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Abstract

Metabolic engineering exploits microorganisms to build cell factories, allowing to produce

valuable compounds from their enzymatic machinery. It involves the selection of an or-

ganism, along with a set of genetic modifications to optimize the process. Information

regarding biological mechanisms are scattered among the literature. Metabolic databases

provide a centralized platform compiling existing biological data to build a catalog of all

known enzymatic transformations across all domains of life.

The development of genome-scale metabolic models allows to expose all possible bio-

chemical transformations that an organism can offer. Computer algorithms use these mod-

els to exploit the capabilities and limitations of the organisms. Constraint-based modeling

approaches allow to predict phenotype given modifications in the network. In recent years,

there has been a significant increase in the number of available models, and for certain

organisms several models were built. The accuracy of these methods is in many cases

dependent on the quality of these models, that is limited to the available information in

the literature (or databases).

This thesis improves the existing methods by developing better data management

strategies for the metabolic modeling community. Metabolic databases are usually the

input data for many modeling tools, and the quality of solutions depends on the quality

of the databases. Currently, several metabolic databases exist, most of them sharing a

common set of information, and there is a need for a centralized system to take the most

advantage of their content. However, each database adopts its own naming system to

catalog its instances, being in many cases, difficult to compare with others.
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An integration pipeline is here designed to fuse metabolic databases into a common

namespace allowing better analysis of the entire metabolic catalog across several databases,

and exploring different methods to reconcile the metabolites and reactions included in these

databases.

In a second part of this work, the Systems Biology Markup Language which is the most

common medium to store and represent genome-scale metabolic models is analyzed. Like

databases, models also adopt unique nomenclatures for reactions and compounds. Here,

methods to annotate metabolites and reactions in models are developed allowing to connect

models with database instances, thus allowing to adopt a single naming system for their

entities. The purpose of the methods is to standardize the entire model, therefore, other

entities such as, genes, compartments, simulation media, are also considered to unify these

models. The standardization methods were implemented in the KBase platform, which

allows to improve the compatibility of this system with models built from external tools.

In the last part of this thesis, the pathway enumeration problem is revisited. Synthetic

biology explores cellular modifications to produce valuable products by inserting enzymatic

capabilities of other organisms. The selection of suitable set of genes is highly combina-

torial, since in many cases there are several alternatives to reach the target product. A

common limitation of most of the existing methods is the inability to fully explore this

combinatorial space. In this work, the (hyper)graph methods are analyzed and improved

to fully enumerate biological pathways. As result, two existing algorithms were improved

regarding to scalability, allowing to fully enumerate larger solution sets.



Resumo

Um dos objetivos da Engenharia Metabólica é a śıntese de compostos de valor acrescentado

através de microrganismos. Uma das etapas deste processo envolve a seleção de organismos

em combinação com alterações genéticas que permitem otimizar este processo. As bases de

dados metabólicas centralizam os dados biológicos disponibilizando um catálogo de todo o

conhecimento existente relacionado ao contexto enzimático.

A reconstrução de modelos metabólicos à escala genómica permite estudar os proces-

sos metabólicos dos diversos organismos. Com o recurso a métodos computacionais, estes

modelos permitem expor as capacidades e limitações dos diversos organismos. Abordagens

como a modelação baseada em restrições permitem prever fenótipos dadas alterações nas

vias metabólicas. Nas últimas décadas, houve um aumento significativo do número de

modelos publicados, e para alguns organismos existem várias versões dispońıveis. A ca-

pacidade de previsão destes modelos está dependente da informação dispońıvel nas bases

de dados e na literatura.

Esta tese visa melhorar os métodos anteriores abordando questões relacionadas com a

integração de dados. As bases de dados metabólicas são geralmente a principal fonte de

informação para os métodos existentes, implicando diretamente na capacidade de resolução

destes problemas. Atualmente, existem várias bases de dados biológicas, havendo uma

necessidade de desenvolver sistemas centralizados. No entanto, é comum estes adotaram

identificares próprios, não sendo posśıvel executar uma comparação direta. Neste trabalho,

foram desenvolvidas estratégias para reconciliar bases de dados no contexto metabólico,

permitindo integrar compostos e reações.
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Na segunda parte deste trabalho, este processo de integração foi expandido para in-

cluir modelos metabólicos à escala genómica. De forma semelhante às bases de dados, os

modelos adotam também identificadores próprios para representar compostos e reações.

Para unificar modelos, foram desenvolvidos métodos de anotação que permitem relacionar

as instâncias dos modelos com as bases de dados. Foram, também, implementadas es-

tratégias para identificar genes, compartimentos e as restrições da simulação. Neste tra-

balho, os métodos forma implementados na plataforma KBase, permitindo melhorar a

compatibilidade do sistema com os modelos externos.

Por fim, vários métodos de enumeração de vias metabólicas foram abordados. A biologia

sintética visa manipular o metabolismo celular para produção de compostos através da

inserção de genes. A seleção destes genes é um problema combinatório, que, dado um

composto alvo, identifica vários conjuntos de genes capazes de concretizar a via sintética.

Neste trabalho, pretende-se melhorar a capacidade de enumerar todas as vias posśıveis,

dado um conjunto limitado de reações e o tamanho das vias. Como resultado, foram

melhorados dois métodos existentes baseados em hipergrafos, melhorando a escalabilidade

destes métodos permitindo enumerar problemas ou vias de maior dimensão.
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Chapter 1

Introduction

1.1 Context and Motivation

The re-engineering of cells for de novo synthesis of desirable metabolites involves several

steps, from data collection and curation, to optimal strain selection, pathway identification

and analysis of the best solutions.

Research in computational systems biology develops software tools to predict phenotype

responses given environmental and genetic modifications. In the past years, a vast catalog

of Bioinformatics software was developed to fit many topics in this field [21], ranging from

network reconstruction and representation problems to data visualization and metabolic

network analysis. Despite this effort, most topics still present a big challenge to software

development, since the reconstruction, analysis and optimization of large scale metabolic

networks still face many challenges.

Building computer models to predict cellular behavior is extremely data intensive. For

many organisms, the biological mechanisms are inferred from similar species to fill the

knowledge gaps. This makes data integration and analysis an important task to build

more accurate models.

Biological databases compile data from literature and biochemical knowledge, and they

are essential tools for many bioinformatics methods. Each database specializes into a

1
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specific topic and there is an increasing need to implement methods that allow combining

and integrating distinct sources of data [44].

Because of the massive amount of information and expertise required to model biological

systems, several community collaborations emerged to curate the representation of many

levels of omics data [13]. As an example, the Gene Ontology (GO) was created to design a

standard method to represent cellular mechanisms and functions that in most cases were

defined as textual expressions.

In the software perspective, in the past years, many tools were developed to perform

important tasks related to this research topic. Metabolic Engineering is powered by in

silico analysis and, therefore, there is a demand for specialized integrated development

environments, that still offer a challenge for software engineers [57]. Libraries dedicated to

genome-scale modelling take advantage of the scripting environment of existing technolo-

gies to provide essential methods for analysis. The COnstraint-Based Reconstruction and

Analysis methods [111] COBRA and COBRApy [32] are libraries for MatLab and Python,

which provide many essential methods and tools to conduct constraint-based analysis stud-

ies. Standalone software programs such as OptFlux [107] integrate many techniques to

tackle problems in this field, reducing the learning curve to apply these methods for an

audience with less programming skills.

Advanced computational tools are currently able to identify optimal pathways through

stoichiometric network analysis by either computing algebraically steady states of the sto-

ichiometric network or from graph topological analysis. The computation of steady states

relies on the analysis of the feasible solutions which represent all possible steady state flux

distributions. Extreme Pathways (EP) [8] and Elementary Flux Modes (EFM) [114] both

compute flux vectors through convex analysis [33].

However, the interoperability of these platforms is essential since no platform is capa-

ble to implement all existing methods. The Systems Biology Markup Language [58] was

created to provide a common medium to share cellular models. Because of the flexibility of

the format to cover a variety of fields in systems biology, but also due to the limitations of

the earlier versions of the format, many tools implemented their own methods to represent
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several aspects regarding genome-scale modeling [31, 105].

Several tools were developed for model reconstruction, each adopting a variety of strate-

gies to assemble genome-scale models. Today there are several hundreds of curated models,

and if accounting for automated generated models these numbers go up to many thousands

[89, 84]. Because of compound and reaction aliasing, it is difficult to directly compare mod-

els generated from different tools. It is also difficult to correctly interpret the mathematical

components of the model because of the lack of proper standards [19, 31]. These problems

diminish the re-usability of existing models for future research.

1.2 Objectives

This thesis is dedicated to improve metabolic modeling and pathway optimization ap-

proaches by defining better strategies to manage and integrate their data context.

More specifically, the work will address the following scientific/ technological goals:

1. Integration of metabolic data sources:

Access existing biochemical databases;

Develop unification strategies to generate an unified database;

Implement a pipeline to integrate metabolites and reactions.

2. Standardization of genome-scale metabolic models:

Explore existing methods to represent GSM components in SBML;

Develop standardization strategies to conform genome-scale metabolic models.

Develop a Software tool that is capable to standardize SBML models.

Assess the proposed strategies with existing SBML models.

3. Enumeration synthetic pathways:
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Explore, validate and extend optimization algorithms that allow searching over

metabolic networks for the best routes from sets of source metabolites to target

metabolites.

Validate the solution with a case study.

1.3 Structure of the Thesis

This thesis is divided into five chapters, being their contents described bellow.

In this first chapter, Introduction, we provided a brief introduction of the motivation

and the main goals of this work.

The second chapter, Metabolic Database Integration, introduces several important as-

pects related to databases that are relevant to the metabolic modeling community. The

chapter is dedicated to improve existing methods to unify these databases, by exploring

better approaches and implement a standard pipeline to generate consensus databases.

The third chapter, Standardization of Genome-Scale Models, tackles the genome-scale

model representation by focusing the Systems Biology Markup Language modeling strate-

gies. This chapter explores existing variations to represent these models, and propose

standardization methods to reshape genome-scale metabolic models.

The fourth chapter, Pathway Optimization, explores synthetic pathway optimization

methods. This chapter is dedicated to explore existing alternatives of pathway enumera-

tion.

Lastly, the fifth chapter, Conclusions, presents the main conclusions of the work, also

proposing future research topics.

1.4 Scientific Output

Publications :

Liu, F., Vilaça, P., Rocha, I., Rocha, M. (2015). Development and application of effi-

cient pathway enumeration algorithms for metabolic engineering applications. Computer
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Methods and Programs in Biomedicine, 118(2), 134–146.

Liu, F., Rocha, I., Rocha, M. (manuscript in preparation). Automated generation of

integrated metabolic databases.

Liu, F., Faria, J., Henry, C, Rocha, I., Rocha, M. (manuscript in preparation). SBML-

Tools: a KBase module to annotate and standardize SBML models.

(equal contribution) Santos, S., Liu, F., Costa, C., Vilaça, P., Rocha, M., Rocha, I.

(manuscript in preparation). MIYeasTK: The Metabolic Integrated Yeast Knowledgebase.

Poster Presentations :

Liu, F., Rocha, I., Rocha, M. (2017). Metabolic integration using graph databases.

Great Lakes Bioinformatics Conference 2017. Chicago, Illinois, USA, May 15-17

Oral Presentations :

Liu, F., Xavier, J., Ramalho, F., Rocha, M., Rocha, I. (2017). Unification of genome

scale models. Metabolic Pathway Analysis 2017. Bozeman, Montana, USA, July 24-28.

Other Collaborations :

(oral) Santos, S., Liu, F., Costa, C., Vilaça, P., Rocha, M., Rocha, I. (2016). MIYeastK:

The Metabolic Integrated Yeast Knowledgebase. SPB2016 - Book of Abstracts XIX Na-

tional Congress of Biochemistry. No. O5/03, Guimarães, Portugal, Dec 8-10, 37

(poster) Xavier, J., Liu, F., Ramalho, F., Rocha, I. (2017). Standardization, Com-

pletion and New Predictions of 121 Manually Curated Genome-Scale Prokaryotic Mod-

els. Copenhagen Biosciences Conferences - 11th Conference: Data-Driven Biotechnology,

Bench, Bioreactor and Bedside - Abstract Book. Copenhagen, Denmark, 7-11 May

(oral) Faria, J., Edirisinghe J., Liu, F., Henry C., (2017). Improving automated model

reconstruction. Metabolic Pathway Analysis 2017. Bozeman, Montana, USA, July 24-28,

48

(oral) Edirisinghe J., Faria, J., Liu, F., Xavier, J., Seaver, S., Weisenhorn, P., Jeffryes,

J., Gu, T., Zhang, Q., Rocha, I., Henry, C. (2017). Automated pathway curation and
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improving metabolic model reconstruction based on phylogenetic analysis of pathway con-

servation. ICSB 2017 - 18th International Conference on Systems Biology. Virginia, USA,

Aug 6-12

(submitted for conference) Edirisinghe J., Faria, J., Liu, F., Henry, C., (2018). Auto-

mated Reconstruction and Comparison of Metabolic Models for Diverse Fungal Genomes.

Metabolic Engineering 12, Munich, Germany, June 24-28.

(submitted for conference) Faria, J., Edirisinghe J., Seaver, S., Liu, F., Weisenhorn,

P., Jeffryes, J., Gu, T., Zhang, Q., Henry, C., (2018). Improving Automated Model Re-

construction across Phylogenetically Diverse Genome-Scale Metabolic Models. Metabolic

Engineering 12, Munich, Germany, June 24-28.

(manuscript in preparation for journal article) Xavier, J., Liu, F., Ramalho, F., Rocha,

I. Standardization, Completion and New Predictions of 121 Manually Curated Genome-

Scale Prokaryotic Models.



Chapter 2

Metabolic Database Integration

Abstract
Metabolic (pathway) databases are catalogs of all known enzymatic biochemistry

found in the literature, describing enzymes in a functional approach rather than just

a descriptive annotation and being used as building blocks for genome-scale metabolic

reconstructions. Currently, there are several metabolic databases, along with many

dedicated to catalog small molecules. To capitalize on this ecosystem of databases,

it is desirable to have a unified catalog.

In this work, a comprehensive analysis of several of the most popular metabolic

databases is conducted, to study their degree of heterogeneity and propose approaches

to generate an unified catalog. An integration system is implemented that is capable

of generating on-demand, and in a fully automated way, an integrated database of

reactions and metabolites from several sources. A graph database is used to store

the raw entities, which proven to facilitate the analysis of the integration of the data

sources. The proposed methods for entity resolution allows users to configure the

certainty level of the automated merges of duplicates in the data sources.

The pipeline is tested to generate an integrated database, and it is compared against

7
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a manually curated set, but also with the integrated database MetaNetX to assess

its performance. The unified database created by this work can be explored with a

web application.

2.1 Introduction

Computer-aided design in the biological field is a highly data oriented exercise. Arguably,

this is one of the leading causes of the growth of bioinformatics data every year. The

increase of the computational power and the development of better omics methods and

technologies led to a significant increase of the number of databases, and their size each

year. The better support for crowd sourcing protocols also promoted the data boost in

biological repositories.

Metabolic databases are no exception, and currently there are hundreds of databases

for small molecules and biological pathways, increasing substantially in the last decades.

This phenomenon was already defined as a ”loose federation of bio-nations” [43]. One of

the reasons for the proliferation of biological resources is the inability for users to con-

tribute or reshape existing data repositories, which in several situations forced researchers

to develop their own alternative databases to fit their needs. A related reason is the need

for specialized repositories for specific topics [64, 118] (e.g., a disease, a organism, a class

of chemical compounds), where replicates of existing databases to reshape the logic for

a specific topic may allow a better understanding of the data. Lastly, the publication of

repositories is a method to gain reputation in a particular research field.

The increase of biological databases enriches the community, but may also pollute the

existing data ecosystem. Multiple chain references between databases may cause error

propagation, but also independent systems have different update cycles and maintenance

frequencies, which may cause inconsistencies (e.g., incoherent information, dead references,

etc). In general, this requires added human effort to keep all the databases updated and

clean. Indeed, information management became a relevant topic in science, engineering,

and biomedical fields [30].
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A common problem of biological databases is the high redundancy between data. Each

database adopts its own identifiers, making difficult to detect the unique instances, but also

to merge or translate duplicate information between databases. The advantage of having a

rich global data pool is diminished, because of the lack of interoperability between distinct

resources, making the effort to unify systems in many cases not affordable or justified.

Existing integrated solutions for metabolic databases address this problem by offering

access to a unified reference space of biochemical databases. Tools such as the Chemi-

cal Translation Service [125] or UniChem [17] offer a web service that allows to convert

among different database identifiers or from those into molecular properties (e.g., names,

structures, etc). The other approach is to materialize the unified space into a consen-

sus database [9, 74]. In this case, a new database is generated from existing metabolic

resources, providing an integrated repository.

The BKM-react [76] (now the BKMS-react) is a reconciliation that integrated the

BRENDA with KEGG and MetaCyc (later with the addition of SABIO-RK). The in-

tegration is limited to reactions only.

The MetRxn database [74] provides an integrated resource of KEGG, MetaCyc, BRE-

ANDA and Reactome plus several genome scale models into a unified dataset. The

database was built because of the need of an integrated biochemistry set for quality model

reconstruction. It includes 90 genome-scale models along with the metabolic databases.

With an identical purpose of the MetRxn, the ModelSEED [54] was created for the

purpose of genome-scale model reconstruction applications. It serves as a base biochemistry

set for automated scaffold of metabolic reconstructions. It initially was based on the KEGG

database merged with 13 published models, and later updated with the MetaCyc.

The MetaNetX/MNXRef [9, 90] is the largest integration currently available, integrat-

ing more than a hundred thousand compounds of a wide range of databases, including

all of the previously mentioned. The first version of the database unified 11 databases

(KEGG, MetaCyc, ChEBI, ModelSEED, etc), and several new resources were added since,

while also some of the old discontinued databases were discarded.

Automated integration is subject to errors, and in many cases this is inevitable since
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these problems are caused by inconsistent information from the sources. No software tools

are provided to rebuild these databases, and the responsibility to update these integrations

is given to their owners.

This work explores metabolic database integration methods, being current implementa-

tions revised to understand the state of the art of data integration regarding the metabolic

universe.

A survey of several popular databases of small molecules and biological pathways is

conducted to assess their data content and their architecture for unification purposes.

Alternative methods are proposed to design an integration pipeline capable of generating

an integrated reference space of metabolic databases.

We propose several integration rules that include both positive and negative rules to

allow fine tunning the integration approaches. Each of these rules targets metabolites

that shares common properties (e.g., chemical formula, structure, name, etc) allowing to

match for both positive and negative similarity. All rules are weighted, allowing users to

customize their impact in the integration.

To assemble an integrated unified metabolic database, a framework is developed to

conduct all the necessary steps from data extraction up to entity resolution methods. The

framework is used to generate an integrated database of KEGG, MetaCyc and BiGG, and

it is compared against the latest reference space of the MetaNetX integrated database. To

benchmark the result an extensive manually curated dataset is used to compare with the

solution provided by this work and MetaNetX. The generated approach obtained a decrease

of 50% on false positives, with a cost of increasing 11% the number of false negatives.

The pipeline is distributed in a Docker container, with all required source code and

dependencies 1, allowing users to assemble integrated databases, but also programmatically

extensible to other data sources that were not included in this study.

A dedicated web application was created to explore the integrated solution, it provides

a standalone database (https://fxe.github.io/biodb/) for publishing and curation.

1GitHub repository: https://github.com/Fxe/biosynth-framework
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(a) D-Glucose (b) alpha-D-Glucose (c) beta-D-Glucose

Figure 2.1: Glucose structures. The connectivity layer includes atoms and bond valence,

the stereo layer adds additional spatial arrangement in a 3D space.

2.2 Molecules, Biochemistry and Databases

2.2.1 Representing Compounds

In a metabolic engineering perspective, in many publications, a compound, molecule or

metabolite have the same meaning, since they all refer to small molecules, most of them

organic since they are participants of cellular metabolism. Thus, they will be treated as a

single concept in the following text and in this work. A chemical molecule, as a computer

representation, is a simple undirected graph where vertices are atoms and edges are the

chemical bonds (Figure 2.1a). Although, for both vertices and edges they must be labeled

to define the atom type and the bond type.

However, not all molecules are flat (Figure 2.1), being the geometry of a compound

defined by its stereochemistry. In the figure, solid or dashed wedge are used to represent

atoms below or above the plane.

Also not all molecules are fully defined in computational representations. The R-groups

or ”Markush” structures (Figure 2.2a) are undefined groups to represent abstract struc-

tures. The use of R-groups to define incomplete molecules allows to create molecular hierar-

chies to group compounds into categories (Figure 2.2). As an example, the generic alcohol

(Figure 2.2a) is a substructure for alcohol molecules (i.e., ethanol, methanol, propanol,

butanol, etc), but also a substructure for many other structures where it fits.

In some cases, the R-group is a generic placeholder for a family of molecules. The DNA
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(a) An Alcohol. (b) A short-chain primary al-

cohol.

(c) Butanol.

Figure 2.2: R-groups may define subclass of molecules. SMILES representation: a) - O[R],

b) - OC[R], c) - OCCCC. a), b), c) are sub instances with the following substitutions: a)
[R]→C[R]−−−−−→ b), b)

[R]→CCC−−−−−−→ c)

is an example (Figure 2.3a) that contains placeholders for cytosine, thymine, adenine and

guanine molecules in its chains.

In general, the R-group allows to define a variable part of the structure. But not

all R-groups are used to define a small molecule. The acyl carrier protein is an important

component in the fatty acid biosynthesis, in its attached to a substrate form, the acyl carrier

protein is represented by the R-group (Figure 2.3b) since its structure is non definable, but

in this case the R-group is specific to the protein.

Polymers are represented by a repeating unit, that encloses a structure region marked

as variable, allowing to define a range of structures over the repeats. As an example, the

DNA molecule (Figure 2.3a) is also a polymer that repeats the center unit, each connecting

to an R-group to define variable nucleotide. The size of the polymer in some molecules

is also defined (Figure 2.4). This simplifies the visualization, as in certain scenarios these

could be very long molecules.

Given this diversity, there are several exchange formats for the representation of chem-

ical molecules. Some formats are capable to define most of the chemical properties, while

others are limited to some properties or can only represent sub-sets of defined molecules.

Since the basic structure of a molecule can be a single graph that connects atoms to each

other, connection tables are simple exchange formats that describe the molecule by listing

all connections between the atoms and their properties. The Mol file is a popular format

based on connection tables. It separates atoms and bonds in different blocks, each with
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(a) A single stranded DNA molecule. (b) Malonyl-ACP

Figure 2.3: a) A single stranded DNA molecule. Contains one repeating unit at the center,

with several R-groups (nucleotides). b) Malonic acid attached to acyl carrier protein.

(a) Defined polymer with 7 repeating units.

(b) The exact representation of the structure.

Figure 2.4: Defined polymer representation and its extended version.
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extra columns to define the atom and bond type, but also other chemical properties of the

atoms (e.g., charged atoms) and bonds (e.g., sterochemistry). The Mol tables also define

atom coordinates, allowing to store the relative position of the atoms for rendering tools

to draw molecules. The lack of coordinates would require the use of layout algorithms. For

complex molecules most of the layout algorithms fail to properly shape the spatial location

of the atoms.

The Chemical Markup Language (CML) is an XML based markup language to exchange

compounds. It is more human readable since all attributes are enclosed within tags and

it provides many options to store metadata (e.g., titles, comments, text formatting), but

also other relevant chemical properties such as spectral data.

A limitation of connection tables is the searching capability, since they are bulky, but

also not practical to share or for human interpretation.

The line notation formats are methods to represent compounds in a single string line.

This allows for an easier display, limited readability, and for searching purposes.

The InChI [53] string starts with the ”InChI=” prefix, followed by the version number.

Then it contains six layers separated by the symbol ”/” as separator (main / charge /

stereochemical / isotopic / fixed-h / reconnected layers).

Because of the detail of the InChI, the size of the string can go up to more than 500

characters, and the string uses a lot of numbers and symbols, in which are unfriendly to

search engines. To address this problem the InChIKey was created. The InChIKey is a

fixed 27 character string, that is generated from a InChI by using an hashing algorithm

function (the SHA-256) of the InChI string [122]. This string is just used for searching and

indexing purposes, since there is a collision probability, even though it is quite low.

The InChIKey also allows to rapidly compare two molecules in three distinct levels.

The string contains three blocks that are hashed from the connectivity, stereochemistry

and protonation layers. The first block is the connectivity layer, a mismatch implies that

two molecules have a different skeleton. The second block is the stereochemistry, two

InChIKey’s with identical first block, but with a distinct second block would imply different

stereochemistry. The last block is a single character that matches the protonation: the N
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character is used for the neutral state, then it moves backwards (M, L, K, etc) or forward

(O, P, Q, etc) up until twelve letters to define less or more protons. For a value higher or

lower than twelve protons the A character is used.

Since the InChIKey is an hash equality, it does not mean the original InChI is equal,

and neither can it be recovered from the InChIKey.

The Simplified Molecular Input Line Entry System (SMILES) [123] representation was

created in 1986 at the US Environmental Research Laboratory and later developed and

maintained by Daylight Chemical Information Systems, Inc 2. A community effort was

created to give an official definition of the SMILES known as OpenSMILES [94]. The

SMILES string allows simple definition of chemical structures by computing a spanning

tree over the structure graph, which only stores atoms and bond types. An advantage of

the SMILES format is human readability, while the major drawback is the non canonical

representation of molecules [92].

Both InChI and SMILES require auxiliary files or rendering algorithms to generate

atom coordinates to draw the molecules.

2.2.2 Representing Reactions

The representation of reactions is far more simple compared to the molecules. The common

method to define a reaction is just to describe its stoichiometry. While the molecular

structure describes the identity of a molecule, the identity of a reaction is defined by two

sets of compounds to describe the reactants and the products. The detailed reaction action

is described by the bond formation between the reactants and products.

The SMIRKS representation is an exchange format based on SMILES to describe re-

action transformations. It allows to encode the transformation between the reactants and

the products.

Some aspects may compromise the identity of a reaction. The protonation state of

the compounds, which may imply adding or removing proton molecules to balance the

2http://www.daylight.com/smiles/index.html
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KEGG Reaction: 2.7.1.40 (R00200)

ATP + Pyruvate←−→ ADP + Phosphoenolpyruvate

MetaCyc Reaction: 2.7.1.40 (PEPDEPHOS-RXN)

ATP + Pyruvate←−− ADP + Phosphoenolpyruvate + H+

MetaCyc Reaction: 1.10.3.14 (RXN0-5266)

O2 + 4 H+ + 2 an ubiquinolmembrane −−→ 2 a ubiquinonemembrane + 2 H2O + 4 H+
periplasm

KEGG Reaction: 2.7.7.7 (R00375)

dATP + DNA −−→ Diphosphate + DNA

Figure 2.5: The same reaction may have addition of protons due to the protonation state

of the participating compounds. Reactions may have the same compound in both sides of

the equation due to transport mechanisms. Polymerization reactions may have the same

compound in both sides, but representing different polymer units.

stoichiometry, makes the same reaction different in two different conditions.

Lumped reactions are used in some cases where the intermediates of a bioconversion are

not known (or not interesting for a given purpose). In these cases, a single reaction may be

used to summarize the entire set of conversions into a single reaction. Generic or abstract

compounds may describe abstract reactions, that represent combinations of biochemical

transformations between the family of the abstract compounds. Unlike metabolites, in a

biological perspective, the main interest to catalog reactions is also to associate them with

biological enzymes.

The reactions can be either metabolic or transporters (Figure 2.5). A transport reaction

moves a metabolite between cellular spaces (compartments) or onto the outside of the cell,

while metabolic reactions are other biochemical transformations. This characterization

is not that simple since some metabolic reactions may involve transferring a compound

between one cellular membrane to another or performing metabolism in two distinct cellular
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locations (i.e., mitochondria and cytoplasm).

In metabolic databases, most reactions are metabolic, since they represent the reaction

action of the enzymes not their actual activity within the cells since these can vary between

organisms. Therefore, in many cases the compartment of a transport reaction is an abstract

representation (such as inside/outside that can be either related to the cell it self or to an

organelle, e.g., mitochondria).

Another important aspect are the polymer compounds that were described earlier, since

a polymerization reaction may contain the same compound in both sides of the equation.

Here, we define basic reactions as those that have non repeated compounds in both sides

of the equation. These reactions represent most of the biochemistry in databases. For

modeling purposes, in the next chapter, additional reaction classifications are specified.

2.2.3 Biochemical Databases

Currently, the database list from the Nucleic Acid Research journal contains 36 active

databases for metabolic pathways, 21 of small molecules and 14 carbohydrates databases3,

while some of the databases share more than one category. These numbers are quite high.

For the purposes of metabolic engineering, the pathway and organisms databases are

the ones of higher interest since these organize information around biological entities, con-

necting biochemistry to organisms. Other databases specialized for certain metabolites are

relevant to provide finer detail about the chemical attributes of molecules.

The Kyoto Encyclopedia of Genes and Genomes [63] (KEGG) and MetaCyc are both

metabolic and genomic databases since they provide detailed information about metabolic

pathways of organisms.

KEGG is sub divided into several databases that are connected to each other, each

of these specialized into a specific topic. The KEGG LIGAND collection contains the

databases KEGG COMPOUND, GLYCAN, REACTION, RPAIR, RCLASS and ENZYME.

3Nucleic Acid Research journal database catalog: http://www.oxfordjournals.org/nar/database/

cap/

http://www.oxfordjournals.org/nar/database/cap/
http://www.oxfordjournals.org/nar/database/cap/
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These databases define the general biochemistry of metabolic enzymes. The KEGG COM-

POUND contains most of the small molecules that participate in the KEGG REACTION

database, a few specialized carbohydrate reactions use the KEGG GLYCAN molecules.

There is few redundancy between these databases.

The KEGG MEDICUS contains a set of databases oriented to health and pharma-

ceutical data. The KEGG DRUG database is a compound database specialized for drug

products in Japan, USA and Europe.

MetaCyc [16] is a database from the BioCyc consortium, where unlike KEGG, the

databases are specialized for a particular organisms (e.g., EcoCyc - Escherichia coli, Yeast-

Cyc - Saccharomyces cerevisiae, HumanCyc - Homo sapiens). MetaCyc is a generic

database that contains metabolic information adapted to all biological domains.

The Biochemical, Genetic and Genomic (BiGG) knowledge base provides pathway infor-

mation based on genome-scale metabolic models. The first version of BiGG (now referred

as BiGG1) was published in 2011.

The SEED platform [7] is a model reconstruction tool that allows to easily scaffold

genome-scale metabolic models from organisms complete genome, but it requires a library

of chemical reactions such as KEGG to assemble the network. This led the creation of

the ModelSEED database that is built based on a integration of KEGG, MetaCyc, BiGG

(version 1) additionally with a few genome scale models. The main purpose of the Mod-

elSEED database is to provide a dedicated resource for genome-scale metabolic model

reconstruction.

The BiGG and ModelSEED databases are both oriented for genome-scale metabolic

modeling, since both databases contain information for cellular compartments in the stoi-

chiometry of the reactions, transporter reactions and references to other models.

The Chemical Entities of Biological Interest [47] (ChEBI) contains many thousands

of detailed and curated chemical compounds with a chemical ontology, which later was

aligned with the Open Biomedical Ontologies (OBO) and Gene Ontology (GO) classifiers.

The purpose GO terms is to align gene function to a standard framework allowing cross

references between databases.
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The LIPID MAPS Structure Database [118] is a database dedicated to lipid structures.

Its motivation is to provide proper representation of lipids. Since lipids may have several

long carbon chains, it makes difficult for algorithms to draw a proper chemical represen-

tation. The database also implements a lipid classification system that splits the com-

pounds into eight groups (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids,

sterol lipids, prenol lipids, saccha- rolipids and polyketides). The database contains over

10,000 lipids and with their complete chemical representation.

The Human Metabolome Database [124] (HMDB) and the Yeast Metabolome Database

[61] (YMDB) are dedicated databases to the metabolome of the human body and the

baker’s yeast (Saccharomyces cerevisiae), respectively. HMDB contains more than 40,000

metabolites since it catalogs every known compound that can be found in the human

body. The main purpose of the database is to provide spectroscopic information about

these metabolites for metabolomics studies.

The endless number of biochemical databases provides a rich pool of knowledge to study

biological pathways, however the information is scattered between databases and exploring

every source is unpractical and time consuming. In this study, the most relevant databases

regarding to metabolic modeling are taken into account (Table 2.1). The mechanisms of

data access are covered in the implementation section.

2.3 Integration System Design

2.3.1 Introduction

The integration of data has been motivated by the need to provide a centralized unified

access to view multiple data sources, such as enterprise information systems, that enables

the integration and analysis of business processes, usually with the purpose to support

business intelligence for decision making.

The data integration process can be defined by four tasks: data understanding, stan-

dardization, specification and execution [45]. To study the data sources is the first task
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Table 2.1: Summary of databases related to biological compounds and reactions. M -

Contains metabolites. R - Contains reactions. ? - included in this study.

Database URL Data Type

KEGG ? www.genome.jp/kegg All domains of life M, R

MetaCyc ? metacyc.org All domains of life M, R

ChEBI www.ebi.ac.uk/chebi Biological Compounds M

LipidMAPS ? www.lipidmaps.org Lipids M

HMDB ? www.hmdb.ca Human Metabolome M

YMDB www.ymdb.ca Yeast Metabolome M

BiGG1 ? bigg1.ucsd.edu Genome-Scale Models M, R

BiGG ? bigg.ucsd.edu Genome-Scale Models M, R

ModelSEED ? modelseed.org Integrated M, R

MetRxn metrxn.che.psu.edu Integrated M, R

MNXRef ? www.metanetx.org Integrated M, R

BKM-react bkm-react.tu-bs.de Integrated R
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for data integration. The data profiling exercise involves the discovery and extraction of

the shape and meaning of the data [91]. Heterogeneous data sources may share identical

attributes, but they may also have different meanings.

Also, it is necessary to capture the data types and missing values. The identification

of classes is an important step to understand the type of objects of each resource and

their hierarchy. Given the previously mentioned resources, some of their attributes may

be common to all.

The design of an integrated schema allows to decide how to represent the data sources

in an unified view. This requires the identification of the standard representation methods

and which attributes to include or transform for the standard representation format.

Data warehouses are databases that usually consolidate distinct heterogeneous data

sources into a single unified schema. These tasks are done with the aid of an Extract-

Transform-Load (ETL) tool to populate the system. ETL tools usually consist of a set

of program scripts that perform tasks to reshape information from several sources into

the data warehouse. These tools are not exclusive to tasks related to data cleansing and

conformity, but they also include other relevant mechanisms related to data maintenance,

such as reporting and scheduling for periodic refresh of the information.

An alternative to this approach is to create virtual data systems. Usually, this is done

by implementing a query mediator system, which translates user queries to source queries.

This allows to assemble an integrated view without the requirement to materialize data.

Other systems use a middleware to translate messages through the third party data

sources, or just to perform routing (if all systems use same protocol).

A common problem to all of the mentioned approaches is the schema and system

heterogeneity. These implementation approaches only solve technical and architectural

problems regarding performance, maintenance and flexibility of these systems, while data

conformity must be unavoidably dealt with domain specific human expertise. Thus, the

domain of the information system has a huge impact in the design of the integration

methods.

The proposed integration system follows the data warehousing approach, since the
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Figure 2.6: Integration system overview. All modules operate with the central storage

unit.

purpose of the system is to be capable of generating an integrated catalog of biochemical

molecules and reactions. To build an integrated knowledge base of biochemical reactions,

an integration system is designed to be able to perform several necessary tasks.

The design of the system contains four subsystems: Data Acquisition, Knowledge,

Integration and Reporting (Figure 2.6). The core component is the central data storage

(CDS) module. The CDS stores all data collected from the source databases. Data in the

CDS are subject to cleansing and conforming processes, but no entity resolution is applied

since the main purpose of the CDS is to catalog all records of the source in a common data

space.

The data acquisition subsystem is a pipeline composed of several modules that execute

the extract, translate, load (ETL) tasks to shape data to the standards of the CDS. It is

the entry point of all data in the CDS.

The knowledge subsystem is responsible for the additional manipulation of existing

data in the CDS. As a general policy, information stored from the ETL process can not be

changed, but noisy or bad records can be flagged. This allows to track issues from source

databases, but also to execute cleaning and fixing tasks.

The reporting subsystem generates several types of reports, which allow to track the

content of the CDS. Finally, the integration subsystem provides the entity resolution meth-

ods to identify duplicates in the CDS. Their subsystems are covered in the following sec-

tions.
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2.3.2 A Generic Metabolic Repository

In this section several rules are defined to build the CDS module to be flexible but con-

sistent. The database should be able to accommodate new domains in the future, and be

able to host different shapes of instances, not limited to metabolites or reactions, but to

be expanded, for instance to genes, genomes and proteins.

Before describing the database rules, a general definition of the symbols that will be

used is provided:

Calligraphy typing M,R, E Special Sets

Capital letters M,R, S Sets

Lowercase letters m, r, e, o Variables or Objects

The square brackets 〈a, b, c, d〉 are used to define ordered tuples, while parenthesis

(a, b, c, d) represent the unordered tuples. The πn function returns the n-th element of

an ordered tuple. A dictionary (with function) is defined by {}. As an example, given a

dictionary dict = {attr : value}, then the key value pair is addressed as dict[attr] = value.

The {} is also used as the set builder notation (e.g., {x | x > 0}).

For simplification purposes the special sets are also used as functions, as an example

given a graph defined by G = 〈V , E〉, then V(G) is read as the V set of the G tuple (in this

case, V(G) = π0(G)).

The top level of the database is defined by the set of namespaces. Every object in

the system must belong to a unique namespace, which is defined within the N domain

(Example 1), where N is the set of all namespaces.

Example 1. Namespaces

Consider a system that defines objects of two distinct databases (Database1, Database2)

having two types of properties (Formula, InChI). Then N = (Database1, Database2,

Formula, InChI) would be the namespace domain of the system. No other properties or

database namespaces may be present in this system.

The namespace is an abstract label that groups sets of objects in the database. An

object (Definition 1) in the database can represent any entity of interest. Each object must
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belong to a single namespace, although objects can be replicated into different namespaces,

for instance to spawn different versions of the same database.

Definition 1. Object

An object is an ordered tuple o = 〈id, n, a〉, such that n ∈ N , id is a string identifier, a

is a set of arbitrary attributes of o.

The object represents an entity, that can be either a metabolite or a reaction, but also

properties such as a formula or an InChI (Example 1). The meaning of the object is given

by the namespace that it belongs to. The set V is the set of all objects in the system.

A relationship (Definition 2) is an edge between two distinct objects.

Definition 2. Relationship

A relationship is a directed edge represented by an ordered tuple e = 〈o1, o2, t, a〉, such

that o1, o2 ∈ V × V , o1 6= o2, t is the type of the relationship, and a is a set of arbitrary

attributes of e.

The interaction e between two objects is defined by t(e) = π3(e), where t is the type

of the interaction, such as an ownership (e.g, has formula, has inchi, etc), a relationship

(e.g, has crossreference to, instance of, etc), etc. As an example, the ownership of ob to oa

is defined as ea,b = 〈oa, ob, has an, {}〉. For simplification purposes, t and a are omitted

when not relevant (ea,b = 〈oa, ob〉).

Together, all objects and edges assemble an universal graph G (Definition 3), which is

the universal database for metabolites and reactions.

Definition 3. Universal Graph

Let V be the set of all objects, E the set of all edges, the universal graph G is defined as

G = 〈V , E〉

Duplicate identifiers can coexist in different namespaces (Definition 4), while objects

within the same namespace are not allowed to share the same identifier. Therefore, the

unique identifier is the pair 〈id, namespace〉 composed by an identifier and a namespace

(Example 2).
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Definition 4. Uniqueness

Let oa, ob ∈ V, such that, oa = 〈ida, na, attra〉 and ob = 〈idb, nb, attrb〉, then oa = ob if

and only if, ida = idb ∧ na = nb.

Example 2. Unique Objects

Given two objects o1 = 〈12345, PubChem, {}〉 and o2 = 〈12345, ChEBI, {}〉 although

they have the same identifier 12345, they are distinct objects since PubChem 6= ChEBI.

Instances in the database can be defined as a proxy. The function proxy : o→ Boolean

defines if an object is a proxy. Proxies are maybe objects that mark temporary placeholders

for future instances, since they may exist or not. They are essential to deal with database

referencing, since many databases reference others, but the actual information about the

references is only revealed if they are loaded afterwards from the original source. In some

cases, it is also possible that, for certain references, the referenced records may not exist

due to update cycles or referencing errors.

The universal graph G is actually a set of subgraphs, such that each defines a specific

domain of instances (i.e., metabolites, reactions). The metabolite graph Gm (Definition 5)

is the subgraph that defines the entire metabolite domain.

Definition 5. Metabolite Graph

LetM⊆ V ,Pm ⊆ V and Em ⊆ E, the metabolite graph is defined as Gm = 〈M∪Pm, Em〉.

The subgraph Gm defines all objects that represent metabolite instances M and their

property instances Pm together with their relationships Em.

The graph Gm is not bipartite since cross-referencing is represented by edges that con-

nect two metabolites. Properties p ∈ Pm also are allowed to be connected to each other

to define relevant relationships between biochemical properties (e.g, equivalent structure

formats).

A reaction entity works the same as the metabolite as they also must belong to a unique

namespace. The stoichiometry of the reaction is defined by having an edge between the
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reaction object and the metabolite object (Example 3) and the value is assigned in the

attributes of the edge.

Example 3. Stoichiometry

Let r be a reaction with the following stoichiometry a+ b −→ 2 c.

The stoichiometry would be defined with 3 edges ea = 〈r, a, left, {value : 1}〉, eb =

〈r, b, left, {value : 1}〉, ec = 〈r, c, right, {value : 2}〉

The reaction graph Gr (Definition 6) is the subgraph that defines the reaction’s domain.

Definition 6. Reaction Graph

Let M,R,Pr ⊆ V and Er ⊆ E, the reaction graph is defined as Gr = 〈M∪R∪Pr, Er〉.

Like in Gm, R is the set of all reaction objects and their properties Pr. The relationship

between M,R,Pr is defined in Er.

The subgraphs Gm and Gr together make the universal graph G, where V =M∪R ∪

Pm ∪ Pr and E = Em ∪ Er.

The universal graph G can be easily expanded to other domains of objects. In the

next chapter, the metabolic models will be introduced in the system, but also for future

reference, additional logical domains can be added such as genes and taxonomy.

2.3.3 Data Acquisition

The data acquisition subsystem is perhaps the bottleneck for expanding the integration

database, since each external resource requires dedicated methods to extract relevant in-

formation. The study and understanding of the domain logic of external databases is also

a manual and time consuming process because of schema heterogeneity.

In addition to these issues, another problem that integration systems have to tackle is

the syntactical heterogeneity of the third-party resources. Terms may have different names

in each of the external resource and it is important to capture which distinct terms are

synonyms and which equal terms are actually non-equal.
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The ETL pipeline requires three components, that two are specific for each individual

data source to be included in the CDS. The extract component is responsible to list and

pull instances from the data source. This depends on the physical location of the data, be

either local files or web API’s.

The transform component is responsible for transforming the extracted object into a

graph. At this stage, the object must conform to the standards of the CDS, which implies

the addition of the namespace tag and dissecting the properties into graph vertices.

Finally, the load component merges the extracted graph with the universal graph

database. This step is generic since all objects are already reshaped to fit the CDS rules.

Extract. Third-party data systems have their own specific methods and rules to access

the database information. The extraction phase is responsible for querying these systems.

External sources can be any stream of information, such as local files, web interfaces,

database systems, etc. For each external resource, it is necessary to develop or integrate

an extraction component.

The extraction component is responsible for two important functions: list and fetch the

records. The list function is responsible for returning a set of unique identifiers, which must

be valid for the fetch operation to pull from the database. The fetch operation produces

a raw entity e, that at this stage does not need to obey any rules of the integrated data

storage.

Transform. The transform function T : e → G ′ maps native e instances into graph

objects G ′ . Entities from the extract phase are transformed into a graph G ′ = 〈V ′, E ′〉.

The graph G ′ is usually star shaped, containing entities and properties objects with their

respective relationship edges.

Usually a single o ∈ V is non proxy (the entity itself) while the remaining are proxy

entities corresponding to the references of the extracted entity e.

The transform function is responsible for giving the namespace to each o ∈ V ′. This

would allow later to detect if these objects are already present in the CDS.
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Cleanse. Minor corrections are performed to conform a few of the properties. This

includes the translation of a few names, such as databases names (deduced from the initial

profiling step) into a controlled vocabulary that is in conformity with the global schema.

Chemical formulas are also corrected to a standard representation to avoid duplicates. It

is common that in a few cases the system is unable to translate or read properties because

of bad or invalid representation. In these scenarios, a warning is issued and logged, while

no correction is performed. Instances of each resource are reshaped to graph structures.

The properties of interest are translated into edge semantics.

However, the presence of resource specific attributes is also found in several of these

databases. The question is whether these attributes plays a significant role in the integra-

tion of the instances. As an example, the KEGG Ligand Compound database is referred

using distinct names in other resources, such as LIGAND-CPD or KEGG COMPOUND

accession in MetaCyc and ChEBI respectively. This problem also applies to attributes

and other properties. The understanding of third party domains is crucial to avoid future

problems that may compromise the integrity of the system, although later it is still possible

to fix and fuse the redundant classes. Another purpose of this task is to decide whether to

include the data source or to discard it in the system.

Load. Loading instances to the CDS is done by merging the G ′ = 〈V ′, E ′〉 from T with

the main graph G = 〈V , E〉. New objects are transfered to the graph, while for objects

present in both V ′ and V , the attributes of o ∈ V ′ are transferred to the previous instance

in V only if o is not a proxy. Then, the new edges in E ′ are all transferred to E .

2.3.4 Knowledge expansion

The cheminformatics module belongs to the knowledge subsystem, being an optional step

after the ETL pipeline and before the integration methods. The purpose of this module is

to apply computational methods to analyze and generate additional chemical data, such as

equivalent structures to exploit the interchangeability of chemical exchange formats [93].
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By generating alternative chemical representations from the existing metabolite prop-

erties, it allows to fill missing equivalent representations, but also to add relationships

between metabolite properties (e.g., a formula that is related to an InChI). It also allows

to perform structural validation between the structures annotated in the molecules, since

given a set of properties of a molecule, it is expected that they are related to each other.

The interchangeability of exchange formats is not always bidirectional. For instance,

an InChI is usually convertible to a SMILES representation, but not all SMILES may be

converted into an InChI. As an example, the generic R-groups are not supported by the

InChI representation, but are allowed in SMILES.

Due to the non canonical representation of the SMILES, an additional standardization

of SMILES structures is advised. The universal SMILES method [92] takes advantage of

the InChI canonization strategy to generate canonical SMILES. If a SMILES transforms

to itself, from the canonization method, it is considered universal.

The names of chemical compounds are usually referred in the literature as weak descrip-

tors to identify molecules, due to the ambiguity caused by the several synonyms. Structure

to name conversion is possible using the IUPAC naming system that allows to name or-

ganic molecules following the same philosophy of the InChI structure. The purpose of this

method is to implement a canonical name generating strategy, following the InChI princi-

ples. The name to structure methods allow to convert chemical names into structures by

using a controlled vocabulary, allowing to connect or generate their hypothetical structure.

Other properties, such as formula and InChIKey are also generated from the molecu-

lar structure. While they are unable to give the structural identity of a molecule, these

properties provide comparison methods to assess the similarity confidence.

The InChIKey hashes the InChI layers into three distinct blocks: the first includes

atomic content and the connectivity layer, while the second hash block is related to the

stereochemistry layer, and the last block is a single character, where N (neutral) stands for

the neutrally charged molecule and by increasing and decreasing the charge, the character

changes. Molecules with equal connectivity will share the first hash block, allowing for easy

comparison and grouping of compounds with similar connectivity or protonation states
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Figure 2.7: Lactate stereoisomers chemical properties and their relationships. Properties

are connected to each other based on the output of the cheminformatics tools.

(Figure 2.7).

For integration purposes, the main properties are the universal SMILES, InChI for

identity purposes, while InChIKey and chemical formulas are valuable for match confidence.

The expanding process is iterated and stops when every possible property is generated

and connected to related properties. The terminal properties are all of the properties

(Table 2.2) that are only generated (i.e., chemical formula, InChIKey), being the order to

scaffold additional properties as follows: Mol Format; Name; SMILES; InChI.

From a structural point of view, the chemical structure dictates the identity of a

molecule. A clustering of the properties allows to detect inconsistencies in the database

instances. In general, a single cluster of properties should be related to each molecule.

However, multiple clusters are also allowed if they only differentiate in the protonation of

the structure.
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Table 2.2: Property conversion table. I - InChI, K - InChI Key, S - SMILES, U - Universal

SMILES, n - Name, N - IUPAC Name, F - Molecular Formula, M - Mol Format

From \ To I K S U n N F M

I X X X

K

S X X X

U X X

n X

N X X X

F

M X X X

2.4 Integration

2.4.1 Biochemistry Integration

The integration pipeline is a cyclic process that may take many iterations. Staring with

metabolite clustering, this first step of the pipeline merges equivalent metabolite instances

of the M domain.

The second step unifies reaction instances, where the reconciliation of reactions is solely

dependent on the metabolite integration since their identity is based on the stoichiometry.

The following steps extract useful knowledge from the reaction sets, a common practice

in other reconciliations is to extract metabolite similarity from the unpaired metabolites

of the partial matching formulations [74, 9].

Finally, before the next iteration user input and evaluation is used to refine the next

cycle, and declustering methods may also be applied for a more conservative integration.

The product of the integration pipeline are reference sets that merge database references

similar to the MetaNetX unified reference space [90]. The assembly method materializes

the references into a consensus record that unifies the properties and attributes of the

clusters.
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Figure 2.8: Integration pipeline. The ETL pipeline populates the CDS, followed by the

knowledge expansion module to analyze and extend the chemical properties. In integration

of metabolites and reactions takes place at the end as an iterative cycles between both.

2.4.2 Integration of Metabolites

Integration of metabolites takes place by clustering all metabolite instances of m ∈M into

sub-sets Mi ⊆ M, where each is an integrated metabolite set, i.e. represents information

on a simple metabolite, or ideally seeks to do so.

The clustering rules of the instances are defined by the purpose of the integration. In

the following methods, two given metabolites are considered duplicates if they represent

the same molecule. This implies that the different protonation states of compounds are

considered to be equal.

The integration is calculated by pairwise entity resolution, i.e. merging pairs of enti-

ties, between all possible metabolites and assigning those numerical values (weights). A

similarity function φ : (a, b) 7→ R is defined, where a, b ∈M, that computes the similarity

score between two metabolites.

Definition 7. Identity ≡

Let m1,m2 be two metabolites in M and ω ∈ R+ a constant value, if φ(m1,m2) > ω,
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Figure 2.9: Metabolite clustering by pairwise matching.

then it is said that m1 is identical to m2, such that m1 ≡ m2.

The ω is a defined threshold to be set by the integration engine, defining the mini-

mum similarity score to consider two metabolites as duplicates. According to identity rule

(Definition 7), the challenge is to define the true φ function and optimal value for ω.

The set Γ (Equation 2.1) defines the space of all pairs of metabolites in M. Γφ is a

subset of Γ, being the space of all pairs of metabolites that are duplicates filtered by φ and

ω.

Γ = {(a, b) ∈M×M, a 6= b} (2.1)

Γφ = {(a, b) ∈ Γ | φ(a, b) > ω} (2.2)

The Γ set is a complete graph (Figure 2.9a) with all metabolites inM. Independently

of how many data sources are in M, every instance is subject to deduplication.

Each metabolic database may catalog thousands of instances and, thus, in a complete

graph the number of edges increases exponentially
n(n− 1)

2
for n vertices. It is computa-

tionally infeasible to calculate the score for all pairs given the size of M.
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For most of the edges e in Γ, it is likely that φ(e) ≤ 0 since most metabolites are totally

unrelated to each other (Figure 2.9b).

The FilterGammaSubset algorithm (Algorithm 1) computes the subset Γ′ of Γ that

contains only pairs of metabolites that might have at least one relationship in common.

The formula property is an exception and it does not count as an interaction, since it

cannot by itself define ≡ between compounds. Later, the formula is used to amplify or

diminish the overall score of the ≡.

Algorithm 1 Compute Γ subset

1: procedure FilterGammaSubset(M,Pm, E)

Input: M, Pm, E (the domain of metabolites, metabolite properties and edges)

Output: 〈VΓ, EΓ〉 (A graph Γ′ ⊆ Γ )

2: VΓ ← ∅ . Initialize empty vertice set

3: EΓ ← ∅ . Initialize empty edge set

4: for e ∈ E such that π2(e) ∈ Pm do

5: p← π2(e)

6: M ← ∅ . Initialize empty metabolite set

7: for e ∈ E such that π1(e) ∈M do

8: M ←M ∪ π1(e)

9: E ← {〈a, b〉 | 〈a, b〉 ∈ ℘(M)} . All combinations of a, b in M

10: VΓ ← VΓ ∪M

11: EΓ ← EΓ ∪ E

12: return 〈VΓ, EΓ〉

To define the φ function, previous integration methods are reviewed to assess the ex-

isting strategies for metabolite integration.

Molecular structural analysis should be the most reliable property for duplication de-

tection, which is used by the previous reconciliations (BKM-react, MetRxn, MetaNetX).

However, due to the integration goals, molecules that are presented in distinct protonation

states should be considered identical, which implies manipulation of the structure format
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to detect such occurrences. The BKM-react drops the layers related to the ionization state,

while the other two databases attempt to transform the molecular structures at a certain

pH value, allowing to standardize the InChI’s and SMILES’s.

The metabolite nomenclatures also contribute to the integration. However, the exact

mechanism in most of the integrations is not clearly detailed. The BKM-react states that

names and synonyms were combined, while the MNXRef applies an automated reconcilia-

tion when matches are found between names and molecular formula. MetRxn uses names

for curation purposes, being the names tokenized by highlighting stereo information (e.g.,

L-/D-, cis/trans, etc), or equivalences (e.g., ”-ic acid” and ”-ate”).

The reaction context strategy allows to infer equivalent metabolites by matching the

stoichiometry of the reactions. Given two reactions r1 and r2, if there is only a single

metabolite in the stoichiometry that differs if may hint a potential duplicate. This method

was used by MNXRef and MetRxn.

According to Bernard et al.[9], none of the previous integrations reported the use of

cross-references to integrated the databases (with the exception of the cross-references

between reactions in MetaNetX).

The standard similarity function (Equation 2.3) is a definition of φ to mimic previous

integration methods. The function involves three components: names, structures and

reactions. Each of the components are contribution functions that add up to the similarity

score, representing different properties used to create and weight links between pairs of

metabolites.

φstd = Nstd + Sstd +Rstd (2.3)

To mimic the exact approach for each method would be impossible for several reasons:

• It is not known exactly how the names of the compounds contribute for the integration

in many of the previous methods.

• It is also not clear which were the exact methods used to compute the InChI sub

layers or how the comparison is made.
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• The method used to standardize the molecules to a certain pH may involve different

tools, such as the commercial software Marvin.

• Most of the original datasets of these integrations are outdated versions which are

inaccessible.

To compare to existing methods all of the subcomponents of φstd are defined as binary

functions (e.g., Sstd : M×M 7→ {0, 1}) and ω is set to be 1, such that ma and mb are

equal if one of the components is true.

The structure function Sstd is 1 for every two metabolites that share the same connec-

tivity and stereo structure.

The reaction function Rstd is the feedback from the reaction integration. The contribu-

tion of this function is possibly 1 in the second iteration (and following) of the integration.

The name function Nstd is set to be undefined, since it is not known how exactly they

are defined in the other databases.

The major drawback of the φstd is that it lacks the interaction between each component.

This implies that each of the contribution functions are independent of each other, and a

single function is enough to declare if ma ≡ mb.

To improve the scoring method, the interaction between the functions is extended to

capture negative rules. This allows the scoring function to reject incorrect properties based

on the overall contribution of all other properties in the metabolites.

The improved functions are defined as follows:

The function N : (a, b) 7→ R (Equation 2.4) defines a name scoring method. The

positive name rules count the occurrence of name matches between a and b split into three

categories: matches between IUPAC names niupac, matches between exact strings nexact

and matches between similar strings nmod, each with their own weight, αn, βn, γn ∈ R.

The IUPAC names should have a higher score of all of the three, while the other should

have smaller scores. The matches between modified names only occur because of the

transformation and/or cleansing performed in the previous ETL phase. In this work only
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case insensitive matches are considered. It is known that for certain names (e.g., molecular

formulas), the context may change if the string is treated

The negative rule Nneg (Equation 2.5) takes into account the number of unmatched

names, but only if the number of synonyms ncount surpasses a certain ρn ∈ Z limit. Com-

pounds with only a single name have low match probability, even if they are true equals

due to many synonyms. Still, if the maximum number of synonyms increases, the expected

odds to have a positive match should be much higher if two compounds are truly equal.

N = nexact.αn + nmod.βn + niupac.γn +Nneg (2.4)

Nneg =

−κn if ncount > ρn ∧ (nexact + nmod + niupac) < 1

0 otherwise

(2.5)

To summarize, the N function take five parameters: αn, βn and γn are similarity

weights, the ρn defines the number of synonyms to utilize the negative rule, and the κn is

the penalty for failing the rule.

To evaluate structural similarity both InChI and SMILES are considered, each with a

positive (Equation 2.6) and a negative (Equation 2.7) component.

In fact, every molecular exchange format can be considered as a general structural data

comparison function
∑

stype S
+
stype +S−stype, but since only InChI and SMILES are regularly

used, the S functions were defined to cover only these two types (S±i for InChI and S±s for

SMILES).

S+
i/s =


α+
i/s if an exact match occurs

β+
i/s if there is a protonation mismatch

0 otherwise

(2.6)
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S−i/s =


−α−i/s if there is connectivity mismatch

−β−i/s if stereo mismatch occurs

0 otherwise

(2.7)

The positive part scores exact matches and partial matches (distinct protonation lev-

els). The negative parts penalizes different connectivities or stereos mismatches each with

individual scores.

S = S+
i + S−i + S+

s + S−s (2.8)

The final function S (Equation 2.8) sums the contribution of the molecular exchange

formats, the α± and β± weights allow to tune the strength of chemical representation in

the similarity score.

Two scenarios are considered for cross referencing (Equation 2.9) between databases: if

the reference is unidirectional, such that either only Ma references Mb or vice versa, then

a lower score value maybe considered, while if both reference each other a higher score can

be given.

X =

αx if reference is bidirectional

βx if reference is unidirectional

(2.9)

The molecular formula F : (a, b) 7→ R functions analyse the atomic composition of

the two compounds. Fully determined molecular formulas can match exactly (fexact) or

only mismatch hydrogen (fH). Molecular formulas matching with the R-group are given a

different weight (γf ) since it is not trivial to decide whether both R-groups have the same

meaning or not. As a special category, some formula strings may fail software parsing

(contain invalid atoms or have string descriptions in the middle), but in some cases they

are inherited from other databases (these formulas are represented as fbad and have a

separate score assigned).
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Overall, F is defined as:

F (a, b) = fexact.αf + fH .βf + fR.γf + fbad.ηf (2.10)

where fexact, fH , fR and fbad are the occurrences of exact matches, matches with exception

of hydrogen atoms, matches containing R-groups and matches between unparseable formula

strings, with their respective weights αf , βf , γf and ηf .

The reaction function takes into consideration the reactions where the two compounds

a, b participate. In this case, the negative feedback is given if two distinct compounds a

and b participate in the same reaction r.

Let r be any reaction in R, let e1, e2 be any edges in E , then if

∃r∈R∃e2,e2∈E [π1(e1) = π1(e2) = r ∧ π2(e1) = a ∧ π2(e2) = b ∧ e1 6= e2] (2.11)

This constraint implies that either the stoichiometry of r contains the metabolite twice

or simply a ≡ b is not true. The first is unlikely to happen, therefore this assertion is used

as negative feedback (Definition 2.12) scored by αr. In fact, this could also be considered a

strong negative feedback since merging elements within the stoichiometry of any reaction

may imply severe inconsistencies.

The reaction function also receives feedback from the integration of reactions. This is,

however, only possible after the first iteration of the integration process since an initial

integrated set of compounds is necessary to integrate the reactions. The R function is

revised in the next section to define the βr rule.

R(a, b) =


−αr ∃e1∃e2 [e1 6= e2 ∧ π1(e1) = π1(e2) = r ∧ π2(e1) = a ∧ π2(e1) = b]

βr if there is reaction integration feedback

0 otherwise

(2.12)

For curation purposes, users can manually group compounds into sets. This set of

compound sets is referred as a curated set. The function C (Equation 2.13) scores instances
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based on manually assigned groups in the curated set U . The positive feedback is given by

the score αc, when there is a set M ∈ U that contains both metabolites. A negative score

βc is given if the metabolites are found in two distinct sets in U .

C(a, b, U) =


αc if ∃M∈U [a ∈M ∧ b ∈M ]

−βc if ∃M1,M2∈U [a ∈M1 ∧ b ∈M2 ∧M1 6= M2]

0 otherwise

(2.13)

The last function Z(a, b) handles the exceptional attributes that may be relevant to

identify compound identity (e.g, database specific attributes). For instance, BiGG1 and

BiGG are related to each other, therefore they are merged by simple a identifier (i.e., BiGG

abbreviation) comparison. A few string transformations also take place since in the recent

BiGG database, where the dash character was replaced by double a underscore.

φ = (N + S +X +R + Z + C).(1 + F ) (2.14)

The integrated metabolite space is defined in the set I (Definition 8), the final product

of the integration method that contains sets of metabolites M that are the integrated

metabolite clusters.

Definition 8. Integrated Metabolites

I = {M ∈ ℘(M)\∅}

The integrated metabolite domain is actually given by the connected components (CC)

of Γφ. Therefore, the function CC(Γφ) = I performs the clustering of the metabolites.

2.4.3 Integration of Reactions

The reaction properties Pr are not suitable for integration. Indeed, unlike metabolites,

most of the reactions have little to zero attributes. The name and the Enzyme Commission

Number (EC number) are usually the only properties found for reactions.
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The EC number is a system to classify enzymes based on their biochemical activity.

It consists of four positive integers (i.k.j.l), displayed hierarchically. The first number

represents the major function of the enzyme, of a total of six classes (Oxidoreductases,

Transferases, Hydrolases, Lyases, Isomerases, Ligases). The second level indicates the

functional groups that the enzyme is acting upon (e.g, CH-OH groups), while the two

remaining numbers characterizes the cofactors (e.g., NAD/NADP) and substrates.

A problem of this classification method is the lack of specificity. As an example, the

EC 1.1.1.1 which represents the role of an alcohol dehydrogenase is assigned to more than

10 reactions.

Two reactions are said to be equal if they have equivalent reaction stoichiometry. This

implies that reactants and products are the same and the coefficients are also equivalent.

The reversibility of the reaction is defined by several factors. In most studies, the

Gibbs free energy of the reaction is used to decide if a reaction is reversible or irreversible.

However, enzyme kinetics and substrates concentration may also play a role to decide

whether a reaction is bidirectional or unidirectional [4].

Because of this, many databases do not have a defined reversibility for reactions. There-

fore, the distinction of product and reactant by assuming the original direction of the re-

action is many times ambiguous and pointless. Instead, the reactants and products are

defined as left (LHS) or right (RHS) components of the stoichiometry (Definition 9). The

assignment of the molecules to either left of right is purely based on the original position

of the compounds found in the stoichiometry of the external databases.

Definition 9. Reaction Stoichiometry

Let StoichEdges(r, E) = {e | (∃e∈Er)[π1(e) = r ∧ ns(e) ∈ {left, right}]} be the set of

all stoichiometry edges of a reaction r.

The stoichiometry of a reaction r is an ordered tuple, where Stoich(r, E) = 〈LHS(r, E),

RHS(r, E)〉, such that:

LHS(r, E) = {〈π2(e), value(e)〉 ∈ M× R | e ∈ StoichEdges(r, E) ∧ t(e) = left}

RHS(r, E) = {〈π2(e), value(e)〉 ∈ M × R | e ∈ StoichEdges(r, E) ∧ t(e) = right}
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where, t(e) is the type of the edge. Both LHS and RHS are ordered tuples of a metabolite

and a positive real value.

The stoichiometry is defined by an ordered tuple containing two unordered sets. The

Stoich(r, E) function (Definition 9) assembles the tuple from the edges E . For simplifica-

tion, in the Stoich(r, E) function, the global parameter E is omitted, and the function call

is rewritten as Stoich(r).

The equality of two reactions if given by the equality function ('), which is true if

there is a match between both left and right sets of their stoichiometry.

Definition 10. Reaction Equality

Let s(ra) = 〈LHSa, RHSa〉 and s(rb) = 〈LHSb, RHSb〉, then:

s(ra) ' s(rb) if and only if

(LHSa = LHSb ∧RHSa = RHSb) ∨ (LHSa = RHSb ∧ LHSb = RHSa)

The stoichiometry definition Stoich(r) (Definition 9) is insufficient to integrate reactions

from distinct domains for two reasons:

• Metabolites in distinct domains have an unique identity (Definition 4), therefore the

stoichiometry of reactions with metabolites in different namespaces are never equal.

• In some cases, it is necessary to exclude irrelevant compounds; the proton (H+) is

a common example of exclusion since it is added to the stoichiometry based on the

protonation of the compounds to balance the reaction.

The integrated stoichiometry substitutes every single metabolite with the integrated

metabolite domain function I : M 7→ ℘(M). This expands single metabolites m into

metabolite sets M that map all metabolites of m that are identical (clusters).

Definition 11. Reaction Integrated Stoichiometry

IntegratedStoich(r, I,X ) = 〈LHSI(r, I,X ), RHSI(r, I,X )〉, where:

LHSI(r, I,X ) = {(I(π1(p)), π2(p)) ∈ ℘(M)× R | p ∈ LHS(r) ∧ π1(p) /∈ X}

RHSI(r, I,X ) = {(I(π1(p)), π2(p)) ∈ ℘(M)× R | p ∈ RHS(r) ∧ π1(p) /∈ X}
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The IntegratedStoich(s, I,X ) (Definition 11) expands the stoichiometry Stoich(r) by

replacing the metabolites in the tuples with metabolite sets. This allows to compare the

reactions if they share the same metabolite sets in the stoichiometry.

The exclusion set X defines the metabolites to be excluded from the stoichiometry. For

the integrated stoichiometry, X is replaced by X I =
⋃
x∈X I(x) that expands the excluded

metabolites to their respective integrated sets.

The reaction sets are added to the integrated space I (Definition 8) expanding the

sets of integrated instances. The stoichiometry also gives additional information on the

compounds. Let m1, m2 be two distinct metabolites in M, if I(m1) = M1 and I(m2) =

M2. If there are two reactions that have partial stoichiometry match with the exception

of m1 and m2, this might imply that m1 ≡ m2.

Example 4. Partial Reaction Matching

Let m1,m2 ∈ M, such that m1 6= m2, and I(m1) = M1, I(m2) = M2. Let r1, r2 ∈ R,

such that r1 6= r2.

Let sI(r1) = 〈 (〈M1, v1〉, p1), (p2, p3)〉, and sI(r2) = 〈 (〈M2, v2〉, p1), (p2, p3)〉.

If v1 = v2, the sI(r1) = sI(r2) if and only if M1 = M2.

The singleton sets of partial stoichiometry generate a complementary set of integrated

metabolites that are candidate merges. Sets that contain a single compound for each

namespace may give strong evidence of possible duplicates.

Still it is known that it is possible for two distinct reactions to differ only in the product.

As an example, KEGG reactions R10950 and R03427 differ only in one metabolite, and

thus this serves only as a possibility.

The SingletonMiss (Algorithm 2) detects all sets of integrated stoichiometry that

Stoich(ra) ' Stoich(rb) if one of the metabolites in either LHS or RHS is dropped from

the stoichiometry. The algorithm returns two maps: the reactions groups the reactions

such that Stoich(ra) ' Stoich(rb) is only true if one of the metabolites is dropped, the

metabolites groups the compounds that were dropped from the stoichiometry.

The Ic set is the integrated set that is assembled from the metabolite sets of the
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metabolites map from the SingletonMiss. These are all hypotheses of unintegrated

metabolites that were not merged in the previous methods with shared reaction stoichiom-

etry (with exception to themselves).

Ic extends the previous reaction contribution function R (Equation 2.15) with the βr

parameter given two metabolites found within the same complement set if theres is a unique

namespace for each.

R(a, b, Ic) =



−αr ∃e1∃e2 [e1 6= e2 ∧ π1(e1) = π1(e2) = r ∧ π2(e1) = a ∧ π2(e1) = b]

βr Ic(a) = Ic(b) ∧ size(Ic(a)) =

size({N (x) | x ∈ Ic(a)})

0 otherwise

(2.15)

The reaction integration is the last step of the integration cycle. Further iterations

should include curation feedback.

2.5 Implementation

The integration system is implemented through a JavaTM7 library that contains several

module (Figure 2.10). The core module consists on basic and generic components and

interfaces of the entire system (e.g., Metabolite, Reaction).

The biodb contains resource specific implementations of entities and data access meth-

ods (e.g., KeggCompound, BiGGMetabolite, etc).

The chemanalysis module implements all cheminformatics functions using several li-

braries. The commercial software Marvin allows to convert defined structures to names,

but the reverse is also possible. The OPSIN library [81] allows to parse molecule names to

generate InChI structures. The Chemistry Development Kit [117] (CDK) is a Java chem-

informatics library that provides several parsers to interpret chemical exchange formats,

but also includes the JNIInchi library to read and generate InChIKeys.
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Algorithm 2 Groups integrated stoichiometry having a single unintegrated metabolite.

1: procedure SingletonMiss(R, E , I,X )

Input: R reactions, E edges, I integrated sets, X metabolite exclusion

Output: A map reactions : S 7→ R that maps the partial stoichiometry to reaction

sets. A map metabolites : S 7→ M that maps the partial stoichiometry to metabolite

sets

2: for r ∈ R do

3: s← IntegratedStoich(r, I,X )

4: L← ∅ . L is the left side filtering all singleton M

5: R← ∅ . R is the right side filtering all singleton M

6: Z ← ∅ . Z is the set of singletons

7: for 〈M, v〉 ∈ π1(s) do . Filter left pairs

8: if |M | 6= 1 then

9: L← 〈M, v〉

10: else

11: Z ← Z ∪M

12: for 〈M, v〉 ∈ π2(s) do . Filter right pairs

13: if |M | 6= 1 then

14: R← 〈M, v〉

15: else

16: Z ← Z ∪M

17: s′ ← 〈L,R〉

18: if |Z| = 1 then

19: reactions[s′] = reactions[s′] ∪ r

20: metabolites[s′] = metabolites[s′] ∪ Z

21: return reactions,metabolites
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biosynth-framework

core chemanalysis

integrationbiodb
org.neo4j

org.springframework

loggers, commons, etc

org.openscience.cdk

org.jgrapht

uk.ac.cam.ch.opsin

Figure 2.10: The pipeline and methods are implemented as a Java library (biosynth-

framework) with several modules.

The integration module provides the interfaces and methods for the integration pipeline,

here the CDS access methods are also implemented while it is designed to be independent

of the biodb.

2.5.1 Graph Database Systems

The flexibility of the database is one of the most important requirements of the CDS system.

Biological entities and their functions are not trivially characterized. It is common that

databases have a set of records with lack of literature evidence or just to simply to support

an hypothesis, which in turn makes the data highly volatile and subject to future changes.

Recently, graph databases gained more attention in data integration approaches. Since

graphs are common strategies to define relationships, the graph storage model suits the

needs for the data complex heterogeneous models allowing for easy ad hoc addition of new

relations [119].

In recent years, there is a increasing popularity of using graph databases for bioinfor-

matics application, since they have proven to be easier to maintain, while having much

higher speed up gains for extensively relational queries [56, 70, 49].
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The neo4j graph database is used to build the CDS. Like most of the NoSQL databases,

neo4j offers a flexible schema. The addition of new entities and attributes can be easily

achieved with little impact in the database performance, allowing an incremental schema

design to adapt the needs of the data.

Each record in neo4j databases is either a node (vertex) or relationship (edge). Both

nodes and relationships are allowed to have a set of arbitrary properties, while nodes

are allowed to have several Labels and relationships may only be assigned to a single

RelationshipType. In order to organize the database information, a set of rules is applied

to define a simple generic data schema to fit all the data requirements.

Each neo4j Node and Relationship must have a unique numeric identifier, being the ids

of the objects stored in the properties of the node as a string attribute.

To define the namespace of the object, a Label is assigned to the Node, and in its

properties the namespace string attribute marks the Label that corresponds to the object

namespace (since Nodes are allowed to have several Labels).

The central data storage defines a relationship and class hierarchy for the domain

of metabolites and reactions (Figure 2.11). Since each node may have several labels,

the abstract labels are used to define the class of the objects. These are the supersets

of M, R, Pm, Pr that are labeled as Metabolite, Reaction, MetaboliteProperty and

ReactionProperty, respectively.

A vocabulary is defined to represent the interactions between the instances. These are

the meanings given by the e ∈ E . As an example, given e = (m, p), such that m ∈M and

N (p) = InChI, the relationship e is limited to has inchi.

The Cypher query language is a neo4j specific query language to manipulate the

database. For the uniqueness constraint, the following query allows to force the database

to refuse duplicate attributes within a Label (n):

∀n∈N CREATE CONSTRAINT ON (o:n) ASSERT o.id IS UNIQUE

Relational queries can be easily achieved using the following cypher expression:

MATCH (ϕ1)-[ψ1]->(ϕ2) RETURN (τ)
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Figure 2.11: Neo4j Labels defined for the CDS namespace domain. Metabolite, Reaction,

MetaboliteProperty, ReactionProperty represents the sets M,R,Pm and Pr, respectively.

Light Green - Property namespaces. Yellow - Database namespaces. Additional names-

paces can be added if needed (e.g., Metabolic Pathway).
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The ϕ1 and ϕ2 are nodes matching predicates with the following pattern:

ϕ = variable:Label1:. . . :Labelx {attribute1:value1, . . . ,attributey:valuey}

allowing to filter nodes by label and attributes. As an example, to select a particular set

of metabolites of a database, the following expression would be sufficient:

MATCH (m:LigandCompound) RETURN m

or to select a particular compound:

MATCH (m:LigandCompound {id:"C00022"}) RETURN m

The omitted arrow block is the traversal condition that matches if connected to the

node predicate ϕ2 and all the connections satisfy the predicate ψ1. As an example, the

following expression catches every compound in the system that have a particular chemical

formula:

MATCH (m:Metabolite)-[:has formula]->(m:MolecularFormula {id:"C3H4O3"})

RETURN (m)

In this case, this would allow matching graph paths of length 1 (although the result

could be a star-shaped subgraph the maximum diameter would be 1), the expression can

be extended with the addition of arrow blocks . . . -[ψ2]→(ϕ3)-. . . -[ψj]→(ϕj+1).

Alternatively, the reaction predicate accepts a multiplicity value:

MATCH (m:LigandCompound {id: "C00022"})-[:has reference*]-(n:Metabolite) RETURN (n)

MATCH (m:LigandCompound {id: "C00022"})-[:has reference*..3]-(n:Metabolite) RETURN (n)

The first expression catches the entire subgraph that connects the KEGG Compound

C00022 with other metabolites by cross-referencing, while the second limits the search up

to a diameter of 3.

The integration exploits the capability of the Cypher query language to perform all the

necessary queries, to implement the proposed integration methods.
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2.5.2 Extract and Translation Methods

The implementation of extraction methods is considered the main bottleneck for the expan-

sion of the integrated metabolic database. Third-party resources provide their own data

access methods and protocols to expose their data, while most of the modern platforms

implement a REST API, but the output format and schema may be different for each of

the external resources.

The addition of a new database to the system implies the implementation of a specific

DataAccessObject (DAO) and a Transform function (Figure 2.12). These are the only

components that are required per data source.

The DAO is responsible for listing and extracting database specific objects e from

third-party resources. The entities extracted from the DAO do not need to conform the

standards of the CDS universe, while its main purpose is to interpret and extract correctly

the desired attributes.

The transform function T : e 7→ G conforms the raw entities into the respective graph

objects o and edges e. The transform function is responsible for giving the namespace of

each o. A dictionary to conform referenced databases is needed to unify the different names

given by the databases (e.g., KEGG-CPD, KEGG Compoumd, Ligand Compound).

The ETL pipeline is designed to only integrate the relationships of the loaded instances,

while integration of the metabolites and reactions is done afterwards.

The cleansing is only performed after the transformation (Figure 2.13) and it is respon-

sible to fix the properties of the transformed instances. The need to implement a cleansing

system is to perform minimal standardization for the properties to avoid proliferation of

equivalent attributes. As an example, the atom order of the chemical formulas can be

rearranged in several ways (e.g., H2O,OH2, H2O1, O1H2). In fact, all the properties could

be loaded as they are, then the cheminformatics subsystem could unify all the properties

in the system, but many of these occurrences would be trivial.

The formulas are rewritten to a standard atom order using the CDK library. The

MolecularFormulaManipulator is used to rewrite the formulas with the getMajorIsotope-



2.5. IMPLEMENTATION 51

,dao : DataAccessObject<E>

EtlExtract<M>

+get(id : string) : M
+list() : set<string>

<<Interface>>
DataAccessObject<E>

+transform(entity : E) : G

<<Interface>>
Transform<E, G>

+load(graph : G) : int
+exists(id : string, namespace : strin

<<Interface>>
Load<G>

+cleanse(graph : G) : G

<<Interface>>
Cleanse<G>

+etl() : set<int>

EtlPipeline<E,G>

KEGGCompoundDao

+list() : set<string>
+extract(id : string) : E

<<Interface>>
Extract<E>

KEGGCompoundTrasnform

-cheminformatics

DefaultGraphCleanse

,service : GraphDatabaseService

Neo4jEtlLoad

A data access object is needed for each

Figure 2.12: The ETL pipeline requires a DAO and Transform function for every data

source. Databases that contain both metabolites and reactions count as two distinct data

sources.

MolecularFormula function. The names are also modified to lower case to minimize the

noise in the central database, but for all modifications, the original value is stored in the

attributes of the e and flagged as corrected.

The current library implements DAO and Transform objects for several pathway and

metabolite databases. The details era given as follows:

KEGG: Kyoto Encyclopedia of Genes and Genomes The KEGG database has a

REST API to fetch its data. The only format given is a semi structured text file (Figure

2.14).

A parser was developed to split the content from the text file and to extract the at-

tributes of each record. Without a defined schema, it is not trivial to detect the existing

attributes of all the records and their possible data-types or missing values.

The API exposes a simple REST access:

http://rest.kegg.jp/<operation>/<argument>[/<argument2[/<argument3> ...]]
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loop

[For each identifier 6idy]
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1.9: cleanse6Gy

1.7: transform6Ey

1.5: extract6idy
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1.2: set of identifiers

1.1: list

Figure 2.13: The ETL pipeline. The extract component returns all identifiers of a third-

party database and loops for each the ETL process.
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For extraction, only the list and get operations are needed.

The KEGG database is split into three sets, corresponding to compounds, glycans and

drugs. Each of these records have a specific starting prefix capital letter, C, G, and D

respectively, and R for reactions. Each database is stored in a different namespace.

MetaCyc: Metabolic Pathway Database The BioCyc [65] collection covers several

databases known as pathway/genome databases (PGDBs). The MetaCyc [16] PGDB is

the reference database of Biocyc covering the metabolism of the other organism specific

PGDBs (e.g., EcoCyc, YeastCyc, HumanCyc).

The PGDBs are created and managed by the Pathway Tools [66] platform that provides

a query API to retrieve and search data in a XML format. The BioVelo [77] query processor

is a specific query language to allow complex queries over the Pathway Tools relationship

schema, available in:

https://websvc.biocyc.org/xmlquery?[x:x<-[PGDB]^^[CLASS]]

The individual objects are obtained from the xmlget function:

https://websvc.biocyc.org/getxml?[PGDB]:[OBJECT-ID]

For the MetaCyc database, the PGDB is assigned to META but the access to other

databases uses the same interface just by changing the PGDB (e.g., ECOLI - Escherichia

coli, YEAST - Saccharomyces cerevisiae, HUMAN - Homo sapiens),

BiGG: Biochemical Genetic and Genomic knowledgebase The BiGG database

is split into the old BiGG (BiGG1) [110] database4 and the latest BiGG [68] database5.

Unlike other genome pathway databases, the BiGG databases are built based on published

genome-scale metabolic models. The early BiGG1 database was built by merging 10 mod-

els, while the recent BiGG contains more than 80 models with standardized identifiers and

a public API.

4http://bigg1.ucsd.edu/
5http://bigg.ucsd.edu/
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ENTRY C06142 Compound

NAME 1−Butanol ;

n−Butanol ;

Butan−1−o l

FORMULA C4H10O

EXACT MASS 74.0732

MOL WEIGHT 74.1216

REMARK Same as : D03200

REACTION R03544 R03545 R11343 R11344 R11448

PATHWAY map00650 Butanoate metabolism

map01120 Microb ia l metabolism in d i v e r s e environments

map01220 Degradation o f aromatic compounds

ENZYME 1.1 .1 . − 1 . 1 . 2 . 9 1 . 1 . 5 . 1 1 1 . 1 4 . 1 3 . 2 3 0

BRITE Pharmaceutical a d d i t i v e s in Japan [BR: br08316 ]

S o l u b i l i z a t i o n agent

D03200 [ 101088 ] Butanol

So lvent

D03200 [ 101088 ] Butanol

DBLINKS PubChem: 8398

ChEBI : 28885

ChEMBL: CHEMBL14245

KNApSAcK: C00035814

PDB−CCD: 1BO

3DMET: B00907

NIKKAJI : J2 .374D

ATOM 5

1 C1b C 24.4358 −15.4702

2 C1b C 23.2158 −14.7756

3 C1b C 25.6384 −14.7639

4 C1a C 22.0074 −15.4761

5 O1a O 26.8526 −15.4702

BOND 4

1 1 2 1

2 1 3 1

3 2 4 1

4 3 5 1

///

Figure 2.14: KEGG Compound - C06142 (n-butanol), an example of the KEGG text

format. Attributes are separated by fixed space columns.
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abbrv name formula c cmp kegg id cas id bigg id found in

glu-D D-Glutamate C5H8NO4 -1 [c] C00217 6893-26-1 34285 1,10,3,4,5,7

pre6b Precorrin 6B C44H49N4O16 -7 [c] C06319 1800230 10,4

23dhb 2,3-Dihydroxybenzoate C7H5O4 -1 [c] C00196 303-38-8 34227 1,5

ru5p-L L-Ribulose 5-phosphate C5H9O8P -2 [c] C01101 36809 1,10,5,7

18harachd 18 hydroxy arachidonic acid C20H31O3 -1 [r] 2300206 2

ca2 Calcium Ca 2 [e], [c], [p] C00076 7440-70-2 33764 10,2,5,9

lpp lipoprotein XC16H30O1 0 [p] C01834 2707630 5

Figure 2.15: Example of BiGG1 CSV records. abbrv - abbreviation, c - charge, cmp -

compartment, found in - 1) E. coli iJR904; 2) H. sapiens Recon 1; 3) H. pylori iIT341; 4)

P. putida iJN746; 5) E. coli iAF1260; 6) S. cerevisiae iND750; 7) S. aureus iSB619; 8) E.

coli textbook; 9) M. barkeri iAF692; 10) M. tuberculosis iNJ661;

The BiGG1 database allows to download the entire database to a file with the CSV

format (Figure 2.15). However, a profiling step is still required to determine the data-type

of each column. Some columns may be defined as single values (strings, integers, decimals)

or lists of entities (e.g., compartment, found in).

The latest BiGG provides a documented REST API to browse and fetch data in the

JSON format. The list of all metabolites and reactions can be accessed through REST

web calls:

http://bigg.ucsd.edu/api/v2/universal/reactions

http://bigg.ucsd.edu/api/v2/universal/metabolites

HMDB: The Human Metabolome Database Some databases are oriented to a spe-

cific species. In the case of the HMDB [124], it is dedicated to metabolites found in the

human body. The HMDB is contains only metabolite information, but with an enriched

set of features such as, sprectroscopic, quantitative, analytic and physiological information

about the human metabolome.

HMDB allows to bulk download the entire dataset in XML format from their web page.

LIPID Metabolites and Pathways Strategy The LIPID MAPS database is dedi-

cated to a specific class of metabolites which are the lipids. The purpose of this database
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is to provide a better classification system for the lipids, while focusing also in the chemical

structure of these and the ability to draw such complex structures.

Lipids usually contain large chains that are troublesome to draw and display using

current methods to generate atom coordinates, such that for the same lipid it is common

to be displayed in many different conformations in distinct resources.

The LIPID MAPS database can be bulk downloaded in the SDF format.

Model SEED The ModelSEED [7] database was developed to connect biochemical reac-

tions to genome annotation for the purpose of model reconstruction. The reactions in the

ModelSEED database are assigned to particular gene roles, which are given by the RAST

annotation systems, allowing to directly link the metabolic function from the genome an-

notation.

The metabolic information of the ModelSEED database can be found in their github

repository6 in both TSV and JSON formats.

2.6 Results

2.6.1 Building an integrated metabolite database

Here, an integrated metabolic database is generated using the implemented pipeline de-

scribed in the previous sections. Each step of the pipeline is detailed with a discussion in

the following sections.

The implemented ETL modules are ran to load several external resources into the CDS

(Table 2.3). At the time of writing, most of the databases collected match the latest

versions available.

It is possible to observe that there is a significant number of proxy instances in the CDS

after the ETL step. This may imply that there is a certain lack of synchronization between

resources, since a proxy is usually caused by database referencing to a non existing entity

6https://github.com/ModelSEED/ModelSEEDDatabase
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Table 2.3: Biochemical resources in the final integrated database

Resource Version Type Format Instances Proxies

KEGG Compounds 84.0 (October 1, 2017) REST text 18.111 443

KEGG Glycans 84.0 (October 1, 2017) REST text 11.015 2

KEGG Drugs 84.0 (October 1, 2017) REST text 10.440 0

MetaCyc 21.1 (August 15, 2017) REST xml 18.242 1343

BiGG1 2010 (discontinued) dump CSV 2.835 255

BiGG 1.4 (October 14, 2017) REST json 6.215 34

ModelSEED 190fb3e (master) GitHub json 27.693 0

LIPID MAPS 6Dez16 dump SDF 40.772 10

HMDB 3.6 (2014) dump json 41.758 11

in another resource. In some cases, this could also be related to bad referencing (e.g.,

malformed identifiers in the source databases).

Most of the BiGG1 proxies have origin on the ModelSEED instances. A closer analysis

reveals that these are references to external metabolic models that were not included in

BiGG1. However, in the ModelSEED they were assigned as BiGG1 metabolites.

The majority of MetaCyc proxies came from ModelSeed (around 1000), but also both

HMDB and BiGG have referenced around 100-200 deleted records. Databases that have a

higher number of proxies are also more popular, since for both KEGG and MetaCyc they

are subject to regular updates, and other databases are unable to keep up with the regular

update cycles.

Regarding the integration logic, the proxy records do not take part in the integration

methods since they contain no information except the origin of the reference.

A summary of raw attributes (Table 2.4) allows the identification of type of attributes

found in the raw instances. Of all the attributes, the name and formula have regular

presence in most of the collected instances, with the exception for the KEGG Glycan

database, which does not provide any molecular formulas (instead it provides the sugar
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composition). Many other compound characteristics are not taken into account for the

integration methods. These attributes can be inherited in the final database since they are

domain specific.

To evaluate the designed integration methods an instantiation of the parameters is

defined ignoring manual curation (Table 2.5). The curated compound sets are used later

to compare against the predicted integration, the databases used for integration are the

KEGG (compounds only), MetaCyc, and both the BiGG and BiGG1 databases. These are

the main metabolic pathway databases and they contain both reactions and metabolites.

Since the BiGG database uses references from MetaNetX, these are removed from the

system. The BiGG1 references were kept.

The integrated reference space of MNX is used to compare against the results from the

implemented methods in this work.

As of today, there are three versions of the MNX (version 1.0, 2.0, 3.0), but only the

last version is used (Figure 2.16). The MNX integration suffered many modifications from

version to version, and it is possible to see a significant increase of the total of instances, but

also in the latest version many discontinued databases were discarded from the integration.

In fact, the MNX contains many databases not studied in this work. Only the compound

instances that were found within our metabolite domain (M) are considered. The instances

of other databases are removed from the MNX set.

The latest version of MNX discarded the first version of BiGG (BiGG1), for comparison

purposes the BiGG1 database is discarded from the predicted sets.

For integration evaluation purposes, a set of curated integrated metabolites was man-

ually annotated to compare against the automated integration. The set consists on the

integration of KEGG Compound, MetaCyc, BiGG1 and BiGG, covering a total of 782,

785, 761, 761 metabolites, for each of the databases respectively.

All the curated metabolites participate in at least one reaction, since these are the most

relevant compounds for the integration.
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Table 2.4: Frequency of the raw attributes collected from each of the resources. MS -

ModelSEED, MC - MetaCyc, LC - KEGG Compound, LG - KEGG Glycan, LD - KEGG

Drug, HM - HMDB, B - BiGG, B1 - BiGG1

Attribute MS MC LM LC LG LD HM B B1 Type Mapping

name 1.00 1.00 0.78 1.00 0.12 1.00 0.99 1.00 1.00 String Name

synonyms 0.22 String Name

systematicName 0.87 String Name

iupacName 0.99 String Name

abbreviation 1.00 String

formula 0.82 0.71 0.99 0.96 0.82 0.99 0.93 1.00 String Formula

composition 1.00 String

inchi 0.70 0.99 0.99 String InChI

inchiKey 0.99 String InChIKey

inchikey 0.99 String InChIKey

smiles 0.86 0.99 String SMILES

structure 0.78 String InChI

charge 0.86 1.00 Number

defaultCharge 1.00 Number

mass 0.88 0.94 Number

exactMass 0.99 Number

cmlMolWeight 0.72 Number

molWeight 0.72 Number

averageMolecularWeight 0.99 Number

monisotopicMoleculateWeight 0.99 Number

deltaG 0.97 Number

deltaGErr 0.97 Number

gibbs 0.70 Number

description 1.00 String

oldIdentifiers 1.00 String

internalId 1.00 Number

tissues 0.15 String

ontology origins 0.89 String

ontology status 0.99 String

ontology biofuncions 0.79 String

ontology applications 0.85 String

ontology cellular locations 0.94 String

biofluids 0.13 String

secondary accession 0.13 String

pubchemSubstanceUrl 0.92 String

lipidMapsCmpdUrl 1.00 String

category 1.00 String

mainClass 1.00 String

subSlass 0.92 String

classLevel4 0.26 String

core 1.00 Boolean

cofactor 1.00 Boolean

obsolete 1.00 Boolean

remark 0.19 0.18 0.68 String

comment 0.86 0.22 0.54 String

status 1.00 Boolean
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Table 2.5: Parameters values defined for the similarity function.

Function Parameter Type Value

N αn similarty 0.3

βn similarty 0.15

γn similarty 0.1

κn penalty 1

ρn names count 3

S α+
i similarty 1

β+
i similarty 0.8

α−i penalty 1

β−i penalty 1

α+
s , β

+
s similarty 0

α−s , β
−
s penalty 0

X αx similarty 1

βx similarty 0.5

F αf similarty 1

βf similarty 1

γf similarty 0.8

ηf similarty 0.8

C αc similarty 0

βc penalty 0

R αr penalty 10

βr similarty 1
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Figure 2.16: Metabolite instances that are both present in the CDS and each of the MNX

versions.

2.6.2 Statistics for the knowledge expansion

To assess the impact of the cheminformatics module, the properties are split into two

categories (Figure 2.17): the source properties are all properties inherited from the data

sources, while the translated properties are the generated from other properties.

The MetaCyc and HMDB were the only databases that had high present of a both

translated and source structures for a single compound (Figure 2.17c and 2.17d). The

KEGG structures were all translated from the Mol files with the exception of glycans that

provided no structural information. All structures in the BiGG database were generated,

since it does not provide any original information regarding these.

Only the KEGG Glycan took additional benefit from formula translation (Figure 2.17b),

but it was generated from the KEGG glycan composition and it is KEGG specific. The

presence of both translated and source formulas are also low compared to the structures,

which may indicate low structural conflict but possible stereo or protanation conflicts.

Name to structure (Figure 2.17a) displays if the metabolites contain names that were

parseable by the OPSIN library. Only HMDB had a majority of the compounds with at

least one synonym that is compatible with the OPSIN library, the remaining databases all

scored around 20% and 30%. This is due the fact that HMDB had a specific field for a

IUPAC name that was generated from the ChemAxon tool (Table 2.4).
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Figure 2.17: Property coverage of the database instances. Translated (orange) properties

were generated by the cheminformatics module. IUPAC names are all compounds that

had at least one name that was converted to InChI by OPSIN.
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Figure 2.18: Classification of each name property in the databases. IUPAC and traditional

names that had a match with a name generated with the Marvin StructureToName plugin.

OPSIN are names that are parseable with the OPSIN library. Regular are all names that

fail all the previous tests.

To evaluate structure to name translation (Figure 2.18), the existing name properties

are flagged as IUPAC, Traditional, OPSIN or regular, receptively. The top priority are the

IUPAC names that were generated from all the structures in the CDS using the Marvin

StructureToName plugin, then matched with the existing names in the CDS. Only a few

names did match to the IUPAC names generated from the structures. However, if using

the traditional name given by the plugin, these numbers are much higher. The OPSIN

library is able to cover many more names compared with the ones generated from the

Marvin plugin. Perhaps the lack of adoption of IUPAC names is because of the non

human friendly nomenclature, which in many cases leads to very large names with many

repeating sequences.

In many cases, the translated properties may add an additional structure to molecules

because of inconsistencies in the existing ones. This, however, is only a problem if the

additional structure and the original are not equivalent molecules (i.e., same molecule

different protonation state).

To find structural conflicts, the properties are clustered together since the translation
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Figure 2.19: Classification of the property clusters (SMILES, InChI, Mol) for each

database. Single - all structures match. Protonation - multiple structure, but same

molecule. Stereo - multiple structure, but same connectivity, Multiple - multiple struc-

tures with different connectivity.

method connects properties to each other (Figure 2.7). For each metabolite, three types of

clusters are evaluated: single structure are all metabolites that connect to structures that

represent exactly one metabolite, protonation structures are metabolites that connect to

several structures but represent one molecule, while stereo clusters are those with several

structures differing in the stereo layer but with equal connectivity, and multiple are the

molecules that differ in both stereo and connectivity.

The clustering of structures without any translated properties (Figure 2.19a) shows

many cases of multiple stereo clusters in the MetaCyc compounds. The MetaCyc provides

SMILES without any stereo information, this explains the high amount of both translated

and source InChI and SMILES for each compound (Figure 2.17c and 2.17d). The clustering

of structures with the translated properties (Figure 2.19b) shows that for some compounds

there were conflicts between the generated structures and the original ones, but the numbers

are low with the exception of the HMDB that had more than 20% of increase in the number

of conflicts.
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The OPSIN library was able to distinguish protonation state from the compound

names. As an example, the KEGG pyruvate7 molecule has five names displayed: Pyru-

vate, Pyruvic acid, 2-Oxopropanoate, 2-Oxopropanoic acid, Pyroracemic acid ; only the last

name was unable to parse. This is an example that the expansion module would generate

a protonation conflict.

Another example is the KEGG Inosine 5’-monophosphate8 that has 9 names assigned,

unlike the previous example, 3 names were non OPSIN (IMP, 5’-Inosine monophosphate,

5’-IMP), while other 5 generated the correct InChI structure that matches with the Mol file

from KEGG. However, one of the synonyms (5’-Inosinate) generated a structure without

the phosphate group, since it did not make any reference to the phosphate.

To fix mismatching generated structures, every chemical structure that is generated

from the cheminformatics module is excluded if it does not match the original structures.

The owner of the mismatching structure is also flagged as ambiguous, this may help future

decisions since these properties may be problematic for the integration methods, and should

be subject to curation analysis.

2.6.3 Integration Results

2.6.3.1 Comparison with MNX

The integration cycle was ran automatically five times, each cycle feeding the next with

the reaction context. This generates five sets that are represented as i0, i1, . . . , i4.

The first analysis is to check the sizes of each integrated compound set. In the final

integration (iteration i4) the number of integrated sets of size 2 and 3 are of a similar

total amount compared to the sets provided from the MNX integration (Table 2.6). The

usage of negative rules allowed for a more conservative approach for merging since a single

matching property (e.g, a cross-reference) may not be sufficient.

The reactions have proven to be essential to catch up with the numbers of the MNX

7KEGG Compound: C00022 - http://identifiers.org/kegg.compound/C00022
8KEGG Compound: C00130 - http://identifiers.org/kegg.compound/C00130
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Table 2.6: Cluster sizes of MetaNetX and the integrated database of KEGG (Compound),

MetaCyc, BiGG.

I 2 3 4 5 6+

MNX

MNX 1.0 4984 1248 134 34 13

MNX 2.0 5284 1564 200 60 31

MNX 3.0 5832 1358 191 55 34

Integration Iterations

i0 4962 1253 84 23

34

i1 5472 1300 87

24
i2 5584

1309

89

i3 5624
90

i4 5637

integration. However, after three iterations the gains from reactions have dropped to

insignificant levels per iteration.

Since the methods applied are more conservative, the number of oversize clusters is

lower. The ideal scenario are clusters of size 3 and for both of the integrations they found

approximately the same amount of sets.

Perhaps the total number of 1000 integrated compounds is enough to describe most

of the metabolite products and intermediates for essential pathways in cell metabolism,

to cover DNA, RNA, protein, fatty acids and cofactors biosynthesis in prokaryotes (since

most of the BiGG content is about prokaryotic pathways).

2.6.3.2 Curated Set

The sets translation function (Algorithm 3) maps elements of an integrated set against

another set. To evaluate the integrations, each set is mapped to (Translate(Icura, I)) and

from (Translate(Icura, I)) the curated set.
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The assumption is that elements in the curated set that are merged together are con-

sidered as true positives, and elements that are in the curated set but not together are

considered true negatives, and for the remaining elements that are not present, then noth-

ing is known about these.

If the curated set is bidirectionally mapped against the integration, then:

• Match: occurrences of C mapping to a single M and vice versa.

• Mismatch: occurrences of M matching multiple C sets. These are examples of over-

integration (splitting is necessary).

• Miss: occurrences when C matches to empty set or with multiple M sets. These are

examples of under-integration (merging is necessary).

• No information: occurrences of M matching to empty set. These are examples when

no information is found in the curation sets regarding to M .

Algorithm 3 Translates integrated metabolite sets of two integrated domains

1: procedure Translate(Ia, Ib)

Input: Ia integration a, Ib integration b

Output: T mapping of sets of Ia to sets of Ib
2: T = {}

3: for M ∈ Ia do

4: for m ∈M do

5: T [M ]← T [M ] ∪ Ib(m)

6: return T

Example 5. Sets Translation

Let, A = {a1 = (1, 2), a2 = (3, 4), a3 = (5, 6), a4 = (7, 8)} and B = {b1 = (4, 9, 10), b2 =

(7, 11), b3 = (5, 6), b4 = (8, 12)}

T (a1) = (∅), T (a2) = (∅, b1), T (a3) = (b3), T (a4) = (b2, b4)

The sensitivity (true positives) and specificity (true negatives) of the integration would

be how many instances were correctly merged or split.



68 CHAPTER 2. METABOLIC DATABASE INTEGRATION

Table 2.7: Translation cases between the curated sets and the integration. C is a set in

Icura. M is a set in I. a) - Match; b) - Mismatch; c) - Miss; d) No information.

Scenario Class 1.0 2.0 3.0 i0 i4

T = Translate(Icura, I)

T [C] = ∅ c) 29 26 36 40 19

T [C] = (∅,M) a), c) 144 81 102 120 124

T [C] = M a) 619 690 655 635 643

T [C] = (M0,M1, . . . ,Mi) c) 20 15 19 17 26

T = Translate(I, Icura)

T [M ] = ∅ d) 5616 6344 6682 5571 6293

T [M ] = (∅, C) d), a) 123 158 160 118 131

T [M ] = C a) 668 631 621 663 680

T [M ] = (C0, C1, . . . , Ci) b) 6 6 7 4 4

Table 2.8: Confusion matrices of the MNX and i4 integrations compared against the curated

sets.

MNX

Actual

≡ 6≡

P
re

d
ic

te
d

≡ 1915 57

6≡ 218 2579938

i4

Actual

≡ 6≡

P
re

d
ic

te
d

≡ 1889 28

6≡ 244 2579967
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The first test is to evaluate the MetaNetX integrated sets to test the performance of

the curated sets.

As an exception, the curated set splits the protonation set of a few compounds, namely

between H2O and OH, NH3 and NH4, H2CO3, HCO3 and CO3. All of these three sets

were found to be merged in all of the three version of MetaNetX references.

From the curated set it is possible to compute the amount of true positives and true

negatives edges such that φ(e) > ω. These are compared with the predicted clusters of

this study and with the MNX 3.0 integration. As expected the amount of true negatives

outnumbers the true positives (around 0.01% of the e ∈ Γ are true positives).

Given the selected configuration, our method resulted in less 50% of false positives (29

occurrences), while regarding false negatives there was an increase of 26 cases (Table 2.8).

In fact both numbers are similar, but it is hard to tell how exactly the MNX clusters

were integrated and if there was any post integration curation.

2.7 Conclusions

The bottleneck to cover more data sources is limited to how much effort is spent to de-

velop the ETL interface. The understanding of the data schema, but also the data access

mechanism of these databases is one of the most laborious tasks.

A quality integration is achievable, but errors are unavoidable. Having a more conser-

vative approach allows to generate more confidence in the clustering but in return more

instances are left unintegrated. Therefore, manual curation of data is necessary for a proper

consensus database, since it is unpractical to verify entire databases, this task demands

community curation efforts.

The integrated pipeline proven to be doable for on-demand integration of metabolites

and reactions fitting the needs for the user of how conservative should the final dataset

be, thus allowing to control the quality of the integration versus number of integrated

instances.

The curation function is a powerful method that allows to combine solutions of previous
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integrations but also external sets, allowing to include community curation efforts and other

sources of integrated databases.

The implemented data management system is designed to be flexible to the addition of

further domains of instances. By using the neo4j graph database it is possible to include

additional metabolic domains without having any negative impact with the previous en-

tities and methods, while taking immediate advantage of the entire system. This enables

incremental upgrade of the system, to include additional metabolic databases but also

other biological domains (e.g., genes and proteins databases).



Chapter 3

Standardization of Genome-Scale

Models

Abstract
Genome-scale metabolic models are a valuable instrument to study biological organ-

isms. They are capable of performing in silico prediction of phenotypes after genetic

or environmental changes. These models are built from the functional annotation of

the organism’s genes that assemble its biochemical network, allowing to expose the

enzymatic machinery of the organism.

The Systems Biology Markup Language (SBML) is the most common exchange for-

mat to describe these models, and it is widely adopted by many of the existing

software platforms within this field.

There are several limitations in the earlier versions of the SBML specification that

limits the annotation of many relevant attributes, such as: genes, constraints, reac-

tions and compounds references. Because of that, many tools implemented their own

methods to describe these attributes.

In this work, the SBML format is analyzed to create a framework that is capable of

71
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standardizing previous (or alternative) representation methods into the latest stan-

dards.

The implemented framework is used to address two case studies to conduct com-

parative analysis of genome-scale models. The first case study uses the pipeline to

standardize 108 models of prokaryotes providing a strong benchmark to test the suc-

cess rate of the integration methods. The second case study is the unification of

Saccharomyces cerevisiae models to generate a dedicated database that provides a

consensus view of yeast models.

The integration and standardization tools were implemented into a single module

in the KBase platform that improves the compatibility of the system with external

SBML models.

3.1 Introduction

In the last decades, sequencing technologies suffered many improvements, having the cost

of whole genome sequencing decreased significantly, and the availability of fully sequenced

genomes increased. This made genome-wide analysis projects more appealing and feasible.

From the genome, it was given the promise to decipher the machinery that keeps

cells functioning [95], allowing researchers to exploit the cellular capabilities, but also its

limitations, for a broad range of applications, such as, biotechnology, ecology, health, etc.

Functional annotation exploits this genetic blueprint to build computer models to ex-

pose these features. The first genome scale metabolic model (GSM) was developed in the

year 2000 for Haemophilus influenzae[113] allowing a genome wide pathway quantification.

Up to date, genome-scale modeling techniques and tools have been vastly improved.

Dedicated software tools provide better integration of many necessary tools to annotate

and assemble GSMs [29]. Automated pipelines were developed that are capable to scaffold

a GSM by only requiring its genome sequence [99, 6].

The Systems Biology Markup Language (SBML) was created to increase interoperabil-

ity between existing tools, allowing them to adopt a common exchange format for models.
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Although they share the same format, the earlier SBML versions had several limitations

regarding annotation options. Distinct research groups adopted their own methods to an-

notate important attributes in the SBML file, and in some cases in-house extensions were

developed.

In a recent work, Chindelevitch et al.[19] claimed that the current state for GSM pre-

dictions was inconsistent and an exact arithmetic solver is necessary for reproducibility

of the analysis. However, this was later counterclaimed[31], suggesting that most of the

problems found for miscalculation of the results was due to incorrectly parsing the models,

thus the main issue was the lack of standard representation. In fact, a major drawback of

the SBML is the lack of options to specify important attributes related to the annotation

of the model components[105], which led to an increasing number of different approaches

that were improvised by the modeling community.

For annotation (both metabolites and reactions), there are only a few tools. The

Metingear[85] is a Java application that allows automated annotation with support for

KEGG, MetaCyc, ChEBI, LipidMAPS and HMDB. The application requires users to setup

the databases which might not be practical. Metabolic databases are bulky and in many

cases the loaders gets deprecated with the update cycles.

Web applications (MetExplore[87], MEMOSys[100]) are more suited for this job since

they provide the data infrastructure to support the annotation, however these tools are

highly limited to the number of databases supported.

The purpose of this chapter is to explore the representation taxonomy of SBML GSMs

and develop strategies for unification and standardization of these models. In this chapter,

several interpretation methods were developed to extract relevant GSM attributes from a

variety of representation patterns that are found in published SBML models. A standard-

ization pipeline is implemented to unify SBML GSMs to the latest standards in a fully

automated approach.

The developed tool was applied to standardize 108 published GSMs of prokaryte mi-

croorganisms, providing a large sample of existing representation methods in SBML GSMs

and allowing to benchmark the developed tools. The pipeline was able to integrate in
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average 70% of the metabolites in these models with external database references.

In the second case study, several Saccharomyces cerevisiae GSMs were integrated for

comparative analysis. As a result, a standalone database was generated to catalog in-

tegrated models that represents the metabolism of yeast. The generated database was

enriched with additional information regarding yeast genomics.

Finally, an application was developed and made available for public usage in the DOE

Systems Biology Knowledgeable (KBase) platform, that allows to standardize SBML mod-

els. It includes automated standardization methods (e.g., medium identification, genome

strain detection, nomenclature translation), but also manual assignment of other compo-

nents such as: the biomass reaction, definition of compartments, user defined references of

metabolites, reactions and genes.

3.2 Constraint Based Genome-Scale Models

A genome-scale network reconstruction (GENRE) is a compilation of all possible biochem-

ical reactions that are available in an organism’s genome. With functional analysis tools,

it is possible to extract the metabolic functions of the respective genes to assemble a

metabolic network (MN). Therefore, each GENRE is actually a library that compiles all

the possible biochemistry of the organisms either inferred from the genome or extracted

from literature data.

The detail level of a GENRE is at the reaction level, metabolites are connected to each

other by a chain of biochemical transformations. Several efforts are made to increase the

detail of the models to add additional constraints, such as gene expression [80], protein

structure [12], or regulatory effects [34]. To date, most of the GSMs are solely composed

of metabolic constraints since they required less data.

Most of the reconstruction tools attempt to associate gene annotation with the bio-

chemistry of generic pathway databases (mentioned in the previous chapter). There are

several approaches to link genes with reactions, such as: extracting the EC number from

the genome annotation [28], standardizing the annotation with a controlled vocabulary[24],
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and protein orthology [1].

However, unlike the previous biochemistry databases, the reactions in genome-scale

models must be compartmentalized. The compartmentalization of a reaction defines in

which physical space of the cell it is occurring. When the reaction occurs in several com-

partments it is duplicated in the model, since the enzyme activity occurs in several places.

For bacterial models, this problem is simplified since most of these species have only 2-3

compartments (i.e., extracellular space, cytosol, periplasm), but for eukaryotes an addi-

tional effort is required to predict the subcellular localization of the enzymes. The transport

of molecules between compartments is possible by adding transporter reactions, which re-

quire the identification of membrane proteins that are capable to transfer compounds

between cellular spaces[27].

The completeness and the accuracy of a GENRE is coupled with the quality of gene

annotation in the organism genome. For species with less literature data, most the func-

tional annotation in the genome is most likely inferred by computational methods (e.g.,

protein similarity).

3.2.1 Constraint-Based Modelling

Constraint-Based Modeling (CBM) is a common alternative to kinetic modeling, which

requires mechanistic rates of the equations for each reaction. Kinetic models are hard

to simulate and to parameterize, requiring information difficult to acquire to accurately

simulate dynamic systems. For large-scale networks, this problem becomes intractable

[116]. In CBM approaches, the only critical parameters are the reaction stoichiometric

coefficients and reaction bounds, which are much more accessible. The basis of steady

state analysis is granted by the assumption that the system is at equilibrium, i.e. there is

no change in the concentration of the internal metabolites. This allows to define the feasible

space of the system by defining linear constraints, enabling to understand the capabilities

of the system under several conditions.

Flux Balance Analysis (FBA) [112, 98] (Definition 12) is one of the earliest CBM
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methods to explore cellular metabolism. Based on the assumption that the system is in a

pseudo steady state, it can be described, by a set of linear equations. In FBA, the organism

is assumed to pursue a certain metabolic goal in the form of a linear objective function

(3.1), which the FBA method uses to optimize the flux distribution that maximizes this

goal. The formulation of the linear program (LP) consists in the stoichiometric matrix

(S) of a MN with m metabolites and n reactions. The reaction boundaries are defined by

setting a lower and upper bound (3.3) coming from thermodynamics (reversibility), from

uptake rates or simply by setting large negative/ positive values (unbounded).

Definition 12. (Flux Balance Analysis) The FBA is defined by the following LP:

max Z =
n∑
j=i

cj.vj (3.1)

s.t.
n∑
j=1

Sij.vj = 0 , ∀i = 1, . . . ,m (3.2)

vLBj ≤ vj ≤ vUBj , ∀j = 1, . . . , n (3.3)

where Z is the objective function; Sij is the stoichiometric matrix with i metabolites and j

reactions; vj is the flux vector; vLBj , vUBj are reversibility constants (reaction lower/ upper

bounds).

The most common objective function is the biomass maximization, which represents a

proxy for cellular growth. Other functions may also be used, such as maximization of ATP

production or of the production of a certain metabolite.

The transformation of a GENRE to a GSM includes the addition of the mathematical

components that are necessary to formulate the LP to predict phenotype. Depending

on how complete and accurate is the genome annotation, the GENRE may have several

reactions missing that leave gaps in the biochemistry. Gap-filling algorithms[106, 55] add

missing reactions to connect the GENRE, which is necessary for a functional mathematical

model. These algorithms fill the missing reactions using heuristics to predict possible

reactions that are needed to fill the gaps (although they have no real evidence).
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Having a fully connected network still requires the addition of other components, that

are related to modeling purposes.

Biomass Reaction: The biomass reaction is the most common objective function (BOF)

in prokaryote GSMs. It is a pseudo-reaction that mimics cellular growth by assembling es-

sential macromolecules (e.g., DNA, RNA, protein, lipids, etc) and demanding their building

block compounds (e.g., nucleotides, amino acids, fatty acids, etc) as biomass components

[38]. This objective function is based on the assumption that cells evolved to optimize

the nutrient consumption towards growth potential. In a flux analysis perspective, the

biomass objective tests for the network capability to supply all the components, while still

maintaining the steady state constraint. Therefore, the participating components directly

influence the complexity of the GSM since a basic BOF demands fewer pathways.

Drain Reactions: The drain reactions allow to unbalance the network allowing model

consumption and accumulation of metabolites. These reactions are categorized into three

different types of drains: exchange, sink and demand reactions. The separation of the

drains is solely used for better manipulation of the model since not all drains have the

same meaning.

The exchange reactions are all drains that represent the change of concentration in the

media (or environment). These reactions are usually subject to software manipulation to

evaluate the model behavior in different media composition.

The demand and sink reactions are auxiliary drains that are necessary for the model to

carry a certain flux distribution (e.g., biomass production). As an example, a model may

require internal accumulation (in many cases only a residual value) of a certain compound

with unknown fate to synthesize a biomass component. It is also a common practice to

add sinks and demand reactions for debugging purposes.

Gene Protein Reaction Association: The connection between the genome and the

model is held by gene-protein-reaction (GPR) rules. The reactions in the GSM are assigned
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to genes in the genome that are responsible for the enzymatic activity. Because genes are

multi-functional and for certain reactions a multi-enzyme complex is required, a GPR is

described as a Boolean expression of the possible gene combinations that are necessary for

the reaction to take place.

3.3 Systems Biology Markup Language

The systems biology field is highly interdisciplinary since it bridges several omics technolo-

gies to study system wise interactions[59].

Many tools were developed to apply a variety of approaches to model these systems, but

most software applications receive as input and produce their own data formats, making

difficult to integrate and combine distinct tools. The Systems Biology Markup Language

(SBML) [58] was created to address the lack of interoperability between different software

tools in the systems biology field.

The SBML is a XML syntax that allows to represent several elements in the systems

biology universe. The first version of the SBML (SBML Level 1) was mainly oriented

towards dynamic models. Up to date, there are three versions of SBML: Level 1, 2 and 3.

The SBML allows to represent biological entities (species) and their interactions (reac-

tions) that take place in a container space (compartment).

Each species represents an entity (e.g., molecule) in a specific state, while reactions

transform species with a defined mathematical rate.

The scope of entities and attributes discussed in this work is oriented towards the

representation of genome-scale constraint based models. The main component of a GSM

is the stoichiometric network that is defined by the reactions in the model (Definition 12).

The SBML was subject to several updates since the first version (SBML version 1).

The main problem of the earlier versions was the limited capability to add annotations to

the GSM entities, that are relevant to characterize the molecules and reactions, such as,

information regard to genes, mathematical constraints and other important information to

aid the users to interpret the logic of the model.
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All elements of the SBML inherit the abstract base element SBase, that allows other

elements in the SBML to inherit a notes and an annotation sub-element and two at-

tributes metaid and sboTerm. These attributes were introduced after the SBML version 2

to improve annotation options. The sboTerm refers to the Systems Biology Ontology [22]

(SBO) being oriented to modeling terms that characterize components of several families

of objects found in models (e.g., SBO:0000243: gene). It allows categorizing elements in

the SBML that play a distinct role in the model. As an example, the biomass reaction

is described as a regular reaction in the SBML, while with the SBO annotation these re-

actions can be flagged with the proper ontology (i.e., SBO:0000629 biomass production),

which makes these reactions distinguishable from the remaining of the model.

A metabolite in the SBML is defined as an instance of a species (Example 6) identified

by the id attribute of type SId. The SId is a string used to identify objects in the SBML,

only alphanumeric characters are allowed and it must start with a letter or the underscore

character 1. All other attributes are optional (i.e., name, compartment, charge, initialCon-

centration, etc), but for the later versions of SBML the compartment is mandatory since

all species should be defined in a physical location.

Example 6. SBML species

<species metaid="EC0027_meta" id="EC0027" name="D-Glucose[e]"

compartment="Extra_organism" boundaryCondition="false" charge="0">

A reaction is defined by the reaction element, like the species the id is the only re-

quired attribute. The reaction element contains four sub elements, the listOfReactants

and listOfProducts that define the stoichiometry of the reaction by referencing the

species. The kineticLaw (Example 7) was the initial method to define the reaction

constraints and the objective function. The listOfModifiers is less common in a GSM,

and when present most of the models use it for a structural definition of the GPR instead of

a string annotation. In rare occasions, it also defines an enzymatic catalyst (SBO:0000460).

1SId pattern: ( |[a-z]|[A-Z])( |[a-z]|[A-Z]|[0-9])*
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In these cases, the application of ontological terms is crucial for the understanding of the

logic of the entities.

Example 7. SBML Kinetic Law

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> FLUX_VALUE </ci>

</math>

<listOfParameters>

<parameter id="LOWER_BOUND" value="0" units="mmol_per_gDW_per_hr"/>

<parameter id="UPPER_BOUND" value="1000" units="mmol_per_gDW_per_hr"/>

<parameter id="FLUX_VALUE" value="0" units="mmol_per_gDW_per_hr"/>

<parameter id="OBJECTIVE_COEFFICIENT" value="0" units="mmol_per_gDW_per_hr"/>

</listOfParameters>

</kineticLaw>

The species and reaction elements are sufficient for the structural representation of

the GSM since together they are capable of describing the stoichiometric matrix. This is

usually the only requirement to run flux analysis methods. However, interpretation of the

model context usually requires additional information. For gene prediction, the reactions

have to be assigned with their respective genes (GPRs), while for better interpretation

of the metabolic content, the structural information regarding the metabolites should be

present because of the ambiguity in compound nomenclature.

The standard SBML supports two methods for extra annotation. The notes (Example

8) element allows to declare an HTML body to annotate every element of the SBML,

since it is defined in the parent SBase abstract class. This would be an easy solution for

the annotation problem, and in fact for human interpretation this is sufficient to describe

entities in the SBML. However, it is not suited for software tools to parse and interpret

the annotation since it is text based, while it is also subject to the proliferation of errors

and ambiguous definitions.
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Example 8. SBML Notes

Annotation of a reaction with notes to specify GPR and Subsystem

<notes>

<body xmlns="http://www.w3.org/1999/xhtml">

<p>GENE_ASSOCIATION: (b1377 or b0929 or b2215 or b0241)</p>

<p>SUBSYSTEM: Transport, Outer Membrane Porin</p>

<p>EC Number: </p>

</body>

</notes>

An alternative approach is to use the annotation (Example 8) element. It provides a

structural approach to annotate any SBML element. Usually, the annotation mixes the

RDF specifications with model qualifiers to provide ontological information. The usage of

BioModels.net Qualifiers[78] provides an ontology to specify the meaning of the relationship

(e.g., is: identity, encodes: encodement, hasPart: part, etc), which is extremely important

since, in most cases, the tools make general assumptions that everything assigned to each

other shares a relationship of identity. However, as described in the previous chapter,

molecules and reactions may share an hierarchical relationship (since some molecules are

sub-instances of others).

The annotation element solves the problem of having a structural method to spec-

ify the relationship between the object and the annotated instances, but it does not

solve the issue of how to provide a standard method to characterize the annotated in-

stance. As an example, in the previous chapter it was described that mapping synonyms

of databases is a major bottleneck of the ETL (e.g., KEGG, KEGG Compound, Ligand

Compound are all possible synonyms to describe an instance from KEGG). The Mini-

mal Information Requested In the Annotation of biochemical Models (MIRIAM) [75] and

later the Identifiers.org [62] provide standard methods to reference external resources. The

MIRIAM registry catalogs biological resources providing standard Uniform Resource Iden-

tifiers that points to the actual web address of these resources, while Identifiers.org is built
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on top of MIRIAM to provides an URL for these resources (e.g., http://identifiers.org/ec-

code/1.1.1.1 is the URL of the MIRIAM urn:miriam:ec-code:1.1.1.1).

Example 9. SBML Annotation

Annotation of a compartment with a GO accession using Identifiers.org with a identity

relationship.

<annotation>

<rdf:RDF xmlns:rdf="..." xmlns:bqbiol="...">

<rdf:Description rdf:about="#Extra_organism_meta">

<bqbiol:is>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/obo.go/GO%3A0005576"/>

</rdf:Bag>

</bqbiol:is>

</rdf:Description>

</rdf:RDF>

</annotation>

The Flux Balance Constraints (FBC) is an extension that was introduced in the latest

version of SBML (the SBML Level 3) providing structural representation for elements

related to constraint based models. The FBC extension includes structural definition for

genes and GPRs (Example 10). The genes are defined in a list of entities similar to

the species and reaction, allowing proper annotation of genes in a GSM. The GPR

expression was also redefined as an XML elements instead of a string annotation.

Example 10. SBML FBC3 GPR definition

Each gene must be defined as an element, this would allow to add additional properties

to genes (annotation).

<fbc:geneProduct fbc:label="ECSF_3582" metaid="G_ECSF_3582" fbc:id="G_ECSF_3582">
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<annotation>

<rdf:RDF xmlns:rdf="..." xmlns:bqbiol="...">

<rdf:Description rdf:about="#G_ECSF_3582">

<bqbiol:isEncodedBy>

<rdf:Bag>

<rdf:li rdf:resource="http://identifiers.org/ncbigi/GI:281180792" />

</rdf:Bag>

</bqbiol:isEncodedBy>

</rdf:Description>

</rdf:RDF>

</annotation>

</fbc:geneProduct>

The GPR are represented by XML elements instead of a string and all genes must be

declared in the model.

<fbc:geneProductAssociation>

<fbc:or sboTerm="SBO:0000174">

<fbc:and sboTerm="SBO:0000173">

<fbc:geneProductRef fbc:geneProduct="G_ECSF_3582" />

...

</fbc:and>

<fbc:and sboTerm="SBO:0000173">

<fbc:geneProductRef fbc:geneProduct="G_ECSF_3586" />

...

</fbc:and>

</fbc:or>

</fbc:geneProductAssociation>

Since the previous kineticLaw was not fit for constraint-based models, the FBC also

defines specialized elements to describe one or more objective functions, while the reaction
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constraints must also be declared as variables. The lower and upper constraints are defined

as the lowerFluxBound and upperFluxBound attributes in the reaction element and they

are references to elements in the parameters of the model. A listOfObjectives allows to

define one or more objective functions, which was a limitation of the previous version.

The FBC is an official SBML extension, but in the mean time, researchers developed

external extensions to fit their needs. Most of these extensions were developed to solve

problems related to annotation methods that existed prior to the SBML Level 3 and the

FBC.

However, there are a few unstructured annotations that were introduced or assumed in

the SBML GSM due to the lack of SBML structural support. An important aspect is the

explicit definition of the drains (i.e., exchanges, sinks, and demands), since they are highly

relevant for the manipulation and interpretation of the model.

3.4 Model Standardization

To accommodate GSM objects in the CDS defined in the previous chapter (Section 2.3.2),

the domain is extended with a GSM context. Genome-scale metabolic models belongs to

the modeling domain. Like the previous domain of biochemical entities (metabolites and

reactions), genome scale models are viewed as a materialization of these abstract objects

to actual biological organisms.

Each GSM is represented as an individual database in the system, where a unique

namespace is assigned to each individual model. The subset of the GSM namespace is

defined in Ngsm ⊆ N that groups all objects in the universal graph database.

Each metabolite species s is an individual object, and like the previous objects it must

belong to a unique namespace. In this case all modeling objects must belong to a n ∈ Ngsm,

which are the GSM namespaces.

Definition 13. Model Metabolite Specie / Metabolite / Compartment / Gene

The metabolite species, metabolites and compartments in GSM are objects o = 〈id, n, a〉
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(Definition 1), such that n ∈ Ngsm.

The set of species S represents metabolite species of the GSMs, and Mgsm is the set

that defines metabolites in models. In GSMs, a metabolite may be defined as several

species because of compartmentalization.

The compartments and genes are also materialized as objects and they are defined in

the K and Y domains.

Definition 14. Model Reaction

The reactions in GSM are defined as objects (Definition 1, 13), such that the stoichiom-

etry is defined with a set of edges E that connects the reaction with the metabolite species

(Definition 3).

Of all the previous objects the metabolite species and reactions are the only needed to

defined the stoichiometric matrix of the model, G ′gsm = 〈S ∪ Rgsm, Egsm〉, while the full

GSM context is defined in the following subgraph Ggsm = 〈K ∪ S ∪ Mgsm ∪ Rgsm Y ∪

M∪R, Egsm〉, that contains the domain of metabolite species S, model metabolites, model

compartments K, genes Y , model reactions Rgsm, metabolites M, reactions R and model

edges.

3.4.1 Metabolites

The standardization of the metabolites requires the identification of the metabolite species

in the GSM and the translation of these species to a common nomenclature. The method

to standardize the species follows the following steps:

1. Identification of the species context;

2. Expansion of the species annotation;

3. Resolution of internal annotation conflicts;

4. Resolution of overall annotation conflicts;

5. Translation of the species.
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The first two are annotation steps, which are related to annotating the species with

an identity. The metabolite identity is actually a molecular structure, therefore a proper

external database identifier is a common method to describe compounds in GSMs.

The following two steps are related to error correction. Metabolite species that are

annotated with multiple identifiers of the same database become ambiguous (assuming

these identifiers represent different molecules). This occurs for many reasons, such as

problems with the database itself, inaccurate compound structure, integration problems,

etc. Cleaning these conflicts is necessary to translate the nomenclatures to a common

standard.

Lastly, the standardization of the species involves their renaming to a common naming

system, such as the adoption of a single database identification system, or by generating a

new unified space.

Each step is detailed next.

Identification of the species context and expanding the species annotation: The

first two steps of the standardization process are actually the most important steps of the

process. A correct annotation of the species in the model would avoid the need for conflict

resolution. The integration of the metabolites in GSM combines two types of functions, ψ

and ϕ.

Definition 15. Metabolite Species Identification

The molecular identity of the species is inferred by the ψ : S 7→ M. This function is

referred as the species annotation function that annotates metabolite species in the GSM

with database identifiers, thus adding chemical detail to the compounds.

Definition 16. Metabolite Integration

The integration function ϕ : M 7→ M, extends the annotation with additional identi-

fiers to cover more database references (i.e., metabolic database integration).

In a GSM not all species may have a concrete representation, depending on the context

some species are mathematical objects for modeling purposes (e.g., the biomass, a protein,
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a lipid, etc).

The ψ function attempts to guess the species context from the attributes found within

the model. In SBML, the species only requires an unique identifier and a declared com-

partment, the uncertainty level is much higher compared to the integration of database

molecules.

Guessing the species context is done by applying several ψ functions, each of these

trying to guess based on different approaches (e.g., identifier parsing, name matching,

annotation parsing, etc). The Ψ set is a ordered tuple that contains all of the ψ,

Ψ = 〈ψ0, . . . , ψi〉. (3.4)

The metabolic integration functions ϕ expand the initial annotation of ψ by using

metabolite context, since at this stage information of the annotated references may be

inherited by the species. This method is identical to the previous metabolic database

integration methods that allows to infer other instances of the same metabolite in different

databases.

Unlike ψ, the annotation functions can apply subsequent ϕ functions, and so the Φ set

is a n-ary tuple that contains several ordered sets of ϕ functions,

Φ = 〈〈ϕ0
0, . . . , ϕ

0
j〉, . . . , 〈ϕk0, . . . , ϕkj 〉〉 (3.5)

where each Φk set represents the k -th set of Φ.

The ζ× defines the Cartesian product of Ψ with Φ, this generates the paring between

all the functions of ψ and ϕ (Example 11).

Example 11. Function Pairing

Ψ = 〈ψ0, ψ1〉 Φ0 = 〈ϕ0
0, ϕ

0
1〉 Φ1 = 〈ϕ1

0, ϕ
1
1〉

ζ× = (〈ψ0, ϕ
0
0, ϕ

1
0〉, 〈ψ0, ϕ

0
0, ϕ

1
1〉, 〈ψ0, ϕ

0
1, ϕ

1
0〉, 〈ψ0, ϕ

0
1, ϕ

1
1〉,

〈ψ1, ϕ
0
0, ϕ

1
0〉, 〈ψ1, ϕ

0
0, ϕ

1
1〉, 〈ψ1, ϕ

0
1, ϕ

1
0〉, 〈ψ1, ϕ

0
1, ϕ

1
1〉)

Each element of ζ× is actually the composition of the functions ψ and ϕ that together

map species s into subsets of M ∈ M. The annotation of s is an array of binary values
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that assigns 1 (or true) for each m ∈ M if it is a positive match. The annotation matrix

is the concatenation of all annotations arrays given by the combinations in ζ×.

Definition 17. Genome-scale Metabolite Integration

The integration function ζ : S 7→ Za×b, is the cartesian product of the Ψ and Φk sets,

such that, ζ = Ψ× Φ0,× · · · × Φk

For every function in Ψ and Φk a confidence value (λ) between 0 and 1 (inclusive) is

assigned, and the Ψλ and Φλ sets map those values to their respective functions (Equation

3.6).

Ψλ = 〈λ0, . . . , λi〉, Φλ = 〈〈λ0
0, . . . , λ

0
j〉, . . . , 〈λk0, . . . , λkj 〉〉 ∈ R, 0 ≤ λ ≤ 1 (3.6)

The integration array is the scoring array for every m ∈ M, where mi > 0 is assumed

as positive match.

ζλ = Ψλ × Φλ
0 ,× · · · × Φλ

n (3.7)

Like ζ×, the ζλ combines the λ constants, but since 0 ≤ λ ≤ 1, then the product
∏
λ

must be between 0 and 1. The ζλ represents the combined score of the functions in ζ×

(since ζλ = Ri.k.j, where i is the total number of ψ functions and k.j the total number of

ϕ functions).

The matrix ζ×(s).ζλ



〈ψ0,ϕ0
0...ϕ

k
j 〉 ... 〈ψ0,ϕ0

j ...ϕ
k
j 〉 〈ψ1,ϕ0

0...ϕ
k
j 〉 ... 〈ψi,ϕ

0
j ...ϕ

k
j 〉

m1 a1,1 . . . a1,k.j a1,k.j+1 . . . a1,i.k.j

m2 a2,1 . . . a2,k.j a2,k.j+1 . . . a2,i.k.j

m3 a3,1 . . . a3,k.j a3,k.j+1 . . . a3,i.k.j

...
...

...
...

. . .
...

mm am,1 . . . am,k.j am,k.j+1 . . . am,i.k.j


.



λ0 ∗ λ0
0 ∗ · · · ∗ λk0

...

λ0 ∗ λ0
j ∗ · · · ∗ λkj

λ1 ∗ λ0
0 ∗ · · · ∗ λk0

...

λi ∗ λ0
j ∗ · · · ∗ λkj


=



s1

s2

s3

...

sm
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defines the annotation scoring for every m ∈M given by the total of i ∗ k ∗ j combinations

of the Ψ and Φ functions.

The implemented methods for ψ and ϕ are described in the implementation section.

Conflict resolution: The integration array of ζ×(s).ζλ may map multiple references of

the same database to a single model species, but such occurrences create ambiguity with

the identity given to the compounds.

The internal annotation conflicts are all species that are annotated with more than one

reference of the same database. As a general rule, for every s ∈ S only one metabolite

per database can be assigned. These conflicts are solved by selecting the metabolite with

higher score.

The external annotation conflicts are metabolites that are mapped to multiple species

in the same compartment. It is expected that models have only one replicate per compart-

ment.

Translation: The translation step standardizes the identifiers to a common nomencla-

ture system. A popular practice is to adopt a naming system from one of the metabolic

databases since it also allows a closer connection with the database records with the model.

For translation into a database identification system, metabolite species are renamed

by the assigned annotation and the compartment identifier is attached as prefix since all

identifiers must be unique model wise.

3.4.2 Reactions

The stoichiometry of the reactions in Rgsm is defined by a map function s : Rgsm×S 7→ R.

This is a simpler representation compared to the LHS/RHS tuple for the reactions in

R (that are the reactions in metabolic databases) because the stoichiometry of model

reactions must have unique metabolite species in both sides of the equation. This is due

to the fact that transporter reactions actually operate on two distinct metabolites objects

instead of repeating the metabolite.
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Reaction annotation The integration of reactions is similar to the method implemented

in the previous chapter (Section 2.4.3). However, GSMs contain several transport reactions.

In this work, these reactions are excluded from the integration. Transporter reactions are

difficult to annotate and catalog since every compound may have a transporter associated,

making the catalog of the reactions irrelevant. For the same reason, most of the databases

do not contain any transporter reactions with the exception of a few to describe some

essential mechanisms of certain pathways.

Merging identical reactions Some models have two different reactions to represent

reversible reactions. While the use of this method has some drawbacks it is in some

cases inevitable. The disadvantage of having twice the amount of the reactions to define

reversibility is the requirement of algorithms to decipher the number of actual reactions

in the model, but also makes the model bulky and most softwares to not interpret these

reactions as a single reaction but as independent biochemistry.

Cases where it is inevitable to have multiple reactions for the same biochemistry occur

when an organism contains several enzymes that are capable to perform the same reaction

but some are limited to a certain direction.

Reactions are merged based on their GPR associations and reversibility, the conditions

for merging are the following:

1. All reactions have the same biochemistry;

2. All reactions have the same GPR assigned;

or

1. All reactions have the exact equation.

As an example, if r1 = A+B → C+D and r2 = C+D → A+B have the same GPR (or

in some scenarios no GPR assigned at all), it is safe to merge into r1/2 = A+B ↔ C +D.

If reactions of opposite direction have distinct GPR associations, then this would break

the logic of the model, since in the unmerged version it would be possible to knock out the

direction of the reaction, while in the merged version this would be impossible.
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Combining reactions Many models use pseudoreactions to model the biosynthesis of

macromolecules or groups of compounds. In this case, the biomass reaction demands a

virtual compound such as a lipid, protein, or in some cases an abstract set of metabolites

(e.g., cofactors). These compounds are aggregations of the molecules that are responsible

for satisfying their demand.

In a design perspective, this allows better control of the sets, but perhaps also easier

manipulation of the model. However, it makes harder for software tools to decipher which

are the actual components of these virtual compounds. If these compounds are identified,

an equivalent single step reaction can be generated.

For this purpose a set of reaction arithmetics is defined as the following:

• The scalar multiplication of the reaction coefficients scale(λ, r) or λ.r, where λ ∈ R

and r ∈ R, multiplies the value of each component in the r stoichiometry by λ.

• The arithmetic operation sum(r1, r2, λ) sums the coefficients of r1 with the result

of scale(λ, r2), this would allow basic subtraction and addition (i.e., +(r1, r2, 1) =

sum(r1, r2, λ) and −(r1, r2,−1) = sum(r1, r2, λ)).

• The null(r1, r2,m) generates an equivalent reaction by merging r1 and r2 and removing

m from the stoichiometry.

Definition 18. Reaction combination

null(r1, r2,m) = sum(r1, r2, λ), where λ =
−1.r1[m]

r2[m]

3.4.3 Drains: Media/Sink/Demand

One of the most common scenarios (typically for GSMs of single cell organisms) is the

growth of the cell in a certain environment commonly represented as the growth medium.

The medium defines which of the external metabolites are available in the environment

for uptake, in a modeling perspective these are drain reactions as described in the previous

section.

A common problem is to identify these reactions in the metabolic network. The drains

in the SBML format are represented as any other standard reaction, and in many cases
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they are difficult to differentiate.

There are several possible methods to define drains, but some representations require

manipulation of the stoichiometric matrix before running flux analysis methods. The

boundary compounds are usually dead end metabolites defined in a special compartment

(the boundary) that encloses the entire network (Equation 3.8). However, for flux analysis

methods these compounds must be either removed or drained (adding a further drain to

unbalance each boundary compound).

Ae
R EX A−−−−−→

[-10, 1000]
Ab (3.8)

The best drain representation would be a single reaction that contains no products

with only the metabolite to be drained (Equation 3.9). The constraints would define if the

drain is either for demand, sink or both.

A
R EX A−−−−−→

[-10, 1000]
∅ (3.9)

However, in some models the stoichiometry of the drain is reversed, making harder to

detect if the metabolite is being accumulated ou consumed (since negative flux in this case

is accumulation), but the net flux of the compound would be equivalent.

∅ R EX A−−−−−→
[-1000, 10]

A (3.10)

In reversible scenarios, the drain reactions can also be split into two reactions one for

each orientation (Equation 3.11). In these cases the previous merging strategy is applied.

A
R EX A IN−−−−−−→

[-10, 0]
∅+ A

R EX A OUT−−−−−−−−→
[0, 1000]

∅ (3.11)

Finally, some models may couple compounds together for flux forcing (Equation 3.12).

In these cases splitting would not generate an equivalent model, therefore these reactions

are kept and an individual drain is generated for each of the compounds.

A+H
R EX A−−−−−→

[-10, 1000]
∅ (3.12)
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The drains are standardized to the single compound representation (Equation 3.9), and

renamed to the compound identifier with a drain prefix. The R EX prefix is assigned for

every compound drained in the extracellular space. For other drains, these are renamed to

R DM if lower bound is negative, otherwise it is R SK . Each of these three drains are also

assigned with their respective SBO terms SBO:0000627, SBO:0000628 and SBO:0000632

to represent exchange, demand and sink, respectively.

3.4.4 Gene-Protein-Reactions

In most models, the only connection between the model and the genome is assured by the

gene-protein-reaction associations (GPR). The genes in the genome that are responsible

for the occurrence of the reaction are assigned by a Boolean expression commonly referred

as GPR. This method allows a very simple but efficient way to describe all possible com-

binations of genes that enable the presence of the reaction (e.g., gene1 ∨ (gene2 ∧ gene3)).

Before the FBC3 extension, the representation of the GPR was mainly assigned as a

string annotation in the notes section. This creates two problems, the difficult interpreta-

tion of the notes attribute which was discussed above, and the need of additional software

validation for the GPR string.

Equivalent Boolean expressions can be written by switching the order of the terms.

To define a standard comparable order for any expression, a normal form is advised be it

either the conjunctive or disjunctive. For modeling purposes the disjunctive normal form

would be more suitable since it defines all possible gene combinations for the reaction to

occur.

To have a standard comparable expression, the GPRs are rewritten in the disjunctive

normal form and the variables sorted in lexicographic order.
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SubcellularCompartment

MetabolicModel ModelSpecie

ModelMetabolite

ModelReaction

ModelCompartment

ModelSubsystem

Metabolite

Reaction

in_compartment

has_reaction

has_subsystem

is_a

is_a

is_a

is_a

left_component

right_component

has_reaction

has_specie

has_compartmenthas_metabolite

right_component

left_component

Figure 3.1: Neo4j Labels defined for the CDS namespace domain extended with GSM

objects. Metabolite, Reaction and SubcellularCompartment were pre-exiting classes.

3.5 Implementation

The integration of a GSM is similar to the integration pipeline proposed in the previous

chapter. The neo4j constraints are extended with the GSM objects (Figure 3.1).

Each GSM is also subject to an ETL pipeline (Figure 3.2), but no cleansing is made

to the data, the attributes and annotation (i.e., notes and annotation elements) found

within the model are kept as it is. The responsibility to interpret the data is given to the

integration method.

For the extraction phase, a SBML reader is implemented from scratch using the existing

XML parsing methods. No reaction context is applied to integrate the GSM reactions. The

reactions in the GSM may contain unbalanced and custom reactions, which are likely to

feed incorrect information, but the reactions in the model are assigned with database

reactions and not the reverse. However, models are able to integrated against each other,

allowing to infer reactions that are not present in databases but shared between multiple

GSM.

The standardization made to the model (includes all automatized fixes and manual

changes to the original SBML data) is kept in a separated attribute. This is important to
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BiGG
SBML

ReaderGSM

Species

Reactions

Pathways

Compartments

s_1399 C00022

M_pyr_c pyr

M_m794 15361
BiGG

Supplementary
Material

SBML
level 3

Manual
Curation

pyr BiGG
cpd00020

C00022

META:PYRUVATE

15361, 26462, 14987

32816, 26466, 8685, 45253

Pyruvate Cluster
(216546)

Global Database

Integration Database

Global Database

s_1399 C00022

M_pyr_c pyr

M_m794 15361
BiGG

M_adp_c + M_pep_c + M_h_c → M_atp_c + M_pyr_c

s_0794 + s_0394 + s_1360 → s_0434 + s_1399

M_m335 + M_m775 → M_m794 + M_m340

C00002 + C00022 → C00008 + C00074

R_CDC19:

r_0962:

R_PYK:

R00200:

Integration Database

BiGG PYK: …rxn00148: …META:PEPDEPHOS-RXN: …

GSM Extract, Transform, Load Specie Annotation

Reaction Integration Metabolite Integration

Figure 3.2: GSM integration pipeline. An ETL pipeline loads the SBML into the graph

database. The model integration module annotates the loaded objects with the existing

metabolic database instances.
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Figure 3.3: The abstract XmlObject class allows to specify any element of an XML file (the

namespace is excluded). The XmlSbmlModel represents the sbml element in the SBML

file. The reader is implemented for the purpose of parsing all elements that are relevant to

a GSM.

preserve the original data for validation purposes, but also to track all changes made to

the original model.

3.5.1 SBML Reader, Validation, Profiling

Instead of using the JSBML library [109], a new reader is implemented that parses the

SBML as a standard XML. The parser is implemented in Java using the XMLEventReader

to parse all XML elements. This will allow to read any SBML file even if it violates any

of the SBML schema definitions as long as the XML is properly structured.

Since the SBML provides support for a wide range of systems biology models, the

reader was implemented to only read components related to constrain-based modeling
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(i.e., stoichiometric models for flux analysis).

The base object is an abstract XmlObject (Figure 3.3) that stores the line and column

of the XML element, its attributes and the body. In SBML, the elements usually do not

contain data.

For every element, a specific interpreter is implemented, while elements without an

interpreter are skipped and a report is provided to notify all unprocessed XML objects.

The data structure for the read components from the SBML follows a hybrid generic

XML format with some SBML syntax. Every object in the XmlSbmlModel inherits the

XmlObject that contains information about the line and column, the attributes and the

data of the element.

Compartments, Species, Reactions The basis of a GSM is the metabolic network

of reactions. The definition of the three core components is specified in three lists in the

SBML (listOfCompartments, listOfSpecies, listOfReactions). An element parser is

dedicated to each of the list objects (compartment, species, reaction).

External references detection: The notes and annotation are the elements that are

searched for external references. To parse references from the notes, a dedicated parser is

implemented to transform the HTML information into a map notes : k 7→ v, that for every

representation of key k in the HTML body, maps to its corresponding string value v. As

default, the ”:” symbol is used as split separator for the key and value, and it is assumed

that every record is written in a single HTML paragraph (i.e., between the paragraph

elements <p></p>). An additional mapping function is needed to decipher the meaning of

each key, to map these into the database namespaces (declared in the universal database

G previously).

Unmapped elements are given a warning to notify unusual keywords.

The annotation element is easier to parse since the XML element iterator is enough to

pass through all elements. The reader extracts only elements enclosed by the is BioModels

Qualifier since it is looking for the identity of the compounds and reactions. Other qualifiers
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may be implemented in the future, but there is little use for additional ontology at the

current state of the methods.

GPR detection: The GPRs are extracted from three distinct places: notes, modifiers,

and geneProductAssociation. The method to extract from the notes is identical to the

one used for references defined above. The HTML block is converted into a simple map and

a mapping function is required to decipher the key that corresponds to the GPR expression

(the default keyword is GENE ASSOCIATION ). If the value is present it is subject to an

expression parser to validate but also extract the genes. The parser is taken from the

OptFlux metabolic engineering software [107].

The second approach is to detect the GPR expression from the modifiers. Many tools

adopted the listOfModifiers element which is a child of reaction to provide a structured

method to represent a GPR. In these scenarios, each modifierSpeciesReference element

references a species element that represents a gene while together they assemble the or

expression. To define the and expression a species is declared to represent the enzyme

complex and a reaction must be declared to consume the required genes in order to

produce the enzyme complex. The reader reverse engineer these occurrences by generating

the equivalent GPR expression and flags these reactions and compounds as genes since

they influence the total numbers with a naive reader.

The last approach is to extract the FBC geneProductAssociation. The assembly of

the GPR expression from the FBC is trivially achieved by iterating the XML elements.

The only validation required is to verify if all genes are declared in the SBML.

3.5.2 Metabolite Integration Methods

In this section several implementations of ψ and ϕ methods are described. The following

methods define implementations of ψ:

Metabolite identifier: The compound identifier is a mandatory attribute for all com-

pounds in the model. In many cases, it is common that the identifier is inherited from
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a metabolite identifier of a metabolic database (commonly the one used for model recon-

struction).

Since the identifier must be unique for each species, to represent the metabolite in

different subcelullar locations, usually a suffix is added. By a general rule, this suffix is

usually the identifier of the compartment. Also, the prefix M is commonly given to every

compound since the SBML specification disallows species elements to start with a symbol

or a number.

Let As be a set of all identifiers of metabolic compounds in a model, then if ss ∈ As
represents an external database identifier i ∈ {id(m)|m ∈ M}, then i is a substring of s.

However, there may exist several database identifiers that are substrings of s since it is

possible that database identifiers be substrings of each other (e.g., o2 is substring of h2o2

in the BiGG identifiers). In this case, the largest i that is a substring of s is accepted, in

scenarios where two distinct identifiers of same size are the highest match they are both

discarded.

The Aho–Corasick algorithm[2] is used for fast substring matching. The algorithm as-

sembles a finite state machine that is a prefix tree from a finite set of strings (or dictionary).

The integration method builds a prefix tree from a set of identifiers (usually from a single

database to avoid conflicts).

For each s ∈ As that matches i in the identifiers set, the prefix and suffix of the

unmatched portion are extracted (e.g., given s = M o2 c and i = o2, the match generates

a prefix M and suffix c). After matching every element in As, the prefixes and suffixes

frequencies are calculated and, for every match that generated a prefix or suffix with

frequency lower than a reject threshold, it is assumed as a false positives.

Name Dictionary: In many cases, the model inherits the names of the database metabo-

lites. Name matching receives a dictionary with compound names assigned to database

identifiers, and only exact string match is accepted.
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Model References: The reference function annotates species by extracting the existing

annotation found within the SBML. The fields scanned for references are the notes and

annotation elements as described above. The method requires a translation map t : k 7→

N that maps the keywords k to database namespaces of metabolites in M.

Manual Annotation: The manual annotation function receives an external file and

assigns their respective metabolite species. The purpose of this function is to provide

manual curation but also allows to receive feedback from external data such as annotation

from the supplementary files of publications. It applies a direct mapping function t : s 7→

M that maps species identifiers s to metabolites in the database.

In this work, only a single ϕ function was implemented:

Reference Expansion: The references are expanded using the integrated metabolite

space provided by I an argument. The I (Definition 8) is a set of metabolite sets, which

represent the clustering of identical metabolites from multiple sources (i.e., databases).

This integrated metabolite space can be either generated using the database integration

methods in the previous chapter, using external sources (e.g., other integrated databases

such as MNXRef), or by using a manually curated set.

The reference expansion function is highly flexible since it can receive any cluster set

of integrated metabolites I, and it is does not have to be a fully integrated set since it will

only expand references with the information given by I.

This allows to combine the confidence scores λ with the layers of Ψ to tune the inte-

gration, by using different sources of I to generate a consensus integration.

3.5.3 KBase Application

The work in this chapter is implemented in the DOE Systems Biology Knowledgebase

(KBase) platform2. KBase is an open source data platform that provides computing in-

frastructure to perform large-scale genome functional analysis.

2http://kbase.us

http://kbase.us
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The workflow in KBase is done by manipulating a narrative interface that is imple-

mented over the jupyter notebook framework. Users can assemble their pipeline by com-

bining existing applications that are available in the application catalog.

The SBMLTools3 module was implemented, providing two applications to improve the

compatibility of the existing ones with external SBML models. The first application is

dedicated to import SBML models, while the second provides a more customized inter-

face to integrate and modify model components, which were not possible to automatize

(e.g., compartments, malformed GPR, etc). This allows users to configure and adapt the

imported models even if they do not fit the needs of the KBase system. At the time of

writing, the module is available in the beta catalog.

KBase Development Environment The KBase SDK (kb-sdk) provides basic tools

to configure and scaffold the initial configurations of a KBase module. The modules are

KBase application projects that may implement several functions, that are run in a Docker

container. A module development life cycle consists of three stages: development, beta,

release. The initial state (development) is only exposed in the appdev environment4 of the

platform. This is an isolated environment for the purpose of testing, and it provides access

to application publishing options.

Once the module is functionally ready, it can be migrated to the beta stage, that

becomes available in the general platform. Finally, to release the module, a request must

be sent to the KBase system for release approval.

The SDK tool provides helper functions to configure the application, the kb-sdk init

function allows to scaffold the initial module layout and its base configuration (Figure

3.4). The platform supports several technologies (python, Java, R or Perl) to build the

modules, although each module can work only with one of these. The SBMLTools module

is implemented with the Java configurations.

The spec file in the root directory allows to specify the data types, the functions with

3https://narrative.kbase.us/#catalog/modules/SBMLTools
4http://appdev.kbase.us

https://narrative.kbase.us/#catalog/modules/SBMLTools
http://appdev.kbase.us
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Figure 3.4: The layout of a KBase module. The default configurations are automatically

generated with the SDK program.

the input and output data structures available in the module, as for Java projects the

specified data types are generated with the jsonschema2pojo to generate the object class

files. The spec file uses a domain specific language implemented for KBase that is similar

to the type definitions in the C language and the JSON schema. The module contains a

single Server and Client file that provides an interface between the platform engine and the

program logic. Every function defined in the spec file generates a function in the Server

and Client file. The function defined in the Server file holds the logic of the program,

while the Client functions provide the remote procedure call functions for the client (the

platform itself or other modules).

A narrative application interface is declared in the narrative methods sub-folder for

each function to be exposed. Not every function defined in the module must be a graphical

application in the application catalog, but to turn these functions into applications a

narrative specification must be declared. Each narrative application is specified by two

files, the display.yaml declares the HTML text of the interface while the spec.json maps

the input and output parameters of the server with the interface widgets.
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The interface configuration is limited to the widgets implemented in the KBase narrative

system. Currently, it supports text fields, text blocks, check boxes, combo boxes and

combined groups.

The input and output arguments of the widgets can be integrated with the narrative

workspace. As an example, a text field can be filtered to select only objects of a certain

type (e.g., FBAModels) in the workspace for easier usability.

Model Import The ”Import model SBML from web” application allows users to import

SBML models into the workspace (Figure 3.5). This application transforms SBML files

into KBase genome-scale model objects (KBaseFBA.FBAModel) and saves them in the users

workspace. The application also provides automatic annotation of the SBML compounds

and reactions.

Because of the limitations of the narrative interface specification, to import a model

the application must fetch the model from a HTTP web link (e.g., Github, personal web

storage, etc) since no file upload widget is allowed.

The only required field for the importer application is the SBML URL, all other options

are optional. The BOFs can also be assigned in this application, but this is optional since

it can be done in the follow up application.

By default, the importer application performs automatic annotation of the compounds

and reactions.

KBase Nomenclature Integration The ”Integrate Imported Model into KBase Names-

pace” application is the follow up step to integrate external GSMs into the KBase system.

This application allows to perform many tasks to reshape external models to fit the KBase

platform.

In the KBase system, some compartments have logical meaning, and the most relevant

compartments are the extracellular space and the cytosol. The extracellular space is re-

quired to attach the media for flux analysis methods. The application does not provide

any automated guessing of the compartments in the model. It its up to the user to specify
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Figure 3.5: Interface to import SBML files from the web in the KBase application. 1 -

Web URL to download the model (XML or ZIP for multiple import). 2 - Specification

of the biomass reaction. 3 - Perform annotation when importing (both compounds and

reactions). 4 - Delete compounds with boundary condition assign as true. 5 - Output

KBase object name.
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the GSM compartments using the interface options (Figure 3.6) to assign the imported

compartments to the KBase standards.

In the KBase system, the media and the GSM are separated into two different objects.

This allows users to configure and share the media independently from the models.

The application allows the user to specify the medium object in the output field. This

is not a mandatory field, however if specified, it will strip all the drains in the model

and generate a KBase medium object to the workspace. If the extracellular compartment

is integrated, only these drains are stripped to the medium, and the others are assigned

as demand and sink reactions. The object also inherits the default exchange constraints

specified in the model.

The imported GSM is assigned by default to an empty genome. All GSM models in

KBase are attached to a genome object, this integrates the genes of the model with data

from the genome features.

The application allows to assign a genome object from the workspace to be integrated

with the model. It will attempt to match the features in the genome with the genes in the

GPRs of the model. All genes in the model that were not possible to integrate with the

assigned genome are removed and reported in the output.

The KBase platform indexes the entire set of prokaryotic genomes of the NCBI Refer-

ence Sequence (RefSeq) database[104]. The Apache Solr search server is used to create a

search index for many genomic features, that includes annotation, sequences, aliases and

taxonomy. The search kbase solr function of the KBSolrUtil module is used for automated

detection of the GSM genome, this option is enabled if no genome is manually specified.

The application requests a Solr query to retrieve all gene features with identifiers or aliases

that match each gene in the GPR expressions from the model. The genome that covers

most of the genes is automatically assigned to the model, and a copy is given as output to

the users narrative. Similar to manual genome assignment, the genes that do not match

any feature in the assigned genome are removed from the model and reported. In this case,

other genomes (if any) that also had matches, are reported with a matching percentage.

Manual configuration of the model features is also possible in the advanced options. It
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Figure 3.6: Interface to integrate external models into the KBase namespace. 1 - KBase

FBAModel to integrate (from workspace). 2 - KBase Genome to integrate with the model

(empty for automated detection). 3 - Manual assignment of the compartment logic. 4 -

Compound and reaction renaming (ModelSEED / KEGG / BiGG). 5 - Delete boundary

compounds. 6 - Rewrite compound names / formula / structure according to the Mod-

elSEED annotation. 7 - Biomass reaction selection (from the selected FBAModel in option

1). 8 - Manual GPR rewrite. 9 - Manual ModelSEED annotation. 10 - KBase model recon-

struction template (gram negative, gram positive, core and plant). 11 - Generate KBase

Media object from drains (empty to keep drains). 13 - Output integrated FBAModel name.
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includes manual assignment of the GPR with the reactions and the manual annotation of

the compounds.

The translation option allows to rename the compounds and reactions with either Mod-

elSEED, KEGG or BiGG identifiers from the annotation.

Like the importer application the BOF can also be reassigned, but in this stage model

context is available, that allows users to select and search a reaction from a list of reactions

that are found in the model.

3.6 Case Study: Prokaryotes GSM integration

Over the last years, hundreds of bacterial GSMs were manually curated and some had

several rounds of reannotation and reconstruction. In this case study, over 100 prokaryote

GSMs were selected for a semi-automated integration, where the main purpose is to assess

the BOF of these models for the presence or absence of essential components. The models

were collected by Xavier et al. [127] for a follow up research in the biomass formulation of

prokaryote GSMs.

In a prokaryote GSM, the biomass reaction is usually the primary and only objec-

tive function which allows to determine if the cell viability in different conditions after

environmental and genetic modifications.

There is a high discrepancy between GSM BOF, and many models have several BOF

for debugging, different conditions, etc. In a genome-scale scope most of the BOF con-

tains nucleotides, amino acids, and fatty acids for the DNA, RNA, protein and lipids but

regarding to ions, organic cofactors and prosthetic groups these are usually missing.

The enzymes that are related to biosynthesis or transport of these compounds usually

have less literature content, which also implies that the annotation and the knowledge

regarding the origins of these compounds are less to be known, making many GSM miss

reactions regarding these compounds, and in some cases the entire pathway is not present.

To assess the models, first a SBML profiling is conducted to detect possible incon-

sistencies in the SBML structure, followed by the standardization pipeline to unify the
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metabolite and reactions nomenclature.

3.6.1 Model Characterization

The models are interpreted with the implemented reader and the COBRApy reader for

comparison purposes. From the 108 models, 13 SBML files were not accepted by the

COBRApy library for several reasons: missing identifier attributes, non-unique identifiers,

problems building the stoichiometric model. The implemented reader was able to read all

the models since the only requirement is a syntactically valid XML file, but depending on

the severity of the detected issues some models must be subject to user curation in order

to be viable. The reader is able to fix some issues presented with the COBRApy reader

such as duplicate or missing reaction identifiers, since for reactions these can be generated

automatically. User intervention was required to fix reactions that lacked the species

attribute in the stoichiometry.

An initial SBML profiling shows a variety of XML XSD included in the models (Figure

3.7). The most popular SBML version is the SBML Level 2, which is perhaps related

with the time frame when these models were developed, but also with the use of model

reconstruction tools.
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The versions before SBML3 did not have any semantics to represent genes and flux

constraints. Most of these models relied on ad hoc representation of these parameters using

the generic field to write HTML notes, and the kinetic parameters fields. The problem with

such methodologies is the need to define custom keywords to describe the properties, and

nothing forbids different tools from using different notations to describe these properties,

hence losing the whole purpose of interoperability between software platforms/tools.

A few unofficial community developed SBML extensions were also found (Figure 3.7).

The Metabolic flux model annotations [115] enable reactions to annotate flux analysis re-

sults (such as FBA solutions or other methods), but also include the constraints used,

which improves the reproducibility of the analysis. The KeyValueData is another commu-

nity extension to add a dictionary data structure for the annotation element, avoiding

the usage of the notes element to add arbitrary attributes. It is supported in the PySCeS

[96] framework for cellular modeling.

For a correct interpretation of these models, the parsing of these extensions was imple-

mented in the reader even though their frequencies are low.

On average, 70% of the metabolites were able to be integrated (Figure 3.8), however

some models showed very low integration ratio, in many cases these are models without

any compound annotation while having numerical generated identifiers.

Models that include genes as compounds compromise the total number of metabolites

but also the annotation. The iSB1139 GSM shows a 65% of integration, having more than

50% of species annotated with BiGG. In fact, the total numbers are much higher since

30% of the metabolites are representing genes. This was observed for only three models:

iJC568, iMLTC806cdf and iSB1139, each of these models would have annotation above

90% if genes compounds were removed from the model.

Models that use custom identifiers without providing proper names and annotation

often include additional information in the supplementary materials. However, to properly

annotate these models, such information must be transferred to the SBML and in many

cases the supplied data cannot be directly transferred since they are not organized in regular

tables (the addition of intermediate headers and comments implies dedicated parsers). The
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Figure 3.9: Contribution of each database to identify ids and names of the model species.

iSS352, iKK446 are examples of these models, since they are not provided in SBML but

assembled from spreadsheets.

In general, when the identifier annotation is low, it implies that these models do not

follow database identifiers, but instead they use their own abbreviations. The few matches

are all occurrences of commonly shared identifiers that usually match with the BiGG

naming system (e.g., adenosine triphosphate is commonly abbreviated as ATP).

The iYS432 identifiers did, however, found to be originated from the MetaCyc database,

but minor modifications were made to the identifiers because of the dash ”-” character,

that was replaced by the underscore. This provides room for improving the identifiers

method to include MetaCyc identifier search without dashes. Nevertheless, the MetaCyc

identifiers shown to be the least popular for model reconstruction.

The identifiers method was able to detect in average 30% of the metabolite species

across all models (Figure 3.9), while the BiGG database was the most adopted nomencla-

ture followed by ModelSEED, and together they cover 40% of all identifiers in 108 models.

For readability sake, the identifiers from BiGG are usually preferred since they are abbre-

viations of compound names. Regarding to names, the ModelSEED is the most popular

followed by ChEBI, KEGG (compound) and MetaCyc.

3.6.2 Flux Analysis

Correct interpretation of the mathematical attributes of the model is essential to obtain

the correct results from the flux analysis methods. In some models, default assumptions

may break the model. In most scenarios a zero growth is easier to fix than having an
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Table 3.1: Manual corrections applied to GSM.

Model Action Scope Action

iHK760 Remove b species delete

iJW145 Remove b species delete

iCA1273 Remove b species delete

iRsp1095 Free Exchange exchanges Bound → ]−∞,∞[

iRsp1140 Free Exchange exchanges Bound → ]−∞,∞[

iGT196 Keep Boundary species keep

iLca12A 640 Free Sink exchanges Lower Bound → −∞

iLca334 548 Free Sink exchanges Lower Bound → −∞

iLca12A 640 Manual Uptake exchanges Upper Bound

iLca334 548 Manual Uptake exchanges Upper Bound

incorrect numerical value since this would require additional knowledge about the model

to understand the proper flux ranges.

Only a few models had SBO terms annotated, while for most models that did contain

ontology terms these were annotated in the parameter element5. In the species element

(compounds), three models had the enzyme, protein complex and metabolite terms6 to

distinguish the elements between compounds and genes. As for reactions, no terms were

found to help identify the biomass or drains.

The biomass reaction was manually selected by Joana Xavier. Given these reactions

it is essential that their components are standardized into a single nomenclature system

for comparison purposes. The integration pipeline was ran to translate all the metabolites

into the BiGG universal compound nomenclature for ease of interpretation. It was also

necessary to standardize the compartment naming system, since these prokaryote GSMs

often include only 3 or 2 compartments; with the exception of the cyanobacteria, all the

compartments were manually curated.

Manual modifications were made (Table 3.1) in a few models, including manual as-

5SBO:0000625: flux bound and SBO:0000626: default flux bound.
6SBO:0000014:enzyme, SBO:0000297:protein complex and SBO:0000299: metabolite.
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Figure 3.10: Default read and optimize test using the original and standardized versions.

signment of the exchange fluxes, removal of metabolite species ending with a prefix, and

allowing boundary species.

To test the reader interpretation and standardization, a flux balance analysis was ran

for each model using the default media and the selected biomass reaction. The COBRApy

library is used with both versions of the model (the original and standardized version), the

only modification made was the selection of the biomass. The cobra.io.read sbml model

function call is used without any parameters to read the model. It is understandable that,

for some models the specification for removal of certain compounds is necessary (usually

ending with the b suffix), but the purpose of this test is to assess the default interpretation

of the models. To run flux analysis the optimize() function is used and the objective value

attribute is used to compare the results.

For most of the models that were able to optimize using both versions, the solution

remain equal for both with only a few exceptions. The standardized models were able to

enable default optimization for 15 models that gave zero growth flux using the original

version. Additionally, 13 became parseable after fixes (some required manual intervention)

and were able to obtain default growth rate for the selected biomass. Only 3 models

remained with zero growth for both of the versions.

3.6.3 Genome Integration

The integration of the GSM with its genome is often complicated due to several facts:



114 CHAPTER 3. STANDARDIZATION OF GENOME-SCALE MODELS

• In some models, the GPR associations are not transfered to the SBML (in these cases

they are usually described in publication supplementary data). A possible reason is

the limitation of the tools used that are not capable of writing the GPR expressions

in the SBML.

• The genome may suffer updates from the time of the publication. These changes can

be the entire merge of an organism with another (e.g., duplicated species), changes in

the gene nomenclature or removal of genes.

• The ”standard” identifier of the genes may be subject to change.

With the integration application implemented it was possible to automatically detect

the genome for 61 models (Figure 3.11), that is a total of 51 distinct genomes (since some

have several models). The total amount of metabolic genes vary between organism and

the total number of open reading frames in the genome.

In a previous study[71], the authors show that for prokaryotic species the number of

metabolic genes may range on average between 15% to 20% of the total amount of genes.

The numbers found in the 61 GSM correlate well with these results. Some models shown

significant improvements from earlier versions, the Clostridium acetobutylicum ATCC 824

(iJL432, iCAC490 and iCac802) display an increase from 10.9% to 18.6% of metabolic

genes and Streptomyces coelicolor A3(2) (IB700 and iMK1208) with an increase from 8.5%

to 15.5%.

Most models had a few genes that were not found in the genome, in many cases ficti-

tious genes. The s0001 was present in many models to represent spontaneous reactions,

another example is a fictitious gene to represent gap filled reactions, but these scenarios

are dependent on the application used to build the model. Some models may include genes

from another close organism, where it is likely that the model was built using comparative

genomics. Nonetheless, the number of genes not found are residual compared to the total

genes in the model.



3.6. CASE STUDY: PROKARYOTES GSM INTEGRATION 115

0% 20% 40% 60% 80% 100%

Mycoplasma pneumoniae M129 [iJW145         ]

Moorella thermoacetica ATCC 39073 [iAI558         ]

Faecalibacterium prausnitzii A2-165 [iFap484        ]

Unconfirmed Organism: Clostridioides difficile 630 [iMLTC806cdf    ]

Clostridium beijerinckii NCIMB 8052 [iCM925         ]

Clostridium acetobutylicum ATCC 824 [iCac802        ]

Clostridium acetobutylicum ATCC 824 [iCAC490        ]

Clostridium acetobutylicum ATCC 824 [iJL432         ]

Streptococcus thermophilus LMG 18311 [iMP429_fixed   ]

Streptococcus pyogenes NZ131 [iJL480         ]

Lactococcus lactis subsp. cremoris MG1363 [iNF518         ]

Lactobacillus plantarum WCFS1 [iBT721_v2      ]

Lactobacillus casei LC2W [iJL846         ]

Enterococcus faecalis V583 [iNV706         ]

Bacillus megaterium WSH-002 [iMZ1055        ]

Thermus thermophilus HB27 [iTT548         ]

Synechococcus elongatus PCC 7942 [iJB785         ]

Synechococcus sp. PCC 7002 [iJH728         ]

Prochlorococcus marinus subsp. pastoris str. CCMP1986 [iJC568         ]

Synechocystis sp. PCC 6803 [iSyn731        ]

Synechocystis sp. PCC 6803 [iHK760         ]

Arthrospira platensis C1 [iAK692_auto    ]

Arthrospira platensis NIES-39 [iKY620         ]

Cyanothece sp. ATCC 51142 [iCce806        ]

Cyanothece sp. PCC 7424 [iCyc792        ]

Cyanothece sp. ATCC 51142 [iCyt773        ]

Cyanothece sp. PCC 8802 [iCyh755        ]

Cyanothece sp. PCC 8801 [iCyp752        ]

Cyanothece sp. PCC 7425 [iCyn731        ]

Streptomyces coelicolor A3(2) [iMK1208        ]
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Genome Integration Match Miss Other Genes

Figure 3.11: Automatic genome detection using the KBase SOLR search (highest match

of all genes in the GSM). Match - genes in the GSM found in the matching genome; Miss

- genes in the GSM not found in the matching genome; Other Genes - fraction of the

remaining genes in the genome.
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3.7 Case Study: Yeast GSM

The design of metabolic networks requires several rounds of iterations to build, refine, and

test the models. Of all metabolic reconstructions, only the Escherichia coli and Saccha-

romyces cerevisiae had an extensive refinement from several research groups, along with a

highly annotated genome due the extensive research that is conducted with these species.

There are several genome scale models available for the Saccharomyces cerevisiae, some

inherited from previous reconstructions, others developed independently. Due to the dis-

crepancy in the number of annotated open reading frames, and the variety of metabolites

and reactions in these models, comparative analysis shows moderate divergence of the sim-

ulation results between these models. In a previous study, Heavner et al.[51] described

that the OptKnock algorithm [14] would suggest different targets when different models

are used, but all representing the same organism. A common problem of validating these

models, is the lack of (genome-scale) experimental evidence of the internal fluxes, while

most of these models are validated in a black-box fashion. The most common benchmarks

to validate GSMs is to test if they are capable in predicting a certain phenotype (e.g.,

growth, compound utilization and production, essential genes).

The goal of this study is to create an integrated GSM space of several Saccharomyces

cerevisiae models and extend this domain with additional information to enrich the data

(e.g., additional information regarding genes, compounds, etc) for yeast research and mod-

eling projects.

Ten of the published yeast GSM were selected for integration, most of them developed

before SBML Level 3. Therefore a diverse variety of annotation and nomenclature methods

were found (Table 3.2).

The iMM904, iAZ900, iND750 use the BiGG naming system, that adopts the metabolite

names from the BiGG database to identify their species. Practices such as these allow to

easily match the information of the metabolites with the database, without need of using

annotation strategies in the SBML.

However, the BiGG database does not provide metabolite structural information, and
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must be obtained from other referenced databases such as KEGG or MetaCyc. The BiGG

database contains only a few of the published GSMs, therefore not all metabolites may be

present. In this case the iAZ900 is an external model that contains a few custom BiGG

identifiers.

The consensus models of the yeast (Yeast 1, 6, 7) uses the annotation element to

reference external resources.

Integration becomes complicated when there is no information available in the SBML

models. This leaves the only option to analyze the annotation strategy in the SBML file

to scavenge any property that may be relevant to decipher the species.

An example is the iLL672 GSM. To infer the annotation of the iLL672 GSM, the edit

distance of the name strings was analyzed. The name of the species were compared with

the names found in the BiGG database. Many names were similar to the names given to

the BiGG compounds. This allows to rank the metabolites with minimum edit distance.

But, as shown in the metabolite naming system, the name of biochemical compounds are

usually ambiguous.

Most models had species identification higher than 70% (Figure 3.12). A particular

case is the big difference between the annotation of the species between the Yeast 6.06

and Yeast 7.6. While the first model had a near full annotation, the Yeast 7.6 dropped

to the lowest of all models. The Yeast 7.6 improved the fatty acid elongation process by

unfolding the generic metabolites to the concrete representation of the fatty acids. This

implies replicating the generic fatty acids pathway with each of the defined versions of the

fatty acids, which increases the amount of species and reactions by many folds.

Reaction integration detected several internal duplicates across all models. The pres-

ence of enzymes that perform identical reactions but with limited reversibility must gen-

erate two reactions, as described in the previous section. In the iMM904 model, gene

YMR303C encodes the reaction that converts ethanol to acetaldehyde, while the genes

YOL086C, YGL256W and YBR145W perform the reverse operation. It is impossible to

combine the four of these genes because they dictate different reaction constraints, however,

the last three can be combined together into a disjunctive expression.
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Table 3.2: Yeast metabolic models. iFF708 provides GPR in PDF supplementary files.

Yeast 6/7 did not annotate subsystems for reactions. Genes - (Found in reference

genome)/(Total in model)/(Total protein combinations). GPR annotation method: PDF -

PDF document; XLS - Spreadsheet document; Notes - SBML notes element, Mod - SBML

reaction modifiers element.
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Genes

iFF708 None 63 810 4 1382 ? (PDF) ?

iLL672 None No 672 1(3) 1194 871 (XLS) 659/660/660

iND750 BiGG 56 1177 8 1266 810 (Notes) 748/750/677

iMM904 BiGG 59 1392 8 1577 1043 (Notes) 902/905/843

iAZ900 BiGG 60 1404 8 1597 1049 (Notes) 899/901/845

iIN800 None 62 985 3 1706 1199 (Notes) 705/707/707

iTO977 XLS 105 1213 4 1562 1046 (Notes) 947/961/874

Yeast 1 RDF 60 1457 15 1857 1407 (Mod) 832/832/770

Yeast 6 RDF ? 1623 16 1888 1180 (Notes) 900/900/818

Yeast 7 RDF ? 2386 16 3493 2302 (Notes) 909/909/829
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Figure 3.12: Percentage of metabolite species mapped to at least one metabolite from a

database.
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Figure 3.13: Number of duplicate reactions within each model. Blue - strict direction.
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In some models, where the number of duplicates were much higher, it is clear that the

number of reactions do not represent the actual count of distinct biochemical activities in

the model. This includes the iFF708, iLL672, iTO977 and Yeast 1, that duplicates the

reaction for any reversible enzyme (one for each direction).

Examples of internal duplicates were found in several GSM, such as the following oc-

currence in the Yeast 7.6 model:

ID Stoichiometry Genes Association Bounds

r 1148: s 0665→ s 0666 YIL013C OR YOR011W ]−∞,∞[

r 1760: s 0666→ s 0665 ]−∞,∞[

This is an example of possible duplicates since the flux bounds are set to be unbounded

(i.e., reversible), and thus, the orientation of the components of the stoichiometry is irrel-

evant. By using the same comparison methods from the reaction integration, it is possible

to find orientation distinct (the example above) or exact duplicates (Figure 3.13).

There are two levels of integration in the GSM. The first is to find equivalent re-

actions within the resources, this allows to further annotate the reactions of the GSM.

Second, models are also integrated against each other. Unlike the previous case study, the

yeast models are integrated against each other. Reactions not found within the metabolic

databases may be shared among models, allowing to identify reactions that are unique to

these models.

It is possible to observe that iAZ900 and iMM900 share a large common set of reactions,

since one is inherited by the other. The Yeast 6.06 is very similar to Yeast 7.6 but the

opposite is not true, since most reactions found in Yeast 6.06 are present in the Yeast 7.6.

The Yeast 7.6 contains twice as many reactions of any other GSM in this study, therefore

its maximum similarity is limited to a fraction compared to the remaining models.

The mapping of species plays a great deed in the integration of the stoichiometry.

Models with lower coverage will eventually display poor results in the integration of the

reactions. As an example, the iLL672 and iTO977 model shown low similarity. But, this is

not the only reason for the lack of integration. By inspecting a few reactions, it is possible
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Table 3.3: Identification of the reactions in GSM with databases. Model - reactions found

in another yeast models. Database - reaction found in a database. Both - reaction found

in at least one model and one database.

Model Database Model Any Both KEGG MetaCyc BiGG

iFF708 0.38 0.87 0.87 0.37 0.32 0.31 0.32

iLL672 0.22 0.48 0.49 0.22 0.18 0.19 0.20

iND750 0.70 0.98 0.99 0.69 0.51 0.47 0.68

iMM904 0.60 0.91 0.91 0.60 0.43 0.41 0.58

iAZ900 0.59 0.90 0.90 0.59 0.43 0.40 0.57

iIN800 0.29 0.80 0.65 0.27 0.23 0.22 0.23

iTO977 0.28 0.80 0.67 0.27 0.25 0.24 0.25

Yeast 1 0.58 0.84 0.84 0.57 0.49 0.47 0.50

Yeast 6 0.41 0.90 0.90 0.41 0.35 0.34 0.36

Yeast 7 0.21 0.50 0.50 0.21 0.18 0.18 0.18

to detect dubious stoichiometry within these models. In the iTO977 several examples of

reactions with missing co-factors (e.g., R FUM1 1, R IPP1) were identified. The missing

species from the stoichiometry of the reactions miss the integration with the remaining

models.

A total of 504 genes were present in all the 9 GSMs (excludes iFF708), while a few

genes were exclusive to 5 models, the iLL672, iAZ900 and Yeast 6 had 2, 2 and 3 exclusive

genes. The latest model of Yeast 7 had 11 unique genes and the iTO977 included 44 genes

being the model having most exclusive genes. The number of genes in the most recent

models are similar, but there are small changes to the genes included (Figure 3.15), and

these changes are much higher when compared to the GPRs in the models. As an example,

iMM904 and iAZ900 share a similar amount of genes compared to the consensus models

Yeast 1, 6, 7 (similarity index >0.85), but when it comes to proteins these numbers drop

to 0.79 compared with the Yeast 7.

The biomass composition is one of the differentiation aspects of these models, from the



3.7. CASE STUDY: YEAST GSM 123

a)
 iF

F7
0

8
 

 iL
L6

7
2

 

 iN
D

7
5

0
 

 iM
M

9
0

4
 

 iA
Z9

0
0

 

 iI
N

8
0

0
 

 iT
O

9
7

7
 

 Y
ea

st
 1

 

 Y
ea

st
 6

 

 Y
ea

st
 7

 

b)

iF
F7

0
8

iL
L6

7
2

iN
D

7
5

0

iM
M

9
0

4

iA
Z9

0
0

iIN
8

0
0

iT
O

9
7

7

Ye
as

t 
1

Ye
as

t 
6

Ye
as

t 
7

iFF708 1 0 0 0 0 0 0 0 0 0 iFF708 1 0 0 0 0 0 0 0 0 0

iLL672 0 1 0.77 0.71 0.7 0.7 0.67 0.71 0.67 0.67 iLL672 0 1 0.65 0.55 0.53 0.7 0.6 0.56 0.53 0.53
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Figure 3.15: Comparison of genes and GPRs with Jaccard similarity index. a) - Individual

genes. b) - Proteins (all and combinations in GPRs)

earliest model to the latest the biomass defined to yeast displayed several modifications on

both coefficients and components.

The composition of biomass decides how complex the network reconstruction is. As

an example, a simple biomass requires less pathways, thus a smaller (incomplete) network

satisfies the growth condition.

From the yeast models a total of 11 biomass formulations were collected and tested

against each other (Figure 3.16). For the components that are not compatible with the
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Figure 3.16: Growth rate of the yeast models by applying cross-model biomass equation.

Left axis: consumption and production of compounds, Right axis (bar plots): growth rate.
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model (i.e., the metabolite is not present in the model), these are discarded from the

biomass.

For DNA, RNA, and protein most of the BOFs were identical except for the iLL672

and iTO977 models, that only differ in the weights.

The riboflavin was the only cofactor in the yeast biomass (except iFF708, iND750,

iIN800, iTO977), only the iLL672 included other cofactors (NAD, FAD, thiamin triphos-

phate, coenzyme-a, tetrahydrofolate, protoheme).

3.7.1 The Metabolic Integrated Yeast Knowledgebase

The Metabolic Integrated Yeast Knowledgebase (MIYeasTK) was created to catalog the

metabolites, reactions and genes of the 10 integrated yeast models, but also integrating the

genes with the Saccharomyces Genome Database (SGD) database. This work was done

in collaboration with several colleagues in the research group (Christopher Costa- web

interface and SGD integration, Sophia Santos - data curation) The database provides and

integrated view of all the metabolites, reactions and genes of the models standardized to

BiGG identifiers as aliases. Each individual component can be displayed in the integrated

view that shows the occurrence of the entity in other models.

The SGD is integrated with the GPR associations of each model, transferring phenotype

information from the SGD to model genes.

The compartments were standardized to the BiGG system, additional compartment

aliases were created for the ones that did not exist in BiGG. Several efforts were also made

to unify the pathway annotation to assign universal pathway identifiers between each of

the models.

The application is implemented in Node.js, using the Neo4j as database, the REDIS in

memory database is used to cache the table information to speed up filter operations. The

Neo4j database is assembled from the universal graph database G into a dedicated version

for the yeast models. The translation methods were applied to generate the BiGG aliases

to the compounds for better user readability.
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Figure 3.17: Metabolite display interface. 1 - Metabolite information. 2 - External links

to metabolic databases. 3 - Reactions with the metabolite present. 4 - Other versions of

the metabolite (in other compartments and models).

The metabolite display (Figure 3.17) provides external links to the model compounds,

also linking reactions where the compound participates and other versions of the same

compound. This offers to users a better browsing experiment to navigate between the

GSM entities.

Like the compounds, the reactions (Figure 3.18) also displays links to external databases,

other identical versions of the reaction across the models, and the GPR is also integrated

allowing the user to browse the genes individually to explore other reactions that are as-

sociated with the gene.

3.8 Conclusions

In this chapter, many of the existing representation methods dedicated to genome-scale

modeling were covered. The implemented standardization pipeline allows both reshaping

the model representation, but also annotation of the model content with external database

references, since they are equally relevant to enable comparative analysis of different mod-
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Figure 3.18: Reaction and gene display interface. 1 - Reaction information. 2 - GPR

association integrated with gene display. 3 - External links to metabolic databases. 4 -

Other versions of the reaction. 5 - Gene information. 6 - SGD phenotypes associated with

the gene. 7 - External references to the gene. 8 - Reactions associated with the gene (across

all models).
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Figure 3.19: Output report for the fully automated integration of the 108 models using

the implemented KBase application.

els.

The implemented application was proven to be capable to automatically annotate a

SBML model with a high success rate (Figure 3.19) compared to the customized usage of

the pipeline. Although there are examples where the implemented methods were unable

to guess the compounds, these were quite a few (and it was only possible in the case

study with the addition of data from supplementary materials). In these situations, the

models usually contain user made string patterns (e.g., name concatenation with formula),

being unpractical to cover each of these individual scenarios. Still, the proposed solution

is flexible to the addition of new integration logic with few implications in the existing

methods.

The extension of the domain logic of the CDS proven that the system is flexible to in-

clude additional domains without the need to reformulate previous implementations. This

was demonstrated with the addition of SGD genes and phenotype data in the MIYeasTK

database.

The integration of GSM content is data intensive, the implemented solution in the

KBase platform provides the infrastructure necessary without requiring users the necessity

to setup several databases. For most of the GSM that included GPR within the model,

the application was able to detect the correct genome from the RefSeq repository.

The standardization tools make comparative analysis of existing GSM more practical,
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while it also provides a recycling method taking advantage of the curation efforts in the

GSM models to improve future reconstruction and annotation.



Chapter 4

Pathway Optimization

Abstract

Metabolic Engineering targets the microorganism’s cellular metabolism to design new

strains with an industrial purpose. Applications of these metabolic manipulations in

Biotechnology derive from the need of enhanced production of valuable compounds.

The development of in silico metabolic models proposes a quantifiable approach for

the manipulation of these microorganisms.

These systems are also prone to be represented as networks, taking advantage of

different graph-based paradigms, including bipartite graphs, hypergraphs and pro-

cess graphs. This chapter explores these representations and underlying algorithms

for metabolic network topological analysis. The main aim will be to identify poten-

tial pathways towards the optimized biochemical production of selected compounds.

Related to this task, algorithms will be designed aiming to complement networks of

specific organisms, taking as input larger metabolic databases, inserting new reactions

making them able to produce a new compound of interest.

To address these problems, and also related tasks of data pre-processing and evalu-

ation of the solutions, a complete computational framework was developed. It inte-
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grates a number of previously proposed algorithms from distinct authors, together

with a number of improvements that were necessary to cope with large-scale metabolic

networks. These are the result of problems identified in the previous algorithms re-

garding their scalability.

A case study in synthetic metabolic engineering was selected from the literature to

validate the algorithms and test the capabilities of the implemented framework. It

allowed to compare the performance of the implemented algorithms and validate the

proposed improvements.

4.1 Pathway Optimization

4.1.1 Synthetic Pathways

An important branch of ME deals with the exploration of nonstandard routes of cellular

metabolism. These routes involve metabolic activities possibly occuring in several organ-

isms. Application of these hybrid pathways is mostly related to the synthesis of nonnative

substrates in a specific microorganism, although other applications such as the study of

metagenomic communities will also involve the analysis of these heterologous pathways.

The design of these pathways involves several steps. The first step is to select a proper

chassis (host organism) to be used as a basis for synthesis. This chassis can be computation-

ally represented by a metabolic network or model, if this is available for the microorganism,

allowing simulation using constraint-based methods (detailed in one of the next sections).

In the following step, a suitable set of reactions must be identified that are capable to

perform the synthesis of the compound of interest, from a set of source metabolites assumed

to be available (produced by the host internal metabolism). For the reactions that exist

in the host’s metabolic portfolio, those are mapped to a set of encoding genes. For the

ones that do not exist in the host, a suitable donor organism needs to be identified and the

gene needs to be inserted into the genetic material of the host, using genetic engineering

techniques.
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From a computational point of view, the problem of finding a suitable set of reactions

will be a combinatorial search to identify suitable (sub)sets of reactions from a metabolic

domain, matching a specific set of constraints and, optionally, maximizing one or several

criteria. This task will be referred in this work as pathway optimization, when an objective

function is used to rank each set of reactions and the purpose is to maximize/ minimize

it, and as pathway enumeration when the target is to enumerate all possible subsets that

obey a given set of constraints.

An identical task seeks to find the pathway that enables the biodegradation of a target

compound. In this scenario, the set of reactions added, instead of producing will consume

the compound of interest leading to the production of compounds of interest.

While the host selection was defined as the first step, in many cases it is a problem

deeply entangled with pathway optimization. Indeed, in some cases, the order of the tasks

can be reversed, dealing first with the selection of interesting pathways and, afterwards

selecting the best host to support these pathways. The criteria to evaluate the pathways

and their interconnection with the host will be summarized in a later section of this chapter,

although the complexity of this matter is out of the scope of this text.

There are several studies conducted on synthesis problems both with experimental

results or just considering a computational analysis. Valuable compounds such as butanol

[5], artemisinin [121], vanillin [46] or curcumin [67] were successfully engineered over several

host microorganisms.

Regarding computational methods, there is a vast portfolio of algorithms available in

the literature that are capable to discover and enumerate heterologous pathways. These

are explained in more detail over the next sections.

4.1.2 Metabolic networks and graphs

In computational biology, Metabolic Networks (MN) play an important role being their

more common and simplest representation attained by the use of regular graphs. The words

network and graph are even commonly used interchangeably. In biological networks, nodes
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are typically biological entities such as genes, proteins or metabolites, while graph edges

represent relationships between those entities (e.g. reactions in metabolism, regulatory

interactions, signaling cascades). In the metabolic context, nodes are typically metabolites

and edges are chemical reactions which transform metabolites, acting as substrates and

products. A diversity of chemical compounds connect to each other performing chain

transformations of compounds, termed as metabolic pathways.

Metabolic networks have been studied in detail and they usually exhibit typical char-

acteristics of scale free (the majority of the nodes have very low degree, while a few nodes

have a very high degree) and small world networks (average path length is smaller than

what would be expected of a random network of the same size) [60]. In graph analysis

methods, these properties will bring some challenges.

In ME applications, these networks are often studied for their robustness, while other

analyses can be performed to understand the average diameter for each organism network

and the difference between related and unrelated organisms [82].

Taking graph representations as metabolic domains, path searching algorithms can be

used to extract minimal length sequences of transformations between compounds with the

purpose of identifying viable pathways [26]. These make the most straightforward ap-

proaches to pathway optimization. Enumeration of possible paths is also possible, but the

problem significantly grows in complexity, even considering these simple representations.

There are several studies conducted using graph paths to infer pathways from MNs.

Most of these are able to enumerate pathways computing k-shortest paths between com-

pounds. Other stochastic methods such as k-walks have also been applied to deal with the

complexity of these networks. Also, the DESHARKY algorithm [108] uses Monte Carlo

Markov Chains to generate solutions for both biosynthesis and biodegradation problems.

4.1.3 Limitations of regular graphs

For more complex tasks, graph representations are too simplistic since they do not fully

represent the biological meaning of metabolic transformations, once many functionalities
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are much more complex than the information regular graphs can contain. One important

example is the fact that chemical reactions are interactions involving typically more than

one input and more than one output, thus not being well defined by a regular graph edge.

Related to this issue, in most scenarios, the shortest path between two compounds in

a graph does not represent a biological meaningful path, since chemical reactions usually

contain cofactors and pool metabolites (e.g, ATP , NAD, H2O, H+). The high connectivity

of these compounds reroutes the shortest path (that is directly translated from a MN) to

favor pool metabolites, which in most cases leads to biological meaningless solutions [36].

One solution to overcome this problem is to strip cofactors and pool metabolites (also

known as currency metabolites) from the network, leaving most reactions with a single

substrate and a single product. This, however, involves user expertise and manual curation

of the network. Also, by removing the entire set of currency metabolites, it is impossible

to obtain solutions that are able to synthesize these compounds (e.g. ATP).

An alternative is to apply weights to each compound node based on their degree [36].

Compounds with high degree are penalized, allowing shortest path methods to find the

proper route avoiding currency metabolites. Nonetheless, false positives remain a problem,

but compared to the previous solution, the usage of compound weights does not require

chemical knowledge about the content of the network.

Additionally, graph-based systems analyzed are usually limited to linear paths over the

graph. This is an important limitation since many relevant biochemical reactions have

two or more substrates and/ or compounds. One solution to overcome this limitation is

the implementation of further techniques to infer branched pathways over regular graphs.

One of the earliest solutions is provided by the ReTrace method [103]. This algorithm

involves the computation of minimal pathways, which in turn was proven to be NP-hard

by reduction to the minimal set cover problem.

Apart from the mentioned solutions, these limitations have been addressed both enrich-

ing the representation, for instance with set systems, and considering additional biological

information. Both approaches will be addressed in the following sections.
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4.1.4 Atom Mapping

As mentioned previously, a major limitation in graph paths is the identification of the

correct transitions between substrate/ products (i.e., edges) due to the presence of pool

metabolites that induce short length paths that are biologically meaningless. The solutions

presented previously involve the arbitrary specification of these metabolites or of arbitrary

weights which may help to soften the problem, but in general do not provide a final

solution. A common characteristic of graph representations of metabolic networks is that

the compound itself is irrelevant for the context. In a metabolic graph, the compounds are

usually presented as vertices with some unique identifier to distinguish different compounds,

and the actual characteristics of the compound are all discarded (e.g. the chemical formula

or structure). In this scenario, shortest path algorithms have a hard time to predict

biological meaningful paths.

The atom mapping approach attacks the substrate/ product routing problem using the

chemical structure of the compounds involved in the reaction. A solution to overcome this

problem is to descend to a lower level where compounds are bound by atoms instead [10].

The key principle behind this approach is to track atom conservation between reactions,

making it possible to infer meaningful paths between two compounds.

The application of the maximum common subgraph algorithm [3, 10] allows to track

the conservation of carbon atoms between substrates and products, and therefore the

conservation of carbon atoms in an entire pathway. This methodology requires no explicit

assignment of currency metabolites or any heuristics to avoid these.

The KEGG Reaction pair database [72, 73] stores mapped solutions for each reaction (if

available) of the KEGG reactions based on graph theoretical methods of common subgraphs

of chemical structures.

This allows to bypass the requirement to atom map the reactions since they are already

pre-computed. This information allows to easily access linear paths between compounds

by filtering the correct transitions [35, 50].

A disadvantage of these methods is the necessity of knowing the chemical structure
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of the compounds. Additionally, some compounds feature generic structure (e.g., the R

placeholder), and such structures can be dealt if this does not interfere with the atom

conservation [50].

4.1.5 Set Systems

To address the limitations of regular graphs, several other models have been used to study

these systems. There are several representations of graph structures depending on what

level of information is captured (Figure 4.1). A common transformation is to unfold reac-

tions into a bipartite system, such that vertices can be of two types representing compounds

and reactions, while edges represent the interactions between compounds and reactions (i.e.

a certain compound is a substrate or product of a reaction defining the direction of the

edge) [23].

One alternative is the application of the so called set systems to represent chemical

reactions, which allows to capture more complex network topologies. In these systems,

entities representing reactions connect to a set of vertices instead of the binary relationships

between two nodes in regular graphs. Moreover, this allows to overcome many problems

related to directed graph search, for instance branching pathways and pool metabolites.

Structures such as hypergraphs [69] or process graphs [39] (which are similar to directed

bipartite graphs) are set systems representations, which are capable to model chemical

reactions with higher detail. This allows to address the problem of multiple products and

reactants, since edges connect to vertex sets instead of a single vertex.

Process graphs were used by Friedler et al [39, 40, 41] in an exhaustive approach for

decision mapping in synthesis processes, being later adapted for pathway identification

[79]. More recently, the work of Carbonell et al [15] introduced an enumeration strategy

to extract pathways using hypergraphs. Both algorithms are enumeration approaches that

attempt to list all possible pathways towards the desired target.

Although using these more robust structures some problems are solved, other limi-

tations still arise. The complexity of enumerating minimal pathways was proven to be
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NP-hard by reduction to SAT-3 [15]. Also, the scalability of these methods is another

problem to address. Finally, there are several network patterns that are not trivial to

traverse, such as feedback loops.

Because of the potential of these methods, they are analyzed in further detail in the

next chapter, together with pathway enumeration algorithms working over these structures.

There, some of their main limitations will also be further discussed.

4.1.6 Constrain-Based Approaches

As their main advantage in pathway optimization, CBM based approaches avoid the com-

binatorial explosion of possible pathways in graph-based methods, through optimization

based on a selected objective function. Furthermore, the constraints imposed in the sys-

tem are able to guarantee that the obtained solutions are stoichiometrically valid and obey

steady-state. However, a limitation is the capability to determine only a single solution

and, therefore, in this regard have similar limitations to the shortest path approaches based

in regular graphs. Indeed, these methods do not enumerate exhaustively other alternative

solutions, which may offer valuable information on alternative routes.

A lot of effort has been put in the past years to reassemble MNs of organisms. These

networks can be distinguished in two distinct categories, which are related. The term

Genome Scale Network Reconstruction (GENRE) refers to a structured knowledge base

for a specific network model (either a single organism or a community) [37]. These GENREs

contain information that can support the creation of a mathematical model, denoted as

a Genome-scale Metabolic Model (GSM). A GSM contains specific information related to

the biochemistry of the model which varies in the context of the model. In CBM, these

would be the constraints of the system, such as uptake boundaries for each reaction.

An an example, the KEGG database referenced earlier contains information about

multiple organisms, including a network of chemical reactions most of them annotated

with their corresponding enzymes and genes. These knowledge bases can be the basic

building blocks to build a GSM for a specific organism [52].
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4.1.6.1 Flux Balance Analysis

FBA is mainly used to conduct phenotype simulations, calculating flux distributions for

different environmental and genetic conditions. By maximizing specific flux values, it can

also be used to calculate the potential maximum/ minimum values for specific fluxes under

the defined constraints. This is useful, for instance, to calculate maximum production

values for specific compounds.

The analysis potential of the FBA is limited. The relevant information attainable from

this method is the value of the objective function, while the flux distribution obtained

may in some scenarios be just one of the many possible alternatives with the same optimal

objective value.

FBA can be used for pathway optimization, returning a possible path (if it exists) that

maximizes the used objective function. However, a MN may contain several alternative cir-

cuits to perform a certain task that could be alternative optima for FBA, or even solutions

that return lower values for the defined objective function.

Nevertheless, FBA may be used as a valuable tool to be incorporated in other methods,

since the computation of the optimal flux distribution is usually cheap. Among many other

applications, within pathway optimization, FBA was used to determine producible non-

native compounds [18] by merging a GSM with large databases such as KEGG, allowing

to infer putative heterologous reactions for defined purposes.

4.1.6.2 OptStrain

In the context of synthetic pathway design, the OptStrain algorithm [101] is a CBM based

approach to search for heterologous pathways, i.e. to discover a set of reactions to add

to a host GSM to allow the optimal production of a non-native compound. Compared to

FBA, while keeping steady-state conditions, it uses a different set of constraints to search

within a domain of reactions and metabolites (assembled by the authors from the KEGG

database) for the pathway with the smallest number of heterologous reactions, but with

highest yield in the production of the target compound. This method is composed by four
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steps to design such pathways. A first step is dedicated to preprocessing and building the

search domain, while the following steps are related to the optimization tasks.

Step two solves a LP to find the maximum theoretical yield. This step is important to

identify if the problem is feasible and also to acquire the maximal flux value a solution may

attain and is obtained with a formulation very similar to the one shown above for FBA,

changing the objective function to maximize the production of the target compound.

The third step (Definition 19) involves solving a Mixed-Integer Linear Programming

(MILP) problem that allows to obtain the solution that minimizes the number of non-

native reactions, while keeping the production at maximal levels. The minimization of

non-native reactions is obtained through reaction switches from the last three constraints

(4.5, 4.6, 4.7), while the constraint (4.4) ensures the yield value Y ieldtarget is the maximal

theoretical computed from the second task.

Definition 19. (OptStrain) The third step of the OptStrain pipeline is defined by the

following MILP:

min
∑

j∈Mnon−native

yj (4.1)

s.t.
M∑
j=1

Sij.vj ≥ 0 , ∀i ∈ N, i /∈ < (4.2)

∑
i∈<

(MWi.
M∑
j=1

Sij.vj) = −1 , (4.3)

MWi.
M∑
j=1

Sij.vj ≥ Y ieldtarget, i = P (4.4)

vj ≤ vmaxj .yj , ∀j ∈Mnon−native (4.5)

vj ≤ vminj .yj , ∀j ∈Mnon−native (4.6)

yj ∈ {0, 1} , ∀j ∈Mnon−native (4.7)

where Sij is the stoichiometric matrix with i metabolites and j reactions; vj is flux vector;

yj are binary variable assigned to each reaction (on/ off switch); Y ieldtarget is the maximal

theoretical flux constant; MWi is the molecular weight of the metabolites ; P the product;
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N a set of metabolites; < a set of substrates; M a set of reactions; Mnon−native a set of

reactions flagged as “non native”.

After the identification of a feasible pathway it is necessary to couple to production

of the product with cellular growth. This is achieved in the last step in which involves

the application of the OptKnock algorithm [14] to find a set of knockouts to apply to the

extended host GSM.

4.1.6.3 Elementary Flux Modes

Still within the CBM framework, Elementary Flux Modes (EFM) are defined as the min-

imal subsets of reactions to maintain steady state. Both previously mentioned methods

are objective-based, specifying the cellular or optimization purpose. EFMs allow the enu-

meration of the steady state solution space given a MN. This space confines all possible

routes that a steady state solution may take, which provides valuable insights of cellular

capabilities and network robustness.

This space can be analyzed by considering the entire flux cone which are the extreme

rays of a bounded polyhedron, which is identical to the extreme ray enumeration problem

from computational geometry. The algorithms to enumerate the extreme rays are based on

the Double Description method which is able to compute minimal generating sets. These

minimal flux sets are sets of reactions that require the entire set to maintain the steady

state constraint.

For the computation of EFMs, variants of the Double Description method are used.

The canonical basis approach and the null space approach are two common variants for

the computation of the EFMs, where this last algorithm is an improvement of the previous

for better efficiency.

Although the EFMs offer an extreme valuable analysis tool, their complexity remains a

question. Indeed, the enumeration of all EFMs in a MN is a NP-hard problem [120]. Due to

this fact, the computation of EFMs is restricted to small networks [83]. Figueiredo et al.[25]

propose an enumeration strategy to compute the k -shortest EFMs expanding the size of
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computable problems, but still the enumeration is computationally expensive and restricted

to small values of k. Indeed, database size networks (e.g. KEGG or MetaCyc) still offer

an impossible challenge for exhaustive EFM computation. For large-scale networks (e.g.

GSM), the only option is to apply heuristics to reduce the search space or to use stochastic

approaches [42].

4.1.7 Rule Based Systems

The other facet of MN analysis is the discovery of novel reactions or compounds based on

chemical knowledge. These methods are commonly characterized as rule based approaches

which share a common trait with the atom tracking approach, as they both use chemical

structures to infer pathways, but with the additional capability to infer novel reactions and

compounds.

A rule system applies base rules to classify reactions based on the related enzymes. A

common practice is to use the Enzyme Commission (EC) classification system that involves

four tiers i.j.k.l classification hierarchies [48]. The i class identifies the primary function

of the enzyme, while the j involves in the functional group where the enzyme acts and the

remaining k.l refer to the cofactors and substrates. The application of the first three tiers

generates generalized enzyme rules which are not substrate specific, allowing to apply to a

comprehensive range of biochemical compounds.

This approach is used in Biochemical Network Integrated Computational Explorer

(BNICE) [48] framework to generate novel pathways. A reaction rule is a template re-

action that transforms a certain type of compound into another. Using this approach,

given a set of substrates and matching the reaction rules, it is possible to predict the prod-

ucts. This allows to generate a sequence of possible transformations. A rule based system

allows to predict novel pathways. Such pathways can contain novel reactions that are not

found in chemical databases.

The method developed by Cho et al.[20] predicts pathways by applying several iterations

of reaction rules. The first generation loop applies all rules that match the structure of
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the target compound, which in turn will generate the next set of structures containing

precursors of the target. After several iterations until the predefined limit, a sequence of

chemical transformations are predicted that synthetize the target compound from a variety

of substrates.

A major limitation of the previous methods is the high dependency on the available

information of the chemical reactions. Furthermore, because of the template matching,

these methods generate novel reactions which in turn, increase the number of possible

combinations reaching intractable levels. Also, a higher degree of validation will be required

to validate unrecorded reactions.

4.1.8 Pathway Ranking

Some of the mentioned algorithms, for pathway optimization, rely on a pre-defined objec-

tive function that internally ranks the solutions. However, the set of possible biologically

meaningful criteria to rank solutions is quite vast and different application scenarios will

require a distinct validation. Also, since these methods merely return computational pre-

dictions it is, in most cases, more interesting to provide an enlarged set of solutions.

Thus, we will focus here on criteria to evaluate (and rank) solutions to pathway enu-

meration algorithms. Indeed, graph enumeration strategies do not follow any optimization

criteria, while some use the most basic topological measure: the path length. This implies

that, after the computation, solutions should be scored based on biological criteria.

The ranking methods vary with the problem context. For chassis independent analysis,

the size of pathway, thermodynamic feasibility and maximum achievable yield are common

ranking criteria [86]. The pathway size is usually denoted by the number of reactions in the

pathway. Thermodynamic feasibility is attained by computing the Gibbs free energy change

of each reaction in the pathway. Lastly, the achievable yield is computed by the maximum

flux value of the product divided by the flux value of the supplied carbon source (e.g., if

the flux value of the product is 3 mmol/gDW/h with consumption of 2 mmol/gDW/h of

glucose, then, we would obtain a yield value of 1.5).
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The coupling of synthetic pathways to other information about cellular mechanisms may

involve more analysis methods, in which are related to the chassis. In the DESHARKY

[108] algorithm, the genetic load is also taken into consideration by calculating the energy

loss in transcription and translation.

Furthermore, an important evaluation is to assess the computed pathway by integrat-

ing these in the GSM of the host microorganism. This will allow to conduct phenotype

simulation to compute the in silico predicted performance of pathway.

The computation of ranking criteria may involve more information than the given from

the optimization process (e.g., genes, enzymes and organisms that associated with the

reaction). Such information may not be attainable in some scenarios due to lack of high

quality curated data.

4.2 Set Systems Algorithms

In this chapter, a detailed description of the set systems algorithms (i.e., SSG and FP) is

addressed. In both cases, the original algorithm will be described first, together with the

limitations found. Afterwards, the proposed improvements towards better computational

efficiency will be described.

Beforehand, a set of definitions is presented for a more formal definition of the synthetic

metabolic problem.

4.2.1 Problem Definition

In the following, metabolic networks will be composed only by metabolites and reactions.

In this system, metabolites are the vertex entities, while reactions are represented by an

ordered pair 〈M1,M2〉, that connects two disjoint sets of metabolites.

Definition 20. (Reaction Simplified) A reaction is simplified to an ordered pair 〈M1,M2〉

of two disjoint sets of metabolites (i.e., M1∩M2 = ∅). The first set represents the reactants,

while the second represents the products.
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Definition 21. (Metabolic Network) A metabolic network Σ is a pair composed by a set

of metabolites Π and a set of reactions Υ .

In the set systems context, the reaction is only defined with compounds. A reversible

reaction r is represented by including another entity r′, such that the metabolite sets are

swapped. Additionally, a network Σ ′ = 〈Π ′, Υ ′〉 is defined as a subnetwork of Σ〈Π,Υ 〉 if

every element of Σ ′ is contained in Σ (i.e., Π ′ ⊆ Π and Υ ′ ⊆ Υ ), then Σ ′ ⊆ Σ.

Definition 22. (Retrosyntehtic Metabolic Problem) A retrosynthetic metabolic problem Γ

is defined by a triplet 〈Σ,S, T 〉, where Σ is a metabolic network that represents the search

space, while S and T are two disjoint sets of metabolites (i.e, S ∩ T = ∅) which are

the constraints of the heterologous pathways. The set S keeps the initial substrates (e.g.,

supplies or raw materials), while the set T defines the target compounds of interest.

A heterologous pathway is a set of reactions, in most cases a subnetwork of a larger

network (defined as the search space), that satisfies the following conditions.

Definition 23. (Heterologous Pathway) A heterologous pathway σ of a synthetic problem

Γ is any network (or subnetwork) Σ = 〈M,R〉, such that: a) the product set T is included

in M , i.e., T ⊂M and b) for every metabolite m in the subnetwork that is not included in

the substrate sets of Γ (i.e., M − S) there is a reaction r in R such that m is a product of

r.

The heterologous pathway definition is not sufficient to guarantee that the solution is

feasible, because it omits the stoichiometry of the reactions. Both algorithms addressed

in this work do not take into account this property for the computation of heterologous

solutions. This eventually will lead to the computation of unfeasible solutions that later

can be verified by applying FBA.
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4.2.2 Solution Structure Generation

4.2.2.1 Original algorithm

The Solution Structure Generation (SSG) algorithm (shown as Algorithm 4) enumerates

heterologous pathways of Γ by recursively branching all possible combinations. This tech-

nique, denoted as decision mapping, can be described as follows: let Σ ′ be a subnetwork

such that condition a) in Definition 23 verifies. Then, in order to fulfill condition b), the

sub-problem Γ ′ is solved producing the unsatisfied metabolites in Σ ′. Given for example

Σ = 〈T, ∅〉, a network containing T and no reactions, then a) trivially verifies. Then,

℘(producers of t), t ∈ T where ℘(X) denotes the power set of X, are candidates for partial

solutions of Γ , since if solutions of Γ exist, at least one element of ℘ eventually must be

present in one or more solutions of Γ . Recursively, we solve the sub-problem Γ ′, with the

new target set T ′ = R − S −M , where R is the set of reactants of the newly introduced

reactions (minus the initial set S and producible metabolites in the partial solution), until

eventually either there are no possible reactions to add (this implies that we have reached a

dead end that happens when we pick a producer of T that does not belong to any solution)

or T = ∅ which implies that we achieved a solution.

Algorithm 4 Solution Structure Generation

1: procedure SSG(T,M, δ[M ])

2: if T = ∅ then

3: return δ[M ] . δ[M ] is a solution structure

4: let x ∈ P

5: C ← ℘(∆(x))\{∅} . Generate all combinations of ∆(x)

6: for c ∈ C do . For each combination test if is valid

7: if ∀y ∈ m, c ∩ δ(y) = ∅ ∧ (∆(x)\c) ∩ δ(y) = ∅ then

8: δ[m ∪ {x}]← δ[m] ∪ {(x, c)}

9: SSG((p ∪ ϕ−(c))\(R ∪m ∪ {x}),m ∪ {x}, δ[m ∪ {x}])

10: return

There are several limitations of the SSG method. The first is the high amount of
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memory that is required to compute power sets which grow exponentially with the number

of elements (2n). Additionally, this generates an extensive amount of possible combinations.

If the network is not pruned, meaning that the network contains reactions that do not

belong to any solution, then the algorithm may contain branches that return no solutions

and, depending on the depth of these branches, this increases severely the computation

time to obtain solutions. Friedler et al.[40] proposed a polynomial algorithm to prune

process graphs to remove all reactions that might exhibit such behavior. Because of these

limitations, in the next section, we propose some modifications to the original algorithm

in order to be able to compute larger networks.

4.2.2.2 Improving SSG by computing minimal solutions

The major bottleneck of the SSG algorithm, is the computation of the power set (line 6

in Algorithm 4). Furthermore, because of the union closure property of the solutions, it

implies that every combination of two distinct solutions σα and σβ is also a solution (i.e.,

σα ∪ σβ is a valid solution). This severely increases the amount of candidate solutions and

the computation complexity of the problem.

We propose modifications to this algorithm in such way that: a) we compute only

minimal solutions; and, b) we generate partitions of the power set instead of generating

the entire set. A minimal solution is a solution that satisfies the steady state condition

and no reaction can be removed from it. From a graph extraction viewpoint, a minimal

solution implies that it cannot be disassembled into sub solutions. The condition b) allows

to reach a) as it will be explained below.

Let us consider ℘n(X), which filters the power set in such way that it contains only the

subsets with n elements. Then, instead of performing C ← ℘(∆(x))\{∅}, we loop through

n = 1 to |∆(x)|, by assigning C ← ℘n(∆(x)). This is equivalent to the line 6 of the SSG

algorithm, with the advantage that we do not hold in memory the entire power set during

the search.

We conjecture that, assuming a solution exists for a combination c ∈ ℘i(X), then every
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combination of higher degree ℘i+1(X), that contains c, can be excluded, as these do not

generate the minimal solution.

Example 12. If X = {a, b, c} is a set with 3 elements, where ℘(X) = {∅, {a}, {b}, {c},

{a, b}, {a, c}, {b, c}, {a, b, c}}, then ℘0(X) = {∅} is a subset of ℘(X) with sets of 0 elements.

Subsequently, ℘1(X) = {{a}, {b}, {c}} is the subset with all sets of 1 element and so on.

Note that, for ℘(X), every ℘n(X), where n > 3, is the empty set (i.e., ℘4(X) = ∅).

Given Example 12, assuming a, b, c are reactions, if we are able to find a solution for

the singleton set {a}, then we exclude combinatorial sets with a (e.g., {a, b}, {a, b, c}).

This allows to remove many, if not all, non minimal solutions thus severely increasing the

capability of the SSG algorithm to perform well over larger domains.

4.2.3 Find Path

4.2.3.1 Original algorithm

The Find Path (FP) algorithm proposed by Carbonell et al.[15] enumerates pathways

by using hypergraphs. In a metabolic context, both hypergraphs and process graphs are

similar (Definition 24). A solution of the FP algorithm is defined as a hyperpath (Definition

25). P , which is an hypergraph (i.e., a subgraph) where the hyperarcs (reactions) can be

ordered as r1, r2, . . . , rm, such that ri is dependent only on the substrates in S and the

products of the previous reactions.

Definition 24. (Hypergraph) A hypergraph H = 〈V,E〉 with vertices V and hyperarcs E,

can be defined in this context to be isomorphic to a metabolic network Σ (Definition 21),

where V represents the set of metabolites Π and E the set of reactions Υ . Additionally, a

hyperarc has a structure to a reaction (Definition 20), both encompassing two disjoint sets

of vertices 〈V1, V2〉 (each vertex corresponds to a metabolite).

Definition 25. (Hyperpath [15]) A hyperpath P going from a source subset SH of V to

a target subset TP of P in a hypergraph H = 〈V,E〉 is a hypergraph HP = 〈VP , EP 〉 with
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Figure 4.2: An example of a cyclic network. Vertex s0 is the input substrate and t0 the

target metabolite. Circles represent metabolites and vertical bars represent reactions. (a)

a network that does not contain pathways to produce neither p0 nor p1, leading to an

infeasible problem to the FindPath algorithm, since no ordering is possible for reactions

r0, r1. (b) the same network but now containing a pathway H0 producing p0.

VP ⊆ V , EP ⊆ E, such that there is an ordering F of the hyperarcs EP with the following

properties:

• ∀k ∈ {0, . . . , |F |}, substrates(Fk) ⊆ SH ∪ (∪j<kproducts(Fj))

• TP ⊆ SH ∪ (∪eq∈Epproducts(e))

While addressing many of the problems of using shortest paths over regular graphs

to represent metabolic pathways, this representation still has limitations. Indeed, not

all pathways can be expressed by the definition of an hyperpath (Definition 25). Let us

consider for instance co-factor metabolites ma and mb.

Usually, these metabolites are both present in a single reaction r0 = 〈M1,M2〉 where

p0 ∈ M1 and p1 ∈ M2 or vice versa (Figure 4.2). These reactions can be satisfied by each

other in a way where there is an r1 = 〈M ′
1,M

′
2〉 such that p1 ∈M ′

1 and p0 ∈M ′
2. Therefore,

it is impossible to sort a hyperpath if neither p0 or p1 are included in S. Given the example

in Figure 4.2a, assuming s0−m0 and m2−t0 is feasible, then, s0−t0 should be also feasible.

But a hyperpath (Definition 25) dictates that reactions (or hyperarcs) in the hyperpath

must be sortable in a particular order, where given any reaction Fk it must be satisfiable

by the previous instances of Fj, j < k or the initial set of substrates SH . Now considering
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the two reactions r1, r2, this condition could never be achieved since they are dependent

of each other. Examples of these metabolites are the pairs ATP-ADP and NADH-NAD.

Fortunately, if assuming S to be an organism chassis (host), these metabolites are usually

included in S since they are part of the metabolism. However, this does not guarantee

that other more complex cycles do not exist.

This issue enables the generation of redundant solutions. Let Γ = 〈Σ, {s0}, {t0}〉 be a

retrosynthetic problem. Assume that: a) a heterologous pathway Σ ′ ⊂ Σ exists from s0 to

t0, such that b) r0, r1 ∈ Σ ′, where r0 = 〈{m0, p0}, {m1, p1}}〉 and r1 = 〈{m1, p1}, {m2, p0}〉.

The FP algorithm can only identify such pathway if Γ ′ = 〈Σ, {s0}, {p0,m0}〉 is feasible. In-

stead of reaching from s0−m0 as it should, the algorithm will eventually find a workaround

route from s0 − {m0, p0} (Figure 4.2b). Since r0, r1 satisfy the metabolites p0, p1 of each

other (i.e., r+ r′ = 〈{m0}, {m2}〉) this implies that any effort to produce p0 in Γ ′ is unnec-

essary and every solution that b) verifies may contain multiple redundant solutions (the

reactions included in the solutions are unique but in steady state they are redundant).

The Find Path algorithm (Algorithm 7) makes use of the Find All (Algorithm 5) and

Minimize (Algorithm 6) subroutines. Find All (FA) implements a pruning algorithm that

reduces an hypergraph H to H′, with a special property: the reactions Υ ∈ H′ are sorted

by the definition of a hyperpath. This ordering is only essential to the Find All algorithm

to branch correctly, while it can be discarded (i.e., any order is acceptable) in the Minimize

routine.

The Minimize routine reduces a network to the minimal set of reactions by testing each

reaction in the network H (Algorithm 6, line 7), so that if the reaction is removed from the

network, the set of products is still reachable. This testing mechanism can be achieved by

invoking FA with the new network (i.e., without the reaction to be removed). If FA returns

a solution without the product, then the reaction is assumed to be critical. This implies

that, for each reaction in H, an invocation of FA is performed. Therefore, the Minimize

routine shows quadratic complexity to the number of reactions in the network.
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Algorithm 5 Find All

1: procedure FindAll(H, S) . H hypergraph, S source metabolites

2: for each r ∈ H do

3: m[r]← Ψ−(r)

4: V ← S

5: D ← S

6: F ← ∅

7: while V 6= ∅ do

8: let x be an element of V

9: V ← V \x

10: D ← S ∪ x

11: for each r ∈ H ∧ x ∈ m[r] do

12: m[r]← m[r]\x

13: if m[r] = ∅ then

14: F ← {F, r}

15: for each j ∈ Ψ+(r) ∧ x /∈ D do

16: V ← V ∪ j

17: return F
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Algorithm 6 Minimize

1: procedure Minimize(H, Rf , S, T ). H hypergraph, Rf reactions to not test, S source set, T

target set

2: F ← FindAll(H, S) . 2-4 Test if µ 6= ∅

3: H′ ← H

4: if T ∩Ψ+(F ) = ∅ then

5: H′ ← ∅ . µ = ∅ return ∅

6: else . µ 6= ∅ proceed to minimization

7: for each r ∈ H do . For each reaction not in Rf test if µ 6= ∅ for H\r

8: if r /∈ Rf then

9: F ← FindAll(H\r, S)

10: if T ∩Ψ+(F ) 6= ∅ then

11: H′ ← H′\r . Remove reaction from hypergraph

12: return H′ . Return either ∅ or a minimal solution structure of H

4.2.3.2 Improved Minimize Heuristic

In this work, we propose an alternative to the Minimize heuristic that aims to overcome

the problem of its quadratic computational complexity. We address this issue by proposing

a different heuristic to test the reactions in the Minimize routine.

Assume that Γ = 〈Σ,S, T 〉 contains valid solutions that are searchable using the Find

Path algorithm. Assume that we increase the size of the search space to Σ ′ = 〈Π ′, Υ ′〉,

where |Υ ′| is much larger than |Υ |. This also implies that the previous searchable solutions

of Γ are preserved, since it is impossible to invalidate a solution by adding more reactions

to the search space. The computational cost of the previous solutions in Γ will eventually

increase because of: a) there are more reactions in the new network to test, therefore

the computational cost of Find All increases; and, b) the Minimize now contains more

reactions to remove in order to achieve the previous minimal solutions of Γ . Furthermore,

it is natural that new solutions may be possible because of the newly added reactions in

Υ ′.
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Algorithm 7 Find Path

1: procedure FindPath(H, Rf , S, T ) . H hypergraph, S source metabolites, T target

metabolites, Rf for branching solutions (initially as ∅)

2: F ← FindAll(H, S)

3: H′ ← ∅

4: H′ ← H′ ∪ F ∪Rf
5: Hσ ←Minimize(H′, Rf , S, T ) . Hσ the first minimal solution

6: En← ∅

7: if Hσ 6= ∅ then

8: En← Hσ

9: F ← FindAll(Hσ, S)

10: for k ∈ {|F |..1} do . for each element in F (i.e., hyperarcs of Hσ) branch

alternative solutions

11: r = Fk

12: if r /∈ Rf then

13: En← {En, FindPath(H\r,Rf , S, T )}

14: Rf ← Rf ∪ r

15: return En



4.3. CASE STUDY 153

Our goal is to reduce the penalty to compute solutions when adding more reactions to

the set. Instead of testing each reaction r (Algorithm 6, line 7), we test the removal of

an entire set R of reactions. This speeds up the computation cost, specially in the search

of the smallest solutions in huge networks generated from large databases, such as KEGG

and MetaCyc. The size of R is an important factor, since it impacts the speed up obtained

by the bulk removal of reactions.

We follow the strategy of the bisection optimization method to find the reactions that

cannot be removed, thus generating a minimal set of reactions. Let X be the entire set

of reactions in a network, we split X into two halves XL and XR, we attempt to remove

from left to right each half. If XL cannot be removed, i.e., if by removing XL the Find

All routine returns a sequence without the set T , this implies that XL contains a reaction

that must be present in the minimal solution; otherwise, there is no solution possible.

Then, we split XL into further halves X ′L, X ′R and perform again the Find All test. This

routine is recursively performed until either the entire subset can be removed or we have

a singleton set that cannot be removed, which implies that the reaction belongs to the

minimal solution. This will generate a tree pattern where the leafs are either a singleton

set with only one element (i.e., the reaction that belongs to the minimal solution) or sets

of reactions that were discarded.

No modifications were made to the main Find Path algorithm.

4.3 Case Study

4.3.1 Setup

The algorithms were tested through their application to three case studies of synthetic

metabolic engineering. The first example is the production of 1-butanol using E. coli [5],

the second concerns vanillin synthesis using S. cerevisiae [46] and last the biosynthesis of

curcumin in E. coli. Both modified SSG and FP algorithms are applied using the set of

compounds in the KEGG Ligand and MetaCyc databases as the chemical search space.
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Additionally, to integrate and test the obtained solutions in silico, a GSM is required:

the iJO1366 [97] GSM for E. coli and iMM904 [88] GSM for S. cerevisiae were used. In

both cases aerobic conditions were used with an uptake flux of glucose of 10 mmol/gDW/h.

Therefore, a total of 12 result sets were generated for the two algorithms, three case studies

and two search spaces (databases).

Before running the algorithms, several pre-processing tasks were required. The first

was to select and define the constraints of the problem, selecting the search space Σ, the

initial set S and the target compounds T . For all case studies, the target set is a singleton

containing only the compound of interest (i.e., 1-butanol, vanillin and curcumin). For the

substrate set, all metabolites included in the GSMMs were selected. This later will allow

to integrate the obtained solutions with these models and evaluate their performance. The

BiGG database [110] aided in the transformation of the species identifiers of the model

to those in the databases. The species that did not match any cross-referencing were

discarded.

Part of the reference pathway of the 1-butanol synthesis was mostly present in the

iJO1366 GSMM as part of the Membrane Lipid Metabolism pathways. So, to obtain

alternative pathways, we removed the following species: M btcoa c (Butanoyl-CoA), M

btal c (Butanal), M b2coa c (Crotonyl-CoA), M 3hbcoa c (3-hydroxybutyryl-CoA), M

aacoa c (Acetoacetyl-Coa). Additionally, every reaction connected to these compounds

was also removed. The impact in the biomass value calculated using the FBA was minimal

(less than 1%). Removing these species will allow to find alternative paths from other

internal metabolites of iJO1366 to 1-butanol. This is done because we wanted to reach

alternative solutions to the identified in [5], which may not be optimal, depending on the

desired criteria. Furthermore, the algorithms do not generate solutions with reactions

producing substrates in the initial set, since these are defined as supplied compounds. The

curcumin case study required a new substrate in the medium, which involved the addition

of a new metabolite to the iJO1366 GSMM, the ferulic acid.

A minor modification was made to the MetaCyc database, since it contains reactions

with the metabolite pairs NAD-P-OR-NOP/NADH-P-OR-NOP which are an instance of either
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NAD/NADH or NADP/NADHP. These reactions were unfolded to their correct instances. This is

essential for instance to infer the 1-butanol reference pathway, as several reactions of this

pathway were expressed in this format. The KEGG Ligand database did not require any

pre-processing.

Both algorithms and the described modifications were implemented in Java according to

the algorithms previously defined. All experiments were run on a machine running CentOS

6.4 (Linux 2.6.32) with two Intelr Xeon X5650 (2.66 GHz) and 64GBytes of memory. The

java programs were compiled and run with JDKTM7 (version 1.7.0 45). The implementation

of FBA and other CBM related methods over GSMMs was taken from the core packages

of the OptFlux ME platform [107] (version 3.1). The CPLEX solver (version 2.14) was

used to perform the linear optimization tasks related to FBA. The KEGG information was

obtained from the release 68.0 (October 1, 2013) and the MetaCyc database was taken at

the same time period (release 17.5, October 11, 2013).

Because of the combinatorial explosion of possible pathways, it is impossible to obtain

every solution existing in a database size network using any of the algorithms. To compare

the algorithms’ performance, the search space was split into subsets by radius. The radius

is an integer that defines the minimum number of links (i.e., reactions) required to reach

that reaction from an initial set of metabolites. This implies that a reaction belonging to

radius i also belongs to i + 1, and therefore a subnetwork Σi of radius i always complies

to Σi ⊆ Σi+1.

With these reduced search spaces, solutions were computed using each of the algorithms.

An attempt was made to obtain the entire set of candidate solutions for each radius, until

either the process crashed due to lack of memory or exceeded computational time allotted

(> 24 hours). To validate the solutions, FBA was used to maximize the product flux of

the target compound and validate its feasibility integrating the solution into the respective

GSMM
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Figure 4.3: Pathways computed for each of the problems by radius.

4.3.2 Results

Figure 4.3 shows the number of solutions computed and their feasibility. SSG is more

limited than FP by the size of the search space. A major problem of the SSG algorithm

is the high memory demand because of the power set computation. With the reduction of

the power set size (only partial sets are computed), it still presents high memory demand

to branch all the possible combinations. Moreover, the SSG computes every solution that

satisfies Definition 23 which eventually leads to the computation of infeasible pathways.

Still, in general, the SSG shows better performance in the computation of solutions

(Figure 4.4) mainly because of the branching technique which gives a major advantage to

the computation time per solution because of the backtracking. As the algorithm moves

to a candidate solution, the next solution reuses the previous partial solution. This results

in a neglectable impact on the computation time per solution as the search space increases

(i.e., increasing size of the radius). However, since the number of solutions exponentially

grows with the increasing size of the search space, the total computation time increases.

The FP is capable to compute larger search spaces, being the major bottleneck the

computation time per solution, since the internal Minimize routine has quadratic complex-

ity to the number of reactions [15]. A scenario was also found where FP computes multiple

distinct redundant solutions, due to the problems explained above in detail.
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Figure 4.4: Time cost (milliseconds) per each solution. On the x-axis is the search radius

(a higher radius implies a larger search space).

Table 4.1: Number of solutions obtained for the curcumin case study (on the left the

number of solutions feasible with the iJO1366 GSM). For the KEGG dataset, solutions

are up to radius 5 and 3 for FP and SSG, respectively. The MetaCyc dataset was fully

computed.

FindPath SSG

Total Feasible Total Feasible

KEGG

285 217 5 5

MetaCyc

10 7 10 7
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The curcumin case study revealed a much smaller solution diversity (Table 4.1) since

the amount of solutions is highly dependent on the diversity of reactions in the search

space. Curcumin is a compound found originally in a few plants and thus the diversity of

pathways for its production is still low. Both SSG and FP were able to fully compute the

entire dataset of reactions in MetaCyc obtaining just a few solutions. The FP method was

able to compute a much higher amount of solutions using the KEGG reaction set; however

the SSG was unable to pass the 4th radius having only five solutions in the 3rd radius of

the KEGG search space. The KEGG dataset showed increased complexity compared to

the MetaCyc reactions which led the SSG algorithm to block due to memory limitations.

Again the FP algorithm prove to be more capable of obtaining complex pathways mostly

due to the assumption that pathways are acyclic.

For every solution that satisfies the feasibility test, the fitness was evaluated by inte-

grating it into the corresponding GSM. The farthest radius that either algorithm was able

to compute was selected for this process. For the 1-butanol case, from the 42482 and 60356

solutions obtained from the FP algorithm, a total of 32692 and 22968 were compatible with

the iJO1366 GSM for search spaces of MetaCyc and KEGG, respectively. In the vanillin

case, 944 out of 974 computed solutions are valid (MetaCyc), being the numbers for KEGG

of 1600 out of 1852. Finally, for the curcumin pathways 217 out of 285 KEGG pathways

and 7 out of 10 MetaCyc pathways were feasible with the iJO1366 GSM. The 1-butanol

case shown a massive amount of solutions mostly because of the NAD/NADH alternatives

for many reactions.

The KEGG dataset provided the solution with highest yield for vanillin and curcumin.

Moreover, 152 pathways were found in KEGG with the maximum yield for 1-butanol (0.99,

given by 9.99 mmol/gDW/h for the butanol production flux divided by 10 mmol/gDW/h

for glucose uptake) compared to 114 pathways from MetaCyc, while for the curcumin

case study the amount of solutions obtained from MetaCyc is quite limited. There is

a noticeable difference in the configuration of the yield distribution between KEGG and

MetaCyc (Figure 4.5), which demonstrates that there are key reactions that are unique to

each database, therefore leading to different pathway configurations.
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Figure 4.5: Histogram of theoretical flux values of each case study (1-butanol/curcumin -

iJO1366; vanillin - iMM904). Last value is the optimal solution (for better product flux).

In summary, it can be concluded that overall the algorithms were able to find widely

known efficient pathways but also less utilized ones. For example, in the case of butanol,

the best performing pathways in terms of yield include the commonly used pathway from

Clostridium acetobutylicum, which has also been validated [5] as a heterologous pathway

in E. coli, but also less common pathways that have been recently patented and that use

2-ketoisovalerate as an intermediate [126]. Moreover, pathways that use amino-acids as

precursors have also been identified, such as the one recently described which starts from

glycine [11]. In the case of curcumin, most of the solutions take tyrosine as a precursor, as

has been described elsewhere [67]. Nevertheless, in both cases there are many alternatives

that are stoichiometrically feasible but for which no reports have been found in the litera-

ture. Those cases need to be further inspected for biological and biochemical consistency

before implementation. Nevertheless, they constitute promising alternatives to produce

valuable products.

4.4 Conclusions

The algorithms analyzed (SSG and FP) both present shortcomings in the computation of

heterologous pathways. Although topologically they are correct, they may be stoichiomet-

rically inconsistent within a microorganism’s context, as they have the common goal of
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inferring heterologous pathways (subnetworks) that satisfy the rules of initial substrates

and target product. However, by using post-processing methods such as FBA, stoichio-

metrically valid solutions can be identified, which allows to correctly enumerate multiple

steady-state pathways. The case study of 1-butanol shows that there are many viable

and optimally efficient (regarding yields) routes for the production of this compound using

as basis the iJO1366 model. Moreover, even if a problem contains only a single optimal

solution (e.g., vanillin in iMM904), examples of sub-optimal pathways also show a broad

range of yield value near the optimal. Due to their nature, deterministic methods hardly

can achieve such a range of feasible steady state heterologous pathways.

Overall, the FP has proven to be more flexible regarding the complexity and the size of

the graph, and, although being more penalized with the number of reactions in the search

space, it is more capable to compute larger sets.

Thus, it is shown that although neither of the algorithms is readily suitable to compute

steady state heterologous pathways for large databases, they are still able extract potential

pathways, after targeted improvements in scalability. Additionally, they offer a generic

method to infer pathways for multiple purposes, since they do not follow any strict objective

function (e.g., yield or size).

As future work, both these algorithms can still be improved towards their scalability.

One line of work will certainly be the efficient parallelization of these algorithms resorting

to adequate software development tools [102]. A complementary research topic will address

the comparison of these approaches with recent proposals within EFM research.
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Conclusions

Genome-scale metabolic modeling is highly data oriented, and the completeness of these

models is many times dependent on the existing information to describe either directly or

indirectly the biological mechanism.

Databases are often specialized into a certain topic, and their integration allows to

gather all the individual strengths into a single location for better decision making.

Integration errors are inevitable because of many reasons (poorly described data, am-

biguous definitions, etc). In existing integrated databases, it is difficult to evaluate which

portion of the information is most reliable. The proposed methods allow to control the

certainty of the integration, allowing users to choose which configuration suits best their

needs.

Demanding a high degree confidence level to the integration may generate less clusters.

but it scaffolds a high confidence initial set. The implemented pipeline allows to combine

integrations (because of the curation function), which permits to generate consensus sets

by combining the solution of previous or external integration.

Even though SBML provides a structure to represent GSM entities, the flexibility of

the annotation methods (i.e., both notes and annotation elements) allowed developers to

adopt their own strategies to fit additional data into the models. The 108 models used as

benchmark showed that it is possible to automatically annotate models with a high success
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rate. Still in a few cases, it is also shown that without user intervention, it is unlikely that

there is any chance for automated annotation.

The centralized database provided a rich dataset of metabolite references and names

increasing the chance for annotation. Compound names proven to be essential to integrate

metabolites since genome-scale models usually inherit attributes from the databases.

Integrating compounds, reactions and genes is data intensive. However, the KBase

platform provides these resources saving tremendous effort that otherwise would require

the user to setup. With the entire prokaryote genome catalog of RefSeq, the integration

application was able to automatically integrate the genome features with the genes found

in the GPRs in most of the models, thus allowing to automatically detect the correct

species/strain genome for a given model. In average, most of the examples when methods

failed to identify the correct instances, it implied custom string patterns that were intro-

duced in the models (e.g., concatenation of formula with the name attribute, modified gene

names).

The integration of GSM makes models compatible with each other making compara-

tive analysis studies more viable but also more scalable. Each of these published models

contains many curation efforts to assign metabolic functions to the organism’s genome.

The unification of these models enables large scale knowledge extraction to reuse their

information for future reconstructions.

The complete enumeration of minimal pathways of the entire metabolic space of databases

is unlikely to be possible because of the combinatorial explosion. However, fully enumera-

tion is possible by limiting the size of the pathways this would at least exhaust all possible

solutions within its range. The improvements made to the enumeration methods allow to

scale the methods to much larger problem sizes shifting the bottleneck to memory instead

of computational power.
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5.1 Main Contributions

Metabolic Database Integration Pipeline: The integration pipeline follows a flexible

and configurable approach to unify metabolic databases. The main concern of the pipeline

is to provide a maintainable strategy to have a flexible system that facilitates the synchro-

nization of the reference spaces of the metabolic databases. The high parameterization of

the integration methods allows for a better control of the confidence scores of the given

solutions.

SBML Standardization Application: The module developed for the KBase platform

allows to integrate external SBML models with the KBase system. Since a SBML model

is the only required input data, the application offers a practical approach for any user to

annotate existing models but also to export the matching genome and default simulation

constraints (media).

Minimal Pathway Enumeration Methods: Fully enumeration can be achieved using

graph methods up to a certain size limit of the pathways. The improved searching kernels

allows to increase this limit to a much larger size.

5.2 Future Perspectives

Hierarchy and Ontology: The relationship between compounds is hierarchical, in

many databases this hierarchy is not detailed. Extending the integration to include hierar-

chy would greatly benefit the integrated solution since it would allow to create additional

relationship between databases.

Model Reconstruction: The standardization of models allows to extract curated knowl-

edge about the metabolic features of the organisms. Using existing models to propagate

previous models is a common reconstruction strategy. With the increasing number of cu-

rated models, it provides a rich dataset of annotated metabolic networks of organisms to
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aid future reconstructions.

Integrated Pathway Optimization: Current methods are oriented to find optimal

routes targeted to a single organism. With standardized models it is possible to extend

the methods to optimization against a set of organisms.
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