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Abstract
OBJECTIVE: Human hair is an element with unquestionable rele-

vance in society both for women and men. Therefore, it is of great

importance to develop new cosmetic products for hair care capable

to restore and improve hair’s characteristics. Here, we explore the

potential of keratin-based particles in the protection and recovery

of hair mechanical properties and thermal stability.

METHODS: Keratin-based particles were obtained by high pressure

homogenization (HPH) using keratin and silk fibroin. The particles

were characterized regarding size, superficial charge and polydis-

persity index. Their safety to cells was assessed using human skin

keratinocytes. Virgin and overbleached Asian hair were treated

with eight keratin-based formulations. The effect of particles on

hair’s mechanical properties was evaluated in terms of stiffness and

tensile strength. The impact of treatments in hair thermal perfor-

mance was studied using differential scanning calorimetry (DSC).

RESULTS: Keratin-based particles were capable to recover and/or

improve the mechanical properties of virgin and overbleached hair.

Virgin hair treated with K80SF20P particles presented an improve-

ment in the mechanical properties of around 40%. An increase in

keratin a-helix denaturation enthalpy and in surface smoothness

for both types of hair was also verified after treatment. These parti-

cles demonstrated stability over time and proved to be safe when

tested in human keratinocytes.

CONCLUSION: The keratin-based particles here presented have

the potential to be incorporated in the development of new and

effective hair care cosmetic formulations.

R�esum�e
OBJECTIF: Les cheveux sont un �el�ement avec une importance

incontestable dans la soci�et�e pour les femmes et les hommes. Par

cons�equent, il est primordial de d�evelopper de nouveaux produits

cosm�etiques pour les soins capillaires capables de restaurer et

d’am�eliorer les caract�eristiques des cheveux. Ici, nous explorons le

potentiel des particules �a base de k�eratine dans la protection, la

r�ecup�eration des propri�et�es m�ecaniques et de la stabilit�e thermique

des cheveux.

M�ETHODES: Les particules �a base de k�eratine ont �et�e obtenues

par homog�en�eisation �a haute pression (HPS) utilisant la k�eratine et

la fibro€ıne de soie. Les particules ont �et�e caract�eris�ees par la taille,

la charge superficielle et l’indice de polydispersit�e. Leurs toxicit�es

ont �et�e �evalu�ees en utilisant des k�eratinocytes de peau humaine.

Des cheveux asiatiques vierges et d�ecolor�es ont �et�e trait�es avec huit

formulations �a base de k�eratine. L’effet des particules sur les pro-

pri�et�es m�ecaniques des cheveux a �et�e �evalu�e en termes de rigidit�e

et r�esistance �a la traction. L’impact des traitements dans la perfor-

mance thermique des cheveux a �et�e �etudi�e utilisant l’analyse calor-

im�etrique diff�erentielle �a balayage (DSC).

R�ESULTATS: Les particules �a base de k�eratine �etaient capables de

r�ecup�erer et/ou d’am�eliorer les propri�et�es m�ecaniques des cheveux

vierges et d�ecolor�es. Les cheveux vierges, trait�e avec des particules

K80SF20P ont pr�esent�e une am�elioration des propri�et�es m�ecaniques

d’environ 40%. Une augmentation de l’enthalpie de d�enaturation

de l’a-h�elice de k�eratine et de la rugosit�e de surface a �et�e v�erifi�ee
�egalement pour les deux types de cheveux apr�es le traitement. Ces

particules ont d�emontr�e leur stabilit�e dans le temps et av�er�e sûres

d’apr�es le tests sur keratinocytes humains.

CONCLUSION: Les particules �a base de k�eratine ici pr�esent�ees ont

le potentiel d’être incorpor�e dans le d�eveloppement de formulations

cosm�etiques nouvelles et efficaces pour les soins capillaires.

Introduction

Hair is an important component of the body image with great

psychological importance for both men and women, which we

can change and manipulate according to culture and fashion [1].

Nevertheless, successful cosmetic alteration of hair, such as

colouring and straightening, usually require harsh chemical pro-

cesses altering the normal structure of the hair shaft. Bleaching

is a chemical process commonly used in hair coloration to elimi-

nate or lighten hair natural tone and prepare the hair fibre for

dyeing [2]. This process uses strong oxidative agents, which

destroy the disulphide bonds within the keratin resulting in a

decrease in hair fibres’ properties [2]. Around 80% of human hair

is formed by a-keratin protein located into the cortex, that is

responsible for the hair strength, flexibility, durability, and func-

tionality [3]. After bleaching, the hair may appear cloudy, dry,

rough, fragile and dull, presenting alterations in its mechanical

and surface properties [3].
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There is an increasing demand for the development of new hair

protective products, and hair cosmetic industry is focused in alter-

native solutions such as proteins and protein-based materials.

These can be incorporated in formulations of numerous topical

applications because of their beneficial effects. Proteins can create a

suitable environment for healthy hair because of their ability to

bind water with the horny layer skin and its annexes. Proteins are

included in the formulations as hair conditioning agents as they

are capable to prevent the damage caused to the hair fibres based

on their amphoteric and buffering properties [4, 5].

Keratin and silk fibroin were used in this work as base ingredi-

ents to prepare formulations for hair care cosmetic products. The

effect of keratin hydrolysates on hair fibres was already described

by many authors [6]. Keratin-based peptides increase the hydra-

tion, the brightness, the softness, the mechanical and the thermal

properties of hair fibres [6]. Silk fibroin is non-toxic, biocompatible

and shows an excellent water binding and absorbing capacity,

which makes it also an excellent candidate to promote a moisturiz-

ing effect of hair formulations [7].

The aim of this study was the development of a new set of prod-

ucts for the protection and restoration of hair properties using ker-

atin and silk fibroin as core ingredients. We evaluate the potential

of keratin-based particles in the protection and strengthening of

virgin and overbleached hair increasing the number of solutions

available in hair care market. In this work, we have explored the

keratin-based particles as hair restorative formulations rather than

the respective bulk solutions, to take advantage of their physical

characteristics. Furthermore, using protein-based particles instead

of protein solutions and protein hydrolysates, we can explore in

future the particles’ ability to encapsulate fragrances and bioactive

molecules.

The keratin-based particles were obtained by high pressure

homogenization (HPH), and a full characterization of the formula-

tions was observed in terms of size, stability, safety and their ability

to improve and recover hairs’ mechanical and thermal properties

(Fig. 1).

Experimental

Materials

Natural Asian black human hair samples were provided by Inter-

national Hair Importers & Products Inc. (Glendale, New York,

USA). The silk fibroin (SF) was extracted from Bombyx mori

cocoons donated by Dr. Silvia Cappellozza from ‘Sezione Specializ-

zata per la Bachicoltura’ (Padova). The DC (detergent compatible)

protein assay kit was obtained from Bio-Rad, Portugal, and all

other chemicals were supplied by Sigma-Aldrich, Spain.

Extraction and purification of keratin

Keratin was extracted from donated human hair obtained from a

local barbershop. The hair samples were first washed according to

the IAEA/RL/50 1978 recommendations to remove contaminants

Figure 1 Scheme showing the fundamental concept of the described research study. Application of keratin-based particles as innovative hair care cosmetic

formulations to improve the smoothness, the mechanical properties and the thermal stability of virgin and overbleached hair.
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and lipids. The hair washing consisted of cycles of distilled water

and acetone with continuous agitation. After washing, hair sam-

ples were kept at 40°C until completely dried.

The protocol for keratin extraction was adapted from Ayutthaya

et al. [8], where a solution containing 8 M urea, 0.2 M SDS and

0.5 M of sodium metabisulphite in a ratio of 10 : 1 (volume (mL)

of solution to mass (g) of dry hair) was used. The mixture was

heated at 100°C for 30 min and then incubated overnight at 37°C
with constant agitation. The extraction solution was then cen-

trifuged at 2800 g for 10 min, and the supernatant was filtered to

remove hair fragments. The keratin solution was then dialysed for

5 days against distilled water using a dialysis membrane with a

14 kDa cut-off. The water was renewed two times per day. After

dialysis, the keratin solution was quantified by DC method accord-

ing to the manufacturer’s protocol [8].

Extraction and purification of silk fibroin (SF)

About 5 g of Bombyx mori cocoons was immersed in 1 L of boiling

Na2CO3 (0.05 M) solution for 10 min. The Na2CO3 solution was

changed several times until the cocoons get fragmented. The

degummed SF was then kept at 40°C until completely dried.

The degummed SF fibres were incubated in a solution of 9.3 M

lithium bromide at 60°C until total solubilization. The soluble SF

was then filtered to remove undissolved fibres and dialysed for

5 days in distilled water using a dialysis membrane with a 14 kDa

cut-off. The water was changed two times per day. After dialysis,

the SF solution was quantified by DC method according to the

manufacturer’s protocol.

Synthesis of keratin-based particles

Eight different formulations of keratin-based particles were pro-

duced by high pressure homogenization (HPH). The final particles

were made-up within the following composition:

KeratinxSilkFibroinyPoloxamer407zðKxSFyPzÞ;
where x = 80%, 90%, 95% and 100%; y = 0%, 5%, 10% and

20%; z = 0 and 5 mg mL�1.

The protein solutions were prepared in phosphate buffer saline

(PBS 19) pH 7.4 to a final concentration of 10 mg mL�1 with 0.5%

(v v�1) of vegetable oil and poloxamer 407 (Pol407) (5 mg mL�1),

when present. The homogenization process occurred at 240–
580 bar during 10–13 min (3–5 min of open cycles and 7–8 min of

close cycles) for each particle formulation. The emulsions obtained

after homogenization cycles were centrifuged at 1792 g for 10 min,

at 4°C, in Amicon tubes (Amicon Ultra-15 Millipore with a 100 kDa

cut-off) to separate the free protein from particles. The free protein

was quantified by DC method, and the particle formation efficiency

was estimated for each formulation using the formula:

Keratin-based particle formationð%Þ ¼ ½C�i � ½C�f
½C�i

� 100;

where [C]i and [C]f are the initial and final concentrations of the

protein in the aqueous solution, respectively. Each sample was

assayed in triplicate.

In the current work, we used the keratin-based particles instead

of the keratin and silk fibroin solutions, to take advantage of the

particles’ physical characteristics such as size and f-potential. These

properties could influence the particles’ affinity to hair as well as

their deposition pattern, which could render different degrees of

improvement and restoration of human hair properties.

Size, size distribution and surface charge characterization

The emulsions were physicochemically analysed by means of size

distribution and electrophoretic mobility (f-potential) at pH 7.4

(PBS buffer) and pH 25°C, by photon correlation spectroscopy and

by electrophoretic laser Doppler anemometry, respectively, using

dynamic light scattering in a Malvern Zetasizer NS. The values for

viscosity and refractive index were taken as 0.890 cP and 1.330,

respectively. Each sample was measured in triplicate, and results

are presented as mean � standard deviation. Keratin-based parti-

cles were kept at 4°C and measured weekly until month 1 and

then were measured monthly until month 3.

Nanoparticle tracking analysis (NTA) was used to assess quantita-

tively the keratin-based particles. The experiments were performed

using a NanoSight NS500 instrument (Salisbury, UK). This system

includes a charge coupled device (CCD) camera that allows visualiza-

tion and tracking the Brownian motion of laser-illuminated particles

in suspension. The samples were ten times diluted with water and fil-

tered (Millipore filters with pore size of 0.45 lm) and then injected

into the system. The measurements were made at room temperature,

and each video sequence was captured over 60 s.

Particle morphological characterization

The morphology of particles was evaluated by STEM analysis. The

diluted emulsions suspensions were dropped on copper grids with a

400 mesh carbon film, 3 mm in diameter. The shape and morphol-

ogy of the microspheres were observed using a NOVA NanoSEM

200 FEI instrument (50 000 and 100 0009).

Secondary structure analysis

Infrared (FTIR) spectra were acquired at room temperature on a

NICOLET-AVATAR 360 FTIR spectrometer using KBr discs made

with 10 bar pressure. FTIR spectra were collected after 16 scans

with a resolution of 32 cm�1 from 4000 to 600 cm�1. For protein,

secondary structure Gaussian deconvolution of Amide I band

region (wavenumber between 1600 and 1700 cm�1) was analysed

using OriginPro 8.5 software (OriginLab Corporation, MA, USA).

In deconvolution analyses, a linear baseline was fitted; the number

of components and their peak position were determined according to

the second derivative spectrum of this same region, and the sec-

ondary structure content was calculated from the areas of the

assigned peak as percentage fraction of the total area of the Amide I

range. Using Gaussian function, all data were treated manually in

three fitting modes: first, the baseline was held fixed and fitted,

whereas intensity and bandwidth were allowed to vary; then, the

baseline and bandwidth were fixed and fitted again, and finally, the

baseline and centre peaks were fixed and fitted once more. The

deconvoluted frequencies were then assigned to the respective sec-

ondary structure b-sheet, b-turns, random coil and a-helix.

Cellular viability assays

Cell culture maintenance

The NCTC 2544 cell line (human skin keratinocytes) was cultured

in DMEM, supplemented with 7.5% FBS, 1% glutamine (2 mM)
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and 1% (v v�1) penicillin/streptomycin solution. Cells were main-

tained in 75-cm2 tissue culture flasks at 37°C in a humidified

atmosphere with 5% CO2. The cell culture medium was renewed

twice per week. For subcultures and plating, the adherent cells

were detached with a trypsin solution 0.05%.

Cell viability assessed by MTS assay

NCTC 2544 cells were seeded at a density of 22 500 cells/well on

a 48-well tissue culture plate, the day before the experiments. The

cells were then exposed to 6 concentrations (0.01, 0.05, 0.1, 0.25,

0.5 and 1 mg mL�1) of keratin-based particles. Cells incubated

with DMSO (30% of the total volume) and cells without the addi-

tion of the compounds were used as controls: control of death and

control of life, respectively.

After 24 and 48 h of contact, cell metabolic activity was

assessed by MTS viability assay, following the manufacturer’s stan-

dard protocol. The reduction in MTS by viable cells was measured

with a 96-well plate reader at 490 nm in a microplate reader Spec-

traMax Plus (Molecular Devices).

Hair treatments

Black Asian Hair fibre samples (0.1 g) were washed before treat-

ment with a classic commercial shampoo (Pantene). The hair sam-

ples were then subjected to eight cycles of bleaching (89B).

Bleaching consisted on the application of 12% H2O2 (v v�1) in the

presence of 0.1 M Na2CO3/NaHCO3, pH 9.0 buffer at 50°C for 1 h,

in a bath ratio of 1 : 10. Treatments were applied to the same tres-

ses of hair. Hair samples (virgin and overbleached black Asian hair)

were then subjected to the treatment with keratin-based particles.

Treatments were performed for 1 h at 37°C with 0.5 mg mL�1 of

particles in 0.05 M phosphate buffer pH 7.5. Subsequently, all

samples were thoroughly washed in tap water with a commercial

shampoo and dried.

Scanning electron microscopy (SEM)

Hair fibres were randomly taken from the hair tress and mounted

onto aluminium stubs using conductive carbon adhesive tape. Hair

samples were coated with 80% Au and 20% Pd before SEM (NOVA

NanoSEM 200 FEI, Eindhoven, the Netherlands) observation at

5.0 kV.

Hair fibre tensile test

The effect of keratin-based particles on virgin and overbleached

Asian hair was assessed by the differences in mechanical properties

following the guidelines outlined in ASTM D1145-95 for fibre ten-

sile testing. For this test, a set of hair fibres with low variability in

diameter was selected using a light microscope.

The measurements were taken using a 250 N dynamometer

Hounsfield machine. For each measurement, 30 single hair

fibres were randomly taken from the tress. Each hair was indi-

vidually mounted in the tensile jig by means of a paper tem-

plate with a fixed gauge length of 20 mm. Before the tensile

test, the paper template was cut across. Measurements were

taken under controlled conditions (25 � 0.8°C; 70 � 5%

humidity) at a rate of 2.5 mm min�1 with 0.01 N preload

force, and stretched until fibres broke. All measurements were

made in the middle part of the hair fibre. Results were pre-

sented in Young’s module (mPa) and define the relationship

between stress and strain, which is related to material strength

and elasticity [9].

Differential scanning calorimetry

Thermal studies of the hair samples were conducted using a power

compensated differential scanning calorimetry (DSC) instrument

(DSC 6000, Perkin Elmer) and aluminium pans (max. pressure:

1 bar), at a temperature range from 50 to 250°ΔC (heating rate:

5°ΔC min�1, sample weight: approximately 2 mg). The DSC device

was calibrated using high-purity indium and zinc. Each test group

was measured in triplicate, and mean values are reported.

Assessment of feel assay

A feel test with volunteers was performed to assess the effect of treat-

ment using the keratin-based particles on the smoothness of virgin

and overbleached Asian hair. The cohort included 30 volunteers

from different ethnicities, 20 females and 10 males, with ages

between 20 and 50 years. Two test series were performed, one with

the virgin Asian hair and other with the overbleached Asian hair. A

blind control (untreated hair) was included in each set of hair sam-

ples for the fidelity of the results. The feel test was performed as fol-

lows: the volunteer contacted first with the references (virgin and

overbleached Asian hair without treatment) and then with the hair

samples treated with the keratin-based particles and with the blind

control, in a random order. The samples and the blind control were

numbered to guarantee that volunteers did not have any information

regarding sample’s treatment. Afterwards, the volunteer was asked

Table I Particle formation efficiency of keratin-based particles obtained by

high pressure homogenization (HPH)

Particle formulation Particle formation efficiency (%)

K100 96.7 � 2.3

K100P 97.8 � 0.4

K95SF5 91.0 � 1.1

K95SF5P 90.3 � 1.3

K90SF10 95.2 � 3.4

K90SF10P 90.6 � 0.7

K80SF20 92.6 � 2.6

K80SF20P 91.3 � 0.4

The values were calculated and expressed as mean � SD (n = 3).

Table II Size, polydispersity index (PDI) and f-potential of keratin-based

particles at the end of 3 months of storage at 4°C

Formulation Size (nm) PDI f-Potential (mV)

K100 210.2 � 2.4 0.100 � 0.045 -39.1 � 1.7

K100P 160.5 � 2.5 0.266 � 0.007 -22.0 � 1.0

K95SF5 205.4 � 4.9 0.167 � 0.008 -42.9 � 0.6

K95SF5P 236.4 � 2.0 0.267 � 0.006 -11.3 � 1.2

K90SF10 186.8 � 7.0 0.154 � 0.007 -39.4 � 0.4

K90SF10P 205.3 � 8.4 0.218 � 0.015 -9.0 � 1.8

K80SF20 210.9 � 7.4 0.135 � 0.022 -35.0 � 1.2

K80SF20P 226.0 � 2.3 0.212 � 0.020 -9.50 � 1.4

The values were calculated and expressed as mean � SD (n = 3).
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to give a classification between 0 and 4, where 0 corresponds to no

increase in hair smoothness and 4 corresponds to a great improve-

ment in hair smoothness.

Statistical analysis

Data are presented as average standard deviation (SD), n = 3. Sta-

tistical comparisons were performed by one-way ANOVA with

GraphPad Prism 5.0 software (La Jolla, CA, USA). Tukey’s post-hoc

test was used to compare all the results between them, and Dun-

nett’s test was used to compare the results with a specific control.

A P-value of <0.05 was considered to be statistically significant.

Results and discussion

Particle formation efficiency

After synthesis, the efficiency of keratin-based particle formation

was determined by the quantification of free protein using DC

method (Table I). The efficiency of particle formation ranged from

90.6% to 97.8%, which clearly demonstrates the high capacity of

keratin and silk fibroin to form particles during the HPH process.

Particles physicochemical characterization

Particle physical stability was evaluated over 3 months by mea-

surements of size, PDI and f-potential when stored at 4°C. The

physical characteristics of all formulations 3 months after synthesis

are presented in Table II. Also, the physical stability over time of

K100P is depicted in Fig. 2. K100P corresponds to the formulation

only with keratin and poloxamer 407. The physical stability of the

other keratin-based particles is present in Fig. S1.

All keratin-based particles presented a net negative surface

f-potential and a narrow size distribution with sizes ranging from

160 to 237 nm (Table II). Yet, considering composition and time,

some statistical significant differences were identified. There was a

relative decrease in particles size along time, going up to 26% for

the K100P formulation. Regarding the f-potential, there was a

Figure 2 Characterization of K100P in PBS, during storage at 4°C: (A) Z-average and polydispersity (PDI); (B) surface charge (f-potential). The data represent

the mean � SD from three independent experiments. Data were analysed by one-way ANOVA: ● P-value ≤0.01; ♦ P-value ≤0.001; ■ P-value ≤0.0001, when

compared to the results obtained at day 1.

A B

Figure 3 STEM micrographs (50 000 (A) and

100 0009 (B)) of K100P particles at day 1 after

synthesis.
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variation from �27.40 mV, at day 1, to �22.00 mV after

3 months of storage at 4°C for this formulation. These changes in

f-potential could be associated with a reorganization of the proteins

and Pol407 at particles’ surface, leading to small alterations in the

surface charge.

There was also a stabilization of the K100P particles at the end

of the first week of storage, with a decrease in PDI value. The same

trend was observed for the other keratin-based particles (data not

shown). Pol407 is a surface active compound that, because of its

amphiphilic structure, exhibits a tendency to accumulate at the

interface between the aqueous and organic phase, lowering the

surface tension and stabilizing the system [10]. This compound

was used to control particle size, size distribution and shape, and to

prevent aggregation and coalescence. Except for the K100P parti-

cles, there was an increase in size and PDI when the Pol407 was

added to the formulations with keratin and silk fibroin. It was

already described that Pol407 propylene oxide chains are not strong

enough to be ideally absorbed in silk fibroin particles. Thus, the

presence of this protein in the formulation could have influenced

the effect of Pol407 on particle size and PDI [11].

Regarding the f-potential, a change towards a less negative

potential for all the particles was observed. These results were

expected as the negative charge of the keratin side chains (R�SO3
�)

was masked by the presence of Pol407 coating the particles, result-

ing in an increase in f-potential to less negative values

[12]. Despite the small changes observed regarding the particles’

surface charge, the highly negatively charged formulations are

considered as stable. The shape and the size of the keratin-based

particles were also evaluated by STEM and NTA. Analysing STEM

micrographs presented in Fig. 3, it was possible to verify the parti-

cles’ spherical shape and the presence of a less dense layer sur-

rounding the particles. This layer can be attributed to the presence

of Pol407, which tends to accumulate in the interface between par-

ticles and water [10].

Using NTA, a size of 210 nm was observed for the K100P parti-

cles, taking into account 90% of population distribution (D90).

These results were in agreement with the size determined by DLS

at day 1 after particle synthesis.

The newly produced keratin-based particles presented size prop-

erties generally considered suitable for cosmetic applications [13].

Effect of homogenization on the secondary structure of particles

containing proteins

To evaluate the extent of the emulsification effect on the secondary

structure of keratin and silk fibroin, FTIR spectra of formulations

were acquired.

To assess the type of secondary structures present, a deconvolu-

tion of Amide I (1600–1700 cm�1) region was performed and the

results are presented in Table III. When the proteins were subjected

to cycles of HPH, some structural modifications were detected.

Comparing the K100 particles with the keratin solution, the K100

particles showed higher absorbance for the analysed amides, which

is related to the chemical bond concentration formed during the

emulsification process (data not shown).

The variations of FTIR spectra could indicate conformational

changes in the proteins and the achievement of complex particles.

The results presented in Table III summarize the structural alter-

ations on the proteins throughout the HPH process. The band

assignment was performed according to Kong [14] where the

deconvolution of Amide I allowed to analyse the corresponding

structural assignments. A component centred between approxi-

mately 1658 and 1650 cm�1 was assigned to a-helix structures.

Bands in the regions of 1640–1620 cm�1 and 1695–1690 cm�1

were assigned to b-sheet, and bands flanked by 1680 and

1660 cm�1 were assigned to b-turns [14].
Comparing the values before and after the application of HPH to

produce the particles, an increase in the percentage of b-strands
(sheets and turns) was observed. Concomitantly, there was a reduc-

tion in the percentage of a-helix/random coil structures. The

increase in b-strands was related to the HPH emulsification process,

which contributes to an increase in protein’s crystallinity, mostly

because of the formation of b-strand structures [15–17]. The incor-

poration of silk fibroin on particles formulation contributed to an

increase in the percentage of b-sheets [18, 19]. Silk fibroin self-

assembly process is predominantly composed by this conformation,

which increases encapsulation efficiency and enables control of

drug release kinetics [19–21]. When compared with the K100 parti-

cles, the addition of silk fibroin and poloxamer 407 to the formula-

tions led to a reduction in absorbance on the regions

corresponding to the Amides I, II and III (data not shown). These

changes evidence the chemical modifications of the formulations

observed by addition of other components.

In Table III is patent the effect of silk fibroin and Pol407 on parti-

cle conformation triggering the formation of b-strands, in special b-
turn, during the HPH process. An increase in these conformations

may contribute to more stable particles because b-sheets are envi-

sioned with reverse b-turns conferring stability and the possibility

to connect with other b-sheets, improving particle resistance and

rigidity [20, 21].

In vitro evaluation of keratin-based particle potential cytotoxicity

When developing new products that will contact with human skin,

it is crucial to understand whether those products will potentially

display any type of cytotoxicity. Ultimately, the development of

new cosmetic products relays on product safety when applied to

humans. The use of cell lines is well established for the evaluation

of the potential cytotoxicity of cosmetic products [22, 23]. Also, in

Table III Secondary structural assignments on keratin-based particles

obtained by HPH

Secondary structure (%)

Amide I deconvolution

ß-Sheet ß-Turn a-helix/random coil

Keratin control 27 33.7 39.3

Silk fibroin control 28.2 39.2 32.6

K100 29 40.3 30.7

K100P 31.0 38.4 29.6

K95SF5 34.8 39.2 25.9

K95SF5P 30.8 42.7 26.4

K90SF10 32.4 41.8 25.8

K90SF10P 30.1 39.6 30.0

K80SF20 33.4 39.4 27.2

K80SF20P 34.2 38.7 27.1

The results of Amide I deconvolution, expressed in percentages, were analysed

using OriginPro 8.5 software.
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the European Union there are provisions prohibiting animal testing

of cosmetic products and well established that animal experiments

must be replaced by alternative methods that are scientifically

accepted. Human keratinocytes were chosen as the keratin-based

particles will be applied on hair and would therefore come into

contact with the hair scalp and eventually be adsorbed through it.

More specifically, the NCTC-2544 keratinocyte cell line was

selected to evaluate the potential cytotoxic effect of keratin-based

particles as this cell line is already a reliable method to prevent ani-

mal skin tests for cytotoxicity studies and contact of potential aller-

gens [22, 23].

The effect of keratin-based particles on the cellular metabolic

activity of human keratinocytes, as a means to predict cytotoxicity,

was evaluated by the MTS assay. The data on viability of cells after

48 h of incubation with the keratin-based particles are presented

in Fig. 4. The cytotoxic effect of the individual components of the

particles (keratin, silk fibroin and Pol407) was initially evaluated,

and no signs of cell toxicity were verified for any of the tested con-

centrations and time points (data not shown). The same tendency

was verified when cells were exposed to increasing concentrations

of keratin-based particles.

The lowest viability was observed for the highest concentration

of K80SF20P particles (94.1 � 31.1%), which still was not signifi-

cantly different from the life control. For some particle concentra-

tions (K100 [0.05], K100P [0.1], K95SF5 [0.1], K95SF5P [0.5],

K90SF10 [0.5] and K80SF20 [0.5]), there was a pro-proliferative

effect of the keratin-based particles. This keratin-based material

effect, such as hydrogels, scaffolds and films, was already described

in cell adhesion and proliferation studies [24, 25]. The uniformity

of the viability results after 48 h of incubation and comparing with

the 24 h incubation (data not shown) shows the ability of the ker-

atinocytes to adapt to the presence of the keratin-based particles,

which argues for the safety of these particles. Furthermore, the

addition of Pol407 and silk fibroin to the formulation did not signifi-

cantly affect the viability of keratinocytes.

Hair treatment with keratin-based particles

After confirmation of the keratin-based particles safety in human

keratinocytes, virgin and overbleached (89B) Asian hairs were

incubated with 0.5 mg mL�1 of each formulation for 1 h. This

concentration was selected considering the particles’ cytotoxicity

profiling. Although no significant cytotoxic effect was verified for

any of the tested concentrations after 48 h of exposition,

0.5 mg mL�1 of particles was the highest concentration where no

decrease in cellular viability was noted for any of the keratin-based

particles tested.

When developing new formulations for hair care, it is important

to evaluate the ability of their components to bind hair. After the

hair treatment, roughly bound keratin-based particles were washed

off and the remaining tightly bound particles (on the hair surface

and/or in the cortex) were visualized by SEM (Fig. 5).

Analysing Fig. 5, the effect of the bleaching process on the

appearance and structure of hair is notorious. Although the virgin

hair (Fig. 5A) shows a natural appearance and displays a scale

structure with smooth edges, the overbleached hair (Fig. 5C)

Figure 4 Relative viability of NCTC-2544 human keratinocytes (evaluated by the MTS assay) after 48 h incubation with 0.01, 0.05, 0.1, 0.25, 0.5 and

1 mg mL�1 of K100 and K100P (A), K95SF5 and K95SF5P (B), K90SF10 and K90SF10P (C), K80SF20 and K80SF20P (D) particles. Cells incubated with culture med-

ium only were used as life control (+) and cells incubated with 30% DMSO as death control (�). Data were calculated in relation to the life control (100%).

Results are the mean � SD of triplicates of three independent experiments.
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showed signs of scale erosion and hair degradation, which con-

tributed for the weakening of the hair fibre [26].

The deposition of the keratin-based particles on the hair fibres

was evident when comparing the micrographs of treated and

untreated hair. The deposition and distribution were dependent on

the particle formulation (data not shown) and type of hair used

(virgin vs overbleached). In Figs 5B (treated virgin hair) and 4D

(treated overbleached) is presented the binding of K80SF20P parti-

cles to hair.

This formulation was able to recover and improve hair mechani-

cal properties to a great extent compared with the other

formulations (Table IV), and thus, its data are presented here. In

the treated virgin hair (Fig. 5B), the K80SF20P particles tend to be

distributed along the hair fibre with a preferential deposition in the

interlayer zone of the cuticles. This behaviour is similar to that

observed with the hair conditioners. It was already described by

many authors that the conditioner tends to accumulate in the area

surrounding the cuticle scale edges, filling the damaged area of the

cuticles, making it possible to physically ‘repair’ some damages in

the hair fibre [27, 28].

For the treated overbleached hair (Fig. 5D), the K80SF20P parti-

cles are evenly distributed along the hair fibre with a tendency to

Figure 5 SEM micrographs (10 0009 magni-

fication) of Asian virgin hair (A), Asian virgin

hair treated with K80SF20P particles (B), Asian

overbleached hair (C) and Asian overbleached

hair treated with K80SF20P particles (D). Parti-

cles are highlighted by arrows.

Table IV Improvement (I%) and recovery (R%) of hair mechanical properties measured in terms of Young modulus and tensile strength (%) after treatment

with keratin-based particles, compared with untreated virgin hair and untreated overbleached hair

Formulation

Young modulus Tensile strength

Virgin hair (%I) Overbleached hair (%R+I) Virgin hair (%I) Overbleached hair (%R+I)

K100 14.24 23.26 6.92 14.91

K100P 23.85 28.58 9.02 7.75

K95SF5 17.37 23.31 12.58 9.22

K95SF5P 16.45 23.68 11.13 14.14

K90SF10 28.94 30.74 11.98 22.68

K90SF10P 27.08 36.31 13.75 16.77

K80SF20 31.94 28.82 23.07 20.17

K80SF20P 41.84 36.14 27.74 19.34

Keratin-based particles for hair treatment A. Tinoco et al.

© 2018 Society of Cosmetic Scientists and the Soci�et�e Franc�aise de Cosm�etologie 415

International Journal of Cosmetic Science, 40, 408–419



form film-like structures over the damaged hair. The differences

observed on the deposition pattern could be directly related to the

overbleaching process, which affected the cuticle structure and the

surface chemistry. The appearance of cystic acid termination SO3
�

after bleaching resulted in an increase in the net negative charge

and surface hydrophilicity of overbleached hair improving the elec-

tric attraction to keratin-based particles [29]. The formation of a

film-like deposition in the K80SF20P particles on the overbleached

hair resulted from a stronger interaction between the particles and

the hair fibre.

Recovery of the mechanical and thermal properties of virgin and

overbleached Asian hair

To evaluate the extent to which the particles contribute to the

mechanical strength and thermal properties of virgin and overbleach

hair, we performed the determination of the mechanical resistance of

hair samples. Hair resistance was determined using the calculated

Young’s modulus (stiffness), and tensile strength of virgin and

overbleached Asian hair was determined before and after treatment

with 0.5 mg mL�1 of keratin-based particles (Fig. 6).

The repeated chemical bleaching treatments affect the appear-

ance and structure of hair, which results in the loss of hair resis-

tance. The overbleaching of Asian black hair induced a loss of

stiffness in about 14% and a loss of tensile strength in about 17%.

Figure 6 Mechanical resistance parameters: (A) and (C) Young modulus and (B) and (D) tensile strength of virgin and overbleached Asian hair (89B) before

and after treatment with 0.5 mg mL�1 of keratin-based particles. Values are the mean � SD of twenty independent measurements. Statistical significant differ-

ences from the control ((A) and (B): untreated virgin air; (C) and (D): overbleached hair (89)) are indicated as: *P-value ≤0.05, ● P-value ≤0.01; ♦ P-value

≤0.001; ■ P-value ≤0.0001.

Table V Keratin a-helix denaturation enthalpies of virgin and overbleached

Asian hair after treatment with 0.5 mg mL�1 of keratin-based particles

Keratin-based

particles

DeltaH (J g�1)

(virgin hair)

DeltaH (J g�1)

(overbleached hair)

K100 2.18 � 0.60 2.36 � 0.97

K100P 1.81 � 0.19 1.85 � 0.26

K95SF5 3.54 � 1.32 1.51 � 0.50

K95SF5P 4.23 � 0.16 3.77 � 1.75

K90SF10 4.61 � 0.69 2.15 � 0.95

K90SF10P 3.87 � 1.38 2.58 � 1.59

K80SF20 3.01 � 1.28 2.29 � 0.21

K80SF20P 3.43 � 0.92 1.54 � 0.28

The values were calculated and expressed as the energy increase between the

samples treated with particles and the respective control: virgin or overbleached

hair (n = 3).
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Analysing Fig. 6, it was possible to observe that the applica-

tion of the keratin-based particles resulted in the recovery (R)

and even improvement (I) of overbleached hair mechanical prop-

erties to values higher than what was measured for the control

(untreated overbleached hair). Regarding virgin hair, all the ker-

atin-based particles were able to improve (I) its mechanical prop-

erties. The treatment of overbleached and virgin hair with buffer

did not show any significant recovery of the mechanical proper-

ties (data not shown), thus attesting the beneficial role of the

keratin-based particles.

The Young modulus analysis indicated that the particles with

higher percentage of silk fibroin (10% and 20%) significantly

improve the stiffness of both virgin and overbleached hair. An

increase in tensile strength with increasing percentages of silk

fibroin was only significant for K80SF20 and K80SF20P formulations,

which improve the tensile strength of virgin hair in 23.07% and

27.74% (Table IV), respectively. The tensile strength of

overbleached hair was significantly increased by 22.69% after the

application of K90SF10 particles (Table IV).

Comparing all particle formulations (Table IV), the best formula-

tion in terms of Young’s modulus was the K80SF20P, which led to

an improvement up to 41.85% and 36.14% for the virgin and

overbleached hair, respectively.

The improvement and recovery of hair’s mechanical properties

could be directly related to the number and distribution of particles

attached to the hair surface. Hair samples with more particles on

their surface had the highest and more statistically significant val-

ues for Young’s modulus. Despite this positive correlation between

amount of particles on the hair surface and the improvement of its

mechanical properties, the increase in Young’s modulus could also

be related to the ability of the keratin-based particles to penetrate

into the hair cortex, contributing to the stabilization of keratin’s a-
helix, giving this structure a higher resistance to unfold during

stretching.

Particle composition also influenced the improvement of hair’s

mechanical properties. Generally, there was an increase in Young’s

modulus values with increasing amounts of silk fibroin in the for-

mulation. Such observation could be related to the secondary struc-

ture of silk fibroin. This protein is rich in b-strands, which are

associated with higher resistance and stiffness profiles [20, 30]

while combining tensile strength and toughness [31].

The study of the effect of hair care products on hair’s

mechanical and thermal properties is essential when developing

new formulations. Therefore, DSC measurements were taken to

assess whether keratin-based particles penetrate into the hair

cortex and whether they protect hair from thermal denaturation.

One important parameter analysed by this technique is the a-
helix keratin denaturation, which is identified by a peak with a

temperature between 210 and 250°C [32]. The peak observed at

221.9°C for the lyophilized keratin in Figs S2B and S3B is

within this temperature range. Peaks around this temperature

range were selected to evaluate the effect of the keratin-based

particles treatment on the enthalpies values for virgin and

overbleached Asian hair. If there is an increase in the enthalpy

of a-helix keratin denaturation, the formulation is somehow

interacting and stabilizing the keratin structure, protecting it

from damage [33]. The thermograms of virgin Asian hair,

overbleached Asian hair, lyophilized keratin and of hair

samples treated with the keratin-based particles are shown in

Figs S2 and S3.

Table V shows the enthalpy values for the a-helix keratin denat-

uration. The enthalpies values correspond to the difference between

the virgin and overbleached hair treated with the keratin-based

particles and the hair without treatment.

The treatment of hair with the particles resulted in an increase in

the value of a-helix denaturation enthalpies. For the virgin hair, the

best formulations were the K80SF20 and K100P, whereas for the

overbleached hair, the best formulations were the K80SF20 and

K95SF5P. It was already demonstrated by some studies that silk

fibroin tends to establish intermolecular interactions with keratin, so

it was expected that formulations with it would have higher denatu-

ration enthalpies [15]. These results corroborate the positive effect of

keratin-based particles on the mechanical and thermal properties of

virgin and overbleached hair.

Effect of keratin-based particles on hair smoothness

The effect of a formulation on hair smoothness is an essential

parameter during the development of new hair cosmetic products.

End-users prefer products, which turns hair softer to the touch over

a product that does not increases hair smoothness. A subjective

assessment with a cohort of 30 volunteers was performed to study

whether the treatment of virgin and overbleached with the keratin-

based particles increases hair smoothness – Fig. 7. Analysing

Fig. 7, it demonstrated the ability of all keratin-based formulations

to improve hair’s smoothness, with a direct relation with the

increase in silk fibroin concentration in the formulation. This

Figure 7 Increase in virgin hair (A) and overbleached hair (B) smoothness

after treatment with the keratin-based particles. The qualitative score data

were obtained from a cohort of 30 volunteers. Score 0 – no improvement in

smoothness; 1 – slight improvement in smoothness; 2 – improvement in

smoothness; 3 – good improvement in smoothness; 4 – great improvement

in smoothness. The data represent the mean � SD from the thirty volun-

teers. Data were analysed by one-way ANOVA: ■ P-value ≤0.0001, when

compared to the results of the blind control (untreated hair).
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improvement in hair texture could be related to the moisturizer

effect of silk fibroin, capacity already demonstrated and proved for

other formulations applied on skin [7]. Besides, the accumulation

of the keratin-based particles on the cuticles edges (Fig. 5B) or their

ability to form film-like structures (Fig. 5D) attenuated the hair sur-

face irregularities increasing hair smoothness. This behaviour was

similar to the described for hair conditioners [34].

Conclusions

The conventional chemical treatments used in hair cosmetic have

detrimental effects on the mechanical and thermal properties of

hair. The development of formulations capable of recovering and

improving the properties of hair is mandatory. In the present study,

keratin-based particles were successfully produced by HPH and

applied to virgin and chemically overbleached hair. Generally, the

particles were very stable over time and proved to be safe when

tested in human keratinocytes. Depending on hair cuticle structure,

hair surface chemistry and particle formulation, the keratin-based

particles exhibited different deposition patterns on hair’s surface.

All the formulations were able to induce significant recovery of the

stiffness and tensile strength of virgin and overbleached hair along

with an increase in the a-helix denaturation enthalpy and of sur-

face smoothness for both types of hair.

The keratin-based particles here presented are excellent candi-

dates as new restorative hair care products, opening new

perspectives on the use of functional particle-based formulations in

hair cosmetic industry. Additionally, these particles will be further

explored to encapsulate fragrances and bioactive molecules, which

will result in a set of multifunctional keratin-based formulations for

hair restoration, hair targeting and hair beauty.
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Figure S1. Characterization of Keratin-based particles in PBS, during storage at 4°C.
Figure S2. DSC thermograms of virgin Asian hair (A), lyophilized keratin (B) and virgin Asian hair after treatment with the keratin-

based particles.

Figure S3. DSC thermograms of overbleached Asian hair (A), lyophilized keratin (B) and overbleached Asian hair after treatment with

the keratin-based particles.
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