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Abstract

The coagulation of dust particles is a key process in planetesimal formation. However, the radial drift and bouncing
barriers are not completely resolved, especially for silicate dust. Since the collision velocities of dust particles are
regulated by turbulence in a protoplanetary disk, turbulent clustering should be properly treated. To that end, direct
numerical simulations (DNSs) of the Navier–Stokes equations are requisite. In a series of papers, Pan & Padoan
used a DNS with Reynolds number Re∼1000. Here, we perform DNSs with up to Re=16,100, which allow us
to track the motion of particles with Stokes numbers of 0.01St0.2 in the inertial range. Through the DNSs,
we confirm that the rms relative velocity of particle pairs is smaller by more than a factor of two, compared to that
by Ormel & Cuzzi. The distributions of the radial relative velocities are highly non-Gaussian. The results are
almost consistent with those by Pan & Padoan or Pan et al. at low Re. Also, we find that the sticking rates for equal-
sized particles are much higher than those for different-sized particles. Even in the strong-turbulence case with
α-viscosity of 10−2, the sticking rates are as high as 50% and the bouncing probabilities are as low as ∼10% for
equal-sized particles of St0.01. Thus, turbulent clustering plays a significant role in the growth of centimeter-
sized compact aggregates (pebbles) and also enhances the solid abundance, which may lead to the streaming
instability in a disk.

Key words: hydrodynamics – methods: numerical – planets and satellites: formation – protoplanetary disks –
turbulence

1. Introduction

Planetesimals are thought to be the precursors of both Earth-
like planets and the cores of gas giants and ice giants. The
formation of planetesimals has been a longstanding and
perplexing obstacle toward the full understanding of the
origins of planets. Planetesimals are widely believed to form
as a consequence of the hierarchical coagulation from
submicron-size dust particles to kilometer-size bodies in
protoplanetary disks (e.g., Lissauer 1993; Chiang & Youdin
2010; Johansen et al. 2014). The growth, however, faces
several difficulties, such as bouncing, fragmentation, and radial
drift barriers. As the gas disk is partially pressure-supported in
the radial direction, the gas rotates with a sub-Keplerian
velocity. The resultant friction by the gas forces dust particles
to drift toward the central star. In particular, the centimeter- to
meter-size particles have large drift velocities and may rapidly
fall into the central star on a timescale of a few hundred years
(Adachi et al. 1976; Weidenschilling 1977), which is often
referred to as the meter-size problem. Therefore, the growth
timescale is required to be shorter than the drift timescale for
the successful formation of planetesimals. However, as the dust
particles grow, they become less sticky, and the high-velocity
collisions may lead to bouncing or fragmentation instead of
coagulation (Blum & Wurm 2008; Brauer et al. 2008a, 2008b;
Birnstiel et al. 2009, 2012; Güttler et al. 2010; Zsom et al.
2010, 2011; Windmark et al. 2012).

The streaming instability is a potential mechanism to
circumvent radial drift barriers (Youdin & Goodman 2005).
In order for this instability to work successfully, the formation
of centimeter-size compact aggregates (pebbles) and the
enhancement of solid abundance in a protoplanetary disk are
crucial (Johansen et al. 2009; Bai & Stone 2010; Johansen et al.
2014; Carrera et al. 2015; Ida & Guillot 2016; Yang
et al. 2017). On the other hand, in recent years, N-body
molecular dynamics simulations have shown that fluffy dust
aggregates have the potential to overcome these bouncing or
fragmentation barriers (Paszun & Dominik 2009; Wada et al.
2009; Meru et al. 2013; Seizinger & Kley 2013; Wada et al.
2013; Gunkelmann et al. 2016). Wada et al. (2013) derived the
critical collision velocity uc below which fluffy dust aggregates
can coalesce: uc;60–80 m s−1 for ice dust and uc;
6–8 m s−1 for silicate dust. This implies that icy aggregates,
compared to silicate aggregates, overcome fragmentation
barriers more easily.
Protoplanetary disks inevitably become turbulent due to

differential rotation, and therefore the collision velocities are
regulated by turbulent motion in a wide range of particle sizes,
from 1 mm to 10 m (e.g., see the review by Johansen et al.
2014). Völk et al. (1980) built up a framework set (the Völk-
type model) based on a Langevin approach for the nonlinear
response of dust particles to turbulent eddy motion, which was
further developed by Markiewicz et al. (1991). Ormel & Cuzzi
(2007, hereafter OC07) provided closed-form analytical
approximations to the Völk-type model. Okuzumi et al.
(2012), based on an analytic formula by OC07, have simulated
the growth of fluffy icy aggregates outside the snow line, taking
into account the change in aggregate porosities, and found that
the porosity evolution enables the icy aggregates to grow
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across the radial drift barrier. Kataoka et al. (2013) have
explored the compression of fluffy aggregates and shown that
the aggregates can evolve into compact icy planetesimals. The
abovementioned works revealed that icy planetesimals can
form in a wide range beyond the snow line in protoplanetary
disks. However, the difficulties for silicate planetesimal
formation are difficult to alleviate, because the critical collision
velocity for silicate dust is smaller than that for icy dust by an
order of magnitude.

The actual sticking rates of dust particles are strongly
dependent on the probability distribution function (PDF) of the
collision velocities. Even if the root mean square (rms)
collision velocity exceeds the critical value, a subset of the
dust particles can have collision velocities lower than the
critical one and eventually grow, evading the fragmentation
barrier. Employing the rms collision velocity derived by OC07,
Windmark et al. (2012) and Garaud et al. (2013) explored the
effects of the PDF on the collisional dust growth barriers, under
the assumption of a Gaussian (Maxwellian) distribution.
However, the PDFs of turbulence-induced relative velocities
have been found to be highly non-Gaussian by numerical,
experimental, and theoretical studies (Sundaram & Collins
1997; Gustavsson et al. 2008; Gustavsson & Mehlig 2011;
Hubbard 2012). In addition, it is known that particles with
small inertia preferentially concentrate in low-vorticity, high-
strain regions during turbulence due to the centrifugal
mechanism of the vorticity (Maxey 1987; Squires &
Eaton 1991; Fessler et al. 1994). Furthermore, effects such as
“caustics” (Wilkinson et al. 2006) and the “sling effect”
(Falkovich & Pumir 2007) allow the particles with large inertia
to become less coupled to the local fluid velocity field and to
assemble from different regions (e.g., see Bragg & Collins
2014). Such “turbulent clustering” effects are significant when
considering the process of collisional coagulation of dust
particles in protoplanetary disks.

To treat turbulent clustering properly, the direct numerical
simulation (DNS) of the Navier–Stokes (NS) equations coupled
with tracking dust particle motions are requisite. In the DNS,
the smallest eddies in the turbulence are resolved without
introducing numerical viscosity and turbulence models. Pan
et al. (2011) handled the collision statistics with turbulent
clustering, using an Eulerian formulation instead of the NS
equations. Then, in a series of the papers by Pan & Padoan
(2013, hereafter PP13), Pan et al. (2014a, 2014b), Pan &
Padoan (2014), and Pan & Padoan (2015, hereafter PP15), a
DNS of the NS equations in the context of planetesimal
formation was used. By analyzing the DNS data, they studied
the statistics of colliding dust grains including the radial
relative velocity, its probability distribution, and the collision
rate between dust grains. However, the Reynolds number
dependence of the results has not been investigated yet.

The motion of particles in turbulence is characterized by the
Stokes number given by St=Ω τp, where Ω is the Keplerian
frequency at a radial distance and τp is the stopping time due to
the gas friction. In addition, another Stokes number can be
defined by the turnover timescale τη of the smallest eddies of
turbulence as Stη=τp/τη. Stη is determined by the resolution
of the simulations and follows relation µhSt St Re ,1 2 where
Re is the Reynolds number. According to Kolmogorov theory,
as the Reynolds number increases, the inertial range of
turbulence that regulates the particle dynamics becomes wider.

The scale ratio between the largest and the smallest eddies is
known to increase in proportion to Re3/4.
Considering the molecular viscosity of a protoplanetary disk,

the Reynolds number is estimated to be as high as
a= - -( )( )Re R10 10 au10 2 3 2 in the Minimum-mass Solar

Nebula (MMSN) Model (Hayashi 1981), where α is the
turbulence parameter and R is the radial distance from the
central star. However, even if the Reynolds number is smaller
than this value, we can trace the particle behavior over a range
of Stokes numbers according to the simulated inertial range of
turbulence. If we focus on particle sizes from millimeters to
meters, simulations of Re>O(104) are required. In the
simulations by PP13, the resolution was Re;103, which
corresponds to Stη/St=23.5 and realizes the inertial range of
turbulence over only one order of magnitude in linear
dimensions. However, a recent development in supercomputers
allows us to perform particle tracking simulations based on the
DNS at Reynolds numbers as high as Re>O(104) (Ishihara
et al. 2015)
In this paper, we perform high Reynolds number DNSs,

where the number of grid points and the Reynolds number are
up to =N 20483 3 and Re=16,100, respectively, which
corresponds to Stη/St=85 and can realize the inertial range
over two order of magnitude in linear dimensions. Through
these DNSs, we obtain the rms relative velocity for particle
pairs and the PDF of the collision velocities. We find that the
rms relative velocity is smaller than that derived by the Völk-
type model developed by OC07. In addition, we discuss the
growth timescale of dust aggregates and the sticking rates in the
context of overcoming the drift and fragmentation barriers.
In Section 2, we present the method of our particle tracking

simulation, based on the DNS of forced incompressible
homogeneous isotropic turbulence. The statistics of the motion
of the particles obtained by the DNS are shown in Section 3.
The statistics include the rms relative velocity, the collision
kernel, and the PDF of the radial relative velocities. The results
are compared to the Völk-type model of OC07. In Section 4,
assuming the MMSN model, we assess the collision timescale
for both compact and fluffy aggregates and the sticking rates of
dust particles. Our conclusions are summarized in Section 5.

2. Particle Tracking Using DNS of Turbulence

2.1. DNS of Forced Incompressible Turbulence

In protoplanetary disks, the turbulence is known to be
subsonic and thus essentially incompressible (Hayashi 1981).
Therefore, in this paper, we consider the three-dimensional
turbulence of an incompressible fluid of unit density that obeys
the NS equations

n
¶
¶

+  = - +  +( · ) ( )u
u u u f

t
p 12

and the continuity equation

 =· ( )u 0, 2

where u, p, n , and f are the velocity, pressure, kinematic
viscosity, and external force, respectively. The numerical
method used in the DNS is essentially identical to that used
in Yokokawa et al. (2002), Kaneda et al. (2003) and Ishihara
et al. (2016), which is briefly reviewed here for convenience.
(The readers may refer to Yokokawa et al. 2002 and Ishihara
et al. 2015 for details of the parallel computations.) In the DNS,

2

The Astrophysical Journal, 854:81 (16pp), 2018 February 20 Ishihara et al.



the NS equations are solved by a fully alias-free Fourier
spectral method, where aliasing errors are removed by the so-
called phase-shift method. (Note that the Fourier spectral
method gives the spatial derivatives to spectral accuracy and is
not subject to the numerical viscosity. On the other hand, in
finite difference schemes, the spatial derivatives are calculated
to finite accuracy, and the numerical viscosity is inevitably
included). The computation domain is assumed to be 2π
periodic in each Cartesian coordinate direction, so that both the
minimum wavenumber and the wavenumber increment in the
DNS are unity. The maximum wavenumber is given by

=k N2 3max , where N is the number of grid points in each
of the Cartesian coordinates in real space. Time integration is
achieved using a fourth-order Runge–Kutta method with a
constant time increment.

The forcing f that generates turbulence is given by
= -ˆ ( ) ˆ ( )f k u kc in the wave-vector space, where f̂ and û are

Fourier transforms of f and u, respectively. The value of c is
set to be non-zero only in the wavenumber range of k<2.5
and is adjusted at every time step so as to keep the total
kinematic energy, º ¢ =E u U3 2 22 2 , almost time indepen-
dently (≈0.5). Here, ¢u is the rms value of the fluctuating
velocity in one direction and = á ñ·u uU 1 2 is the three-
dimensional (3D) rms of the flow velocity u. A similar forcing
was used in Kerr (1985), Vincent & Meneguzzi (1991), and
Jimenez et al. (1993). The integral length scale L and the eddy

turnover time T are defined as òp= ( ) ( )L U E k kdk2
k2

0
and

T=L/U, respectively. T corresponds to Ω−1 in actual
dimensions. The variations of L and T in steady turbulence
generated by the forcing are within 10% of the mean (Ishihara
et al. 2007).
We use the velocity fields obtained by the DNS in Kaneda

et al. (2003) and Ishihara et al. (2007) as the initial conditions
for the present study and adopt the same values for the
kinematic viscosity. Therefore, each velocity field at t=0 is in
a statistically steady state of turbulence, and we do not have
any initial transient period in the turbulence field used in the
particle tracking simulation. The details of the turbulence
characteristics of the DNS data are found in Ishihara
et al. (2007).
In Table 1, we show a summary of the DNS parameters and

turbulence characteristics. In the DNSs, the value of ν is chosen
so that kmaxη=1 or 2, where η is the Kolmogorov micro-
length scale given by h n e= á ñ( )3 1 4 with the mean energy
dissipation rate eá ñ. The value of kmaxη represents a small-scale
resolution. Each “Run” in Table 1 is named by the combination
of the values of N and kmaxη. It is known that the sensitivity/
insensitivity to the values of kmaxη depends on the statistical
quantity to be studied (Yamazaki et al. 2002; Schumacher
2007; Watanabe & Gotoh 2007; Donzis et al. 2008; Yeung
et al. 2015). It will be shown that the collision statistics are not
that sensitive to the kmaxη values, provided that kmaxη1.
Figure 1 shows the compensated energy spectra, ( )k E k5 3

eá ñ2 3, of the generated turbulence for different values of Re
and kmaxη. The spectrum of the velocity field used in PP13 and
PP15 is also shown for comparison. The horizontal range

Table 1
Simulation (DNS) Parameters and Turbulence Characteristics

Run N3 Re kmax Δt(×10−3) ν(×10−4) L η(×10−3) T τη

256-1 2563 936 121 1.0 7.0 1.13 7.97 1.96 0.091
512-1 5123 2100 241 1.0 2.8 1.02 3.95 1.77 0.056
1024-1 10243 6710 471 0.625 1.1 1.28 2.10 2.21 0.040
2048-1 20483 16,100 732 0.4 0.44 1.23 1.05 2.13 0.025

512-2 5123 1000 241 1.0 7.0 1.10 8.10 2.21 0.094
1024-2 10243 2310 483 0.625 2.8 1.21 4.03 1.94 0.058

Note. Re=u′L/ν, = ¢T L u , and t n eº á ñh ( )1 2.

Figure 1. Compensated energy spectra of the turbulence, eá ñ( )k E k5 3 2 3, for different Reynolds numbers Re, as a function of (a) k and (b) kη. The data from Pan &
Padoan (2013, PP13 in the panels) are also plotted for comparison.
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corresponds to the “inertial range,” where E(k)∝k−5/3. In
Figure 1, we observe that the horizontal range becomes wider
with increasing Re. Therefore, it is expected that the inertial
range may be satisfactorily resolved by our DNS. In the DNS
of Re=16,100, we realize L/η=1.2×103 and T/τη=85,
respectively, which are much larger than L/η=1.4×102 and
T/τη=23.5 for Re=1000.

We recognize that the compensated energy spectra obtained
by our DNSs have a pile-up near k=kmax. It is known that
such a pile-up is caused by the wavenumber truncation in the
DNS based on a Fourier spectral method. It is also known that
such a pile-up does not appear in the turbulence simulation
using finite difference methods. Therefore, the difference
between our spectra and the spectra of PP13 and PP15 near
k=kmax comes from the difference in the numerical methods.

To see the effect of the wavenumber truncation on the Fourier
spectral method, we compare the energy spectra between runs
512-1 and 1024-2 (and also between runs 256-1 and 512-2) in
Figure 1. They are slightly different from each other in the low
wavenumber range (k<3) and in the high wavenumber range
(kη>0.7). The difference in the low wavenumber range is
presumably caused by the difference in the energy-containing
eddies at the forcing scales, while the difference at high
wavenumbers is caused by the wavenumber truncation. Note
that in contrast to the high and low wavenumber ranges, the
difference between the spectra in the intermediate range for the
two runs is very small. This comparison suggests that the
collision statistics are not sensitive to the difference between
kmaxη∼1 and kmaxη∼2, if they are insensitive to the detail of
the fine-scale statistics in the energy dissipation range of the
turbulence. In this study, we will mainly present the results
obtained using the DNS data with kmaxη∼1. However, we will
also show the results of the DNS data with kmaxη∼2 to confirm
the insensitivity of the quantity to small-scale resolution (see
Figures 3 and 10).

2.2. Particle Tracking Simulation

We consider the motion of small solid particles with density
ρs in a gas flow with density ρg. The ratio β=ρs/ρg is
assumed to be much larger than unity. Then, the equation of

motion of each inertial particle is given by

t
= = -( ) ( )X

V
V

u V
d

dt

d

dt
,

1
, 3

p

where X ,V , and τp are the position, velocity, and stopping time
of the particle, respectively, and u is the velocity of the fluid
flow at X (see, e.g., Davila & Hunt 2001). Equation (3) is
solved with the fourth-order Runge–Kutta method, where the
time step (Δt) is set to be twice as large as that used to solve
Equation (1) (because we need D( )u x n t, 2 in this scheme).
The velocity u at the particle position is evaluated by using an
interpolation method. To obtain accurate statistics, we use
cubic spline interpolation (see Yeung & Pope 1988). The
interpolation scheme is implemented by solving tridiagonal
matrix problems in parallel with the method developed by
Mattor et al. (1995). See Ishihara et al. (2015) for the actual
parallel implementation.
In this paper, we normalize Equation (3) in two ways.

One is by using L and T, and the other is by using η
and t n eº á ñh ( )1 2. In the former, the motion of the
particles is characterized by the Stokes number given by
St=τp/T, and in the latter, the motion is characterized by
another Stokes number, given by t t=h hSt p . Note that

t= µh hSt St T Re1 2 . In the case of a typical protoplanetary
disk of Re=O(1010), the ratio is O(105). However, even if the
Reynolds number is smaller than this value, we can trace the
particle behavior over a range of Stokes numbers according to
the simulated inertial range of the turbulence. In our largest
DNS of Re=16,100, the value of Stη/St is 85.
In our particle tracking simulation, we set seven different

values for St as follows:

=
= ( )

St
N

0.00158, 0.00632, 0.0158, 0.0316,
0.0632, 0.158, 0.316, for 512, 4

=
= ( )

St
N

0.00188, 0.0038, 0.0094, 0.0188,
0.038, 0.094, 0.188, for 1024, 5

=
= ( )

St
N

0.00117, 0.00587, 0.0117, 0.0234,
0.0587, 0.117, 0.234, for 2048. 6

The corresponding values of t=h h( )St St T are 0.1, 0.2, 0.5, 1,
2, 5, and 10 for N=512, 1024 and 0.1, 0.5, 1, 2, 5, 10, and 20
for N=2048.
For each value of St, we track a maximum of 5123 particles.

The particles are distributed randomly in the whole computa-
tional domain at t=0 with initial velocity =V 00 . The
statistics related to the particle motions are taken at t=3T in
the following analyses. By performing several preliminary
runs, we have confirmed that the particle statistics become
almost time independent after t=3T.
In this paper, we focus on the particles with Stokes number

less than 0.3. The collision statistics of particles with St=O
(0.1) are expected to be mainly affected by the eddies in the
inertial range that are able to be simulated properly by high-
resolution DNSs of homogeneous isotropic turbulence using
appropriate forcing methods. Therefore, the aim of this paper is
to provide reliable results of the collision statistics of the
particles in the inertial range by performing a series of high-
resolution DNSs. Since the relative velocity attains its
maximum at St∼1, such collisions may be important to
discuss the fragmentation barrier. However, it is also true that

Figure 2. rms relative velocity as a function of the separation (r) between a pair
of particles. The data are plotted for each St number for 5123 particles at t=3T
in the DNS of Run 2048-1 (Re=16,100) and normalized by
á ñ º á ñ·u uu2 1 2 1 2 or uη.
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such collisions occur via the processes of collision and sticking
of the dusts with smaller values of St, which are dominated by
eddies in the inertial range. Therefore, we took a bottom-up
approach.

3. Numerical results

3.1. Relative Velocity

The relative velocity between a pair of particles with a
separation r and its rms value are calculated at locations X1 and
X2 as = -w V V1 2 and

åá ñ =
- =

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )
∣ ∣

ww
N

1
, 7

X X r

2 1 2

p

2

1 2

1 2

respectively, where V1 and V2 are the velocities of the particles
and Np is the number of pairs. Figure 2 shows the r dependence
of the rms relative velocity between equal-sized particles.
Actually, collision velocities should be measured at particle
sizes, which are in general much smaller than the Kolmogorov
length scale in turbulence in protoplanetary disks. To estimate
the rms relative velocity at a separation of less than η/4 in the
DNSs, one may need a much larger number of particles than
that used in our DNSs. However, Figure 2 demonstrates that
the relative velocity for the particles of St>0.05 is not
significantly affected by eddies smaller than h ~ -( )L10 3 and
therefore almost constant at a separation r10−3L.

Figure 3 presents the St dependence of the rms relative velocity
at a fixed small separation of = -r L10 3 for different Reynolds
numbers. Here, r/L=10−3 approximately corresponds to
r/η=1/8, 1/4, 1/2, and 1 for runs at Re=936, 2100 (and
2310), 6700, and 16,100, respectively. (The other comparison for
different Re values using a fixed separation of r/η would also be
possible. However, here we are interested in the St(=τp/T)
dependence of the rms relative velocity. So, we measure the
relative velocity using a fixed small separation r normalized by
L). The data from PP13 (Re=1000, r=η/4) agree well with
our data (Re=936, r=η/8) in the range of large St (0.1).

They deviate from our results in the range St10−2. This
deviation is presumably due to the difference in the value of r/η
and comes from the range of Stη<1. However, in this paper, we
focus on the collision statistics in the range Stη>1. In addition,
the data for Re= 2100 (kmaxη=1) agree well with the data for
Re=2300 (kmaxη=2). This agreement indicates that the
relative velocities at small separations are not so sensitive to
the difference in the value of kmaxη.
In Figure 3, we perceive that the relative velocity at the small

separation of r/L=10−3 is an increasing function of Re for a
fixed value of St. Also, we observe that the curves tend to
approach a line with slope 1/2 at the portion with larger values
of St (0.1) for Re>104. This dependence (á ñ µw St2 1 2 1 2)
is consistent with the inertial range scaling of the relative
velocity in Völk-type models; see PP15.

3.2. Bidisperse Case

In the above, we considered the monodisperse case of
identical particles. Here, we present the results for bidisperse
cases, i.e., the relative velocities of particles with different St
numbers (St1 and St2). Figure 4 shows the St(=St1)
dependence of the rms relative velocity between particles with
different ratios of f≡St2/St1. To compare the relative
velocities at the scale of the smallest eddies, we show the
results at h=r 4. We find that the rms relative velocity is
higher for the different-sized particles than for the equal-sized
particles. This trend is prominent for St≈10−2. The result can
be understood by considering that the equal-sized particles with
small separations move in the same way in a turbulent flow,
and therefore the relative velocities remain low.
It is known that collisions between particles at high speeds

may lead to bouncing or fragmentation. Therefore, the sticking
rate of collision particles depends on the statistics of relative
velocities. The present results suggest that collisions between
identical particles are more appropriate for sticking than
collisions between particles of different sizes. We will discuss
the sticking rate quantitatively in Section 4.

Figure 3. rms relative velocity at r=10−3L as a function of the St number.
The dependence on the Re numbers is shown for Re=936 (dotted–dashed
line), Re=2100 (dotted line), Re=2310 (chain line), Re=6700 (dashed
line), and Re=16,100 (solid line). The data from PP13 (Re=1000,

h= ~ ´ -r L4 2 10 3 ) are also plotted for comparison.

Figure 4. rms relative velocity at r=η/4 for particle pairs with fixed Stokes
ratios, º =f St St 12 1 , 1/2, 1/5, and 0, where f=1 corresponds to the
monodisperse case and f=0 to the relative velocities against the turbulent flow
itself. The data are obtained at t=3T in Run 2028-1 (Re=16,100).
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3.3. Comparison with the Völk-type Model

As for the relative velocities of particles induced by turbulence,
a closed-form expression developed by OC07 has been widely
adopted (e.g., see the review by Johansen et al. 2014). The
original formalism (the Völk-type model) was developed by Völk
et al. (1980) and Markiewicz et al. (1991). Cuzzi & Hogan (2003)
obtained closed-form expressions for the Völk-type model. OC07
generalized the approach and results of Cuzzi & Hogan (2003) to
obtain closed-form expressions for relative velocities between
particles of arbitrary, and unequal, sizes.

For equal-size particles with a stopping time of τp, the
closed-form expression (OC07) is given by

*òá ñ = -
¥

( )( ( ) ) ( )w E k F k dk4 1 , 8
k

2 2

where t t t= +( ) ( ( ))F k kkp p , t = -( ) [ ( ) ]k E k k2k
3 1 2, and the

critical wavenumber k
*

for the particle with stopping time τp is
determined by

*
* *

t t
= +

( )
( ) ( )

k
k v k

1 1
, 9

kp
rel

where the relative velocity vrel between a particle and an eddy is
given by

*
*

ò t t t= ¢ + ¢ ¢( ) ( )[ ( ( ))] ( )v k E k k dk2 10
k

k

krel
2

p p
2

L

and kL is the smallest wavenumber. OC07 assumed the energy
spectrum given by

=
< <

< >
h

h

-⎪

⎪

⎧
⎨
⎩

( )
( )( )

( )E k
V k k k k k k

k k k k

3 for ,

0 for , ,
11L L L

L

g
2 5 3

for which the total energy is V 2g
2 . As shown in PP15, in

turbulent flows with a wide inertial range, the above model
predicts a tp

1 2 scaling for á ñw2 1 2, if τp is in the inertial range.
In Figure 5, we compare the DNS results of the relative

velocity with the Völk-type model given by Equation (8) in
which Equation (11) is used for E(k) by setting =hk k ReL

4 3

and Re=108. For comparison, the Völk-type models that
tentatively employ the DNS data for E(k) in Equation (8) are
also plotted. In the range St=O(0.1), the latter models agree
well with the Völk-type model that assumes the model
spectrum (11). We recognize that the DNS results for
Re=16,100 has a slope of 1/2 for 0.05St0.2. The
slope is consistent with the Völk-type model for high-Re
turbulence. However, the DNS values are smaller than those of
the Völk-type model by a factor of two. PP15 did not show a
clear slope of the relative velocity, but their result suggested
that the Völk-type models typically overestimate the rms of the
particle relative velocity. Our results suggest that in the inertial
range of high-Re turbulence, the rms of the particle relative
velocity obeys the scaling law, but the values are smaller than
those of the Völk-type model by a factor of two. PP15
proposed an improved closed expression of the relative velocity
(their Equation(25)) and an improved formula of Völk-type
models (at their Figure10). We plot these expressions in
Figure 5 for comparison. The difference between the former
and the Völk-type model by OC07 is small. On the other hand,
the latter formula seems to work well at St0.1.

In Figure 6, we compare the DNS results of the relative
velocities to those of the closed-form expression derived

by OC07. The DNS results for Re=16,100 are shown by
colored squares with rms values as functions of t=St tL1 1 and

t=St tL2 2 . For unequal-sized particles with stopping times of
τ1 and τ2, the closed-form expression (OC07) is given by

* *

* *

t
t

t t

t t
t t

t
t t

á ñ = +
+

+
-
+ +

+ «
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t t t

t t t
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=
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=
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2
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2
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k

k

k
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1 2
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Figure 5. rms relative velocity at r=10−3L is compared to the Völk-type
model. Colored dashed lines with points represent the DNS results at =t 3 T
for Re=2100 (yellow), Re=6700 (gray), and Re=16,100 (cyan). Colored
lines denote the Völk-type model employing E(k) in the DNSs. The black line
shows the Völk-type model by OC07. The red dotted line shows an improved
closed expression by PP15 (their Equation25). Colored dotted lines show an
improved formula of the Völk-type models presented in PP15 (their Figure 10).

Figure 6. Turbulence-induced rms relative velocities á ñw2 1 2 normalized to
á ñu2 1 2 between two particles characterized by St1 and St2. Colored squares
(with rms values) represent the DNS results for a particle separation of r=η/4
at t=3T (Re=16,100). Gray contours (with attached rms values) denote the
prediction of the Völk-type model (12), which is equivalent to Figure 4(C)
of OC07. The diagonal line (St1=St2) corresponds to Figure 5. Note that the
DNS results for St1 (or St2) <0.05 are more or less affected by viscosity.
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where = -( )t V kL L L
1, = ( )V V2 3L

2
g
2, and =h

-t Re tL1 2 . *t1 and
*t2 are the solutions of Equation (9) for τp=τ1 and τp=τ2,
respectively. The relative velocity variance á ñw2 1 2 of this
formula is shown by contours in Figure 6 for the case
Re=108. The comparison with the relative velocities obtained
by the DNS clarifies that the DNS results are smaller than half
of the values of the closed-form expression given by OC07,
regardless of the St ratios. In particular, for equal-sized particles
with St10−2, the DNS results are smaller by an order of
magnitude. These reduced relative velocities have a significant
impact on avoiding the fragmentation barrier, which is
discussed in detail in Section 4.

3.4. Collision Kernel

So far, we have focused on the variance of relative velocities,
which gives a measure of the collision rate. Here, we consider
the collision kernel to incorporate the turbulent clustering effect
properly. The collision rate per unit volume between two
particles with radii a1 and a2 can be expressed as

G( ) ( ) ( ) ( )n a n a a a, , 131 1 2 2 1 2

where ( )n a1 1 and n2(a2) are the average number densities and
Γ(a1, a2) is the collision kernel. The kernel formula hitherto
used in dust coagulation models is pG = á ñd wcom 2 2 1 2 with
d=a1+a2, where the effect of turbulent clustering is not
taken into account and the rms relative velocity, á ñw2 1 2, is
usually taken from the model of Völk et al. (1980). As a
statistical mechanical description of Γ for zero-inertia particles,
Saffman & Turner (1995) proposed a spherical formulation, in
which the kernel is given by pG = á ñ∣ ∣d w2 2

r with the radial
relative velocity, = - -· ( ) ∣ ∣w X X X Xwr 2 1 2 1 . In addition,
Sundaram & Collins (1997) considered the turbulent clustering
effect on Γ and derived an expression for finite-inertia particles.
Wang et al. (2000) suggested that a formula (based on the
spherical formulation),

pG = á ñ∣ ∣ ( ) ( )d w g d2 , 14sph 2
r

is more accurate than the formula considered by Sundaram &
Collins (1997), where g(d) is the radial distribution function
(RDF) at r=d. The RDF is related to the two-point correlation
function x ( )r by g(r)=1+ξ(r), and evaluated by

p
=( ) ( )

¯
( )g r

N r

r ndr4
, 15

2

where N(r) is the average number of particles in a spherical
shell of volume 4πr2dr at a distance r from a reference particle
and n̄ is the average particle number density. For a uniform
distribution of particles, we have g(r)=1, i.e., ξ(r)=0. For a
non-uniform distribution of particles due to turbulent cluster-
ing, we have g(r)>1. Recently, Pan & Padoan (2014) and
PP15 evaluated Γsph by performing the DNS with Re=O(103)
to study the effect of turbulent clustering on the collision
kernel.

Here, we use our DNS data with Reynolds numbers up to
Re=16,100 to obtain á ñ∣ ∣wr and g(r), and to elucidate the Re
dependence of the collision kernel. Figure 7 shows the
normalized radial relative velocity, á ñ á ñ∣ ∣w w2 r

2 1 2, as a
function of St for different Re numbers. As seen in this figure,

the values are always less than unity, and therefore the use of
á ñw2 1 2 for the collision kernel leads to the overestimation.
Additionally, since the values are a decreasing or increasing
function of St, á ñ∣ ∣wr does not obey the power law (∝ St1/2) like
á ñw2 1 2 does (Figure 3). Therefore, it is concluded that there are
quantitative and qualitative discrepancies from á ñw2 1 2 for
evaluating the collision kernel Γ. The low value of á ñ∣ ∣wr leads
to the enhancement of the particle sticking rates as discussed in
Section 4. Pan & Padoan (2014) studied the St dependence of
the ratio á ñ á ñ∣ ∣w w2 r

2 1 2 and showed that the values of the ratio
approach its Gaussian value of (8/3π)1/2;0.92 for St>1.
They argued that the non-Gaussianity peaks at Stη;1,
resulting in a dip in the ratio at Stη;1. Figure 7 shows that
the bottom position of the dip is around Stη;1–2, and
therefore the dip becomes shallower accordingly as Re
increases.
Figure 8 shows the St dependence of g(r) in the DNS of Run

2048-1 (Re=16,100). The behaviors of g(r) are quantitatively
consistent with the recent DNS results by Ireland et al. (2016).
In Figure 8, we see that g(r) is approximately constant at

 -r L 10 2 for St0.1. This fact allows us to use the
constant value when considering the collision statistics (as
discussed in Section 4).
Figure 9 shows the St dependence of g(r) at r/L=10−3 and

r/L=10−2 for three different values of Re. Here, r/L=10−3

(10−2) corresponds to r/η=1/4 (5/2), 1/2 (5), and 1 (10) for
Re=2100, 6700, and 16,100, respectively. Figure 9 demon-
strates that g(r) has a peak for a fixed value of r. Also, Figure 8
suggests that the value of St at the peak depends on r, and g(r)
has a peak near Stη=1 for small values of r=O(η). In
Figure 9, we notice that, for fixed values of St=O(0.1) and
r/L, g(r) is a decreasing function of Re provided that Stη�2.0;
this Re dependence is weaker for the larger values of St. We
also observe that, for fixed values of St=O(0.1) and Re, g(r)
becomes larger as r/L decreases; this r/L dependence is
weaker for larger values of St (as shown in Figure 8). The Re
dependence and r/L dependence of g(r) suggest that an
asymptotic behavior of g(r) (in the range of St=O(0.1)) for
much smaller r and for much higher Re can be surmised from
the DNS data of Re=O(104).

Figure 7. Averaged radial relative velocities á ñ∣ ∣wr at r=10−3L, normalized by
the relative velocity variance, as a function of the St number. Results are shown
for Re=16,100 (solid line), Re=6700 (dashed line), and Re=2100
(dotted line).
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Ireland et al. (2016) showed that, for fixed values of Stη1
and r/η, g(r) is an increasing function of Re. Their Re
dependence does not contradict the results in Figure 9. In fact,
our DNS data also give almost the same Re dependence as that
shown in Figure21 of Ireland et al. (2016). However, it should
be noted that the collision statistics for fixed values of Stη and r/η
are completely different from those for fixed values of St and r/L.

Figure 10 presents the Re dependence of the resulting
collision kernel obtained by our DNS. In Figure 10, we see a
noticeable increase in the collision kernel in the small St range
with increasing Re. For example, the value of the collision
kernel at St=2×10−2 for Re=16,100 is six times larger
than that for Re=1000. However, the Reynolds number
dependence of the collision kernel at St≈0.02–0.2 seems to
converge provided that Re104. From this finding, it is
expected that the collision kernel at St≈0.02–0.2 for a much
higher Reynolds number ( Re 104) is similar to that
obtained by our DNS of Re=O(104).

As for bidisperse cases, the St(=St1) dependence of the
collision kernel (Equation (14)) is presented for different
=f St St2 1 in Figure 11. To compare the collision kernel at the

scale of the smallest eddies, we show the results at the distance

of η/4. As seen in this figure, the values of Γ for different-sized
particles are smaller than those for the identical particles. This
result is caused by the fact that the concentration of particles
due to turbulent clustering occurs more effectively for identical
particles than for different-sized particles. The comparison with
the data from PP15 shows that the DNS results for St0.1 at
Re=16,100 are not far from those at Re=1000.

3.5. PDF of the Radial Relative Velocity

In the collision kernel, we have adopted the average value of
the radial relative velocities, á ñ∣ ∣wr . However, to assess the
fraction of particles that have velocities lower than the critical
collision velocity, we should derive the PDF of wr. Since the
critical collision velocity may be different between equal-sized
collisions and different-sized ones, we need to obtain the PDF
depending on the Stokes number ratio ºf St St2 1.
Based on the DNS data of Re=16,100, we acquire the PDF

for equal-sized particles, P(eq). Figure 12 shows the resultant
PDF of the normalized radial relative velocity wr/U at a

Figure 8. RDFs for particles with different St numbers; each value of St
corresponds respectively to Stη=1, 2, 5, 10, and 20. The used data are 5123

particles at t=3T in the DNS of Run 2048-1 (Re=16,100).

Figure 9. St dependence of the RDFs at = -r L10 3 (red) and 2×10−3L
(green) for different Re numbers: Re=16,100 (solid line), Re=6700 (dashed
line), and Re=2100 (dotted line). The circles denote the data for Stη=2.0.

Figure 10. Collision kernel per unit cross-section in spherical formulation at
distance d=10−3L for different Re numbers. The values are measured at
t=3T and normalized by á ñu2 1 2 for each run. The data from PP13
(Re=1000, r=η/4∼2×10−3L) are also plotted for comparison.

Figure 11. Collision kernel per unit cross-section in spherical formulation at
the distance of η/4 for particle pairs with fixed Stokes ratios, f≡St2/St1=1,
1/2, 1/5, and 0. The data are obtained at t=3T in the DNS of Re=16,100.
The data from PP15 (Re=1000, r=η/4∼2×10−3L) are also plotted for
comparison.

8

The Astrophysical Journal, 854:81 (16pp), 2018 February 20 Ishihara et al.



separation of r=η/4 for each St number, where U is the rms
value of the fluctuating velocity in one direction. The negative
and positive values of wr/U represent the approaching and
receding pairs, respectively. The variance and kurtosis of
x≡wr/U are defined as

º á - á ñ ñ( ) ( )V x x 162

and

º á - á ñ ñ á - á ñ ñ( ) ( ) ( )K x x x x , 174 2 2

respectively, and listed in Table 2. It is shown that when
 ´ h

- ( )St St1.17 10 1.02 , the variance is an increasing
function of St, and the kurtosis is a decreasing function of St.
The data in Table 2 indicate that the values of V and K are
respectively approximated as

» » + ´ - ( )V St K Stand 3.0 0.79 181.3 1.3

in the range 5.87×10−2�St�2.35×10−1.
The PDFs for different-sized particles, ( )P diff , are shown for
º =f St St 12 1 , 1/2, and 1/4, fixing St1=0.235, in

Figure 13. As expected, Figure 13 suggests that the non-
Gaussianity of the PDFs is weakened as f decreases (as the size
difference becomes large). A similar trend has already been
observed in low-Re simulations (see, e.g., Figures 2, 4, and 8 in
Pan et al. 2014b). Our DNS results confirm that the trend is also
true for higher-Re turbulence. The variance and the kurtosis of
the PDFs for different-sized particles ( ¹f 1) are listed in
Table 3. The data in Tables 2 and 3 imply that, as f decreases,
the value of K monotonically decreases while the variance
monotonically increases.

Following Sundaram & Collins (1997), Wang et al.
(2000), PP13, and Pan et al. (2014b), we attempt to fit the
PDF of x=wr/U with a stretched exponential function
given by

m
b m b

=
G

-
m⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

( )
∣ ∣ ( )P x
x

2 1
exp , 19se

where ( )P xse is normalized to satisfy ò =
-¥

¥
( )P x dx 1se as in

PP13 and Pan et al. (2014b). For this function, the variance and

kurtosis are analytically given by

b m m= G G( ) ( ) ( )V 3 1 20se
2

and

m m
m

=
G G

G
( ) ( )

( )
( )K

1 5

3
, 21se 2

respectively. Since the value of Kse does not depend on the
value of β, we can first determine the value of μ with Kse=K
and then the value of β with Vse=V, where V and K are the
DNS values. Specifically, the formula to determine the values
of μ and β is given by

b
m
m

= =
G
G

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )K K
V

,
1

3
, 22se

1 2

Figure 12. PDF of the normalized radial component of the relative velocity for
each St. The relative velocities are measured at t=3T for the pairs of equal-
sized particles at a separation of r=η/4 in the DNS of Re=16,100.

Table 2
Variance and Kurtosis of the Normalized Relative Velocity (wr/U)Measured at
t=3T for Equal-sized Particles with a Separation r=η/4 in the DNS of

Re=16,100

h( )St St
0.0117
(1.0)

0.0235
(2.0)

0.0587
(5.0)

0.117
(10.0)

0.235
(20.0)

Variance (V ) 8.04E–4 2.58E–3 2.21E–2 6.15E–2 1.39E–1
Kurtosis (K ) 283 85.4 34.1 13.8 8.33
μ 0.273 0.352 0.453 0.632 0.813
β 1.72E–5 3.17E–4 4.75E–3 3.32E–2 1.01E–1

Note. The parameters μ and β in Equation (19), determined using Kse=K and
Vse=V, are also listed.

Figure 13. Same as Figure 12 but for pairs of different-sized particles St1 and
St2, where St1=0.235 and f=St2/St1.

Table 3
Same as Table 2 but for Pairs of Different-sized Particles

f 1/2 1/4 1/2

h( )St St1 1 0.117(10.0) 0.235(20.0) 0.235(20.0)
h( )St St2 2 0.0587(5.0) 0.0587(5.0) 0.117(10.0)

Variance (V ) 8.91E–2 1.74E–1 1.50E–1
Kurtosis (K ) 9.40 5.13 7.03
μ 0.760 1.12 0.899
β 0.069 0.203 0.130

Note. The value of f denotes the ratio St St2 1.
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where V and K are given by the approximated formulas
(Equation (18)). The values of μ and β determined by the DNS
for the case Re=16,100 are shown in Tables 2 and 3.

Theoretically, a stretched exponential PDF with μ=4/3
was predicted for inertial range particles under the assumption
of exactly Gaussian flow velocity and Kolmogorov scaling
(Gustavsson et al. 2008; PP13). The values of μ for the inertial
range particles of St=O(0.1) in our DNS are less than the
theoretical value and suggest that the non-Gaussian behavior of
the flow velocity affects the PDF of the radial relative velocity
of the inertial range particles. Hence, the fitting function
(Equation (19)) and the values of μ and β in Tables 2 and 3 are
useful for modeling the PDF of the radial relative velocities for
the inertial range particles. Note that the values of μ for the
particles of 0.1<St<0.3 in our DNS are not far from those
for the corresponding St values reported for low-Re simulations
in Pan et al. (2014b). This fact suggests that not only the
variance but also the PDF of the normalized relative velocity
for St0.1 is not so sensitive to the values of the Reynolds
number.

An example of the stretched exponential fit to the PDF is
plotted in Figure 14(a) for the case of identical particles. We
confirm that the stretched exponential function qualitatively
approximates well the PDFs of the relative velocities. In
Figure 14(b), we show the accuracy of the fitting quantitatively
by evaluating the integral òº

-
( ) ( )( )Q x P x dx

x

x eq .

4. Implications for Planetesimal Formation

The density of compact dust aggregates is virtually equal to that
of a monomer (ρs≈1 g cm−3). The formation of centimeter-sized
(St=0.01–0.1) compact aggregates (pebbles) is key to the
growth to planetesimals via streaming instability (e.g., Johansen
et al. 2014). On the other hand, dust aggregates can have fluffy
structures with much lower bulk densities if the compression due
to impacts is sufficiently weak (Okuzumi et al. 2009; Wada et al.
2009; Zsom et al. 2010, 2011; Okuzumi et al. 2012). In recent
years, the collisions of fluffy dust aggregates have been explored
by performing N-body molecular dynamics simulations (Paszun
& Dominik 2009; Wada et al. 2009; Meru et al. 2013; Seizinger
& Kley 2013; Wada et al. 2013; Gunkelmann et al. 2016). These
studies have revealed that fluffy aggregates, depending on the
breaking energy, may resolve the difficulties due to bouncing and
fragmentation barriers. So far, fluffy aggregates are thought to
likely form as a result of the coalescence of icy grains. However,
quite recently, Arakawa & Nakamoto (2016) have shown that
fluffy aggregates can result from the collisions of nanometer-sized
silicate grains. Here, according to Johansen et al. (2014), we
consider two cases of compact aggregates with r = 1 gs cm−3

and extremely fluffy aggregates with r = -10 gs
5 cm−3.

As for a protoplanetary disk, we assume an α-model, in
which the turbulent viscosity is given as n a= c Ht s , cs is the
sound speed, H is the vertical scale height, and the typical
value of α is between ∼10−4 to 10−2. In addition, we
employ the MMSN model (Hayashi 1981), which provides the
gas temperature = -( )T R280 au Kg

1 2 , the gas density r =g

´ -1.2 10 9 -( )R au g11 4 cm−3, the sound speed = ´c 1.1s
- -( )R10 au m s3 1 4 1, the surface mass density of gas S =g

´ - -( )R1.7 10 au g cm3 3 2 2, and the vertical scale height of
the gas = ´ - ( )H R4.7 10 au au2 5 4 , where R is the distance
from the central star. Assuming a cross-section of
2.5×10−15cm2 for hydrogen molecules, we have the kinematic

viscosity given by n = ´ -( )R6.0 10 au cm s4 5 2 2 1. In the
α-model, the characteristic velocity and the characteristic length
scale in the turbulence are given by a=U c1 2

s and L=α1/2H,
respectively, i.e., a= ´ - - -( ) ( )U R1.1 10 10 au m s2 2 1 2 1 4 1 and

a= ´ -( ) ( )L R5.5 10 10 au m.8 2 1 2 5 4 Thus, the Reynolds
number is given by n a= ~ - -( )( )Re UL R10 10 au10 2 3 2

and the Kolmogorov length and timescale are estimated using
η=Re−3/4L and t =h

- ( )Re L U1 2 . The turbulence character-
istics for α=10−2 and 10−4 are listed in Table 4.

4.1. Collision Velocity in the MMSN Model

Based on the MMSN model, we evaluate the rms relative
velocities induced by turbulence. In Figure 6, we showed the

Figure 14. (a) Comparison between the PDF of the normalized radial relative
velocities for St=0.235 at a separation of r=η/4 and the fitting function
(Equation (19)). (b) Values of the integral òº

-
( ) ( )( )Q x P x dx

x

x eq (solid lines)
for different St, where = ∣ ∣x w Ur and P(eq)(x) is the PDF from the DNS of
Re=16,100. The data are compared with ò- ( )( )P x dx

x

x
se

eq (dotted lines), where

( )( )P xse
eq is given by Equation (19), in which the values of β and μ in Table 2

are used.

Table 4
Turbulence Characteristics in the α-models of the Protoplanetary Disk

at R=1 au

α U (m s−1) L (m) Re η (m) τη (s)

10−2 110 5.5×108 1010 17 50
10−4 11 5.5×107 108 54 500
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rms relative velocities as a function of St number pairs.
Translating the Stokes numbers into particle sizes according to
Johansen et al. (2014), we can obtain the rms collision
velocities for compact and fluffy dust aggregates. In Figure 15,
we show the resultant rms collision velocities at 1 au from the
central star, for α=10−4 in panels (a) and (c), and for
α=10−2 in panels (b) and (d). The upper panels are the results
for compact aggregates, and the lower ones are those for fluffy
aggregates. For comparison, the estimates derived with the
closed-form analytic formula by OC07 are also depicted. We
find that the rms relative velocities by the DNSs are smaller by
more than a factor of two, compared to the prediction of the
closed-form expression. In particular, for particles of equal size,
the DNS results are much lower. These results have a

considerable impact on the sticking rates and the collision
timescale as discussed below.

4.2. Sticking Rates of Colliding Pairs

We estimate the “sticking rates,” which are defined to be the
probabilities of colliding pairs sticking per unit time. Hubbard
(2012) pointed out that to estimate the sticking rates of
colliding pairs, the weighting factor proportional to the
collision rate should be taken into account. In the cylindrical
kernel formulation, the collision rate is proportional to ∣ ∣w , and
the collision-rate-weighted distribution of the 3D amplitude is
obtained from the unweighted PDF, (∣ ∣)wP , simply as

= á ñ(∣ ∣) ∣ ∣ (∣ ∣) ∣ ∣ ( )w w w wP P . 23cyl

Figure 15. rms relative velocities (in m s−1) between two particles of different sizes for compact aggregates (r = -1 g cms
3; top panels) and fluffy aggregates

(r = - -10 g cms
5 3; bottom panels). Here, the MMSN model is employed assuming 1 au from the central star for (a), (c) α=10−4 and (b), (d) α=10−2. Filled

squares (with rms values) represent the DNS results, while the contours (with rms values) are the theoretical estimates obtained from OC07, using the particle sizes
corresponding to the Stokes numbers given by Johansen et al. (2014).
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As shown in Pan & Padoan (2014), the spherical kernel
formulation of the weighted PDF is also possible but is more
complicated. Therefore, we use Equation (23) for estimating
the sticking rates, which are given by

ò= ( ) ( )( ) ( )
( )

P P x dx 24
u

stick
eq, diff

0
cyl

eq,diffc
eq,diff

for equal-sized and different-sized collisions, respectively,
where = ∣ ∣wx and uc is the critical velocity above which the
collisions lead to bouncing or fragmentation (see, e.g., Wada
et al. 2013).

Wada et al. (2009), using N-body molecular dynamics
simulations, have obtained the critical velocity for silicate
aggregates to be m= -( )u a1.1 0.76 m mc

5 6 s−1, where a is
the size of monomers in aggregates. It agrees well with
laboratory experiments (Blum & Wurm 2000). Additionally,
Wada et al. (2013) have derived a scaling relation of the critical
collision velocity as a function of the breaking energy. They
have considered fluffy aggregates composed of ballistic
particle-cluster aggregation clusters, which are fairly compact
(fractal dimension D∼3). Even in such compact aggregates,
all surface interactions between monomers in contact in the
aggregates determine the critical collision velocity, which
depends on the size of the monomers. For icy aggregates, they

have derived the critical collision velocity as

m= - -( ) ( )( )u a60 m m s , 25c
eq 5 6 1

m= - -( ) ( )( )u a80 m m s , 26c
diff 5 6 1

for collisions between equal-sized and different-sized particles,
respectively, and for silicate aggregates,

m= - -( ) ( )( )u a6 m m s , 27c
eq 5 6 1

m= - -( ) ( )( )u a8 m m s . 28c
diff 5 6 1

Recently, Gunkelmann et al. (2016) studied the porosity
dependence of the fragmentation of fluffy aggregates composed
of silicate grains with radius of 0.76 μm, and found that the
critical velocity for agglomerate fragmentation decreases with
the porosity of the aggregates. Although the critical collision
velocities are still under debate, those for silicate aggregates are
smaller by an order of magnitude than those for icy aggregates.
Therefore, the sticking rates are expected to be much lower in
silicate aggregates. Here, we consider two cases of uc for
silicate aggregates: =u 1 mc s−1 for compact aggregates and
Equations (27) and (28) for fluffy aggregates.
We evaluate the sticking rates of ( )Pstick

eq and ( )Pstick
diff assuming

R=1 au for the cases with α=10−4 and 10−2, based on the

Figure 16. Sticking rates of colliding particles as a function of St, depending on f=St2/St1. The MMSN model is employed, assuming 1 au from the central star for
(a), (c) α=10−4 (U = 11 m s−1) and (b), (d) α=10−2 (U = 110 m s−1). In the top panels (a) and (b), the critical collision velocity is assumed to be

= =( ) ( )u u 1 mc
eq

c
diff s−1, while in the bottom panels (c) and (d), this is =( )u 6 mc

eq s−1 for equal-sized collisions and =( )u 8 mc
diff s−1 for different-sized collisions,

which are given for silicate dust by Wada et al. (2013). Colored solid curves represent the DNS results calculated from the PDFs, using pairs of particles at a separation
r=η/4 in the DNS of Re=16,100. Colored dotted curves denote the theoretical prediction assuming a Gaussian (Maxwell) distribution whose variance is given
by OC07.

12

The Astrophysical Journal, 854:81 (16pp), 2018 February 20 Ishihara et al.



PDFs obtained by the DNS with Re=16,100. In Figure 16, we
plot the results as a function of St. For comparison, we also plot
the theoretical prediction based on the collision-rate-weighted
distribution of the 3D amplitude assuming a Gaussian
(Maxwell) distribution with the variance given by OC07.

Panels (a) and (b) show, respectively, the DNS results for
α=10−4 and 10−2, assuming =u 1 mc s−1. Quite interest-
ingly, the sticking rates are not strongly dependent on α if
St0.01 and remain at a high level of 50%, although the
theoretical prediction from a Gaussian distribution declines
steeply for α=10−2. Besides, the decrease of the rates at
St0.01 is much more gradual compared to the theoretical
prediction, especially in the case of α=10−2. It shows that the
non-Gaussianity of the velocity distribution function due to
turbulent clustering makes the sticking rates for St0.01
remarkably higher than those theoretically expected. Also, it is
worth noting that the rates for equal-sized particles ( f=1) are
higher than those for different-sized particles ( ¹f 1). In the
case of α=10−2, the difference is more than an order of
magnitude. This comes from the fact that the variance of the
relative velocities is smaller for equal-sized particles ( f= 1), as
shown in Figure 15. These results imply that equal-sized
particles grow much faster than different-sized particles, and
therefore the fraction of equal-sized particles increases
with time.

Panels (c) and (d) show, respectively, the DNS results for
a = -10 4 and 10−2, assuming the critical collision velocity for
fluffy aggregates given by Wada et al. (2013). In panel (c), the

DNS results show that the sticking rates are approximately
unity at St0.03, and also that the sticking rates are slightly
higher for different-sized particles ( ¹f 1). As shown in
Figure 13, the PDFs have small differences for different f
values. However, ( )uc

diff is larger than ( )uc
eq , and therefore ( )Pstick

diff

is a bit higher than ( )Pstick
eq . But, in the case of α=10−2, the rates

for f=1 are higher than those for ¹f 1 and decline more
gradually compared to the theoretical prediction at St0.01.

4.3. Bouncing/Fragmentation Probabilities

Using the PDFs, we can evaluate the bouncing/fragmentation
fraction of colliding particles, if we specify the critical
collision velocity uc as in the previous subsection. The

Figure 17. Bouncing/fragmentation probabilities of colliding particles as a function of St, depending on =f St St2 1. The meanings of the curves are the same as those
in Figure 16.

Table 5
Maximal Density Contrast of Dust Particles as a Function

of the Stokes Number (St)

ΔL St

[α1/2 H] 0.0117 0.0234 0.0587 0.117 0.234

0.16 1.89 2.46 3.92 5.12 6.01
0.32 1.45 1.76 2.63 3.49 4.00
0.64 1.23 1.36 1.56 1.88 2.30

Note. ΔL is a coarse-grain scale in units of α1/2H, where the density is
calculated in the volume of DL3.
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bouncing/fragmentation probabilities are estimated as

ò=
-¥

-
( ) ( )( ) ( )

( )

p P x dx 29
u U

B F
eq,diff eq,diff

c
eq,diff

for equal-sized and different-sized collisions, respectively,
where x=wr/U.

We evaluate the B/F (bouncing/fragmentation) probabilities
of ( )pB F

eq and ( )pB F
diff assuming R=1 au for the cases with

α=10−4 and 10−2, based on the PDFs obtained by the DNS
with Re=16,100. In Figure 17, we plot the results as a
function of St. In any case, the obtained B/F probabilities are
significantly lower than the theoretical prediction from a
Gaussian distribution. Also, importantly, the B/F probabilities
for equal-sized particles ( f= 1) are much lower than those for
different-sized particles ( ¹f 1). For St0.01, the B/F
probabilities for f=1 are lower than 10% even in the case of
α=10−2. As discussed above, the rms relative velocity in the
DNSs is smaller than that in the closed-form expression, and
also, the average radial relative velocity is even lower than the
rms relative velocity, as shown in Section 3.4. Owing to such
low values of relative velocities and the non-Gaussianity of the
PDF in the DNSs, the B/F probabilities are not dramatically
enhanced even for α=10−2. Hence, equal-sized particles
preferentially survive even in a highly turbulent flow.

4.4. Streaming Instability

As shown above, the fluffy silicate aggregates may coalesce
with a high probability in a weakly turbulent disk (α=10−4).
However, the coagulation of compact aggregates is much less
effective for St0.1 in a highly turbulent disk (α=10−2),
and hence there is still the obstacle of the radial drift barrier.
For the growth from centimeter-sized (St=0.01–0.1) compact
aggregates (pebbles) to planetesimals, the streaming instability
may be a possible route to circumvent this obstacle.

Youdin & Goodman (2005) discovered the streaming
instability promoted by the action-reaction pair of the drag
force between solid particles and gas, and the growth of
pebbles via streaming instability has been extensively explored
(Johansen et al. 2014 and references therein). Importantly,
Johansen et al. (2009) and Bai & Stone (2010) have pointed out
that there is a critical solid abundance Zc, above which a
spontaneous strong concentration of solids occurs, where Z is
the solid-to-gas surface mass density ratio, with Z∼0.01 being
the solar abundance. Using 2D simulations, Carrera et al.
(2015) found that the critical abundance is supersolar and
increases drastically with decreasing particle size for St<0.1.
Very recently, using 2D and 3D high-resolution simulations,
Yang et al. (2017) have shown that the critical abundance is not

a steep function of St, and 0.01<Zc<0.02 for particles of
St=10−2, and 0.03<Zc<0.04 for particles of St=10−3.
Although these are slightly supersolar, some mechanisms are
still required to enhance the solid abundance to allow the
formation of planetesimals via streaming instability.
In our simulations, as shown in Figure 8, the solid

abundance is enhanced by turbulent clustering, which is
dependent on St. Since the clustering is dependent on scales,
the density contrast of dust particles, r r̄d d, depends on a
coarse-grain scale. In Table 5, we show the maximal density
contrast of dust particles as a function of St, where ΔL is a
coarse-grain scale in units of α1/2H, and the density is
calculated in the volume of DL3. As seen in Table 5, the
enhancement of solid abundance becomes larger as St increases
and L decreases. If α=10−2 and ΔL�0.03H, the enhance-
ment is a factor of ∼1.5 for St=0.01 and ∼3.5 for St=0.1.
This satisfies the condition for critical abundance shown in
Figure9 of Youdin & Goodman (2005).
As shown in Figure 16, the sticking of equal-sized particles

is faster than that of different-sized ones. This supports the
assumption of particles of the same size employed by Yang
et al. (2017). The sticking rate of equal-sized particles is as high
as 50% at St0.01, and reduces to 10% at St0.1, in the
case of α=10−2. Furthermore, Figure 17 shows that the B/F
probabilities are as low as 10% at St  0.01, and increase
steeply toward St0.1. Therefore, equal-sized particles of
St∼0.01 are expected to selectively grow.
Also, we evaluate the collision timescale of dust particles,

which is given by sº á ñ[ ( ) ∣ ∣ ]t n g r w1coll d r , where nd is the
number density of the dust particle of size a, g(r) is the RDF of
the particle, á ñ∣ ∣wr is the averaged radial relative velocity, and
s p=( ( ) )a2 2 is the cross-section area. Note that the collision
timescale is independent of the value of α, since aµ -nd

1 2

and aá ñ µ∣ ∣wr
1 2. As for g(r) and á ñ∣ ∣wr , we use the values at

r/η=1/4 for Re=16,100. If we specify the values of St and
ρs, we have nd and a in the Stokes regime, using the vertical
scale height for dust particles (Okuzumi et al. 2012). In
Table 6, the evaluated collision times are listed for compact
aggregates (r = 1gs cm−3) and fluffy aggregates (r = -10 gs

5

cm−3). Since g(r) is a decreasing function of St and á ñ∣ ∣wr is an
increasing function, the collision timescale is insensitive to St
and much shorter than the drift timescale even for compact
aggregates.
Considering the above assessments, we can expect that

mostly equal-sized particles of 0.01St0.1 grow in a
timescale of ∼Ω−1. Simultaneously, turbulent clustering
enhances the solid abundance. According to Yang et al.
(2017), the critical solid abundance tends to be minimal toward
St∼0.1. Hence, the streaming instability may be triggered at

Table 6
Collision Timescale of Dust Particles Defined as sº á ñ[ ( ) ∣ ∣ ]t n g r w1coll d r , where r=( )n md d d is the Number Density of the Dust Particles with the Radius a (ρd is the

Dust Density in the Disk and md the Mass of the Dust Aggregate), g(r) is the RDF of the Particle, á ñ∣ ∣wr is the Average of the Radial Relative Velocities,
and σ(=π (2a)2) is the Cross-section Area

St Compact (r = 1 gs cm−3) Fluffy (r = -10 gs
5 cm−3)

0.0117 0.0235 0.0587 0.117 0.235 0.0117 0.0235 0.0587 0.117 0.235

a [cm] 4.36 6.17 9.75 13.8 19.5 1379 1950 3083 4361 6167
md [kg] 0.347 0.982 3.88 11.0 31.1 110 311 1228 3473 9823
tcoll[yr] 1.07 1.01 1.07 1.12 1.32 0.00338 0.00319 0.00337 0.0035 0.00418

Note. The timescale is shown for compact aggregates (ρs=1 g cm−3) and fluffy aggregates (r = -10 gs
5 cm−3).

14

The Astrophysical Journal, 854:81 (16pp), 2018 February 20 Ishihara et al.



0.01<St<0.1, and the strong concentration of solids
proceeds on a timescale of 100 Ω−1.

5. Conclusions

In order to investigate the dynamical statistics of dust
particles through turbulent clustering in a protoplanetary disk,
we have performed high-resolution DNSs of the NS equations.
The number of grid points and the Reynolds number are up to
20483 and Re=16,100, respectively, which are of the highest
resolution ever in astrophysical DNSs. These large-scale DNSs
have allowed us to track the motion of dust particles with
Stokes numbers of 0.01St0.2 in the inertial range for the
first time.

As a result of these simulations, we found the following:

1. As the Reynolds number of the turbulence increases (or
the inertial range widens), the rms relative velocity,
á ñw2 1 2, of particle pairs at a fixed small separation
(normalized by the integral length scale) is augmented for
small St number particles and is asymptotically propor-
tional to St1/2 in the inertial range.

2. The rms relative velocities from the DNSs are smaller by
more than a factor of two compared to those from the
closed-form expression derived by Ormel & Cuzzi
(2007), irrespective of the St number ratios of the particle
pairs. Also, the averaged radial relative velocity is even
lower than the rms relative velocity. Hence, the findings
by Pan & Padoan (2013, 2015) have been confirmed by
high-Re DNSs.

3. The PDFs of the radial relative velocities are highly non-
Gaussian and are well fitted by a stretched exponential
function like Equation (19). The PDF of the normalized
relative velocity for St0.1 is not so sensitive to the
values of the Reynolds number. Hence, the results are
consistent with those at low-Re by Pan et al. (2014b).

4. Almost independently of α, the sticking rates of colliding
particles are as high as 50% for particles of St0.01
and declines gradually at St0.01, although the
theoretical prediction from a Gaussian distribution
declines steeply for α=10−2. This comes from the
non-Gaussianity of the radial relative velocities and
the smaller variance of the relative velocities as a result of
the turbulent clustering.

5. Since the variance of the relative velocities for equal-
sized particles ( f= 1) is smaller than that for different-
sized particles ( ¹f 1), the sticking rates for f=1 are
higher than those for ¹f 1. The difference is larger than
an order of magnitude in the case of α=10−2. It implies
that equal-sized particles grow much faster than different-
sized particles, and therefore the fraction of equal-sized
particles increases with time.

6. The B/F probabilities are significantly lower than the
theoretical prediction from a Gaussian distribution. The
probabilities for equal-sized particles ( f= 1) are much
lower than those for different-sized particles ( ¹f 1), in
the case of α=10−2. Hence, equal-sized particles
preferentially survive even in a highly turbulent flow.

7. Turbulent clustering enhances the solid abundance. The
enhancement on a scale of 0.03 scale heights of the disk
increases by a factor of ∼1.5 at St=0.01 to ∼3.5 at
St=0.1, in the case of α=10−2. Therefore, streaming
instability may be triggered at 0.01<St<0.1.

In the present DNSs, we have assessed sticking rates, but the
actual coagulation of dust particles has not been incorporated.
Hence, we cannot predict the mass function of dust aggregates
as a result of the hierarchical coagulation. This is a significant
issue for planetesimal formation. In DNSs in the near future,
we will explore the growth of dust aggregates in turbulence.
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