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13.1 Introduction

Carbon dioxide sequestration is crucial for limiting global warming (Hansen et al.,

2017). That is why carbon sequestration constitutes one of the Grande Challenges

of Engineering (Mote et al., 2016). Currently this carbon sequestration is carried

out mostly through geologic CO2 storage in saline aquifers (Zhang and Huisingh,

2017). However, that constitutes a passive strategy, involves huge risks, and also

comes with a very high cost. Carbon capture and storage from the stream of concen-

trated CO2 at fossil fuel burning sites like power plants or steel plants is more effi-

cient and thus less expensive than direct air capture (Hansen et al., 2017). Several

authors (Bertos et al., 2004; Jang et al., 2016) have studied the use of CO2 for accel-

erated curing of cementitious construction materials. This technology will in future

not only minimize release of carbon dioxide into the atmosphere but also accelerate

curing and strength development of those materials. However, so far no studies were

performed on alkali-based materials. These materials are produced through the reac-

tion of an aluminosilicate powder (precursor) with an alkaline activator, usually

composed by hydroxide, silicate, carbonate, or sulfate leading to the formation of

an amorphous aluminosilicate gel and secondary nanocrystalline zeolite-like struc-

tures (Provis, 2014). These materials have a particular ability for the reuse of several

types of wastes (Pay!a et al., 2014; Bernal et al., 2016). Some wastes like fly ash (FA)

deserve a special attention because they are generated in large amount and have a

very low reuse rate. USA has a reuse rate for FA of around 50%, meaning that
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30 million tons of FA are not reused annually (ACAA, 2016). Waste glass is also a

waste that is generated in relevant quantities and that merits increased recycling

efforts. In 2010, approximately 425,000 tons of waste glass was produced in

Portugal and only 192,000 tons of them were recycled. In Hong Kong, approxi-

mately 373 tons of waste glass was generated daily in 2010. The use of waste glass

in alkali-activated binders is especially interesting because its high SiO2 content al-

lows for a reduction in the content of sodium silicate thus reducing the cost of this

binder which constitutes one of the shortcomings of alkali-activated materials

(Pacheco-Torgal et al., 2016). This justified recent studies on alkali-activated mate-

rials containing waste glass (Martinez-Lopez and Escalante-Garcia, 2016; Wang

et al., 2016). This chapter presents results of the investigation concerning carbon

dioxide sequestration on FA/waste glass alkaline-based mortars with recycled

aggregates.

13.2 Experimental program

13.2.1 Materials

The mortars were made of FA, calcium hydroxide, waste glass , ordinary Portland

cement (OPC), metakaolin (MK), fine aggregates, recycled aggregates, and a sodium

hydroxide solution. The FA was obtained from The PEGO Thermal Power Plant in

Portugal and categorized as class B and group N according to the ASTM C618-15.

Table 13.1 presents the major oxides of FA particles and MK. The Portland cement

is of type I class 42.5R from SECIL; its composition contains 63.3% CaO, 21.4%

SiO2, 4.0% Fe2O, 3.3% Al2O3, 2.4% MgO, and other minor components. The calcium

hydroxide was supplied by LUSICAL H100 and contains more than 99% CaO. Waste

glass from glass bottles ground for 1 h in a ball mill was also used. The final density of

the milled waste glass was 1.27 g/cm3. Solid sodium hydroxide was supplied by

ERCROS, S.A., Spain, and was used to prepare the 8M NaOH solution. Distilled water

was used to dissolve the sodium hydroxide flakes to avoid the effect of unknown con-

taminants in the mixing water. The NaOH mix was made 24 h prior to use in order to

have a homogenous solution at room temperature. Three different sand types were

used in the mixtures: (1) normal sand; (2) recycled sand; (3) carbonated recycled

Table 13.1 The chemical composition of major oxides of fly ash (FA)

Material

Oxides (wt.%)

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2

FA 60.81 22.68 7.64 1.01 2.24 1.45 2.70 1.46
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aggregate. The normal sand was used as inert filler and was provided from the MIBAL,

Minas de Barqueiros, S.A. Portugal. A sieving operation was carried out to remove

dust particles. It was dried at 105 C for 24 h, and it was sieved in advance before being

used. The dimensions of the sieves were 4.75 and 0.6 mm. The sand had a fineness

modulus of 3.885. Recycled sand obtained from the crushing of concrete blocks

was also used, after being sieved. The average compressive strength of concrete blocks

was around 40 MPa. The detailed grain size distribution of the normal sand and of the

recycled sand are presented in Fig. 13.1. The recycled sand has a water absorption of

13%. Recycled sand was carbonated in a carbon chamber from Aralab, model Fito-

clima S600 (4.2% CO2, 40% RH, and 20 C), for 48 h. The recycled sand has a water

absorption of 25%. The explanation for the increase of the water absorption relates to

the fact that when calcium silicate hydrate (CSH) carbonates its Ca/Si ratio drops and it

becomes highly porous. Studies by NMR spectroscopy indicate that decomposition of

C-S-H caused by carbonation involves two steps: (1) a gradual decalcification of the C-

S-H, where calcium is removed from the interlayer and defect sites in the silicate

chains until Ca/Si ¼ 0.67 is reached, ideally corresponding to infinite silicate chains;

(2) calcium from the principal layers is consumed, resulting in the final decomposition

of the C-S-H and the formation of an amorphous silica phase ( Savija and Lukovi!c,

2016).

13.2.2 Mix design and mortar production

Apart from the use of three types of sand, two different sand to binder ratios (4 and 5)

were also studied. The composition of the mortars is shown in Table 13.2. In the
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Table 13.2 Mix compositions (kg/m3)

Mixtures

Fly

ash CH PC MK MG SH

Sand

Content Type

80FA_10CH_10MG_NAG 340.0 42.5 e e 42.5 215.5 1700.0 with normal aggregates, mix cured at lab

temp (Sand/Binder: 4)
80FA_10PC_10MG_NAG 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_NAG 362.0 e 43.0 e 43.0 213.0 1705.0

80FA_10CH_10MK_NAG 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_NAG 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_NAG 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_NAG 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_NAG 346.6 e 21.6 21.6 21.6 216.0 1733.0

80FA_10CH_10MG_NAG_CC 340.0 42.5 e e 42.5 215.5 1700.0 with normal aggregates, mix cured

7 days in carbonation chamber

(Sand/Binder: 4)
80FA_10PC_10MG_NAG_CC 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_NAG_CC 362.0 e 43.0 e 43.0 213.0 1705.0

80FA_10CH_10MK_NAG_CC 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_NAG_CC 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_NAG_CC 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_NAG_CC 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_NAG_CC 346.6 e 21.6 21.6 21.6 216.0 1733.0

80FA_10CH_10MG_RAGC 340.0 42.5 e e 42.5 215.5 1700.0 with recycled carbonated aggregates, mix

cured at lab temp (Sand/Binder: 4)
80FA_10PC_10MG_RAGC 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_RAGC 362.0 e 43.0 e 43.0 213.0 1705.0
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80FA_10CH_10MK_RAGC 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_RAGC 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_RAGC 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_RAGC 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_RAGC 346.6 e 21.6 21.6 21.6 216.0 1733.0

80FA_10CH_10MG_RAGC_CC 340.0 42.5 e e 42.5 215.5 1700.0 with recycled carbonated aggregates, mix

cured 7 days in carbonation chamber

(Sand/Binder: 4)
80FA_10PC_10MG_RAGC_CC 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_RAGC_CC 362.0 e 43.0 e 43.0 213.0 1705.0

80FA_10CH_10MK_RAGC_CC 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_RAGC_CC 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_RAGC_CC 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_RAGC_CC 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_RAGC_CC 346.6 e 21.6 21.6 21.6 216.0 1733.0

80FA_10CH_10MG_RAG 340.0 42.5 e e 42.5 215.5 1700.0 with recycled aggregates, mix cured at

lab temp (Sand/Binder: 4)
80FA_10PC_10MG_RAG 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_RAG 362.0 e 43.0 e 43.0 213.0 1705.0

80FA_10CH_10MK_RAG 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_RAG 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_RAG 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_RAG 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_RAG 346.6 e 21.6 21.6 21.6 216.0 1733.0
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Table 13.2 Continued

Mixtures

Fly

ash CH PC MK MG SH

Sand

Content Type

80FA_10CH_10MG_RAG_CC 340.0 42.5 e e 42.5 215.5 1700.0 with recycled aggregates, mix cured

7 days in carbonation chamber

(Sand/Binder: 4)
80FA_10PC_10MG_RAG_CC 341.0 e 43.0 e 43.0 213.0 1706.0

85FA_5PC_10MG_RAG_CC 362.0 e 43.0 e 43.0 213.0 1705.0

80FA_10CH_10MK_RAG_CC 345.0 43.0 e 43.0 e 215.7 1725.0

80FA_10PC_10MK_RAG_CC 347.0 e 43.4 43.4 e 217.0 1735.0

85FA_5PC_10MK_RAG_CC 368.0 e 21.7 43.4 e 216.7 1733.0

80FA_5CH_5MK_10MG_RAG_CC 340.0 21.0 e 21.0 42.0 212.0 1698.0

80FA_5PC_5MK_10MG_RAG_CC 346.6 e 21.6 21.6 21.6 216.0 1733.0

80FA_10CH_10MG_NAG 292.8 36.6 e e 36.6 183.0 1830.0 with normal aggregates, mix cured at lab

temp (Sand/Binder: 5)
80FA_10PC_10MG_NAG 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_NAG 311.9 e 18.3 e 36.7 183.4 1835.0

80FA_10CH_10MK_NAG 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_NAG 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_NAG 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_NAG 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_NAG 293.6 e 18.3 18.3 36.6 183.4 1835.0

80FA_10CH_10MG_NAG_CC 292.8 36.6 e e 36.6 183.0 1830.0 with normal aggregates, mix cured

7 days in carbonation chamber

(Sand/Binder: 5)
80FA_10PC_10MG_NAG_CC 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_NAG_CC 311.9 e 18.3 e 36.7 183.4 1835.0
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80FA_10CH_10MK_NAG_CC 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_NAG_CC 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_NAG_CC 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_NAG_CC 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_NAG_CC 293.6 e 18.3 18.3 36.6 183.4 1835.0

80FA_10CH_10MG_RAGC 292.8 36.6 e e 36.6 183.0 1830.0 with recycled carbonated aggregates, mix

cured at lab temp (Sand/Binder: 5)
80FA_10PC_10MG_RAGC 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_RAGC 311.9 e 18.3 e 36.7 183.4 1835.0

80FA_10CH_10MK_RAGC 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_RAGC 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_RAGC 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_RAGC 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_RAGC 293.6 e 18.3 18.3 36.6 183.4 1835.0

80FA_10CH_10MG_RAGC_CC 292.8 36.6 e e 36.6 183.0 1830.0 with recycled carbonated aggregates,

mix cured 7 days in carbonation

chamber (Sand/Binder: 5)
80FA_10PC_10MG_RAGC_CC 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_RAGC_CC 311.9 e 18.3 e 36.7 183.4 1835.0

80FA_10CH_10MK_RAGC_CC 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_RAGC_CC 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_RAGC_CC 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_RAGC_CC 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_RAGC_CC 293.6 e 18.3 18.3 36.6 183.4 1835.0
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Table 13.2 Continued

Mixtures

Fly

ash CH PC MK MG SH

Sand

Content Type

80FA_10CH_10MG_RAG 292.8 36.6 e e 36.6 183.0 1830.0 with recycled aggregates, mix cured at

lab temp (Sand/Binder: 5)
80FA_10PC_10MG_RAG 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_RAG 311.9 e 18.3 e 36.7 183.4 1835.0

80FA_10CH_10MK_RAG 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_RAG 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_RAG 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_RAG 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_RAG 293.6 e 18.3 18.3 36.6 183.4 1835.0

80FA_10CH_10MG_RAG_CC 292.8 36.6 e e 36.6 183.0 1830.0 with recycled aggregates, mix cured

7 days in carbonation chamber

(Sand/Binder: 5)
80FA_10PC_10MG_RAG_CC 249.4 e 36.8 e 36.8 161.5 1840.0

85FA_5PC_10MG_RAG_CC 311.9 e 18.3 e 36.7 183.4 1835.0

80FA_10CH_10MK_RAG_CC 296.0 37.1 e 37.1 e 185.1 1855.0

80FA_10PC_10MK_RAG_CC 298.4 e 37.3 37.3 e 186.5 1865.0

85FA_5PC_10MK_RAG_CC 316.5 e 18.6 37.3 e 186.2 1862.5

80FA_5CH_5MK_10MG_RAG_CC 292.8 18.3 e 18.3 36.6 183.0 1830.0

80FA_5PC_5MK_10MG_RAG_CC 293.6 e 18.3 18.3 36.6 183.4 1835.0
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batching process of the mortars, dry ingredients [FA, sand, calcium hydroxide

(or cement), MK, and milled glass] were mixed for 2 min. Then, sodium hydroxide

was added and again mixed for 5 min. Then, the mixed mortars were cast into cubic

molds (50  50  50 mm3) to assess the compressive strength of different mix

compositions. The specimens were cured for 24 h in lab conditions (averagely

25!C and 40% RH) and then they were demolded. Two different curing regimes

were used, including: (1) curing at the ambient temperature of lab (average temper-

ature of 25!C and 40% RH); (2) curing in the carbonation chamber (4.2% CO2 con-

centration and 40% RH) for 7 days and curing in lab conditions for the remaining

days. The preliminary experiments showed that all mixtures were fully carbonated

for 7 days through a CO2 preconditioning curing. Two hundred and eighty-eight

cubic specimens with dimension of 50  50  50 mm3 were cast and used to mea-

sure the CO2 sequestration in different mixtures by using a furnace decomposition

method (Shao and El-hassan, 2016). For each mixture, three specimens were tested

and the average was presented as the absorbed CO2. The carbonated specimens

were placed initially in the oven at 105!C for 24 h to evaporate any absorbed water.

Then, the weights of the dried specimens were recorded. Afterwards, the specimens

were put in the calciner at a temperature between 500 and 850!C for 4 h to measure

the water bound to hydration products and carbon dioxide in carbonates. The

results revealed that 800!C could be used as the appropriate decomposition

temperature.

13.2.3 Test procedures

13.2.3.1 Compressive strength

The compressive strengths of the mixtures were assessed at 7, 14, and 28 days. The

compressive strength of each mixture was obtained by averaging the replicated three

cubes. All cubic specimens were assessed under compressive load with a constant

displacement rate of 0.30 N/mm2. based on the ASTM C109 recommendation. The

compressive load was measured with a load cell of 200 kN capacity.

13.2.3.2 Microstructural analysis

Small samples with 1 cm diameter and 1 cm height were extracted for scanning elec-

tron microscopy-energy dispersive spectroscopy (SEM/EDS) testing. The microstruc-

tural observation for different geopolymer mortar mixtures was carried out using

standard SEM/EDS microscopy (NOVA 200 Nano SEM). Micrographs and chemical

compositions were collected at accelerated voltage of 10 and 15 kV, respectively,

and variable working distance from 6 to 8 mm. The cylindrical sub-samples from

zones 1 to 3 were coated with a 30-nm thick layer of gold-Palladium (60% gold

and 40% palladium) alloy; then the SEM/EDS examination for all the specimens

were conducted.
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13.2.3.3 Fourier transform infrared spectroscopy

The specimens resulting from SEM/EDS tests were also tested by Fourier Transform

Infrared Spectroscopy (FTIR). The analysis of infrared transmission spectra was car-

ried out through attenuated total reflectance mode (ATR), using a Perkin Elmer FTIR

Spectrum BX with an ATR. PIKE MIRacle Specimens for FTIR study were prepared

by mixing 1 mg of sample in 100 mg of KBr as suggested by Zhang et al. (1996). The

IR spectra were recorded over a range of 4000 and 400 cm 1 at resolution 4 cm 1.

13.3 Results and discussion

13.3.1 Compressive strength

The effects of using different sand types and contents, and different curing regimes on

the compressive strengths of the mixtures are shown in Figs. 13.2e13.7. Figs. 13.2e13.4

are related to a sand to binder ratio of 4 while the compressive strength results of mix-

tures with a sand to binder ratio of 5 are depicted in Figs. 13.5e13.7. Fig. 13.2 shows the

compressive strengths of the mixtures containing normal sand. It was observed that

using simultaneously equal content of Portland cement and MK had the highest impact

on increasing the compressive strength. Mixtures based on waste glass show low

compressive strength results. Other authors (Redden and Neithalath, 2014) showed

that silica in the glass powder reacts with the alkalis forming sodium silicate gel which

is not as dense as CSH gel. Results show that replacing calcium hydroxide by Portland

cement increased the compressive strength. Portland cement being a reactive pozzolan

leads to the formation of a higher amount of CSH gel. This is because of the low sodium

hydroxide concentration used in the present study (Garcia-Lodeiro et al., 2016). In gen-

eral, it was observed that mixtures exposed to accelerated carbonation curing showed

increased compressive strength. The maximum increase of the compressive strength

for the mixtures cured by accelerated CO2 curing as compared to the mixtures cured

at the ambient temperature was recorded in the mixture of 80FA_5PC_5MK_10WG_-

NAG, so that this increase at ages of 7, 14, and 28 days were about 22 times (4.08 MPa),

6 times (6 MPa), and 5 times (7 MPa), respectively. Afterwards, the maximum compres-

sive strength was recorded for the mixture of 80FA_10PC_10MK_NAG. Curing spec-

imens under a flow-through CO2 gas increased two and three times the compressive

strength of specimens at the ages of 7 and 28 days, respectively. The carbonation of

alkali-activated materials is a chemically controlled mechanism that occurs in two

steps: (1) carbonation of the pore solution leading to a reduction in pH and the eventual

precipitation of Na-rich carbonates, followed by (2) the decalcification of Ca-rich

phases (mainly C-S-H, as portlandite usually does not form in these systems) and

carbonation of secondary reaction products present in the system (Bernal, 2014).

Kwasny et al. (2014) also noticed that using accelerated CO2 curing increases the

rate of the initial hydration of the carbonated cementitious pastes. This increase in
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compressive strength can be related to the fact that carbonation curing refines the

porosity and pore size of the cementitious pastes as reported by others (He et al.,

2016; Jang and Lee, 2016). Fig. 13.3 depicts the effects of using recycled aggregates

on the compressive strength. No consistent trend was detected for the compressive

strength. For the tested specimens at age of 7 days, using CO2-curing resulted in

measuring the maximum increase of the compressive strength (more than 5 times
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Figure 13.2 Effect of using normal sand with sand to binder ratio of 4 and different curing

regimes on the compressive strength at age of: (a) 7 days; (b) 14 days; (c) 28 days.
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(2.73 MPa)) in the mixture of 80FA_10CH_10MG_RAG, as compared with the cured

specimens at the ambient temperature. Employing this curing method reduced about

40% the compressive strength of 80FA_5PC_5MK_10MG_RAG, when compared

to the cured specimens at the ambient temperature. The effects of using carbonated

recycled aggregates on the compressive strength of different mixtures are depicted

in Fig. 13.4. It is noticed that the compressive strength increased for all mixtures.

Regardless of the duration of curing, the maximum increase of the compressive strength

after 7 days curing was recorded for the mixture of 80FA_10CH_10MG_RAGC of

around 7 MPa. Moreover, it was observed that by increasing the curing time, an

increase in compressive strength is noticed. Using accelerated CO2 curing increased

about 9, 5, and 2 times the compressive strength, when compared to the compressive

strength of specimens cured at the ambient temperature. In addition, it was also

noticed that using carbonated recycled aggregates significantly increased the

compressive strength when compared to using normal sand or recycled aggregate.

The maximum compressive strength obtained was about 15 MPa in the mixture

80FA_10CH_10MK_RAGC_CC, cured for 28 days. The effect of using normal

sand on the compressive strength of the mixtures is depicted in Fig. 13.5. The use

of accelerated CO2 curing shows no consistent trend on the compressive strength

of the mixtures at an early age (7 days), so the maximum increase and decrease of

the compressive strength of mixtures due to using of flow-through CO2-curing at

early age were measured in the mixtures of 85FA_5PC_10MG_NAG (with 2.5 times

increase) and 80FA_10PC_10MK_NAG (with 40% reduction), respectively. With
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respect to the results shown in Fig. 13.5(b) and (c), the maximum increase in the

compressive strength was recorded in the mixture 80FA_5PC_5MK_10MG_NAG

(more than 2 times for both 14 and 28 days). Afterwards, the maximum increase of

the compressive strength was measured for the mixture 80FA_10PC_10MG_NAG
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Figure 13.3 Effect of using recycled sand with sand to binder ratio of 4 and different curing

regimes on the compressive strength of: (a) 7 days; (b) 14 days; (c) 28 days.
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(about 2 times for both 14 and 28 days). Generally, comparing Figs. 13.2 and 13.5 in-

dicates that increasing the content of normal sand to binder ratio from 1:4 to 1:5

reduced the efficiency of accelerated CO2 curing, which may be due to an increase

in the pore content. Also a reduction of the tortuosity of the cracking path may

have taken place. A shorter tortuous crack path decreases the ultimate energy absorp-

tion capacity reached to the failure and subsequently decreases the compressive

strength (Larrard and Belloc, 1997). Fig. 13.6 shows the compressive strengths of

mixtures containing recycled aggregates to binder in the ratio of 5. Regardless of

the curing time, a consistent trend on increasing or decreasing the compressive

strength of mixtures was not noticed due to the use of accelerated CO2 curing method,

so that the maximum decrease and increase of the compressive strength at 7 days

were recorded to be 55% and 3.5 times for the mixtures of 80FA_10CH_10MK_-

RAG and 80FA_5PC_5MK_10MG_RAGC, respectively, as compared to curing

the specimens at ambient temperature. The maximum decrease and increase of the

compressive strength at 14 and 28 days were recorded to be about 50% and 2.5 times

for the mixtures of 85FA_5PC_10MG_RAG and 80FA_5PC_5MK_10MG_RAGC,

respectively. Fig. 13.7 shows the influence of increasing the content of carbonated

recycled aggregates. The results show that increasing carbonated recycled aggregates

significantly affected and increased the compressive strength of mixtures. Due to

accelerated CO2-curing, the maximum increase of the compressive strength
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compared to cured specimens at the ambient temperature was recorded in the mixture

80FA_10CH_10MG_RAGC, and it was observed that the compressive strength

increased more than 5 times at early age (7 days) and 4 times for specimen at age

of 14 and 28 days. Moreover, by increasing the sand to binder ratio from 4 to 5, a
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Figure 13.4 Effect of using carbonated recycled sand with sand to binder ratio of 4 and different

curing regimes on the compressive strength of: (a) 7 days; (b) 14 days; (c) 28 days.
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maximum compressive strength equal to 10.1 MPa was measured in the mixture

80FA_10CH_10MG_RAGC_CC, which was cured for 28 days.

13.3.2 Microstructural analysis and fourier transform infrared
spectroscopy

Fig. 13.8 shows the SEM/EDS analysis of the mixtures 80FA_10CH_10MG_NAG

(compressive strength 0.62 MPa), 80FA_10CH_10MG_NAG_CC (5.03 MPa), and

80FA_10CH_10MG_RAGC_CC (12.41 MPa). The results show that accelerated

CO2 curing led to a high formation of calcium carbonate (Ca(CO)3) from the carbon-

ation of calcium hydroxide, calcium-silicate-hydrate (CSH) (tobermorite), and even

unhydrated constituents (Peter et al., 2008). Vaterite (PDF#33-0268) was also detected

as a metastable polymorph which readily transformed into the stable phasedcalcite

(Han et al., 2005). After carbonation, the soluble sodium ion content decreased dramat-

ically and the soluble sodium ions solidification ratio was dependent on the content of

vaterite formed during the carbonation. Other authors also mention that soluble sodium

ions can be solidified in crystalline vaterite by carbonation (Liu et al., 2017). XRD

results in Fig. 13.9 show that accelerated CO2 curing resulted in the reducing of inten-

sity of the sodium peak while increasing the peaks of silica, aluminum, and calcium.

Table 13.3 presents EDS atomic ratios. The results show that accelerated CO2 curing
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led to increase in the Al2O3/Na2O and CaO/SiO2 ratios and a decrease of the

Na2O/CaO and MgO/Al2O3 ratios. The C/S ratio is in line with the ones of carbon-

ated calcium silicates reported by Ashraf and Olek (2016). Fig. 13.10 presents the

FTIR spectra for the same mixtures. The FTIR spectra for silicate compounds
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Figure 13.5 Effect of using normal sand with sand to binder ratio of 5 and different curing

regimes on the compressive strength of: (a) 7 days; (b) 14 days; (c) 28 days.
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exhibits a large absorption between 800 and 1200 cm 1 which correspond to the

asymmetrical stretching vibration of SieO bond. The shifts to higher wave number

with increasing degree of polymerization of the silicate compound are due to calcium

to silica atomic ratio of the calcium-silica gel phase as this ratio also represents the

degree of silicate polymerization of the CSH (Yu et al., 1999). Carbonates from

calcite vibration occur at 2930e2920 cm 1 and 2855e2850 cm 1. Water absorbs

infrared radiation between 1600 and 1700 cm 1 due to its bending vibration and

also in the range 3000e3700 cm 1 as this corresponds to the OeH stretching region

(Ylmen and J€aglid, 2013). Hydrated minerals, such as portlandite, at 3643 cm 1 are

noticed.

13.3.3 CO2 sequestration

Fig. 13.11 shows the effects of increasing the cement content from 5% to 10% in the

mixtures containing different sand content and types. Regarding the results in

Fig. 13.11(a), except the mixtures containing recycled carbonated aggregate to

binder ratio of 5 and milled glass, increasing the cement content increased the

CO2 sequestration. The results also revealed that the maximum increase of the

CO2 sequestration was detected to be about 24 kgCO2eq/m3 due to increase of

cement content from 5% to 10% in the mixtures of 80FA_5PC_10MG_NAG_CC

and 80FA_10PC_10MG_NAG_CC. Additionally, no specific trend could be found

by increasing the cement content from 5% to 10% in the mixtures containing MK,

0

0.5

1

1.5

2

2.5

3

C
o
m

p
re

s
s
iv

e
 s

tr
e
n
g
th

(M
P

a
)

80
FA

_1
0C

H
_1

0M
G
_N

A
G

80
FA

_1
0P

C
_1

0M
G
_N

A
G

80
FA

_1
0P

C
_1

0M
K
_N

A
G

80
FA

_1
0C

H
_1

0M
K
_N

A
G

85
FA

_5
P
C
_1

0M
G
_N

A
G

85
FA

_5
P
C
_1

0M
K
_N

A
G

80
FA

_5
C
H
_5

M
K
_1

0M
G
_N

A
G

80
FA

_5
P
C
_5

M
K
_1

0M
G
_N

A
G

80
FA

_5
P
C
_5

M
K
_1

0M
G
_N

A
G
_C

C

80
FA

_5
C
H
_5

M
K
_1

0M
G
_N

A
G
_C

C

80
FA

_1
0C

H
_1

0M
G
_N

A
G
_C

C

80
FA

_1
0C

H
_1

0M
K
_N

A
G
_C

C

80
FA

_1
0P

C
_1

0M
K
_N

A
G
_C

C

80
FA

_1
0P

C
_1

0M
G
_N

A
G
_C

C

85
FA

_5
P
C
_1

0M
G
_N

A
G
_C

C

85
FA

_5
P
C
_1

0M
K
_N

A
G
_C

C

(c)

Figure 13.5 cont'd.

316 Carbon Dioxide Sequestration in Cementitious Construction Materials



as indicated in Fig. 13.11(b). Regardless of the use of milled glass or MK, it was

observed that increasing the sand ratio from 4 to 5 reduced the CO2 sequestration.

The experimental results in this chapter indicate that other supplementary cementi-

tious materials, sand content, and type could also contribute to the CO2 sequestration,
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Figure 13.6 Effect of using recycled sand with sand to binder ratio of 5 and different curing

regimes on the compressive strength of: (a) 7 days; (b) 14 days; (c) 28 days.

Carbon dioxide sequestration on fly ash/waste glassalkali-based mortars 317



and increasing the cement content does not necessarily lead to increase in the CO2

sequestration. Several authors (Rostami et al., 2011; El-Hassan and Shao, 2014, 2015)

have studied the CO2 sequestration using accelerated CO2 curing in the concrete

blocks containing 13% cement and they reported a sequestration of 75 kgCO2eq/m3.

Thus, regardless the use of milled glass or MK, the CO2 sequestration in the mixtures

containing cement (5% and 10%) was measured in the range of 17e112 kgCO2eq/m3

in the present study. Effects of replacing cement by calcium hydroxide are depicted in

Fig. 13.12. For the mixtures containing sand to binder in the ratio 4 and milled glass,

except the mixtures containing carbonated recycled aggregates, replacing cement by

calcium hydroxide reduced the CO2 sequestration. With increasing the sand to binder

ratio from 4 to 5, replacing cement by calcium hydroxide only reduced the CO2

sequestration in the mixture with normal sand. Using calcium hydroxide in the mix-

tures containing recycled aggregates and carbonated recycled aggregates increased the

CO2 sequestration. In the mixtures containing recycled aggregate or recycled carbon-

ated aggregate, the quantity of calcium hydroxide is increased by C-S-H decalcifica-

tion in the cement paste. Thus, using calcium hydroxide in the mixtures containing

recycled aggregate and recycled carbonated aggregate increased the CO2 sequestra-

tion, as compared to the mixtures using cement. Fig. 13.12(b) indicates the CO2

sequestration of the mixtures containing both milled glass and MK. Reduction of

the cement and calcium hydroxide from 10% to 5% and using 5% MK instead

increases in the C-S-H gel. These substitutions affect the hydration products and

porosity of the mixtures. Moreover, using recycled carbonated aggregate affects the
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hydration products and porosity of the mixtures. Regardless of the sand to binder ratio,

except the mixture containing sand to binder ratio 4 and recycled aggregate or

recycled carbonated aggregate, using calcium hydroxide instead of cement reduced
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Figure 13.7 Effect of using carbonated recycled sand with sand to binder ratio of 5 and different

curing regimes on the compressive strength of: (a) 7 days; (b) 14 days; (c) 28 days.
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the CO2 sequestration of the mixtures. Since for the mixtures with sand to binder ratio 5,

using calcium hydroxide instead of cement reduced the CO2 sequestration.

Fig. 13.13(a) indicates the effects of replacing milled glass by MK in the mixtures con-

taining 10% calcium hydroxide. Regarding the results, using MK instead of milled

glass increased the CO2 sequestration in the mixtures with sand to binder ratio of 4.

Increasing the sand to binder ratio from 4 to 5 resulted in no specific trend in the

CO2 sequestration, but replacing milled glass with MK for the mixtures containing

recycled aggregate and recycled carbonated aggregate increased the CO2 sequestra-

tion. The results of replacing milled glass with MK in the mixtures containing 10%

cement are shown in Fig. 13.13(b). Regardless of the use of sand to binder ratio,

except the mixture with normal sand to binder ratio of 4, replacing milled glass

with MK reduced the CO2 sequestration. The maximum effect of replacing milled

glass with MK on the CO2 sequestration was detected in the mixture containing

normal sand to binder ratio of 4 (about 25 kgCO2eq/m3). Fig. 13.13(c) indicates the

effects of replacing milled glass by MK in the mixtures containing 5% cement.

With respect to the results, using MK in the mixtures with sand to binder ratio 4

increased the CO2 sequestration, as compared to the mixtures containing milled glass.

Except the mixture with normal sand, this trend was also observed for the mixture

containing sand to binder ratio of 5. Galan et al. (2010) investigated the effects of

different parameters on the CO2 sequestration of concrete made with OPC. They

found the effective parameter on the CO2 sequestration is the moisture content of
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the concrete. In general, concerning the results, it can be concluded that the effects of

raw materials on the CO2 sequestration could be governed by the content and type of

both raw materials and sand. Moreover, it was found that the sand to binder ratio and

sand type used in the mixtures had the highest impact on increasing or decreasing trend

of the CO2 sequestration in the mixtures. Additionally, regardless of the raw

materials and sand to binder ratio, it was observed that using recycled aggregate

and recycled carbonated aggregate generally led to maximum CO2 sequestration in

the mixtures.
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Figure 13.8 SEM/EDS analysis on the mixture 80FA_10CH_10MG containing: (a) Mixture

with normal sand and ambient temperature curing; (b) Mixture with normal sand and

accelerated CO2 curing; (c) Mixture with carbonated recycled sand and accelerated CO2

curing. V-Vaterite, C-Calcite.
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13.3.4 Carbon footprint

The carbon footprint ( kgCO2eq/m3) was assessed using the EcoInvent database.

Table 13.4 shows the global warming potential for each mortar constituent. The

greenhouse gas (GHG) emissions of the mixtures are indicated in Figs. 13.14 and

13.15. Fig. 13.14 shows GHG emissions of different mixtures containing sand to

binder ratio 4. Concerning the results, the minimum and maximum CO2 sequestration

for the mixtures containing sand to binder ratio 4 and normal sand were detected to be

80FA_5CH_5MK_10MG_NAG (15 kgCO2eq/m3) and 80FA_5PC_5MK_10MG_-

NAG_CC (61.6 kgCO2eq/m3). Moreover, the results revealed that using flow-

through CO2 curing reduced the carbon footprint of the mixtures, as compared to

the carbon footprint of the specimens cured at ambient temperature regardless of

the sand type. The minimum and maximum carbon footprint of the mixtures

C
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containing sand to binder ratio 4 and normal sand were recorded to be 143.6 and

207.4 kgCO2eq/m3 in the mixtures 80FA_5PC_5MK_10MG_NAG_CC and

80FA_10PC_10MK_NAG, respectively. As indicated in Fig. 13.14(c) and (d), the min-

imum and maximum CO2 sequestration for the mixtures containing sand to binder ratio

4 and recycled aggregate were found to be 85FA_5PC_10MG_RAG (46 kgCO2eq/m3)

and 80FA_10CH_10MK_RAG_CC (113 kgCO2eq/m3). Thus the minimum and

maximum carbon footprint of the mixtures containing sand to binder ratio 4 and recycled

aggregate were obtained as 86.4 and 174.7 kgCO2eq/m3 for the mixtures

80FA_5CH_5MK_10MG_RAG_CC and 85FA_5PC_10MG_RAG, respectively.

Regarding the results in Fig. 13.14(e) and (f), the minimum and maximum CO2 seques-

tration for the mixtures containing sand to binder ratio 4 and recycled carbonated aggre-

gate were found to be 85FA_5PC_10MG_RAGC (48 kgCO2eq/m3) and

80FA_10CH_10MK_RAGC_CC (121 kgCO2eq/m3). Interestingly, it was found that us-

ing recycled aggregate and recycled carbonated aggregate had no effect on the mixture
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ingredients to have the minimum and maximum CO2 sequestration. Moreover, the mini-

mum and maximum carbon footprint of the mixtures containing sand to binder ratio 4 and

recycled carbonated aggregate were measured to be 80.4 and 172.7 kgCO2eq/m3 for the

mixtures 80FA_5CH_5MK_10MG_RAG_CC and 85FA_5PC_10MG_RAG, respec-

tively. Regardless of the sand type, the carbon footprint of the mixtures reduced with

increasing the sand content from 4 to 5. With respect to the results gathered, the min-

imum and maximum CO2 sequestration for the mixtures containing sand to binder ra-

tio 5 and normal sand were detected 80FA_10CH_10MG_NAG (21 kgCO2eq/m3)

and 80FA_10PC_10MG_NAG_CC (66 kgCO2eq/m3). Also, it was detected that

increasing the sand content from 4 to 5 has impact on the mixture ingredients to

C

O

Na

Si

Fe Mg

Al

S
K

Ca

Ti

80FA_10CH_10MG_RAGC_CC

80FA_10CH_10MG_NAG_CC

80FA_10CH_10MG_NAG

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

Figure 13.9 XRD of the mixtures 80FA_10CH_10MG_NAG,

80FA_10CH_10MG_NAG_CC, and 80FA_10CH_10MG_RAGC_CC.

Table 13.3 Energy Dispersive Spectroscopy Atomic ratios

Mixture

SiO2/

Al2O3

Al2O3/

Na2O

CaO/

SiO2

Na2O/

CaO

MgO/

Al2O3

80FA_10CH_10MG_NAG 4.64 0.22 0.09 10.48 0.20

80FA_10CH_10MG_NAG_CC 6.61 0.60 0.16 6.22 0.18

80FA_10CH_10MG_RAGC_CC 5.48 0.92 0.29 0.67 0.17

324 Carbon Dioxide Sequestration in Cementitious Construction Materials



have the minimum and maximum CO2 sequestration. Moreover, it was found that

increasing the normal sand content from 4 to 5 increased the minimum and maximum

CO2 sequestration of the mixtures. The minimum and maximum carbon footprint of

the mixtures containing sand to binder ratio 5 and normal sand were recorded to be

107 and 165.6 kgCO2eq/m3 in the mixtures 80FA_10PC_10MG_NAG_CC and

80FA_10PC_10MK_NAG, respectively. For the mixtures with sand to binder ratio

5 and recycled aggregate, the minimum and maximum CO2 sequestration were ob-

tained in the mixtures of 85FA_5PC_10MG_RAG (30 kgCO2eq/m3) and

80FA_10CH_10MG_RAG_CC (100 kgCO2eq/m3), respectively. Additionally, the

minimum and maximum carbon footprint attained were 71.9 and 162.6 kgCO2eq/

m3 in the mixtures 80FA_10CH_10MG_RAG_CC and 80FA_10PC_10MK_RAG,

respectively. With respect to the results observed in Fig. 13.15(c) and (d), the mini-

mum and maximum CO2 sequestration in the mixtures containing sand to binder ratio

5 and recycled carbonated aggregate were achieved in the mixtures of

80FA_5CH_5MK_10MG_RAGC (38 kgCO2eq/m3) and 85FA_5PC_10MK_-

RAGC_CC (76 kgCO2eq/m3), respectively. Increasing the content of recycled aggre-

gate and recycled carbonated aggregate from 4 to 5 reduced the minimum and

maximum CO2 sequestration. As shown in Fig. 13.15(e) and (f), the minimum

and maximum carbon footprint of the mixtures containing sand to binder ratio 5

and recycled carbonated aggregate were 100.5 and 156.6 kgCO2eq/m3 in the mixtures

80FA_5PC_5MK_10MG_RAGC_CC and 80FA_10PC_10MK_RAGC, respectively.
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Figure 13.10 Fourier Transform Infrared Spectroscopy spectra for the mixtures

80FA_10CH_10MG_NAG, 80FA_10CH_10MG_NAG_CC, and

80FA_10CH_10MG_RAGC_CC.
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Moreover, regardless of the content and type of the sand used in the mixtures, it was

found that using a flow-through CO2 curing significantly increases the CO2 sequestra-

tion, as compared to the CO2 sequestration cured at lab temperature. The maximum ef-

fect of using a flow-through CO2 curing on increasing the CO2 sequestration was found

in the mixtures containing normal sand and a sand to binder ratio of 4 (85FA_5PC_

10MG_NAG_CC more than 2 times, as compared to 85FA_5PC_10MG_NAG_CC).

Ouellet-Plamondon and Habert (2014) reported an embodied carbon of 227 kgCO2eq/m3
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Figure 13.11 Effects of increasing cement content from 5% to 10% on the CO2 sequestration of

the mixtures containing: (a) milled glass; (b) metakaolin.

326 Carbon Dioxide Sequestration in Cementitious Construction Materials



for a mixture of hybrid cement-based concrete. Also Z. Abdollahnejad et al. (2017)

reported global warming potential in range of 178 and 250 kgCO2eq/m3 for one-

part geopolymer foam mortars composed of FA, OPC, calcined kaolin, sodium hy-

droxide, and Ca(OH)2. Those confirm the very good embodied carbon performance

of the mixtures developed in this study.

13.3.5 Correlation between the compressive strength and
carbon footprint

Figs. 13.16 and 13.17 depict the normalized carbon footprint to the compressive

strength for different mixtures. In general, the use of accelerated CO2 curing reduced
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Figure 13.12 Effects of replacing cement by calcium hydroxide on the CO2 sequestration of the

mixtures containing: (a) milled glass; (b) both milled glass and metakaolin.
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the normalized carbon footprint to the compressive strength of the mixtures, as

compared to the normalized carbon footprint to the compressive strength of the spec-

imens cured at ambient temperature. As indicated in Fig. 13.16(a), the minimum and

maximum ratio of the normalized carbon footprint to the compressive strength for

the mixtures containing sand to binder ratio 4 and normal sand were found to be 20

and 472.5 kgCO2eq/m3MPa, for specimens 80FA_5PC_5MK_10MG_NAG_CC

and 80FA_10CH_10MG_NAG, respectively. Thus for the mixture with sand to binder

ratio 4 and recycled aggregate, the minimum and maximum amount of carbon dioxide

released into the atmosphere per 1 MPa were obtained as 18.5 and 108.5 kgCO2eq/m3
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Figure 13.13 Effects of replacing milled glass by calcium metakaolin on the CO2 sequestration

of the mixtures containing: (a) 10% calcium hydroxide; (b) 10% cement; (c) 5% cement.
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MPa, for the mixtures 80FA_10CH_10MG_RAG_CC and 80FA_10CH_10MG_RAG,

respectively. It shows that using flow-through CO2 curing resulted in reducing around

6 times the amount of carbon dioxide released into the atmosphere per 1 MPa (see

Fig. 13.16(b)). Regardless of the curing method, using recycled carbonated aggregate

in the mixtures with sand to binder ratio 4 led to minimum amount of carbon dioxide

released into the atmosphere per 1 MPa, so that the minimum value achieved was

about 6 kgCO2eq/m3MPa in the mixture 80FA_10CH_10MK_RAGC_CC.

By increasing the sand to binder ratio from 4 to 5, generally, using flow-through

CO2 curing reduced the normalized carbon footprint to the compressive strength of

the mixtures, as compared to the normalized carbon footprint to the compressive

strength of the mixtures cured at ambient temperature (see Fig. 13.17). In general,

regardless the curing method, using recycled aggregate and recycled carbonated aggre-

gate reduced the amount of carbon dioxide released into the atmosphere per 1 MPa,

when compared to the mixtures containing normal sand. The minimum amount of
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Figure 13.13 cont'd.

Table 13.4 Global warming potential of each component of mixture

(kgCO2eq)

Normal

sand

Recycled

aggregates MG CH Fly ash Water PC MK SH

0.0024 0.00401 0.00526 0.416 0.00526 0.000155 0.931 0.0924 2.24
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Figure 13.14 Greenhouse gas emissions for different mixtures containing sand to binder ratio 4

and: (a) normal aggregate, cured at ambient temperature; (b) normal aggregate, cured at

carbonation chamber; (c) recycled aggregate, cured at ambient temperature; (d) recycled

aggregate, cured at carbonation chamber; (e) recycled carbonated aggregate, cured at ambient

temperature; (f ) recycled carbonated aggregate cured at carbonation chamber.

330 Carbon Dioxide Sequestration in Cementitious Construction Materials



carbon dioxide released into the atmosphere per 1 MPa for the mixtures containing

recycled aggregate and recycled carbonated aggregate were recorded as 10.3 and

10.1 kgCO2eq/m3 for the mixtures 80FA_5PC_5MK_10MG_RAG_CC and 80FA_

10CH_10MG_RAGC_CC, respectively.
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Figure 13.14 cont'd.
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13.3.6 Cost analysis

The cost of mixtures for one cubic meter was calculated with respect to the prices of

each of the mixture’s ingredients in Table 13.5, based on data provided by their sup-

pliers. Figs. 13.18 and 13.19 indicate the results obtained for the total price of the

mixtures. Moreover, two scenarios were also assumed to consider the carbon tax in

the total price of each mixture, including (1) 0.0347 Euro/kg for the carbon footprint
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of the first scenario (Stanford Report, 2015); (2) 0.206 Euro/kg for the carbon foot-

print of mixtures of the second scenario (Moore and Diaz, 2015). The carbon tax is a

complex issue; it has political and sociological implications the discussion of which

are out of the scope of this study. Figs. 13.18 and 13.19 indicate the results obtained
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Figure 13.15 Greenhouse gas emissions for different mixtures containing sand to binder ratio 5

and: (a) normal aggregate,cured at ambient temperature; (b) normal aggregate,cured at

carbonation chamber; (c) recycled aggregate,cured at ambient temperature; (d) recycled

aggregate,cured at carbonation chamber; (e) recycled carbonated aggregate, cured at ambient

temperature; (f ) recycled carbonated aggregate, cured at carbonation chamber.
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for the total price of the mixtures. Regardless of the carbon tax defined in those two

scenarios, the minimum and maximum cost of the mixtures with sand to binder ratio

4 and normal sand were detected in the mixtures 80FA_10PC_10MG_NAG_CC and

80FA_10CH_10MK_NAG, respectively (see Fig. 13.18(a) and (b)). Regarding the

results obtained, the material cost of the mixtures without any scenarios varied in
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the range of 130 (80FA_10PC_10MG_NAG) to 150 (80FA_10CH_10MK_NAG)

Euro/m3. Replacing cement by calcium hydroxide increased the material costs

(around 7%) as well as using MK instead of milled glass increased the price of the

mixtures (averagely 10%). Moreover, it was observed that the effect of replacing

MK by milled glass on increasing the material cost was slightly higher than replacing
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calcium hydroxide by cement (about 3%). The cost of the mixtures containing sand

to binder ratio 4 and normal sand varied in the range of 135e160 Euro/m3 for the first

scenario and 160e190 Euro/m3 for the second scenario. Defining the carbon tax

increased the costs of the mixtures 3%e6% for the first scenario and 23%e26%

for the second scenario. Generally, replacing normal sand by recycled aggregates

and including the carbon tax increased the price of the mixtures. The cost of the
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Figure 13.16 Carbon footprint to the compressive strength ratio of different mixtures

containing sand to binder ratio 4 : (a) normal aggregate; (b) recycled aggregate; (c) recycled

carbonated aggregate.
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mixtures containing sand to binder ratio 4 and recycled aggregate without any sce-

narios varied in the range of 175 (80FA_10PC_10MG_RAG) to 195 (80FA_10CH_

10MK_RAG) Euro/m3. Replacing recycled aggregate by normal sand increased the

material costs in the range of 30%e35%. Furthermore, it was detected that the total

cost of the mixtures varied in the range of 180 (80FA_10PC_10MG_RAG_CC) to

200 (80FA_10CH_10MK_RAG) Euro/m3 for the first scenario and 200e225

Euro/m3 for the second scenario. Imposing the carbon tax increased the total cost

of the materials about 2% and 15% for the first and second scenarios, respectively.

The minimum and maximum cost of the mixtures with sand to binder ratio 4 and

recycled carbonated aggregate were found to be about 174 and 196 Euro/m3 in the

mixtures 80FA_10PC_10MG_RAGC_CC and 80FA_10CH_10MK_RAGC, respec-

tively (see Fig. 13.18(e) and (f)). Regardless of the sand type, using flow-through

CO2 curing reduces the total cost of the mixtures because this method reduced the car-

bon footprint in the mixtures, as compared to the carbon footprint in the specimens

cured at ambient temperature. Therefore, the total price of the mixtures cured through

flow-through CO2 gas was lower than the total price of the mixtures cured at ambient

temperature. Increasing the sand to binder ratio from 4 to 5 decreased the total price of

the mixtures. The material cost of the mixtures containing sand to binder ratio 5 and

normal sand varied in the range of 110 (80FA_10PC_10MG_NAG) to 135

(80FA_10CH_10MK_NAG) Euro/m3. Comparing the material costs of the mixtures

containing normal sand to binder ratios of 4 and 5 revealed that increasing the sand

content decreased the material cost in the range of 8%e15%. Since the cost of the mix-

tures containing normal sand varied in the range of 110 (80FA_10PC_10MG_-

NAG_CC) to 140 (80FA_10CH_10MK_NAG) Euro/m3 for the first scenario and
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130 to 165 Euro/m3 for the second scenario (Fig. 13.19(a) and (b)). Considering the

carbon tax increased the total cost of the materials in the range of 1.1%e3% for the

first scenario and 18%e22% for the second scenario. Regardless of the sand type

and content, the maximum material cost in the mixtures was detected in the binder ma-

terials as 80% FA, 10% calcium hydroxide, and 10% MK; this fact could be derived

from using simultaneously both calcium hydroxide and MK. In this study, the compet-

itive mixture costs were observed in the mixtures that used normal sand to binder ratio

5, cured by a flow-through CO2 gas, and used both milled glass and cement. Increasing

sand content, using ambient curing conditions, the addition of calcium hydroxide and
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Figure 13.17 Carbon footprint to the compressive strength ratio of different mixtures

containing sand to binder ratio 5 : (a) normal aggregate; (b) recycled aggregate; (c) recycled

carbonated aggregate.
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MK increases the total mixture cost. Like the mixtures with sand to binder ratio 4, us-

ing recycled aggregate instead of normal sand increased the cost of the mixtures due to

the higher cost of recycled aggregates in comparison to normal sand. The material cost

of the mixtures containing sand to binder ratio 5 and recycled carbonated aggregates

varied in the range of 160 (80FA_10PC_10MG_RAGC) to 185 (80FA_10CH_

10MK_RAGC) Euro/m3. Additionally, comparing the material costs of the mixtures

containing recycled aggregate to binder ratios of 4 and 5 revealed that increasing

recycled aggregate content decreased the material cost in the range of 6%e10%.

The minimum and maximum cost of the mixtures with sand to binder ratio 5 and

recycled aggregate were observed in the mixture 80FA_10PC_10MG_RAG_CC

(160 Euro/m3, the first scenario) and 80FA_10CH_10MK_RAG (190 Euro/m3, the

second scenario), respectively (see Figs. 13.19(c) and 13.16(d)). The cost of the

mixtures with recycled carbonated aggregate varied in the range of 160 (for

80FA_10PC_10MG_RAGC_CC) to 190 (for 80FA_10CH_10MK_RAGC) Euro/m3

for the first scenario and 180 to 215 Euro/m3 for the second scenario. Therefore,

regarding the results, it could be concluded that the carbon tax increased the total

cost of the materials in the range of 1%e2% for the first scenario and 12%e16%

for the second scenario.

Table 13.5 Costs of the materials (Euro/kg)

Normal

sand

Recycled

aggregates

Waste

glass

Calcium

hydroxide

Fly

ash Water

Portland

cement Metakaolin SH

0.020 0.047 0.009 0.283 0.03 0.01 0.1 0.29 0.85
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Figure 13.18 Total cost of the mixtures containing sand to binder ratio 4 : (a) normal aggregate,

cured at ambient temperature; (b) normal aggregate,cured at carbonation chamber; (c) recycled

aggregate,cured at ambient temperature; (d) recycled aggregate, cured at carbonation chamber;

(e) recycled carbonated aggregate, cured at ambient temperature; (f ) recycled carbonated

aggregate, cured at carbonation chamber.
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Figure 13.19 Total cost of the mixtures containing sand to binder ratio 5 : (a) normal aggregate,

cured at ambient temperature; (b) normal aggregate, cured at carbonation chamber; (c) recycled

aggregate, cured at ambient temperature; (d) recycled aggregate, cured at carbonation chamber;

(e) recycled carbonated aggregate cured at ambient temperature; (f ) recycled carbonated

aggregate, cured at carbonation chamber.
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13.4 Conclusions

Considering the results of the study, the following conclusions were reached:

1. Using accelerated CO2 curing method increased the compressive strength of FA alkaline-based

mortars containing the normal aggregate, as compared to curing at the ambient temperature.

2. Regardless of the duration of curing and the ratio of sand to binder, using simultaneously

recycled carbonated aggregate and accelerated CO2 curing significantly increased the

compressive strength of the mixtures.

3. Generally, increasing the sand binder ratio from 4 to 5 reduced the compressive strength.

4. For mixtures cured at the ambient temperature, the maximum compressive strength was

about 10 MPa for the mixture 80FA_10CH_10MK_RAGC. Using accelerated CO2 curing

led to a maximum compressive strength of about 15 MPa for the mixture 80FA_10CH_

10MK_RAGC_CC.

5. Regardless of the sand to binder ratio, the maximum increase of the compressive strength due

to use of accelerated CO2 curing method instead of the ambient temperature was measured

for the mixture 80FA_10CH_10MG_RAGC, so that these increases were 9 and 5.5 times

for the sand to binder ratios of 4 and 5, respectively.

6. It was observed that the sand had the greatest impact on increasing or decreasing trend of the

CO2 sequestration. Moreover, regardless of the raw materials and sand to binder ratio, it was

noticed that using recycled aggregate and recycled carbonated aggregate generally led to

obtain the maximum CO2 sequestration in the mixtures.

7. It was found that using accelerated CO2 curing significantly increases the CO2 sequestration,

as compared to the CO2 sequestration cured at the lab temperature, so that the maximum

effect of using a flow-through CO2 curing on increasing the CO2 sequestration was found

in the mixtures containing normal sand and a sand to binder ratio 4 (85FA_5PC_10MG_-

NAG_CC more than 2 times, as compared to 85FA_5PC_10MG_NAG).

8. Considering the results, the minimum and maximum CO2 sequestration were detected in the

mixtures of 80FA_5CH_5MK_10MG_NAG (15 kgCO2eq/m3) and 80FA_10CH_10MK_-

RAGC_CC (121 kgCO2eq/m3) with sand to binder ratio 4, respectively.
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