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Abstract: This paper concerns several important topics of the Symmetry journal, namely,
computer-aided design, computational geometry, computer graphics, visualization, and pattern
recognition. We also take advantage of the symmetric structure of the tensor-product surfaces,
where the parametric variables u and v play a symmetric role in shape reconstruction. In this paper we
address the general problem of global-support parametric surface approximation from clouds of data
points for reverse engineering applications. Given a set of measured data points, the approximation
is formulated as a nonlinear continuous least-squares optimization problem. Then, a recent
metaheuristics called Cuckoo Search Algorithm (CSA) is applied to compute all relevant free variables of
this minimization problem (namely, the data parameters and the surface poles). The method includes
the iterative generation of new solutions by using the Lévy flights to promote the diversity of solutions
and prevent stagnation. A critical advantage of this method is its simplicity: the CSA requires only
two parameters, many fewer than any other metaheuristic approach, so the parameter tuning becomes
a very easy task. The method is also simple to understand and easy to implement. Our approach has
been applied to a benchmark of three illustrative sets of noisy data points corresponding to surfaces
exhibiting several challenging features. Our experimental results show that the method performs
very well even for the cases of noisy and unorganized data points. Therefore, the method can be
directly used for real-world applications for reverse engineering without further pre/post-processing.
Comparative work with the most classical mathematical techniques for this problem as well as
a recent modification of the CSA called Improved CSA (ICSA) is also reported. Two nonparametric
statistical tests show that our method outperforms the classical mathematical techniques and provides
equivalent results to ICSA for all instances in our benchmark.
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1. Introduction

1.1. Surface Approximation in Reverse Engineering

Reverse engineering is a very important research subject that is currently receiving a lot of attention
from the scientific and industrial communities. Most of this interest is motivated by its outstanding
applications to the design, development, and manufacturing of consumer goods [1,2]. Typical fields
of application of reverse engineering include computer design and manufacturing (CAD/CAM) for
the automotive, aerospace and ship building industries, biomedical engineering (prosthesis, medical
implants), medicine (computer tomography, magnetic resonance), digital heritage, computer animation
and video games (motion capture, facial scanning), and many others.

Reverse engineering technology is focused on reconstructing a Computer-Aided Design (CAD)
model from a physical part of an existing or already constructed object [3]. Typically, the process starts
with the digitization of this physical workpiece through the use of 3D laser scanners or other digitizing
devices (e.g., coordinate measuring machines). As a result, a (very large) cloud of data points capturing
the underlying geometrical shape of the object is obtained. This point cloud is then transformed into
a compact CAD model by means of data fitting techniques [4,5].

Depending on the nature and characteristics of the cloud of data points, two different approaches
for data fitting can be used: interpolation or approximation [3]. The former case generates a parametric
curve or surface that passes through all data points. In contrast, the approximation techniques generate
a curve or surface that only passes near the data points, generally minimizing the deviation from
them according to a prescribed energy functional, which usually takes the form of a least-squares
minimization problem. This approximation scheme is particularly well suited for real-world
applications, where data points are affected by irregular sampling, measurement noise and other
issues [2]. In such cases, it is often advisable to consider approximation techniques for a proper fitting
of the curve or surface to data. As it will be discussed later on, this is also the approach taken in this
paper. In particular, in this work, we will address the problem of parametric surface approximation
from clouds of data points for reverse engineering applications.

Parametric surface approximation techniques from data points are based on two key steps: surface
parameterization and data fitting. The parameterization stage is required to determine the topology of
the surface as well as its geometric shape and boundaries. Some classical parameterization techniques
have been described in the literature. Typical choices are the uniform, chordal, and centripetal
parameterizations (see Section 5.2 for details). Then, the surface control parameters are computed by
using a minimization scheme of an energy functional describing the difference between the original
and the reconstructed data points according to given metrics. This data fitting stage requires defining
a suitable approximation function. Several families of functions have been applied to this problem.
They include subdivision surfaces [6,7], function reconstruction [8], radial basis functions [9], implicit
surfaces [10], hierarchical splines [11], algebraic surfaces [12], polynomial metamodels [13], and
many others. However, the most popular choice is given by the free-form parametric basis functions
because they are very flexible and very well suited to represent any smooth shape with only a few
parameters. Typical examples of this family of functions include the Bézier, the B-spline and the
NURBS functions, which are the standard de facto for shape representation in a number of fields,
including computer graphics and animation, CAD/CAM, video games industry, and many others.

Roughly speaking, free-form parametric surfaces can be classified into two groups: global-support
surfaces and local-support surfaces. Global-support surfaces are mathematically described as a
combination of basis functions whose support is the whole domain of the problem. As a result,
they exhibit global control, which means that any modification of the shape of the surface through
movement of a pole is automatically propagated at some extent throughout the whole surface.
This does not happen for local-support surfaces, where only a local region of the surface is affected by
changes of the location of a pole. The Bézier surfaces, based on the Bernstein polynomials, are a good
example of global-support functions, while the B-splines and NURBS (based on the polynomial and
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rational B-spline basis functions, respectively) are representative examples of local-support functions.
In this work, we will focus exclusively on the problem of surface approximation with polynomial
Bézier surfaces. Note, however, that our method is general and can be applied to any global-support
free-form parametric surface without further modification.

1.2. Aims and Structure of the Paper

The main goal of this paper is to address the general problem of global-support free-form
parametric surface approximation from clouds of data points for reverse engineering applications.
Solving this problem in the most general case leads to a difficult nonlinear continuous least-squares
optimization problem. Some classical mathematical techniques (especially numerical methods) have
been applied to this problem during the last few decades. Although they provide reasonable
solutions for some real-world applications, they are still not optimal and hence there is room for
further improvement. Recently, the scientific community shifted the attention towards artificial
intelligence, and particularly metaheuristic techniques, which provide optimal or near-optimal
solutions to many hard optimization problems. A very remarkable feature of such techniques
is their ability to cope with problems that cannot be addressed through classical gradient-based
mathematical techniques; for instance, those involving functions which are non-differentiable or
even non-continuous, or in situations where little or no information is available about the problem.
However, this field is currently in its infancy and several problems (such as the one discussed in
this paper) still lack a general method to address them in its generality. A major limitation of the
metaheuristic techniques is that they typically require a lot of parameters that have to be tuned
for good performance. Unfortunately, this parameter tuning is problem-dependent and is typically
performed empirically, so it requires some expertise from the user, thus becoming a time-consuming
and error-prone process. These facts explain why they have been barely applied to this problem so far.
This paper is aimed at filling this gap.

In this work, we consider one of the most recent and promising metaheuristic techniques,
the cuckoo search algorithm (CSA), to compute all relevant free variables of this minimization problem,
namely, the data parameters and the surface poles. The originality of this work relies on the fact
that this method has never been applied to this problem so far. The relevance and innovation of
this approach with respect to any other metaheuristic technique is given by its extreme simplicity.
The cuckoo search algorithm only depends on two parameters, comparatively many fewer than any
other metaheuristic approach. As a consequence, the parameter tuning becomes much easier and
faster. This issue, discussed in detail in Sections 6.2 and 8, is a key contribution of this paper.

The proposed method includes the generation of new solutions by using the so-called Lévy flights,
a strategy to promote the diversity of solutions in order to explore the whole search space and prevent
stagnation (i.e., to get stuck in the neighborhood of local optima). The procedure is applied iteratively
until a prescribed termination criterion is met. In addition, the method is simple to understand and
easy to implement. These reasons explain why we choose the cuckoo search algorithm for this work.

The structure of this paper is as follows: previous work in the field of parametric surface
approximation is briefly reported in Section 2. Then, Section 3 introduces some basic concepts and
definitions in the field along with the problem to be solved. The algorithm used in this paper—the
cuckoo search algorithm with Lévy flights—is presented in Section 4. The proposed method is
discussed in detail in Section 5 and then applied in Section 6 to three illustrative sets of noisy data
points corresponding to surfaces exhibiting several challenging features. Comparative work of our
results with other classical mathematical techniques for this problem described in the literature along
with a recent modification of the CSA called Improved CSA is discussed in Section 7. The paper closes
in Section 8 with the main conclusions and some indications for plans about future work in the field.
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2. Previous Work

Many surface approximation methods have been described in the literature. In general, they can
be classified in terms of the available input. In the fields of medical science, biomedical engineering
and CAD/CAM, the initial input may consist of a set of given cross-sections or isoparametric
curves on the surface [14–17]. In other cases, mixed information is provided, such as scattered
points and contours [18] or isoparametric curves along with data points [19]. However, in reverse
engineering, it is usual that only the data points are available, often obtained by using some sort of
digitizing devices [20,21]. Early methods to solve this problem include function reconstruction [8],
radial basis functions [9], implicit surfaces [10], hierarchical splines [11], algebraic surfaces [12],
and many others. All these methods are not commonly supported within current modeling software
systems. More popular choices include triangular meshes and Loop subdivision surfaces [7].
However, structures with quadrilateral sets of poles, such as Catmull–Clark subdivision surfaces and
free-form parametric surfaces are de facto industry standard in CAD/CAM and other fields [1,6,22,23].
In particular, free-form parametric surfaces offer the highest level of accuracy, as required in applications
such as automobile crash simulation, fluid dynamics, finite element analysis and others [6].

Surface approximation with free-form parametric surfaces is not an easy task, as it requires
solving a difficult nonlinear continuous optimization problem. Classical mathematical techniques
have been applied to this problem during the last few decades [3,4,23]. Although they provide
reasonable solutions for some real-world applications, they are still not optimal and there is room for
further improvement. Consequently, the scientific community shifted the attention towards artificial
intelligence, mostly with artificial neural networks [20], including Kohonen neural networks [24]
and Bernstein networks [25]. However, they were mostly applied to arrange the input data in the
cases of unorganized points. After this pre-processing step, classical surface approximation methods
for organized points were typically applied. A work using a combination of neural networks and
Partial Differential Equation (PDE) techniques for surface approximation from 3D scattered points
can be found in [26]. A combination of genetic algorithms and neural networks is discussed in [27].
Some papers addressed this problem by using functional networks [28,29], a powerful generalization
of neural networks. A more recent paper describes the application of a hybrid neural-functional
network to NURBS surface reconstruction [30]. It was shown, however, that the application of neural
or functional networks is still not enough to solve the general case.

A very recent and promising trend in the field is the application of nature-inspired metaheuristic
techniques, which provide optimal or near-optimal solutions to difficult optimization problems
unsolvable with traditional optimization algorithms [31,32]. Curve approximation has been addressed
with genetic algorithms [33,34], artificial immune systems [35,36], estimation of distribution
algorithms [37], and hybrid techniques [38]. These works show that nature-inspired metaheuristic
methods exhibit a very good performance for the case of curves, suggesting that they might
also be very good candidates for the case of surfaces. Unfortunately, this path has been
barely explored so far. Remarkable exceptions are the surface approximation methods based on
particle swarm optimization [39], genetic algorithms [40,41] and immune genetic algorithms [42].
However, these methods are designed for either local-support surfaces or explicit functions and,
therefore, they are not applicable for the problem addressed in this paper. Aiming at filling this gap,
in this paper, we apply a metaheuristic technique (the cuckoo search) to surface approximation with
global-support surfaces.

3. Description of the Problem

3.1. Basic Concepts and Definitions

The most common surface representation for real-world applications is the parametric
representation. A parametric surface is defined as a mapping S : Ω ⊂ R2 −→ R3, so that any pair
(u, v) ∈ Ω is transformed into a three-dimensional vector S(u, v) = (x(u, v), y(u, v), z(u, v)). The set Ω
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is called the domain of the surface, and u and v are called the surface parameters. A free-form parametric
surface is defined by the tensor product expression:

S(u, v) =
M

∑
i=0

N

∑
j=0

si,j fi(u)gj(v) (1)

where {si,j}i,j = {(xi,j, yi,j, zi,j)}i=0,...,M;j=0,...,N are vector coefficients called the poles,
and { fi(u)}i=0,...,M and {gj(v)}j=0,...,N are basis functions (also called blending functions) belonging to
given families of linearly independent functions. A typical example of global-support basis functions
is given by the canonical polynomial basis: {hk(r)}k=0,...,L, where hk(r) = rk, for h = f , g; k = i, j;
r = u, v; and L = M, N. Other examples are, for instance, the Hermite polynomial basis functions,
the trigonometric basis functions, or the radial basis functions [4,5]. If the functions x(u, v), y(u, v),
and z(u, v) are polynomials in u and v, S is called a polynomial parametric surface. The degree of S in
variable u (resp. v) is the highest degree of the polynomials x(u, v), y(u, v), and z(u, v) in u (resp. v).

In this context, a free-form polynomial Bézier surface Φ(τ, ζ) of degree (η, σ) in Rd is given by:

Φ(τ, ζ) =
η

∑
i=0

σ

∑
j=0

Λi,jφ
η
i (τ)φ

σ
j (ζ) (2)

where {Λi,j}i=0,...,η;j=0,...,σ are the poles and the functions φ
ρ
k (r) are the Bernstein polynomials of index k

and degree ρ, given by:

φ
ρ
k (r) =

(
ρ

k

)
rk(1− r)ρ−k (3)

with
(

ρ

k

)
=

ρ!
k!(ρ− k)!

for k = 0, . . . , ρ and where r is a parameter defined on the unit interval [0, 1].

Note that, in this paper, vectors are denoted in bold. By convention, 0! = 1.

3.2. The Surface Approximation Problem

Let now {∆p,q}p=1,...,m;q=1,...,n be a given set of organized 3D data points. To replicate the usual
conditions of real-world experiments, in this work, we assume that the data points are affected
by measurement noise of low or medium intensity. The surface approximation problem consists
of obtaining the polynomial Bézier surface, Ψ(τ, ζ), of a certain degree (η, σ) providing the best
least-squares fitting of the data points. This leads to a minimization problem of the least-squares error
functional, Υ, related to the sum of squares of the residuals:

Υ = minimize
{τp}p
{ζq}q
{Λi,j}i,j

 m

∑
p=1

n

∑
q=1

(
∆p,q −

η

∑
i=0

σ

∑
j=0

Λi,jφ
η
i (τp)φ

σ
j (ζq)

)2


(4)

The case of unorganized data points can be formulated in a similar way. Suppose that they are
represented as: {∆k}k=1,...,κ . In this case, the minimization problem of the least-squares error functional
Υ becomes:

Υ = minimize
{τk}k
{ζk}k
{Λi,j}i,j

 κ

∑
k=1

(
∆k −

η

∑
i=0

σ

∑
j=0

Λi,jφ
η
i (τk)φ

σ
j (ζk)

)2


(5)

Obviously, solving this problem (4) or (5) in the general case requires computing all free variables,
i.e., poles Λi,j (for i = 0, . . . , η, j = 0, . . . , σ), and parameters τp and ζq associated with data points
∆p,q (for p = 1, . . . , m, q = 1, . . . , n) for the case of organized points, or parameters τk and ζk
associated with data points ∆k (for k = 1, . . . , κ) for the unorganized case, of the approximating
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surface. It is clear that, since each blending function in Equation (3) is nonlinear in τ and ζ, the
system (4) is also nonlinear. It is a continuous problem as well, since all parameters are real-valued.
In other words, we have to solve a highly nonlinear multivariate continuous optimization problem.
The problem is also known to be multimodal because there could be several optima of the target
function. Unfortunately, the classical optimization techniques cannot solve this problem in all its
generality. Clearly, more general optimization methods are needed. This paper overcomes this
limitation by applying the cuckoo search algorithm described in next section.

4. The Cuckoo Search Algorithm

4.1. Nature-Inspired Algorithms

The Cuckoo search algorithm (CSA) is a powerful metaheuristic method for optimization introduced
in 2009 by Xin-She Yang and Suash Deb [43]. It belongs to the family of nature-inspired algorithms,
a family of stochastic methods for optimization based on imitating certain biological or social processes
commonly found in the natural world. These methods have gain a lot of popularity in recent years
due to their ability to deal with large, complex, and dynamic real-world optimization problems.
Although they do not ensure finding the global optimal solution, in most cases, they are able
to find more accurate solutions to many problems than the classical mathematical optimization
methods. Typical examples of nature-inspired algorithms are the genetic algorithms, ant colony
optimization, artificial bee colony, particle swarm optimization, artificial immune systems and many
others. The reader is kindly referred to [31,32] for a gentle introduction to the field and a comprehensive
overview about different nature-inspired algorithms and their most popular applications.

4.2. Basic Principles

The cuckoo search algorithm is inspired by a peculiar behavior of some cuckoo species called
obligate interspecific brood-parasitism. This behavioral pattern is based on the fact that some species
exploit a suitable host to raise their offspring. It is believed that this strategy is used with the goals of
escaping from the parental investment in raising their offspring and minimizing the risk of egg loss to
other species. The latter is achieved by depositing the eggs in a number of different nests.

This surprising breeding behavioral pattern is used in the CSA as a metaphor for the development
of a powerful metaheuristic approach for solving optimization problems. In this method, the eggs in
the nest correspond to a pool of candidate solutions for a given optimization problem. In the simplest
form of the algorithm, it can be assumed that each nest has exactly one egg. The goal of the method is to
use these new (and potentially better) solutions associated with the cuckoo eggs to replace the current
solution associated with the eggs already deposited in the nest. This replacement, which is carried out
iteratively, might arguably improve the quality of the solution over the iterations, eventually leading
to a very good solution of the problem.

To make the algorithm suitable for optimization problems, some simplifications of the real
behavior in nature are required. In particular, the CSA is based on three idealized rules [43,44]:

1. Each cuckoo lays one egg at a time in a randomly chosen nest.
2. The nests with the best eggs (i.e., high quality of solutions) will be carried over to the next

generations, thus ensuring that good solutions are preserved over time.
3. The number of available host nests is always fixed. A host can discover an alien egg with

a probability pa ∈ [0, 1]. This rule can be approximated by the fact that a fraction pa of the n
available host nests will be replaced by new nests (with new random solutions at new locations).

Note that the quality or fitness of a solution for an optimization problem can simply be
proportional to the objective function or its opposite, depending on whether it is a minimization
or maximization problem, as it actually happens in this paper.
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4.3. The Algorithm

A pseudocode for the cuckoo search algorithm is shown in Algorithm 1. The algorithm starts with
an initial population of N host nests. The initial values of the kth component of the jth nest are given
by: xk

j (0) = µ.(upk
j − lowk

j ) + lowk
j , where upk

j and lowk
j represent the upper and lower bounds of that

kth component, respectively, and µ represents a uniform random variable on the open interval (0, 1).
These boundary conditions should be controlled at each iteration step to ensure that these values are
within the search space domain.

Algorithm 1: Cuckoo Search via Lévy Flights
begin

Objective function f (x), x = (x1, . . . , xd)
T with d = dim(Ω)

Generate initial population of N host nests xi (i = 1, 2, . . . , N)

while (t < MaxGeneration) or (stop criterion)
Get a cuckoo (say, i) randomly by Lévy flights
Evaluate its fitness Fi
Choose a nest among N (say, j) randomly
if (Fi > Fj)

Replace j by the new solution
end
A fraction (pa) of worse nests are abandoned and new ones are built via Lévy flights
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

end

For each iteration t, a cuckoo egg, say i, is selected randomly and new solutions xt+1
i are generated.

This random search performed can be executed more efficiently by using Lévy flights rather than with
a simple random walk. The Lévy flights are a type of random walk in which the steps are defined in
terms of the step-lengths that follow a certain probability distribution in which the directions of the
steps must be isotropic and random. In this case, the general equation for the Lévy flight is given by:

xt+1
i = xt

i + α⊕ levy(λ) (6)

where the superscript t is used to indicate the current generation, the symbol ⊕ is used to indicate
the entry-wise multiplication, and α > 0 indicates the step size. This step size determines how far
a particle can move by random walk for a fixed number of iterations. The transition probability of the
Lévy flights in Equation (6) is modulated by the Lévy distribution as:

levy(λ) ∼ g−λ, (1 < λ ≤ 3) (7)

which has an infinite variance with an infinite mean. From the computational standpoint, the generation
of random numbers with Lévy flights consists of two main steps: firstly, a random direction according
to a uniform distribution is chosen; then, the sequence of steps following the chosen Lévy distribution
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is generated. In this paper, we use Mantegna’s algorithm for symmetric distributions (see [31] for
details). This approach computes the factor:

φ̂ =

 Γ(1 + β̂).sin
(

π.β̂
2

)
Γ
((

1+β̂
2

)
.β̂.2

β̂−1
2

)


1
β̂

(8)

where Γ denotes the Gamma function. In the original implementation in [44], the value β̂ =
3
2

is used
and so we do the same in this paper. This factor is used in Mantegna’s algorithm to calculate the step
length ς as:

ς =
u

|v|
1
β̂

(9)

where u and v follow the normal distribution of zero mean and deviation σ2
u and σ2

v , respectively.
Here, σu follows the Lévy distribution given by Equation (8) and σv = 1. Then, the step size ζ is
calculated as:

ζ = 0.01 ς (x− xbest) (10)

where ς is obtained according to Equation (9). Finally, x is modified as: x ← x + ζ.Ψ, where Ψ is
a random vector of the dimension of the solution x and follows the normal distribution N(0, 1).

The CSA evaluates the fitness of the new solution and compares it with the current one. In case
of improvement, this new solution replaces the current one. Then, a fraction of the worse nests are
skipped and replaced by new random solutions so as to increase the exploration of the search space.
The replacement rate is determined stochastically through a parameter called the probability value pa,
which should be properly tuned for better performance. Then, all current solutions are ranked at each
iteration step according to their fitness and the best solution reached so far is stored as the vector xbest
in Equation (10). The algorithm is applied iteratively until a prescribed stopping criterion is met.

5. Method

5.1. Overview of the Method

As discussed in the previous section, the surface approximation problem with parametric Bézier
surfaces consists of obtaining a faithful mathematical representation of the underlying geometrical
shape of a cloud of data points in terms of a polynomial Bézier surface of a certain degree (η, σ).
In our approach, the quality of this fitting is computed through the least-squares error functional
Υ, described in Equation (4). This process requires to solve a nonlinear continuous least-squares
minimization problem while simultaneously minimizing the number of free variables of the problem.
The proposed method to tackle this issue is based on the cuckoo search algorithm with Lévy flights
described in Section 4. In particular, we have to compute two different sets of unknowns: data
parameters and surface poles. Accordingly, our method can be organized into two main steps:

1. data parameterization,
2. surface fitting.

The method can be summarized as follows: given a surface degree (η, σ), we apply the CSA with
Lévy flights to data parameterization in Section 5.2. Then, data fitting is performed via least-squares to
compute the poles of the surface in Section 5.3. We explain now these two steps in detail.

5.2. Data Parameterization

The goal of this step is to obtain an adequate association between the set of parameters{
τp, ζq

}
p=1,...,m;q=1,...,n and the data points

{
∆p,q

}
. Getting a good parameterization is crucial for
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an accurate approximation to data points, as a proper parameterization captures the actual topology
and geometric connectivities of the surface from the available data.

The most usual approaches for data parameterization are the uniform, chordal, and centripetal
methods [23]. The uniform parameterization is given by:

τ1 = 0, τm = 1, τp =
p− 1
m− 1

,

ζ1 = 0, ζn = 1, ζq =
q− 1
n− 1

(11)

for (p = 2, . . . , m− 1) and (q = 2, . . . , n− 1). This method is generally not recommended, as some
authors remarked that it can yield erratic shapes (such as loops) for unevenly spaced data [5,23].

A better alternative is the chordal parameterization, where the data parameters {τ1, . . . , τm} and
{ζ1, . . . , ζn} are obtained by a two-step procedure. Firstly, for every for p = 1, . . . , m and q = 1, . . . , n,
we compute the parameters {τq

1 , . . . , τ
q
m} and {ζ p

1 , . . . , ζ
p
n} according to the equations:

τ
q
1 = 0, τ

q
m = 1, τ

q
p = τ

q
p−1 +

|∆p,q − ∆p−1,q|
m

∑
p=1
|∆p,q − ∆p−1,q|

,

ζ
p
1 = 0, ζ

p
n = 1, ζ

p
q = sp

q−1 +
|∆p,q − ∆p,q−1|

n

∑
q=1
|∆p,q − ∆p,q−1|

(12)

Secondly, we compute {τp}p=1,...,m and {ζq}q=1,...,n as τp =
1
n

n

∑
q=1

τ
q
p and ζq =

1
m

m

∑
p=1

ζ
p
q ,

respectively. This method is widely used for many practical applications, as it accounts for
the actual distribution of sampled points. It is therefore suitable for many real-world instances.
Furthermore, it also approximates the uniform parameterization pretty well.

Another popular method is given by the centripetal parameterization, which usually yields better
results than chordal parameterization for shapes exhibiting sharp turns. The procedure is similar to
that of the chordal parameterization by simply replacing Equation (12) by:

τ
q
1 = 0, τ

q
m = 1, τ

q
p = τ

q
p−1 +

√
|∆p,q − ∆p−1,q|

m

∑
p=1

√
|∆p,q − ∆p−1,q|

,

ζ
p
1 = 0, ζ

p
n = 1, ζ

p
q = sp

q−1 +

√
|∆p,q − ∆p,q−1|

n

∑
q=1

√
|∆p,q − ∆p,q−1|

(13)

These three parameterizations will be used in Section 7 for the comparative work with our method.
In our method, the data parameterization stage is performed through the cuckoo search algorithm

described in Section 4. To this aim, we consider an initial population of Mp × Nq candidate
solutions (i.e., eggs in our metaphor), represented by the parameter vectors {τi

1, . . . , τi
m}i=1,...,Mp

and {ζ j
1, . . . , ζ

j
n}j=1,...,Nq , for the case of organized points. The case of unorganized points is totally

similar so we skip the discussion here. All data parameters are initialized with random numbers
within the hypercube [0, 1]m × [0, 1]n ⊂ Rm.n. For computational efficiency, we store the particles as
the super-vector V = {T ,Z}, where T = {τp} and Z = {ζq}. The fitness function is given by either
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Equation (4) or Equation (5). However, these functionals do not take into account the number of
sampled points, so we also consider the root-mean square error (RMSE), given by either:

RMSEo =

√
Υ

m.n
(14)

or

RMSEu =

√
Υ

κ
(15)

for the organized and unorganized points, respectively. Regarding our stopping criterion, the cuckoo
search algorithm is executed for a fixed number of iterations (see Section 6.2 for details).

5.3. Data Fitting

Using the parameterization calculated in previous step, the surface poles {Λi,j}i,j are now
computed. Note that Equation (4) can be rewritten as:

D = Ξ.Λ (16)

where D =
〈
({∆p,q})T〉, Λ =

〈
({Λi,j})T〉, and Ξ represents the matrix of all tensor products of

the pairs of basis functions valued on the best parametric values obtained in the previous step.
Here, (.)T denotes the transpose of a vector or matrix while 〈.〉 denotes the vectorization of a matrix
(a linear transformation that converts the matrix into a column vector by stacking its columns on
top of one another). Note that vector D is of length either m× n or κ, while vector Λ is of length
(η + 1)× (σ+ 1). This means that the system (16) is over-determined, and therefore it has not analytical
solution. Pre-multiplication of both sides of (16) by ΞT gives:

ΞT .D = ΞT .Ξ.Λ (17)

The expression (17) can be solved numerically by a classical linear least-squares minimization.
This task can be performed by either LU (lower-upper) decomposition or singular value decomposition
(SVD). In this work, we choose SVD because it yields the best answer in the sense of the least-squares.
To this aim, SVD calculates the generalized inverse (also known as Moore–Penrose pseudo-inverse) of Ξ,
denoted by Ξ+. Then, Λ = Ξ+.D is the least-squares solution of this surface data fitting problem.

6. Results

6.1. Graphical and Numerical Results

The method described in previous paragraphs has been applied to a benchmark of three
illustrative sets of data points, labelled as Example I to Example III, respectively. These examples
have been carefully chosen so that they correspond to surfaces exhibiting several challenging features.
Examples I and II correspond to height maps with several changes of concavity. Therefore, they are
good candidates to check the ability of our method to capture such changes of concavity and the
different curvatures of the underlying geometrical shape of data points. Example III is the most
challenging one. On one hand, it is not a height map but a self-intersecting surface that cannot be
represented as an explicit function. On the other hand, it exhibits cusp points and several branches.
These features make it a very difficult shape to be approximated through a polynomial Bézier surface.
In all these examples, the data points are affected by noise and irregular sampling, so they replicate
faithfully the usual conditions of real-world applications. The corresponding experimental setup is
fully reported in Table 1. For each example in our benchmark (in columns), the table reports (in rows)
the following values: number of data points, number of free variables (i.e., degrees of freedom, DOFs)
of the associated optimization problem, noise intensity (SNR), and degree of the approximating Bézier
surface used in this paper.
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Example I corresponds to a set of 841 data points sampled from a synthetic surface and organized
in a grid of size 29× 29. They are shown in Figure 1 top. The data points are affected by an additive
random Gaussian white noise with a signal-to-noise ratio (SNR) of SNR = 20.75, corresponding to
a moderately low-intensity noise for our problem. We applied our method to this example for a Bézier
surface of degree (η, σ) = (5, 5). Figure 1 bottom shows the best approximating surface that we
obtained along with the data points. As the reader can see, the surface approximates the cloud of
data points very well, even although the cloud is affected by measurement noise. This example
is more challenging than it seems at first sight, since the geometrical shape of the data points
contains many changes of concavity corresponding to several hills and valleys at different locations.
However, the approximating surface matches those features with good visual quality.

Figure 1. Application of our method to Example I: (top) given cloud of noisy data points; (bottom)
noisy data points and best approximating Bézier surface.
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Table 1. Experimental setup used in this paper. For the three examples in the benchmark (in columns),
the table reports (in rows): number of data points, DOFs (degrees of freedom), SNR (signal-to-noise
ratio) value, and degree of the approximating Bézier surface.

Iterm Example I Example II Example III

κ 841 1681 628

DOFs 1754 3562 1328

SNR 20.75 12.5 18

Degree (5, 5) (9, 9) (5, 5)

The convergence diagram for this example is shown in Figure 2. It displays the mean value of the
error functional Υ (first row of Table 2) over the iterations. As you can see, the error decreases very
quickly at the beginning, and then reduces the declining speed until finally reaching a plateau value
for about 1400 iterations. We can also see that the method converges in less than 2000 iterations.

Iterations
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Figure 2. Convergence diagram for Example I.

Table 2 shows the mean value, variance, and standard deviation of the X, Y and Z coordinates
(arranged in rows) of the estimated data points for the three examples (in columns) of our benchmark.

Example II is graphically represented in Figure 3 (the description of this figure is similar to the
previous example so it is omitted to avoid redundant material). In this example, we consider a set of
1681 data points organized in a grid of size 41× 41 and affected by a noise of signal-to-ratio SNR = 12.5,
corresponding to a medium intensity noise. The best approximating surface corresponding to the
case of degree (η, σ) = (9, 9), along with the noisy data points is displayed in Figure 3 bottom.
Once again, this approximating surface captures the shape of data points with good visual quality.
The corresponding convergence diagram for this example is shown in Figure 4.
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Table 2. Mean value, variance and standard deviation of the X, Y and Z coordinates (in rows) of the
estimated data points for the three examples (in columns) of our benchmark.

Iterm Example I Example II Example III

Mean value (X): 1.323329 × 10−2 1.170657 × 10−2 4.035762 × 10−2

var (X): 4.513201 × 10−7 1.233936 × 10−6 9.392598 × 10−6

std (X): 9.500738 × 10−5 1.570946 × 10−4 4.334189 × 10−4

Mean value (Y): 1.324084 × 10−2 9.279757 × 10−3 3.775183 × 10−2

var (Y): 5.311829 × 10−8 2.451310 × 10−7 3.939023 × 10−6

std (Y): 3.259395 × 10−5 7.001871 × 10−5 2.806785 × 10−4

Mean value (Z): 2.281740 × 10−2 6.965113 × 10−3 2.538050 × 10−2

var (Z): 5.682211 × 10−8 7.304708 × 10−10 1.648420 × 10−6

std (Z): 3.371115 × 10−5 3.822226 × 10−10 1.815720 × 10−4

Figure 3. Application of our method to Example II: (top) given cloud of noisy data points; (bottom) noisy
data points and best approximating Bézier surface.
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Iterations
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Figure 4. Convergence diagram for Example II.

Figure 5 shows the results for the Example III. As mentioned above, it corresponds to a very
difficult shape, as it includes self-intersections and multiple branches. Actually, even the underlying
geometrical shape is difficult to discern from the cloud of 628 unorganized and noisy data points
shown in the upper picture—in this case, the SNR = 18, corresponding to noise of low intensity.
The best approximating Bézier surface corresponding to the degree (5, 5) is shown in the lower picture.
It clearly shows that the four corners of the shape meet together at a cusp point, so the surface is
actually self-intersecting. In spite of all these difficult features, the method performs pretty well and can
replicate the original shape with high accuracy. Note, for instance, the nice visual matching between
the original data points and the approximating surface. As usual, Figure 6 shows the convergence
diagram for this example.

These good visual results are also confirmed by our numerical results, reported in Table 3.
The different examples in our benchmark are arranged in columns. For each example, the table reports
(in rows) the mean value, best value, variance, and standard deviation of the error functional Υ given
by Equations (4) and (5), and mean and best value of the RMSE given by Equation (15). All results in
the table have been obtained from 50 independent executions to avoid spurious results derived from
the stochasticity of the process.

Table 3. Fitting errors for the examples (arranged in columns) of the benchmark used in this paper.
The table reports (in rows): mean, best, variance and standard deviation of the Υ error, and mean and
best RMSE (root-mean-square error) from 50 independent executions.

Iterm Example I Example II Example III

Υ (mean) 5.880665 × 10−2 3.868251 × 10−2 1.390415 × 10−1

Υ (best) 2.073165 × 10−2 1.541309 × 10−2 8.072414 × 10−2

Υ (var) 2.915582 × 10−4 1.688052 × 10−4 1.203554 × 10−3

Υ (std) 1.707507 × 10−2 1.296349 × 10−2 3.468796 × 10−2

RMSE (mean) 8.362097 × 10−3 4.797041 × 10−3 1.487963 × 10−2

RMSE (best) 4.964996 × 10−3 3.028035 × 10−3 1.133762 × 10−2
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Figure 5. Application of our method to Example III: (top) given cloud of noisy data points; (bottom)
noisy data points and best approximating Bézier surface.
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Figure 6. Convergence diagram for Example III.
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As shown in the table, the method exhibits a good performance for the three instances of
our benchmark. The mean and best values for Υ are of order 10−1 to 10−2 and order 10−2,
respectively. Similarly, the mean and best values of RMSE are of order 10−2 to 10−3 in all cases.
Furthermore, the variance and standard deviation show that results for the 50 independent executions
are neither too far away nor too dispersed from each other. We remark that these good results are
obtained for difficult shapes and adverse conditions, such as noisy data points and irregular sampling.
These features prevent the method from obtaining a higher approximation accuracy, but, at the same
time, they reflect very common situations in real-world settings. From our results, we can conclude
that the method can be applied to real-world problems without any further pre/post-processing.

6.2. Parameter Tuning

A major limitation of all metaheuristic techniques is that they depend on a number of parameters
that have to be properly tuned because the choice of good values for these parameters will largely
determine the good performance of the method. This choice is a very difficult task for several reasons:
on one hand, the field lacks sufficient theoretical studies about this problem; on the other hand,
the optimal choice of parameter values is problem-dependent, so good values for a particular problem
might be no longer good for other problems. Because of these facts, the parameter tuning becomes
a serious problem for the application of metaheuristic techniques.

In this sense, the cuckoo search algorithm is particularly favorable because of its simplicity.
In contrast to other metaheuristic methods that need a large number of parameters, the CSA only
requires two parameters:

• the population size Np, and
• the probability pa.

In this paper, we consider a population of Np = 100 host nests, representing the number of
candidate solutions for the method. Regarding the parameter pa, our choice is completely empirical:
we carried out some simulations for different values of this parameter, and found that the results do
not change significantly in any case. However, we observed that values around pa = 0.25 reduce the
number of iterations required for convergence, so this is the value taken in this paper.

6.3. Implementation Issues

All the computational work in this paper has been performed on a personal PC with
a 2.6 GHz Intel Core i7 processor (Santa Clara, CA, USA) and 8 GB of RAM. The source code has been
implemented by the authors in the programming language of the popular numerical program Matlab,
version 2015b (MathWorks, Natick, MA, USA). We remark that an implementation of the cuckoo search
algorithm was already presented in [43]. However, our implementation follows a (more efficient)
vectorized implementation freely available in [45], but adapted to the problem in this paper.

6.4. Computation Times

Regarding the CPU time, a typical execution takes from some minutes to a few hours,
depending on the shape complexity of data, the termination criteria, the quality of parameter tuning,
and other factors. For illustration, for the computer with the technical specifications indicated in
previous section, the CPU time for Example I is about 33–35 min per execution, about 67–70 min for
Example II, and about 26–28 min for Example III. These CPU times are quite reasonable because these
examples require solving a difficult continuous nonlinear problem involving thousands of variables
and without any further information about the problem beyond the data points.
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7. Discussion

7.1. Comparative Work

In this section, we compare our method with other alternative approaches for parametric
surface approximation described in the literature. Among them, those based on computing different
parameterizations are widely used due to their speed and simplicity. The most popular options
are the uniform, chordal and centripetal parameterizations (described in Section 5.2), so we include
them in our comparison. In addition, one of the reviewers suggested to us to include a recent
modification of the classical CSA called Improved Cuckoo Search Algorithm (ICSA). The modification
is based on the idea of allowing the method parameters to change over the generations [46]. In our
case, this means the probability rate pa, which is primarily used to promote exploration of the search
space. Therefore, it makes sense to modify it dynamically starting from a high value, pmax

a , to perform
extensive exploration and gradually reducing it until a low value, pmin

a , to promote exploitation
and eventually homing into the optimum. In this paper, we take: pmax

a = 0.5 and pmin
a = 0.1.

We also carried out several simulations for other values, varying pmax
a on the interval [0.3, 0.7] with

step-size 0.1, and pmin
a on the interval [0.05, 0.35] with step-size 0.05, but the results do not change

significantly. This new method is also included in our comparison.
Table 4 shows the comparative results of our approach with these four alternative methods for the

three examples in our benchmark (arranged in rows). The different methods are arranged in columns.
They include the cases of uniform, chordal and centripetal parameterizations, the method used in this
paper and its modification ICSA, respectively. For each example and method, we report the mean
value, the best value, the variance, and the standard deviation of the error functional Υ, and the mean
and best values of the RMSE. Best results are highlighted in bold for easier identification. We also show
(in rows) the error rate (in percent) with respect to the best method for better and easier comparison.

Table 4. Comparative analysis of different methods (in columns) for the three examples of this paper
(in rows). Best results are highlighted in bold.

Surface Fitting Uniform Chordal Centripetal Cuckoo Improved
Example Error Param. Param. Param. Search (CSA) CSA (ICSA)

Example I

Υ (mean) 1.120627 × 10−1 1.480965 × 10−1 8.845724 × 10−2 5.880665 × 10−2 5.758827 × 10−2

E.R. (in %) (193.6) (255.9) (152.8) (101.6) −
Υ (best) 5.611987 × 10−2 6.956061 × 10−2 4.960015 × 10−2 2.073165 × 10−2 2.114396 × 10−2

E.R. (in %) (270.7) (335.5) (239.2) − (102.0)
Υ (var) 2.568297 × 10−2 2.420068 × 10−5 5.946705 × 10−4 2.915582 × 10−4 1.912503 × 10−5

Υ (std) 4.111509 × 10−1 4.919419 × 10−3 2.438586 × 10−2 1.707507 × 10−2 4.373208 × 10−2

RMSE (mean) 1.154337 × 10−2 1.327011 × 10−2 1.025578 × 10−2 8.362097 × 10−3 8.275019 × 10−3

E.R. (in %) (139.5) (160.4) (123.9) (101.1) −
RMSE (best) 8.168839 × 10−3 9.094602 × 10−3 7.679687 × 10−3 4.964996 × 10−3 5.014126 × 10−3

E.R. (in %) (164.5) (183.2) (154.6) − (101.0)

Example II

Υ (mean) 4.781280 × 10−2 4.751447 × 10−2 4.297031 × 10−2 3.868251 × 10−2 3.775440 × 10−2

E.R. (in %) (126.6) (125.8) (113.8) (102.5) −
Υ (best) 3.788349 × 10−2 3.911705 × 10−2 2.957763 × 10−2 1.541309 × 10−2 2.093271 × 10−2

E.R. (in %) (245.8) (253.8) (191.9) − (135.8)
Υ (var) 2.866010 × 10−5 2.420068 × 10−5 6.589306 × 10−5 1.688052 × 10−4 5.547001 × 10−6

Υ (std) 5.353513 × 10−3 4.919419 × 10−4 8.117478 × 10−3 1.296349 × 10−2 2.355206 × 10−3

RMSE (mean) 5.333204 × 10−3 5.316540 × 10−3 5.055922 × 10−3 4.797041 × 10−3 4.739144 × 10−3

E.R. (in %) (112.5) (112.2) (106.7) (101.2) −
RMSE (best) 4.747239 × 10−3 4.823909 × 10−3 4.194670 × 10−3 3.028035 × 10−3 3.528814 × 10−3

E.R. (in %) (156.7) (159.3) (138.5) − (116.5)
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Table 4. Cont.

Surface Fitting Uniform Chordal Centripetal Cuckoo Improved
Example Error Param. Param. Param. Search (CSA) CSA (ICSA)

Example III

Υ (mean) 7.528725 × 10−1 5.691582 × 10−1 4.241297 × 10−1 1.390415 × 10−1 1.367894 × 10−1

E.R. (in %) (550.4) (416.1) (310.1) (101.6) −
Υ (best) 4.988371 × 10−1 3.455608 × 10−1 1.003214 × 10−1 8.072414 × 10−2 1.025736 × 10−1

E.R. (in %) (617.9) (428.1) (124.3) − (127.1)
Υ (var) 1.526136 × 10−2 5.720855 × 10−1 3.066099 × 10−2 1.203554 × 10−3 2.485324 × 10−4

Υ (std) 1.235368 × 10−3 1.250304 × 10−1 1.751028 × 10−1 3.468796 × 10−2 1.576491 × 10−2

RMSE (mean) 3.462429 × 10−2 3.010486 × 10−2 2.598780 × 10−2 1.487963 × 10−2 1.475864 × 10−2

E.R. (in %) (234.6) (204.0) (176.1) (100.9) −
RMSE (best) 2.818380 × 10−2 2.345753 × 10−2 1.263912 × 10−2 1.133762 × 10−2 1.278020 × 10−2

E.R. (in %) (248.6) (206.9) (111.5) − (112.7)

The error rate (E.R., expressed in %) is computed with respect to the reference value of the best method
(highlighted in bold in the table). Other abbreviations are as follows: var means variance; std means standard
deviation; RMSE means root-mean-square error.

Some interesting results of this comparative work are:

• Our method improves the most classical parameterization methods described in the literature in
our comparison. The error rate of the alternative approaches with respect to our method shows
that it provides a significant improvement, not just incremental enhancements. This fact is also
visible in Figures 7–9, where the resulting Bézier surfaces for the uniform, chordal, and centripetal
parameterizations, and with our method are displayed for easier visual inspection for the three
examples in our benchmark, respectively.

Figure 7. Visual comparison of different methods for Example I: (top-left) uniform parameterization;
(top-right) chordal parameterization; (bottom-left) centripetal parameterization; (bottom-right)
our method.
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• Among these parametrization methods, the centripetal parameterization yields the closest results
to ours in all cases. In fact, it might be a competitive method for some applications, but fails to
yield even near-optimal solutions. This fact is clearly noticeable from Table 4 by simple visual
inspection of the corresponding numerical values.

• In general, both the uniform and the chordal parameterization yields approximation surfaces
of moderate quality. We also remark that the chordal approximation performs even worse than
uniform parameterization for Example I while it happens the opposite way for Example III and they
perform more or less similarly for Example II. These results are related to the fact that data points
for Example I and Example II are noisy but organized, while they are unorganized for Example III.
The uniform parameterization does not perform well for such uneven distribution of points.

• The comparison of CSA and its variant ICSA shows that they perform very similarly for the
three examples in the benchmark. In fact, the mean value is slightly better for ICSA while the
best value is better for CSA for the three examples. This means that the method ICSA tends to
have less variation for different executions (as confirmed by the smaller values for the variance
and standard deviation than CSA), but CSA is better at approaching to the global minima.
However, the differences between both methods are very small and none of them seems to
dominate the other for our benchmark.

Figure 8. Visual comparison of different methods for Example II: (top-left) uniform parameterization;
(top-right) chordal parameterization; (bottom-left) centripetal parameterization; (bottom-right)
our method.
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Figure 9. Visual comparison of different methods for Example III: (top-left) uniform parameterization;
(top-right) chordal parameterization; (bottom-left) centripetal parameterization; (bottom-right)
our method.

7.2. Statistical Analysis

It is always advisable to perform some kind of statistical analysis for a more rigorous comparison
among different algorithms. It has been pointed out that the parametric tests, albeit widely used
in the analysis of experiments, are based on assumptions that are commonly violated in the field
of computational intelligence, and, hence, nonparametric tests are recommended instead [47].
According to this remark, we performed a statistical analysis of our results using two popular
nonparametric tests for pairwise comparisons: the two-sided Wilcoxon signed rank test (labelled
Wilcoxon sign for short in this paper) and the two-sided Wilcoxon rank sum test (labelled Wilcoxon sum
here, and that is equivalent to a Mann–Whitney U-test).

The corresponding results of this nonparametric statistical analysis are reported in Table 5.
We perform pairwise comparisons of our CSA-based approach with each of the four alternative
methods (in rows) for the three examples in the paper (in columns). For each pair, we compute the
following parameters (in rows): the p-value, the signed rank, and the value of h for the Wilcoxon sign
test, and p-value, the rank sum, and the value of h for the Wilcoxon sum test. For both tests, the value
h = 1 indicates that the null hypothesis of equality of means is rejected for the level of significance
α = 0.05 (the threshold value), while the value h = 0 indicates a failure to reject the null hypothesis.
We also consider higher values for α when necessary for a more accurate analysis of our results.

As shown in Table 5, the p-value of the pairwise comparison between our CSA-based method
and the three most classical parameterization methods is very small, ranging from 10−4 to 10−18.
In addition, the h index takes the value 1 for all these pairs and all the examples in this paper. These
results indicate a significant improvement of our method over these parameterization schemes with a
level of significance α = 0.05. The only exception is given by the centripetal parameterization for the
Example II, where the p-values are of order 10−2 and 10−1 for the Wilcoxon sign and the Wilcoxon sum,
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respectively, leading to a value h = 0 for α = 0.05. However, we also obtained h = 1 for α = 0.1 and
α = 0.15, respectively. This means that the our method outperforms the centripetal parameterization
for such levels of significance.

On the other hand, the pairwise comparison of CSA and ICSA indicates that they perform
similarly, as the p-value is always larger than 0.3 and the h index takes the value h = 0 for all the
examples and both nonparametric tests. From these data, we can conclude that both methods are
equivalent and none of them can claim superiority over the other. These results confirm our previous
assessment from Table 4 about the comparison between both methods for the problem in this paper.

Table 5. Pairwise nonparametric statistical tests of the methods in our comparison (in rows) for the
three examples in this paper (in columns). Unless otherwise stated, the level of significance for the tests
is assumed to be α = 0.05.

Comparison Index Example I Example II Example III

CSA vs. Uniform

p-value (Wilcoxon sign): 8.663083 × 10−8 1.572960 × 10−4 7.556929 × 10−10

signed rank: 1192 1029 1275
h: 1 1 1

p-value (Wilcoxon sum): 3.191585 × 10−7 1.115515 × 10−4 7.032679 × 10−18

rank sum: 3267 3086 3775
h: 1 1 1

CSA vs. Chordal

p-value (Wilcoxon sign): 8.534226 × 10−10 4.000165 × 10−5 1.110095 × 10−9

signed rank: 1273 1063 1225
h: 1 1 1

p-value (Wilcoxon sum): 8.003963 × 10−17 3.919684 × 10−5 1.032414 × 10−17

rank sum: 3734 3122 3675
h: 1 1 1

CSA vs. Centripetal

p-value (Wilcoxon sign): 6.394483 × 10−6 8.626159 × 10−2 1.087244 × 10−8

signed rank: 1105 460 1269
h: 1 1 (α = 0.1) 1

p-value (Wilcoxon sum): 8.317099 × 10−6 0.148521 × 10−1 1.109774 × 10−15

rank sum: 3172 2325 3688
h: 1 1 (α = 0.15) 1

CSA vs. ICSA

p-value (Wilcoxon sign): 4.784510 × 10−1 8.280511 × 10−1 4.900625 × 10−1

signed rank: 441 615 709
h: 0 0 0

p-value (Wilcoxon sum): 3.883964 × 10−1 p = 7.275182 × 10−1 3.024247 × 10−1

rank sum: 2125 2475 2675
h: 0 0 0

8. Conclusions

This paper addresses the general problem of global-support free-form parametric surface
approximation from clouds of (either organized or scattered) noisy data points for reverse engineering
applications. Given a set of measured data points, the approximation is formulated as a nonlinear
continuous least-squares optimization problem. Then, a recent metaheuristics called cuckoo search
algorithm is applied to compute all relevant free variables of this minimization problem: the data
parameters and the surface poles. The method includes the iterative generation of new solutions by
using the Lévy flights, a strategy to promote the diversity of solutions and prevent stagnation. A critical
advantage of this method is its simplicity: the cuckoo search algorithm requires only two parameters,
many fewer than any other metaheuristic approach, so the parameter tuning becomes an easy task.
The method is also very simple to understand and easy to implement. The method is very general,
in the sense that it can be applied not only to parametric Bézier surfaces, but also to any other
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global-support free-form parametric surface by simply replacing the Bernstein polynomials by the
corresponding basis functions without further modification.

The proposed method has been applied to a benchmark of three illustrative sets of noisy data
points corresponding to surfaces exhibiting several challenging features. For instance, they include
both organized and unorganized data points (the first two examples and the last one, respectively).
They also include several changes of concavity, strong changes of curvature, cusp points and
self-intersections. Our experimental results show that the method performs very well for all instances in
our benchmark. We also carried out some comparative work with the three most classical mathematical
techniques for this problem as well as a recent variant of the cuckoo search algorithm called Improved
CSA. Our numerical results and nonparametric statistical tests show that our method improves the
accuracy of the results of these three classical methods in all cases. Furthermore, the improvement rate
is significant, not merely incremental, as confirmed by the statistical tests. The pairwise comparison
between our method and ICSA show that they perform similarly for this problem. This result can
be explained by the observation that the performance of the CSA is barely affected by changes of the
pa parameter. In fact, the performance is not affected by choosing a fixed value for pa or changing it
dynamically, provided that those values are taken in a similar region. As a consequence, both CSA
and ICSA can be successfully applied to this problem without any statistical advantage over the other.
In this case, CSA is recommended because of its simplicity. We can conclude that our method performs
very well and can be directly applied to real-world applications for reverse engineering without further
pre/post-processing.

The main advantages of our method are its good performance and its simplicity. While the
former can also be attained with other methods (such as ICSA, as discussed in Section 7, and possibly
others), the latter is a clear advantage with respect to other powerful and popular metaheuristic
methods such as genetic algorithms, particle swarm optimization (PSO), and others. In general,
such methods depend on several parameters that have to be properly tuned for good performance.
In addition, because this choice is problem-dependent, it is typically performed empirically, mostly on
a trial-and-error basis. This leads to a cumbersome, time-consuming and error-prone process. In clear
contrast, the parameter tuning with CSA is very simple, as our method does depend on only two
parameters. Furthermore, the method is very robust against changes of these parameters, meaning
that we do not need an optimal tuning for good performance. This does not happen with genetic
algorithms, PSO and other methods, whose behavior is strongly affected by the choice of parameter
values. Thus, CSA is particularly advantageous for applications where little or no knowledge about
the problem to be solved is available.

The main limitations of this method concern the computation times and its inability to ensure that
a global optimum is achieved. About the former, the CPU times range from several minutes to a few
hours, which can be cumbersome (even unacceptable) for some practical applications. About the latter,
this limitation is not exclusive of the CSA, but it applies to all metaheuristic techniques. The field still
lacks theoretical studies about the conditions for convergence of the method to global optima. This fact
can be a limiting factor for some critical applications, particularly those hazardous where safety is
a must.

Our future work includes the extension of this method to more general surfaces. We are
particularly interested in the case of rational surfaces, where we have some additional variables that
have to be computed as well. Some applications to real-world problems in fields such as CAD/CAM
and computer graphics are also part of our plans for future work in the field.
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