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Neuromuscular electrical stimulation 
in stroke
It is clear that Luigi Galvani served as the founder 
of modern neurophysiology and the use of elec-
trical current to control paralyzed muscles [1]. In 
particular, the discovery of the ability of electric 
current to stimulate paralyzed muscles of a frog 
is often referred to as the starting point of neu-
romuscular electrical stimulation (NMES; see 
Box 1) in stroke research. The first applications of 
NMES in clinical medicine were reported in the 
early 1960s. After extensive laboratory and ani-
mal testing, the first pacemaker was implanted 
in 1958.

The first paper reporting on the use of NMES 
in neurological patients was published in 1961. 
Liberson described the use of electrical current 
to stimulate the dorsal flexors of the foot in 
stroke patients to prevent drop-foot during the 
swing phase of gait [2]. The technique reported 
by Liberson can be regarded as a ‘neural pros-
thesis’, that is, the stimulation is used to generate 
muscular contractions and, hence, to substitute 
for lost functional movements. Although some 
colleagues prefer the word ‘functional electrical 

stimulation’ (see Box 1) for this type of neuro-
stimulation, the term ‘neural prostheses’ better 
describes the category of medical devices using 
electrical current to compensate for a deficient 
neural system. 

Several reviews and studies have been pub-
lished on the use of NMES in different neuro-
logical disorders [3–10]. In stroke rehabilitation, 
NMES can be used twofold; besides being a 
neural prosthesis, for example to prevent drop-
foot, electrical current can be used to modulate 
neural activity to either regain voluntary muscle 
contractions or to prevent abnormal muscle reac-
tions, for example due to spasticity. Somewhat 
complicating, however, is the possibility that 
both goals can be pursued simultaneously and 
that the last few decades showed that such an 
interaction has been achieved [11]. Indeed, a 
peroneal nerve stimulation system may not only 
stimulate muscles to prevent drop-foot, it may 
also modulate the neuromuscular system in the 
long term, and thus yield a ‘carryover effect’. 
Such carryover or therapeutic effects of neuro-
stimulation result from intensive training with 
a neural prosthesis and typically last until after 
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Since the early 1960s, electrical or neuromuscular electrical stimulation (NMES) has been used 
to support rehabilitation of stroke patients. One of the earliest applications of NMES included 
the use of external muscle stimulation to correct drop-foot after stroke. During the last few 
decades various clinical applications have been used for the upper and lower limb. Despite a 
growing body of literature on the use of NMES, its application in stroke is still limited to a few 
clinical groups that provide dedicated clinical services. Some explanations for the limited use 
are the sometimes conflicting clinical evidence, the size of the effects or the complicated use 
of the technology itself. This review points out three directions for future research. First, we 
need to expand our knowledge on brain plasticity and the use of different electrical stimulation 
strategies to modulate the neural system. Second, we foresee an increase in therapies combining 
different training principles, for example, the combination of NMES and robotics or 
neuromodulating drugs. Finally, with the ever-increasing pressure on healthcare budgets, it is 
expected that clinical and economic evidence will become more relevant in transferring these 
interventions to a wider community.
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neural prosthesis use has stopped. On the other hand, some forms 
of NMES, such as of the upper limb muscles, have primarily been 
developed for their carryover effects and can best be referred to 
as therapeutic modalities.

It is this complexity of momentary and prolonged effects that 
hinders a clear interpretation of the clinical efficacy of most neuro-
stimulation systems and the disentanglement of the specific effects 
of NMES in terms of either therapeutic or prosthetic components. 
In addition, actual clinical use of NMES and neural prostheses 
appears to be limited, and only few clinical experts acknowledge 
the benefits [12]. Moreover, this may have been a result of the field 
emerging mainly from biomedical engineering, which did not 
sufficiently take into account existing theories in motor relearn-
ing [11], nor the current requirements of evidence-based medicine 
[13]. Today, several reviews and clinical practice guidelines on 
stroke management are published [14–17]. However, these guide-
lines are not always helpful in applying NMES. For instance, the 
American Heart Association (AHA)/American Stroke Association 
(ASA) guidelines [17] and the Veterans’ Affairs (VA)/Department 
of Defense (DoD) recommendations [16] were based on only a few 
clinical papers, of which one was another review. In other cases, 
there are conflicting recommendations between either review 
papers or guidelines. For instance, the Evidence Based Review 
of Stroke Rehabilitation (EBRSR) guidelines do not support the 
use of electrical stimulation for the hemiplegic arm [201], whereas 
others do support that particular application [14]. 

In the present review we therefore wish to provide a critical 
assessment on the use of both neural prostheses and NMES 
in stroke rehabilitation. Mainly, three applications will be 
described: peroneal neurostimulation for foot-drop, NMES 
of paretic upper limb muscles and neuromodulation of severe 
shoulder pain. Each of these three applications will be reviewed 
in terms of technological developments, clinical evidence and 
problems related to the deployment of these techniques. The 
last section of the review will introduce the concept of neu-
roelectronic interfacing in stroke rehabilitation. This concept 
introduces the much wider field of neuromodulation and neu-
roaugmentation in sensitizing brain tissue to receive motor 
relearning input.  

Neural prostheses for drop-foot
Technology & available devices
A drop-foot is a common complication after stroke, preventing a 
safe and stable walking pattern. Drop-foot can be defined as a sig-
nificant weakness or absent activity of ankle and toe dorsiflexors. 
These muscles assist in clearing the foot during the swing phase 
and control plantar flexion of the foot on heel strike. Drop-foot 
following stroke is thought to be caused mainly by poor active 
control of the anterior tibial muscle combined with increased and 
inappropriate tone in the dorsal muscles of the leg, particularly 
the calf [18].

The basic idea of a drop-foot stimulator is to activate the ankle 
dorsal flexors and the evertors of the foot (i.e., the anterior tibial 
and peroneal muscles) by stimulating the deep and superficial 
branches of the common peroneal nerve. Control over the tim-
ing of the stimulation is usually obtained through a heel switch 
placed under the heel within the shoe, although other control 
signals, such as accelerometers, can also be used [19,20]. Clearly, 
surface stimulation has limited selectivity and delivers a pulse 
train to both branches of the peroneal nerve. Other disadvan-
tages of surface stimulation include problems with electrode 
placement, pain, skin irritation and the time required to put 
the device in place.

Since 1961, both surface and implantable systems have been 
introduced to manage drop-foot [21]. More recently, several new 
neural prostheses have been commercially introduced for drop-
foot. Hanger Orthopaedic group introduced the WalkAid® in 
early 2006, a surface peroneal nerve stimulator controlled by a tilt 
sensor attached just below the knee [202]. No clinical reports have 
been published about the device, however, Weber et al. reported 
on the use of BIONTM as an implantable stimulator to be used 
with a WalkAide stimulator [22].

The NESS L300™ is a new generation surface electrical 
stimulation systems for drop-foot [203]. It is controlled by a 
heel switch that wirelessly communicates with the stimulator 
that is integrated within a semi-rigid orthosis positioned just 
below the knee. Two implantable stimulators have become avail-
able recently. The ACTIGAITTM system [204] was developed 
in Denmark and is distributed by Otto Bock, Ltd [20]. The 
second implantable system, STIMuSTEPTM, was developed by 
the Twente group and is being distributed by Finetech Medical 
Implants, Ltd [205]. So far, approximately 45 STIMuSTEP units 
have been produced and tested in both Phase II and Phase III 
clinical trials. The ACTIGAIT system uses a four channel cuff 
electrode around the common peroneal nerve, whereas the 
STIMuSTEPTM uses two epimysial electrodes that are inserted 
into the nerve sheets of the deep and superficial branches of the 
common peroneal nerve. 

Clinical evidence
Since the early 1990s, the Odstock Dropped Foot Stimulator 
has been probably one of the most widely used and best docu-
mented surface stimulation systems [23]. Several studies from their 
group have shown an increased walking speed and a decreased 
energy expenditure measured with the physiological cost index 

Box 1. Glossary of terms.

Neuromuscular stimulation: stimulation of muscles through 
electrical current.
Functional electrical stimulation: neuromuscular stimulation 
used for functional purposes, sometimes used interchangeably 
with neuromuscular stimulation.
Neural prosthesis: an artificial system bypassing the neural 
system to restore lost body functions by providing functional 
movement patterns using electrical stimulation.
Neuromodulation: changing normal and abnormal neural 
activity in both sensory and motor nerves to manipulate function.
Surface stimulation: neuromuscular stimulation applied through 
the skin.
Percutaneous stimulation: electrodes passing the skin to be 
implanted in either motor points or in the proximity of muscles. 
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[24]. In addition, the perception of the users was that the Odstock 
Dropped Foot Stimulator was of clinical benefit and, therefore, 
the compliance was very high [25]. 

In a systematic review, the results of eight studies were analyzed 
to asses the neural prosthetic effect of peroneal stimulation on 
walking in stroke survivors with a drop foot [26]. The pooled 
effect size for increase in walking speed was 0.13 m/s (95% CI: 
0.07–0.2 m/s) or 38% (95% CI: 22.18–53.8%). Another meta-
analysis was published where the therapeutic effect of peroneal 
stimulation on walking speed in stroke survivors was determined 
[27]. A significant mean improvement of 0.18 m/s was found, indi-
cating clear effectiveness of NMES on walking speed after stroke. 

Only recently, a clinical study has been reported on the L300 
neural prosthesis [28]. They found an average improvement in 
walking speed of approximately 30% compared with no treat-
ment, using a within-subjects design. Also recently, new clinical 
studies on the implantable Actigait and StimuStepTM 
systems have been published [29–31]. Burridge et al. reported 
a Phase II clinical trial on the ActiGait stimulator. They 
performed an uncontrolled trial in 13 patients and concluded 
that Actigait is safe [29]. Kottink et  al. evaluated the 
StimuStep in a Phase III randomized controlled trial (RCT) 
in 29 stroke survivors (ankle–foot orthosis [AFO] vs implant) 
on both the orthotic and the carryover effects. They reported 
a significantly increased walking speed of 20% (p < 0.01) in 
the implant group [31]. Further analysis of their data did not 
show a clear therapeutic effect, although electromyographic 
recording showed an increased muscular output after 26 weeks 
of stimulation [30]. 

Implementation barriers
It has taken nearly 50 years to find clinical evidence on the effect 
of drop-foot stimulation in stroke. Moreover, compared with 
cardiac pacing, the implementation of drop-foot stimulation has 
appeared more difficult. Different reasons could be responsible 
for this delay, including technological difficulty related to tim-
ing and control of the stimulation, the debate about the possible 
clinical outcomes, crosscultural differences and patient prefer-
ences. In the past few decades, many of the developments had a 
clear technological drive, such as new electrodes, encapsulation 
of implants, feedback systems and others. The clinical need 
was less clear as AFOs were quite well accepted as the primary 
choice of support in stroke [32,33]. In addition, clinical studies 
have used many secondary outcome measures to address the 
beneficial effects. The reviews by Kottink et al. and Robbins 
et al., as well as the recently published clinical trials, emphasize 
walking speed as the primary end point, because functional 
outcome measures were less consistently used in clinical reports. 

Sheffler et al. compared AFO and drop-foot stimulation and 
concluded that functional ambulation may not be that differ-
ent [34]. Besides walking speed and functional ambulation, one 
may have an interest in overall health-related quality of life and 
preferences of users toward drop-foot stimulation. So far, only 
one study has measured health-related quality of life using the 
Short Form 36 (SF36), but the lack of a control group hinders a 

clear interpretation of the conclusions [35]. Also, one may argue 
whether or not the SF36 will be responsive in detecting differences 
in health-related quality of life [36].

Although level I evidence exists for a higher walking speed 
after using drop-foot stimulation, clear clinical practice guide-
lines cannot be developed from these findings. In 2004, the 
International Society for Prosthetics and Orthotics (ISPO) 
organized a consensus meeting on orthotic management of the 
foot after stroke [37]. The ISPO meeting agreed on the beneficial 
effect of NMES on walking speed and physiological cost index 
(level II evidence; i.e., RCTs), but concluded that the ultimate 
decision for either AFO or stimulation depends on the patient. 
Importantly, the National Institute for Clinical Excellence 
(NICE) has considered the option of electrical stimulation for 
drop-foot of neurological origin. The Interventional Procedure 
Application Committee (IPAC) has produced a consultation 
document [206]. Based on this consultation document, NICE 
will deliver clinical guidance and advise the NHS regarding the 
use of drop-foot stimulation.

In an attempt to understand the requirements of these tech-
nologies and to put drop-foot stimulation in a wider context, 
van Til et al. have been trying do identify key characteristics 
that influence medical decision making [38]. By performing a 
series of experiments, they have been able to select key attributes 
relevant to decision making by professionals and compared five 
therapeutic approaches (surface and implanted drop-foot stimu-
lation, orthopedic shoes, tendon surgery and AFO) to treating 
drop-foot. They quantified responses of an expert panel using 
analytic hierarchy process, a multiple-criterion decision analysis 
technique. They concluded that the most preferred treatment by 
experts was the split-tendon tibial tendon transfer, followed by 
an AFO, orthopedic shoes, surface and implanted stimulation 
[38]. It must be concluded, however, that this surgical procedure 
is only suitable in well-selected patients with predominant varus 
deformity in swing phase and sufficient residual strength of the 
anterior tibial muscle. 

NMES for training of impaired upper limb muscles
Technology & available devices
A second large field of NMES in stroke concerns the function of 
the upper limb. Compared to drop-foot stimulation, the appli-
cation of electrical stimulation as a neural prosthesis has not yet 
led to clinical success. Chae and Hart have tried percutaneous 
stimulation of the upper limb for grasp and opening of the 
hand [39]. The main conclusion at present is that the impaired 
motor system and the complexity of pathological motor control 
of the upper limb prevents appropriate application of neural 
prostheses. It may be possible to develop a neural prosthesis for 
the upper limb, but it is necessary to control the pathological 
neural activity [40]. 

A large body of work has been carried out on NMES as a thera-
peutic application aiming at motor relearning. In general, training 
with NMES is expected to result in increased voluntary activity 
by plasticity of the neural system. Except for these neuroplas-
tic effects, many other benefits have been reported, including 
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spasticity reduction, increased blood flow and reduced edema 
[41,42]. These effects may be related to the electrically induced 
muscle activity and subsequent reflex modulation. 

The use of NMES in motor relearning has been described 
extensively in various uncontrolled trials, RCTs and systematic 
reviews. Usually, NMES is applied through electrodes at the wrist 
extensors and the stimulation intensity is just above the motor 
threshold. There are, however, other approaches, such as the mesh 
glove using subthreshold stimulation [43] and transcutaneous elec-
trical nerve stimulation (TENS) for pure sensory stimulation. 

The main body of work has been performed on NMES, provok-
ing muscle contraction. NMES can be applied through a prepro-
gramed sequence (i.e., cyclic stimulation) or using other means of 
initiation (i.e., electromyogram [EMG]-triggered). 

It needs to be emphasized that NMES of the upper limb is 
‘just another tool’ that needs to be evaluated like any other 
neurorehabilitation approach. It might be assumed that neural 
plasticity effects will cause equivalent effects on clinical scales. 
However, to date, several unsolved issues remain and, although 
functional MRI (fMRI) changes have been seen after using 
neuromuscular stimulation (NMS), it is still not clear whether 
there is a causal relation between NMS and improved motor 
excitability [44–47].

The clinical evidence for motor relearning effects 
using NMES
Several review papers have been written about the expected benefit 
of NMES in hemiparesis [3,5,7,40,48–60]. All reviews evaluated at 
least one particular application of NMES. Some of them com-
pared the effects with various other therapeutic approaches or 
provided a general overview of NMES and neural prostheses in 
either stroke or spinal cord injury. 

However, three different RCTs on TENS for the upper 
extremity reported conflicting evidence of beneficial effects as 
assessed by the Barthel index and motor control [61–63]. With 
respect to NMES, De  Kroon et  al. performed a systematic 
review and included six RCTs comparing NMES of the upper 
extremity. They performed a methodological and qualitative 
comparison of the included papers and did not pool the data 
owing to heterogeneity. They concluded that some evidence 
exists for improved motor control. However, functional gain 
was not very likely [50]. Since the review by de Kroon, a few 
more RCTs have been published and at least the same amount 
of reviews [64–68]. A recent Cochrane review divided the clini-
cal studies into four categories, those evaluating NMS versus 
‘doing nothing’, NMS versus placebo, NMS versus ‘usual ther-
apy’ and NMS versus another application of NMS [69]. The 
authors showed large effect sizes, particularly for studies com-
paring NMS with no treatment, yet they concluded that there 
was insufficient evidence to make clinical recommendations 
for using NMES in particular subgroups of patients and for 
specific therapeutic approaches. 

One important problem is that noone demonstrated the spe-
cific and intended (carryover) effects of NMES. The different 
strategies all evoke repetitive movements, which is probably the 

most important therapeutic determinant. In addition, many study 
outcomes were confounded by other, nonspecific influences, such 
as differences in treatment intensity between the experimental 
and control groups. Moreover, not all reviews were consistent 
concerning the effect of NMES in stroke rehabilitation of the 
upper extremity. 

The main conclusion from these studies is that there seems to 
be some therapeutic effect of NMES on upper limb function after 
stroke, especially in patients with some residual extensor activity 
of the wrist and fingers, but that the quality of the clinical research 
is generally poor and that evidence is based on many different 
(secondary) outcome measures.

In search of specific effects: functional- & EMG-triggered 
stimulation
In the past few decades several new approaches have been devel-
oped and evaluated in small trials. One general conclusion is 
that any rehabilitation intervention needs to be task-oriented, 
repetitive, of sufficient intensity and providing feedback [70–72].

We may, therefore, conclude that the passive repetitive stimu-
lation paradigms used in many NMES studies do not really 
meet the aforementioned requirements, especially not those 
concerning task-specific orientation and the need for feedback. 
In this regard, we need to distinguish between the severely 
impaired and those having some volitional control of the upper 
limb. Therefore, for the less affected patients with residual 
motor control, different attempts have been made to combine 
NMES with other, more intensive, training approaches. For 
instance, combining NMES with functional exercise [73], robot-
ics [74] or the use of NMES in home exercise programs [75]. 
An example of a patient friendly integration of NMES with 
a hand–wrist orthosis is the NESS H200™. This device can 
produce cyclic stimulation of forearm flexors and extensors, 
but preprogrammed movement patterns can also be used to 
enhance functional goal-oriented training [76]. Moreover, the 
user-friendly design facilitates therapy compliance, treatment 
intensity and long-term use [42].

Some RCTs investigated specific aspects of NMES to find evi-
dence for differential effects. For instance, De Kroon compared 
stimulation of the wrist extensors with stimulation of the wrist 
flexors and did not find a difference on the action research arm 
test [67]. Besides, De Kroon et al. reviewed the various stimula-
tion settings used in different applications of electrical current 
[52]. They found indications that studies using EMG-controlled 
stimulation had better treatment outcomes. The results should be 
interpreted with caution as the review did not take into account 
all variation in study population, types and intensity of treatment, 
and outcome assessment. 

One other proposed method to increase therapeutic outcomes 
is to combine the stimulation with voluntary muscle activity 
recordings. The idea of EMG-controlled stimulation is that a 
patient is actively involved in the training and that stimula-
tion does not start before a patient reaches a preprogramed level 
of voluntary contraction. Several reviews and clinical studies 
have been conducted comparing EMG-triggered stimulation to 
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either conventional stimulation or other therapeutic approaches. 
The results of these studies are, again, controversial. One RCT 
compared EMG-triggered with cyclic NMS and concluded that 
there was no difference on functional outcomes [66]. Rather than 
just using a passive stimulation strategy, it is probably better 
to apply the stimulation in a more intense training combining 
various therapeutic paradigms. A recent trial investigated the 
effect of movement imagery combined with EMG-triggered 
feedback compared with a conventional NMES program [65]. 
It concluded that there was no difference between the two 
therapeutic approaches. Another approach was introduced by 
Cauraugh and Kim, who coupled two protocols during training 
[77,78]. The coupling refers to bimanual exercises in which the 
intact limb assists the impaired limb during training combined 
with EMG-triggered NMS. The theoretical advantage would be 
that bilateral training exercises stimulate symmetrical activation 
of the cerebral hemispheres. 

In addition, two reviews on EMG-triggered NMES have been 
published. Bolton et al evaluated EMG-triggered stimulation in 
six different studies of 47 subjects in the intervention group and 
39 in the control group. They calculated a positive mean stan-
dardized effect size of 0.82 [64]. Meilink et al. reviewed EMG-
triggered NMS compared with usual care and concluded that 
one was not superior to the other [68]. They included 157 patients 
in total. The difference in their conclusion can be explained by 
the different studies reviewed and the inclusion of noncontrolled 
studies by Bolton et al [68]. 

Similar to Cauraugh, other approaches have been proposed to 
involve the unaffected upper limb in the training of the affected 
upper limb. Knutson et al. developed the contralaterally con-
trolled functional electrical stimulation training, a technique 
where they used the opposite wrist angle as a signal to start the 
stimulation. By doing so, they aim at combining the effects of 
NMES, bimanual symmetric exercises, and active and goal ori-
ented training [79]. Their first experiences with this technique in 
a few stroke patients justify further clinical investigation. 

It is not very surprising that most studies investigating NMES 
after stroke have used surface stimulation. The therapeutic and 
temporary nature of the stimulation does not really provide 
arguments for implanted stimulation. However, a decade ago 
the BION™ was introduced as a simple device delivering elec-
trical current locally at the place of insertion [207]. The BION 
can be injected under local anaesthesia. It has been shown that a 
BION microstimulator can be implanted safely [80,81]. The first 
Phase I clinical study in seven subjects demonstrated that upper 
limb functions can indeed be trained and that the application 
is feasible. It remains to be determined what the future role of 
implanted stimulation systems will be in the rehabilitation of the 
upper limb after stroke. 

Implementation barriers
In general, NMES has been used quite a lot in physiother-
apy because it is relatively cheap and easy to apply. However, 
although NMES for motor relearning after stroke has been stud-
ied frequently, its use has not been spread widely. One of the 

causes may be that the available evidence is still limited and that 
specific effects cannot be distinguished from aspecific effects. 
RCTs and systematic reviews provide both positive and negative 
outcomes. One of the reasons for this controversy is the het-
erogeneity, of the study population, intervention and outcome 
measures used. Even systematic reviews and meta-analyses use 
different approaches in how to deal with this heterogeneity. A 
typical problem is the relatively small sample sizes (typically 
ranging from six to 30 patients per group) and the related risk 
of type II errors (false-negative outcomes). 

Most studies reported on NMS in chronic stroke survivors. If 
neural plasticity effects are to be expected, one would be more 
interested in starting earlier after stroke. Moreover, different stud-
ies reported that the initial degree of motor paralysis seems to be 
the best predictor of recovery [82].

Given these remarks, what would be the future role of NMES 
of the upper extremity in stroke rehabilitation? Obviously, NMS 
may be used in physiotherapy as a therapeutic approach to train 
paretic muscles. If one is particularly interested in functional 
gain, NMES should always be part of a task-oriented physiother-
apy program. In patients with severe motor dysfunction, cyclic 
NMS can be a means to achieve other therapeutic effects, such 
as reducing muscle spasticity. 

Neuromodulation of shoulder pain
Pain in the hemiplegic shoulder (hemiplegic shoulder pain [HSP]) 
is a common phenomenon after stroke. Reported rates of occur-
rence vary between 5 and 84% [83,84]. Recent studies reported 
an incidence rate of 25% in the first 2 weeks after stroke [85] 
and 22–40% within 4 months after stroke [86,87]. Persistent HSP 
interferes with rehabilitation treatment and has been associated 
with poorer rehabilitation outcomes and prolonged hospital stay 
in the acute phase of stroke [84,87]. 

The etiology of HSP is, most likely, multifactorial. 
Glenohumeral subluxation, spasticity, capsulitis and/or tendini-
tis have all been postulated [83]. External support, simple anal-
getics, physical therapy, intra-articular corticosteroid injections 
and therapeutic NMES are used in the management of HSP. 
However, evidence for the effectiveness of usual best practice care 
is scarce. The effectiveness of external support in the treatment 
of HSP is not supported by the literature [88] and, in a RCT, no 
significant reduction of HSP as a result of a single intra-articular 
steroid injection was shown [89]. The evaluation of usual care is 
complicated by the poor methodology of studies, variation in time 
since injury (acute vs chronic stroke), the characteristics of the 
injury (flaccid vs spastic shoulder muscles) and the use of differ-
ent outcome measures (subluxation vs pain-free range of motion 
and/or rest-pain) [89–91]. 

Technology for stimulation of shoulder pain
Surface NMS for shoulder pain has been used since the mid-
1980s [92]. Usually, the supraspinatus and posterior deltoid are 
stimulated as these muscles are important in realigning the gle-
nohumeral joint and counteracting existing shoulder sublux-
ation. The stimulation is applied temporarily between 4 weeks 
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and 3 months. Although the main goal of the stimulation would 
be shoulder pain reduction, several studies also investigated the 
effect on functional outcome measures [60,93,94]. For instance, 
Church et al. studied the effect of surface NMES on functional 
outcome [94]. They conducted a RCT in 167 patients within 
10 days after stroke onset. Surface NMS was compared with 
placebo and upper limb function was evaluated using the Action 
Research Arm test. They concluded that a surface NMS program 
in acute stroke patients was not effective and that it could even 
worsen hand function in severely disabled patients [94,95]. 

By the end of the 1990s, a new approach to NMES was intro-
duced. Instead of surface electrodes, percutaneous intramus-
cular placement of electrodes during stimulation (p-NMES; 
see Box 1) was promoted. At least four different muscles were 
implanted (i.e., supraspinatus, middle deltoid, posterior del-
toid and trapezius). The stimulation was delivered for 6 weeks, 
6  h per day, after which the electrodes were removed. The 
expected advantages of the percutaneous system were the pain 
free stimulation, higher patient compliance and better control 
of the shoulder subluxation. In an uncontrolled trial with eight 
patients, significant reductions in shoulder pain, pain-free exter-
nal rotation and subluxation after percutaneous stimulation 
were found [96]. The system was evaluated in a few trials but is 
not commercially available.

Clinical evidence 
Two systematic reviews have been published on the use of NMS in 
shoulder pain. Price and Pandyan performed a systematic review 
on the evidence for shoulder pain and included four RCTs pub-
lished between 1994 and 1999. The conclusions of this review 
were that there is not sufficient evidence to conclude that shoulder 
pain could be reduced [97]. There were also no effects on other 
functional outcomes. The only significant effect that was found 
was the restoration of subluxation. It must be concluded, however, 
that their review also included studies evaluating the effect of 
TENS rather than just NMS.

A second systematic review was conducted by Ada and 
Foongchomcheay [91]. They included six RCTs published between 
1986 and 2000. The main conclusion was a significant effect of 
NMES as an adjunct to conventional therapy on the prevention 
and reduction of subluxation and function early after stroke. By 
using NMS as a preventive means, one may prevent the devel-
opment of a shoulder–hand syndrome and, thereby, a painful 
shoulder in chronic stroke [91], 

The first RCT that compared p-NMES with slings in 61 chronic 
stroke patients reported a significant pain reduction for at least 
6 months post-treatment [98]. A follow-up study reported long-
term effects up to 12 months post-treatment [99]. Additionally, it 
seems p-NMES can improve quality of life of stroke patients [100] 
and that it might be cost-effective [101]. Although p-NMES seems 
more effective compared with surface NMES, the additional value 
of p-NMES needs further consideration. In particular, it may 
be relevant to explore the use of p-NMES as a preventive means 
during acute stroke versus its application to reduce pain in chronic 
resistant shoulder pain. 

Implementation barriers
Despite the evidence for therapeutic benefit, up to now, surface 
NMES is not implemented for treatment of shoulder pain. This 
might be explained by the fact that, first, NMES using surface 
electrodes can lead to pain and muscle fatigue as a result of the 
high frequency muscle stimulation that is needed to overcome 
the skin barrier. Second, the long stimulation protocols (up to 
6 h/day) are difficult to achieve in terms of patient compliance, 
because activities of daily living are restricted during treatment. 
Third, careful daily electrode placement is necessary, along with 
donning and doffing of equipment, which places a large burden 
on caretakers and/or health professionals. 

The percutaneous approach could be a solution for the afore-
mentioned problems but, like surface systems, it has not been 
introduced widely. One reason is that the company producing 
the device has quit business. One other scientific problem is that, 
although we may find some clinical evidence, we still do not know 
if the same conclusions will be drawn in RCTs to be carried out 
by independent research groups. 

In addition, the mechanism by which we intervene should be 
made clear. That is, do we indeed restore the shoulder sublux-
ation and hence treat the pain, or is it much more complicated. 
Addressing this question is very relevant to better understand 
the effects that are lacking from existing therapeutic approaches. 

The first objective is that we have to be able to measure and 
to distinguish local nociceptive pain from neuropathic pain. A 
review concluded that no consensus exists on how to measure 
pain post-stroke [102]. This suggests that there is also no con-
sensus on how to distinguish between neuropathic and local 
nociceptive pain, which hinders appropriate therapy planning. 
Therefore, the first question to ask is how to discriminate pain 
in stroke. 

New trends in neuroelectronic interfacing & 
clinical deployment 
Given the overall limited evidence for NMES in stroke, as well as 
the described implementation barriers, several important conclu-
sions can be drawn. First, we need to expand our fundamental 
knowledge of the effects of different NMES strategies, that is the 
way we have to interact with the neural system to improve func-
tion or modulate pain. Second, we need to collect more clinical 
data and evidence in individuals that are carefully selected for 
specific forms of NMES based on such profound (patho)physi-
ological insight. Third, in bringing NMES to practice, the actual 
demands of patients need to be better considered and integrated 
in technological developments. 

Restitution versus substitution of function
Many recent research efforts in neurorehabilitation have been 
directed at understanding and manipulating neural plastic-
ity [71,103,104]. A central focus of this research has been a better 
understanding of the neural substrates underlying functional 
improvements after stroke. In addition, brain research has led 
to some first indications of changes in motor cortex excitability 
and activation as a result of training [105,106]. A recent review has 
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summarized the evidence for changes in the sensorimotor cortex 
in humans, based on fMRI and transcranial magnetic stimulation 
(TMS) findings in 13 studies investigating upper limb training 
[107]. They concluded that neural plasticity can be expected from 
movement therapy. In particular, they found evidence of this 
in chronic stroke survivors. However, the neurobiological basis 
needs to be understood. Studies by different groups demonstrated 
that use-dependent plasticity is mostly related to the NMDA and 
GABAergic system [103,108–110]. 

However, the precise causal relationship between, for example, 
fMRI changes and actual motor control is still poorly under-
stood. Only recently, some studies were published investigating 
the motor recovery pattern longitudinally by means of EMG 
[111]. The main conclusion from these studies was that a great 
amount of functional recovery cannot be explained by changes 
in the abnormal timing of paretic lower limb muscles. Hence, it 
strongly suggests that changes in neural activity of the brain do 
not directly relate to improved motor control and that substitu-
tion of function may be as important for functional recovery as 
restitution of function. 

Evidence for restitution of function using NMES
The increased knowledge about neural plasticity and brain map-
ping studies have led to some first indications of changes in the 
motor cortex due to stimulation in both healthy subjects [112,113] 
and in patients [44,47,46]. Kimberly et al. investigated whether 
EMG-triggered NMES resulted in differences in brain activation 
using fMRI. They performed a controlled trial in 16 patients in 
which EMG-triggered NMES were compared with sham stimula-
tion using the same device. The authors demonstrated a difference 
in fMRI activation and increased activation in the somatosensory 
cortex during active finger movements [44]. 

Barsi et al. studied the effect of NMES combined with func-
tional exercises on brain activation using TMS [47]. They com-
pared three stimulation paradigms and concluded that volun-
tary effort combined with NMES has greater potential to induce 
neural plasticity compared with either voluntary activity alone 
or stimulation without voluntary activity [47]. The third study 
comparing EMG-triggered NMES included 14  patients [112] 
and compared EMG-triggered NMES of the wrist dorsal flexors 
with a control group not receiving treatment. The authors mea-
sured fMRI and calculated the laterality index, and concluded a 
shift from the ipsi- to the contralateral sensorimotor cortex after 
10 weeks of training [46]. 

Neuropharmacology, motor cortex- & direct current-
stimulation, & repetitive TMS

Whereas most of the approaches using NMES do influence 
brain activity indirectly through movement, it is possible to 
modulate the motor cortex directly. The most frequently used 
method to sensitize the motor cortex is through administration of 
drugs. Mainly two types of drugs have been studied extensively. 
Martinsson et al. studied the use of amphetamins to manipu-
late the noradrenergic system in stroke rehabilitation [114,115]. 
The other drug class that has been investigated are the selective 

serotonin-reuptake inhibitors, such as fluoxetine and paroxetine 
[116]. It has been found that single doses of fluoxetine can modulate 
both brain activity [117] and motor output [118].  

Since early 2000 some studies have been published that inves-
tigated modulation of brain activity directly through electrical 
current [119,120]. Roughly, three types of modulation have been 
described including transcranial direct current (DC) stimulation 
(tDCS), repetitive TMS (rTMS) and motor cortex stimulation. 
The underlying thought for using tDCS is that one might be 
able to increase the excitability of the motor cortex by stimulat-
ing it with the anodal cathode, whereas suppression is achieved 
by using the cathodal electrode. Hummel et al. studied tDCS 
in a crossover design in six patients. Stimulation was compared 
with sham stimulation (placebo) and the study concluded that 
stroke patients’ performance on the Jebsen–Taylor test improved 
during and shortly after stimulation. The other, noninvasive, tech-
nique for cortical stimulation is rTMS. Khedr et al. published a 
controlled trial in 53 acute stroke patients randomized to either 
rTMS or placebo rTMS [121]. rTMS was given daily for 10 days 
in addition to regular therapies. The outcomes reported were the 
Barthel index and Scandinavian stroke scale, and they conclude 
that patients given rTMS were better off compared with sham 
rTMS. However, patients were followed for only 10 days after 
rTMS treatment. Finally, an invasive procedure was proposed 
using motor cortex stimulation [122]. Guided by fMRI, an epi-
dural electrode was implanted for 6 weeks just above the hand 
motor cortex area. Phase II studies in ten patients showed that 
the procedure was safe and well tolerated, and that clinical scales 
did improve [123]. 

Expert commentary & five-year view
Almost 50 years have passed since the first application of elec-
trical stimulation took place in a neural prosthesis for patients 
with stroke. Since that time, researchers have been puzzled with 
questions concerning dose response, stimulation type, carry-
over effects and implementation problems. Gradually, the focus 
seems to have shifted from the use of ‘true’ neural prostheses, 
‘merely’ substituting lost functions, towards NMES as a means to 
improve muscle function, modulate pain and to – albeit indirectly 
– improve brain function. Yet, up to now, the clinical evidence 
obtained from large clinical trials does not support a real break-
through of NMES in stroke rehabilitation. On the other hand, 
we can conclude that NMES has at least similar beneficial effects 
compared with other available rehabilitation strategies and may 
be preferred by patients. The following two scientific trends can 
be expected to expand in the next 5 years. 

Modulating the neural system 
Given the increased possibilities in functional brain mapping, 
it is likely that we will gain an increased understanding of the 
neural substrates of motor relearning and functional recovery, 
and of the specificity of various rehabilitation approaches. Thus, 
we will be able to better understand which modulation of brain 
activity will potentially lead to functional improvements. In par-
ticular, a better discrimination between targeting at restitution 
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and substitution of function, based on the time post-stroke and 
on relevant prognostic factors, will allow us to tailor rehabilita-
tion efforts and means to the potential capacities of individual 
patients. By carefully selecting patients for clinical research based 
on individual prognostic profiles, we will be able to enhance the 
effect sizes of several new treatment strategies, such as NMES, 
that have already shown preliminary efficacy. In addition, if we 
take more account of the individual needs of patients, the effec-
tiveness of these treatment strategies in daily practice will also 
substantially improve. 

Convergence of therapeutic approaches to enhance 
neural plasticity
Given the amount of inconsistency in clinical trials and system-
atic reviews on NMES, we anticipate the need for more rigor-
ous scientific evidence. NMES may be one means to promote 
motor relearning, however, it may not be sufficient. Present motor 
relearning theories support evidence for high intensity, task-spe-
cific and goal-oriented training [71]. The next step for electrical 
stimulation is, therefore, to place it in the context of the available 
concurrent strategies. It is understandable that many have inves-
tigated NMES as a single intervention in order to address the 
specificity of its mechanism. However, we may very well ask the 
question whether NMES should be applied as a single option or 
in combination with other approaches, creating a highly inten-
sive and task-specific training paradigm [74,124]. We expect that 
this type of combination of interventions will be studied more 
frequently in the next 5 years. 

Clinical & economic evidence
Although the mechanisms behind motor relearning and func-
tional recovery should receive ongoing attention, we also need 
better clinical evidence. In particular, from the point of view 

of patients, clinicians, insurance companies and health policy 
makers, more profound evidence is greatly needed as many 
conclusions of studies are based on belief rather than on sci-
entific reasoning, clinical or economic evidence. Most clinical 
trials on either NMES or neural prostheses were small and 
can, therefore, be considered as pilot studies. By definition, 
these studies tend to report false-positive outcomes. It is recom-
mended to conduct larger trials using larger and more homo-
geneous samples of patients. By doing so, it will be possible 
to obtain clinical evidence on particular subgroups of stroke 
patients who are susceptible to specific intervention strategies. 
In this regard, we would encourage journal editors to make 
a clear distinction between Phase  I and II studies, aimed at 
studying the safety, feasibility and potential efficacy of new 
approaches, and Phase  III studies aimed at generating true 
clinical evidence. 
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Key issues

•	 Neuromuscular electrical stimulation (NMES) in stroke rehabilitation has mainly been used for the possible therapeutic, or carryover, 
effect. Drop-foot stimulation is, as yet, the only ‘widespread’ neuroprosthetic application. The appropriate application of neural 
prostheses requires a well experienced rehabilitation team.

•	 Stimulation of the peroneal nerve for drop-foot was introduced approximately 50 years ago. Systematic reviews have reported an 
increased walking speed of between 20–30%. Both implantable and surface systems are commercially available, but the actual clinical 
use very much depends on the individual needs and the value of alternatives, such as an ankle–foot orthosis.

•	 Surface NMES for motor relearning of the upper extremity has been used extensively, but has led to controversial clinical evidence. Even 
systematic reviews have provided inconsistent conclusions, but most experts accept beneficial effects of NMES on motor control. 
Systematic reviews on the surplus value of electromyogram-triggered NMS are still inconclusive.

•	 There is conflicting evidence concerning whether NMES can be used to treat shoulder pain. Both surface and percutaneous stimulation 
of the shoulder muscles seem to reduce shoulder subluxation. Preliminary clinical data suggest longer and better effects from 
percutaneous stimulation, but more evidence is required.

•	 The use of NMES in stroke rehabilitation should move towards modulation of the neural system, including the brain itself and, hence, 
be used as an adjunct to mainstream rehabilitation approaches.

•	 The next 5 years of research will provide novel insights into how we can manipulate motor control and functional recovery by 
neuromodulation of brain tissue. There will be more studies investigating effects of either drugs or electrical current to sensitize the 
motor cortex to improve the effects of peripheral stimulation and functional training.

•	 Besides novel insights into specificity and mechanisms of neuromodulation we need more rigorous clinical and economic evidence to 
convince practitioners and healthcare decision makers to implement technologies using neuromuscular stimulation. 
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