

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

“Ανίχνευση Επιθέσεων με τη χρήση Μηχανικής Μάθησης”

“Intrusion Detection Using Machine Learning”

Διπλωματική Εργασία

Οικονόμου Χρυσούλα

Επιβλέποντες Καθηγητές: Αντωνόπουλος Χρήστος, Λάλης Σπύρος

Βόλος, 10 Οκτωβρίου 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/161657481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

Ευχαριστίες

Με την ολοκλήρωση της Διπλωματικής Εργασίας μου θα ήθελα πρωτίστως να

ευχαριστήσω τον επιβλέποντα καθηγητή μου κύριο Αντωνόπουλο Χρήστο, για την

εξαιρετική συνεργασία και την ουσιαστική καθοδήγηση που μου προσέφερε κατά τη

διάρκεια της εκπόνησης. Η άμεση ανταπόκρισή του, όποτε χρειάστηκα βοήθεια, ήταν

καταλυτική στην ομαλή ολοκλήρωση της εργασίας.

Επιπλέον, οφείλω ένα μεγάλο ευχαριστώ στην οικογένειά μου και κυρίως στη μητέρα

μου. Η στήριξη τους, συναισθηματική και υλική, ήταν κομβική, όχι μόνο κατά την

περάτωση της εργασίας αλλά και στη συνολικότερη πορεία μου ως σήμερα.

Ακόμη θα ήθελα να ευχαριστήσω τη Μαρίνα, το Γιώργο, το Γιώργο, την Έλενα και

όλους τους φίλους μου, που ήταν διπλά μου σε αυτό το επταετές ταξίδι . Τέλος, θα ήθελα

να ευχαριστήσω το Θεόφιλο για την υπομονή του, και τη στήριξη που μου παρέχει όλο

αυτόν τον καιρό.

Χωρίς όλους αυτούς του ανθρώπους, όλα θα ήταν πολύ πιο δύσκολα και σίγουρα όχι

τόσο όμορφα.

iv

Περίληψη

Η συνεχής αύξηση των έξυπνων συσκευών, όπως επίσης και η ψηφιοποίηση εταιριών και

δημόσιων υπηρεσιών, οδήγησε σε μία αξιοσημείωτη αύξηση της κίνησης στο Διαδίκτυο.

Επιπλέον, οι τεχνολογίες του Διαδικτύου των Πραγμάτων (Internet of Things), επέφερε

τη δημιουργία πολυάριθμων δικτύων υπολογιστών, που κατακλύζονται –πολύ συχνά-

από ευαίσθητες πληροφορίες. Όλα τα παραπάνω δημιούργησαν την επιτακτική ανάγκη

για δυνατούς μηχανισμούς ασφάλειας, με στόχο την προστασία των προσωπικών

δεδομένων που κυκλοφορούν στο διαδίκτυο, καθημερινά

Τα Συστήματα Ανίχνευσης Εισβολών έχουν σημαντικό ρόλο στη διαδικασία

διασφάλισης ενός δικτύου υπολογιστών. Χρησιμοποιήσαμε μια τεχνική μηχανικής

εκμάθησης, συγκεκριμένα, Τεχνητά Νευρωνικά Δίκτυα που εκπαιδεύονται με τεχνικές

Βαθιάς Εκμάθησης, για να δημιουργήσουμε ένα Σύστημα Ανίχνευσης Εισβολών που

τροφοδοτείται και ελέγχεται από με τις AWID βάσεις δεδομένων του Πανεπιστημίου

Αιγαίου. Δοκιμάσαμε Δυαδικούς και Πολυταξικούς Ταξινομητές και χρησιμοποιήσαμε

δύο διαφορετικά σετ τροφοδοσία. Η ταξινόμηση αφορούσε σε Μεθόδους Εκτέλεσης

επιθέσεων. Συγκεκριμένα, τις Flooding, Impersonation and Injection.

Η βασική συνεισφορά αυτής της εργασίας, είναι πως δεν υπάρχουν δημοσιευμένα άλλα

εγχειρήματα αξιολόγησης Δυαδικών Ταξινομητών που χρησιμοποιούν τη Βαθιά

Εκμάθηση. Έτσι, μπορεί να αποτελέσει το εναρκτήριο σημείο για περαιτέρω βελτιώσεις.

v

Abstract

The constant increase of smart devices, as well as the digitalization of both enterprises

and social services led to a notable growth of traffic over Internet. Moreover, Internet of

Things Technologies induced the creation of numerous computer networks that are

flooded with –very commonly- sensitive information. All the above induce the need of

building strong security systems, in order to protect the personal information which are

communicated through Internet every day.

Intrusion Detection Systems (IDS) play a major role in the procedure of keeping a

computer network secure. Thus, they are widely used as defending mechanisms. We used

a machine learning technique, especially Deep Learning Artificial Neural Networks, to

create an IDS that is trained and tested with the AWID datasets. We experimented with

both Multi-Class and Binary Classifiers and tried different Input Sets. The classification

concerned Attack Execution Methods, namely Flooding, Impersonation and Injection.

The main contribution of this dissertation is that there are no other published projects

using Binary Classifiers that are trained with Deep Learning Methods. Thus, this can be

the starting point for further improvements.

vi

Table of Contents
Ευχαριστίες iii

Περίληψη iv

Abstract v

1. Introduction 1

2 Related Work 2

3 Background 4

3.1 Intrusion Detection Systems 4

3.2 Artificial Neural Networks 6

3.3 Feature Selection 9

3.4 Datasets 11

3.4.1 The AWID Dataset 12

3.4.1.1 Methodology of Attack Execution 13

4. Implementation 19

4.1 Keras and Tensorflow 19

4.2 Result Metrics 20

4.3 Artificial Neural Network Models 21

4.3.1 Multi-Class Classifier 21

4.3.2 Multiple Binary Classifiers 26

4.4 Results 31

5. Conclusions and Future Work 33

References 34

vii

1

1. Introduction

During the past decade the use of computers and smart devices has increased

significantly and this upturn does not seem to stop in the next years. According to Cisco

Visual Networking Index(“Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update”,2016) “The total number of smartphones (including phablets) will be

over 50 percent of global devices and connections by 2021”, as well as “Smartphones

will surpass four-fifths of mobile data traffic (86 percent) by 2021.” More devices

connected to the internet means more personal data exposed. This increase is not applied

just in terms of private using. In most developed countries, there is an ongoing effort of

digitalizing social services such as healthcare and tax services. As far as industries are

concerned, it is worth mentioning that new technologies, such as Big Data and Cloud

Computing, are widely embraced. As a result, the need of securing all these data and

transactions, that are digitally recreated, is getting an issue of great importance.

It is also notable, that another technology advance which has brought up a lot of security

challenges, because of its rapid development, is the Internet of Things (IoT). The IoT

gives people the opportunity to create a network of physical devices, in order to remotely

control them. These devices include simple home appliances, as well as medical devices

and factories heavy equipment. Thus, intrusions in such networks may have dangerous

costs.

In order to protect networks and information systems, the first step that should be made is

to be able to recognize an attempt of intrusion. By doing so, the intrusion can be stopped

and the defender can create a stronger and more sophisticated shield against the attack.

Intrusion Detection Systems (IDS) aim to secure networks from attacks, in order to

preserve the confidentiality, integrity and availability (also known as CIA triad) of

information. On the other hand, attackers try to take advantage of a system security

vulnerabilities in order to gain root access as to control them, retrieve data or damage

them.

2

This dissertation introduces an IDS that uses machine learning and specifically neural

network, and uses the AWID dataset for training and testing purposes. We created two

Artificial Neural Networks that have different architectures. The first one is a multi-class

classifier, while the second one consists of stacked binary ones. Furthermore, we

experimented with two different sets of attributes as input. We compare the results,

based on handful of aspects, as the number of false alarms or the accuracy rates.

Even though there have been several experiments including neural networks and the

AWID dataset, this is the first attempt to test this dataset on a binary Artificial Neural

Network. All previous projects (described in Section 2) had multi-class classification

models and experimented with different training algorithms.

The rest of the manuscript is organized as follows: Section 2 concerns the Related Work

while Section 3 includes Background information. Our implementation is described in

detail in Section 4. Finally Section 5 includes the Conclusions.

2 Related Work

Kolias et al. introduced the AWID dataset in 2016. This dataset consists of labeled WiFi

packets, which are classified according to their attack type, or if they are harmful, they

are just labeled as normal. Along with dataset, they presented the implementation of a

variety of machine learning techniques, including artificial neural networks. However,

the accuracy scores were quickly surpassed by the work of Thanthridge et al.(2016) ,

Aminanto et al.(2017,2018) and Usha and Kavitha(2016).

3

Thanthrige et al.(2016) published a paper, showing the importance of feature reduction

and its impact on the detection accuracy and the classification speed of an IDS. In order

to prove this, they also used multiple machine learning techniques. They used the AWID

public datasets to train and test the IDSs created. Aminanto et al. (2017) tried to improve

the Impersonation attack detection rate -compared to the results of Kolias et al. (2016).

They used artificial neural networks to reduce the features and they experimented using

the Stacked Auto Encoder learner. They manage to achieve a significant improvement to

the rates.

This year, Aminato et al.(2018) managed to achieve the best performance in published

literature(Aminanto et al., 2018). They did so, by using a weight-based feature selection

method with a light machine-learning classifier.

Usha and Kavitha(2016) used a Support Vector Machine and the AWID dataset. This led

to a better trade-off between detection accuracy and learning time, and at the same time a

reduced false positives and computation complexity. Of course, they reduced the features

used as input.

Thing (2017) proposed a deep learning approach for intrusion detection using the AWID

datasets. They experimented the utilization of different activation functions in two

different artificial neural networks, which included two and three hidden layers,

respectively. Their 4-class classifiers achieved a 98.6688% overall accuracy.

The key difference, between these project and ours, is that we compare a multiclass

classifier to a binary one, while the others compare different training algorithms.

4

3 Background

3.1 Intrusion Detection Systems

Intrusion Detection Systems are devices or software that track abnormal behavior and

policy violations. The first IDS was introduced by Dorothy E. Denning in 1986. IDSs

have a lot in common with firewalls as they both try to defend a network. However,

firewall functionality differs from IDS, as the former prevent attackers from intruding the

network. In contrast, IDSs identify potentially malicious activity and raise an alarm.

Systems that detect such activities and, in addition, take some corresponding action are

referred to as Intrusion Prevention Systems (IPS). Another major difference between

these defending mechanisms is the fact that firewalls are exclusively network protecting

mechanisms, while IDS can also be used to monitor malicious behaviour inside a system.

In terms of system positioning IDS can be classified into two categories. The first one is

the Network IDS (NIDS). As the name itself implies, NIDS are monitoring network

traffic and aim to detect external attacks. The most notable advantage of NIDS is that

they can defend all the devices connected to the network, and it does not require

replication. The second category is the Host based IDS (HIDS). HIDS are located within

a system, and besides network traffic, they also monitor the systems files and processes,

in order to detect if there is any change in the critical ones. Because of this, HIDS have

much more information to form the signature of a normal behavior which makes them

more reliable.

5

Figure 3.1: Host-Based Intrusion Detection System (Retrieved from: “HIDS (Host-Based

Intrusion Detection System) - Bauman National Library”, n.d.)

L.P Dias et al.(2017) categorize IDSs based in the detection method used in Misuse or

Signature Detection and in Anomaly Detection systems. The first type of IDS needs some

predefined attack patterns in order to be able to recognize them. Every other kind of

behavior is considered normal. Keeping in mind that attacks are constantly evolving and

new types of attacks are made, in order to stay protected, the list of the predefined

patterns should be very commonly updated. Of course, there is always the possibility that

the update may come after the attack, but the danger can be regulated by increasing the

update frequency. On the contrary, Anomaly Detection Systems functionality is

characterized by the just reversed logic. As a consequence, the predefined patterns

concern the normal behavior. Any different set of characteristics, is flagged as malicious

behavior. It can be easily seen that this type of systems can be “overprotective”, since the

networks traffic is not static and its features can widely vary (Sommer et al, 2010) even

when there is no threatening behavior.

When it comes to IDS evaluation, a very common indicator of a well-developed one, is

the amount of the true/false positives and true/false negatives. True positives refer to the

packets, correctly classified as harmful, while true negatives are the packets that are

https://en.bmstu.wiki/index.php?title=HIDS_(Host-Based_Intrusion_Detection_System)&mobileaction=toggle_view_mobile
https://en.bmstu.wiki/index.php?title=HIDS_(Host-Based_Intrusion_Detection_System)&mobileaction=toggle_view_mobile

6

correctly classified as benevolent. False positives are the alarms that are signed by an

IDS when there was not an actual malicious behavior. False positives are increased in

Anomaly Detection Systems, due to the vast network diversity. False negatives refer to

packets or generally activities that are considered harmless, while they shouldn’t be. It is

clear that, false negatives are far more harmful for a system, but what should also be

mentioned is that false positives require a significant amount of analyzing time which

finally leads to a benign activity.

3.2 Artificial Neural Networks

In 1959 Arthur Samuel introduced the term Machine Learning. According to Samuel

Machine Learning is the process that makes computers able to “learn”, in a very similar

way that a human would, if given the same data. Machine Learning implies that

computers are not pre-programmed to handle new data. It is the training session that leads

the computer to make decisions, through statistics and pattern recognition. Machine

Learning is a part of the greater field of Artificial Intelligence. There are a handful of

approaches to apply Machine Learning. This paper studies Artificial Neural Networks

learning algorithm.

Artificial Neural Networks are computing systems inspired by the human brain

functionality. They try to mimic the process followed by neurons inside the brain. Just

like the physical ones, artificial neurons that are “connected” to each other can

communicate in order to process signals and finally classify them.

Considering the main architecture of ANNs, it can be organized in three basic parts. The

first one the Input Layer. As the name implies, it is the part of the ANN that receives

signals or patterns, in order to redirect them to the following layers. The second part is

the Hidden or Intermediate layers. They are the layers that perform the most

computational processes, as they are the ones responsible to combine the input data and

then create patterns, in order to generalize the results. Unlike the other two categories,

hidden layers can be multiple, according to the combination of computational complexity

7

and desired accuracy. The last part of the ANN architecture, is the Output layer which

forms the final classification of the data, based in the previous layer computations.

Figure 3.2: Feedforward ANN Architecture (Retrieved from: Dawson et al, 2000)

All layers consist of neurons. Neurons are responsible for forwarding –or not- the signals

inside the layers and among them. To do so, multiple functions are used, also known as

Activation Functions. The most commonly used, beginning from the simplest one, are the

Step, the Linear, the Sigmoid, the Tanh and the Relu functions. There is no need to use

the same activation function in all hidden layers. Just like the number of hidden layers

and the number of neurons, the choice between these functions is up to developer’s

judgement.

 Figure 3.3: Different types of Activation Function (Retrieved from: Malhotra, 2018

)

ANNs can be also classified in 3 categories based on the way neurons are organized. The

first one is the Single-Layer Feedforward Architecture. It includes only the input and the

output layer, so it is the least complex of the rest. The second is the Multiple-Layer

Feedforward Architecture. Unlike the previous one, this architecture includes all three

http://www.geocomputation.org/2000/GC016/Gc016.htm
http://www.geocomputation.org/2000/GC016/Gc016.htm
http://www.geocomputation.org/2000/GC016/Gc016.htm
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3

8

basic layers. In addition, most of the times the number of layers exceeds 3. Namely, there

are more than one hidden layers. Last but not least, is the Recurrent Architecture It is the

most interesting and at the same time most complex architecture of all, as it uses its

output as input for the subsequent computations.

Figure 3.4: ANN basic architectures (Retrieved from: Da, S. I. et al., 2017)

As Haykin(1999) notes, ANNs can perform tasks like pattern matching very skillfully, as

a result of their capability of reorganizing their structure correspondingly. Furthermore,

ANNs can learn and model relationships that linear programs are incapable of doing so.

Another notable advantage of ANN is that they can generalize. After the first phase of the

training, they can come up with relations between the data that were not obvious initially.

What really makes ANNs useful, is their ability of learning and especially self-learning.

Learning can be interpreted making a system able to correctly correspond to a new input

or task after having been trained. Although, ANNs require a notable amount of

computing resources because their architecture differs from the architecture of

microprocessors (Shah et al. ,2012). Moreover, in order to develop an efficient ANN, it is

of great importance to “feed” it with a large training set that also results in a considerable

resource usage.

https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611
https://www.springer.com/gp/book/9783319431611

9

3.3 Feature Selection

The input layer of a ANN receives the key attributes of each data index, which are used

to categorize the data. Most of the times, datasets include multiple attributes per index

which are not always useful (not for all classifications). This is due to the fact that

datasets are not exclusively created for single purposes. The same dataset can be used to

make classifications according to different parameters. Namely, what might be useful for

one classification problem, may be completely irrelevant for another.

The correct choice of features used as input is very important, as two problems, with high

impact on the results, may occur. If the features are misselected, in terms that more

parameters than actually needed are used, then the model is driven to “overfitting “(Aalst

et al., 2008). In other words, the patterns generated are too close to the training set and as

a result, the generalization required to classify new data is very difficult. On the other

hand, having fewer features, than the features necessary to identify the pattern, as input

leads to “underfitting”. Underfitting refers to the incapability of a model to generate a

pattern that corresponds correctly to the input due to the lack of important characteristics

of the training set. Both overfitted and underfitted models fail on new datasets, while -

quite obviously- overfitted ones have a very good performance on training sets.

10

Figure 3.5: Relation between model used and errors (Retrieved from: Giovinazzo, 2017)

Figure 3.6: Relation between model and data (Retrieved from: “Model Fit: Underfitting

vs Overfitting- Amazon Machine Learning”, n.d.)

All these, sum up to the fact that in order to develop an efficient ANN, one should take

under consideration the need to pick certain index attributes, in other words, feature

selection. Feature selection is a key step of creating a ANN. The impact of ignoring it is

serious as it has a great reflection in accuracy rates. Overfeeding the network with excess

information, makes the classification very difficult, as the common characteristics

between the categories are only a small percentage of the total.

https://meditationsonbianddatascience.com/2017/05/11/overfitting-underfitting-how-well-does-your-model-fit/
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html
https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

11

3.4 Datasets

As previously mentioned, a key part of developing an efficient ANN, is the training

phase. Not only is it mandatory, but it also greatly determines the quality of the results.

The dataset used during this process should be carefully chosen. According to the

purpose of the ANN function one should take into consideration a variety of

characteristics to evaluate. To start with, the size of the dataset plays a major role. It is

clear that, if the input has a lot of entries, then it would be easier for the ANN to identify

more accurate patterns and thus, be more efficient. However, a large dataset means a lot

of computational processes, when at the same time it does not guarantee high accuracy

rates. What should also be considered is the quality of the data. In other words, the data

given as input should contribute to form the greatest picture. Each entry of the data

consists of some attributes, also known as features. In fact these are the real input. It can

be easily understood, that a dataset with a lot of missing attributes information, would

lead to a low accuracy output. On the other hand, having a very large number of attributes

is also ineffective. The generalization of the results would be almost impossible if the

characteristics, that were to be examined, were excessive. Lastly, the most crucial matter,

concerning the quality of the dataset, is the how updated the data is. There is absolutely

no point in training a system with obsolete data. In conclusion, choosing the suitable data

is as important as correctly developing the neural network.

In case of datasets needed in training Intrusion Detection Systems, the same aspects

should be taken into account. However, there is another challenge that people in this

domain face. There are a very few public datasets that can be used in the training phase.

The most known public datasets are the DARPA/Lincoln Labs packet traces 1998 and

1999(“Datasets | MIT Lincoln Laboratory”, n.d.) and the KDD Cup 1999 Data(“KDD

Cup 1999 Data”, 1999). It is more than obvious that a 20-year-old set is outdated.

According to Moore’s Law the number of transistors in a dense integrated circuit doubles

about every two years. This also reflects on processor performance. Attackers take

advantage of their system properties in order to orchestrate more advanced attacks. This

means faster or more sophisticated attacks. Keeping this in mind, it is clear that with the

systems constantly advancing, it is quite probable that the number and severity of attacks

12

will increase. In order to intrude systems, attackers follow current technology and try to

adapt to it. Thus, a dataset that old may not represent contemporary attacks. As Sommer

et al.(2010) suggests, besides being outdated, these datasets have been over-studied and

no interest is raised in recreating a NIDS responding to these attacks. The real question is

why there are not a more datasets available. First of all, storing millions of packets raises

privacy issues. It is not plausible to ensure that none of the millions of packets contains

sensitive information. As a result, very frequently there are no legal permissions to do so.

This leads to the effort of simulating network traffic, to create a dataset. The fact that

Internet is not easily simulated as S. Floyd states, makes the creation even more difficult.

3.4.1 The AWID Dataset

The public dataset (Kolias et al., 2016), consists of two subsets, a large and a smaller one.

Both subsets are divided in two parts the training and the evaluating one. What needs to

noticed is that the test set is not derived from the training one. Thus the reliability of the

results is not compromised. The datasets have 2 versions. In the first (ATK), data is

classified into 16 categories in accordance with the kind of attack performed. The second

one (CLS), has 4 categories according to the methodology of execution. Each entry in the

dataset has 155 attributes, with the last one being the class label. In case of a missing

value, the corresponding attribute is represented with a “?”.

13

Table 3.1: Class distribution-Full set (Retrieved from: Kollias et al, 2014)

Table 3.2: Class distribution-Reduced set (Retrieved from: Kollias et al, 2014)

3.4.1.1 Methodology of Attack Execution

The paper focuses on the AWID-CLS sets, namely the classification that is made

according to the methodology that is used during an attack. There are four categories that

the packets are sorted into; Flooding, Impersonation, Injection and Normal.

http://icsdweb.aegean.gr/awid/features.html
http://icsdweb.aegean.gr/awid/features.html

14

● Flooding

Flooding is a Denial of Service (DoS) attack. DoS Attacks are orchestrated in order to

bring a network or a server down. (“Understanding Denial-of-Service Attacks", 2013).

To accomplish this, the network is “flooded” with connection requests and eventually

becomes incapable to respond to any of them, even the not malevolent ones. When the

number of requests excess the capacity of the memory buffer, the system can no longer

establish new connections. Whether the attacker use one or more computers and internet

connections to flood the network, the attack is characterized as DoS or DdoS (Distributed

Denial of Service). DDoS attacks, as shown Figure 3.7, exist for a long time and they are

getting more potent through the years.

Figure 3.7: DDoS Attacks Over Time (Jeftovic, 2018)

15

Flooding attacks are multilayer ones (Regan et. al, 2017). They can be applied in layers

other than the network. To be more specific, one can achieve Flooding attack in the

Physical Layer through signal jamming. In the Data Link layer, the attacker “floods” the

ARP tables, of the target network, with false MAC addresses resulting in the denial of

access to channels for new nodes. The fourth and fifth layers, id est Transport and

Application layers, Flooding attacks occur via SYN Flooding and certain malevolent

programs.

● Injection

As the name itself implies, Injection attack refers to the process of “injecting” malicious

code into a program. So as to achieve this, attackers provide the program with a

malicious input. Then, the interpreter is misled to compile that input as a part of the

genuine code. Eventually the attackers manage to change the normal execution flow in

their interest without proper authorization. This kind of attacks have various impacts of

scaled severeness. There can be a loss of data or a data theft, and if the attack is more

sophisticated and a declaration of root privileges is achieved, there can even be a full

system compromise.

The Open Web Application Security Project (“OWASP Top Ten 2017 Project -

OWASP”, n.d.) lists Injection attacks as the number one application security risk. The

reason behind this, besides the already noted impacts, is that apart from being very

dangerous for the victim system, Injections attacks can easily spread widely. Injection

attacks, such as SQL Injection (SQLi) and Cross-Site-Scripting (XSS), which also are the

most common ones, are a very typical example of this characteristic when talking about

legacy applications.

What is also alarming about Injection attacks is that the vulnerabilities allowing an

attacker to inject malicious code, are very commonly present in websites. In 2010

WhiteHat Security released a report (“WhiteHat Security 9th Website Security Statistics

Report”, 2010) presenting the percentage of the likelihood of a website having a

16

vulnerability by class. As it can be seen in Figure 3.8, Cross-Site scripting is the top in all

types of scripting technologies.

Figure 3.8: Top Ten Classes of Attack (Retrieved from: “WhiteHat Security 9th Website

Security Statistics Report”,2010)

● Impersonation

The basic idea behind Impersonation Attacks is masquerading into a trusted -for the

victim system- source. To achieve this the attacker uses a trusted node identity, such as

Medium Access Control (MAC) address and/or Internet Protocol (IP) address. Even

though there exist some security techniques such as Wired Equivalent Privacy (WEP),

Wi-Fi Protected Access (WPA), and 802.11i (WPA2), attackers are not yet prevented

from stealing such credentials. This happens due to the fact that encryption concerns only

the data frames. Management and Control frames are vulnerable to spoofing (Lakshmi et

al., 2014). Impersonation can occur in different forms, especially device cloning, address

spoofing, unauthorized access, rogue access points and replay (Barbeau et al, 2006).

https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report-3995771
https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report-3995771

17

Device Cloning refers to mimicking a device by altering the attacker’s device to have

H/W addresses of a trusted device. When the duration of this imitation is one frame, then

another form of Impersonation happens; (MAC) address spoofing. The above techniques

are key steps to deauthentication and disassociation attacks. Impersonation is very useful

for gaining unauthorized access. The attacker may use the pre-referred techniques to

obtain privileges and be able to access data or alter the network. Another form of

Impersonation is the Rogue Access Point. In this case, there is an attacker station which

is programmed to have the specifications of a trusted access point. Hence, many clients

that are connected to the second one, at first, disconnect from the legitimate station and

then they are connected to the attacker. Last but not least, Replay attacks concern the

replay protection. Replay protection is made to guarantee that the packets received are

not duplicates and that they are freshly generated.

Impersonation attacks are often orchestrated by bots. Attacker bots try to imitate human

visitors so as to skip security barriers. Below are some graphs from the annual Imperva

Incapsula Bot Traffic Report, now in its fifth year which is an ongoing statistical study of

the bot traffic landscape. As is can be seen in Figures 3.9 and 3.10 bots visiting websites

outnumber human visitors. This, in combination with the fact that “bad” bots are

overwhelmingly impersonators, which can be observed in Figure 3.10 chart makes this

kind of attack very important.

18

Figure 3.9: Traffic Breakdown (Retrieved from: Zeifman, 2017)

Figure 3.10: Impersonator bot and bad bot traffic trends (Retrieved from: Zeifman, 2017)

https://www.incapsula.com/blog/bot-traffic-report-2016.html
https://www.incapsula.com/blog/bot-traffic-report-2016.html

19

4. Implementation

Our goal is to create an Artificial Neural Network that serves as an Intrusion Detection

System. During the process of optimizing the accuracy and the efficiency of it, we

experimented with several ANN architectures and tried different structures concerning

the total organization of the model. We suggest a deep learning approach with two or

more hidden layers. The dataset that Kolias et al.(2016) provided, allowed us to build a

supervised ANN because all the indexes were labeled. We chose the sets that classified

the packets according to the methodology of the attack execution, especially the reduced

ones (AWID-CLS-R-Tst, AWID-CLS-R-Trn). This chapter discusses the different

approaches used and how the results are sensitive to the value of a number of parameters.

4.1 Keras and Tensorflow

To start with, we used Keras to build our ANN model. Keras(“Keras | TensorFlow” ,n.d.)

is a high-level neural networks API, written in Python and capable of running on top of

Tensorflow, CNTK(Seide et al., 2016) or Theano (Ketkar,2017). It was developed with a

focus on enabling fast experimentation. It supports both convolutional networks and

recurrent networks, as well as combinations of the two. Moreover, Keras models can run

seamlessly on Graphics Processing Unit (GPU) and Central Processing Unit (CPU)

(Keras | TensorFlow).

To perform the complex numerical computations required for the building of the ANN

we used Tensorflow. TensorFlow(“TensorFlow”, n.d.). is an open source software library

for high performance numerical computation. A very useful tool, in the process of

creating the models was SciPy(“Scientific Computing Tools for Python — SciPy.org”,

n.d.). SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source

software for mathematics, science, and engineering. In particular, we used NumPy and

Matplotlib from the core packages. Matplotlib is a Python 2D plotting library which

https://github.com/Theano/Theano

20

produces publication quality figures (Hunter, 2007). NumPy is the fundamental package

for scientific computing with Python.

4.2 Result Metrics

In order to evaluate the models, we will introduce 3 new metrics. The first one is the

Recall or True Positive Rate (TPR):

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Recall represents the percentage of correctly classified instances.

The second metric that we will use is the Miss Rate or False Negative Rate (FNR):

 𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃+𝐹𝑁

Miss ia the rate of malicious packets that were incorrectly classifies as harmless.

The last one is the False Alarm or False Positive Rate (FPR):

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁

False alarm happens when a normal packet is considered malicious and thus the ids

alarms the system, needlessly.

Where TP stands for True Positives, TN for True Negatives, FP for false Positives and

FN for False Negatives.

21

4.3 Artificial Neural Network Models

The key difference between the two approaches used, is the number of the classes of the

output. The first was one Multi-Class Classifier and the second was a hierarchy of four

binary ANNs. In the following paragraphs we will describe the structure and

functionality of both models in detail.

4.3.1 Multi-Class Classifier

The Multi-Class Classifier consists of 4 layers, the input layer, two hidden layers and the

output layer. The main idea was simple; for starters, the ANN is trained with the labeled

data of the AWID-CLS-R-Trn set and then we use the AWID-CLS-R-Tst set to make

predictions.

The first parameter that required careful consideration was the input dimension. Each

index in the dataset has 155 attributes. As already mentioned in the Section 3.3, using

such a large number of features as input, makes the ANN incapable of creating efficient

recognition patterns. Therefore, it was necessary to narrow down the input. Kolias et

al.(2016) also note the importance of the feature reduction in their paper. More

specifically they mention that “only 20 attributes are immediately related to the attacks

contained in the training set”, and they provide a table containing these attributes (Table

4.1).

22

Table 4.1: Input set as suggested by Kolias et al. (Retrieved from: Kollias et al., 2016)

Following the guidelines given in the paper we created an ANN that has 20 attributes as

input, followed by two hidden layers with 16 and 10 neurons respectively, and lastly an

output of 4 classes. The classes of the output, as described previously are Flooding,

Injection, Impersonation and Normal. In order to decide the architecture of the ANN we

used, we experimented with different numbers of layers and neurons. The common place

between all the different models we created, was a descending number of neurons as the

number of the hidden layer increased. The main idea, was to gradually form sets that

have more things in common, and so, each packet can be part of larger groups to finally

meet the requirements for the class it belongs to. Beginning from 20 neurons, which was

the input layer, we end up with 4 neurons representing every output class. The activation

function used in hidden layers is the RELU function. Since our model is deep learning

one, it would be better to use n activation function which is not computationally

expensive. The RELU function involves simpler mathematical operations and as a result

is less expensive in comparison with tanh and sigmoid. In the output layer we used the

23

SOFTMAX activation function. SOFTMAX gives the opportunity to use the output

values as predicted probabilities, because they are in the range of 0 and 1.

Another problem that we had to solve, is that the dataset contains mixed types of data.

Beyond integers and floats, there are also hexadecimal numbers and strings. Moreover in

case of a missing value the field is filled with a “?”. We cannot process data of many

types in neural networks. To overcome this, we encoded the input to integers using the

LabelEncoder class by Scikit-learn. For the “LABELS” attribute, we additionally

converted the vector of integers to an one-hot encoding using the Keras function

to_categorical(). This way, for each index there is a binary matrix that has as many

columns as the number of the output classes (here four). The column that corresponds to

the true label of the index has a value equal to 1 and the rest are equal to 0.

Reducing and encoding the features is not sufficient in terms of data preparation. Apart

from having a smaller input dimension, it is also important to handle the value range of

its attributes. Therefore, Data Normalization is another important step. Data

normalization refers to process of modifying the value range of an attribute to restrain it

to narrower limits. In this case we used the MinMaxScaler class, once again by Scikit-

learn, which transforms features by scaling each feature to a given range. This estimator

scales and translates each feature individually, such that it is in the given range on the

training set, i.e. between zero and one.

Taking a closer look to the training set, it is obvious that there is a great imbalance

between the instances of each class. There are 1,633,190 normal packets, 65,379

Injection packets, 48,484 Flooding packets and 48,522 Impersonation packets. Leaving

this proportion as is, would probably lead to overfitting as far as normal packets are

concerned and underfitting for the rest of the classes. We reduced the number of the

normal packets to 37,615. The new training dataset, consists of 200,000 indexes and it is

way more balanced.

24

After training and testing the model the results were not that satisfactory. Table 4.2 is the

confusion matrix of the results:

Actual/Predicted Flooding Impersonati

on

Injection Normal SUM

Flooding 5269 333 0 2495 8097

Impersonation 586 884 0 18609 20079

Injection 0 17 14308 2357 16682

Normal 1923 18312 59 510491 530875

Table 4.2: Confusion Matrix - Multi-Class Classifier (Kolias et al. input)

The Recall Rate of each class, namely Flooding, Impersonation, Injection and Normal, is

65%, 4%, 86% and 96%, respectively. The problems, needing attention, are two. The first

one is the False Alarm Rates. False Alarms of an ideal IDS should approach 0%, so there

is still room for improvement. However, the most important problem is that for the

misclassified packets that are initially labeled as malicious, the IDS classifies them -in the

majority- as normals. So the Miss rate increases, making the system very vulnerable.

Actual/Predicted Correctly As another attack As normal

Flooding 5269 333 2495

Impersonation 884 584 18609

Injection 14308 17 2357

SUM 20461 934 23461

Table 4.3: Actually/Predicted comparison - Multi-Class Classifier (Kolias et al. input)

25

In order to improve the results we used a different set of features, as suggested by

Aminanto et al. (2017) and the followed the same procedure (Table 4.4).

Table 4.4: Input set as suggested by Aminanto et al.

The new confusion matrix and the distribution of misclassified attacks are presented in

Tables 4.5 and 4.6, respectively.

26

Actual/Predicted Flooding Impersonati

on

Injection Normal SUM

Flooding 4920 0 0 3177 8096

Impersonation 3 14971 0 5285 20079

Injection 0 1 16667 14 16682

Normal 2244 28849 20845 478847 530875

Table 4.5: Confusion Matrix - Multi-Class Classifier (Aminanto et al. input)

Actual/Predicted Correctly As another attack As normal

Flooding 4920 0 3177

Impersonation 14971 3 5285

Injection 16667 1 14

SUM 36558 4 8476

Table 4.6: Actually/Predicted comparison - Multi-Class Classifier (Aminanto et al. input)

Using this set of features as an input brought better recall rates to the total of the attack

classes and also, a reduction the miss rate. However, the false alarm rate increased from

4% to nearly 10%.

4.3.2 Multiple Binary Classifiers

The main idea of the second approach is using multiple binary classifiers, each of them

trained for a different class. The first one is trained to distinguish the normal packets from

the rest(attacks). To do so, it was necessary to change the labels, which characterized a

27

type of an attack execution method, to the most generic label “attack”. The next level of

classification is executed by three other binary ANNs, each trained to recognize a

different type of execution method, namely Flooding Injection and Impersonation. In

order to train the different ANNs, we used two different training sets. Firstly, we

modified the dataframe, so that it contained only packets of the attack method it was

interested to, as well as normal packets. Then we created a set including only the attack

types. The main idea of the first approach was to feed the ANN with the characteristics of

only one attack, in order to be specialized. The second approach follows the classic

methodology of feeding an ANN, namely the packets that it is going to deal with. Since

the first-level ANN cuts off the normal packets, the input of the second-level ANNs will

mainly be the 3 type of the attacks. The labels are once more modified to meet the

requirements of the binary ANNs. In short, when a packet is classified as an attack by the

first classifier, it is then tested by the second-level ANNs to identify the method of the

execution it belongs to.

Just as like the previous model, we used the two different set of features as input. The

first set of inputs (as suggested by Kolias et al. (2016)) brought up the following

confusion matrix on the first level of classification (attack/normal).

Actual/Predicted Attacks Normal SUM

Attacks 1317 43541 44858

Normal 547 530238 530785

Table 4.7: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Kolias et al.

input)

The false alarm has been reduced to a percentage below 1%, precisely to 0.1% and the

recall of normal is nearly 100%. On the other hand, the recall rate of the attacks has

28

dropped to 2.9%. It is obvious, that there is no point for further classification. The IDS is

neither efficient nor functional.

Last but no least, the same structure has been tested with the different set of features as

input. The confusion matrix of the first level ANN is presented below

Actual/Predicted Attacks Normal SUM

Attacks 44108 750 44858

Normal 1801 53341 55142

Table 4.8: Confusion Matrix (Attack/Normal) - Multi Binary Classifiers (Aminanto et al.

input)

The recall of normal is 97% while the attack recall is 98%. The improvement, comparing

the model to the previous structures, is more than obvious. Every packet that is now

considered an attack is now checked by the next levels classifiers, which are responsible

for each of the attack methods.

 Next the packets are checked for the Injection method

Actual/Predicted Injection Not Injection SUM

Injection 16668 0 16668

Not Injection 19077 9439 28516

Table 4.9: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers

(Aminanto et al. input)-Normal/Injection Training Dataset

29

Actual/Predicted Injection Not Injection SUM

Injection 0 16668 16668

Not Injection 9946 23477 33423

Table 4.10: Confusion Matrix (Injection/Not Injection) - Multi Binary Classifiers

(Aminanto et al. input)-All Attacks Training Dataset

Table 4.9 shows the results of the Normal/Injection training set. There is a recall rate of

100 % concerning the attacks, although the false alarm is nearly 67% which is not

desirable. The Table 4.10 shows the confusion matrix after using the training set

including all types of attack. Recall Rate is 0%. In other words the ANN is totally

unfunctional.

Concerning the Impersonation Classification, Table 4.11 shows the confusion matrix of

the ANN trained with the Normal/Injection Dataset.

Actual/Predicted Impersonation Not Impersonation SUM

Impersonation 14603 5443 20046

Not Impersonation 3 19884 19887

Table 4.11: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary

Classifiers (Aminanto et al. input) - Normal/Impersonation Training Dataset

The recall of normal are nearly 100% for the normal, which at the same time means

almost 0% false alarm rate. The Impersonation recall is 73%, keeping the miss rate to a

27%.

30

Actual/Predicted Impersonation Not Impersonation SUM

Impersonation 15 20046 20046

Not Impersonation 6603 22544 19887

Table 4.12: Confusion Matrix (Impersonation/Not Impersonation) - Multi Binary

Classifiers (Aminanto et al. input) - All Attacks Training Dataset

Just like the Injection Classification, Impersonation Recall Rate is approximately 0%.

Flooding Classification had completely different outcomes, in comparison with the

previous two attack methods. Table 4.13 shows the confusion matrix after using the

Normal/Flooding training set. Although there is 0% false alarm, the Flooding recall rate

is 0%.

Actual/Predicted Flooding Not Flooding SUM

Flooding 0 6872 6872

Not Flooding 0 42565 42565

Table 4.13: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers

(Aminanto et al. input)-Normal/Flooding Training Dataset

The results after training the ANN with the second dataset (Table 4.14) are very

encouraging. We have a Flooding recall rate equaling 100% and 5% false alarm.

Actual/Predicted Flooding Not Flooding SUM

Flooding 5766 0 5766

Not Flooding 1908 35977 37885

31

Table 4.14: Confusion Matrix (Flooding/Not Flooding) - Multi Binary Classifiers

(Aminanto et al. input)-All Attacks Training Dataset

Flooding attacks are orchestrated by a bunch of packets flooding the network. There is no

need for these packets to have significant differences from normal traffic. Considering

this, training a network to have distinguish normal packets from flooding ones, when

there is no short temp memory to recognise a stream of packets, is not very effective.

After completing the classification from all binary ANNs we note a false alarm of 3 %

and a miss rate of 13.8%.

4.4 Results

Binary classifiers, were more efficient in detecting attacks. The most efficient models, by

looking the overall performance, are certainly the ones, using the input as suggested by

Aminanto et al. (2017). The biggest flaw of the multiple binary classifiers is the more

time needed due to the two-phase detection. The most suitable training set, for the

second-level classification on the binary classifier, depends on the attack. Figures 4.1 and

4.2 show the performance of the different architectures for comparison. The number after

the Classifier states the number of attributes used. 19 as suggested by Kolias et al. (2016),

25 as suggested by Aminanto et al.(2017).

As far as the binary classifiers are concerned, we used the results with better recall rate

(Normal/One_Attack training set for Impersonation and Injection, All Attack types

training set for Flooding).

32

Figure 4.1: Overall Recall Rate

Figure 4.2: Overall False Alarm and Miss Rate

33

5. Conclusions and Future Work

We experimented with 2 different sets of attributes, used as input, and 2 different ANN

architectures. It is clear that the set suggested by Aminanto et al.(2017) is a better choice

than the input set suggested by Kolias et al.(2016). This is even more obvious, in the

Binary Classifier, where the fist level, that tells if a packet is normal or not, fails with a

very notable recall rate 2.9%. Furthermore, we compared two different training sets

during the second-level attack of the Multiple Binary Classifier, and we found the most

suitable for each attack. The most rewarding results were those of the Flooding attack, in

the Binary Classification. We achieved a detection rate of 100% and a 5% false alarm.

The total miss rate which equals to 13.8% is also very encouraging.

In the near future, we plan to create a LSTM ANN to test if and how a short temp

memory will impact the results. Moreover, we could redesign the second-level binary

ANNs in order to run simultaneously. This way, we will save time and make the model

even more efficient.

34

References

Aminanto, M. E., & Kim, K. C. (2018). Improving Detection of Wi-Fi Impersonation

by Fully Unsupervised Deep Learning. Information Security Applications,

212-223. doi:10.1007/978-3-319-93563-8_18

Aminanto, M. E., Tanuwidjaja, H. C., Yoo, P. D., & Kim, K. (2017). Wi-Fi intrusion

detection using weighted-feature selection for neural networks classifier. 2017

International Workshop on Big Data and Information Security (IWBIS).

doi:10.1109/iwbis.2017.8275109

Barbeau, M., Hall, J., & Kranakis, E. (2006). Detecting Impersonation Attacks in

Future Wireless and Mobile Networks. Secure Mobile Ad-hoc Networks and

Sensors, 80-95. doi:10.1007/11801412_8

Bot Traffic Report 2016. (2017, January 26). Retrieved from

https://www.incapsula.com/blog/bot-traffic-report-2016.html

Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2016?2021 White Paper. (n.d.). Retrieved from

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/mobile-white-paper-c11-520862.html

Da, S. I., Hernane, S. D., Andrade, F. R., Liboni, L. H., & Dos, R. A. (2017). Artificial

Neural Networks: A Practical Course. Cham: Springer.

Datasets | MIT Lincoln Laboratory. (n.d.). Retrieved from https://www.ll.mit.edu/r-

d/datasets

Dawson, C. W., Wilby, R. L., Harpham, C., Brown, M. R., Cranston, E., & Darby, E.

https://www.incapsula.com/blog/bot-traffic-report-2016.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.ll.mit.edu/r-d/datasets
https://www.ll.mit.edu/r-d/datasets

35

J. (2000, August). Modelling Ranunculus presence in the Rivers test and

Itchen using artificial neural networks. In Proceedings of international

conference on geocomputation, Greenwich, UK.

Denning, D. (1987). An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, SE-13(2), 222-232. doi:10.1109/tse.1987.232894

Dias, L. P., Cerqueira, J. J., Assis, K. D., & Almeida, R. C. (2017). Using artificial

neural network in intrusion detection systems to computer networks. 2017 9th

Computer Science and Electronic Engineering (CEEC).

doi:10.1109/ceec.2017.8101615

Giovinazzo, W. A. (2017, May 11). Overfitting / Underfitting – How Well Does Your

Model Fit? Retrieved from

https://meditationsonbianddatascience.com/2017/05/11/overfitting-

underfitting-how-well-does-your-model-fit/

Haykin, S. S. (1999). Neural networks : a comprehensive foundation.

HIDS (Host-Based Intrusion Detection System) - Bauman National Library. (n.d.).

Retrieved from https://en.bmstu.wiki/HIDS_(Host-

Based_Intrusion_Detection_System)

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science

& Engineering, 9(3), 90-95. doi:10.1109/mcse.2007.55

JEFTOVIC, M. A. (2018). MANAGING MISSION - CRITICAL DOMAINS AND DNS:

Demystifying nameservers, dns, and domain names. S.l.: PACKT

PUBLISHING LIMITED.

KDD Cup 1999 Data. (1999, October 28). Retrieved from

36

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Ketkar, N. (2017). Introduction to Theano. Deep Learning with Python, 35-61.

doi:10.1007/978-1-4842-2766-4_4Keras | TensorFlow. (n.d.). Retrieved from

https://www.tensorflow.org/guide/keras

Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2016). Intrusion Detection

in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset.

IEEE Communications Surveys & Tutorials, 18(1), 184-208.

doi:10.1109/comst.2015.2402161

Lakshmi, I. B., Lakshmi, B. S., & Karthikeyan, R. (2014). Detection and prevention of

Impersonation attack in wireless networks. International journal of advanced

research in computer science & technology, 2(1), 267-270.

Malhotra, A. (2018, February 1). Tutorial on Feedforward Neural Network ? Part 1 ?

Akanksha Malhotra ? Medium. Retrieved from

https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-

network-part-1-659eeff574c3

Model Fit: Underfitting vs. Overfitting - Amazon Machine Learning. (n.d.). Retrieved

from https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-

underfitting-vs-overfitting.html

NumPy — NumPy. (n.d.). Retrieved from http://www.numpy.org/

OWASP Top Ten 2017 Project - OWASP. (n.d.). Retrieved from

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

Protić, D. (2018). Review of KDD Cup '99, NSL-KDD and Kyoto 2006+ datasets.

Vojnotehnicki glasnik, 66(3), 580-596. doi:10.5937/vojtehg66-16670

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.tensorflow.org/guide/keras
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
https://medium.com/@akankshamalhotra24/tutorial-on-feedforward-neural-network-part-1-659eeff574c3
http://www.numpy.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project

37

Regan, R., & Manickam, J. M. (2017). A Survey on Impersonation Attack in Wireless

Networks. International Journal of Security and Its Applications, 11(5), 39-48.

doi:10.14257/ijsia.2017.11.5.04

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of

Checkers. IBM Journal of Research and Development, 3(3), 210-229.

doi:10.1147/rd.33.0210

Scientific Computing Tools for Python — SciPy.org. (n.d.). Retrieved from

https://scipy.org/about.html

Seide, F., & Agarwal, A. (2016, August). CNTK: Microsoft's open-source deep-

learning toolkit. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (pp. 2135-2135).

ACM.

Shah, B., & H Trivedi, B. (2012). Artificial Neural Network based Intrusion Detection

System: A Survey. International Journal of Computer Applications, 39(6), 13-

18. doi:10.5120/4823-7074

Sommer, R., & Paxson, V. (2010). Outside the Closed World: On Using Machine

Learning for Network Intrusion Detection. 2010 IEEE Symposium on Security

and Privacy. doi:10.1109/sp.2010.25

TensorFlow. (n.d.). Retrieved from https://www.tensorflow.org/

Thanthrige, U. S., Samarabandu, J., & Wang, X. (2016). Machine learning techniques

for intrusion detection on public dataset. 2016 IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE).

doi:10.1109/ccece.2016.7726677

https://www.tensorflow.org/

38

Thing, V. L. (2017). IEEE 802.11 Network Anomaly Detection and Attack

Classification: A Deep Learning Approach. 2017 IEEE Wireless

Communications and Networking Conference (WCNC).

doi:10.1109/wcnc.2017.7925567

Understanding Denial-of-Service Attacks | US-CERT. (n.d.). Retrieved from

https://www.us-cert.gov/ncas/tips/ST04-015

Usha, M., & Kavitha, P. (2016). Anomaly based intrusion detection for 802.11

networks with optimal features using SVM classifier. Wireless Networks,

23(8), 2431-2446. doi:10.1007/s11276-016-1300-5

Van der Aalst, W. M., Rubin, V., Verbeek, H. M., Van Dongen, B. F., Kindler, E., &

Günther, C. W. (2008). Process mining: a two-step approach to balance

between underfitting and overfitting. Software & Systems Modeling, 9(1), 87-

111. doi:10.1007/s10270-008-0106-z

WhiteHat Security 9th Website Security Statistics Report. (2010, May 6). Retrieved

from https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-

website-security-statistics-report

Zeifman, I. (2017). Bot traffic report 2016. Retrieved from

https://www.incapsula.com/blog/bot-traffic-report-2016.html

https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report
https://www.slideshare.net/jeremiahgrossman/whitehat-security-9th-website-security-statistics-report
https://www.incapsula.com/blog/bot-traffic-report-2016.html

39

