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EuxapioTieg

Me v olokMpworn g Aumiopotikng Epyoaciog pov 6o nfeka mpotictwng va
EVYOPLOTNCH TOV eMPAEMOVTA KOOMYNTH HOL KVPLO Aviwvéomovilo Xpnoto, Yo TNV
eEAIPETIKY GLVEPYOTiO KOl TNV OLGLOCTIKY KaBOdyNon MOV POV TPOGEPEPE KATH TN
dapkela g ekmdévnong. H dueon avramdxkpion tov, 6mote yperdotnka Pondeta, nrav
KOTOAVTIKY] GTNV OPLOAT] OAOKATP®OOT TNG EPYACTOC.

EmmAéov, opeilm €va peydAo euyoploT® TNV OIKOYEVELD OV Kol Kupimg otn Untépa
pov. H otmpi&n tovg, cvvausOnuatikn kot vAkn, ftov Koppikrn, Oyt Hovo katd tnv
TEPATOON TNG EPYUSING OAAL KOl GTN GLVOMKOTEPT TOPELD LLOV MG CTUEPOL.

Axoun 0o NBsha va gvyapiomom ™ Mopiva, to T'opyo, 10 [opyo, v 'Eleva kon
OAoVC TOVG PIAOVE oV, TOV TV SITAG oV o€ aVTd To entaetés Tasiot . Téhog, Ba nOela
VO E0YOPIETAC® TO BEGPIA0 Y10 TV VTOUOVY] TOV, KOt TH GTNPLEN TOL LoV TOPEYEL OAO
aVTOV TOV KOopo.

Xwpic 6Aovg avtovg tov avlpdmove, dha Ba NTav TOAD TO SVGKOAX Kol Giyovpa Oyt
TOG0 OLOPPOL.



[MepiAnwn

H ocvveymg abénon tov £EEuTveov cuoKeELOV, OTMG EMIONG KoL 1] YNOLOTOINOT ETALPLOV KoL
OMUOCI®VY VINPESLOV, 0dNYNoE o€ pio a&toonueiowtn avénon ™ Kivnong oto Atdiktvo.
EmumAéov, ot teyvoloyieg tov Atadiktvov tov [payudtov (Internet of Things), enéopepe
™ Onpovpyios TOAVAPIOU®OY SIKTO®V VTOAOYICT®V, OV KATUKAOOVTOL —TTOAD GLYVA-
and gvaicOnteg mAnpopopiec. Olo ta Tapomdve ONUIOVPYNCAV TNV EMITOKTIKY AVAYKN
Yo OuVOTOVS UNYXOVICUOVS OCQAAELNG, UE OTOYXO TNV TPOCTACIO TMOV TPOCOTIKOV

dedopEVMV IOV KVKAOPOPOHV GTO J10.0TKTLO, KOO UEPIVA

Ta Zvomuato Aviyvevong Eiwofoiov €ypovv onuaviikd poéio otn  dadkacio
dlo@AaMong evog SIKTOOV VTOAOYIGTMV. XPNGLOTOMGAUE 0L TEYVIKY UNYOVIKNG
expadnong, ovykekpéva, Texvntd Nevpovikd Aiktoa mov eKmoidedoviot Pe TEYVIKES
Babidg Expabnong, yuo vo dnuovpynoovpe éva Xouotnua Aviyvevong EioBfoidv mov
tpogodoteitor kot eAéyyetan amd pe tig AWID Bdoeig dedopévav tov Iavemotnuiov
Avyaiov. Aokpdacape Avaduotg kot TToAvtagucovs Tagvountés kol ¥pnoILOTOCOLE
V0 dpopeTikd et Tpoodooic. H ta&vounon agopovce ce Mebddovg Extéreong

embécemv. Tuykekpyéva, tic Flooding, Impersonation and Injection.

H Baockn cuvelspopd avtig g epyaciog, ivar g dgv vdpyovyv dNUOGLELUEVE ALY
gyxepnuata  a&ordynong Avadwkadv Taivountdv mov ypnowomotovv 1 Babud

ExpdOnon. ‘Etol, unopel va amoteAéceL TO EVapKTIPLO oNUELO Y10 TEPAITEP® PEATIOGELC.



Abstract

The constant increase of smart devices, as well as the digitalization of both enterprises
and social services led to a notable growth of traffic over Internet. Moreover, Internet of
Things Technologies induced the creation of numerous computer networks that are
flooded with —very commonly- sensitive information. All the above induce the need of
building strong security systems, in order to protect the personal information which are

communicated through Internet every day.

Intrusion Detection Systems (IDS) play a major role in the procedure of keeping a
computer network secure. Thus, they are widely used as defending mechanisms. We used
a machine learning technique, especially Deep Learning Artificial Neural Networks, to
create an IDS that is trained and tested with the AWID datasets. We experimented with
both Multi-Class and Binary Classifiers and tried different Input Sets. The classification
concerned Attack Execution Methods, namely Flooding, Impersonation and Injection.

The main contribution of this dissertation is that there are no other published projects
using Binary Classifiers that are trained with Deep Learning Methods. Thus, this can be
the starting point for further improvements.
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1. Introduction

During the past decade the use of computers and smart devices has increased
significantly and this upturn does not seem to stop in the next years. According to Cisco
Visual Networking Index(“Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update”,2016) “The total number of smartphones (including phablets) will be
over 50 percent of global devices and connections by 2021, as well as “Smartphones
will surpass four-fifths of mobile data traffic (86 percent) by 2021.” More devices
connected to the internet means more personal data exposed. This increase is not applied
just in terms of private using. In most developed countries, there is an ongoing effort of
digitalizing social services such as healthcare and tax services. As far as industries are
concerned, it is worth mentioning that new technologies, such as Big Data and Cloud
Computing, are widely embraced. As a result, the need of securing all these data and
transactions, that are digitally recreated, is getting an issue of great importance.

It is also notable, that another technology advance which has brought up a lot of security
challenges, because of its rapid development, is the Internet of Things (IoT). The loT
gives people the opportunity to create a network of physical devices, in order to remotely
control them. These devices include simple home appliances, as well as medical devices
and factories heavy equipment. Thus, intrusions in such networks may have dangerous

Costs.

In order to protect networks and information systems, the first step that should be made is
to be able to recognize an attempt of intrusion. By doing so, the intrusion can be stopped
and the defender can create a stronger and more sophisticated shield against the attack.
Intrusion Detection Systems (IDS) aim to secure networks from attacks, in order to
preserve the confidentiality, integrity and availability (also known as CIA triad) of
information. On the other hand, attackers try to take advantage of a system security
vulnerabilities in order to gain root access as to control them, retrieve data or damage

them.



This dissertation introduces an IDS that uses machine learning and specifically neural
network, and uses the AWID dataset for training and testing purposes. We created two
Artificial Neural Networks that have different architectures. The first one is a multi-class
classifier, while the second one consists of stacked binary ones. Furthermore, we
experimented with two different sets of attributes as input. We compare the results,

based on handful of aspects, as the number of false alarms or the accuracy rates.

Even though there have been several experiments including neural networks and the
AWID dataset, this is the first attempt to test this dataset on a binary Artificial Neural
Network. All previous projects (described in Section 2) had multi-class classification

models and experimented with different training algorithms.

The rest of the manuscript is organized as follows: Section 2 concerns the Related Work
while Section 3 includes Background information. Our implementation is described in

detail in Section 4. Finally Section 5 includes the Conclusions.

2 Related Work

Kolias et al. introduced the AWID dataset in 2016. This dataset consists of labeled WiFi
packets, which are classified according to their attack type, or if they are harmful, they
are just labeled as normal. Along with dataset, they presented the implementation of a
variety of machine learning techniques, including artificial neural networks. However,
the accuracy scores were quickly surpassed by the work of Thanthridge et al.(2016) ,
Aminanto et al.(2017,2018) and Usha and Kavitha(2016).



Thanthrige et al.(2016) published a paper, showing the importance of feature reduction
and its impact on the detection accuracy and the classification speed of an IDS. In order
to prove this, they also used multiple machine learning techniques. They used the AWID
public datasets to train and test the IDSs created. Aminanto et al. (2017) tried to improve
the Impersonation attack detection rate -compared to the results of Kolias et al. (2016).
They used artificial neural networks to reduce the features and they experimented using
the Stacked Auto Encoder learner. They manage to achieve a significant improvement to
the rates.

This year, Aminato et al.(2018) managed to achieve the best performance in published
literature(Aminanto et al., 2018). They did so, by using a weight-based feature selection
method with a light machine-learning classifier.

Usha and Kavitha(2016) used a Support Vector Machine and the AWID dataset. This led
to a better trade-off between detection accuracy and learning time, and at the same time a
reduced false positives and computation complexity. Of course, they reduced the features

used as input.

Thing (2017) proposed a deep learning approach for intrusion detection using the AWID
datasets. They experimented the utilization of different activation functions in two
different artificial neural networks, which included two and three hidden layers,

respectively. Their 4-class classifiers achieved a 98.6688% overall accuracy.

The key difference, between these project and ours, is that we compare a multiclass

classifier to a binary one, while the others compare different training algorithms.



3 Background

3.1 Intrusion Detection Systems

Intrusion Detection Systems are devices or software that track abnormal behavior and
policy violations. The first IDS was introduced by Dorothy E. Denning in 1986. IDSs
have a lot in common with firewalls as they both try to defend a network. However,
firewall functionality differs from IDS, as the former prevent attackers from intruding the
network. In contrast, IDSs identify potentially malicious activity and raise an alarm.
Systems that detect such activities and, in addition, take some corresponding action are
referred to as Intrusion Prevention Systems (IPS). Another major difference between
these defending mechanisms is the fact that firewalls are exclusively network protecting

mechanisms, while IDS can also be used to monitor malicious behaviour inside a system.

In terms of system positioning IDS can be classified into two categories. The first one is
the Network IDS (NIDS). As the name itself implies, NIDS are monitoring network
traffic and aim to detect external attacks. The most notable advantage of NIDS is that
they can defend all the devices connected to the network, and it does not require
replication. The second category is the Host based IDS (HIDS). HIDS are located within
a system, and besides network traffic, they also monitor the systems files and processes,
in order to detect if there is any change in the critical ones. Because of this, HIDS have
much more information to form the signature of a normal behavior which makes them

more reliable.



Figure 3.1: Host-Based Intrusion Detection System (Retrieved from: “HIDS (Host-Based

Intrusion Detection System) - Bauman National Library”, n.d. )

L.P Dias et al.(2017) categorize IDSs based in the detection method used in Misuse or
Signature Detection and in Anomaly Detection systems. The first type of IDS needs some
predefined attack patterns in order to be able to recognize them. Every other kind of
behavior is considered normal. Keeping in mind that attacks are constantly evolving and
new types of attacks are made, in order to stay protected, the list of the predefined
patterns should be very commonly updated. Of course, there is always the possibility that
the update may come after the attack, but the danger can be regulated by increasing the
update frequency. On the contrary, Anomaly Detection Systems functionality is
characterized by the just reversed logic. As a consequence, the predefined patterns
concern the normal behavior. Any different set of characteristics, is flagged as malicious
behavior. It can be easily seen that this type of systems can be “overprotective”, since the
networks traffic is not static and its features can widely vary (Sommer et al, 2010) even

when there is no threatening behavior.

When it comes to IDS evaluation, a very common indicator of a well-developed one, is
the amount of the true/false positives and true/false negatives. True positives refer to the

packets, correctly classified as harmful, while true negatives are the packets that are
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correctly classified as benevolent. False positives are the alarms that are signed by an
IDS when there was not an actual malicious behavior. False positives are increased in
Anomaly Detection Systems, due to the vast network diversity. False negatives refer to
packets or generally activities that are considered harmless, while they shouldn’t be. It is
clear that, false negatives are far more harmful for a system, but what should also be
mentioned is that false positives require a significant amount of analyzing time which

finally leads to a benign activity.

3.2 Artificial Neural Networks

In 1959 Arthur Samuel introduced the term Machine Learning. According to Samuel
Machine Learning is the process that makes computers able to “learn”, in a very similar
way that a human would, if given the same data. Machine Learning implies that
computers are not pre-programmed to handle new data. It is the training session that leads
the computer to make decisions, through statistics and pattern recognition. Machine
Learning is a part of the greater field of Artificial Intelligence. There are a handful of
approaches to apply Machine Learning. This paper studies Artificial Neural Networks
learning algorithm.

Artificial Neural Networks are computing systems inspired by the human brain
functionality. They try to mimic the process followed by neurons inside the brain. Just
like the physical ones, artificial neurons that are ‘“connected” to each other can

communicate in order to process signals and finally classify them.

Considering the main architecture of ANNS, it can be organized in three basic parts. The
first one the Input Layer. As the name implies, it is the part of the ANN that receives
signals or patterns, in order to redirect them to the following layers. The second part is
the Hidden or Intermediate layers. They are the layers that perform the most
computational processes, as they are the ones responsible to combine the input data and
then create patterns, in order to generalize the results. Unlike the other two categories,

hidden layers can be multiple, according to the combination of computational complexity
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and desired accuracy. The last part of the ANN architecture, is the Output layer which

forms the final classification of the data, based in the previous layer computations.

Inpus HMewrons

Output Laser

Input Laser

Hidden Lawer

Figure 3.2: Feedforward ANN Architecture (Retrieved from: Dawson et al, 2000)

All layers consist of neurons. Neurons are responsible for forwarding —or not- the signals
inside the layers and among them. To do so, multiple functions are used, also known as
Activation Functions. The most commonly used, beginning from the simplest one, are the
Step, the Linear, the Sigmoid, the Tanh and the Relu functions. There is no need to use
the same activation function in all hidden layers. Just like the number of hidden layers
and the number of neurons, the choice between these functions is up to developer’s

judgement.

Figure 3.3: Different types of Activation Function (Retrieved from: Malhotra, 2018
)

ANNSs can be also classified in 3 categories based on the way neurons are organized. The
first one is the Single-Layer Feedforward Architecture. It includes only the input and the
output layer, so it is the least complex of the rest. The second is the Multiple-Layer

Feedforward Architecture. Unlike the previous one, this architecture includes all three
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basic layers. In addition, most of the times the number of layers exceeds 3. Namely, there
are more than one hidden layers. Last but not least, is the Recurrent Architecture It is the
most interesting and at the same time most complex architecture of all, as it uses its

output as input for the subsequent computations.

Figure 3.4: ANN basic architectures (Retrieved from: Da, S. |. et al., 2017)

As Haykin(1999) notes, ANNSs can perform tasks like pattern matching very skillfully, as
a result of their capability of reorganizing their structure correspondingly. Furthermore,
ANNSs can learn and model relationships that linear programs are incapable of doing so.
Another notable advantage of ANN is that they can generalize. After the first phase of the
training, they can come up with relations between the data that were not obvious initially.
What really makes ANNSs useful, is their ability of learning and especially self-learning.
Learning can be interpreted making a system able to correctly correspond to a new input
or task after having been trained. Although, ANNSs require a notable amount of
computing resources because their architecture differs from the architecture of
microprocessors (Shah et al. ,2012). Moreover, in order to develop an efficient ANN, it is
of great importance to “feed” it with a large training set that also results in a considerable

resource usage.


https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611

3.3 Feature Selection

The input layer of a ANN receives the key attributes of each data index, which are used
to categorize the data. Most of the times, datasets include multiple attributes per index
which are not always useful (not for all classifications). This is due to the fact that
datasets are not exclusively created for single purposes. The same dataset can be used to
make classifications according to different parameters. Namely, what might be useful for

one classification problem, may be completely irrelevant for another.

The correct choice of features used as input is very important, as two problems, with high
impact on the results, may occur. If the features are misselected, in terms that more
parameters than actually needed are used, then the model is driven to “overfitting “(Aalst
et al., 2008). In other words, the patterns generated are too close to the training set and as
a result, the generalization required to classify new data is very difficult. On the other
hand, having fewer features, than the features necessary to identify the pattern, as input
leads to “underfitting”. Underfitting refers to the incapability of a model to generate a
pattern that corresponds correctly to the input due to the lack of important characteristics
of the training set. Both overfitted and underfitted models fail on new datasets, while -

quite obviously- overfitted ones have a very good performance on training sets.



Figure 3.5: Relation between model used and errors (Retrieved from: Giovinazzo, 2017)

Figure 3.6: Relation between model and data (Retrieved from: “Model Fit: Underfitting

vs Overfitting- Amazon Machine Learning”, n.d.)

All these, sum up to the fact that in order to develop an efficient ANN, one should take
under consideration the need to pick certain index attributes, in other words, feature
selection. Feature selection is a key step of creating a ANN. The impact of ignoring it is
serious as it has a great reflection in accuracy rates. Overfeeding the network with excess
information, makes the classification very difficult, as the common characteristics

between the categories are only a small percentage of the total.
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3.4 Datasets

As previously mentioned, a key part of developing an efficient ANN, is the training
phase. Not only is it mandatory, but it also greatly determines the quality of the results.
The dataset used during this process should be carefully chosen. According to the
purpose of the ANN function one should take into consideration a variety of
characteristics to evaluate. To start with, the size of the dataset plays a major role. It is
clear that, if the input has a lot of entries, then it would be easier for the ANN to identify
more accurate patterns and thus, be more efficient. However, a large dataset means a lot
of computational processes, when at the same time it does not guarantee high accuracy
rates. What should also be considered is the quality of the data. In other words, the data
given as input should contribute to form the greatest picture. Each entry of the data
consists of some attributes, also known as features. In fact these are the real input. It can
be easily understood, that a dataset with a lot of missing attributes information, would
lead to a low accuracy output. On the other hand, having a very large number of attributes
is also ineffective. The generalization of the results would be almost impossible if the
characteristics, that were to be examined, were excessive. Lastly, the most crucial matter,
concerning the quality of the dataset, is the how updated the data is. There is absolutely
no point in training a system with obsolete data. In conclusion, choosing the suitable data

is as important as correctly developing the neural network.

In case of datasets needed in training Intrusion Detection Systems, the same aspects
should be taken into account. However, there is another challenge that people in this
domain face. There are a very few public datasets that can be used in the training phase.
The most known public datasets are the DARPA/Lincoln Labs packet traces 1998 and
1999(“Datasets | MIT Lincoln Laboratory”, n.d.) and the KDD Cup 1999 Data(“KDD
Cup 1999 Data”, 1999). It is more than obvious that a 20-year-old set is outdated.
According to Moore’s Law the number of transistors in a dense integrated circuit doubles
about every two years. This also reflects on processor performance. Attackers take
advantage of their system properties in order to orchestrate more advanced attacks. This
means faster or more sophisticated attacks. Keeping this in mind, it is clear that with the

systems constantly advancing, it is quite probable that the number and severity of attacks
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will increase. In order to intrude systems, attackers follow current technology and try to
adapt to it. Thus, a dataset that old may not represent contemporary attacks. As Sommer
et al.(2010) suggests, besides being outdated, these datasets have been over-studied and
no interest is raised in recreating a NIDS responding to these attacks. The real question is
why there are not a more datasets available. First of all, storing millions of packets raises
privacy issues. It is not plausible to ensure that none of the millions of packets contains
sensitive information. As a result, very frequently there are no legal permissions to do so.
This leads to the effort of simulating network traffic, to create a dataset. The fact that

Internet is not easily simulated as S. Floyd states, makes the creation even more difficult.

3.4.1 The AWID Dataset

The public dataset (Kolias et al., 2016), consists of two subsets, a large and a smaller one.
Both subsets are divided in two parts the training and the evaluating one. What needs to
noticed is that the test set is not derived from the training one. Thus the reliability of the
results is not compromised. The datasets have 2 versions. In the first (ATK), data is
classified into 16 categories in accordance with the kind of attack performed. The second
one (CLS), has 4 categories according to the methodology of execution. Each entry in the
dataset has 155 attributes, with the last one being the class label. In case of a missing

value, the corresponding attribute is represented with a “?”.
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Table 3.1: Class distribution-Full set (Retrieved from: Kollias et al, 2014)

Table 3.2: Class distribution-Reduced set (Retrieved from: Kollias et al, 2014)

3.4.1.1 Methodology of Attack Execution

The paper focuses on the AWID-CLS sets, namely the classification that is made
according to the methodology that is used during an attack. There are four categories that

the packets are sorted into; Flooding, Impersonation, Injection and Normal.
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e Floodin
Flooding is a Denial of Service (DoS) attack. DoS Attacks are orchestrated in order to
bring a network or a server down. (“Understanding Denial-of-Service Attacks", 2013).
To accomplish this, the network is “flooded” with connection requests and eventually
becomes incapable to respond to any of them, even the not malevolent ones. When the
number of requests excess the capacity of the memory buffer, the system can no longer
establish new connections. Whether the attacker use one or more computers and internet
connections to flood the network, the attack is characterized as DoS or DdoS (Distributed
Denial of Service). DDoS attacks, as shown Figure 3.7, exist for a long time and they are

getting more potent through the years.

Figure 3.7: DDoS Attacks Over Time (Jeftovic, 2018)
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Flooding attacks are multilayer ones (Regan et. al, 2017). They can be applied in layers
other than the network. To be more specific, one can achieve Flooding attack in the
Physical Layer through signal jamming. In the Data Link layer, the attacker “floods” the
ARP tables, of the target network, with false MAC addresses resulting in the denial of
access to channels for new nodes. The fourth and fifth layers, id est Transport and
Application layers, Flooding attacks occur via SYN Flooding and certain malevolent

programs.

e Injection
As the name itself implies, Injection attack refers to the process of “injecting” malicious
code into a program. So as to achieve this, attackers provide the program with a
malicious input. Then, the interpreter is misled to compile that input as a part of the
genuine code. Eventually the attackers manage to change the normal execution flow in
their interest without proper authorization. This kind of attacks have various impacts of
scaled severeness. There can be a loss of data or a data theft, and if the attack is more
sophisticated and a declaration of root privileges is achieved, there can even be a full

system compromise.

The Open Web Application Security Project (“OWASP Top Ten 2017 Project -
OWASP”, n.d.) lists Injection attacks as the number one application security risk. The
reason behind this, besides the already noted impacts, is that apart from being very
dangerous for the victim system, Injections attacks can easily spread widely. Injection
attacks, such as SQL Injection (SQLi) and Cross-Site-Scripting (XSS), which also are the
most common ones, are a very typical example of this characteristic when talking about

legacy applications.

What is also alarming about Injection attacks is that the vulnerabilities allowing an
attacker to inject malicious code, are very commonly present in websites. In 2010
WhiteHat Security released a report (“WhiteHat Security 9th Website Security Statistics

Report”, 2010) presenting the percentage of the likelihood of a website having a
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vulnerability by class. As it can be seen in Figure 3.8, Cross-Site scripting is the top in all

types of scripting technologies.

Figure 3.8: Top Ten Classes of Attack (Retrieved from: “WhiteHat Security 9th Website
Security Statistics Report”,2010 )

e Impersonation
The basic idea behind Impersonation Attacks is masquerading into a trusted -for the

victim system- source. To achieve this the attacker uses a trusted node identity, such as
Medium Access Control (MAC) address and/or Internet Protocol (IP) address. Even
though there exist some security techniques such as Wired Equivalent Privacy (WEP),
Wi-Fi Protected Access (WPA), and 802.11i (WPAZ2), attackers are not yet prevented
from stealing such credentials. This happens due to the fact that encryption concerns only
the data frames. Management and Control frames are vulnerable to spoofing (Lakshmi et
al., 2014). Impersonation can occur in different forms, especially device cloning, address

spoofing, unauthorized access, rogue access points and replay (Barbeau et al, 2006).
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Device Cloning refers to mimicking a device by altering the attacker’s device to have
H/W addresses of a trusted device. When the duration of this imitation is one frame, then
another form of Impersonation happens; (MAC) address spoofing. The above techniques
are key steps to deauthentication and disassociation attacks. Impersonation is very useful
for gaining unauthorized access. The attacker may use the pre-referred techniques to
obtain privileges and be able to access data or alter the network. Another form of
Impersonation is the Rogue Access Point. In this case, there is an attacker station which
is programmed to have the specifications of a trusted access point. Hence, many clients
that are connected to the second one, at first, disconnect from the legitimate station and
then they are connected to the attacker. Last but not least, Replay attacks concern the
replay protection. Replay protection is made to guarantee that the packets received are
not duplicates and that they are freshly generated.

Impersonation attacks are often orchestrated by bots. Attacker bots try to imitate human
visitors so as to skip security barriers. Below are some graphs from the annual Imperva
Incapsula Bot Traffic Report, now in its fifth year which is an ongoing statistical study of
the bot traffic landscape. As is can be seen in Figures 3.9 and 3.10 bots visiting websites
outnumber human visitors. This, in combination with the fact that “bad” bots are
overwhelmingly impersonators, which can be observed in Figure 3.10 chart makes this

kind of attack very important.
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Figure 3.9: Traffic Breakdown (Retrieved from: Zeifman, 2017)
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4. Implementation

Our goal is to create an Artificial Neural Network that serves as an Intrusion Detection
System. During the process of optimizing the accuracy and the efficiency of it, we
experimented with several ANN architectures and tried different structures concerning
the total organization of the model. We suggest a deep learning approach with two or
more hidden layers. The dataset that Kolias et al.(2016) provided, allowed us to build a
supervised ANN because all the indexes were labeled. We chose the sets that classified
the packets according to the methodology of the attack execution, especially the reduced
ones (AWID-CLS-R-Tst, AWID-CLS-R-Trn). This chapter discusses the different

approaches used and how the results are sensitive to the value of a number of parameters.

4.1 Keras and Tensorflow

To start with, we used Keras to build our ANN model. Keras(“Keras | TensorFlow” ,n.d.)
is a high-level neural networks API, written in Python and capable of running on top of
Tensorflow, CNTK(Seide et al., 2016) or Theano (Ketkar,2017). It was developed with a
focus on enabling fast experimentation. It supports both convolutional networks and
recurrent networks, as well as combinations of the two. Moreover, Keras models can run
seamlessly on Graphics Processing Unit (GPU) and Central Processing Unit (CPU)

(Keras | TensorFlow).

To perform the complex numerical computations required for the building of the ANN
we used Tensorflow. TensorFlow(“TensorFlow”, n.d.). is an open source software library
for high performance numerical computation. A very useful tool, in the process of
creating the models was SciPy(“Scientific Computing Tools for Python — SciPy.org”,
n.d.). SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source
software for mathematics, science, and engineering. In particular, we used NumPy and

Matplotlib from the core packages. Matplotlib is a Python 2D plotting library which
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produces publication quality figures (Hunter, 2007). NumPy is the fundamental package

for scientific computing with Python.

4.2 Result Metrics

In order to evaluate the models, we will introduce 3 new metrics. The first one is the

Recall or True Positive Rate (TPR):

TP
TP+FN

Recall represents the percentage of correctly classified instances.

TPR =

The second metric that we will use is the Miss Rate or False Negative Rate (FNR):

FN
TP+FN

FNR =

Miss ia the rate of malicious packets that were incorrectly classifies as harmless.

The last one is the False Alarm or False Positive Rate (FPR):

_FP
FPR=FPFTN

False alarm happens when a normal packet is considered malicious and thus the ids

alarms the system, needlessly.

Where TP stands for True Positives, TN for True Negatives, FP for false Positives and

FN for False Negatives.
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4.3 Artificial Neural Network Models

The key difference between the two approaches used, is the number of the classes of the
output. The first was one Multi-Class Classifier and the second was a hierarchy of four
binary ANNs. In the following paragraphs we will describe the structure and

functionality of both models in detail.

4.3.1 Multi-Class Classifier

The Multi-Class Classifier consists of 4 layers, the input layer, two hidden layers and the
output layer. The main idea was simple; for starters, the ANN is trained with the labeled
data of the AWID-CLS-R-Trn set and then we use the AWID-CLS-R-Tst set to make

predictions.

The first parameter that required careful consideration was the input dimension. Each
index in the dataset has 155 attributes. As already mentioned in the Section 3.3, using
such a large number of features as input, makes the ANN incapable of creating efficient
recognition patterns. Therefore, it was necessary to narrow down the input. Kolias et
al.(2016) also note the importance of the feature reduction in their paper. More
specifically they mention that “only 20 attributes are immediately related to the attacks
contained in the training set”, and they provide a table containing these attributes (Table
4.1).
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Table 4.1: Input set as suggested by Kolias et al. (Retrieved from: Kollias et al., 2016)

Following the guidelines given in the paper we created an ANN that has 20 attributes as
input, followed by two hidden layers with 16 and 10 neurons respectively, and lastly an
output of 4 classes. The classes of the output, as described previously are Flooding,
Injection, Impersonation and Normal. In order to decide the architecture of the ANN we
used, we experimented with different numbers of layers and neurons. The common place
between all the different models we created, was a descending number of neurons as the
number of the hidden layer increased. The main idea, was to gradually form sets that
have more things in common, and so, each packet can be part of larger groups to finally
meet the requirements for the class it belongs to. Beginning from 20 neurons, which was
the input layer, we end up with 4 neurons representing every output class. The activation
function used in hidden layers is the RELU function. Since our model is deep learning
one, it would be better to use n activation function which is not computationally
expensive. The RELU function involves simpler mathematical operations and as a result

is less expensive in comparison with tanh and sigmoid. In the output layer we used the
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SOFTMAX activation function. SOFTMAX gives the opportunity to use the output

values as predicted probabilities, because they are in the range of 0 and 1.

Another problem that we had to solve, is that the dataset contains mixed types of data.
Beyond integers and floats, there are also hexadecimal numbers and strings. Moreover in
case of a missing value the field is filled with a “?”. We cannot process data of many
types in neural networks. To overcome this, we encoded the input to integers using the
LabelEncoder class by Scikit-learn. For the “LABELS” attribute, we additionally
converted the vector of integers to an one-hot encoding using the Keras function
to_categorical(). This way, for each index there is a binary matrix that has as many
columns as the number of the output classes (here four). The column that corresponds to
the true label of the index has a value equal to 1 and the rest are equal to 0.

Reducing and encoding the features is not sufficient in terms of data preparation. Apart
from having a smaller input dimension, it is also important to handle the value range of
its attributes. Therefore, Data Normalization is another important step. Data
normalization refers to process of modifying the value range of an attribute to restrain it
to narrower limits. In this case we used the MinMaxScaler class, once again by Scikit-
learn, which transforms features by scaling each feature to a given range. This estimator
scales and translates each feature individually, such that it is in the given range on the

training set, i.e. between zero and one.

Taking a closer look to the training set, it is obvious that there is a great imbalance
between the instances of each class. There are 1,633,190 normal packets, 65,379
Injection packets, 48,484 Flooding packets and 48,522 Impersonation packets. Leaving
this proportion as is, would probably lead to overfitting as far as normal packets are
concerned and underfitting for the rest of the classes. We reduced the number of the
normal packets to 37,615. The new training dataset, consists of 200,000 indexes and it is

way more balanced.
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After training and testing the model the results were not that satisfactory. Table 4.2 is the

confusion matrix of the results:

Actual/Predicted Flooding Impersonati  Injection Normal SUM
on

Flooding 5269 333 0 2495 8097

Impersonation 586 884 0 18609 20079

Injection 0 17 14308 2357 16682

Normal 1923 18312 59 510491 530875

Table 4.2: Confusion Matrix - Multi-Class Classifier (Kolias et al. input)

The Recall Rate of each class, namely Flooding, Impersonation, Injection and Normal, is
65%, 4%, 86% and 96%, respectively. The problems, needing attention, are two. The first
one is the False Alarm Rates. False Alarms of an ideal IDS should approach 0%, so there
is still room for improvement. However, the most important problem is that for the
misclassified packets that are initially labeled as malicious, the IDS classifies them -in the

majority- as normals. So the Miss rate increases, making the system very vulnerable.

Actual/Predicted Correctly As another attack As normal
Flooding 5269 333 2495
Impersonation 884 584 18609
Injection 14308 17 2357
SUM 20461 934 23461

Table 4.3: Actually/Predicted comparison - Multi-Class Classifier (Kolias et al. input)

24



In order to improve the results we used a different set of features, as suggested by
Aminanto et al. (2017) and the followed the same procedure (Table 4.4).

Table 4.4: Input set as suggested by Aminanto et al.

The new confusion matrix and the distribution of misclassified attacks are presented in

Tables 4.5 and 4.6, respectively.
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Actual/Predicted Flooding Impersonati  Injection Normal SUM

on
Flooding 4920 0 0 3177 8096
Impersonation 3 14971 0 5285 20079
Injection 0 1 16667 14 16682
Normal 2244 28849 20845 478847 530875

Table 4.5: Confusion Matrix - Multi-Class Classifier (Aminanto et al. input)

Actual/Predicted Correctly As another attack As normal
Flooding 4920 0 3177
Impersonation 14971 3 5285
Injection 16667 1 14

SUM 36558 4 8476

Table 4.6: Actually/Predicted comparison - Multi-Class Classifier (Aminanto et al. input)

Using this set of features as an input brought better recall rates to the total of the attack
classes and also, a reduction the miss rate. However, the false alarm rate increased from
4% to nearly 10%.

4.3.2 Multiple Binary Classifiers

The main idea of the second approach is using multiple binary classifiers, each of them
trained for a different class. The first one is trained to distinguish the normal packets from

the rest(attacks). To do so, it was necessary to change the labels, which characterized a
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type of an attack execution method, to the most generic label “attack”. The next level of
classification is executed by three other binary ANNSs, each trained to recognize a
different type of execution method, namely Flooding Injection and Impersonation. In
order to train the different ANNs, we used two different training sets. Firstly, we
modified the dataframe, so that it contained only packets of the attack method it was
interested to, as well as normal packets. Then we created a set including only the attack
types. The main idea of the first approach was to feed the ANN with the characteristics of
only one attack, in order to be specialized. The second approach follows the classic
methodology of feeding an ANN, namely the packets that it is going to deal with. Since
the first-level ANN cuts off the normal packets, the input of the second-level ANNs will
mainly be the 3 type of the attacks. The labels are once more modified to meet the
requirements of the binary ANNSs. In short, when a packet is classified as an attack by the
first classifier, it is then tested by the second-level ANNs to identify the method of the

execution it belongs to.

Just as like the previous model, we used the two different set of features as input. The
first set of inputs (as suggested by Kolias et al. (2016)) brought up the following

confusion matrix on the first level of classification (attack/normal).

Actual/Predicted Attacks Normal SUM
Attacks 1317 43541 44858
Normal 547 530238 530785

Table 4.7: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Kolias et al.
input)

The false alarm has been reduced to a percentage below 1%, precisely to 0.1% and the

recall of normal is nearly 100%. On the other hand, the recall rate of the attacks has
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dropped to 2.9%. It is obvious, that there is no point for further classification. The IDS is

neither efficient nor functional.

Last but no least, the same structure has been tested with the different set of features as

input. The confusion matrix of the first level ANN is presented below

Actual/Predicted Attacks Normal SUM
Attacks 44108 750 44858
Normal 1801 53341 55142

Table 4.8: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Aminanto et al.
input)

The recall of normal is 97% while the attack recall is 98%. The improvement, comparing
the model to the previous structures, is more than obvious. Every packet that is now
considered an attack is now checked by the next levels classifiers, which are responsible
for each of the attack methods.

Next the packets are checked for the Injection method

Actual/Predicted Injection Not Injection SUM
Injection 16668 0 16668
Not Injection 19077 9439 28516

Table 4.9: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers

(Aminanto et al. input)-Normal/Injection Training Dataset
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Actual/Predicted Injection Not Injection SUM
Injection 0 16668 16668

Not Injection 9946 23477 33423

Table 4.10: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers

(Aminanto et al. input)-All Attacks Training Dataset

Table 4.9 shows the results of the Normal/Injection training set. There is a recall rate of
100 % concerning the attacks, although the false alarm is nearly 67% which is not
desirable. The Table 4.10 shows the confusion matrix after using the training set
including all types of attack. Recall Rate is 0%. In other words the ANN is totally

unfunctional.

Concerning the Impersonation Classification, Table 4.11 shows the confusion matrix of
the ANN trained with the Normal/Injection Dataset.

Actual/Predicted Impersonation Not Impersonation SUM
Impersonation 14603 5443 20046
Not Impersonation 3 19884 19887

Table 4.11: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary

Classifiers (Aminanto et al. input) - Normal/Impersonation Training Dataset

The recall of normal are nearly 100% for the normal, which at the same time means
almost 0% false alarm rate. The Impersonation recall is 73%, keeping the miss rate to a
27%.
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Actual/Predicted Impersonation Not Impersonation SUM
Impersonation 15 20046 20046

Not Impersonation 6603 22544 19887

Table 4.12: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary
Classifiers (Aminanto et al. input) - All Attacks Training Dataset

Just like the Injection Classification, Impersonation Recall Rate is approximately 0%.

Flooding Classification had completely different outcomes, in comparison with the
previous two attack methods. Table 4.13 shows the confusion matrix after using the
Normal/Flooding training set. Although there is 0% false alarm, the Flooding recall rate
is 0%.

Actual/Predicted Flooding Not Flooding SUM
Flooding 0 6872 6872
Not Flooding 0 42565 42565

Table 4.13: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers

(Aminanto et al. input)-Normal/Flooding Training Dataset

The results after training the ANN with the second dataset (Table 4.14) are very

encouraging. We have a Flooding recall rate equaling 100% and 5% false alarm.

Actual/Predicted Flooding Not Flooding SUM
Flooding 5766 0 5766
Not Flooding 1908 35977 37885
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Table 4.14: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers
(Aminanto et al. input)-All Attacks Training Dataset

Flooding attacks are orchestrated by a bunch of packets flooding the network. There is no
need for these packets to have significant differences from normal traffic. Considering
this, training a network to have distinguish normal packets from flooding ones, when

there is no short temp memory to recognise a stream of packets, is not very effective.

After completing the classification from all binary ANNs we note a false alarm of 3 %

and a miss rate of 13.8%.

4.4 Results

Binary classifiers, were more efficient in detecting attacks. The most efficient models, by
looking the overall performance, are certainly the ones, using the input as suggested by
Aminanto et al. (2017). The biggest flaw of the multiple binary classifiers is the more
time needed due to the two-phase detection. The most suitable training set, for the
second-level classification on the binary classifier, depends on the attack. Figures 4.1 and
4.2 show the performance of the different architectures for comparison. The number after
the Classifier states the number of attributes used. 19 as suggested by Kolias et al. (2016),
25 as suggested by Aminanto et al.(2017).

As far as the binary classifiers are concerned, we used the results with better recall rate
(Normal/One_Attack training set for Impersonation and Injection, All Attack types

training set for Flooding).

31



Recall Rate(%)

100
75
50
25

0

B Flooding
B Impersonation
@ Injection
B Normal

MultiClass19 MultiClass25

Figure 4.1: Overall Recall Rate

100

75

Binary19 Binary 25

B Miss Rate
B rzise Alarm

MultiClass19 MultiClass2s

Binary19 Binary25

Figure 4.2: Overall False Alarm and Miss Rate

32



5. Conclusions and Future Work

We experimented with 2 different sets of attributes, used as input, and 2 different ANN
architectures. It is clear that the set suggested by Aminanto et al.(2017) is a better choice
than the input set suggested by Kolias et al.(2016). This is even more obvious, in the
Binary Classifier, where the fist level, that tells if a packet is normal or not, fails with a
very notable recall rate 2.9%. Furthermore, we compared two different training sets
during the second-level attack of the Multiple Binary Classifier, and we found the most
suitable for each attack. The most rewarding results were those of the Flooding attack, in
the Binary Classification. We achieved a detection rate of 100% and a 5% false alarm.

The total miss rate which equals to 13.8% is also very encouraging.

In the near future, we plan to create a LSTM ANN to test if and how a short temp
memory will impact the results. Moreover, we could redesign the second-level binary
ANNSs in order to run simultaneously. This way, we will save time and make the model

even more efficient.
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