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ABSTRACT: 19 

We describe duplicate leptin genes in zebrafish (Danio rerio) that share merely 24% amino acid 20 

identity with each other and only 18% with human leptin. We were also able to retrieve a second 21 

leptin gene in medaka (Oryzias latipes). The presence of duplicate leptin genes in these two 22 

distantly related teleosts suggests that duplicate leptin genes are a common feature of teleostean 23 

fishes. Despite low primary sequence conservation, we are confident in assigning orthology 24 

between mammalian and zebrafish leptins for several reasons. Firstly, both zebrafish leptins share 25 

their characteristic gene structure and display key features of conserved synteny with mammalian 26 

leptin genes. Secondly, the cysteine residues that make up leptin’s single disulphide bridge are 27 

equally spaced in mammals and zebrafish leptins and are unique among all members of the class-I 28 

helical cytokine family. Thirdly, the zebrafish leptins cluster with other fish leptins and 29 

mammalian leptins in phylogenetic analysis, supported by high bootstrap values. Within the leptin 30 

cluster, leptin-b forms a separate clade with the leptin-b orthologue from medaka. Finally, our 31 

prediction of the tertiary structures shows that both leptins conform to the typical four α-helix 32 

bundle structure of the class-I α-helical cytokines. The zebrafish leptins are differentially 33 

expressed; the liver shows high leptin-a expression (in concordance with what we observed for 34 

carp leptins), while leptin-b is expressed at much lower levels, which are downregulated further 35 

upon fasting. The finding of duplicate leptin genes in teleosts adds to our understanding of the 36 

evolution of leptin physiology in the early vertebrate lineage.  37 

38 
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INTRODUCTION 39 

The positional cloning of the obese (ob) gene in 1994 (Zhang, et al. 1994), identified the factor 40 

responsible for the morbid obesity of ob/ob mutant mice. This gene encodes a unique member of 41 

the class-I helical cytokine family, a 16 kDa protein named leptin after the Greek root leptos for 42 

lean. It is made up of a characteristic four α-helix bundle conformation (Zhang, et al. 1997). The 43 

key role of leptin in the regulation of body weight and energy homeostasis is well established 44 

(Morton, et al. 2006; Schwartz, et al. 2000). Leptin circulates in the bloodstream in proportion to 45 

the amount of body fat and signals to the brain. A major site of action is the arcuate nucleus (ARC), 46 

which contains two distinct populations of leptin-responsive neurons. One set co-expresses 47 

neuropeptide Y (NPY) and agouti-related protein (AgRP), is orexigenic and is inhibited by leptin 48 

(Broberger, et al. 1998), while the other expresses pro-opiomelanocortin (POMC) and cocaine 49 

and amphetamine regulated transcript (CART), is anorexigenic and is stimulated by leptin (Elias, 50 

et al. 1998).  51 

Zhang and co-workers addressed the evolution of leptin by hybridizing genomic DNA of 52 

vertebrates that originated early in vertebrate evolution, including teleost fish, with a murine ob 53 

probe (Zhang et al. 1994). Positive signals from teleost genomic DNA led them to conclude that 54 

leptin is highly conserved throughout the vertebrates. Despite the detection of leptin-like 55 

immunoreactivity in the blood and liver it took more than a decade to characterize the first 56 

teleost leptin orthologue (Huising, et al. 2006a; Kurokawa, et al. 2005) or even amphibian leptin 57 

orthologues (Boswell, et al. 2006; Crespi and Denver 2006). No bona-fide avian and reptilian 58 

leptin genes have been described to date (Huising, et al. 2006b). Both fish and Xenopus leptin 59 

show a low degree of primary sequence conservation compared to human (varying from 13 to 60 

30% amino acid identity, respectively). Although the mere presence of a leptin orthologue in 61 

teleost fish supports the notion of leptin’s evolutionary conservation, leptin is among the class-I 62 

helical cytokines with the poorest sequence conservation throughout the vertebrate subphylum 63 
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(Huising et al. 2006b). In fish, a major site of leptin expression is the liver (Huising et al. 2006a; 64 

Kurokawa et al. 2005), which is rich in fat droplets and has therefore been suggested an 65 

appropriate site to monitor adipose stores. Yet, our understanding of the contribution of leptin to 66 

the regulation of energy metabolism in fish is scant and a key role of leptin in the regulation of 67 

body weight and energy homeostasis in non-mammalian vertebrates has not been established 68 

thus far (Gorissen, et al. 2006; Volkoff, et al. 2005). In carp, hepatic leptin mRNA increases 69 

postprandially, but not after fasting or feeding to satiation for up to six weeks (Huising et al. 70 

2006a).  71 

It is well known that teleost fish possess duplicate copies for a number of genes (Taylor, et al. 72 

2003; Volff 2005). Therefore, we searched the zebrafish genome database to see if leptin too 73 

occurs in duplicate. Here, we demonstrate duplicate leptin genes in zebrafish (Danio rerio). An 74 

earlier systematic search of the zebrafish genome database revealed a predicted leptin gene with 75 

high (61-62%) amino acid identity to both carp leptin-a I and leptin-a II (accession number 76 

BN000830) now designated leptin-a (Huising et al. 2006a). We cloned this leptin gene and a 77 

second, substantially different and paralogous leptin gene in zebrafish. Both zebrafish leptin 78 

paralogues share 24% primary amino acid sequence identity with each other and 18% with 79 

mammalian leptins. Zebrafish leptin-a shares high primary sequence conservation with both carp 80 

leptins (61-62%); leptin-b, however, shares only 25% amino acid identity with both carp leptins. 81 

Despite these low identities, conservation of gene structure, tertiary structure, stable phylogenetic 82 

analysis and synteny substantiate the unambiguous orthology of zebrafish leptin-a and leptin-b 83 

with mammalian leptins. 84 

85 
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MATERIALS AND METHODS 86 

Animals 87 

Zebrafish (Danio rerio) were commercially obtained and reared in two litre tanks at 26°C with  88 

recirculating, UV-treated, Nijmegen tap water. Eight fish were kept in a single aquarium and fed 89 

2.5% body weight Tetra-min (Tetra, Melle Germany) each day. Eight other fish were not fed for 90 

two weeks. For the determination of leptin tissue distribution, fish were fed 2.5% body weight 91 

daily and sacrificed one hour after feeding. All fish were euthanized in a 0.1% (w/v) 2-92 

Phenoxyethanol solution. Animal experiments were performed in accordance with national 93 

legislation and approved by the ethical committee of the Radboud University Nijmegen.  94 

 95 

Identification of zebrafish leptin paralogues 96 

We screened the ENSEMBL zebrafish genome (www.ensembl.org) with several teleost leptin 97 

sequences, using the BLAST algorithm (Altschul, et al. 1997). The initial screen revealed two 98 

leptin-like sequences, one of which was already predicted in an earlier screen of the zebrafish 99 

genome (third party annotation (TPA) accession number: BN000830; (Huising et al. 2006a)). 100 

Using primers zf.leptin-a.fw, leptin-a.rv and leptin-b.fw, leptin-b.rv (table 1), based on these 101 

partial leptin sequences, two cDNA sequences were obtained from the liver and gonads, 102 

respectively. RNA isolation, cDNA synthesis, cloning and sequencing was carried out as 103 

previously described (Metz, et al. 2005). Briefly, PCR products were ligated and cloned in TOP10 104 

chemically competent E. coli in the pCR4-TOPO vector (Invitrogen, Carlsbad, CA, USA). 105 

Plasmid DNA was isolated with a miniprep kit (BioRad, Hercules, USA) and sequences were 106 

determined from both strands using the ABI prism big dye terminator cycle sequencing ready 107 

reaction kit (Applied Biosystems, Foster City, USA).  108 
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 109 

Phylogenetic analysis 110 

Multiple sequence alignments were carried out using ClustalW 111 

(http://www.ebi.ac.uk/Tools/clustalw/; (Thompson, et al. 1994)). A phylogenetic tree was 112 

constructed based on amino acid difference (p-distance) with the neighbour-joining algorithm 113 

(pairwise deletion) in MEGA version 3.1 (Kumar, et al. 2004). The reliability of the tree was 114 

assessed by bootstrapping, using 1000 replications. Only full-length coding sequences were used 115 

for analysis.  116 

In order to determine synteny between the zebrafish leptin paralogues and human leptin, we 117 

mapped the upstream and downstream genes of leptin on the respective chromosomes of 118 

zebrafish and human using the ENSEMBL genome browser (www.ensembl.org).  119 

 120 

Modelling of tertiary structures 121 

The structure of human leptin (PDB entry 1AX8), which was resolved at 2.4 Å resolution (Zhang 122 

et al. 1997), was used as a template to build models of zebrafish leptin-a and leptin-b. Initial 123 

alignments were obtained from the PSIPRED fold recognition server (McGuffin and Jones 124 

2003). Side-chain rotamers were modeled using SCWRL3.0 (Canutescu, et al. 2003). Both models 125 

were refined in YASARA using the YAMBER2 forcefield (Krieger, et al. 2004). Coordinate files 126 

are available from the authors on request. 127 

 128 

Expression of zebrafish leptins 129 

Relative expression of zebrafish leptin paralogues was assessed by real-time qPCR. We designed 130 

primers using primer express software (Table 1; Applied Biosystems). Five µl cDNA and 300 nM 131 
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forward and reverse primers were added to 12.5 µl SYBR Green mastermix (Applied biosystems). 132 

The total volume was adjusted to 25 µl with deionised H2O. qPCR (ten minutes 95°C, 40 cycles 133 

of 15 seconds 95°C and one minute 60°C) was carried out using a GeneAmp 7500 sequence 134 

detection system (Applied Biosystems). Different samples were run on a single plate. Dual 135 

internal standards (40S ribosomal protein S11 and β-actin) were incorporated in all measurements 136 

and results were confirmed to be very similar following standardisation to either gene. Only 137 

results relative to 40S are shown. Constitutive expression of leptin in zebrafish organs and tissues 138 

was corrected for primer efficiency and plotted as a ratio between target gene vs. reference gene. 139 

Relative expression of leptin paralogues in the liver following fasting was corrected for primer 140 

efficiency and reference gene, and plotted relative to controls. 141 

 142 

RESULTS 143 

Zebrafish expresses duplicate and divergent leptin genes 144 

A systematic BLAST search of the Ensembl zebrafish genome database with mammalian leptin 145 

sequences revealed two partial leptin sequences, one of which represented leptin-a (already 146 

described by Huising et al, 2006a), the other represented a new leptin-like orthologue that we 147 

named leptin-b. The (automated) genomic sequences were corrected by hand for correct splice 148 

sites and the obtained sequences were used in a homology cloning approach to identify both 149 

leptin cDNA sequences. Protein-protein BLAST (BLASTp) showed significant hits with other 150 

fish leptins (table 2). The cDNA- and deduced amino acid sequences of zebrafish leptins are 151 

shown in figure 1. Both leptin-a and leptin-b are comparable in size, 166 and 168 amino acids 152 

respectively, both with a predicted signal peptide of 20 amino acids. Previously, we described two 153 

highly similar leptin genes in common carp (Huising et al. 2006a) which we designated leptin-I 154 

and leptin-II. These carp leptin paralogues are likely the result of the recent genome duplication 155 
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~16 Mya that led to the tetraploidization of the common carp genome (Larhammar and Risinger 156 

1994). Our results suggest that zebrafish leptin-a and leptin-b are the result of the ancient  157 

genome duplication that teleost fish experienced (Taylor et al. 2003; Volff 2005). Therefore, we 158 

amend the names of the previously described carp leptins to leptin-a-I and leptin-a-II. We want 159 

to stress that the low amino acid identity of the leptin proteins between fish and mammals serves 160 

as a reminder that we assign the name leptin solely based on the structural similarities described 161 

above. Orthologous proteins do not by default share analogous roles, particularly proteins that 162 

share so little of their primary amino acid sequences as teleostean and mammalian leptins do 163 

(Huising et al. 2006a).  164 

 165 

Characteristics of zebrafish leptins 166 

The amino acid identity between zebrafish leptin-a and leptin-b is 24%. Zebrafish leptin-a is 167 

more similar (60% primary amino acid sequence identity) to carp leptin-a-I and leptin-a-II. The 168 

identity between zebrafish leptin-b and carp leptins is at 25% only marginally higher than the 169 

identity between leptin-b and mammalian leptins (19%; figure 2, table 3). The cysteine residues 170 

that make up leptin’s single disulphide bridge, connecting the carboxy-terminal ends of α-helices 171 

C and D are conserved. Both zebrafish leptin genes are encoded by two exons that are similar in 172 

size compared to mammalian leptins (figure 3). Zebrafish leptin genes possess a short intron, 173 

with consensus 5’ donor (gt) and 3’ acceptor (ag) splice sites. The intron phase indicates whether 174 

the intron is situated in between triplets (phase 0), or following the first or second base of a 175 

triplet (phase 1 or phase 2 respectively. The intron phase for both zebrafish leptins is identical to 176 

the intron phase of mammalian leptins: phase 0.  177 

Our models of both zebrafish leptins conform to the typical four α-helix conformation (up-up-178 

down-down) of human leptin (figure 4), indicating that the tertiary structures of zebrafish leptins 179 
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are comparable to mammalian leptins. In contrast to all other leptin sequences, leptin-b contains 180 

an additional cysteine residue in helix D. From the position of this cysteine (indicated in red in 181 

figure 4) we cannot draw firm conclusions regarding the availability of this cysteine to form 182 

intermolecular disulphide bridges.  183 

 184 

Phylogeny of zebrafish leptins 185 

The zebrafish leptin paralogues cluster together with other vertebrate leptin genes, supported by 186 

a high bootstrap value (98), supporting the orthology of both zebrafish leptins with mammalian 187 

leptins (figure 5). Within the leptin cluster, the overall topology of the phylogenetic tree adheres 188 

to the established pattern of evolution, as the teleost leptin cluster branches off before the 189 

separation of the amphibian and mammalian cluster. Within the mammalian leptin cluster, the 190 

only known sequence of a marsupial leptin (that of the fat-tailed dunnart) branches outside the 191 

leptin sequences of placental mammals. In the teleost leptin cluster, zebrafish leptin-a and the 192 

carp leptins form a separate clade. We also screened other fish databases in order to assess the 193 

presence of leptin-b orthologues in other teleost fish species. Using the zebrafish leptin-b 194 

sequence in a BLAST search of the ENSEMBL medaka (Oryzias latipes) genome, we retrieved a 195 

leptin-b orthologue with 28% amino acid identity to zebrafish leptin-b (BN001183). Zebrafish 196 

and medaka leptin-b form a separate clade within the teleost leptin cluster.  197 

 198 

Both zebrafish leptin genes share synteny with human leptin  199 

To further substantiate the orthology of the zebrafish leptin paralogues to mammalian leptins, we 200 

compared the synteny of both zebrafish leptins with human leptin. Synteny refers to the order 201 

and orientation of the genes of a chromosomes and tends to be a conserved feature across 202 
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species. For each zebrafish leptin, several genes are found in synteny with mammalian leptin 203 

(figure 6). The leptin-a gene of zebrafish is located next to RNA binding motif 28 (RBM28), as is 204 

the human leptin gene. In close proximity of leptin-b, Staphylococcal nuclease domain-containing 205 

protein 1 (SND1) and GRIP and coiled-coil domain containing 1 (GCC1) are found – again, 206 

these are also found in close proximity of human leptin.  207 

 208 

Constitutive expression of zebrafish leptins 209 

Zebrafish leptins (figure 7) show a differential expression pattern. Whereas leptin-a is 210 

prominently expressed in the liver, in accordance with previous observations of carp leptin-a-I 211 

and -II, leptin-b is not. Leptin-a is expressed at higher levels than leptin-b in most organs except 212 

the ovary, which is a major site of leptin-b mRNA expression.   213 

 214 

Leptin mRNA expression after fasting for one week 215 

To gain insight in possible physiological functions of the leptin paralogues, we investigated leptin 216 

mRNA expression after fasting for one week. Leptin-a mRNA levels show no significant 217 

response to fasting for one week (figure 8). In contrast, hepatic leptin-b expression is 218 

significantly downregulated (P<0.05) after one week of food deprivation.  219 

 220 

DISCUSSION 221 

Zebrafish possesses duplicate leptin genes, coding for leptin-a and leptin-b, that differ 222 

substantially from each other (24% amino acid identity). It is possible that a major genome 223 

duplication that took place ~300 Mya in the early fish lineage (Taylor et al. 2003; Volff 2005) 224 
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resulted in  duplicated leptins. The discovery of a leptin-b orthologue in the Japanese medaka 225 

supports this view as zebrafish and medaka represent two distant teleost lineages, the Cypriniformes 226 

and the Beloniformes respectively, that shared their last common ancestor ~296 Mya (Hoegg and 227 

Meyer 2005); figure 9). In contrast, from the primary sequence identity and phylogenetic analysis, 228 

it follows that the duplicate carp leptins that we described recently (Huising et al. 2006a) likely 229 

resulted from the more recent genome duplication in carp (~16 Mya; Larhammer and Risinger, 230 

1994) and represent the duplicated orthologues of zebrafish leptin-a. Therefore, we propose that 231 

these carp leptin sequences should be renamed leptin-a-I and leptin-a-II. This observation, 232 

combined with the identification of leptin-b in two distantly related fish substantiates the view 233 

that more bony fishes express orthologues of leptin-b. Gene duplications, and genome 234 

duplications in particular, are considered the main thrust contributing to the expansion of an 235 

organism’s gene repertoire, as the presence of newly duplicated paralogues allows one of the two 236 

paralogues of a pair to drift and on occasion acquire a novel function while the original function 237 

is maintained by the other. Gene duplications in the teleost lineage are common, and there are 238 

several well-documented examples of large scale (often referred to as whole) genome duplication 239 

events. A major genome duplication (Taylor et al. 2003; Volff 2005) is thought to have yielded 240 

several duplicate class-I helical cytokines, viz. duplicate interleukin-11(Huising, et al. 2005), IL-241 

12p35 (Huising et al. 2006b), CXCL12 (Huising, et al. 2004) and cytokine receptor (IL12p40; 242 

(Huising, et al. 2006a) genes. We could not retrieve a leptin-b orthologue from the available 243 

pufferfish genomes (tiger pufferfish; Takifugu rubripes, and the green spotted pufferfish; Tetraodon 244 

nigroviridis). While one reason for our inability to retrieve leptin-b orthologues from these species 245 

may be that their respective genomes are incomplete, it is also possible that the Tetraodontoformes 246 

may have lost leptin-b from their gene repertoire. In the genome of T. nigroviridis, we found two 247 

regions with a conserved genomic neighbourhood compared to human leptin. Indeed, only one 248 
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of these loci carries a leptin orthologue, which is strong support for the hypothesis that the 249 

pufferfish lineage does not possess duplicate leptin genes.  250 

Recently, multiple entries have been submitted in the EMBL database for several fish leptin 251 

orthologues that all share 97-99% sequence similarity at the nucleotide level (AY497007, 252 

AY547279, AY547322, AY551335, AY551336, AY551337, AY551338, AY551339, AY551340, 253 

DQ784814, DQ784815, DQ784816). Non-synonymous substitutions are subject to selection as 254 

they result in differences in amino acid sequence, whereas synonymous substitutions are generally 255 

not. Therefore, the almost complete absence of synonymous substitutions (over 97% nucleotide 256 

identity) between these deposited ‘teleost’ leptin sequences and mammalian leptin sequences 257 

would represent an extraordinary and very unlikely example of evolutionary convergence, as 258 

teleosts and mammals shared their last common ancestor over 450 million years ago. Instead 259 

these sequences should be regarded as artefacts. A similar situation unfortunately has occurred 260 

for chicken leptin, that was reported to be highly similar to mouse leptin by two independent 261 

groups (Ashwell, et al. 1999; Taouis, et al. 1998). Subsequent studies have raised concerns 262 

regarding the validity of these published chicken leptin sequences (Doyon, et al. 2001; Friedman-263 

Einat, et al. 1999; Huising et al. 2006b; Sharp, et al. 2008). 264 

Despite the relatively low amino acid conservation that was previously noted for other teleost 265 

leptins, we are confident to assign orthology between zebrafish leptin-b and mammalian leptins, 266 

supported by several key features of zebrafish leptin-b. First, both zebrafish leptin genes are 267 

encoded by two exons of comparable size to the ones coding for mammalian leptins. Vertebrate 268 

class-I cytokines are typically encoded by three or more (usually five) exons. In fact, the only 269 

class-I helical cytokine other than leptin composed of two exons is ciliary neurotrophic factor 270 

(CNTF) (Huising et al. 2006b), which differs substantially in primary sequence as well as gene 271 

structure from leptin. Furthermore, the spacing of the two cysteine residues that make up leptin’s 272 

single disulphide bridge is unique among class-I helical cytokines (Huising et al. 2006b). Thirdly, 273 
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the stable phylogenetic clustering of the zebrafish leptin sequences with other fish leptins, as with 274 

the mammalian leptins supports the unambiguous identity of the two zebrafish leptins. Finally, 275 

the predicted tertiary structure of zebrafish leptin-b, conforming to the human crystal structure 276 

of leptin, and the conservation of synteny between the mammalian leptin-locus and both 277 

zebrafish leptin loci further strengthens the assignment of orthology between zebrafish leptins 278 

and mammalian leptins.  279 

An intriguing feature of the leptin-b sequence is the cysteine residue at the N-terminus of α-helix 280 

D. We designed 3D models of leptin-b to address the spatial orientation of this additional 281 

cysteine residue to see if this free cysteine would potentially be surface-exposed – and thus 282 

available for disulphide bridging – or is buried within the leptin’s hydrophobic core. These  283 

models did not allow a firm prediction of the availability of this cysteine to form disulphide 284 

bridges, either within one leptin molecule or between two molecules because its position in the 285 

models is at the boundary of the protein surface and the protein core. It is possible that the 286 

residue is buried within the protein, and as a result not exposed to the environment and not 287 

available for disulphide interactions. The predicted mature leptin-b peptide contains no cysteine 288 

to form a disulphide bridge with the helix-D cysteine. A similar phenomenon has been observed 289 

for interleukin-11 genes in teleosts. Fish IL-11a and IL-11b both possess a single cysteine residue 290 

near the C-terminus, whereas mammalian IL-11 does not (Huising et al. 2005). Medaka leptin-b 291 

lacks an additional cysteine, indicating that this is not a universal feature among teleostean leptin-292 

b genes. The elucidation of additional teleost leptin-b sequences will shed light on the uniqueness 293 

of this characteristic of zebrafish leptin-b.   294 

We observed substantial differences between the expression patterns of zebrafish leptin-a and 295 

leptin-b. It is now generally accepted that leptin, in addition to its ‘classical’ role is truly 296 

pleiotropic (De Rosa, et al. 2007; Popovic, et al. 2001). Indeed in zebrafish, leptin-a and leptin-b 297 

are expressed in considerable amounts in the pituitary gland. We do not know the exact nature of 298 
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the pituitary cells that (co-) express leptin in fish, nor the exact function of this leptin; in 299 

mammals it is known that leptin is expressed in  around 70% of the corticotropes and to a lesser 300 

extent in somatotropes (21%), gonadotropes (29-33%), and thyrotropes (32%) (Popovic et al. 301 

2001). We propose that fish leptin produced in the pituitary gland must have additional, local 302 

(paracrine?) functions that allow zebrafish to maintain equilibrium in the face of challenges to 303 

homeostasis.  304 

Whereas the high level of expression of leptin-a in the zebrafish liver conforms to the expression 305 

pattern observed for carp leptins, leptin-b is expressed at lower levels in the liver. Interestingly, it 306 

is this hepatic leptin-b mRNA level that decreases after fasting. The sheer size of the fish liver 307 

may guarantee a sufficient output of leptin(-b) protein, despite the relatively low leptin-b mRNA 308 

expression level.  309 

Leptin-b shows highest expression in the ovaries, which hardly express leptin-a. In mammals, 310 

leptin serves a function in the regulation of reproduction as ob/ob mice treated with leptin recover 311 

fertility (Archanco, et al. 2003; Caprio, et al. 2001). Given the high expression of leptin-b in 312 

zebrafish ovaries, the reproductive function of leptin in this species may be carried out by leptin-313 

b.  314 

In addition to the marked differences in leptin’s primary sequences between teleosts and 315 

mammals – which indicates potential differences in function – we now have demonstrated the 316 

existence of a second, equally divergent leptin in zebrafish and medaka that is likely a feature 317 

shared by more teleost fishes. The future challenge will be to unravel the physiological function 318 

of both leptin genes. In fact, the presence of two highly divergent orthologues of mammalian 319 

leptin in bony fish is testimony to the dynamic evolutionary history of leptin as it suggests the 320 

possibility of a redundant leptin network in teleosts. Furthermore, it adds fuel to the proposition 321 
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that fish leptins, acting redundantly or independently, have acquired fundamentally different roles 322 

compared to mammalian leptins.  323 

324 
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TABLE CAPTIONS 425 

Table 1: Primer sequences. Primer names that start with ‘q’ indicate the primers used for qPCR.  426 

Table 2: List of BLAST hits following comparison between zebrafish leptin-a (A) and leptin-b 427 

(B) to the non-redundant protein database (nr). BLAST hits are scored by an ‘E-value’, which 428 

applies statistical probability that the similarity between two sequences is based on stochastic 429 

events. 430 

Table 3: Percentages for amino acid sequence identities between vertebrate leptin sequences.  431 

FIGURE LEGENDS 432 

Figure 1: cDNA and deduced amino acid sequence of the coding sequence of zebrafish leptin-a 433 

and leptin-b. Accession numbers are AM920658 and AM901009 respectively.  434 

Figure 2: Multiple sequence alignment of zebrafish leptins, carp leptins and human leptin.  435 

Asterisk indicate amino acids that are conserved in all sequences, whereas colons and dots reflect 436 

decreasing levels of amino acid similarity. The four α-helices (A-D) were inferred from human 437 

leptin and are boxed in the alignment. The cysteine residues that form leptin’s single disulphide 438 

bridge are shaded. Accession numbers: zebrafish leptin-a: AM920658, zebrafish leptin-b: 439 

AM901009, carp leptin-a-I: AJ868357, carp leptin-a-II: AJ868356, human leptin: P41159.  440 

Figure 3: The gene structures of zebrafish leptins and mammalian leptins are conserved. Boxes 441 

represent coding exons only and are drawn to scale. Numbers inside the boxes reflect exon sizes 442 

in nucleotides. The intron phase is indicated with underlined numbers.  443 

Figure 4: Protein models of the duplicate zebrafish leptins and human leptin. Zebrafish leptin-a 444 

(B), leptin-b (C) and human leptin (A) were modelled on the human leptin crystal structure and 445 

conform to the four α-helix bundle adopted by human leptin. In yellow the single disulphide 446 

bridge that stabilizes leptin’s tertiary structure, in red the third cysteine of zebrafish leptin-b.  447 
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Figure 5: Phylogenetic tree of vertebrate leptins. Numbers at the branches reflect the confidence 448 

level as obtained by bootstrapping (1000 replications). Growth hormone (GH) and ciliary 449 

neurotrophic factor (CNTF) (both class-I helical cytokines) were included as outgroup. Only full 450 

length sequences were used for phylogenetic analysis. Accession numbers are as follows: 451 

chimpanzee leptin: O02750, human leptin: P41159, mouse leptin: P41160, dog leptin: O02720, 452 

cattle leptin: P50595, fat-tailed dunnart leptin:AF159713, Sout-African clawed frog leptin: 453 

AY884210, carp leptin-a-I: AJ836745, carp leptin-a-II: AJ836744, zebrafish leptin-a: AM920658, 454 

rainbow trout leptin: AB354909, zebrafish leptin-b: AM901009, medaka leptin-a: AB193548, 455 

medaka leptin-b: BN001183, tiger pufferfish leptin: AB193547, green-spotted pufferfish leptin: 456 

AB193549, human GH: P01241, zebrafish GH: Q1JQ34, human CNTF: P26441, mouse CNTF: 457 

P51642.  458 

Figure 6: The synteny between the human leptin locus and both zebrafish leptin loci is 459 

conserved. A comparison between the human leptin locus (7q32.1) and the zebrafish leptin loci 460 

(located on chromosome 18 and 4 respectively) reveals that adjacent to both zebrafish leptins 461 

there are multiple genes that lie adjacent to human leptin. Arrows reflect genes, the direction of 462 

the arrow the orientation of the gene. Black arrows represent leptin orthologues, grey arrows 463 

represent genes in synteny in the human and zebrafish leptin loci. Genes are not drawn to scale, 464 

nor is intergenic space included. Abbreviations: ARF5: ADP-ribosylation factor 5, RBM28: RNA 465 

Binding Protein Motif 28, SND1: Staphylococcal nuclease domain-containing protein 1, GCC1: 466 

GRIP and coiled-coil domain containing 1.  467 

Figure 7: Basal expression of leptin-a (open bars) and leptin-b (closed bars). Leptin-a and leptin-468 

b are constitutively expressed in all organs investigated. Bars represent the mean value of four 469 

individual zebrafish. Error bars indicate standard errors. Note the logarithmic scale of the x-axis. 470 



21 

 

Figure 8: Leptin-a and leptin-b mRNA expression after one week fasted (closed bars) and fed 471 

(control; open bars) zebrafish. Leptin-b mRNA decreases significantly (*: P<0.05) after fasting 472 

for one week. Bars represent the mean value, error bars indicate standard errors.  473 

Figure 9: General phylogenetic tree of vertebrate evolution. Mammals and teleosts shared their 474 

last common ancestor ~450 Mya. The finding of duplicate leptin paralogues in the medaka 475 

(Beloniformes) and zebrafish (Cypriniformes) dates the duplication event that gave rise to the 476 

duplicated leptins to ~296 Mya, as these species shared their last common ancestor at that time 477 

point. The tetraploidization of the carp genome (~16 Mya) is likely the event that gave rise to 478 

paralogous leptin-a-I and leptin-a-II genes in carp. Divergence estimates are based on: (Hedges 479 

2002; Hoegg and Meyer 2005; Volff 2005; Zardoya and Doadrio 1999).  480 



Gene Accession Nr. Primer Sequence 5´→ 3´ 
leptin-a AM920658 zf.leptin-a.fw ATG CGT TTT CCA GCT CTC 
  zf.leptin-a.rv TCA GCA GAT TTT CAG CTG GTC 
  Q-zf.leptin-a.fw GAC TGC ACA CTG AAG GAA TC 
  Q-zf.leptin.a.rv GCA CTG TCC TCT AGA AAA GC 
leptin-b AM901009 zf.leptin-b.fw ATG AAG TCT TCA ATG ATT TTT TGC 
  zf.leptin-b.rv CAG AGA ATG AAT GTC TCA GCC 
  Q-zf.leptin-b.fw ATT GCT CGA ACC ACC ATC AG 
  Q-zf.leptin-b.rv GAT GTC AGG GCC GAA ATC AA 
40S ribosomal 
protein S11 

CA472846 Q-40S.fw AAA CAG CCC ACC ATC TTC CA 

  Q-40S.rv CTG TGA TAA CGA GGG AGC TTT TC 
β-actin AF025305 Q-BACT.fw CAA CAG GGA AAA GAT GAC ACA GAT 
  Q-BACT.rv CAG CCT GGA TGG CAA CGT 
 



A 

 

B 

Accession number Species Description E-value 
AM901009 Zebrafish Leptin-b 7*10-58 

AJ868356 Common carp Leptin-a-II 5*10-8 

AJ868357 Common carp Leptin-a-I 2*10-7 

ABV57772                  Goldfish Leptin-a-II 9*10-7 

BN000380 Zebrafish Leptin-a 9*10-7 

AAZ66785                  Channel catfish Leptin 1*10-4 

    

    

    
 

Accession number Species Description E-value 
BN000380 Zebrafish Leptin-a 5*10-89 

AJ868357 Common carp Leptin-a-I 7*10-49 

AJ868356 Common carp  Leptin-a-II 2*10-48 
ABV57772                  Goldfish Leptin-a-II 2*10-32 

AAZ66785                  Channel catfish Leptin 2*10-14 

AY884210                 Xenopus laevis Leptin 6*10-9 

AAY68394                  Tiger salamander Leptin 9*10-6 

AM901009 Zebrafish Leptin-b 2*10-5 
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zebrafish leptin-a 100 
        

zebrafish leptin-b 24 100 
       

carp leptin-a-I  64 25 100 
      

carp leptin-a-II  63 25 81 100 
     

clawed frog  24 13 27 27 100         

human  19 19 21 23 35 100 
   

mouse  21 19 23 25 34 83 100 
  

dog  19 18 22 23 33 80 78 100 
 

cow  20 19 23 25 34 84 83 88 100 

 



A 

       1 M  R  F  P  A  L  R  S  T  C  I  L  S  M  L  S  L  I  H  C   
       1 atgcgttttccagctctccgctcaacctgtattttgagcatgctcagtttgattcattgc 
      21 I  P  V  H  Q  H  D  R  K  N  V  K  L  Q  A  K  T  I  I  V   
      61 attcccgttcatcagcatgaccggaaaaatgtcaaactgcaggcaaagaccatcatcgtc 
      41 R  I  R  E  H  I  D  G  Q  N  L  L  P  T  L  I  I  G  D  P   
     121 agaatcagggaacacattgacgggcaaaatttacttccaacgctcatcattggggatcca 
      61 G  H  Y  P  E  I  P  A  D  K  P  I  Q  G  L  G  S  I  M  E   
     181 ggacattatccagagattcccgctgacaaacccatccaagggctcggctccatcatggaa 
      81 T  I  N  T  F  H  K  V  L  Q  K  L  P  N  K  H  V  D  Q  I   
     241 accattaataccttccacaaggttcttcagaagcttccaaataagcatgttgaccagata 
     101 R  R  D  L  S  T  L  L  G  Y  L  E  G  M  D  C  T  L  K  E   
     301 cgccgagatctatccacacttctgggttacctggaaggcatggactgcacactgaaggaa 
     121 S  T  N  G  K  A  L  D  A  F  L  E  D  S  A  S  Y  P  F  T   
     361 tcaacaaatgggaaagcgctggacgcttttctagaggacagtgcttcatatccctttact 
     141 L  E  Y  M  T  L  N  R  L  K  Q  F  M  Q  K  L  I  D  N  L   
     421 ttagagtacatgactttaaacagactgaaacagtttatgcaaaagctgatcgataatctg 
     161 D  Q  L  K  I  C  *   
     481 gaccagctgaaaatctgctga  

 

B 

       1 M  K  S  S  M  I  F  C  L  L  I  S  S  L  V  A  V  S  I  S   
       1 atgaagtcttcaatgattttttgcttgttaatatcatccctggtggccgtgagcatcagt 
      21 R  P  T  A  P  E  D  R  I  R  I  I  A  R  T  T  I  S  R  I   
      61 cgacccacggctcccgaagacaggatacgaatcattgctcgaaccaccatcagccgaatt 
      41 K  K  I  K  D  E  H  F  Q  M  S  P  E  I  D  F  G  P  D  I   
     121 aaaaaaatcaaagatgagcacttccagatgtctccagagattgatttcggccctgacatc 
      61 D  N  P  I  D  G  L  S  S  V  L  S  Y  L  S  Y  L  Q  L  R   
     181 gacaaccccattgatggtctcagttctgtcttgagttacttgagttacctgcagttgcgg 
      81 L  H  V  P  P  A  Q  H  L  Q  Q  V  Q  I  D  L  E  T  L  L   
     241 ttgcatgttcctccagctcagcacctacagcaggtccagatagacttagagactctcctg 
     101 R  T  L  E  E  L  A  V  S  Q  G  C  P  L  P  N  P  E  T  P   
     301 aggacactggaggaactggccgtctcacagggatgccctctacccaatcccgagaccccg 
     121 V  H  K  E  E  T  A  F  P  V  T  S  N  Y  L  H  L  L  E  L   
     361 gtgcataaagaagaaacagccttccccgtcacctccaactacctgcacctcctggagctc 
     141 Q  R  F  L  E  K  L  C  L  N  I  D  K  L  K  Y  C  K  D  T   
     421 cagaggttcctggagaagctctgcctcaacatagacaaactgaaatactgcaaagataca 
     161 D  V  A  E  T  F  I  L  *   
     481 gatgtggctgagacattcattctctga 



zebrafish leptin-a MRFPALR-STCILSMLSLIHCIPVHQHDRKN-VKLQAKTIIVRIREHIDG-QNLLPTLII 57

zebrafish leptin-b MKSSMIF-CLLISSLVAVSISRPTAPE---DRIRIIARTTISRIKKIKDEHFQMSPEIDF 56

carp leptin-a-I MYFSALL-YPCILAMLSLVHGIPIHSDSLKNLVKLQADTIIIRIKDHNAE-LKLYPKLLI 58

carp leptin-a-II MYFSVLL-YPCILGMLSLVHAIPVHPDSLKNLVKLQADTIILRIKDHNEK-LKLSPKLLI 58

human leptin MHWGTLCGFLWLWPYLFYVQAVPIQKVQ--DDTKTLIKTIVTRINDISHTQSVSSKQKVT 58

* : : : * : : * : **..

zebrafish leptin-a GDPGHYPEIPADKPIQGLGSIMETINTFHKVLQKLPNKHVDQIRRDLSTLLGYLEG---- 113

zebrafish leptin-b G-------PDIDNPIDGLSSVLSYLSYLQLRLHVPPAQHLQQVQIDLETLLRTLEELAVS 109

carp leptin-a-I GDPELYPEVPADKPIQGLGSIMDTITTFQKVLQRLPKGRVSQIHIDLSTLLGHLKERMTS 118

carp leptin-a-II GDPELYPEVPANKPIQGLGSIVETLSTFHKVLQRLPKGHVSQIRNDLFTLLGYLKDRMTS 118

human leptin G----LDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFS 114

* :** *..: . : : * * .: *: ** .* *.

zebrafish leptin-a MDCTLKESTNGKALDAFLEDSASYPFTLEYMTLNRLKQFMQKLIDNLDQLKIC------- 166

zebrafish leptin-b QGCPLPNPE-----TPVHKEETAFPVTSNYLHLLELQRFLEKLCLNIDKLKYCKDTDVAE 164

carp leptin-a-I MHCTSKEPANGRALDAFLEDNATHHITVRYLALDRLKQFMQKLLVNLDQLKSC------- 171

carp leptin-a-II MRCTLKEPANERSLDAFLENNATHHITFGFLALDRLKQFMQKLIVNLDHLKSC------- 171

human leptin KSCHLPWASGLETLDSLGGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPGC------- 167

* . .. : : : * .*: ::.: ::* *

zebrafish leptin-a ----

zebrafish leptin-b TFIL 168

carp leptin-a-I ----

carp leptin-a-II ----

human leptin ----

helix a

helix chelix b

helix d



144 357zebrafish leptin-a

138 369zebrafish leptin-b

144 360human leptin

144 360mouse leptin
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0

0
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100
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