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Abstract. The aim of this study was to develop chemometric models for
protein, fat, ashes and carbohydrates contents of quinoa flour using
Near-Infrared Transmission (NIT) spectroscopy. Spectra of quinoa flour
obtained from grains of 70 different cultivars were scanned while dietary con-
stituents were determined by reference AOAC methods. As a pre-treatment,
spectra were subjected to extended multiplicative signal correction (EMSC) with
polynomial degree 0, 1 or 2. Next, the Canonical Powered Partial Least Squares
(CPPLS) algorithm was applied, and models were compared in terms of accu-
racy and predictability. For all models, root mean square errors of
cross-validation (RMSECV), root meat square errors of prediction (RMSEP)
and coefficient of correlation of cross-validation (RCV) were computed. Robust
models were obtained when quinoa spectra were pre-processed using EMSC of
polynomial degree 2 for both fat (RMSECV: 0.268% and RMSEP: 0.256%) and
carbohydrates (RMSECV: 0.641% and RMSEP: 0.643%) following extraction
of five CPPLS latent variables. Good coefficients of correlation of prediction
(RP: 0.690–0.821) were found for all constituents when models were validated
on a test data set consisting of 13 quinoa flour spectra. Thus, good predictions of
the dietary constituents of quinoa flour could be achieved by using NIT tech-
nology, as implied by the low coefficient of variation of prediction (CVP):
5.64% for protein, 3.88% for fat 7.32% for ashes and 0.80% for carbohydrates
contents.
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1 Introduction

Quinoa (Chenopodium quinoa, Willd.) has been considered by FAO as one of the crops
destined to offer food security in the 21st century, because the plants show tolerance to
frost, salinity and drought, and have the ability to grow on marginal soils [1].

The application of chemometric techniques to the global signature spectra of any
food can be used to evaluate compositional characteristics that may be not easily
detected by chemical analysis [2]. Considering their advantages over standard methods,
near-infrared transmission (NIT) spectroscopy has been shown to be a good rapid
method for evaluation of grains and flours [3]. The objective of this study was to
develop NIT models to estimate proximate composition of quinoa flour using the novel
Canonical Powered Partial Least Squares (CPPLS) multivariate algorithm [4].

2 Methodology

2.1 Samples and Proximate Composition Analysis

The samples utilised in this study were quinoa (Chenopodium quinoa, Willd.) flour
milled from orange, beige, black and yellow quinoa grains, corresponding to 70 dif-
ferent cultivars. They were all harvested in Peru at the National Agricultural University
La Molina (Cereals and Andean Crops Programme) and the Regional Development
Centre—Highland (Junin, Peru), in different seasons between 2010 and 2012. Samples
of quinoa seeds were first grounded in a Cyclotec 1093 mill, and sieved through a
0.5 mm mesh screen. Moisture, protein, fat and ashes contents were determined using
the reference methods 925.10, 920.87 (conversion factor of 6.25), 923.05 and 923.03,
respectively [5]. The determinations were done in triplicate and averaged. Total car-
bohydrates content was calculated by difference. Proteins, fat, ashes and carbohydrate
contents were expressed in dry basis (db).

2.2 Near-Infrared Transmission (NIT) Spectra Acquisition

NIT spectra were acquired by placing the whole flour directly in an Infratec 1241
analyser (Module Foss Tecator, Denmark), using 60-mm quartz cuvettes, and scanning
the region 850–1050 nm (wavenumber range of 11765–9524 cm−1 approximately).
The spectra were recorded at scanning step intervals of 2 nm to give 100 data points
per sample. A total of 10 frequency scans were performed per sample, and carefully
assessed for consistency. To correct for the non-linearity in the measure of transmit-
tance (T), T was transformed into absorbance (A) by taking the base 10 logarithm of
the reciprocal of the transmittance values.

2.3 NIT Spectral Pre-processing

To minimise the multiplicative effects of light scattering, quinoa flours’ spectra were
subjected to extended multiplicative signal correction (EMSC) with polynomial
degrees of 0, 1 or 2. EMSC attempts to separate physical light scattering effects from
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chemical (vibrational) light absorbance, which helps in correcting for wavelength
dependent baseline effects in the spectra [6]. For each of the constituents analysed, the
CPPLS algorithm was fitted to these EMSC pre-processed spectral data with polyno-
mial degree 0 (EMSC–0), 1 (EMSC–1) or 2 (EMSC–2), thereby producing three
combinations or models (i.e., EMSC–0/CPPLS, EMSC–1/CPPLS, EMSC–2/CPPLS)
which were compared in terms of accuracy and predictability.

2.4 Chemometric Multivariate Data Analysis

The extraction of information from quinoa flour’s pre-processed spectra to estimate
protein, fat, ashes and carbohydrates contents was performed by the CPPLS chemo-
metric algorithm. As Mevik [4] explained, the CPPLS algorithm can employ additional
variables (AV) to further improve the predictive performance of the model. Thus, the
AVs determined by trial-and-error were: carbohydrate (“cho”) for the moisture model;
moisture (“mois”) and variety (“var”) for the fat model; “var” for the ashes model; and
“var” and ashes (“ash”) for the carbohydrate model (Table 2).

As a first step, the full data set was divided into a subset for calibration (*81%
data, 57 samples) and the remaining *19% (13 samples) for prediction or validation,
by means of random split stratified by variety. After EMSC scatter-corrected spectra
(polynomial degree 0, 1 or 2), the CPPLS algorithm was fitted to each of them. The
performance of the different models was determined by cross-validation as an internal
calibration method using the calibration data set. In our case, the leave-one-out
(LOO) method was used. The performance of the model was assessed by the root mean
square error of cross-validation (RMSECV), which is deemed as the best single esti-
mate of the prediction capability of the model [7]. Then, the optimal number of
components of a model was selected at the first RMSECV local minimum, rather than
the absolute minimum (to avoid overfitting). For such a number of components, the
root mean square error of calibration (RMSEC) was computed. In addition, the coef-
ficients of correlation between reference values and values fitted by cross-validation
(RCV) and the calibration model (RC) were computed.

Following completion of the calibration, models were validated using the prediction
data set to determine the accuracy of prediction. Model performance was evaluated by
obtaining the root mean square error of prediction (RMSEP) and the coefficient of cor-
relation (RP) between reference values and those predicted by the model. To assess the
best model (i.e., EMSC-0/CPPLS, EMSC-1/CPPLS or EMSC-2/CPPLS) for each dietary
constituent, the model had to present not only a low RMSEP but also a high RP. The
spectra analysis was conducted using the “mass” [8], “caret” [9], “pls” [4], “emsc” [10],
and the “prospectr” [11], packages implemented in the R software version 3.3.1 [12].

3 Results and Discussion

3.1 Proximate Composition Analysis of Quinoa Flour

The means, ranges and standard deviations of the major compounds of the quinoa
flours (g/100g db) are summarised in Table 1. Quinoa samples from Peru, Bolivia and

Estimation of Proximate Composition of Quinoa (Chenopodium quinoa, Willd.) … 229



Brazil, evaluated by Ferreira [13], presented higher protein content (11.40–36.10% db)
and lower carbohydrates content (43.64–76.37% db). They also encountered sub-
stantially higher fat (6.19–15.52% db) and ashes (3.07–9.15% db) contents than those
of our study. The variation in ashes are influenced by the dependence of the mineral
content on type of soil and fertiliser application. Samples of quinoa cultivated in Chile
[14] also presented higher protein content (16.0–20.2% db) but a fat content
(4.4–7.5% db) comparable to that of our samples. In general, our levels are in agree-
ment with those found by Vega-Gálvez [15], who determined fat content averages
between 5.0 to 7.2%. Moisture is the compound having the highest variability among
published studies (from 8.26–11.51% in Repo-Carrasco-Valencia [16] up to 25.66–
33.16% in Ferreira [2]) because it depends upon drying and storage of seeds.

3.2 Assessment of Chemometric Models

It was observed that, as a whole, a higher order polynomial of EMSC led to fewer
optimal latent variables (Table 2). Except for the protein’s chemometric models, the
polynomial degree 1 or 2 of the EMSC signal correction of quinoa’s flour spectra
generally improved the accuracy of the models (when compared to polynomial degree
0), yet to different extent: the reduction in RMSECV (5.1–7.2%) in the model for
carbohydrates was comparable to that of fat (5.9–7.9%), while it was lower for ashes
(4.7–5.9%). In the case of RMSEC, the greatest reductions were attained for the fat
model (5.5–24.4%) and ashes model (5.1–12.0%). Likewise, the polynomial degree 1
or 2 of the EMSC filter improved the correlation statistics of calibration: the increase in
RCV and RC values was notorious in the models for fat (increase in 3.8–5.0% and 1.6–
6.2%, respectively) and ashes (5.0–6.3% and 2.6–5.9%), whereas the improvement for
the carbohydrates model only occurred in the RCV values (13.5–18.7%) (percentage
differences not shown but calculated from Table 2).

The predictability statistics of the models were also improved by using the poly-
nomial degrees 1 or 2. Comparing RMSEP values, the greatest reductions were
achieved for the carbohydrates model (19.2–21.3%) and ashes (10.6–17.0%), while the
improvement for the fat model was lower (4.3–6.2%). The correlation statistics of
prediction RP improved using polynomial degrees 1 or 2 in the models for estimating
ashes (22.4–33.1%), carbohydrates (17.7–19.3%) and fat (5.2–7.4%) content when
compared to the “0” base.

Table 1. Summary statistics of the major dietary compounds of quinoa flour samples in % dry
basis, except for moisture (% wet basis).

Compound Minimum Maximum Mean St. deviation

Moisture 9.17 11.91 10.58 0.71
Protein 8.51 11.16 9.89 0.70
Fat 5.67 7.78 6.61 0.45
Ashes 2.51 4.11 3.17 0.37
Carbohydrates 78.48 82.12 80.33 0.88
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Taking the three models together (Table 2), the models estimating fat and ashes
presented generally the highest predictive capacity, as deduced from the ranges of RCV

(0.772–0.811 and 0.687–0.730, respectively) and RP (0.664–0.713 and 0.536–0.714,
respectively). The models for carbohydrates (RCV: 0.505–0.599; RP: 0.688–0.821) and
protein (RCV: 0.383–0.505; RP: 0.690–0.766) were still of good predictive
performance.

3.3 Validated Chemometric Models for Quinoa’s Flour Dietary
Constituents

Considering that a good model should bear low values of RMSECV and RMSEP, and
high values of RCV and RP, the final model for each quinoa’s constituent was selected
among those presented in Table 2. Robust models were obtained when quinoa flour
spectra were pre-processed using EMSC of polynomial degree 2 for fat (RMSECV:
0.268% and RMSEP: 0.256%) and carbohydrates (RMSECV: 0.641% and RMSEP:
0.643%) following extraction of five CPPLS latent variables each. For protein
(RMSECV: 0.584% and RMSEP: 0.558%), the best model was that of polynomial
degree 0 with ten CPPLS latent variables, and for ashes (RMSECV: 0.258% and
RMSEP: 0.232%) it was reached with a polynomial degree 1 with eight CPPLS latent
variables. High coefficients of correlation of prediction (RP: 0.690–0.821) were found
for protein, fat, ashes and carbohydrates when models were validated on a test data set
consisting of 13 quinoa flour spectra.

Coefficients of variation of prediction (CVP) of the final models were also estimated
by dividing RMSEP by the observed mean value for every constituent (values calcu-
lated from Tables 1 and 2). This resulted in 5.64% for protein; 3.88% for fat; 7.32% for
ashes; and 0.80% for carbohydrates contents.

Finally, in order to further characterise the prediction performance of each of the
final models, uncertainty about the correlation coefficient of prediction (RP) was built
by bootstrapping. At each of the 1000 iterations for bootstrapping, a new 80%
calibration/20% validation data partition was randomly obtained, the chosen model was
fitted to the calibration data with the pre-determined number of components, and RP

was extracted from the test data. The histograms of RP built for each of the final models
(Fig. 1, left) show that the NIT models for estimating ashes and fat had the lowest
uncertainty (i.e., narrower spread) about RP, and therefore were the most robust
chemometric models. Thus, the bootstrap results confirmed what was initially sug-
gested by the RCV and RC values, which were the highest for ashes and fat (Table 2).

The wider spread of the RP histogram for protein corroborated that, among the four
dietary constituents studied, the model for protein presented the lowest precision.

The degree of fitting and predictability of the final models can be appreciated from
the scatter plots between the reference values and those fitted (Fig. 1, middle) and
predicted (Fig. 1, right) from the NIT calibration models. Judging from the validation
and bootstrapping results, it can be said that the predictability of the NIT models is
acceptable, bearing in mind that chemical analyses also have associated errors. For
proximate data estimation, it is inevitable that NIT errors are higher than those of the
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reference techniques, as the error of NIT technique contains both laboratory and NIT
errors, although the main advantage of the NIT procedure is its higher repeatability,
speed and non-destructive nature.

4 Conclusions

As a whole, a higher order polynomial of the EMSC signal correction led to fewer
optimal latent variables. Except for the protein contents’ model, the polynomial degree
1 or 2 improved the accuracy statistics of the models (when compared to polynomial

Fig. 1. Prediction performance of NIT chemometric models for protein, fat, ashes and
carbohydrates contents in quinoa flour, as evaluated by the uncertainty about the correlation
coefficient of prediction (RP) built by bootstrapping (left), and the scatter plots between chemical
reference values and those fitted to the calibration data set (middle) and predicted using the
validation data set (right).
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degree 0). The best combinations in terms of accuracy and predictability for estimating
fat and carbohydrates contents in quinoa flour were attained by correcting light scat-
tering with polynomial degree 2 following extraction of five CPPLS latent variables.
For ashes, best results were achieved with a polynomial degree 1 with eight CPPLS
latent variables, while for protein, a polynomial degree 0 with ten CPPLS latent
variables. Although the most robust models could be developed for fat (90% CI
RMSEP: [0.479–0.654] as determined by the bootstrap method) and ashes (90%
CI RMSEP [0.420–0.575]), the predictability was still good for carbohydrates (90% CI
RMSEP: [0.741–0.973]) and protein (90% CI RMSEP: [0.636–0.845]). Thus, in this
study, good predictions of the dietary constituents of quinoa flours may be achieved by
using NIT technology. The main advantages of this technique are the rapid determi-
nation for routine analysis, reduced costs and absence of sample preparation and waste
generation.
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