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Περίληψη 

 

Η συνεχής αύξηση των έξυπνων συσκευών, όπως επίσης και η ψηφιοποίηση εταιριών και 

δημόσιων υπηρεσιών, οδήγησε σε μία αξιοσημείωτη αύξηση της κίνησης στο Διαδίκτυο. 

Επιπλέον, οι τεχνολογίες του  Διαδικτύου των Πραγμάτων (Internet of Things), επέφερε 

τη δημιουργία πολυάριθμων δικτύων υπολογιστών, που κατακλύζονται –πολύ συχνά-  

από ευαίσθητες πληροφορίες. Όλα τα παραπάνω δημιούργησαν την επιτακτική ανάγκη 

για δυνατούς μηχανισμούς ασφάλειας, με στόχο την προστασία των προσωπικών 

δεδομένων που κυκλοφορούν στο διαδίκτυο, καθημερινά 

 

Τα Συστήματα Ανίχνευσης Εισβολών έχουν σημαντικό ρόλο στη διαδικασία 

διασφάλισης ενός δικτύου υπολογιστών. Χρησιμοποιήσαμε μια τεχνική μηχανικής 

εκμάθησης, συγκεκριμένα, Τεχνητά Νευρωνικά Δίκτυα που εκπαιδεύονται με τεχνικές 

Βαθιάς Εκμάθησης, για να δημιουργήσουμε ένα Σύστημα Ανίχνευσης Εισβολών που 

τροφοδοτείται και ελέγχεται από με τις AWID βάσεις δεδομένων του Πανεπιστημίου 

Αιγαίου. Δοκιμάσαμε Δυαδικούς και Πολυταξικούς Ταξινομητές και χρησιμοποιήσαμε 

δύο διαφορετικά σετ τροφοδοσία. Η ταξινόμηση αφορούσε σε Μεθόδους Εκτέλεσης 

επιθέσεων. Συγκεκριμένα, τις Flooding, Impersonation and Injection. 

 

Η βασική συνεισφορά αυτής της εργασίας, είναι πως δεν υπάρχουν δημοσιευμένα άλλα 

εγχειρήματα αξιολόγησης Δυαδικών Ταξινομητών που χρησιμοποιούν τη Βαθιά 

Εκμάθηση. Έτσι, μπορεί να αποτελέσει το εναρκτήριο σημείο για περαιτέρω βελτιώσεις. 
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Abstract 

 

The constant increase of smart devices, as well as the digitalization of both enterprises 

and social services led to a notable growth of traffic over Internet. Moreover, Internet of 

Things Technologies induced the creation of numerous computer networks that are 

flooded with –very commonly- sensitive information. All the above induce the need of 

building strong security systems, in order to protect the personal information which are 

communicated through Internet every day. 

 

Intrusion Detection Systems (IDS) play a major role in the procedure of keeping a 

computer network secure. Thus, they are widely used as defending mechanisms. We used 

a machine learning technique, especially Deep Learning Artificial Neural Networks, to 

create an IDS that is trained and tested with the AWID datasets. We experimented with 

both Multi-Class and Binary Classifiers and tried different Input Sets. The classification 

concerned Attack Execution Methods, namely Flooding, Impersonation and Injection. 

 

The main contribution of this dissertation is that there are no other published projects 

using Binary Classifiers that are trained with Deep Learning Methods. Thus, this can be 

the starting point for further improvements. 
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1. Introduction 

During the past decade the use of computers and smart devices has increased 

significantly and this upturn does not seem to stop in the next years. According to Cisco 

Visual Networking Index(“Cisco Visual Networking Index: Global Mobile Data Traffic 

Forecast Update”,2016) “The total number of smartphones (including phablets) will be 

over 50 percent of global devices and connections by 2021”, as well as “Smartphones 

will surpass four-fifths of mobile data traffic (86 percent) by 2021.” More devices 

connected to the internet means more personal data exposed. This increase is not applied 

just in terms of private using.  In most developed countries, there is an ongoing effort of 

digitalizing social services such as healthcare and tax services. As far as industries are 

concerned, it is worth mentioning that new technologies, such as Big Data and Cloud 

Computing, are widely embraced. As a result, the need of securing all these data and 

transactions, that are digitally recreated, is getting an issue of great importance.  

 

It is also notable, that another technology advance which has brought up a lot of security 

challenges, because of its rapid development, is the Internet of Things (IoT). The IoT 

gives people the opportunity to create a network of physical devices, in order to remotely 

control them. These devices include simple home appliances, as well as medical devices 

and factories heavy equipment. Thus, intrusions in such networks may have dangerous 

costs. 

 

In order to protect networks and information systems, the first step that should be made is 

to be able to recognize an attempt of intrusion. By doing so, the intrusion can be stopped 

and the defender can create a stronger and more sophisticated shield against the attack. 

Intrusion Detection Systems (IDS) aim to secure networks from attacks, in order to 

preserve the confidentiality, integrity and availability (also known as CIA triad) of 

information. On the other hand, attackers try to take advantage of a system security 

vulnerabilities in order to gain root access as to control them, retrieve data or damage 

them.  
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This dissertation introduces an IDS that uses machine learning and specifically neural 

network, and uses the AWID dataset for training and testing purposes. We created two 

Artificial Neural Networks that have different architectures. The first one is a multi-class 

classifier, while the second one consists of stacked binary ones. Furthermore, we 

experimented with two different sets of attributes as input.  We compare the results, 

based on handful of aspects, as the number of false alarms or the accuracy rates. 

 

Even though there have been several experiments including neural networks and the 

AWID dataset, this is the first attempt to test this dataset on a binary Artificial Neural 

Network. All previous projects (described in Section 2) had multi-class classification 

models and experimented with different training algorithms.  

 

The rest of the manuscript is organized as follows: Section 2 concerns the Related Work 

while Section 3 includes Background information. Our implementation is described in 

detail in Section 4. Finally Section 5 includes the Conclusions. 

 

 

 

 

2 Related Work 

 

Kolias et al. introduced the AWID dataset in 2016. This dataset consists of labeled WiFi 

packets, which are classified according to their attack type, or if they are harmful, they 

are just labeled as normal. Along with dataset, they presented the implementation of a 

variety of machine learning techniques, including artificial neural networks.  However, 

the accuracy scores were quickly surpassed by the work of Thanthridge et al.(2016) , 

Aminanto et al.(2017,2018) and Usha and Kavitha(2016). 

 



3 
 

Thanthrige et al.(2016) published a paper, showing the importance of feature reduction 

and its impact on the detection accuracy and the classification speed of an IDS. In order 

to prove this, they also used multiple machine learning techniques. They used the AWID 

public datasets to train and test the IDSs created.  Aminanto et al. (2017) tried to improve 

the Impersonation attack detection rate -compared to the results of Kolias et al. (2016). 

They used artificial neural networks to reduce the features and they experimented using 

the Stacked Auto Encoder learner. They manage to achieve a significant improvement to 

the rates. 

 

This year, Aminato et al.(2018)  managed to achieve the best performance in published 

literature(Aminanto et al., 2018). They did so, by using a weight-based feature selection 

method with a light machine-learning classifier.  

 

Usha and Kavitha(2016) used a Support Vector Machine and the AWID dataset. This led 

to a better trade-off between detection accuracy and learning time, and at the same time a 

reduced false positives and computation complexity. Of course, they reduced the features 

used as input.  

 

Thing (2017) proposed a deep learning approach for intrusion detection using the AWID 

datasets. They experimented the utilization of different activation functions in two 

different artificial neural networks, which included two and three hidden layers, 

respectively. Their 4-class classifiers achieved a 98.6688% overall accuracy. 

 

The key difference, between these project and ours, is that we compare a multiclass 

classifier to a binary one, while the others compare different training algorithms. 
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3 Background 

3.1 Intrusion Detection Systems 

Intrusion Detection Systems are devices or software that track abnormal behavior and 

policy violations. The first IDS was introduced by Dorothy E. Denning in 1986. IDSs 

have a lot in common with firewalls as they both try to defend a network. However, 

firewall functionality differs from IDS, as the former prevent attackers from intruding the 

network. In contrast, IDSs identify potentially malicious activity and raise an alarm. 

Systems that detect such activities and, in addition, take some corresponding action are 

referred to as Intrusion Prevention Systems (IPS). Another major difference between 

these defending mechanisms is the fact that firewalls are exclusively network protecting 

mechanisms, while IDS can also be used to monitor malicious behaviour inside a system. 

 

In terms of system positioning IDS can be classified into two categories. The first one is 

the Network IDS (NIDS). As the name itself implies, NIDS are monitoring network 

traffic and aim to detect external attacks. The most notable advantage of NIDS is that 

they can defend all the devices connected to the network, and it does not require 

replication. The second category is the Host based IDS (HIDS). HIDS are located within 

a system, and besides network traffic, they also monitor the systems files and processes, 

in order to detect if there is any change in the critical ones. Because of this, HIDS have 

much more information to form the signature of a normal behavior which makes them 

more reliable. 
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Figure 3.1: Host-Based Intrusion Detection System (Retrieved from: “HIDS (Host-Based 

Intrusion Detection System) - Bauman National Library”, n.d. )       

  

L.P Dias et al.(2017) categorize IDSs based in the detection method used in Misuse or 

Signature Detection and in Anomaly Detection systems. The first type of IDS needs some 

predefined attack patterns in order to be able to recognize them. Every other kind of 

behavior is considered normal. Keeping in mind that attacks are constantly evolving and 

new types of attacks are made, in order to stay protected, the list of the predefined 

patterns should be very commonly updated. Of course, there is always the possibility that 

the update may come after the attack, but the danger can be regulated by increasing the 

update frequency. On the contrary, Anomaly Detection Systems functionality is 

characterized by the just reversed logic. As a consequence, the predefined patterns 

concern the normal behavior. Any different set of characteristics, is flagged as malicious 

behavior. It can be easily seen that this type of systems can be “overprotective”, since the 

networks traffic is not static and its features can widely vary (Sommer et al, 2010) even 

when there is no threatening behavior. 

 

When it comes to IDS evaluation, a very common indicator of a well-developed one, is 

the amount of the true/false positives and true/false negatives. True positives refer to the 

packets, correctly classified as harmful, while true negatives are the packets that are 

https://en.bmstu.wiki/index.php?title=HIDS_(Host-Based_Intrusion_Detection_System)&mobileaction=toggle_view_mobile
https://en.bmstu.wiki/index.php?title=HIDS_(Host-Based_Intrusion_Detection_System)&mobileaction=toggle_view_mobile
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correctly classified as benevolent.   False positives are the alarms that are signed by an 

IDS when there was not an actual malicious behavior. False positives are increased in 

Anomaly Detection Systems, due to the vast network diversity. False negatives refer to 

packets or generally activities that are considered harmless, while they shouldn’t be. It is 

clear that, false negatives are far more harmful for a system, but what should also be 

mentioned is that false positives require a significant amount of analyzing time which 

finally leads to a benign activity. 

  

3.2 Artificial Neural Networks 

In 1959 Arthur Samuel introduced the term Machine Learning. According to Samuel 

Machine Learning is the process that makes computers able to “learn”, in a very similar 

way that a human would, if given the same data. Machine Learning implies that 

computers are not pre-programmed to handle new data. It is the training session that leads 

the computer to make decisions, through statistics and pattern recognition. Machine 

Learning is a part of the greater field of Artificial Intelligence. There are a handful of 

approaches to apply Machine Learning. This paper studies Artificial Neural Networks 

learning algorithm. 

 

Artificial Neural Networks are computing systems inspired by the human brain 

functionality. They try to mimic the process followed by neurons inside the brain. Just 

like the physical ones, artificial neurons that are “connected” to each other can 

communicate in order to process signals and finally classify them. 

 

Considering the main architecture of ANNs, it can be organized in three basic parts. The 

first one the Input Layer. As the name implies, it is the part of the ANN that receives 

signals or patterns, in order to redirect them to the following layers. The second part is 

the Hidden or Intermediate layers. They are the layers that perform the most 

computational processes, as they are the ones responsible to combine the input data and 

then create patterns, in order to generalize the results. Unlike the other two categories, 

hidden layers can be multiple, according to the combination of computational complexity 
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and desired accuracy.  The last part of the ANN architecture, is the Output layer which 

forms the final classification of the data, based in the previous layer computations. 

 

Figure 3.2: Feedforward ANN Architecture (Retrieved from: Dawson et al, 2000) 

  

All layers consist of neurons. Neurons are responsible for forwarding –or not- the signals 

inside the layers and among them. To do so, multiple functions are used, also known as 

Activation Functions. The most commonly used, beginning from the simplest one, are the 

Step, the Linear, the Sigmoid, the Tanh and the Relu functions. There is no need to use 

the same activation function in all hidden layers. Just like the number of hidden layers 

and the number of neurons, the choice between these functions is up to developer’s 

judgement.  

 

 

 Figure 3.3: Different types of Activation Function (Retrieved from: Malhotra, 2018 

) 

ANNs can be also classified in 3 categories based on the way neurons are organized. The 

first one is the Single-Layer Feedforward Architecture. It includes only the input and the 

output layer, so it is the least complex of the rest. The second is the Multiple-Layer 

Feedforward Architecture. Unlike the previous one, this architecture includes all three 

http://www.geocomputation.org/2000/GC016/Gc016.htm
http://www.geocomputation.org/2000/GC016/Gc016.htm
http://www.geocomputation.org/2000/GC016/Gc016.htm
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
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basic layers. In addition, most of the times the number of layers exceeds 3. Namely, there 

are more than one hidden layers. Last but not least, is the Recurrent Architecture It is the 

most interesting and at the same time most complex architecture of all, as it uses its 

output as input for the subsequent computations.  

 

Figure 3.4: ANN basic architectures (Retrieved from: Da, S. I. et al., 2017) 

 

As Haykin(1999) notes, ANNs can perform tasks like pattern matching very skillfully, as 

a result of their capability of reorganizing their structure correspondingly. Furthermore, 

ANNs can learn and model relationships that linear programs are incapable of doing so. 

Another notable advantage of ANN is that they can generalize. After the first phase of the 

training, they can come up with relations between the data that were not obvious initially. 

What really makes ANNs useful, is their ability of learning and especially self-learning. 

Learning can be interpreted making a system able to correctly correspond to a new input 

or task after having been trained. Although, ANNs require a notable amount of 

computing resources because their architecture differs from the architecture of 

microprocessors (Shah et al. ,2012). Moreover, in order to develop an efficient ANN, it is 

of great importance to “feed” it with a large training set that also results in a considerable 

resource usage. 

 

 

https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611
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3.3 Feature Selection  

 

The input layer of a ANN receives the key attributes of each data index, which are used 

to categorize the data. Most of the times, datasets include multiple attributes per index 

which are not always useful (not for all classifications). This is due to the fact that 

datasets are not exclusively created for single purposes. The same dataset can be used to 

make classifications according to different parameters. Namely, what might be useful for 

one classification problem, may be completely irrelevant for another.  

 

The correct choice of features used as input is very important, as two problems, with high 

impact on the results, may occur. If the features are misselected, in terms that more 

parameters than actually needed are used, then the model is driven to “overfitting “(Aalst 

et al., 2008). In other words, the patterns generated are too close to the training set and as 

a result, the generalization required to classify new data is very difficult. On the other 

hand, having fewer features, than the features necessary to identify the pattern, as input 

leads to “underfitting”. Underfitting refers to the incapability of a model to generate a 

pattern that corresponds correctly to the input due to the lack of important characteristics 

of the training set.  Both overfitted and underfitted models fail on new datasets, while -

quite obviously- overfitted ones have a very good performance on training sets. 
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Figure 3.5: Relation between model used and errors (Retrieved from: Giovinazzo, 2017) 

 

Figure 3.6: Relation between model and data (Retrieved from: “Model Fit: Underfitting 

vs Overfitting- Amazon Machine Learning”, n.d.) 

 

All these, sum up to the fact that in order to develop an efficient ANN, one should take 

under consideration the need to pick certain index attributes, in other words, feature 

selection. Feature selection is a key step of creating a ANN. The impact of ignoring it is 

serious as it has a great reflection in accuracy rates. Overfeeding the network with excess 

information, makes the classification very difficult, as the common characteristics 

between the categories are only a small percentage of the total.  

https://meditationsonbianddatascience.com/2017/05/11/overfitting-underfitting-how-well-does-your-model-fit/
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
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3.4 Datasets 

As previously mentioned, a key part of developing an efficient ANN, is the training 

phase. Not only is it mandatory, but it also greatly determines the quality of the results. 

The dataset used during this process should be carefully chosen. According to the 

purpose of the ANN function one should take into consideration a variety of 

characteristics to evaluate. To start with, the size of the dataset plays a major role. It is 

clear that, if the input has a lot of entries, then it would be easier for the ANN to identify 

more accurate patterns and thus, be more efficient. However, a large dataset means a lot 

of computational processes, when at the same time it does not guarantee high accuracy 

rates. What should also be considered is the quality of the data. In other words, the data 

given as input should contribute to form the greatest picture. Each entry of the data 

consists of some attributes, also known as features. In fact these are the real input. It can 

be easily understood, that a dataset with a lot of missing attributes information, would 

lead to a low accuracy output. On the other hand, having a very large number of attributes 

is also ineffective. The generalization of the results would be almost impossible if the 

characteristics, that were to be examined, were excessive. Lastly, the most crucial matter, 

concerning the quality of the dataset, is the how updated the data is. There is absolutely 

no point in training a system with obsolete data. In conclusion, choosing the suitable data 

is as important as correctly developing the neural network. 

 

In case of datasets needed in training Intrusion Detection Systems, the same aspects 

should be taken into account. However, there is another challenge that people in this 

domain face. There are a very few public datasets that can be used in the training phase. 

The most known public datasets are the DARPA/Lincoln Labs packet traces 1998 and 

1999(“Datasets | MIT Lincoln Laboratory”, n.d.)  and the  KDD Cup 1999 Data(“KDD 

Cup 1999 Data”, 1999). It is more than obvious that a 20-year-old set is outdated. 

According to Moore’s Law the number of transistors in a dense integrated circuit doubles 

about every two years. This also reflects on processor performance. Attackers take 

advantage of their system properties in order to orchestrate more advanced attacks. This 

means faster or more sophisticated attacks.  Keeping this in mind, it is clear that with the 

systems constantly advancing, it is quite probable that the number and severity of attacks 
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will increase. In order to intrude systems, attackers follow current technology and try to 

adapt to it. Thus, a dataset that old may not represent contemporary attacks.  As Sommer 

et al.(2010) suggests, besides being outdated, these datasets have been over-studied and 

no interest is raised in recreating a NIDS responding to these attacks. The real question is 

why there are not a more datasets available. First of all, storing millions of packets raises 

privacy issues. It is not plausible to ensure that none of the millions of packets contains 

sensitive information. As a result, very frequently there are no legal permissions to do so. 

This leads to the effort of simulating network traffic, to create a dataset. The fact that 

Internet is not easily simulated as S. Floyd states, makes the creation even more difficult.  

 

3.4.1 The AWID Dataset 

The public dataset (Kolias et al., 2016), consists of two subsets, a large and a smaller one. 

Both subsets are divided in two parts the training and the evaluating one. What needs to 

noticed is that the test set is not derived from the training one. Thus the reliability of the 

results is not compromised. The datasets have 2 versions. In the first (ATK), data is 

classified into 16 categories in accordance with the kind of attack performed. The second 

one (CLS), has 4 categories according to the methodology of execution. Each entry in the 

dataset has 155 attributes, with the last one being the class label. In case of a missing 

value, the corresponding attribute is represented with a “?”. 
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Table 3.1: Class distribution-Full set (Retrieved from: Kollias et al, 2014) 

 

Table 3.2: Class distribution-Reduced set (Retrieved from: Kollias et al, 2014) 

 

3.4.1.1 Methodology of Attack Execution 

The paper focuses on the AWID-CLS sets, namely the classification that is made 

according to the methodology that is used during an attack. There are four categories that 

the packets are sorted into; Flooding, Impersonation, Injection and Normal. 

 

http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html
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● Flooding 

Flooding is a Denial of Service (DoS) attack. DoS Attacks are orchestrated in order to 

bring a network or a server down. (“Understanding Denial-of-Service Attacks", 2013). 

To accomplish this, the network is “flooded” with connection requests and eventually 

becomes incapable to respond to any of them, even the not malevolent ones.  When the 

number of requests excess the capacity of the memory buffer, the system can no longer 

establish new connections. Whether the attacker use one or more computers and internet 

connections to flood the network, the attack is characterized as DoS or DdoS (Distributed 

Denial of Service). DDoS attacks, as shown Figure 3.7, exist for a long time and they are 

getting more potent through the years. 

Figure 3.7: DDoS Attacks Over Time (Jeftovic, 2018) 
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Flooding attacks are multilayer ones (Regan et. al, 2017). They can be applied in layers 

other than the network. To be more specific, one can achieve Flooding attack in the 

Physical Layer through signal jamming. In the Data Link layer, the attacker “floods” the 

ARP tables, of the target network, with false MAC addresses resulting in the denial of 

access to channels for new nodes. The fourth and fifth layers, id est Transport and 

Application layers, Flooding attacks occur via SYN Flooding and certain malevolent 

programs.   

 

● Injection 

As the name itself implies, Injection attack refers to the process of “injecting” malicious 

code into a program. So as to achieve this, attackers provide the program with a 

malicious input. Then, the interpreter is misled to compile that input as a part of the 

genuine code. Eventually the attackers manage to change the normal execution flow in 

their interest without proper authorization. This kind of attacks have various impacts of 

scaled severeness. There can be a loss of data or a data theft, and if the attack is more 

sophisticated and a declaration of root privileges is achieved, there can even be a full 

system compromise. 

 

The Open Web Application Security Project (“OWASP Top Ten 2017 Project - 

OWASP”, n.d.) lists Injection attacks as the number one application security risk. The 

reason behind this, besides the already noted impacts, is that apart from being very 

dangerous for the victim system, Injections attacks can easily spread widely.  Injection 

attacks, such as SQL Injection (SQLi) and Cross-Site-Scripting (XSS), which also are the 

most common ones, are a very typical example of this characteristic when talking about 

legacy applications. 

 

What is also alarming about Injection attacks is that the vulnerabilities allowing an 

attacker to inject malicious code, are very commonly present in websites. In 2010 

WhiteHat Security released a report (“WhiteHat Security 9th Website Security Statistics 

Report”, 2010) presenting the percentage of the likelihood of a website having a 
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vulnerability by class. As it can be seen in Figure 3.8, Cross-Site scripting is the top in all 

types of scripting technologies. 

 

 

Figure 3.8: Top Ten Classes of Attack (Retrieved from: “WhiteHat Security 9th Website 

Security Statistics Report”,2010 ) 

 

● Impersonation 

The basic idea behind Impersonation Attacks is masquerading into a trusted -for the 

victim system- source. To achieve this the attacker uses a trusted node identity, such as 

Medium Access Control (MAC) address and/or Internet Protocol (IP) address. Even 

though there exist some security techniques such as Wired Equivalent Privacy (WEP), 

Wi-Fi Protected Access (WPA), and 802.11i (WPA2), attackers are not yet prevented 

from stealing such credentials. This happens due to the fact that encryption concerns only 

the data frames. Management and Control frames are vulnerable to spoofing (Lakshmi et 

al., 2014). Impersonation can occur in different forms, especially device cloning, address 

spoofing, unauthorized access, rogue access points and replay (Barbeau et al, 2006). 

https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report-3995771
https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report-3995771
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Device Cloning refers to mimicking a device by altering the attacker’s device to have 

H/W addresses of a trusted device. When the duration of this imitation is one frame, then 

another form of Impersonation happens; (MAC) address spoofing.  The above techniques 

are key steps to deauthentication and disassociation attacks. Impersonation is very useful 

for gaining unauthorized access. The attacker may use the pre-referred techniques to 

obtain privileges and be able to access data or alter the network. Another form of 

Impersonation is the Rogue Access Point. In this case, there is an attacker station which 

is programmed to have the specifications of a trusted access point. Hence, many clients 

that are connected to the second one, at first, disconnect from the legitimate station and 

then they are connected to the attacker. Last but not least, Replay attacks concern the 

replay protection. Replay protection is made to guarantee that the packets received are 

not duplicates and that they are freshly generated. 

 

Impersonation attacks are often orchestrated by bots. Attacker bots try to imitate human 

visitors so as to skip security barriers. Below are some graphs from the annual Imperva 

Incapsula Bot Traffic Report, now in its fifth year which is an ongoing statistical study of 

the bot traffic landscape. As is can be seen in Figures 3.9 and 3.10 bots visiting websites 

outnumber human visitors. This, in combination with the fact that “bad” bots are 

overwhelmingly impersonators, which can be observed in Figure 3.10 chart makes this 

kind of attack very important. 
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Figure 3.9: Traffic Breakdown (Retrieved from: Zeifman, 2017) 

 

Figure 3.10: Impersonator bot and bad bot traffic trends (Retrieved from: Zeifman, 2017) 

https://www.incapsula.com/blog/bot-traffic-report-2016.html
https://www.incapsula.com/blog/bot-traffic-report-2016.html
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4. Implementation 

  

Our goal is to create an Artificial Neural Network that serves as an Intrusion Detection 

System. During the process of optimizing the accuracy and the efficiency of it, we 

experimented with several ANN architectures and tried different structures concerning 

the total organization of the model. We suggest a deep learning approach with two or 

more hidden layers. The dataset that Kolias et al.(2016) provided, allowed us to build a 

supervised ANN because all the indexes were labeled.  We chose the sets that classified 

the packets according to the methodology of the attack execution, especially the reduced 

ones (AWID-CLS-R-Tst, AWID-CLS-R-Trn). This chapter discusses the different 

approaches used and how the results are sensitive to the value of a number of parameters.  

 

4.1 Keras and Tensorflow 

To start with, we used Keras to build our ANN model. Keras(“Keras | TensorFlow” ,n.d.) 

is a high-level neural networks API, written in Python and capable of running on top of 

Tensorflow, CNTK(Seide et al., 2016) or Theano (Ketkar,2017). It was developed with a 

focus on enabling fast experimentation. It supports both convolutional networks and 

recurrent networks, as well as combinations of the two. Moreover, Keras models can run 

seamlessly on Graphics Processing Unit (GPU) and Central Processing Unit (CPU) 

(Keras | TensorFlow).  

 

To perform the complex numerical computations required for the building of the ANN 

we used Tensorflow. TensorFlow(“TensorFlow”, n.d.). is an open source software library 

for high performance numerical computation. A very useful tool, in the process of 

creating the models was SciPy(“Scientific Computing Tools for Python — SciPy.org”, 

n.d.).  SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source 

software for mathematics, science, and engineering. In particular, we used NumPy and 

Matplotlib from  the core packages. Matplotlib is a Python 2D plotting library which 

https://github.com/Theano/Theano
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produces publication quality figures (Hunter, 2007). NumPy is the fundamental package 

for scientific computing with Python. 

 

 

4.2 Result Metrics 

In order to evaluate the models, we will introduce 3 new metrics. The first one is the 

Recall or True Positive Rate (TPR): 

 

       𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Recall represents the percentage of correctly classified instances. 

 

The second metric that we will use is the Miss Rate or False Negative Rate (FNR):  

   𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 

 

Miss ia the rate of malicious packets that were incorrectly classifies as harmless.   

 

The last one is the False Alarm or False Positive Rate (FPR): 

   𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

False alarm happens when a normal packet is considered malicious and thus the ids 

alarms the system, needlessly. 

 

Where TP stands for True Positives, TN for True Negatives, FP for false Positives and 

FN for False Negatives.     
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4.3 Artificial Neural Network Models 

The key difference between the two approaches used, is the number of the classes of the 

output. The first was one Multi-Class Classifier and the second was a hierarchy of four 

binary ANNs.  In the following paragraphs we will describe the structure and 

functionality of both models in detail. 

4.3.1 Multi-Class Classifier 

The Multi-Class Classifier consists of 4 layers, the input layer, two hidden layers and the 

output layer. The main idea was simple; for starters, the ANN is trained with the labeled 

data of the AWID-CLS-R-Trn set and then we use the AWID-CLS-R-Tst set to make 

predictions. 

 

The first parameter that required careful consideration was the input dimension. Each 

index in the dataset has 155 attributes.  As already mentioned in the Section 3.3, using 

such a large number of features as input, makes the ANN incapable of creating efficient 

recognition patterns. Therefore, it was necessary to narrow down the input.  Kolias et 

al.(2016) also note the importance of the feature reduction in their paper. More 

specifically they mention that “only 20 attributes are immediately related to the attacks 

contained in the training set”, and they provide  a table containing these attributes (Table 

4.1).    
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Table 4.1: Input set as suggested by Kolias et al. (Retrieved from: Kollias et al., 2016) 

 

Following the guidelines given in the paper we created an ANN that has 20 attributes as 

input, followed by two hidden layers with 16 and 10 neurons respectively, and lastly an 

output of 4 classes. The classes of the output, as described previously are Flooding, 

Injection, Impersonation and Normal. In order to decide the architecture of the ANN we 

used, we experimented with different numbers of layers and neurons. The common place 

between all the different models we created, was a descending number of neurons as the 

number of the hidden layer increased. The main idea, was to gradually form sets that 

have more things in common, and so, each packet can be part of larger groups to finally 

meet the requirements for the class it belongs to. Beginning from 20 neurons, which was 

the input layer, we end up with 4 neurons representing every output class. The activation 

function used in hidden layers is the RELU function. Since our model is deep learning 

one, it would be better to use n activation function which is not computationally 

expensive. The RELU function involves simpler mathematical operations and as a result 

is less expensive in comparison with tanh and sigmoid. In the output layer we used the 
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SOFTMAX activation function. SOFTMAX gives the opportunity to use the output 

values as predicted probabilities, because they are in the range of 0 and 1. 

 

Another problem that we had to solve, is that the dataset contains mixed types of data. 

Beyond integers and floats, there are also hexadecimal numbers and strings. Moreover in 

case of a missing value the field is filled with a “?”. We cannot process data of many 

types in neural networks. To overcome this, we encoded the input to integers using the 

LabelEncoder class by Scikit-learn. For the “LABELS” attribute, we additionally 

converted the vector of integers to an one-hot encoding using the Keras function 

to_categorical(). This way, for each index there is a binary matrix that has as many 

columns as the number of the output classes (here four). The column that corresponds to 

the true label of the index has a value equal to 1 and the rest are equal to 0.  

 

Reducing and encoding the features is not sufficient in terms of data preparation. Apart 

from having a smaller input dimension, it is also important to handle the value range of 

its attributes. Therefore, Data Normalization is another important step. Data 

normalization refers to process of modifying the value range of an attribute to restrain it 

to narrower limits. In this case we used the MinMaxScaler class, once again by Scikit-

learn, which transforms features by scaling each feature to a given range. This estimator 

scales and translates each feature individually, such that it is in the given range on the 

training set, i.e. between zero and one. 

 

Taking a closer look to the training set, it is obvious that there is a great imbalance 

between the instances of each class. There are 1,633,190 normal packets, 65,379 

Injection packets, 48,484 Flooding packets and 48,522 Impersonation packets. Leaving 

this proportion as is, would probably lead to overfitting as far as normal packets are 

concerned and underfitting for the rest of the classes. We reduced the number of the 

normal packets to 37,615. The new training dataset, consists of 200,000 indexes and it is 

way more balanced.   
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After training and testing the model the results were not that satisfactory.  Table 4.2 is the 

confusion matrix of the results: 

Actual/Predicted Flooding Impersonati

on 

Injection Normal SUM 

Flooding  5269 333 0 2495 8097 

Impersonation  586 884 0 18609 20079 

Injection 0 17 14308 2357 16682 

Normal 1923 18312 59 510491 530875 

Table 4.2: Confusion Matrix - Multi-Class Classifier (Kolias et al. input) 

 

The Recall Rate of each class, namely Flooding, Impersonation, Injection and Normal, is 

65%, 4%, 86% and 96%, respectively. The problems, needing attention, are two. The first 

one is the False Alarm Rates. False Alarms of an ideal IDS should approach 0%, so there 

is still room for improvement. However, the most important problem is that for the 

misclassified packets that are initially labeled as malicious, the IDS classifies them -in the 

majority- as normals. So the Miss rate increases, making the system very vulnerable. 

 

Actual/Predicted Correctly As another attack As normal 

Flooding 5269 333 2495 

Impersonation 884 584 18609 

Injection 14308 17 2357 

SUM 20461 934 23461 

Table 4.3: Actually/Predicted comparison - Multi-Class Classifier (Kolias et al. input) 
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In order to improve the results we used a different set of features, as suggested by 

Aminanto et al. (2017) and the followed the same procedure (Table 4.4).  

 

 

Table 4.4: Input set as suggested by Aminanto et al. 

 

The new confusion matrix and the distribution of misclassified attacks are presented in 

Tables 4.5 and 4.6, respectively. 

 

 



26 
 

Actual/Predicted Flooding Impersonati

on 

Injection Normal SUM 

Flooding  4920 0 0 3177 8096 

Impersonation  3 14971 0 5285 20079 

Injection 0 1 16667 14 16682 

Normal 2244 28849 20845 478847 530875 

Table 4.5: Confusion Matrix - Multi-Class Classifier (Aminanto et al. input) 

 

 

 

Actual/Predicted Correctly As another attack As normal 

Flooding 4920 0 3177 

Impersonation 14971 3 5285 

Injection 16667 1 14 

SUM 36558 4 8476 

Table 4.6: Actually/Predicted comparison - Multi-Class Classifier (Aminanto et al. input) 

 

Using this set of features as an input brought better recall rates to the total of the attack 

classes and also,  a reduction the miss rate. However, the false alarm rate increased from 

4% to nearly 10%.  

 

4.3.2 Multiple Binary Classifiers 

The main idea of the second approach is using multiple binary classifiers, each of them 

trained for a different class. The first one is trained to distinguish the normal packets from 

the rest(attacks). To do so, it was necessary to change the labels, which characterized a 
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type of an attack execution method, to the most generic label “attack”. The next level of 

classification is executed by three other binary ANNs, each trained to recognize a 

different type of execution method, namely Flooding Injection and Impersonation. In 

order to train the different ANNs, we used two different training sets. Firstly, we 

modified the dataframe, so that it contained only packets of the attack method it was 

interested to, as well as normal packets. Then we created a set including only the attack 

types. The main idea of the first approach was to feed the ANN with the characteristics of 

only one attack, in order to be specialized. The second approach follows the classic 

methodology of feeding an ANN, namely the packets that it is going to deal with. Since 

the first-level ANN cuts off the normal packets, the input of the second-level ANNs will 

mainly be the 3 type of the attacks.  The labels are once more modified to meet the 

requirements of the binary ANNs. In short, when a packet is classified as an attack by the 

first classifier, it is then tested by the second-level ANNs to identify the method of the 

execution it belongs to.  

 

Just as like the previous model, we used the two different set of features as input. The 

first set of inputs (as suggested by Kolias et al. (2016)) brought up the following 

confusion matrix on the first level of classification (attack/normal). 

 

Actual/Predicted Attacks Normal SUM 

Attacks 1317 43541 44858 

Normal 547 530238 530785 

 

Table 4.7: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Kolias et al. 

input) 

         

 

The false alarm has been reduced to a percentage below 1%, precisely to 0.1% and the 

recall of normal is nearly 100%. On the other hand, the recall rate of the attacks has 
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dropped to 2.9%. It is obvious, that there is no point for further classification. The IDS is 

neither efficient nor functional. 

 

Last but no least, the same structure has been tested with the different set of features as 

input. The confusion matrix of the first level ANN is presented below 

 

Actual/Predicted Attacks Normal SUM 

Attacks 44108 750 44858 

Normal 1801 53341 55142 

Table 4.8: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Aminanto et al. 

input) 

 

 

The recall of normal is 97% while the attack recall is 98%. The improvement, comparing 

the model to the previous structures, is more than obvious. Every packet that is now 

considered an attack is now checked by the next levels classifiers, which are responsible 

for each of the attack methods. 

  

 Next the packets are checked for the Injection method  

Actual/Predicted Injection Not Injection SUM 

Injection 16668 0 16668 

Not Injection 19077 9439 28516 

Table 4.9: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers 

(Aminanto et al. input)-Normal/Injection Training Dataset 
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Actual/Predicted Injection Not Injection SUM 

Injection 0 16668 16668 

Not Injection 9946 23477 33423 

Table 4.10: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers 

(Aminanto et al. input)-All Attacks Training Dataset 

 

 

Table 4.9 shows the results of the Normal/Injection training set. There is a recall rate of 

100 % concerning the attacks, although the false alarm is nearly 67% which is not 

desirable. The Table 4.10 shows the confusion matrix after using the training set 

including all types of attack. Recall Rate is 0%. In other words the ANN is totally 

unfunctional. 

 

 

 

Concerning the Impersonation Classification, Table 4.11 shows the confusion matrix of 

the ANN trained with the Normal/Injection Dataset. 

 

Actual/Predicted Impersonation Not Impersonation SUM 

Impersonation 14603 5443 20046 

Not Impersonation 3 19884 19887 

Table 4.11: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary 

Classifiers (Aminanto et al. input) - Normal/Impersonation Training Dataset 

 

The recall of normal are nearly 100% for the normal, which at the same time means 

almost 0% false alarm rate. The Impersonation recall is 73%, keeping the miss rate to a 

27%. 
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Actual/Predicted Impersonation Not Impersonation SUM 

Impersonation 15 20046 20046 

Not Impersonation 6603 22544 19887 

Table 4.12: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary 

Classifiers (Aminanto et al. input) - All Attacks Training Dataset 

Just like the Injection Classification, Impersonation Recall Rate is approximately 0%. 

 

Flooding Classification had completely different outcomes, in comparison with the 

previous two attack methods. Table 4.13 shows the confusion matrix after using the 

Normal/Flooding training set. Although there is 0% false alarm, the Flooding recall rate 

is 0%.      

Actual/Predicted Flooding Not Flooding SUM 

Flooding 0 6872 6872 

Not Flooding 0 42565 42565 

Table 4.13: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers 

(Aminanto et al. input)-Normal/Flooding Training Dataset 

 

The results after training the ANN with the second dataset (Table 4.14) are very 

encouraging. We have a Flooding recall rate equaling 100% and 5% false alarm. 

 

Actual/Predicted Flooding Not Flooding SUM 

Flooding 5766 0 5766 

Not Flooding 1908 35977 37885 
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Table 4.14: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers 

(Aminanto et al. input)-All Attacks Training Dataset 

 

Flooding attacks are orchestrated by a bunch of packets flooding the network. There is no 

need for these packets to have significant differences from normal traffic. Considering 

this, training a network to have distinguish normal packets from flooding ones, when 

there is no short temp memory to recognise a stream of packets, is not very effective. 

 

After completing the classification from all binary ANNs we note a false alarm of 3 % 

and a miss rate of 13.8%. 

 

4.4 Results 

Binary classifiers, were more efficient in detecting attacks. The most efficient models, by 

looking the overall performance, are certainly the ones, using the input as suggested by 

Aminanto et al. (2017). The biggest flaw of the multiple binary classifiers is the more 

time needed due to the two-phase detection. The most suitable training set, for the 

second-level classification on the binary classifier, depends on the attack. Figures 4.1 and 

4.2 show the performance of the different architectures for comparison. The number after 

the Classifier states the number of attributes used. 19 as suggested by Kolias et al. (2016), 

25 as suggested by Aminanto et al.(2017). 

As far as the binary classifiers are concerned, we used the results with better recall rate 

(Normal/One_Attack training set for Impersonation and Injection, All Attack types 

training set for Flooding). 
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Figure 4.1: Overall Recall Rate 

 

Figure 4.2: Overall False Alarm and Miss Rate 
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5. Conclusions and Future Work 

 

We experimented with 2 different sets of attributes, used as input, and 2 different ANN 

architectures. It is clear that the set suggested by Aminanto et al.(2017) is a better choice 

than the input set suggested by Kolias et al.(2016). This is even more obvious, in the 

Binary Classifier, where the fist level, that tells if a packet is normal or not, fails with a 

very notable recall rate 2.9%. Furthermore, we compared two different training sets 

during the second-level attack of the Multiple Binary Classifier, and we found the most 

suitable for each attack. The most rewarding results were those of the Flooding attack, in 

the Binary Classification. We achieved a detection rate of 100% and a 5% false alarm. 

The total miss rate which equals to 13.8% is also very encouraging. 

 

In the near future, we plan to create a LSTM ANN to test if and how a short temp 

memory will impact the results. Moreover, we could redesign the second-level binary 

ANNs in order to run simultaneously. This way, we will save time and make the model 

even more efficient.  
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