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Υλοποίηση του Histogram of Oriented Gradients(HOG)

αλγορίθμου σε μια επαναπρογραμματίσιμη πλατφόρμα

ολοκληρωμένου κυκλώματος

Περίληψη

Ο Histogram of Oriented Gradients είναι ένας από τους πιο δημοφιλείς αλγορίθμους

όρασης υπολογιστών που χρησιμοποιούνται στην αναγνώριση αντικειμένων και στην

συγκεκριμένη περίπτωση στην αναγνώριση πεζών. Παρουσιάζουμε μία υλοποίηση του

αλγορίθμου σε μία ενσωματωμένη πλατφόρμα, συγκεκριμένα στην πλακέτα ανάπτυξης

Zedboard η οποία περιέχει το ολοκληρωμένο κύκλωμα Xilinx Zynq R©-7000 All Pro-

grammable το οποίο αποτελείται από ένα διπύρινο επεξεργαστικό σύστημα ARM-A9

καθώς και επαναπρογραμματίσιμη λογική (FPGA). Η πλατφόρμα αυτή μας έδωσε την

δυνατότητα να εκτελέσουμε ταυτόχρονα διαφοερικά μέρη του αλγορίθμου τόσο στον

επεξεργαστή, όσο και στην FPGA. Η υλοποίησή μας πετυχαίνει επιτάχυνση (speedup)

ίση με 384x σε σύγκριση με την single-threaded υλοποίηση στον ARM επιτυγχάνο-

ντας απόδοση πραγματικού χρόνου έχοντας την δυνατότητα να επεξεργαστεί 10 εικόνες

VGA ανάλυσης (640 X 480 pixels) το δευτερόλεπτο με ελάχιστη μείωση στην ακρίβεια

ανίχνευσης.



An Implementation of the Histogram of Oriented

Gradients (HOG) Algorithm on a Reconfigurable

System on Chip

Abstract

The Histogram of Oriented Gradients is one of the most popular computer vision

algorithms used for object detection and in our case for pedestrian detection. We

present a implementation of the algorithm on an embedded platform,namely the Zed-

board development board which contains the Xilinx Zynq R©-7000 All Programmable

SoC that is comprised of both a Dual ARM-A9 processing system and an FPGA

programmable logic. This platform gave us the ability to execute different parts

of the algorithm simultaneously both on the CPU and the FPGA. Our FPGA im-

plementation achieves a speedup of 384 (compared with a single-threaded software

implementation in ARM) and achieves real-time pedestrian detection at 10 VGA

(640 X 480 pixels) images per second with very small decrease in detection accu-

racy.

Copyright c© 2018 by Katsaros Nikolaos.
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Chapter 1

Introduction

Pedestrian detection is an integral part of any video surveillance system with nu-

merous applications in numerous computer vision fields. For example, pedestrian

detection is widely deployed in the automotive sector where it is involved in many

ADAS(Advanced driver-assistance systems) developed by car manufacturers. ADAS

comprises one or many subsystems that may provide information to the driver, thus

increasing her awareness of the situation around her and actuating vehicle subsys-

tems to prevent dangerous situations. Pedestrians represent a significant amount

of fatalities in road accidents. The integration of pedestrian detection algorithms

in ADAS, like the brake assistance system, is estimated to have reduced fatal and

serious injuries among pedestrians by 10% according to [1] . Therefore, it comes

as no surprise that pedestrian detection is one of the most important research top-

ics in computer vision. Needless to say that real world problems such as accident

avoidance systems require real-time processing capabilities.

Although various kind of methods for extracting feature data for pedestrian

detection system are proposed, HOG (Histogram of Oriented Gradients) proposed

N.Dalal and B.Triggs [2] has been proven to be one of the most effective ones. As

a result, we decided to implement a HOG-like detector while keeping in mind it’s

basic characteristics.

Furthermore, due to the parallelizable and deterministic nature of the algorithm,

using an embedded FPGA platform seemed like a rational solution. In addition,

another great advantage of these platforms compared to GPUs or multicore CPUs

1
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is the significantly lower power consumption. Hence, it is more feasible to embed

them on road vehicles.

1.1 Contributions

In this thesis, a thorough algorithmic and architectural exploration is performed.

Several approximation techniques are proposed which result in no significant loss of

the overall accuracy. Furthermore, since machine learning is a integral part of this

algorithm, some research into its properties is performed and a modification of its

parameters is introduced. Finally, contrary to the usual RTL implementations, a

high level synthesis approach is examined proving that this method can also yield

real-time results.

The initial implementation of the algorithm executed in the ARM processor of

the Zedboard even with the -O3 optimization flag needed 30 seconds for one image,

while our final embedded system is 384 times faster compromising only less that 1%

of the overall accuracy.

1.2 Thesis structure

This thesis is divided into 7 main chapters, each one those includes smaller sections

and possibly subsections.

Chapter 2 provides a background of the algorithm. All the steps are described

at length, from the point that an image is captured until one that the algorithm

classifies whether the image contains a pedestrian or not.

Chapter 3 provides information necessary for one to understand the development

process and the hardware used in this project. At first, it describes the architecture

and operation of FPGAs in general and then focuses on the technical character-

istics of the ZedBoard, the board used for development. Two different hardware

development approaches are compared regarding their design time and application

performance.

Chapter 4 begins with a brief overview of the initial implementation and several
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modifications compared to the original one are illustrated. Moreover, each optimiza-

tion step is analyzed and their impact on performance and accuracy are examined.

In Chapter 5 the hardware implementation is presented along with several opti-

mization steps that aim to increase the throughput of the design.

Chapter 6 is an overview of the embedded system in general. It describes how

the implemented hardware is used as a peripheral of the embedded operating system

as well as the embedded application flow.

Chapter 7 mentions some related works and their contributions.

Finally, Chapter 8 concludes the thesis, stating our contributions and the future

work.



Chapter 2

Histogram of Oriented Gradients

The Histogram of Oriented Gradients is a computer vision algorithm widely used

for object detection. The input of the algorithm is an image or a video frame and

the output is a prediction of whether and where this object exists in the image or

frame.

2.1 HOG flow

The HOG detector, shown in Fig. 2.2, is a sliding window algorithm. This means

that for any given image a detection window of 64 pixels horizontally and 128 verti-

cally is moved following a specific pattern at all locations and scales and a descriptor

is computed for this window. The window scans the input image with a stride of 32

pixels horizontally and 64 pixels vertically as shown in Fig. 2.1.

4



2.1. HOG flow 5

Figure 2.1: Sliding windows inside a frame

For each window a pre-trained classifier is used to assign a matching score to

the descriptor. The classifier used is a linear SVM classifier and the descriptor is

based on histograms of gradient orientations. Nearby detections of the same object

are common with sliding-window frameworks and are typically merged using non-

maxima suppression approaches in order to yield bounding boxes with confidence

levels for the final detections.

Figure 2.2: Overview of the HOG algorithm [3]

Firstly the image is padded and a gamma normalization is applied. Padding

means that extra rows and columns of pixels are added to the image. This helps the

algorithm deal with the case when a person is not fully contained inside the image.

The gamma normalization has been proven to improve performance for pedestrian

detection but it may decrease performance for other object classes. To compute the
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gamma correction the color for each channel is replaced by its square root.

2.2 Gradient vector of pixel magnitudes

An image gradient is a directional change in the intensity or color in an image. The

gradient of the image is one of the fundamental building blocks in image processing.

Mathematically, the gradient of a two-variable function (here the image intensity

function) at each image point is a 2D vector with the components given by the

derivatives in the horizontal and vertical directions. At each image point, the gra-

dient vector points in the direction of largest possible intensity increase, and the

length of the gradient vector corresponds to the rate of change in that direction.

Figure 2.3: Gradient magnitudes and angle representation

In Fig. 2.3 the gradient magnitudes are represented in black and white, black

representing higher values, and its corresponding angle is represented by blue arrows.

Gradient orientations and magnitude are obtained for each pixel from the pre-

processed image. In RGB images the color with the maximum magnitude value(and

its corresponding orientation) is chosen. The gradient of each pixel is computed by

convoluting it with the 1-D centered kernel [-1 0 1] by rows and columns.

Gx = Mx ∗ I, Mx = [−1 0 1] (2.2.1)

Gy = My ∗ I, My = [−1 0 1]T (2.2.2)



2.3. Histogram extraction 7

|G(x, y)| =
√
Gx(x, y)2 + Gy(x, y)2 (2.2.3)

Take for instance the array in Fig. 2.4. For I = (1, 1) the horizontal gradient

would be Gx = pixel(1, 2) − pixel(1, 0) and the vertical one Gy = pixel(2, 1) −

pixel(0, 1).

Figure 2.4: Pixel array representation

The gradient orientation angle can be calculated as:

tan((x, y)) =
Gy(x, y)

Gx(x, y)
(2.2.4)

The Fig 2.5 shows the effect of applying the gradient function in a random part

of an input image.

Figure 2.5: Pedestrian gradient example from the INRIA dataset [4].

2.3 Histogram extraction

A histogram is an accurate representation of the distribution of numerical data. It is

an estimate of the probability distribution of a continuous variable. Histograms give

a rough sense of the density of the underlying distribution of the data, and often
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for density estimation: estimating the probability density function of the underlying

variable.

The detection window is divided into 8x16 rectangular local spatial regions called

cells. Each cell consists of 8x8 pixels which are then discretized into 9 angular bins

according to their gradient orientation. The bin of each pixel is computed as :

bin = (arctan
Gy

Gx
)÷ 20◦ (2.3.5)

Each pixel contributes a weighted vote for its corresponding angular bin, the

vote is a function of the gradient magnitude at the pixel. This way the information

is compressed to a 9-dimensional space per cell. The angular histogram bins are

evenly spaced over 0◦- 180◦.

For example, let Gy = 30 and Gx = 70. Therefore, the bin would be:

(arctan
30

70
)÷ 20 = 23.2◦ ÷ 20◦ = 1

In addition, to reduce aliasing along spatial dimensions, votes are interpolated

trilinearly between the neighbouring bin centres in both orientation and position.

Let h(x) denote the value of the histogram for the bin centred at x.Let w at the

3-D point x = [x, y, z] be the weight to be interpolated. Let x1 and x2 be the two

corner vectors of the histogram cube containing x, where in each component x1 <=

x < x2. Assume that the bandwidth of the histogram along the x, y and z axis is

given by b = [bx, by, bz]. Trilinear interpolation distributes the weight w to the 8

surrounding bin centres as follows:
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h(x1, y1, z1)← h(x1, y1, z1) + w
(

1− x− x1

bx

)(
1− y − y1

by

)(
1− z − z1

bz

)
h(x1, y1, z2)← h(x1, y1, z2) + w

(
1− x− x1

bx

)(
1− y − y1

by

) (z − z1

bz

)
h(x1, y2, z1)← h(x1, y2, z1) + w

(
1− x− x1

bx

) (y − y1

by

)(
1− z − z1

bz

)
h(x2, y1, z1)← h(x2, y1, z1) + w

(x− x1

bx

)(
1− y − y1

by

)(
1− z − z1

bz

)
h(x1, y2, z2)← h(x1, y2, z2) + w

(
1− x− x1

bx

) (y − y1

by

) (z − z1

bz

)
h(x2, y1, z2)← h(x2, y1, z2) + w

(x− x1

bx

)(
1− y − y1

by

) (z − z1

bz

)
h(x2, y2, z1)← h(x2, y2, z1) + w

(x− x1

bx

) (y − y1

by

)(
1− z − z1

bz

)
h(x2, y2, z2)← h(x2, y2, z2) + w

(x− x1

bx

) (y − y1

by

) (z − z1

bz

)

Figure 2.6: The concatenated HOG descriptor

The HOG descriptor is represented by a concatenation of all these blocks as it

can be seen in Fig 2.6. In fact, blocks overlap with each other so that each cell

response appears several times in the final feature vector. The default block stride

is 8 pixels (1 cell), resulting in a fourfold coverage of each cell. To summarize, as

shown in Fig. 2.7 each detection window is represented by 7x15 blocks. The number

of horizontal blocks is calculated as

Window Width

Block Stride
− 1



2.4. Histogram Normalization 10

and the number of vertical blocks as

Window Height

Block Stride
− 1

, a block consisting of 2x2 cells, a cell is represented by a 9-bin histogram, giving a

total of (7x15)x(2x2)x9 = 3780 features.

Figure 2.7: Division of the detection window into blocks and cells

2.4 Histogram Normalization

The next step of the HOG algorithm is to normalize the histogram descriptors before

SVM classification. Normalization refers to adjusting values measured on different

scales to a common scale, often prior to averaging. In more complicated cases, nor-

malization may refer to more sophisticated adjustments where the intention is to

bring the entire probability distributions of adjusted values into alignment. Gradient

strengths may vary over a wide range due to shadows, local variations in illumina-

tion and foreground-background contrast. Therefore local contrast normalization

is essential for good performance. For this purpose, groups of 2x2 adjacent cells

are considered as spatial regions called blocks. Each block is represented by a con-

catenation of the corresponding four cell histograms, resulting in a 36-dimensional
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feature vector that is normalized to unit length, using the L2 norm. The following

algorithm implements Histogram Normalization for one block.

Algorithm 1 L2-Hys

1: procedure Normalization(v)

2: sum =
∑35

i=0 v[i]2

3: for each 36-D feature vector do

4: v[i] = min(( v[i]√
sum+ε2

), 0.2)

5: end for

6: sum =
∑35

i=0 v[i]2

7: for each 36-D feature vector do

8: v[i] = ( v[i]√
sum+ε2

)

9: end for

10: Return sum

11: end procedure

2.5 Classification

In machine learning, Support Vector Machines (SVMs) are supervised learning mod-

els used for classification and regression. For binary classification, an SVM train-

ing algorithm builds a model that classifies new examples making it a robust non-

probabilistic classifier. An SVM model is a representation of the examples as points

in space, mapped so that the examples of the separate classes are divided by the

largest possible margin. New examples are then mapped into that same space and

predicted to belong to a category based on which side of the gap they are assigned.

The generated HOG descriptor is used to categorize the detection window into

one of the predefined classes, pedestrian or non-pedestrian. For this classification

step, Dalal&Triggs employ a linear support vector machine (SVM) which is both

accurate and efficient in terms of performance. The SVM predictor hypothesis

equation is:

y(x) = wT ∗ x + b
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Figure 2.8: Linearly separable data points that belong to one of two classes, red and

blue

The variable w represents the weight vector, x is the is the value of the input

descriptor and is the bias. In case of HOG, we use the SVMlight toolkit [5] and the

classifier is trained with the 3780-dimensional descriptor that is generated for 80%

of the Daimler dataset [6] images resulting in 12528 positive (pedestrian) and 53952

negative (non-pedestrian) samples. The rest 20% of the dataset are used to test the

accuracy of the system.

2.6 Non-maximal suppression

Figure 2.9: Non-maximal suppression reduces the effect of multiple detections of the

same pedestrian
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Invoking the SVM classifier across successive blocks and scales in the image may yield

multiple detections for the same pedestrian (left of Fig. 2.9). Multiple overlapping

detections need to be fused together. This is achieved using a mean shift algorithm

in 3D position/scale space.

More specifically, all pedestrian detections are stored in a data structure along

with their classification score as well as their coordinates. The Non-Maximal Sup-

pression (NMS) algorithm scans this structure to find detections with more that

70% overlap. Detections with the lower score is removed from the structure. At the

end of this process the output looks like the right of Fig. 2.9.



Chapter 3

Target Platform

3.1 Field Programmable Gate Arrays (FPGAs)

FPGAs are hardware-programmable semiconductor devices that consist of a ma-

trix of Configurable Logic Blocks (CLBs) connected through programmable inter-

connects. As opposed to Application Specific Integrated Circuits (ASICs), where

the device is custom built for the particular design, FPGAs can be programmed

to the desired application or functionality requirements. Although One-Time Pro-

grammable (OTP) FPGAs are available, the dominant type is SRAM-based which

can be reprogrammed multiple times as the design evolves. Due to their programma-

bility, FPGAs are ideal for a large variety of markets such as ASIC prototyping,

Aerospace and Defense, Automotive, Communications, High Performance Comput-

ing, Industrial, Medical and Video and Image Processing.

3.2 Zedboard

The ZedBoard, shown in Fig. 3.1, is an evaluation and development board based on

the Xilinx Zynq-7000 Extensible Processing Platform. As it is evident from Fig. 3.2

it combines a dual Cortex-A9 Processing System (PS) with Series-7 Programmable

Logic (PL) cells, and therefore the Zynq-7000 EPP can be targeted for broad use in

many applications. The Programmable Logic (PL) section is ideal for implementing

high-speed logic, arithmetic and data flow subsystems, while the Processing System

14
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(PS) supports software routines and/or operating systems, meaning that the overall

functionality of any designed system can be appropriately partitioned between hard-

ware and software. Links between the PL and PS are made using industry standard

Advanced eXtensible Interface (AXI) Connections.

Figure 3.1: Overview of the Zedboard evaluation and development board

For the needs of this project, the following parts were used:

• Zynq7020 FPGA fabric:

7 Series PL Equivalent Artix-7

Programmable Logic Cells 85K Logic Cells

Look-Up Tables (LUTs) 53,200

Flip-Flops 106400

Extensible Block RAM (# 36 Kb

Blocks)

4.9Mb(140)

DSP Slices 220

• DDR memory:The ZedBoard includes two DDR3 memory components cre-

ating a 32-bit interface. The DDR3 is connected to the hard memory controller
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Figure 3.2: System architecture‘s block diagram for Zynq-7000 AP SoC

in the Processor Subsystem (PS).The multi-protocol DDR memory controller

is configured for 32-bit wide accesses to a 512 MB address space. The PS

incorporates both the DDR controller and the associated PHY, including its

own set of dedicated I/Os.

• SD Card Port: The Zynq PS SD/SDIO peripheral controls communication

with the ZedBoard SD Card The SD card can be used for non-volatile external

memory storage as well as booting the Zynq EPP. Note: To use the SD Card,

JP6 must be shorted.

• USB OTG port: ZedBoard implements one of the two available PS USB

OTG interfaces. We use the UART port as a serial communication port be-

tween the zedboard and a laptop from which we execute commands to the

linux OS on the zedboard. The second OTG port is used to connect the USB

webcam to the zedboard.

• VGA port:The ZedBoard also allows 12-bit color video output through a

VGA connector as shown in .Fig 3.3.

• Ethernet port: The ZedBoard implements a 10/100/1000 Ethernet port for

network connection, giving us the opportunity to remotely control our system

with ssh and sftp.
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Figure 3.3: Zedboard’s VGA port

3.3 FPGA hardware development

Two of the most common methodologies to design hardware circuits are the follow-

ing:

• Register-transfer level: In digital circuit design, register-transfer level (RTL)

is a design abstraction which models a synchronous digital circuit in terms of

the flow of digital signals (data) between hardware registers, and the logical

operations performed on those signals. Register-transfer-level abstraction is

used in hardware description languages (HDLs) like Verilog and VHDL to

create high-level representations of a circuit, from which lower-level represen-

tations and ultimately actual wiring can be derived. Design at the RTL level

is typical practice in modern digital design

• High-level synthesis: High-level synthesis (HLS) is an automated design

process that interprets an algorithmic description of a desired behavior and

creates digital hardware that implements that behavior. Synthesis begins with

a high-level specification of the problem. As shown in Fig. 3.4, the code is an-

alyzed, architecturally constrained, and scheduled to create a register-transfer

level (RTL) hardware description language (HDL), which is then in turn com-

monly synthesized to the gate level by the use of a logic synthesis tool. The

goal of HLS is to let hardware designers efficiently build and verify hardware,
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by giving them better control over optimization of their design architecture,

and through the nature of allowing the designer to describe the design at a

higher level of abstraction while the tool does the RTL implementation.

Figure 3.4: Vivado HLS Overview

Fig. 3.5 shows a comparison regarding the design time and the performance

achieved in different platforms. It is clear that HLS tools allow the developers to

achieve high good standards of performance with only a fraction of the time needed

for the development of a hardware project.
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Figure 3.5: Design Time vs Application Performance for different platforms



Chapter 4

HOG Algorithmic Development

and Optimization

Chapter 2 presented the original HOG algorithm [2]. However, this algorithm cannot

easily achieve real-time performance in an embedded platform, even with hardware

acceleration, owing to its high computational complexity. This chapter presents a

number of algorithm-level optimizations which collectively aim at approximating the

original HOG algorithm, while at the same time, seek to limit the adverse impact

of these optimizations on detection accuracy.

Such optimizations are possible because for some applications (like HOG) not

all computations and not all data are equally critical, requiring to be performed or

maintained at 100% accuracy or correctness. We have the opportunity to trade-off

quality of output for significant improvements in performance. For such applications,

it may be possible to only approximate the final output (or part of it), rather than

computing the exact result. The development outlined in this chapter took place in

a laptop with an Intel R© CoreTM i7-4710MQ CPU running at 2.5Ghz x 8, with 6MB

LLC Cache and 8GB DDR3. The operating system is an Ubuntu 16.04 LTS and

the compiler used is the gcc-5.4.0 with the -O3 optimization flag enabled. Fig. 4.1

shows the contribution to execution time of each major step of the HOG algorithm.

20
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Figure 4.1: HOG profiling in an x86-64 CPU

Fig. 4.1 illustrates the results of a profiling that was performed on the algorithm.

It became apparent that the Histogram consumes almost 95% of the total execution

time. Consequently all our efforts focused on reducing the cost of this function.

By applying a number of algorithmic approximations, we obtained a collective

speedup of 7x (in the x86-64 platform) compared with the original implementation.

Some of these approximations were useful mostly for the hardware implementation

of HOG. The following sections detail the optimization steps we followed and their

impact on detection accuracy.

In table 4.1 it is outlined what are considered to be True Positive (TP), False

Positive(FP), True Negative(TN) and False Negative(FN) detections. The accuracy

of the system is computed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.0.1)
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PREDICTION REALITY

Pedestrian Non-pedestrian

Pedestrian True Positive False Positive

Non-pedestrian False Negative True Negative

Table 4.1: Results of Binary classification

As mentioned in Section 2.5, 20% of the Daimler dataset are used to test the

accuracy of the system. That means, that there are 3132 pedestrian images and

13488 non-pedestrian ones. Note that after each optimization the output HOG

descriptor is altered. Therefore, the SVM model had to be retrained in order to be

in sync with the modifications of each step.

4.1 Histogram Binning

First of all, the initial algorithm used the gamma correction technique, a nonlinear

operation (Pixel = Pixelγ), used to encode and decode luminance of a pixel. How-

ever, we did not apply this method to the input image since it does not contribute

significantly to the overall algorithm accuracy and more specifically according to

Dalal & Triggs only by 1% 10−4 False Positives Per Window (FPPW).

An important source of complexity (esp. for hardware implementation) is the

precise computation of complex functions (such as trigonometric functions or the

square root). It should be noted that the modifications of this section did not

lead to a performance improvement on the x86 platform. After the vertical(Gx)

and horizontal(Gy) gradients are computed for each pixel, their magnitudes are

calculated as the absolute value of their difference given by the equation mag =

|Gx−Gy| (instead of using the more expensive square root equation).

In addition, the computation of the arctan function to determine the bin in

which the pixel magnitude will be assigned is replaced by a variation of the method

proposed by S.Bauer [7]. We pre-compute (and store as constants) the values of

tan(angle) for angle = 20◦, angle = 40◦, angle = 60◦, and angle = 80◦. The

quadrant of each pixel is computed and an angular quantization is performed into



4.1. Histogram Binning 23

9 evenly spaced orientation bins over 0◦-180◦as shown in Fig. 4.2. This way the

computation of arctan is replaced by simple integer multiplications.

Figure 4.2: Angular quantization into 9 evenly spaced orientation bins over 0◦-

180◦(unsigned gradient).

The angular quantization method is outlined in the following pseudo-code. As

it can be seen, the first step is to determine the quadrant where the angle between

Gy and Gx lies. After that, using the pre-computed values of tan(angle), the bin

in which the vote function will be added is defined.



4.1. Histogram Binning 24

Algorithm 2 Histogram Binning

1: procedure Angular Quantization(Gx,Gy)

2: Input = Gx,Gy

3: /*Quadrants I & III*/

4: if (Gx > 0 and Gy > 0) or (Gx < 0 and Gy < 0) then

5: if (|Gy| < tan(20◦) ∗ |Gx|) then

6: bin = 1

7: else if (|Gy| < tan(40◦) ∗ |Gx|) then

8: bin = 2

9: else if (|Gy| < tan(60◦) ∗ |Gx|) then

10: bin = 3

11: else if (|Gy| < tan(80◦) ∗ |Gx|) then

12: bin = 4

13: else

14: bin = 5

15: end if

16: /*Quadrants II & IV*/

17: else

18: if (|Gy| < tan(20◦) ∗ |Gx|) then

19: bin = 5

20: else if (|Gy| < tan(40◦) ∗ |Gx|) then

21: bin = 6

22: else if (|Gy| < tan(60◦) ∗ |Gx|) then

23: bin = 7

24: else if (|Gy| < tan(80◦) ∗ |Gx|) then

25: bin = 8

26: else

27: bin = 9

28: end if

29: end if

30: Return bin

31: end procedure
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4.2 RGB to Grayscale

First of all, RGB images require 3 times the resources that grayscale ones do. Al-

though this doensn’t immediately affect the software implementation, when it comes

to an FPGA, resources are of the essence. Furthermore, it also comes with a com-

putational cost, since in order to extract the gradient of each pixel, the maximum of

the gradient values of each color should be computed.In addition, as shown by Dalal

& Triggs moving from RGB to grayscale colors reduces the accuracy only by 1,5%

at 10−4 FPPW. Due to those reasons we decided to transition from RGB images to

grayscale ones.

4.3 Bin Interpolation

In chapter 2.3 it is shown that in order to reduce aliasing in the initial histogram

implementation, gradient vector magnitudes are interpolated tri-linearly between

the neighbouring bin centres. For instance, if the angle of a pixel was 22 degrees,

had it not been for the interpolation, the whole of its magnitude would have been

added to the second bin. Using interpolation, 25% of its magnitude will contribute

to the 1st bin and the rest 75 to the second one. In contrast, if a pixel had an

angle of 27 degrees, the 75% would be added to the second bin, while 25% of its

magnitude would contribute to the third bin.

Our experimentation has shown in Fig. 4.1 that the interpolation is responsible

for 31.6% of the total computation time. Therefore, we decided not to interpolate

the vote function of each pixel to its neighbouring bins. This action impact on the

performance and the accuracy of the system can be seen in Fig. 4.3.



4.4. Block Stride 26

Figure 4.3: Accuracy vs Performance for the first two optimization steps

4.4 Block Stride

Even by removing the interpolation, the Histogram function still dominates the com-

putation time. That’s due to the fact that the number of iterations per pixel is much

higher than the number of the input, mainly since the algorithm uses overlapping

blocks in a detection window. The main focus of this step is to determine the effect

of the block stride on both the accuracy and the performance of the algorithm.The

results indicate that if we eliminate the overlap between the blocks,while the accu-

racy of the algorithm is not significantly impacted, we have a serious performance

gain.

After this modification, each detection window consists of 4 horizontal blocks

and 8 vertical ones, since the block stride increased to 16 pixels (2 x cell size). In

addition, the histogram vector size decreased to 1152 (4x8x2x2x9). It is clear that

not only was the computational cost reduced, but the memory requirements too, an

important aspect when it comes to low-cost FPGA implementation.
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Figure 4.4: Block stride change visualization in a detection window

Figure 4.5: Accuracy vs Performance for the first three optimization steps
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4.5 Cell column skip

So far, the classification scores between the pedestrian and non-pedestrian samples

differ significantly. This is mainly due to the fact that the human shape leads to

high magnitude values in specific regions of the detection window. As a result, the

HOG descriptor of positive and negative samples follow different patterns. Based on

this fact, we wanted to prove that using only alternate pixels, it would not lead to

significant miss-classified results but it would rather just decrease the classification

score margin between a pedestrian and non-pedestrian sample.

For our implementation only the odd columns of each cell contribute to the HOG

descriptor as shown in Fig. 4.6.

Figure 4.6: Overview of a cell’s pixels used
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Figure 4.7: Accuracy vs Performance for the first four optimization steps

The effect of this approximation on both the accuracy and the performance of

our implementation can be seen in Fig. 4.7

4.6 SVM parameterization

As mentioned in Sec. 2.5, it is clear that the label distributions are 12528 positive

(pedestrian) and 53952 negative (non-pedestrian). Moreover, it is also clear that

the class balance will be very skewed, with the negative samples outnumbering the

positives leading to results as shown in Fig. 4.8 where the true positive accuracy

is lower than the true negative accuracy. In addition, for most applications of

pedestrian detection, we prefer a larger number of correctly identified pedestrians

(true positives), and we, thus, adjust the classifier in favor of detecting pedestrians

more easily.

A well-known approach for improving classifier performance in the face of such

skewed class distributions is to incorporate the notion of cost-sensitive learning.

The SVMlight toolkit comes with built-in techniques estimating cost-sensitive models
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directly. Morik et al. [8] introduced a notion of unsymmetric cost factors in SVM

learning. This means associating different cost penalties with false positives and

false negatives. After experimenting with accuracy analysis, we set the parameter

cost ratio = 2.3 for the positive samples. Values below 2.3 resulted in a high number

of false negatives, while higher ones increased the number of false positives. It should

be noted that this value covers our needs for this dataset. A different dataset, may

require a lightly different value of cost ratio to optimize true positive detection.

Fig. 4.9 shows a large improvement of true positives at the expense of a limited

reduction of true negatives.

Figure 4.8: Positive and Negative accuracy for each optimization step



4.6. SVM parameterization 31

Figure 4.9: Positive and Negative accuracy for each optimization step after the

cost ratio parameter modification

Figure 4.10: Initial SVM’s detection performance

A visual representation of the impact of this change on the accuracy of the

algorithm, is shown in Figs. 4.10 and 4.11. The graphs depict the plane for the two

different configurations. All the samples to the left of the vertical line are classified

as non-pedestrians. While initially a large number of pedestrians is misclassified,

the improved version greatly improves classification accuracy.
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Figure 4.11: SVM’s detection performance after the modification

4.7 Histogram Normalization

This algorithmic optimization targets mainly efficient hardware implementations by

using a faster and more resource efficient histogram normalization method. Instead

of using the L2-Hys norm which is highly expensive cycle and resources wise, a

method is proposed that quantizes the values of each block into 8 categories based

on their average value. However, this approximation technique has 10 of the 16620

test samples accuracy loss in comparison to the last approximation in Sec. 4.6.

normalized value =



0.4, for value > 2 · block average

0.35, for value > 7 · block average/4

0.3, for value > 6 · block average/4

0.25, for value > 5 · block average/4

0.2, for value > block average

0.15, for value > 3 · block average/4

0.1, for value > 2 · block average/4

0.05, for value > 1 · block average/4

0, else
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Figure 4.12: Small scale example of the quantized normalization method



Chapter 5

Hardware Implementation

The original software implementation of the HOG algorithm is written in single-

threaded C and targets execution on general purpose CPU platforms such as x86

or ARM. The objective of this chapter is to gradually improve the performance of

the algorithm in a hardware accelerated platform (Zedboard) by applying a set of

optimizations. Some of these optimizations trade-off accuracy and performance as

was explained in chapter 4, whereas some optimizations exploit parallelism (at all

levels of the algorithm) to improve throughput.

All of the above mentioned parts of the algorithm except for the image downscale

and the non-maximal suppression are implemented on the Zedboard’s FPGA. More

specifically, each accelerator execution computes the HOG descriptor and the clas-

sification result for a detection window. Thus, the accelerator is invoked multiple

times according to the number of detection windows in an image. In this chap-

ter several hardware implementation and optimization techniques will be presented.

For every optimization step, a diagram will be presented which shows the FPGA’s

utilization regarding several resources as well as a performance metric. The metric

used in this case is the number of detection windows that the hardware is able to

compute in a second, which is in fact a widely used metric for this type of appli-

cations. The synthesis report of the Vivado HLS tool provides the developers with

information about the latency in cycles for the implemented hardware. Therefore,

34
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the windows per second are computed as:

109 ns

latency ∗ period in ns

5.1 Initial Hardware implementation

The initial version of the hardware design is based on the previous optimization

steps. However, the programming style in FPGAs should be more stream like. In

contrast, CPU programs are generally written as discrete functions for each task.

Thus, while on the software there were two separate functions for the gradient and

histogram, on the hardware those functions were merged.

The two figures below show the change that was made. Initially, for each window

the horizontal and vertical gradients were computed and then stored into two sepa-

rate arrays. After that point the histogram kernel accessed those arrays in order to

compute the HOG descriptor.

Figure 5.1: Initial Hardware implementation

As it can be seen from Fig. 5.2, the gradients for each are now not stored in
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arrays but instead the are used in the calculation for the descriptor value for this

pixel. As a result, the gradient computation time is completely deducted from the

overall computation time leading to a considerably faster implementation.

Figure 5.2: Hardware stream-like implementation

In addition, the SVM classification is executed in the FPGA by extracting the

linear weights from the trained model into a lookup table. As a result, the prediction

is calculated by means of a dot product between the lookup table and the HOG

descriptor of each window. This calculation takes great advantage of the pipeline

techniques and and the parallelism in the FPGA. For instance, this calculation needs

102.510 us per window to execute on the Zedboard’s ARM, while it takes only 0.367

us on the FPGA with a clock of 190 MHz frequency.

Moreover, after careful examination, we used appropriate storage types (BRAM,

LUTRam etc.) for all the data types of the implementation. More specifically, three

categories of storage devices are used:

• Dual Port Block-RAMs: This type is preferred for arrays who are not

accessed more than two times in a clock cycle.
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• Partitioned LUT-RAMs: These are arrays who enable the implemented

hardware to access them more that two times in a clock cycle. The use of this

type of arrays is extensively described in Section 5.3.

• Read-Only Block-RAMs: As it is indicated by their name, this type of

arrays consist of constant elements. For instance, the SVM weights, since

they are not altered during the execution of the accelerator, are stored in this

type of array. In addition, the results of calculations between variables of

either limited range or known value are precalculated and stored as look-up

tables in this type of arrays.

Furthermore, it is clear that certain HLS pragmas are necessary so as the syn-

thesized hardware to be able to achieve a decent performance. On of the most

important HLS pragmas is the #pragma HLS pipeline which allows the oper-

ations in a loop to be implemented in a concurrent manner as shown in Fig 5.3.

In addition, another pragma that was used in certain parts of the code (mostly in

array initialization loops) is the #pragma HLS unroll, which instances multiple

copies of the loop body, so that Vivado HLS can exploit more parallelism among

these operations as shown in Fig 5.4 and in Fig 5.5.

Figure 5.3: Impact of the pipeline pragma on a loop’s latency
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Figure 5.4: Unrolled loop’s architecture

Figure 5.5: Impact of the unroll pragma on a loop’s latency

5.2 Fixed point arithmetic

One of the most used optimization techniques is the fixed point arithmetic. In this

case, prior to the computation the values are shifted by 10 bits to the left and

when the computation is over they are shifted back to the right. There was only a

slight loss of accuracy and more specifically, from the test-set of 16620 images, only

50 more in comparison to the float point computation were misclassified since this

technique distorts the value after the fourth decimal point. However, the benefits

in both latency and area are significant.
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Figure 5.6: Resources vs Latency for the first optimization step

5.3 Arbitrary precision and throughput

Arbitrary precision data types were used to specify the bit length of each variable

since they have several advantages. Most importantly, these types allow variables to

be defined as any arbitrary bit-width (6-bit, 12-bit, 143-bit etc.), while standard C

data types allow variables to be modeled on 8-bit boundaries (8-bit, 16-bit, 32-bit,

etc.).This allows the C code to accurately model, and be synthesized to, the exact

bit-widths required in hardware. For example, this ensures that if a multiplication

operation only requires 18-bits, the designer is not forced to use a standard 32-bit

C data-type, which would force the multiplier to be implemented with more than

one DSP48 macro in the FPGA.

This change didn’t have any benefits performance wise, but reduced the resources

needed as far as DPSs and LUT are concerned which is important in case multiple

accelerators are to instantiated in a single block design.

In addition, some optimizations were performed with the aim of increasing the

local memory bandwidth. The Vivado HLS tool provides some pragmas specifically
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for this cause. For instance, the #pragma HLS array partition which partitions

the arrays as shown in Fig 5.7 into smaller ones, effectively increasing the number

of load/store ports so as to increase the local memory throughput.

Vivado HLS provides three types of array partitioning:

• block:The original array is split into equally sized blocks of consecutive ele-

ments of the original array.

• cyclic:The original array is split into equally sized blocks interleaving the

elements of the original array.

• complete:The default operation is to split the array into its individual ele-

ments. This corresponds to implementing an array as a collection of registers

rather than as a memory.

Figure 5.7: Overview of the HLS partition pragma

Due to the specific memory patterns of this algorithm, the complete option is

used. More specifically, this pragma is used for the input image memory so as to be

able to be accessed 4 times simultaneously. For example, in order to calculate the

gradient of the first pixel one would need to access the pixels painted in yellow as

shown in Fig 5.8:
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Figure 5.8: Initial input image array

An overview of the partitioned array and its access pettern can be seen in Fig 5.9.

Figure 5.9: Partitioned image array

As a result, the iteration interval for gradient of each pixel is reduced at 1.

Nonetheless, the lookup tables utilization is considerably increased due to the more

logic needed for this action. As it can be seen from the graph, the block ram used

is reduced due to the fact that the input array is now stored in 18 distributed LUT

Rams.

The other HLS pragma used to increase the memory throughput is the #pragma

HLS dependence which is used to provide additional information that can over-

come loop-carry dependencies and allow loops to be pipelined (or pipelined with

lower intervals). Under certain circumstances, such as variable dependent array in-

dexing, or when an external requirement needs to be enforced (for example, two

inputs are never the same index), the dependence analysis might be too conserva-

tive. This pragma allows you to explicitly specify the dependence and resolve a false

dependence.

In this project, the dependence pragma is used on the variable in which the his-

togram bin is accumulated, in order to notify the synthesizer that actually no depen-

dence exists, taking full advantage of the pipeline’s capabilities. As a consequence,
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the iteration interval of this action is reduced from 2 to 1 cycles. Consequently, the

windows per second metric increases while there is a small difference in the resources

utilization.

Figure 5.10: Resources vs Latency for the second optimization step

5.4 Multiple accelerators

The previous optimization steps aimed to increase the memory throughput of the

accelerator and if possible reduce the hardware resources required. From this point,

since there are enough resources available, more than one accelerators are instanti-

ated. Particularly, due to the fact a detection window consists of 8 vertical and 4

horizontal blocks, the number of the instantiated accelerators is 8 as seen in Fig. 5.11.

Therefore, each accelerator computes 1/8 of each detection window which means 4

horizontal blocks of it. After that, each accelerator computes the 1/8 of the window

prediction and finally their classification values are added to have the overall result.
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Figure 5.11: Abstract overview of the implemented hardware input & output

In Fig. 5.12 an overview of a single accelerator’s flow is presented.

Figure 5.12: Abstract overview of the accelerator’s flow

It is obvious that by using multiple accelerators, the utilization overall linearly

increases while the latency decreases by the same factor, as it is evident in Fig 5.13.
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Figure 5.13: Resources vs Latency for the third optimization step

5.5 Parallel data processing

The next step would be to instantiate more accelerators in our implementation. A

way to improve the throughput would be for each accelerator to compute two rather

than four horizontal blocks. However, as it is clear from Fig. 5.13, the available LUTs

wouldn’t suffice. Therefore, we focused on increasing the accelerator’s throughput

by computing data in parallel.

First of all, the input image is stored into two separate arrays. As a result,

two instances of Histogram and Normalize functions can execute in parallel. This

means that each one of them computes the descriptor of two of the four horizontal

blocks of the detection window. Finally the execution time of the SVM function is

also reduced by a factor of 2, since it can compute the classification results of the

two normalized HOG descriptors in parallel. As shown in Fig. 5.14, although the

Read image still consumes the same amount of time, the computation part of the

accelerator(Histogram,Normalize,SVM) requires now half the cycles.
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Figure 5.14: Parallel data processing

Fig. 5.15 outlines the performance and the resource’s utilization after applying

the Parallel data processing inside the accelerator.

Figure 5.15: Resources vs Latency for the final optimization step
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5.6 Block design generation

After the C++ code is synthesized, the generated RTL is exported and 8 accelerators

are instantiated into the Vivado block design. Here is how an instance of the HOG

accelerator looks like in Fig. 5.16:

Figure 5.16: Overview of the accelerator’s IP ports

The port s axi CONTROL BUS is an AXI-4 Lite wrapper of the ap protocol

control signals of the accelerator so it can be controlled and monitored form the

embedded application. Obviously clock and reset signals are needed for the acceler-

ator to function. On the upper left corner is a AXI-4 Lite port s axi SPECS from

which the accelerator reads various information such as the position of the detection

window in the input image and also serves as the accelerator’s output where the

classification result is stored. The next port m axi INPUT IMAGE is the one

through which the accelerator accesses the memory where the input image is stored.

The full AXI protocol interface is used, since it can transfer data in bursts, thus

providing a higher throughput than the Lite. Finally, the interrupt port is not used.
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Figure 5.17: Overview of the block design

One AXI interconnect for the accelerators data is instantiated, since it can hold

up to 16 slave interfaces, which is exactly the number that was needed for this im-

plementation and it is connected to a High Performance(HP) port of the processing

system. Another memory interconnect is used for the control of each accelerator.

The output of the system is projected from a VGA monitor connected to the Zed-

board. Hence, a VGA controller was needed. In this design a Display controller by

Digilent is used, since it supports the VGA protocol. Basically, the display controller

accesses the output image data through a Video DMA and renders the image to a

VGA monitor. The system supports up to 4 separate clocks. In this case, a 180

MHz clock is used for the accelerators, while a 100 MHz one is used for the VGA

driver. After the design is validated, it is implemented into the PL fabric and the



5.6. Block design generation 48

bitstream file is exported.



Chapter 6

System Software Integration

6.1 Embedded Linux

An embedded operating system is an operating system for embedded computer

systems. This type of operating system is typically designed to be resource-efficient

and reliable. Resource efficiency comes at the cost of losing some functionality

or granularity that larger computer operating systems provide, including functions

which may not be used by the specialized applications they run.

In this case Petalinux OS was preferred since Xilinx provides a tool chain to

generate Linux kernel images, root file systems and kernel modules for ZYNQ like

embedded systems with programmable hardware(for different hardware designs in

the FPGA section). Using PetaLinux tool chain, we can easily build kernel and

modules for ZYNQ PS without using separate cross compilation tools. PetaLinux

tool can generate U-Boot files, First Stage Boot Loader(FSBL) and BOOT.BIN for

a specific hardware design. Same things can be done using Xilinx SDK. For this

project a Petalinux extracted linux kernel with an Ubuntu 16.04 rootfs is used.

Alongside the bitstream file, the Vivado tool exports also a Hardware Description

File (hdf) which is a Xilinx proprietary file format and contains information about

the block design. More specifically, memory map information about the implemented

hardware is provided, as well as internal connectivity information (incl interrupts,

clocks, . . . ) and external ports too. This is the initial information that is required

in order to build a Petalinux image. Additionally, the Petalinux kernel is modified
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so as to be able to boot from the SD card and to support a webcam. The latter is

done by enabling usb and uvc modules of the kernel.

As the last step, the operating system needs to be able to access the implemented

hardware. This is done by providing the Linux device tree with information about,

the addresses and the compatibility of the programmable logic(PL). For the needs

of this project the accelerators needed to be configured and controlled from the user

space. Linux provides a standard called UIO (User I/O) framework for developing

user-space-based device drivers. The UIO framework defines a small kernel-space

component that performs two key tasks:

• Indicate device memory regions to user space.

• Register for device interrupts and provide interrupt indication to user space.

The kernel-space UIO component then exposes the device via a set of sysfs

entries like /dev/uioXX. The user-space component searches for these entries, reads

the device address ranges and maps them to user space memory. The user-space

component can perform all device-management tasks including I/O from the device.

6.2 System Overview

Figure 6.1: System Overview
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The image above is an abstract representation of the implemented system on the

Zedboard FPGA. As it can be seen, the input is captured from the webcam con-

nected to the FPGA and the output is projected to a VGA monitor. An embedded

application is being executed on the Petalinux operating system running on the pro-

cessing system of the board. Finally, all the accelerators and the display controller

which are implemented on the programmable logic are being controlled from the

embedded application.

6.3 Embedded Application

All the image processing is performed using the OpenCV framework, which is a

library of programming functions mainly aimed at real-time computer vision appli-

cations. More specifically, it is used for the frame grab, the conversion from RGB

colorspace to grayscale as well as for the image downscale.

In order for the hardware to be able to access the data created from the software,

their physical address is needed. However, in user-space only virtual addresses can be

handled. Therefore, a mapping from a physical to a virtual memory was necessary.

This is performed via the mmap function.
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Figure 6.2: Application flow

Accelerator Initialization: The implemented hardware accelerators can be

initialized and controlled by the automatic generated drivers from the Vivado HLS.

Display Initialization: Here, parameters of the VGA driver are initialized, as

well as the physical address of the output image.

Frame grab: An frame is captured from the webcam connected to the Zedboard

and stored into the internal memory. In addition, the image is converted to grayscale

and a padding of 8 pixels per side is added.
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HOG: Two functions are executed here. The first is the resize function which

downscales the input image and the HOG controller which executes the accelerators

and computes the classification result. These two functions run in parallel using a

double buffering technique with the OpenMP framework taking full advantage of

the two available cores on the ARM. That means that while the first CPU controls

and monitors the hardware accelerators, the other one prepares the next downscaled

image and vice versa.

NMS: The non maximal suppression is computed here, which merges the bound-

ing boxes with an overlap of over 70%.

Draw bounding boxes: The detection windows alongside their scores and

detection scale are printed on the output image.

Send to VGA: This is the last step of the application where the output image

is rendered on the VGA monitor.

Figure 6.3: Time representation of the double buffering
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6.4 Performance Comparison

A profiling is performed in order to provide a performance analysis on each of the

software and hardware implementations on our embedded platform. For each imple-

mentation we measured the application’s computational time for the HOG descriptor

extraction as well as the SVM evaluation for one frame for 12 different scales. It

should be stated that all the implementations are compiled with the gcc compiler

with the -O3 optimization flags enabled. The results of the profiling are shown in

Table 6.1. The initial software implementation is the version of the HOG algorithm

without any software optimizations. The approximation and software optimization

techniques as described in Section 4.7 are implemented in the optimized software

version of the software. In addition, the OpenMP framework is used to take advan-

tage of the parallelism that is able to be performed on the two available ARM cores.

Finally, the hardware implementation involves all the algorithmic and hardware

optimizations as described in Chapter 5.

Initial Implementation Optimized Software Hardware Implementation

30s 1.450s 0.080s

Table 6.1: Performance comparison

It is clear that the approximation techniques performed on the software yield a

more that 20x better performance than the initial version. However, with hardware

optimization techniques on the FPGA, the system was able to perform in real-time

achieving 384x acceleration from the initial implementation.



Chapter 7

Related Work

FPGA Implementation of a HOG-based Pedestrian Recognition System.

Sebastian Bauer, Ulrich Brunsmann, Stefan Schlotterbeck-Macht

Their proposed system is based on an FPGA-CPU-GPU network. The system

consists of two FPGA boards. The former (Xilinx Spartan 3 XC3S 2000) provides

data transfer interfaces to the camera and to the host (PCIe), the latter(Spartan

3 XC3S 4000) and on-board memory is available for for the computation of the

HOG descriptor. The descriptor normalization step is then performed on the CPU,

being the central entity of our system. The SVM-based sliding-window evaluation

is currently running on a publicly available GPGPU solution [cuSVM].

The algorithm is implemented as proposed by Dalal&Triggs. The only exceptions

are that the vote function of each gradient is not interpolated over neighbouring bins,

as well as the bin index calculation is not extracted using the arctan function but

by performing. Angular quantization into 9 evenly spaced orientation bins over 0◦-

180◦(unsigned gradient). This last contribution is of great significance and it has

been used in a lot of papers on this topic in the last ten years.
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Figure 7.1: Overview of the implemented FPGA-CPU-GPU framework

FPGA-based Real-Time Pedestrian Detection on High-Resolution Im-

ages. Michael Hahnle, Frerk Saxen, Matthias Hisung, Ulrich Brun-

smann, Konrad Doll [9]

Their test system consists of a Full-HD camera triggered to deliver 50 fps with

8 bit grayscale. The image data are transferred via GigE to an FPGA Board with

a Xilinx Virtex 5 FPGA (XC5VFX200T). A GigE Vision Core receives the data

and converts it to a pixel stream, which is analyzed by their pedestrian detection

module. The results together with the input image are transferred by a PCIe Core

2 using DMA to a PC for further processing.
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They proposed a more resource efficient implementation that presented them

with the opportunity to instantiate several parallel accelerators for different scales

of the input image. One of the was the introduction of the L1-sqrt-norm as the way

to normalize the pixels of a block, which is very effective resource-wise compared to

the L2-Hys norm which was used until then.

Binarization Based Implementation for Real-Time Human Detection.

Shuai Xie, Yibin Li, Zhiping Jia, Lei Ju [10]

The proposed human detection was developed in Verilog-HDL and synthesized

for a low-end Xilinx Spartan-3e XC3S500E device with Xilinx ISE 13.1 tools. To

train the classifier, HOG features were generated by a modified OPENCV. Using

Libsvm library of MATLAB, linear SVM classifier is trained offline, and detection

accuracy is evaluated.

In this implementation, they adopted a modified binarization process in place of

normalization process. With this process, classification process can be implemented

by addition operation.

Figure 7.2: An example of binarization
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FPGA Implementation of a Real-Time Pedestrian Detection Processor

Aided by E-HOG IP. Ai-Ying Guo, Mei-Hua Xu, Feng Ran and Ang

Li [11]

Their circuit board is divided into two boards: Cyclone III core and backboard.

Through two independent boards, the backboard and core board can be extended

to other functions. If this platform were to be promoted, just one of them may

need to be amended. The core board contains one FPGA, two SDRAM and some

other devices. The core device is Cyclone III. The backboard main devices are MT9

M111, one SRAM, power and interfaces for debugging and downloading program.

E-HOG is embedded into the system on the backboard.

Figure 7.3: FPGA board with E-HOG IP
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This paper has discussed a three-stage pedestrian detection on board that can

be used as the real-time pedestrian detection processor. The three-stages contains:

Sobel-step is applied as the first stage operator and to extract windows of interest;

Uniform-LBP with SVM in the second stage can describe edge detection with less

features; In the third stage, E-HOG and Linear SVM will distinguish the pedes-

trian zone from non-pedestrian. In order to decrease the cycle counts, cell-based is

proposed to implement the uniform-LBP.



Chapter 8

Conclusion

In this thesis a real-time HOG algorithm implementation on a low-cost FPGA device

is presented. Several optimizations both on algorithmic and architectural level are

examined. Many approximation techniques are proposed without significant accu-

racy loss proving the algorithm’s redundancy. Furthermore, a small modification of

the SVM’s parameters is introduced in order to yield better accuracy results. This

implementation showcases the fact that high level synthesis despite lacking the ver-

satility that an RTL design can offer, can still be used in time critical applications

with satisfying results.

However, there is still room for future improvements to increase the performance

of the system. First of all, since the amount of the parallelism is only bound by the

available resources, a migration to a higher end FPGA would immediately result to

a significant performance gain. In addition, a transition from high level synthesis

to RTL design can be examined, since a more throughput-friendly design can be

implemented in this case. Furthermore, it is a fact that is a stark contrast between

the number of the overall detection windows in a single frame compared to the

windows that actually contain a pedestrian. A way to mitigate this problem is to

employ techniques with the aim of determining Regions Of Interest(ROI) and in

this case, windows of interest. Finally, as far as accuracy is concerned, it could

be improved by applying motion estimation techniques. For instance, in case of

pedestrian detection, the neighbouring windows of the next frame could be classified

in a more positively biased manner.
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