . 2

1.2 Problem statement & Contributions 4

1.3 An overview of the content . 5

2 The Laplacian filter 6

2.1 Background on Laplacian Pyramids 6

2.2 The LLF algorithm . 11

2.2.1 Remapping and Parameterization 11

2.2.2 Algorithm complexity . 13

3 Local Laplacian Filters Sequential Implementation 15

4 Local Laplacian Filters OpenCL Implementation 20

4.1 OpenCL Overview . 20

4.2 Parallelization of the algorithm . 23

4.2.1 Implementation I . 24

4.2.2 Implementation II . 27

5 Local Laplacian Filters OpenGL Implementation 30

5.1 OpenGL Overview . 30

5.2 LLF Implementations . 32

viii

Contents ix

5.2.1 Implementation I . 33

5.2.2 Implementation II . 35

5.3 Comparison between OpenGL and OpenCL implementations 36

6 Local Laplacian Filters Vulkan Implementation 38

6.1 Vulkan Overview . 38

6.1.1 Description of a Vulkan application flow 42

6.2 LLF Implementations . 44

6.2.1 Implementation I . 44

6.2.2 Implementation II . 45

7 Conclusions 48

7.1 Future work . 48

List of Figures

1.1 API’s versions timeline . 4

2.1 LLF algorithm when (b) image details are smoothed, and (c) image

details are enhanced . 6

2.2 Gaussian convolution blur example with a 5-by-5 kernel which is used

to Gaussian pyramid computation . 7

2.3 Use of blurring and subsampling processes for Gaussian pyramid gen-

eration [9] . 8

2.4 Laplacian five levels pyramid generation 9

2.5 Input image regeneration . 10

2.6 Input image regeneration . 10

2.7 Overview of the basic idea of LLF [8] 11

2.8 Creation of Intermediate sub-image and Laplacian pyramid. Input

and output of LLF remapping function. Pixels with the same color

has the same value. 13

3.1 LLF call graph . 15

3.2 Input image . 16

3.3 Gaussian pyramid with five levels in grayscale for cropped input Fig. 3.2 16

3.4 Laplacian pyramid with five levels in RGB for cropped input Fig. 3.2 17

3.5 Detail manipulated images . 17

3.6 Execution time of all phases of sequential LLF 18

3.7 Execution time of each level of sequential LLF 19

3.8 Detail manipulation (α, β, σr)=(0.4,0.25,1) 19

x

List of Figures xi

4.1 OpenCL execution model [11] . 21

4.2 Call graph of parallelized LLF implementation 24

4.3 Percentage execution time of sequential implementation (Total =

88142.76ms) . 25

4.4 Execution time of sequential and OpenCL initial implementations

(Speedup = 12) . 26

4.5 Percentage execution time of OpenCL Implementation I (Total =

7379.07ms) . 27

4.6 Comparison of the two OpenCL implementations 28

4.7 Comparison of sequential and optimized OpenCL implementations . . 28

4.8 Comparison of sequential and optimized OpenCL implementations

ET per level . 29

5.1 Block diagram of the OpenGL pipeline [5] 31

5.2 Execution time of Implementation I for OpenCL and OpenGL (use

of ”ARB compute variable group size” extension) 33

5.3 Comparison of sequential implementation with the Implementation I

in OpenCL and OpenGL . 34

5.4 The effect in execution time of not using the exact workgroup size . . 35

5.5 Summarize the optimized LLF implementations 35

5.6 Comparison between optimized OpenCL and OpenGL implementations 36

6.1 Porting OpenCL to Vulkan . 41

6.2 Porting OpenGL to Vulkan . 41

6.3 Vulkan architecture [19] . 42

6.4 Vulkan pipeline [20] . 43

6.5 Comparison of sequential implementation with the Implementation I

in OpenCL, OpenGL and Vulkan . 45

6.6 Comparison between OpenCL, OpenGL and Vulkan Implementation II 47

6.7 Execution time of Implementation II (Vulkan speedup = 13.4) 47

List of Tables

4.1 Device query . 23

6.1 Versions compatibility: APIs load SPIR/SPIR-V binary 39

6.2 Versions compatibility: APIs parallel code compiled by SPIR/SPIR-

V version . 40

6.3 Convolution kernel local workgroup size calculates one or more sub-

images . 46

6.4 Convolution kernel local workgroup size calculates a part of a sub-image 46

1

Chapter 1

Introduction

1.1 Background

Since the early days of computing, there has been an obvious desire to increase the

processor performance. The key enabler for performance improvement is to exploit

parallelism. Instruction-level parallelism (ILP) is a measure of how many of the

instructions in a computer program can be executed simultaneously. A hardware

design approach to achieve increased ILP is pipelining, a technique that divides

the processing of an instruction into a series of sequential steps and increases the

instruction throughput of a Central Processing Unit (CPU). The next step of hard-

ware improvements was a superscalar processor that is capable of issuing multiple

instructions for execution during a clock cycle because of multiple execution units.

Today’s superscalar processors mostly rely on hardware techniques such as dynamic

instruction scheduling, advanced branch prediction, optimizing caches, and so on.

Another important method for improving performance is static ILP in which the

compiler decides which instructions to execute in parallel. [1] [2]

With instruction-level parallelism at its limit because of ”Brick wall” [3], we turn

to other forms of parallelism such as thread-level parallelism (TLP) which exploits

parallelism across different threads of execution. The improvement in performance

gained by the use of a multicore processor depends on the implementation of the

software algorithms which are used. The applications executed in this type of sys-

tems use a method of parallelizing whereby a master thread forks a specified number

2

1.1. Background 3

of slave threads and the system divides a task among them. A multicore system

relies heavily on memory bandwidth because of more threads go to memory more

often but this can hide the latency. Furthermore, the concurrency level is dependent

on the number of cores.

The limitations of multicore processors led to the need for many-core processors.

Many-core processors are distinct from multicore processors designed for a high

degree of parallel processing and for higher throughput. Graphics Processing Units

(GPUs) may be considered a form of manycore processor, only being suitable for

highly parallel code. GPUs have a large number of simple processing units for

massively parallel calculation for rendering graphics on a computer quickly, and this

has generated the idea of general purpose GPU (GPGPU) computing.

Because of the ability to use GPUs for general purpose computing, many inter-

faces created by companies such as Apple developed a specification for parallel pro-

gramming of heterogeneous systems called Open Computing Language (OpenCL).

OpenCL is an extension to existing languages and provides a standard interface for

parallel computing using task-based and data-based parallelism. Code that gets

executed parallel on the GPU is called a kernel [4].

Open Graphics Library (OpenGL) is a cross-language, cross-platform Applica-

tion Programming Interface (API) for 2D and 3D rendering. The API is typically

used to interact with a GPU, to achieve hardware-accelerated rendering. It is sup-

ported on essentially every GPU. OpenGL execution takes place as a pipeline with

both programmable and state-driven, fixed hardware stages. The programmable

stages are called shaders and each of them has a separate set of inputs and outputs.

One of the shader types is the compute shader which takes some values as input and

it is up to the shader itself to fetch that data. Shaders of this type used by OpenGL

API to execute computations [5].

OpenGL and OpenCL is managed by the non-profit technology consortium

Khronos Group. Khronos also fully define a cross-API intermediate language SPIR-

V with native support for shader and kernel features used by APIs such as OpenCL,

OpenGL and Vulkan. SPIR-V is the first multi-API intermediate language for par-

allel compute and graphics [6].

1.2. Problem statement & Contributions 4

At Game Developers Conference (GDC) 2015, Khronos Group announced the

new Vulkan API, which was initially referred to as the ”next generation OpenGL

initiative”. When releasing OpenCL version 2.2, Khronos announced that OpenCL

would be merging into Vulkan in the future. Vulkan is a low-overhead cross-platform

3D graphics and compute API. Vulkan targets high-performance realtime 3D graph-

ics applications such as video games and interactive media across all platforms [7].

Figure 1.1: API’s versions timeline

1.2 Problem statement & Contributions

The purpose of this thesis is to implement a complex image processing algorithm,

Local Laplacian Filters, in technologies for GPGPU (OpenCL, OpenGL, Vulkan)

and compare the details and the differences between the implementations as well as

the execution time.

Using the GPU for general-purpose programming is effective, but also challeng-

ing exactly like the use of the Vulkan API for compute. Vulkan provides more

flexibility in designing applications with better performance and lower energy con-

sumption than was possible using OpenGL. This is one reason that we want to

use it for complex compute applications. In contrary to its great progress in game

development and graphics design, its use in compute applications is not common.

Therefore, applying an application like Local Laplacian Filters in Vulkan API is

great of interest.

1.3. An overview of the content 5

1.3 An overview of the content

This thesis is organized into 6 chapters, each one of those includes smaller sections

and possibly subsections.

Chapter 2, provides a description of the algorithm Local Laplacian Filters by pro-

viding more information about the general technique of the Gaussian and Laplacian

pyramids.

Chapter 3 presents the introduction in LLF implementations. It describes a

single threaded implementation which is based on the initial Matlab code.

Chapter 4 is an important section of the document which describes the method-

ology which is used to parallelize the initial sequential implementation. It also

introduces our OpenCL implementations which are compared with the execution

time of sequential implementation. These implementations is the base of the other

APIs implementations.

Chapter 5 describes the use of the OpenGL API and the compute pipeline im-

plementations of the LLF algorithm. It introduces OpenGL specific optimizations

and methods.

Chapter 6 is an introduction in the next generation Vulkan API and intermediate

representation Spir-V. It also presents a Vulkan application of LLF algorithm and

uses Spir-V toolchain.

Chapter 7 presents the conclusion which includes the future work.

Chapter 2

The Laplacian filter

The Local Laplacian Filters (LLF) is an edge-aware image processing algorithm

based on the direct manipulation of Laplacian pyramids [8]. Given an input image,

the algorithm applies detail or tone enhancements. An example of Laplacian filter

transformation is shown in Fig. 2.1.

Figure 2.1: LLF algorithm when (b) image details are smoothed, and (c) image

details are enhanced

2.1 Background on Laplacian Pyramids

Laplacian Pyramids have been used to analyze a variety of applications such as

compression, texture synthesis, and harmonization. In this section, we introduce the

steps of Laplacian Pyramids construction. The concept is to scale down the initial

6

2.1. Background on Laplacian Pyramids 7

image, and then to expand the pyramid images to recreate the input image [9].

The first step of Laplacian pyramids creation is generation of Gaussian pyramids.

The Gaussian pyramid is constructed by smoothing the image with an appropriate

smoothing filter and then subsampling the smoothed image. The subsequent images

are weighed down using a Gaussian average (Gaussian blur) and then scaled down.

Gaussian blur or Gaussian smoothing is a well known transformation in image

processing, is commonly used in conjuction with edge detection to reduce the level

of noise in the image. It is also used as a pre-processing stage in computer vision

algorithms in order to enhance image structures at different scales. It simply blurs

the image and reduces the sharpness and the detail by making the transition from

one pixel to another very smooth. A Gaussian blur effect is generated by convolving

an image with a kernel of Gaussian values. In image processing a kernel (also called

convolution matrix or mask) is a small matrix of numbers used to apply effects

across an image, such as blurring, sharpening, outlining or embossing. Figure 2.2

shows the output of Gaussian smoothing when the size of the convolution matrix

size is 5x5. A larger convolution matrix increases the size of blurring because more

pixels are used in calculations for each pixel of the new picture.

Figure 2.2: Gaussian convolution blur example with a 5-by-5 kernel which is used

to Gaussian pyramid computation

The lowest level (level 0) of the Gaussian pyramid consists of the input image. For

the creation of the remaining levels, each pixel value within every level is computed as

a weighted average of values in the previous level within 5-by-5 neighbor pixels. Note

that each level has a different size in this pyramid (thus, the concept of the pyramid).

2.1. Background on Laplacian Pyramids 8

After blurring, each lower level of the pyramid is reduced by half (compared with

the previous level) by subsampling the pixels of the previous level. If C ∗ R is

the size of the initial image (pyramid L0), then the size of the image in level 1 is

(C/2) ∗ (R/2). Consequently, a pixel of the new image represents four pixels of the

previous pyramid level image.

If we want to create Gaussian pyramids with N levels for an image I, then every

level is performed by the following equation, in which REDUCE is a function that

represents the process which generates a Gaussian pyramid (Fig. 2.3).

G0 = I (2.1.1)

Gk = REDUCE(Gk−1), k = [1, N] (2.1.2)

Figure 2.3: Use of blurring and subsampling processes for Gaussian pyramid gener-

ation [9]

Then we introduce the EXPAND function, the inverse process of REDUCE,

which doubles the size of the image (which takes as a parameter) in every dimension

using a smooth kernel. The smooth kernel is applied as we describe previously in

the EXPAND process.

Gk,0 = Gk (2.1.3)

Gk,l+1 = EXPAND(Gk, l), k = [0, N], l = [0, k] (2.1.4)

2.1. Background on Laplacian Pyramids 9

The parameter l of the function declares the number of expansions we apply. If

it has zero value, then we double the dimension size one time. If we apply EXPAND

l times to image Gl, we obtain Gl,l, which is the same size as the initial image G0.

The Laplacian pyramid (which is similar to the Gaussian pyramid), is a sequence

of error images L0, L1, ..., LN (Fig. 2.4) and is equals to the difference image of the

blurred versions of Gaussian pyramid between each levels. The smallest level (LN)

is not an error image but equals the smallest level image of the Gaussian pyramid.

The N -th level is responsible for the reconstruction of the original image by using

the difference images on higher levels.

LN = GN (2.1.5)

Lk = Gk − EXPAND(Gk+1, 0) = Gk −Gk+1,1, k = [0, N − 1] (2.1.6)

Figure 2.4: Laplacian five levels pyramid generation

The concept of the Laplacian pyramid technique is to save the source image in

small structures, apply a variety of transformations and create a new image with

the same size. When no transformations are applied, then the new image is similar

to the original. Figure 2.5 shows the method without intermediate transformations.

If we consider that S is the source image, then is mathematically accepted that is

equal to the sum of the fully expanded Laplacian pyramid images.

2.1. Background on Laplacian Pyramids 10

S = G0 =
N∑
k=0

Lk,k (2.1.7)

Figure 2.5: Input image regeneration

The Fig. 2.6 shows another approach of initial image recreation, which limits the

memory resources and improves the performance of the algorithm.

Figure 2.6: Input image regeneration

2.2. The LLF algorithm 11

2.2 The LLF algorithm

The Local Laplacian Filters is a flexible approach to achieve edge-aware image pro-

cessing through simple point-wise manipulation of Laplacian pyramids. The idea is

to find the way that the edges represented in Laplacian pyramids.

The algorithm based on Laplacian pyramid generation. Initially, we calculate

the Gaussian pyramid, which is the same as we describe in the previous section 2.1.

In the next step, for each pixel in the Gaussian pyramid, we based on its value g0

for creating a sub-image by remapping a specific range R0 of the input image using

a point-wise function. We consider the resulting image as the base level of a new

intermediate pyramid in which we apply the pyramid creation process (subsampling

and upsample). From the intermediate Sub-Pyramid, we pick the appropriate pixels

for Laplacian pyramid images (Fig. 2.7).

Figure 2.7: Overview of the basic idea of LLF [8]

The algorithm 1 describes the previous analysis of Local Laplacian Filters method.

The algorithm takes as input an image S, a parameter σr and remapping function

r. Let (x0, y0) be the position of pixels within level l0 of the Gaussian pyramid. The

use of the σr parameter is introduced in the section below.

2.2.1 Remapping and Parameterization

The remapping function is a point-wise function used to create an intermediate

image S ′ for every pixel (x0, y0) of every Gaussian pyramid level l0. The intermediate

image has a specific size that depends on the l0 and the position of the pixel. The

2.2. The LLF algorithm 12

Algorithm 1 LLF [8]

1: compute input Gaussian pyramid G[S]

2: for (x0, y0, l0) do

3: g0 ← Gl0(x0, y0)

4: determine sub-region R0 needed to evaluate Ll0(x0, y0)

5: apply remapping function: R′0 ← rg0,σr(R0)

6: compute sub-pyramid Ll0 [R
′
0]

7: update output pyramid: Ll0 [S
′](x0, y0)← Ll0 [R

′
0](x0, y0)

8: end for

9: collapse output pyramid: S ′ ← collapse(Ll[S
′])

function applied to the original image (W: width, H: height) from which compares

the pixels of a K∗K window (K = 3(2l0+2−1)) with the (x0, y0) element of Gaussian

pyramid level l0. The pixel in position (x0, y0) is in the centre of the K ∗K region,

so 3 ∗ 2l0+1− 2 elements are located on each side in both directions of the coefficient

(x0, y0). In the case that the distance of one of the x0 or y0 from the input region is

less than K/2 , the intermediate sub-image has smaller size.

Figure 2.8 shows the data used to calculate one pixel of a Laplacian pyramid level

image. The intermediate sub-image has the same size with that of the original image

window but not the same information. At this step of the LLF algorithm, we process

the edge and detail detection and we decide if we need to amplify or to smooth the

result. This decision depends on the value of the user provided parameter α.

The most significant parameter is σr because it determines the effect of each

pixel in the output image. Intensity variations smaller than σr should be considered

details whereas larger variations should be considered edges. We compare every

appropriate pixel of the original image with the pixel of Gaussian pyramid image and

we decide if it belongs to edges or details. This decision determines the remapping

function re or rd. The remapping function has two versions, one for grayscale and

another for color images. In the next chapter, we describe our implementation that

uses RGB-information for the images in all the stages of algorithm and the following

color remapping equations.

2.2. The LLF algorithm 13

rd(i) = g0 + unit(i− g0)σrfd(||i− g0||/σr) (2.2.8)

re(i) = g0 + unit(i− g0)[fe(||i− g0|| − σr) + σr) (2.2.9)

The user also provides two parameters α, β related to fd and fe functions. The

function fe (used in 2.2.9) takes α as parameter and is called when a pixel i of

the input image gives to the Gaussian pyramid pixel under consideration the edge

characteristic. Consequently, the value of the i pixel of the intermediate sub-image

depends on parameter α. Figure 2.1 indicates the effect of the parameter. Similarly,

fd is a point-wise function that controls the amplification or attenuation of details

and takes β as parameter.

Figure 2.8: Creation of Intermediate sub-image and Laplacian pyramid. Input and

output of LLF remapping function. Pixels with the same color has the same value.

2.2.2 Algorithm complexity

We assume that N is the number of pixels in the original image. Then the method

of Local Laplacian Filters, yields a complexity in O(N2), since each coefficient

(x0, y0, l0) entails the construction of another pyramid with O(N) pixels. In or-

der to reduce the cost of the implementation, we can decrease the number of the

intermediate sub-pyramids which are processed, as it’s shown in Fig. 2.6. According

2.2. The LLF algorithm 14

to section 2.2.1, in which we examine the size of an intermediate sub-image (K ∗K),

this size is O(2l0). Each level requires the manipulation of O(N) coefficients in total

as a results of a level l0 contains O(N/2l0) coefficients. Since there are O(logN)

levels in the pyramid, the overall complexity of our algorithm is O(NlogN) [8].

Chapter 3

Local Laplacian Filters Sequential

Implementation

In chapter 2, we introduce the edge-aware detail and tone manipulation Local Lapla-

cian Filters algorithm [8]. In this chapter, we port the initial Matlab version of the

algorithm to a single-threaded C implementation and we report performance re-

sults [10]. Figure 3.1 shows a call graph of the algorithm.

Figure 3.1: LLF call graph

15

Chapter 3. Local Laplacian Filters Sequential Implementation 16

The first step of implementation is to read the input image which saved in Red-

Green-Blur (RGB) format. If N is the size of image in pixels, the size of buffer in

which the input image copied is 3 ∗ N . Each image pixel is represented by three

float numbers.

Figure 3.2: Input image

According to [8], using five levels of pyramid typically produces the best results.

Figure 3.3 shows the reduce of each level size of Gaussian pyramid in grayscale for

the input image in Figure 3.2.

Figure 3.3: Gaussian pyramid with five levels in grayscale for cropped input Fig. 3.2

The convolution blurring function is frequently called in several phases of the al-

gorithm, specifically, in subsampling of the Gaussian pyramid and every sub-image

pyramid and upsampling of Laplacian pyramid and sub-image pyramids. The con-

volution matrix is the result of vT ∗ v, with v a vector of 5 elements.

v = {c b a b c}, where a+ 2c = 2b, a+ 2b+ 2c = 1 (3.0.1)

Chapter 3. Local Laplacian Filters Sequential Implementation 17

Therefore, in our implementation the convolution vector is:

v = {0.05 0.25 0.4 0.25 0.05} (3.0.2)

Figure 3.4: Laplacian pyramid with five levels in RGB for cropped input Fig. 3.2

The Laplacian Pyramid consists of error images which shows the difference be-

tween the same level of initial image and the new detail (in our implementation)

manipulated image. Figure 3.4 shows in RGB format this difference.

According to [10], we apply the LLF to the input image (Fig. 3.2) for twelve

combinations of parameters (α, β, σr). Figure 3.5 shows many output images of

our implementation. There are not exactly the same with the Matlab manipulated

images but the differences are vissually indistinguishable because of the PSNR1 value

is on the order of 30 to 40dB [8]. In our case of color image with three RGB values

per pixel, the PSNR defined as the Mean Squared Error (MSE) which is the sum

over all squared value differences divided by image size and by three.

Figure 3.5: Detail manipulated images

1Peak Signal-to-Noise Ration (PSNR) is a metric commonly used to measure the quality of a

signal transformation.

Chapter 3. Local Laplacian Filters Sequential Implementation 18

Local Laplacian Filters is a complicated algorithm that is shown by the execution

time of the sequential C implementation (Fig. 3.6). We run the application at an

Intel(R) Core i7-4820K CPU running at 3.70GHz with 16GB DRAM. The code runs

using a single thread.

Figure 3.6: Execution time of all phases of sequential LLF

Figure 3.7 shows that the execution time per level increases at the smaller levels

(pyramid L0 to L4), although the number of pixels decreases. The difference is

that each pixel on a smaller level uses more pixels to calculate it. In fact, each

Laplacian pyramid pixels uses K ∗K pixels, where K depends on the pyramid level

(K = 3(2l0+2 − 1)).

The values of the user-supplied parameters affect the calling of certain functions

and thus the type of commands executed. The difference in execution time for

different input parameters relative to the algorithm execution time is negligible.

This is because of the functions fd and fe have different functionality but similar

computational complexity.

Chapter 3. Local Laplacian Filters Sequential Implementation 19

Figure 3.7: Execution time of each level of sequential LLF

The execution time in previous figures measured for the user parameters (α, β, σr)

= (0.25, 1, 0.4). Figure 3.8 shows the corresponding output image. These parameter

values are assumed to apply the technique of LLF to the input image in the best

way.

Figure 3.8: Detail manipulation (α, β, σr)=(0.4,0.25,1)

Chapter 4

Local Laplacian Filters OpenCL

Implementation

4.1 OpenCL Overview

Open Computing Language (OpenCL) provides a standard interface for parallel

computing using task- and data-based parallelism. It is a framework that provides

many benefits in the field of high-performance, and one of the most important is

portability. In order to implement an OpenCL application, we need one host and

one or more compute devices. Host is the computational unit on which the host

program runs, as a CPU of the computer system and the device (another computa-

tional unit) which is accessed via OpenCL library. OpenCL routines, called kernels,

can execute on devices across heterogeneous platforms. Heterogenious systems use

more than one kind of devices like CPUs, GPUs, field-programmable gate arrays

(FPGAs) and other processors or hardware accelerators. These systems gain perfor-

mance or energy efficiency by adding dissimilar coprocessors, usually incorporating

specialized processing capabilities to handle particular tasks. OpenCL host specifies

programming languages (based on C99 and C++11) to program these devices and

Application Programming Interfaces (APIs) to control the platform and execute

programs on the compute devices, such as:

Platform Layer API Query, select and initialize compute devices. Create com-

pute contexts and work-queues.

20

4.1. OpenCL Overview 21

Runtime API Launch compute kernels. Set kernel execution configuration and

manage scheduling, compute and memory resources.

Figure 4.1: OpenCL execution model [11]

An OpenCL kernel is the basic unit of parallel code that can be executed on

the target device and each OpenCL application contains one or more kernels. It is

executed parallel by an 1D, 2D or 3D array (work group) of work items (all work

items run the same code). Work items within a work group cooperate via shared

memory, atomic operations and barrier synchronization, in difference with the work

items in different work groups which cannot cooperate with each other.

The figure 4.1 shows the OpenCL execution model which contains the context

with one or more devices. The context is used by the OpenCL runtime for manag-

ing objects such as command-queues, memory, program and kernel objects and for

executing kernels on one or more devices specified in the context [12]. It is also used

for command queue creation. The command queue is used to control the device, any

command from the host to the device is performed through this command queue.

In order to execute a kernel, all the data which are being processed must be saved

on the device memory. However, the kernel does not have the capability to access

4.1. OpenCL Overview 22

memory outside of the device. Therefore, this action must be performed on the

host-side. The kernel code must be loaded to another OpenCL object, the program.

The program is the final binary which is executed through the platform, after the

just-in-time build. In case of the application use multiple devices and consequently

multiple command queues, the programmer can use events to synchronize kernel

executions between queues.

Multiple types of memories are supported. The global memory saves the data

between host and device and it is visible to all the workitems in difference with

the shared memory which is accessible from the workitems in the same work group.

The global memory is larger and has longer latency than shared memory. Moreover,

the private memory is also supported for each thread and contains on-chip device

registers. The last type of memory is the constant which saves variables allocated

in global memory which are accessed inside a kernel, as read-only variables.

The previously introduced flow is listed below:

• Get a list of available platforms

• Select device

• Create context

• Create command queue

• Create memory objects

• Read kernel file

• Create program object

• Compile kernel

• Create kernel object

• Set kernel arguments

• Execute kernel (Enqueue task): kernel function is called here

• Read memory object

• Free objects

Each OpenCL device has its own information. Some basic capabilities of our

device, a NVIDIA GeForce GTX 770 GPGPU, are shown in Table 4.1. All these

values restrict our implementation.

4.2. Parallelization of the algorithm 23

DEVICE NAME GeForce GTX 770

DEVICE VENDOR NVIDIA Corporation

PLATFORM NAME NVIDIA CUDA

PLATFORM VERSION OpenCL 1.2 CUDA 9.1.83

MAX WORK ITEM DIMS 3

MAX WORK ITEM SIZES 1024 / 1024 / 64

MAX WORK GROUP SIZE 1024

GLOBAL MEM SIZE 1994MB

LOCAL MEM SIZE 48KB

Table 4.1: Device query

4.2 Parallelization of the algorithm

In order to parallelize the algorithm, we create the call graph (Fig. 3.1) to show the

dependencies between the phases of the algorithm. The remapping phase calculates

the data which are used in the creation of Laplacian pyramids by downsampling (l0+

1) times and upsampling once every sub-image pyramid. Calculations of each level

are independent, but because of the device global memory restrictions (Table 4.1),

we can’t save all the algorithm intermediate data in global memory. As a result,

we use five kernels which are execute sequentially to each other, every one of them

for remapping, blurring, downsampling, upsampling and subtraction. Each kernel

calculates concurrently the data used for one line of Laplacian pyramid. The call

graph in figure 4.2 shows the level of algorithm parallelization.

The sequential implementation has warned us that a large part of the execution

time is consumed during the remapping and blurring (Fig. 4.3). The remapping

kernel contains expensive calculations and the blurring kernel called two more times

than the other kernels during the calculation of one Laplacian pyramid image line.

We apply multiple techniques to the kernels code for better performance, such

as different methods of convolution (two kernels, with an one dimension vector for

horizontal and vertical convolution), loop unrolling, function inlining, strength re-

duction and common sub-expression elimination. In the context of these changes,

4.2. Parallelization of the algorithm 24

we add the upsampling, downsampling and subtraction kernels despite the small

impact of the corresponding phases of the sequential implementation on the total

execution time. By creating these kernels we minimize the data which are trans-

ferred from GPU global memory back to CPU memory. We will introduce only two

implementations (Implementation I and Implementation II).

Figure 4.2: Call graph of parallelized LLF implementation

4.2.1 Implementation I

The remapping kernel is a point-wise function and takes as input the original image

(use of one line in every kernel call) and the corresponding level of Gaussian pyramid,

so for an input image 800 ∗ 533 we need the local workgroup size has the maximum

800 work items in x dimension and 1 in y. Each remapping kernel thread write a

sub-image with (3 ∗ (2l0+2 − 1)) ∗ (3 ∗ (2l0+2 − 1)) pixels.

The blurring kernel takes as input #Gaussian pyramid width sub-images and

calculates an output with the same size. Each blurring kernel thread calculates one

pixel of the output but it needs the neighboring 5-by-5 pixels of the input sub-image.

It is optimal to have the data of each sub-image in the shared memory of each work-

4.2. Parallelization of the algorithm 25

Figure 4.3: Percentage execution time of sequential implementation (Total =

88142.76ms)

group. This means that each workgroup is mapped to one sub-image, the workgroup

has 3 ∗ (2l0+2 − 1) work items in each of x and y dimensions. For bigger values of

level pyramid, such as 2 or 3, the local work group size is calculated bigger than the

maximum thread invocations of each workgroup for our device (1024 invocations

per workgroup). Therefore, we use a workgroup with (3 ∗ (2l0+2− 1)) ∗ 1 workitems,

without using shared memory.

We try to use shared memory and the performance of implementation decreases.

Each workgroup calculates a line of the sub-image by using the neighboring 5-by-5

pixels. Every one of the 3 ∗ (2l0+2 − 1) workitems in x dimension loads to shared

memory the 5 heighboring pixels in y dimention. These colomn-wise memory oper-

ations cost to the program execution time more than the advantage of using shared

memory faster operations.

The downsample kernel takes as input the output of the blurring kernel and

returns an output array with the half size. Each downsample kernel thread (work-

item) calculates one pixel of the kernel result, so the number of threads have been

invoked is the half of the size of input sub-image. We use a local workgroup size

of ((3 ∗ (2l0+2 − 1)/2r) ∗ 1) workitems, with r is the number of reduces which are

applied to the initial sub-image. As we already mentioned, the times we apply

downsampling in each sub-image is l0 + 1, with l0 is the level of Gaussian pyramid

which is being processed.

4.2. Parallelization of the algorithm 26

In the same way, we approach the upsample kernel local workgroup size. The

output sub-image has the double size of the input, then the total number of threads

which are invoked in each upsample kernel launching is equal to the double size of the

input image. The upsample kernel is called once, after the creation of each sub-image

pyramid by downsampling each sub-image. If we assume that in one sub-image is

applied r reductions, then the local workgroup contains ((3 ∗ (2l0+2 − 1)/2r−1) ∗ 1)

workitems.

Concerning the subtract kernel, it calculates the final Laplacian pyramid by

subtracting the intermediate sub-image pyramid from Gaussian pyramid. Each

call of the kernel calculates one line of the Laplacian pyramid. We need #Gaus-

sian level width workitems, each one of them to calculate the index of the sub-image

pixels we use. It only depends on the corresponding pixel, so we invoke #Gaus-

sian level width∗1 workitems per local workgroup.

Executing this OpenCL Implementation I for an image 800 ∗ 533 pixels and

algorithm parameters (α, β, σr) = (0.25, 1, 0.4) on NVIDIA GeForce GTX 770, we

achieve speedup equals to 12 and Total execution time = 7379.07ms (Fig. 4.4).

Figure 4.4: Execution time of sequential and OpenCL initial implementations

(Speedup = 12)

OpenCL Implementation I achieves better execution time for each phase of the

algorithm. All the workgroups introduced in the previous analysis of the local work-

4.2. Parallelization of the algorithm 27

Figure 4.5: Percentage execution time of OpenCL Implementation I (Total =

7379.07ms)

group sizes can be improved. The execution time of dowsampling, upsampling and

subtraction doesn’t affect the total because it is very small in relation to the blur-

ring kernel execution time. The figure 4.5 shows that the execution time of blurring

kernel constitutes the 65% of the total execution time of OpenCL Implementation

I. Then, we focus to the convolution kernel execution time decrease.

4.2.2 Implementation II

The purpose of this implementation is to minimize the execution time of blurring

kernel by using all the available workitems per workgroup. As a result, we create

two versions of the blurring kernel. The first version launched in the case of a sub-

image is able to calculated by the threads of one workgroup. In different case we call

the second version of convolution kernel in which multiple workgroups used for one

sub-image production. This implementation has the advantage of the use of shared

memory.

The algorithm is using blurring before every time we apply size reduction to an

image. The size of sub-images is (3 ∗ (2l0+2 − 1)) ∗ (3 ∗ (2l0+2 − 1)). Blurring of

sub-images of pyramid levels equals to 0 or 1, need the first version of kernel, such

as in the upsampling phase. Sub-images of levels 2 and 3 launch the second kernel

in the first levels of sub-image pyramid creation and in the other case call the first

version. Figure 4.6 shows the improvement of Implementation II which is solely

4.2. Parallelization of the algorithm 28

due to the reduction of blurring execution time.

Figure 4.6: Comparison of the two OpenCL implementations

In comparison of the sequential implementation, we achieve Speedup = 19.3 and

Total execution time of optimized OpenCL implementation equals to 4567.40ms

(Fig. 4.7).

Figure 4.7: Comparison of sequential and optimized OpenCL implementations

Figure 4.8 shows the execution time of the construction of each Laplacian pyra-

mid level image. We observe that the execution time of sequential implementation

is increasing as (the index of) the pyramid level increases. Although the size of the

pyramid decreases, the size of sub-image (3 ∗ (2l0+2− 1)) ∗ (3 ∗ (2l0+2− 1)) increases

and the calculations in all phases of the algorithms increase too. The sequential

4.2. Parallelization of the algorithm 29

Figure 4.8: Comparison of sequential and optimized OpenCL implementations ET

per level

implementation needs more time for all these calculations. In other side, the ele-

ments of each Laplacian pyramid line are calculated in parallel. This fact explains

the decrease in execution time as the pyramid image size decreases.

Chapter 5

Local Laplacian Filters OpenGL

Implementation

5.1 OpenGL Overview

Open Graphics Library (OpenGL) is a cross-language, cross-platform application

programming interface (API) for rendering 2D and 3D vector graphics. The API

is typically used to interact with a graphics processing unit (GPU), to achieve

hardware-accelerated rendering. OpenGL is a large state machine, a collection of

variables that define how OpenGL should currently operate. The state of OpenGL

is commonly referred to as the OpenGL context. When using OpenGL, we often

change its state by setting some options, manipulating some buffers and then ren-

der using the current context. An onject in OpenGL is a collection of options that

represents a subset of OpenGL’s state. For example, we could have an object that

represents the settings of the drawing window. One could visualize an object as a

C-like struct and an OpenGL’s context as a large struct [13].

In OpenGL we use shaders instead of the kernels which are used in OpenCL.

A Shader is a user-defined program designed to run on some stage of a graphics

processor. Shaders are written in the OpenGL Shading Language (GLSL). The

OpenGL rendering pipeline defines the following shader stages:

• Vertex Shaders

• Tessellation Control and Evaluation Shaders

30

5.1. OpenGL Overview 31

• Geometry Shaders

• Fragment Shaders

• Compute Shaders

A program object can combine multiple shader stages (built from shader objects)

into a single one. A program pipeline object can combine programs that contain

individual shader stages into a whole pipeline. For the our OpenGL implementation

of Local Laplacian Filters we use a compute pipeline in which the compute shaders

are loaded.

Figure 5.1: Block diagram of the OpenGL pipeline [5]

The following steps used to create an OpenGL application by creating only com-

pute pipeline.

• Create window

• Create context

• Generate memory (buffer) objects

• Read shader file and create shader object

• Compile shader

• Create program object

5.2. LLF Implementations 32

• Attach shader to program

• Link program

• Create kernel object

• Set kernel arguments

• Execute compute shader

• Read memory object

• Delete buffer objects and programs

• Destroy window

The newest versions of OpenGL support the loading of Spir-V binaries instead

of shader files. The binaries are compiled and attached to the program such as

compute shaders do.

5.2 LLF Implementations

In this section, we implement the OpenGL implementation of the Local Lapla-

cian Filters which introduced in the previous chapter. The improvements applied

to OpenCL code are based on the characteristics of the device. We execute the

new code in the same device (NVIDIA GeForce GTX 770), so we use the same

functionality as the initial OpenCL implementations. Each one of the two following

subsections presents the results of the two best parallel implementations in OpenGL.

In section 5.3, we present some OpenGL specific optimizations that were tested.

We create five shaders by using OpenGL Shading Language (GLSL) version

4.5 [14], each one for the phases of the algorithm (remapping, blurring, downsam-

pling, upsampling, subtraction). The two APIs have many common features. The

way that the arguments of shaders are passed is different in OpenGL, like how they

are defined in the shader code. Uniform variables and buffer objects used for this

purpose. We have created a recursive function called from the kernels/shaders when

they need to determine the bounds of the output buffer in which every of the shaders

can write. OpenGL doesn’t support recursion, so we recreate this function by using

”for loop”.

5.2. LLF Implementations 33

5.2.1 Implementation I

The number of compute shader executions is defined by the function which is used

to execute the compute program, in some way like a kernel is executed in OpenCL.

The function that dispatch the shader set the number of workgroups. The size of

workgroups is set locally inside the shader code. Newest versions of OpenGL support

an extension ”ARB compute variable group size” that allows applications to write

generic compute shaders that operate on work groups with arbitrary dimensions.

Figure 5.2: Execution time of Implementation I for OpenCL and OpenGL (use of

”ARB compute variable group size” extension)

Implementation I uses the previous extension which define the needed local work-

group size in every launch of shader. The execution time of this OpenGL imple-

mentation is bigger than the corresponding OpenCL implementation.

Total execution time of OpenCL = 7379.07ms

Total execution time of OpenGL = 9862.06ms

The speed up of the new OpenGL implementation is 9 (Fig. 5.3).

5.2. LLF Implementations 34

Figure 5.3: Comparison of sequential implementation with the Implementation I in

OpenCL and OpenGL

It is known that when the invoked threads don’t execute the same code or some

threads are useless then the performance of application decreases. In our imple-

mentation, every time that one shader called the number of workitems is different.

Assuming that the ”ARB compute variable group size” extension isn’t supported,

then we have to define a constant value for local workgroup size of each shader. We

analyze the different local workgroup sizes which are used for each shader. If we

find K different values of workgroup sizes then we create K copies of shaders code

files. Each one of the new files define a specific value of lcoal workgroup size.

As a result of the previous analysis, we have five shaders (because of the five

level Laplacian pyramid) with different local workgroup size for every phase of the

algorithm. The workgroup size of remapping kernel equals to (pyramid width,1,1)

and the workgroup size of the remaining shaders (blurring, downsample, upsample)

equals to (subimage width,1,1). Each shader (blurring, downsample, upsample) cal-

culates a subset of the corresponding sub-image. The execution time of this approach

is bigger than the previous implementation (use of the ”ARB compute variable group size”

extension) (Fig. 5.4) because some of the sub-images have smaller size than the de-

fined size.

5.2. LLF Implementations 35

Figure 5.4: The effect in execution time of not using the exact workgroup size

5.2.2 Implementation II

The optimized OpenGL implementation achieves speedup 16.6 and Total execution

time = 5317.45ms (Fig. 5.5).

Figure 5.5: Summarize the optimized LLF implementations

5.3. Comparison between OpenGL and OpenCL implementations 36

5.3 Comparison between OpenGL and OpenCL

implementations

We based on the execution time of the optimized OpenCL and OpenGL implemen-

tations as they were introduced in sections 4.2.2 and 5.2.2.

Total execution time of OpenCL = 4567.40ms

Total execution time of OpenGL = 5317.45ms

Figure 5.6 shows this difference. The time we need to create the initial flow

(read shader files, compile shader objects and attach to the programs, link programs,

allocate memory buffer objects) of OpenGL API is bigger than the OpenCL (about

165ms). As mentioned before, OpenGL compiler does not support recursion in

functions called from shaders. This costs to the implementation execution time

about 225ms.

Figure 5.6: Comparison between optimized OpenCL and OpenGL implementations

In order to explain precisely the difference in the results, we try to load the

OpenCL kernel and OpenGL shader assembly from the applications. The attempt

to load the OpenGL shader assembly was not successful because of the older available

context version.

Our OpenGL implementations use Shader Storage Buffer Objects (SSBOs). SS-

5.3. Comparison between OpenGL and OpenCL implementations 37

BOs are mostly used by compute applications because they can be larger than other

buffer objects. Also the reads and writes use incoherent memory accesses, so they

need the appropriate synchronization barriers. We also try to apply OpenGL spe-

cific optimizations, such as use of other types of buffers like Pixel Buffer Objects

and Uniform Buffer Objects. However, the application memory requirements could

not be met by the allowed sizes of these types of memory.

OpenCL is created for computing specifically. When we do computing using

OpenGL we always have to think about how to map out computing problem to

the graphics context (i.e. talk in terms of textures and geometric primitives like

triangles etc.). In conclusion, compute shaders are easier to use if we need to add

a bit of compute to an OpenGL application, because we don’t need to deal with all

the complications of sharing devices and resources between OpenGL and OpenCL.

Chapter 6

Local Laplacian Filters Vulkan

Implementation

6.1 Vulkan Overview

Vulkan is a new API that provides better abstraction of modern graphics cards. The

advantage of this new API is that allows the programmer to better describe what

the application intends to do. The possible results are better performance and less

surprising driver behavior compared to existing APIs like OpenGL and OpenCL.

However, the performance of a compute system is based primarly on the quality of

its implementation. OpenGL and OpenCL are expecting to merge into a single API

(Vulkan) for compute and graphics. This work is in progress.

As mentioned in previous chapters, the parallel code is represented by the ker-

nels in OpenCL and the shaders in OpenGL. The Vulkan API support a different

type to defining the functionality of the shaders and the kernels, an intermediate

representation, the SPIR-V. With the use of an external compiler, shaders written

in any shading language and kernels can be converted to SPIR-V. The implementa-

tions which use SPIR-V, like Vulkan applications, avoid the overhead of code files

parsing, compiling and linking the parallel code. Newest versions of OpenCL and

OpenGL are able to load SPIR-V binaries instead of read kernel/shader files. The

Table 6.1 shows the compatibility of the APIs versions, which of them are able to

load specific version of SPIR-V IR.

38

6.1. Vulkan Overview 39

SPIR-V is the first open intermediate language for parallel compute and graphics.

It can take as input all the types of shading languages and specific versions of

OpenCL kernels (Table 6.2). The SPIR-V purposes are to: [15]

• Provide a binary intermediate language for kernels/shaders to be the form

passed by an API into a driver.

• Map easily to other intermediate languages.

• Allow the first steps of compilation (just-in-time compilation) and reflection

to be done offline.

• Be low-level enough to require a reverse-engineering step to reconstruct source

code.

• Can be targeted by new front ends for languages can access multiple production

quality backends.

• Improve portability by enabling shared tools to generate or operate on it.

• Reduce compile time during application run time.

API version IR version

Vulkan X.XX SPIR-V 1.X

OpenCL 2.1/2.2 SPIR-V 1.X

OpenCL 2.0 (Extension) SPIR 2.0

OpenCL 1.2 (Extension) SPIR 1.2

OpenGL 4.6 SPIR-V 1.X

Table 6.1: Versions compatibility: APIs load SPIR/SPIR-V binary

Tables 6.1 and 6.2 presents another IR (Intermediate Representation), SPIR.

SPIR was initially developed for use by OpenCL in order to decrease the time for

the online compilation. It is based on the LLVM IR and has now evolved into the

cross-API intermediate language SPIR-V. However, the SPIR-V has nothing to do

with SPIR but used for the same purpose.

6.1. Vulkan Overview 40

API feature set version IR version

OpenCL 1.2/2.X SPIR-V 1.X

OpenCL C++ (2.X) SPIR-V 1.X

OpenCL C 1.2 SPIR 2.0

OpenCL C 2.0 SPIR 2.0

OpenCL C 1.2 SPIR 1.2

GLSL SPIR-V 1.X

Table 6.2: Versions compatibility: APIs parallel code compiled by SPIR/SPIR-V

version

A Vulkan application pass a SPIR-V module containing any of the following

operands declared by OpCapability (type defined by Vulkan API):

• Matrix

• Shader

• InputAttachment

• Sampled1D

• Image1D

• SampledBuffer

• ImageBuffer

• ImageQuery

• DerivativeControl

Therefore, Vulkan applications don’t support the SPIR-V binaries created by

compiling OpenCL kernels. There are many projects in action that work in this

path. One of them is the CLSPV compiler [16] which is work in progress and

converts the OpenCL kernels to GLSL compute shaders (Fig. 6.1). It consists of

a set of LLVM module passes to transform a dialect of LLVM IR into a SPIR-V

module containing Vulkan compute shaders.

6.1. Vulkan Overview 41

Figure 6.1: Porting OpenCL to Vulkan

We use the SPIR-V in our Local Laplacian Filters Vulkan implementation by

compiling the OpenGL shaders. Glslang is the official reference compiler for the

OpenGL shading languages [17]. The figure 6.2 shows the way that all types of

GLSL shaders compiled. The Khronos Group also provides a set of tools [18] that

create or transform SPIR-V modules. Supported features of the tool package that

we use during this thesis:

Assembler, Dissambler Supports SPIR-V versions 1.0, 1.1, 1.2 and 1.3 and in-

straction sets of GLSL std450 version 1.0 Rev3

Optimizer It is under development. Supports many optimizations, some of which

we will use in next section

Figure 6.2: Porting OpenGL to Vulkan

6.1. Vulkan Overview 42

6.1.1 Description of a Vulkan application flow

Vulkan is a layered architecture, consists of the following elements:

The Vulkan Application is the user application (Local Laplacian Filters).

The Vulkan Loader interfaces directly with the application and the ICDs. Be-

tween them it can inject a number of optional layers.

Vulkan Layers are optional components used for debugging, validation, and other

purposes.

Installable Client Drivers (ICDs) control the Vulkan-capable hardware. Each

of them support one or more devices. The loader discovers available physical

devices and return this information to the application.

Figure 6.3: Vulkan architecture [19]

The first step is the Vulkan initialization by creating an instance. At this point

we specify some simple information including which layers and extensions we want

to activate. We also create a handler of available devices, in order to choose one of

them. The next step is the communication with the device we create by creating

image and/or buffer objects. Compute applications usually require buffers.

The buffers and images can’t be used immediately after creation as no memory

has been allocated for them. It is the application’s responsibility to allocate GPU

memory for resources. The memory types have different properties. Some will be

6.1. Vulkan Overview 43

CPU visible or not, coherent between GPU and CPU access, cached or uncached,

etc. We can find out all of these properties by querying from the physical device.

When we already allocate the memory we want, we have to assign to the buffers

a specific region of the memory. The Vulkan API introduce some new terms, such

as command buffers which are allocated from a command pools. We issue all the

application GPU commands into command buffers which are sent to a queue for

execution. Work is executed on queues belonging to devices. Multiple queues can

be synchronized against each other as they can run out of order or in parallel to

each other.

Figure 6.4: Vulkan pipeline [20]

Compute pipeline isn’t so complicated as the graphics pipeline is (Fig. 6.4).

It consists of a single static compute shader stage and the pipeline layout. As

mentioned before, shaders are specified as SPIR-V binary. Once pipeline is created,

data has to be ready for execution. Vulkan resourses are presented by descriptors

which are arranged in sets. Sets are allocated from pools. Each set has a layout,

which is known at pipeline creation time and is shared between sets and pipelines.

We can switch pipelines which use sets of the same layout.

6.2. LLF Implementations 44

6.2 LLF Implementations

The figure 6.2 describes the way that our five shaders compiled, the functionality of

which is the same with this of the OpenGL implementation. The SPIR-V doesn’t

support the ”ARB compute variable group size” extension that we use for param-

eterizable local work group size, so each shader file must define a constant size of

workgroup. Because of this, we categorize the calls of each shader according to

the number of workitems which invoked per workgroup, such as the test case in

section 5.2.1. It is important to remember that these numbers are limited by the

hardware that we use.

6.2.1 Implementation I

The work group size equals to (pyramid width,1,1) for the remapping shader and

(subimage width,1,1) for the blurring, downsample, upsample shaders. So, we create

five copies of each initial shader. Each copy has its own local workgroup size.

Because of this, the execution time of the Vulkan implementation I (Fig. 6.5) is

expected to be higher than the execution time of the other APIs. However, it

achieves speedup equals to 8.

In order to optimize Vulkan implementation, we use the standalone optimizer

of the supported SPIR-V Tools. We test all the available compiler flags, but the

execution time stays in the same values. We are listing the flags which change the

size of the code:

• strip-debug

• eliminate-dead-const

• eliminate-local-single-block

• eliminate-local-single-store

• eliminate-dead-code-aggressive

6.2. LLF Implementations 45

Figure 6.5: Comparison of sequential implementation with the Implementation I in

OpenCL, OpenGL and Vulkan

Total execution time of OpenCL = 7379.07ms

Total execution time of OpenGL = 9862.06ms

Total execution time of Vulkan = 10924.68ms

6.2.2 Implementation II

The optimized implementation is more complicated because of the two versions

of convolution kernel. The local workgroup size of remapping, downsampling and

upsampling kernels are the same with these of Implementation I. Table 6.3 includes

all the sizes of convolution local workgroup, in case of each sub-image of an initial

image 800 ∗ 533 is calculated by one workgroup. We choose the workgroups 64 ∗ 16,

28∗28, 78∗13 and 78∗13, and create four copies of the first version of the convolution

shader. In the same way, we choose the workgroups 10∗97 and 20∗51 of the second

version of the convolution kernel. We could try to implement one shader code for

every one workgroup size we use, but then the cost of Vulkan flow creation would

be increased.

6.2. LLF Implementations 46

Pyramid level Downsampling Upsampling

level 0 78 ∗ 13(1014) 70 ∗ 14(980)

level 1 25 ∗ 25(625) 64 ∗ 16(1024)

60 ∗ 15(900)

level 2 27 ∗ 27(724) 64 ∗ 16(1024)

64 ∗ 16(1024)

level 3 28 ∗ 28(784) 64 ∗ 16(1024)

64 ∗ 16(1024)

Table 6.3: Convolution kernel local workgroup size calculates one or more sub-images

Pyramid level Downsampling Upsampling

level 2 20 ∗ 49(980)

level 3 10 ∗ 97(970)

20 ∗ 51(1020)

Table 6.4: Convolution kernel local workgroup size calculates a part of a sub-image

Figure 6.6 shows the execution time of the optimized implementation (Implementation

II) for the three APIs. The execution time of the Vulkan implementation is about

600ms higher than the remaining implementations. This is explained by the fact

that the SPIR-V IR requires the definition of the local workgroup size in time of

shader compilation.

Total execution time of OpenCL = 4567.40ms

Total execution time of OpenGL = 5317.45ms

Total execution time of Vulkan = 6561.15ms

Figure 6.7 shows the total change in execution time, where the Vulkan imple-

mentation achieves a speedup of 13.4.

Total execution time of Sequential implementation = 88142.76ms

6.2. LLF Implementations 47

Figure 6.6: Comparison between OpenCL, OpenGL and Vulkan Implementation II

Figure 6.7: Execution time of Implementation II (Vulkan speedup = 13.4)

Chapter 7

Conclusions

In conclusion, the execution time of our implementations in the three APIs (OpenCL,

OpenGL, Vulkan) shows that the OpenCL implementation achieves better perfor-

mance. This is partially expected because the OpenCL API is created specifically

for computing. However, a key advantage of Vulkan over OpenGL is the ability to

generate GPU work in parallel using many CPU cores, making Vulkan particularly

useful for CPU-bound developers. It is import to refer that the attempt of OpenCL

and OpenGL to merge into the Vulkan API is work in progress. This means that

any new tool is able to redefine the situation.

7.1 Future work

In this thesis a sequential and an OpenCL, an OpenGL and a Vulkan implementation

of Local Laplacian Filters are presented. The execution time of parallel implemen-

tations is 19x better than the sequential implementation. There are some ideas that

we could try to apply to the LLF implementation.

Each pixel of the input RGB image is represented by three float values. In order

to minimize the size of memory we use and the number of floating point operations,

we can use single point variables. Also we could create an intensity image, one pixel

of which is computed by the function Ii below [8]. After the calculation of the output

image, the pixels presents the Ir information. We need to translate this information

to RGB. Because of this we save the color ratios (ρr, ρg, ρb) of every initial pixel.

48

7.1. Future work 49

Ii = (20Ir + 40Ig + Ib)/61 (7.1.1)

(ρr, ρg, ρb) = (Ir, Ig, Ib)/Ii (7.1.2)

Therefore, we could use approximation techniques that inserts error to the output

image which is not viewable in order to gain in performance.

Bibliography

[1] David A. Patterson and John L. Hennessy. Computer Architecture: A Quanti-

tative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

1990. isbn: 1-55880-069-8.

[2] Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy. Fundamentals

of Multicore Software Development. 1st. Boca Raton, FL, USA: CRC Press,

Inc., 2017. isbn: 1138114375, 9781138114371.

[3] Krste Asanovic et al. The landscape of parallel computing research: A view

from berkeley. Tech. rep. Technical Report UCB/EECS-2006-183, EECS De-

partment, University of California, Berkeley, 2006.

[4] Khronos Group. OpenCL Overview:The open standard for parallel program-

ming of heterogeneous systems. url: https://www.khronos.org/opencl/.

[5] Khronos Group. The OpenGL Graphics System: A Specification Version 4.5

(Core Profile). June 29, 2017. url: https://www.khronos.org/registry/

OpenGL/specs/gl/glspec45.core.pdf.

[6] The Khronos Group. SPIR-V Specification version 1.00. url: https://www.

khronos.org/registry/spir-v/specs/1.0/SPIRV.html.

[7] Khronos Group. Khronos Releases Vulkan 1.0 Specification. 2016. url: https:

/ / www . khronos . org / news / press / khronos - releases - vulkan - 1 - 0 -

specification.

[8] Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. “Local Laplacian filters:

Edge-aware image processing with a Laplacian pyramid.” In: ACM Trans.

Graph. 30.4 (2011), pp. 68–1.

50

https://www.khronos.org/opencl/
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.html
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.html
https://www.khronos.org/news/press/khronos-releases-vulkan-1-0-specification
https://www.khronos.org/news/press/khronos-releases-vulkan-1-0-specification
https://www.khronos.org/news/press/khronos-releases-vulkan-1-0-specification

BIBLIOGRAPHY 51

[9] Peter J Burt and Edward H Adelson. “The Laplacian pyramid as a compact

image code”. In: Readings in Computer Vision. Elsevier, 1987, pp. 671–679.

[10] Sylvain Paris, Samuel W Hasinoff, and Jan Kautz. Local Laplacian Filters:

Edge-aware Image Processing with a Laplacian Pyramid Matlab source code

and samples. 2011. url: https://people.csail.mit.edu/sparis/publi/

2011/siggraph/.

[11] Khronos Group. OpenCL Details,Khronos Group Presentations. 2012. url:

https://www.khronos.org/assets/uploads/developers/library/2012-

pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf.

[12] Khronos Group. OpenCL 1.2 Reference Pages. url: https://www.khronos.

org/registry/OpenCL/sdk/1.2/docs/man/xhtml/.

[13] Learn OpenGL. url: https://learnopengl.com/Getting-started/OpenGL.

[14] Khronos Group. The OpenGL Shading Language, Language Version: 4.50.

May 09, 2017. url: https://www.khronos.org/registry/OpenGL/specs/

gl/GLSLangSpec.4.50.pdf.

[15] Google John Kessenich and Intel Boaz Ouriel. SPIR-V Specification, Version

1.00. January 16, 2018. url: https://www.khronos.org/registry/spir-

v/specs/1.0/SPIRV.pdf.

[16] Google and Codeplay. CLSPV prototype compiler, open source github project.

url: https://github.com/google/clspv.

[17] Khronos Group. OpenGL / OpenGL ES Reference Compiler. url: https:

//www.khronos.org/opengles/sdk/tools/Reference-Compiler/.

[18] Khronos Group. SPIRV-Tools, open source github project. url: https://

github.com/KhronosGroup/SPIRV-Tools.

[19] Khronos Group. Architecture of the Vulkan Loader Interfaces. url: https:

/ / github . com / KhronosGroup / Vulkan - Loader / blob / master / loader /

LoaderAndLayerInterface.md.

[20] The Khronos Group. Vulkan 1.0.87 - A Specification. url: https://www.

khronos.org/registry/vulkan/specs/1.0/html/vkspec.html.

https://people.csail.mit.edu/sparis/publi/2011/siggraph/
https://people.csail.mit.edu/sparis/publi/2011/siggraph/
https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.khronos.org/assets/uploads/developers/library/2012-pan-pacific-road-show-June/OpenCL-Details-Taiwan_June-2012.pdf
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/
https://learnopengl.com/Getting-started/OpenGL
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.50.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.pdf
https://github.com/google/clspv
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/SPIRV-Tools
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/loader/LoaderAndLayerInterface.md
https://github.com/KhronosGroup/Vulkan-Loader/blob/master/loader/LoaderAndLayerInterface.md
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html

BIBLIOGRAPHY 52

[21] Jason Ekstrand. Vulkan in Open-Source:A discussion of the new Vulkan graph-

ics API and its impact on Open-source software. 2016. url: https://archive.

fosdem.org/2016/schedule/event/vulkan_graphics/.

[22] NVIDIA Corporation. Introduction to GPU Computing with OpenCL. 2009.

url: http://developer.download.nvidia.com/CUDA/training/NVIDIA_

GPU_Computing_Webinars_Introduction_To_OpenCL.pdf.

[23] Ryoji Tsuchiyama et al. The OpenCL Programming Book. January 2012. url:

https://us.fixstars.com/opencl/book/.

[24] Benedict Gaster et al. Heterogeneous computing with openCL: revised openCL

1. Newnes, 2012.

[25] Aaftab Munshi et al. OpenCL Programming Guide. 1st. Addison-Wesley Pro-

fessional, 2011. isbn: 0321749642, 9780321749642.

[26] Khronos Group. SPIR Overview:The Industry Open Standard Intermediate

Language for Parallel Compute and Graphics. url: https://www.khronos.

org/spir/.

[27] The Khronos Group. Khronos Releases OpenCL 2.2 With SPIR-V 1.2. May

16, 2017 - IWOCL 2017, Toronto. url: https://www.khronos.org/news/

press/khronos-releases-opencl-2.2-with-spir-v-1.2.

[28] Khronos Group. glslang:Khronos reference front-end for GLSL and ESSL, and

sample SPIR-V generator, open source github project. url: https://github.

com/KhronosGroup/glslang.

[29] Chris Hebert and Christoph Kubisch. Vulkan Memory Management. url:

https://developer.nvidia.com/vulkan-memory-management.

[30] Baldur Karlsson. Vulkan in 30 minutes. url: https://renderdoc.org/

vulkan-in-30-minutes.html.

[31] Timothy Lottes. Vulkan Device Memory. url: https : / / gpuopen . com /

vulkan-device-memory/.

https://archive.fosdem.org/2016/schedule/event/vulkan_graphics/
https://archive.fosdem.org/2016/schedule/event/vulkan_graphics/
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Introduction_To_OpenCL.pdf
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_Introduction_To_OpenCL.pdf
https://us.fixstars.com/opencl/book/
https://www.khronos.org/spir/
https://www.khronos.org/spir/
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
https://www.khronos.org/news/press/khronos-releases-opencl-2.2-with-spir-v-1.2
https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang
https://developer.nvidia.com/vulkan-memory-management
https://renderdoc.org/vulkan-in-30-minutes.html
https://renderdoc.org/vulkan-in-30-minutes.html
https://gpuopen.com/vulkan-device-memory/
https://gpuopen.com/vulkan-device-memory/

BIBLIOGRAPHY 53

[32] Neil Henning Codeplay. An Introduction to SPIR-V, Game Developers Confer-

ence. March 2016. url: http://www.cogsci.rpi.edu/~destem/gamearch/

gdc16/AnIntroductionToSPIR-V.pdf.

[33] Harold Serrano. Understanding OpenGL Objects. url: https://www.haroldserrano.

com/blog/understanding-opengl-objects.

[34] Neil Henning. A simple Vulkan Compute example. url: http://www.duskborn.

com/a-simple-vulkan-compute-example/.

[35] Khronos Group. Memory Model. url: https://www.khronos.org/opengl/

wiki/Memory_Model.

http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/AnIntroductionToSPIR-V.pdf
http://www.cogsci.rpi.edu/~destem/gamearch/gdc16/AnIntroductionToSPIR-V.pdf
https://www.haroldserrano.com/blog/understanding-opengl-objects
https://www.haroldserrano.com/blog/understanding-opengl-objects
http://www.duskborn.com/a-simple-vulkan-compute-example/
http://www.duskborn.com/a-simple-vulkan-compute-example/
https://www.khronos.org/opengl/wiki/Memory_Model
https://www.khronos.org/opengl/wiki/Memory_Model

	Abstract
	Acknowledgements
	Introduction
	Background
	Problem statement & Contributions
	An overview of the content

	The Laplacian filter
	Background on Laplacian Pyramids
	The LLF algorithm
	Remapping and Parameterization
	Algorithm complexity

	Local Laplacian Filters Sequential Implementation
	Local Laplacian Filters OpenCL Implementation
	OpenCL Overview
	Parallelization of the algorithm
	Implementation I
	Implementation II

	Local Laplacian Filters OpenGL Implementation
	OpenGL Overview
	LLF Implementations
	Implementation I
	Implementation II

	Comparison between OpenGL and OpenCL implementations

	Local Laplacian Filters Vulkan Implementation
	Vulkan Overview
	Description of a Vulkan application flow

	LLF Implementations
	Implementation I
	Implementation II

	Conclusions
	Future work

