
On the Boundary between Decidability and
Undecidability of Asynchronous Session Subtyping

Mario Bravetti

University of Bologna, Department of Computer Science and Engineering / INRIA FOCUS

Marco Carbone

Department of Computer Science, IT University of Copenhagen

Gianluigi Zavattaro

University of Bologna, Department of Computer Science and Engineering / INRIA FOCUS

Abstract

Session types are behavioural types for guaranteeing that concurrent programs

are free from basic communication errors. Recent work has shown that asyn-

chronous session subtyping is undecidable. However, since session types have

become popular in mainstream programming languages in which asynchronous

communication is the norm rather than the exception, it is crucial to detect

significant decidable subtyping relations. Previous work considered extremely

restrictive fragments in which limitations were imposed to the size of commu-

nication buffer (at most 1) or to the possibility to express multiple choices

(disallowing them completely in one of the compared types). In this work, for

the first time, we show decidability of a fragment that does not impose any

limitation on communication buffers and allows both the compared types to

include multiple choices for either input or output, thus yielding a fragment

which is more significant from an applicability viewpoint. In general, we study

the boundary between decidability and undecidability by considering several

fragments of subtyping. Notably, we show that subtyping remains undecidable

even if restricted to not using output covariance and input contravariance.

Keywords: Session Types, Asynchronous Subtyping, Undecidability

Preprint submitted to Journal of LATEX Templates February 7, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/161653196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction

Session types [1, 2] are types for controlling the communication behaviour

of processes over channels. In a very simple but effective way, they express

the pattern of sends and receives that a process must perform. Since they

can guarantee freedom from some basic programming errors, session types5

are becoming popular with many main stream language implementations, e.g.,

Haskell [3], Go [4] or RUST [5].

As an example, consider a client that invokes service operations by following

the protocol expressed by the session type

⊕{op1: &{resp1: end}, op2: &{resp2: end}}

indicating that the client decides whether to call operation op1 or op2 and then

waits for receiving the corresponding response (resp1 or resp2, respectively). For

the sake of simplicity we consider session types where (the type of) communicated

data is abstracted away. The symmetric behaviour of the service is represented

by the complementary (so-called dual) session type

&{op1: ⊕{resp1: end}, op2: ⊕{resp2: end}}

indicating that the server receives the call to operation op1 or op2 and then

sends the corresponding response (resp1 or resp2, respectively).

We call output selection the construct ⊕{l1 : T1, . . . , ln : Tn}. It is used to10

denote a point of choice in the communication protocol: each choice has a label

li and a continuation Ti. In communication protocols, when there is a point of

choice, there is usually a peer that internally takes the decision and the other

involved peers receive communication of the selected branch. Output selection is

used to describe the behaviour of the peer that takes the decision: indeed, in our15

example it is the client that decides which operation to call. Symmetrically, we

call input branching the construct &{l1 : T1, . . . , ln : Tn}. It is used to describe

the behaviour of a peer that receives communication of the selection done by

some other peers. In the example, indeed, the service receives from the client

2



the decision about the selected operation.120

When composing systems whose interaction protocols have been specified

with session types, it is significant to consider variants of their specifications that

still preserve safety properties. In the above example, the client can be safely

replaced by another one with session type

⊕{op1: &{resp1: end}}

indicating that it can call only one specific service operation. But also the service

can be safely replaced by another one accepting an additional operation:

&{op1: ⊕{resp1: end}, op2: ⊕{resp2: end}, op3: ⊕{resp3: end}}

Formally, subtyping relations have been defined for session types (e.g. by Gay

and Hole [7] and Chen et al. [8]) to precisely capture this safe replacement

notion. Denoted with ≤s a subtyping relation like that of Gay and Hole [7]

where processes are assumed to simply communicate via synchronous channels2,

in the above example, for instance, we have that: for the client

⊕{op1: &{resp1: end}} ≤s ⊕ {op1: &{resp1: end}, op2: &{resp2: end}}

according to the so-called output covariant property, while, for the server

&{op1: ⊕{resp1: end}, op2: ⊕{resp2: end}, op3: ⊕{resp3: end}}

≤s &{op1: ⊕{resp1: end}, op2: ⊕{resp2: end}}

according to the so-called input contravariant property.

When processes communicate via asynchronous channels, a more generous

notion of subtyping ≤ like that of Chen et al. [8] can be considered. E.g., a

1In session type terminology [1, 6], the output selection/input branching constructs are

usually simply called selection/branching; we call them output selection/input branching

because we consider a simplified syntax for session types in which there is no specific separate

construct for sending one output/receiving one input. Anyway, such output/input types can

be seen as an output selection/input branching with only one choice.
2Here, we focus on the so-called process-oriented subtyping, as opposed to channel-based

subtyping [9].

3



process using an asynchronous channel to call a service operation, that receives

the corresponding response and then sends a huge amount of data (requiring

heavy computation), could be safely replaced by a more efficient one that

computes and sends all the data immediately without waiting for the response:

⊕{op: ⊕{huge data: &{resp: end}}} ≤ ⊕ {op: &{resp: ⊕{huge data: end}}}

Intuitively, this form of asynchronous subtyping reflects the possibility to antici-

pate the output of the huge data w.r.t. to the input of the response because such

data are stored in a buffer waiting for their reader to consume them.

1.1. Previous Results25

Recently, Bravetti et al. [10] and Lange and Yoshida [11] have independently

shown that asynchronous subtyping (the subtyping relation with output antici-

pation) is undecidable. In particular, in Bravetti et al., this is done by showing

undecidability of the much simpler single-choice relation << that is defined as a

restriction of asynchronous subtyping ≤ where related T <<S types are such that:30

all output selections in T have a single choice (output selections are covariant,

thus S is allowed have output selections with multiple choices) and all input

branchings in S have a single choice (input branchings are contravariant, thus

T is allowed to have input branchings with multiple choices). Moreover, those

papers prove decidability for very small fragments of the asynchronous subtyping35

relation: the most significant one basically requires one of the two compared

types to be such that all its input branchings and output selections have a single

choice. In particular, in Bravetti et al. this is done by showing decidability of the

two relations <<sin (single-choice input <<) and <<sout (single-choice output <<),

both defined as further restrictions of << where for related T <<sin S (T <<sout S,40

resp.) types we additionally require that: all input branchings (output selections,

resp.) in T and S have a single choice. Other decidable fragments, considered

by Lange and Yoshida, pose limitations on the communication behaviour that

causes communication buffers to store at most one message, or they are used

in half duplex modality (messages can be sent in one direction, only if the45

4



branching/selection structure buffer

≤ = ≤DC

≤tin

22

≤tout

<<

≤tin,tout

hh 66

≤bound

[[

undecidable

decidable

≤sin

OO

≤sout

OO

...

OO

≤2

OO

≤sin,tout

VV

JJ

≤tin,sout

HH

TT

≤1

OO

≤sin,sout

bb <<

≤0 = ≤s

OO

≤s synchronous subtyping [7]

≤ asynchronous subtyping [8]

// set inclusion

Figure 1: Lattice of the asynchronous subtyping relations considered in this paper.

buffer for the opposite direction has been emptied). Although asynchronous

subtyping is undecidable, it is important to reason about more significant cases

for which such a relation is decidable. This because session types have become

popular in mainstream programming languages, and, in such cases, asynchronous

communications are the norm rather than the exception.50

1.2. Contributed Results

The aim of this paper is to detect significant decidable fragments of asyn-

chronous session subtyping and to establish a more precise boundary between

decidability and undecidability. In particular, concerning decidability, as dis-

cussed above, the few decidable fragments of asynchronous subtyping known so55

5



far are extremely restrictive: our relations <<sin, <<sout [10] and the decidable

relations considered by Lange and Yoshida [11]. Here, for the first time, we show

decidability of a fragment that does not impose any limitation on communication

buffers and allows both the subtype and the supertype to include multiple choices

(either for input branchings or for output selections), thus opening the possibility60

for some practical applicability in restricted specific scenarios (e.g. session types

for clients/services in web-service systems, see below). More precisely, while <<sin

(<<sout, resp.), being it defined as a restriction of <<, admits multiple choices only

for output selections in the supertype (input branchings in the subtype, resp.),

here we consider and show decidability for a much larger relation, we denote by65

≤sin (≤sout, resp.). Such a relation is defined as the restriction of the whole ≤

relation (instead of the << relation), where, in related types, all input branchings

(output selections, resp.) must have a single choice. Therefore, differently from

<<sin (<<sout, resp.), in ≤sin (≤sout, resp.) both the subtype and the supertype can

include multiple choices for output selections (for input branchings, resp.). The70

combination of non restricted buffers and presence of multiple choices on both

related types requires a totally new approach for guaranteeing the termination of

the subtyping algorithm (both for the termination condition itself and for the

related decidability proof). For instance, if multiple choices are admitted for

input branchings, the termination condition has to deal with complex recurrent75

patterns to be checked on the leafs of trees representing input branchings (with

multiple choices), instead of detecting simple repetitions on strings representing

sequences of single-choice inputs (as in previous work [10, 11]).

Concerning undecidability, all previous results [10, 11] exploit the capability

of asynchronous subtyping of matching input branchings/output selections by80

means of covariance/contravariance. We here show that asynchronous subtyp-

ing remains undecidable even if we restrict it by disallowing this feature. As

asynchronous subtyping is based on the combination of output covariance/input

contravariance and output anticipation deriving from asynchronous communi-

cation, our result means that the source of undecidability is to be precisely85

localized into the output anticipation capability. The undecidability proof has a

6



structure similar to that of Bravetti et al. [10], where the termination problem for

queue machines, a well-known Turing-equivalent formalism, is encoded into asyn-

chronous session subtyping. However, differently from Bravetti et al. [10], not

having covariance/contravariance makes it impossible to encode queue machines90

deterministically. As we will see, the need to cope with nondeterminism makes

it necessary to restrict the class of encodable queue machines to a new ad-hoc

fragment that we introduce in this paper and we prove being Turing-equivalent:

single consuming queue machines. Moreover a much more complex encoding,

that uses nondeterminism, must be adopted.95

In general, the contribution of this work is to analyze restrictions of asyn-

chronous subtyping and classifying them into decidable and undecidable frag-

ments. More precisely, as detailed in the following, we focus on two kinds of

restrictions of asynchronous subtyping: limitations to the branching/selection

structure and to the communication buffer, giving rise to the numerous relations100

shown in the lefthand part and righthand part of Figure 1, respectively. The

relations are depicted as a lattice according to their inclusion as sets of pairs.

Notice that decidability/undecidability is not logically related to set inclusion

(e.g. the emptyset and the set of all pairs are both decidable and are the bottom

and the top of the lattice).105

Concerning asynchronous subtyping ≤ itself, we consider the orphan message

free notion of subtyping introduced in Chen et al. [8]: it is commonly recognized

that a convenient notion of asynchronous subtyping should prevent existence of

messages that remain “orphan”, i.e. that are never consumed from the commu-

nication buffer. Operationally, this implies that inputs in the supertype cannot110

be indefinitely delayed by output anticipation: eventually such inputs must be

performed by the subtype so to correspondingly consume messages from the

buffer. As a side result, in this paper we introduce a new, elegant, way of defining

orphan message free asynchronous subtyping. The new definition is based on

just adding a constraint about closure under duality to the standard (non orphan115

message free) coinductive definition of asynchronous subtyping [12]. We thus

use such a novel approach based on dual closeness to give a concise definition

7



of asynchronous subtyping: we call ≤DC the obtained relation. We then show

≤DC (also included in Figure 1) to be equal to orphan message free subtyping

≤ of Chen et al. [8]. We also show that the most significant decidable and120

undecidable fragments of ≤, i.e. the ≤sin ∪ ≤sout relation and subtyping without

covariance/contravariance, are dual closed subtyping relations according to our

new definition.

Limitations to the branching/selection structure. We limit the asyn-

chronous subtyping ≤ capability of managing input branchings/output selections,125

giving rise to the subtyping relations shown in the lefthand part of Figure 1, as

follows:

• requiring that in both the subtype and the supertype output selections

(input branchings, resp.) have a single choice: in this case the sout (sin,

resp.) subscript is added to ≤;130

• requiring that each output selection (input branching, resp.) performed

by the subtype is matched by an output selection (input branching, resp.)

performed by the supertype with the exactly the same total set of labels,

i.e. output covariance (input contravariance, resp.) is not admitted: in this

case the tout (tin, resp.) subscript is added to ≤.135

We now summarize our decidability/undecidability results for these relations.

• Decidability of asynchronous subtyping for single-in types (≤sin) or single-

out types (≤sout). We consider the class of single-in (single-out, resp.)

session types, i.e. types where all output selections (input branchings,

resp.) have a single choice. We present and prove correct an algorithm140

for deciding whether two single-out (resp. single-in, by exploiting the

closure under duality property) types are in the subtyping relation. From a

modeling viewpoint, assuming binary sessions to happen between a single-

in and a single-out party, this entails that internal decisions are taken by

the single-in party, while the single-out one passively accepts them. This145

8



kind of behaviour can occur in, e.g., web-service systems where a client

internally chooses a request-response operation [13] and then waits for a

corresponding (non branching) input, while the server accepts invocations

on several operations but then it reacts by answering on a related response

channel (independently of the actual returned data/error); see the examples150

at the beginning of this Introduction section. Our algorithms for subtyping

of single-out/single-in types could thus be used in typing systems for

server/client code. With minor variants to the machinery introduced to

show decidability of ≤sin and ≤sout, we also show that ≤sin,tout, ≤tin,sout and

≤sin,sout are decidable.155

• Undecidability of Asynchronous Subtyping without Output Covariance and

Input Contravariance (≤tin,tout). As discussed above, subtyping for session

types makes use of output covariance and input contravariance: an output

⊕{li : Ti}i∈I is a subtype of an output with more labels ⊕{lj : Tj}j∈J ,

for I ⊂ J ; and an input &{li : Ti}i∈I is a subtype of an input with less160

labels &{lj : Tj}j∈J , for J ⊂ I. Existing results on the undecidability

of asynchronous subtyping exploit its capability of relating types with a

different number of branches. We consider a restricted form of subtyping,

the ≤tin,tout relation, which disallows this feature, i.e. which does not use

output covariance and input contravariance. We show that, also with such165

a restriction, subtyping remains undecidable by encoding the termination

problem for single consuming queue machines, a Turing-equivalent formal-

ism that (as already explained) we introduce on purpose, into ≤tin,tout. The

same encoding we use for ≤tin,tout shows also undecidability of ≤tin, ≤tout

and ≤ (thus also providing an alternative proof for the undecidability of ≤170

with respect to those by Bravetti et al. [10] and Lange and Yoshida [11]).

Limitations to the communication buffer. We limit the communication

buffer capability, giving rise to the subtyping relations shown in the righthand

part of Figure 1, by restricting the capability of ≤ to anticipate outputs: this

is equivalent to putting an upper limit to communication buffers between two175

9



parties, a common fact in practice. In this context our decidability/undecidability

results are the following ones.

• Decidability of k-bounded Subtyping (≤k), with k ≥ 0. In k-bounded

asynchronous subtyping we restrict the capability of≤ to anticipate outputs:

they can only be anticipated w.r.t. a number of inputs that is less or equal180

to k. We give and prove correct an algorithm for deciding whether any

two session types are in a k-bounded subtyping relation. Notice that,

in the case k = 0 we obtain synchronous subtyping ≤s [7]. Moreover,

if we consider k = 1 we have a notion of subtyping along the lines of

that, we already mentioned, obtained by Lange and Yoshida [11] imposing185

restrictions on the communication behaviour.

• Undecidability of Bounded Asynchronous Subtyping (≤bound). We say that

a pair of session types is in bounded asynchronous subtyping relation if

there exists a k such that such pair is in k-bounded subtyping relation.

Bounded asynchronous subtyping relates types that do not unboundedly

put messages in a buffer. For instance, the types

µt.⊕ {huge data : ⊕{huge data : &{ack : t}}}

µt.&{ack : ⊕{huge data : t}}

are related by asynchronous subtyping but not by bounded asynchronous

subtyping: the augmented data production frequency of the subtype

requires to store an unbounded amount of huge data. Since in practice

buffers are bounded, this could have been an acceptable candidate notion190

for replacing standard asynchronous subtyping, however we prove that it

is undecidable as well. We do this by showing undecidability of a property

for queue machines: bounded non termination.

Outline. In Section 2 we present session types and definition of asynchronous

subtyping ≤, the novel dual closed reformulation ≤DC, the fragments of ≤ shown195

in Figure 1 and a discussion about their properties. Section 3 presents all

10



decidability results, notably for k-bounded subtyping (≤k) and for subtyping

over single-in types (≤sin) and over single-out types (≤sout). Section 4 presents all

undecidability results, notably for bounded subtyping (≤bound) and for subtyping

without output covariance and input contravariance (≤tin,tout). Section 5 discusses200

related work and Section 6 presents concluding remarks. Detailed proofs of

theorems, lemmas and propositions can be found in the Appendix. We chose to

put proof technicalities, that often include additional definitions and intermediate

results, in the Appendix so not to disrupt the paper prose.

2. Session Types and Asynchronous Subtyping205

We begin by formally introducing the various ingredients needed for our

technical development.

We start with the formal syntax of binary session types. Similarly to Chen

et al. [8] we do not use a dedicated construct for sending an output/receiving

an input, we instead represent outputs and inputs directly inside choices. More210

precisely, we consider output selection ⊕{li : Ti}i∈I , expressing an internal choice

among outputs, and input branching &{li : Ti}i∈I , expressing an external choice

among inputs. Each possible choice is labeled by a label li, taken from a global set

of labels L, followed by a session continuation Ti. Labels in a branching/selection

are assumed to be pairwise distinct.215

Definition 2.1 (Session Types). Given a set of labels L, ranged over by l,

the syntax of binary session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

A session type is single-out if, for all of its subterms ⊕{li : Ti}i∈I , |I| = 1.

Similarly, a session type is single-in if, for all of its subterms &{li : Ti}i∈I ,

|I| = 1.220

In the sequel, we leave implicit the index set i ∈ I in input branchings and

output selections when it is already clear from the denotation of the types. Note

11



also that we abstract from the type of the message that could be sent over

the channel, since this is orthogonal to our theory. Types µt.T and t denote

standard tail recursion for recursive types. We assume recursion to be guarded:225

in µt.T , the recursion variable t occurs within the scope of an output or an

input type. In the following, we will consider closed terms only, i.e., types with

all recursion variables t occurring under the scope of a corresponding definition

µt.T . Type end denotes the type of a channel that can no longer be used.

In our development, it is crucial to count the number of times we need to230

unfold a recursion µt.T . This is formalised by the following function:

Definition 2.2 (n-unfolding).

unfold0(T ) = T unfold1(⊕{li : Ti}i∈I) = ⊕{li : unfold1(Ti)}i∈I
unfold1(µt.T ) = T{µt.T/t} unfold1(&{li : Ti}i∈I) = &{li : unfold1(Ti)}i∈I
unfold1(end) = end unfoldn(T ) = unfold1(unfoldn−1(T ))

The definition of asynchronous subtyping uses the notion of input context, a

type context consisting of a sequence of inputs preceding holes where types can

be placed:

Definition 2.3 (Input Context). An input context A is a session type with235

multiple holes defined by the syntax: A ::= [ ]n | &{li : Ai}i∈I .

An input context A is well-formed whenever all its holes [ ]n, with n ∈ N+, are

consistently enumerated, i.e. there exists m ≥ 1 such that A includes one and

only one [ ]n for each n ≤ m. Given a well-formed input context A with holes

indexed over {1, . . . ,m} and types T1,. . . , Tk, we use A[Tk]k∈{1,...,m} to denote240

the type obtained by filling each hole k in A with the corresponding term Tk.

From now on, whenever using input contexts we will assume them to be

well-formed, unless otherwise specified.

For example, consider the input context

A = &{l1 : []1, l2 : []2}

we have:

A[⊕{l : Ti}]i∈{1,2} = &
{
l1 : ⊕{l : T1}, l2 : ⊕{l : T2}

}
12



We start by considering the standard notion of asynchronous subtyping

≤ given by Chen et al. [8]. We choose it because of its orphan message free245

property that is commonly recognized to be convenient: only subtypes are

allowed that do not cause incoming messages to remain “orphan” (because

they are never consumed from the communication buffer). In the definition of

asynchronous subtyping given by Chen et al., orphan message freedom causes a

specific dedicated constraint to be included (which is, e.g., instead not present250

in the asynchronous subtyping definition by Mostrous and Yoshida [12]). We

now formally present the asynchronous subtyping relation ≤, rephrased w.r.t.

that of Chen et al. [8] in a technical format that is convenient for showing our

results, which follows a coinductive simulation-like definition.

Definition 2.4 (Asynchronous Subtyping, ≤). R is an asynchronous sub-255

typing relation if (T, S) ∈ R implies that:

1. if T = end then ∃n ≥ 0 such that unfoldn(S) = end;

2. if T = ⊕{li : Ti}i∈I then ∃n ≥ 0,A such that

• unfoldn(S) = A[⊕{lj : Skj}j∈Jk ]k∈{1,...,m},

• ∀k ∈ {1, . . . ,m}. I ⊆ Jk,260

• ∀i ∈ I, (Ti,A[Ski]
k∈{1,...,m}) ∈ R and

• if A 6= [ ]1 then ∀i ∈ I. & ∈ Ti (no orphan message constraint);

3. if T = &{li : Ti}i∈I then ∃n ≥ 0 such that unfoldn(S) = &{lj : Sj}j∈J ,

J ⊆ I and ∀j ∈ J.(Tj , Sj) ∈ R;

4. if T = µt.T ′ then (T ′{T/t}, S) ∈ R.265

where with “& ∈ Ti” we mean that Ti contains at least an input branching.

T is an asynchronous subtype of S, written T≤S, if there is an asynchronous

subtyping relation R such that (T, S) ∈ R.

Intuitively, two types T and S are related by ≤, whenever S is able to

simulate T , but with a few twists: type S is allowed to anticipate outputs nested270

in its syntax tree (asynchrony); and, output and input types enjoy covariance

13



and contravariance, respectively. Moreover, the above definition includes the

no orphan message constraint [8], namely: we allow the supertype inputs to be

delayed only if also the subtype contains some input.

A synchronous subtyping relation ≤s like that of Gay and Hole [7] is obtained275

by requiring that, in item 2. of the above Definition 2.4, it always holds A = [ ]1.

Example 2.1. Consider T = µt. ⊕ {l : &{l1 : t, l2 : t}} and S = µt.&{l1 :

&{l2 : ⊕{l : t}}}. We have T ≤S because the following is an asynchronous

subtyping relation:

{ (T, S) , (⊕{l : &{l1 : T, l2 : T}}, S) , (&{l1 : T, l2 : T},&{l1 : &{l2 : S}}) ,

(T,&{l2 : S}) , (⊕{l : &{l1 : T, l2 : T}},&{l2 : S}) ,

(&{l1 : T, l2 : T},&{l2 : &{l1 : &{l2 : S}}}),

(T,&{l1 : &{l2 : S}}) , (⊕{l : &{l1 : T, l2 : T}},&{l1 : &{l2 : S}}) ,

(&{l1 : T, l2 : T},&{l1 : &{l2 : &{l1 : &{l2 : S}}}}) ,

(T,&{l2 : &{l1 : &{l2 : S}}}) , . . . }

Note that the relation contains infinitely many pairs that differ in the sequence of

inputs, alternatively labeled with l1 and l2, that are accumulated at the beginning

of the r.h.s. type.

We now introduce an alternative way of defining orphan message free asyn-280

chronous subtyping, which is more elegant/concise: it obtains the orphan message

freedom property by requiring closure under duality of the type relation being

defined instead of making use of an explicit orphan message free constraint as in

Definition 2.4.

For session types, we define the usual notion of duality: given a session type285

T , its dual T is defined as: ⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li :

T i}i∈I , end = end, t = t, and µt.T = µt.T . In the sequel, we say that a

relation R on session types is dual closed if (S, T ) ∈ R implies (T , S) ∈ R.

Definition 2.5 (Asynchronous Dual Closed Subtyping, ≤DC). R is an

asynchronous dual closed subtyping relation whenever it is dual closed and290

14



(T, S) ∈ R implies 1., 3., and 4. of Definition 2.4, plus a modified version of 2.

where the last constraint (the no orphan message constraint) is removed.

T is an asynchronous dual closed subtype of S, written T ≤DC S, if there is

an asynchronous dual closed subtyping relation R such that (T, S) ∈ R.

We observe that our definition is formally different from the ones found in295

literature. In particular, with respect to that by Mostrous and Yoshida [12], it

additionally requires the subtyping relation to be dual closed. Below, we show

that the dual closeness requirement is equivalent to imposing the orphan message

free constraint, i.e. the last item of condition 2 in Definition 2.4 (both guarantee

orphan-message freedom):300

Theorem 2.1. Given two session types T and S, we have T ≤S if and only if

T ≤DC S.

2.1. Subtyping Relation Restrictions

As already discussed in the Introduction, we focus on two kinds of restrictions

of asynchronous subtyping: limitations to the branching/selection structure and305

to the communication buffer, giving rise to the numerous relations shown in the

lefthand part and righthand part of Figure 1, respectively.

We now define fragments of ≤ obtained by posing limitations to the branch-

ing/selection structure.

Definition 2.6. Restrictions of the asynchronous subtyping relation are denoted310

by adding subscripts to the ≤ notation, with the following meaning:

• whenever we add subscript sout (sin, resp.) we additionally require in

Definition 2.4 both T and S to be single-out (single-in, resp.),

• whenever we add subscript tout (tin, resp.) we additionally require in

Definition 2.4 I = Jk in point 2. (I = J in point 3., resp.).315

The latter means that each output selection (input branching, resp.) performed

by the subtype is matched by an output selection (input branching, resp.)

15



performed by the supertype with the exactly the same total set of labels, i.e.

output covariance (input contravariance, resp.) is not admitted.

Notice that, while it holds that ≤ = ≤DC, not all fragments of ≤ are asyn-320

chronous dual closed subtyping relations. For instance this does not hold for

≤sin, ≤sout, ≤tin and ≤tout, which perform a limitation, but not its “dual” one.

It holds, instead, for the following two relations that we will show to be in the

boundary between decidability and undecidability.

Proposition 2.1. The ≤tin,tout relation and the ≤sin∪≤sout relation are asyn-325

chronous dual closed subtyping relations.

Dual closeness of the ≤sin ∪ ≤sout relation is a direct consequence of the

fact that T ≤sin S if and only if S≤sout T , which obviously derives from dual

closeness of ≤ and from the dual of a single-in type being a single-out type

and vice-versa. This fact, together with the following proposition, will be used330

to infer decidability of ≤sin and T ≤sin,tout S relations from that of ≤sout and

T ≤tin,sout S, respectively.

Proposition 2.2. The ≤sin,tout and ≤tin,sout relations are such that: T ≤sin,tout S

if and only if S≤tin,sout T .

We now consider variants of ≤ obtained by posing limitations the communi-335

cation buffer.

We can define a variant decidable relation by putting an upper-bound to the

messages that can be buffered. Technically speaking, when an output in the

r.h.s. is anticipated during the subtyping simulation, we impose a bound to the

number of inputs that are in front of such output.340

We say that an input context A is k-bounded if the maximal number of nested

inputs in A is less or equal to k.

Definition 2.7 (k-bounded Asynchronous Subtyping, with k ≥ 0). The

k-bounded asynchronous subtyping ≤k is defined as in Definition 2.4, with the

only difference that the input context A in item 2. is required to be k-bounded.345

16



Notice that the case k = 0 yields synchronous subtyping: since A = [ ]1 is

the only 0-bounded input context, we obviously have ≤0 = ≤s.

Lange and Yoshida [11] show the decidability of asynchronous subtyping for

a subclass of session types, called alternating, that in our setting corresponds

to impose that every output in a subtype is immediately followed by an input,

while every input in a supertype is followed by an output. For instance, this

property is satisfied by the following pair of types:

T = µt.⊕ {l2 : &{l1 : t}} S = µt.&{l1 : ⊕{l2 : t}}

It is not difficult to see that T≤1S. The key point of the proof of decidability of

asynchronous subtyping for alternating session types by Lange and Yoshida is

the observation that if T and S are alternating, then T≤S if and only if T≤1S.350

As we explained in the Introduction, we also consider the more generic notion

of bounded asynchronous subtyping. This relation is in our opinion of interest

because it reflects real cases in which it is possible to assume bounded buffers,

without an a priory knowledge of the actual bound.

Definition 2.8 (Bounded Asynchronous Subtyping, ≤bound). We say that355

T is a bounded asynchronous subtype of S, written T≤boundS, if there exists k

such that T≤kS.

3. Decidability Results

We now present decidability results for k-bounded asynchronous subtyping

and asynchronous subtyping for single-out/single-in session types.360

3.1. A Subtyping Procedure

We start by giving a procedure (an algorithm that does not necessarily

terminate) for the general subtyping relation, which is known to be undecid-

able [10, 11]. Such a procedure is inspired by the one proposed by Mostrous et

al. [14] for asynchronous subtyping in multiparty session types. In order to do365

so, we introduce two functions on the syntax of types. The function outDepth

17



calculates how many unfolding are necessary for bringing an output outside a

recursion. If that is not possible, the function is undefined (denoted by ⊥).

Definition 3.1 (outDepth). The partial function outDepth(T ) is inductively

defined as follows:370

outDepth(⊕{li : Ti}i∈I)=0 outDepth(&{li : Ti}i∈I)=max{outDepth(Ti) | i∈I}

outDepth(µt.T )=1+outDepth(T{end/t}) outDepth(end)=⊥

where max{outDepth(Ti) | i ∈ I} =⊥, if outDepth(Ti) =⊥ for some i ∈ I;

similarly, 1+⊥=⊥.

As an example of application of outDepth consider, for any T1 and T2,

outDepth(⊕{l1 : T1, l2 : T2}) = 0. On the other hand, consider the type Tex =

&
{
l1 : µt.⊕

{
l2 : T1

}
, l3 : µt.&

{
l4 : µt′.⊕{l5 : T2}

}}
: clearly, outDepth

(
Tex
)

= 2.375

We then define outUnf(), a variant of the unfolding function given in Definition 2.2,

which unfolds only where it is necessary, in order to reach an output:

Definition 3.2 (outUnf). The output unfolding outUnf(T ) is a partial func-

tion defined whenever outDepth(T ) is defined. Given outDepth(T ) = n, outUnf(T )

is computed using the same inductive rules of unfoldn(T ), excluding the rule for380

⊕{li : Ti}i∈I that, instead of recursively unfolding Ti, returns the same term

⊕{li : Ti}i∈I .

The function above differs from unfoldn: for example, unfold2
(
Tex
)

would unfold

twice both subterms µt.⊕{l2 : T1} and µt.&
{
l4 : µt′.⊕{l5 : T2}

}
. On the other

hand, applying outDepth to the same term would unfold once the term reached385

with l1 and twice the one reached with l3.

In the subtyping procedure defined below we make use of outUnf() in order to

have that recursive definitions under the scope of an output are never unfolded.

This guarantees that during the execution of the procedure, even if the set of

reached terms could be unbounded, all the subterms starting with an output are390

taken from a bounded set of terms. This is important to guarantee termination3

3Technically speaking, this property of the unfolding is used in the proof of Theorem 3.2.

18



of the algorithm that we will define in Section 3.3 as an extension of the procedure

described below.

Subtyping Procedure. An environment Σ is a set containing pairs (T, S),

where T and S are types. Judgements are triples of the form Σ ` T ≤a S which395

intuitively read as “in order to succeed, the procedure must check whether T

is a subtype of S, provided that pairs in Σ have already been visited”. Our

subtyping procedure, applied to the types T and S, consists of deriving the state

space of our judgments using the rules in Figure 2 bottom-up starting from the

initial judgement ∅ ` T ≤a S. More precisely, we use the transition relation400

Σ ` T ≤a S → Σ′ ` T ′ ≤a S
′ to indicate that if Σ ` T ≤a S matches the

conclusions of one of the rules in Figure 2, then Σ′ ` T ′ ≤a S
′ is produced by

the corresponding premises. The procedure explores the reachable judgements

according to this transition relation. We give highest priority to rule Asmp, thus

ensuring that at most one rule is applicable.4 The idea behind Σ is to avoid405

cycles when dealing with recursive types. Rules RecR1 and RecR2 deal with the

case in which the type on the right-hand side is a recursion and must be unfolded.

If the type on the left-hand side is not an output then the procedure simply

adds the current pair to Σ and continues. On the other hand, if an output must

be found, we apply RecR1 which checks whether such output is available. Rule410

Out allows nested outputs to be anticipated (when not under recursion) and

condition
(
A 6= [ ]1

)
⇒ ∀i ∈ I.& ∈ Ti makes sure there are no orphan messages.

The remaining rules are self-explanatory. Σ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ is the

reflexive and transitive closure of the transition relation among judgements. We

write Σ ` T ≤a S →ok if the judgement Σ ` T ≤a S matches the conclusion of415

one of the axioms Asmp or End, and Σ ` T ≤a S →err to mean that no rule can

be applied to Σ ` T ≤a S. Due to input branching and output selection, the

rules In and Out could generate branching also in the state space to be explored

4The priority of Asmp is sufficient because all the other rules are alternative, i.e., given a

judgement Σ ` T ≤a S there are no two rules different from Asmp that can be both applied.

19



(A 6= [ ]1)⇒ ∀i ∈ I.& ∈ Ti

∀n.I ⊆ Jn ∀i ∈ I .Σ ` Ti ≤a A[Sni]
n

Σ ` ⊕{li : Ti}i∈I ≤a A[⊕{lj : Snj}j∈Jn ]n
Out

J ⊆ I ∀j ∈ J .Σ ` Tj ≤a Sj

Σ ` &{li : Ti}i∈I ≤a &{lj : Sj}j∈J
In

Σ ` end ≤a end
End

Σ, (T, S) ` T ≤a S
Asmp

Σ, (µt.T, S) ` T{µt.T/t} ≤a S

Σ ` µt.T ≤a S
RecL

T = end ∨ T = &{li : Ti}i∈I Σ, (T, µt.S) ` T ≤a S{µt.S/t}
Σ ` T ≤a µt.S

RecR1

outDepth(S) ≥ 1 Σ, (⊕{li : Ti}i∈I , S) ` ⊕{li : Ti}i∈I ≤a outUnf(S)

Σ ` ⊕{li : Ti}i∈I ≤a S
RecR2

Figure 2: A Procedure for Checking Subtyping

by the procedure. Namely, given a judgement Σ ` T ≤a S, there are several

subsequent judgements Σ′ ` T ′ ≤a S
′ sucht that Σ ` T ≤a S → Σ′ ` T ′ ≤a S

′.420

The procedure could (i) successfully terminate because all the explored branches

reach a successful judgement Σ′ ` T ′ ≤a S
′ →ok, (ii) terminate with an error

in case at least one judgement Σ′ ` T ′ ≤a S
′ →err is reached, or (iii) diverge

because no branch terminates with an error and at least one branch never reaches

a succesful judgement.425

Example 3.1. Consider T = µt.⊕
{
l1 : &{l2 : t}

}
and S = µt.⊕

{
l1 : &

{
l2 :

&{l2 : t}
}}

. Clearly, the two types T and S are related by asynchronous

subtyping, i.e. T≤S. However, the subtyping procedure on ∅ ` T ≤a S does not

terminate:

20



∅ ` T ≤a S →{
(T, S)

}
` ⊕

{
l1 : &{l2 : T}

}
≤a S →{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S)
}

` ⊕
{
l1 : &{l2 : T}

}
≤a ⊕

{
l1 : &

{
l2 : &{l2 : S}

}}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S)
}
` &{l2 : T} ≤a &

{
l2 : &{l2 : S}

}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S)
}
` T ≤a &{l2 : S} →{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S})

}
` ⊕

{
l1 : &{l2 : T}

}
≤a &{l2 : S} →{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S}), (⊕

{
l1 : &{l2 : T}

}
,&{l2 : S})

}
` ⊕

{
l1 : &{l2 : T}

}
≤a &

{
l2 : ⊕

{
l1 : &

{
l2 : &{l2 : S}

}}}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S}), (⊕

{
l1 : &{l2 : T}

}
,&{l2 : S})

}
` &{l2 : T} ≤a &

{
l2 : &

{
l2 : &{l2 : S}

}}
→

. . .

Notice that the last step above is obtained by application of the rule Out by430

considering the input context A = &{l2 : [ ]}.

The example above shows that the procedure could diverge; the next result

proves that this can happen only if the checked types are in subtyping relation.

More precisely, types T and S are not in subtyping relation if and only if the

procedure on ∅ ` T ≤a S terminates with an error; formally435

Proposition 3.1. Given the types T and S, we have that there exist Σ′, T ′, S′

such that T 6≤S if and only if ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err.

This means that: if T 6≤S then the procedure on ∅ ` T ≤a S surely terminates

with an error; if, instead, T≤S then the procedure terminates successfully or

diverges.440

3.2. k-bounded Asynchronous Subtyping

In the previous subsection we have shown that the standard subtyping

procedure does not terminate in general. In order to guarantee termination,

Lange and Yoshida [11] have considered limitations to the communication buffer,

21



like half-duplex (in this case asynchronous and synchronous subtyping coincides)445

or alternating protocols (in this case the buffer will store at most one message).

We now prove a more general decidability result. We show that, for every k, we

can define an algorithm for the notion of k-bounded asynchronous subtyping

introduced in Section 2.1, building on the subtyping procedure defined previously.

We consider an algorithm, that we denote with ≤ka , obtained from the above450

procedure for ≤a simply by imposing that the input context A, used in rule

Out in Figure 2, is always k-bounded. Then, the following result holds:

Theorem 3.1. The algorithm for ≤ka always terminates and, given the types

T and S, there exist Σ′, T ′, S′ such that ∅ ` T ≤ka S →∗ Σ′ ` T ′ ≤a S
′ →err if

and only if T 6≤kS.455

3.3. Asynchronous Subtyping for Single-Out or Single-In Types

In Example 3.1 we have seen that, if we consider the terms T = µt.⊕
{
l1 :

&{l2 : t}
}

and S = µt.⊕
{
l1 : &

{
l2 : &{l2 : t}

}}
, the subtyping procedure in

Figure 2 applied to ∅ ` T ≤a S does not terminate. The problem is that the

termination rule Asmp cannot be applied because the term on the r.h.s. (i.e.460

the supertype) generates always new terms in the form &
{
l2 : &

{
l2 : . . .&{l2 :

S} . . .
}}

.

Notice that, in this particular example, these infinitely many distinct terms

are obtained by adding single inputs (i.e. single-choice input branchings) in front

of the term in the r.h.s.: we call this linear input accumulation.465

For simple cases like this one, solutions have been proposed by Lange and

Yoshida [11] and Bravetti et al. [10]. The idea is to extend the subtyping

procedure in Figure 2 with additional termination rules able to detect when

it is no longer necessary to continue because it entered a deterministic loop

(where the only possible future behavior of the procedure is to repeat indefinitely470

the same linear input accumulation). This approach holds only under two

assumptions, both satisfied by the subtyping relations considered in Lange and

Yoshida [11] and Bravetti et al. [10]: while checking subtyping output selections

22



in the l.h.s. (i.e. the subtype) are always single-choice and the same holds for

input branchings in the r.h.s. (i.e. the supertype). This implies that there is a475

linear input accumulation, which is the repetition of a specific sequence of input

labels. The combination of these two assumptions guarantees that the subtyping

procedure proceeds deterministically: this makes it possible to detect whether it

enters a loop because the unique kind of loops are the deterministic ones.

In this section we show that it is possible to relax at least one of these two480

assumptions: either deal with the case in which the input accumulation is not

linear, or deal with the case in which output selections in the l.h.s. are not

single-choice. More precisely, the two cases that we consider are the following

ones: subtyping between single-out session types (where input branchings in

the r.h.s. are not constrained to be single-choice as in previous approaches) and485

subtyping between single-in session types (where output selections in the l.h.s.

are not constrained to be single-choice as in previous approaches), i.e. the two

relations ≤sout and ≤sin, respectively, that we introduced in Section 2.1 The idea

is to find an algorithm for one of the two cases and apply it also to the other

one by exploiting type duality.490

In the single-in case we surely have linear input accumulation but the sub-

typing procedure is no longer deterministic due to non-single output selections

in the l.h.s. that have multiple possible continuations. This causes the approach

proposed in Lange and Yoshida [11] and Bravetti et al. [10] to fail because

now the procedure can incur in nondeterministic loops (so it is not guaranteed495

to repeat indefinitely the accumulation behavior detected by the additional

termination rule they consider). On the other hand, in the single-out case we

loose the linear input accumulation but we do not have output selections to

cause the problematic nondeterminism discussed above.

The latter advantage led us to to opt for the single-out case, which we were500

able to manage by adopting a totally new approach where the input accumulation

is represented in the form of a tree (thus accounting for all possible alternative

accumulated input behaviors at the same time).

We start with an example of subtyping between single-out types that cannot

23



be managed with the appraoch in Lange and Yoshida [11] and Bravetti et al. [10]505

because there is non-linear input accumulation.

Example 3.2. Consider T = µt. ⊕
{
l1 : &{l2 : t, l3 : t}

}
and S = µt. ⊕

{
l1 :

&
{
l2 : &{l2 : t}, l3 : t

}}
. We now comment the application of the subtyping

procedure on ∅ ` T ≤a S.

∅ ` T ≤a S →{
(T, S)

}
` ⊕

{
l1 : &{l2 : T, l3 : T}

}
≤a S →{

(T, S), (⊕
{
l1 : &{l2 : T, l3 : T}

}
, S)
}
`

⊕
{
l1 : &{l2 : T}

}
≤a ⊕

{
l1 : &

{
l2 : &{l2 : S}, l3 : S

}}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S)
}
` &{l2 : T, l3 : T} ≤a &

{
l2 : &{l2 : S}, l3 : S

}
At this point, the subtyping procedure has two continuations, one for the label l2

and one for the label l3. In case of label l3 we reach the judgement:{
(T, S), (⊕

{
l1 : &{l2 : T}

}
, S)
}
` T ≤a S

on which the termination rule Asmp can be applied. In case of label l2 we have:{
(T, S), (⊕

{
l1 : &{l2 : T}

}
, S)
}
` T ≤a &{l2 : S} →{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S})

}
` ⊕

{
l1 : &{l2 : T, l3 : T}

}
≤a &{l2 : S} →{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S}), (⊕

{
l1 : &{l2 : T, l3 : T}

}
,&{l2 : S})

}
` ⊕

{
l1 : &{l2 : T, l3 : T}

}
≤a &

{
l2 : ⊕

{
l1 : &

{
l2 : &{l2 : S}, l3 : S

}}}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S}), (⊕

{
l1 : &{l2 : T, l3 : T}

}
,&{l2 : S})

}
` &{l2 : T, l3 : T} ≤a &

{
l2 : &

{
l2 : &{l2 : S}, l3 : S

}}
→{

(T, S), (⊕
{
l1 : &{l2 : T}

}
, S), (T,&{l2 : S}), (⊕

{
l1 : &{l2 : T, l3 : T}

}
,&{l2 : S})

}
` T ≤a &

{
l2 : &{l2 : S}, l3 : S

}
→

. . .

Notice that in the last judgement, the r.h.s. has a non-linear input accumulation

starting with an input choice on two labels l2 and l3.

3.3.1. Asynchronous Subtyping for Single-Out Types

We now present our novel approach to asynchronous subtyping that can be510

applied to single-out types, hence also to the types in the above Example 3.2,

24



that will be used as a running example in this section. As anticipated, the main

novelty is the ability to deal with non-linear input accumulation by representing

it as a tree. We need to be able to extract the leafs from these trees: this is done

by the leaf set function defined as follows.515

Definition 3.3 (Leaf Set). Given a session type S, we write noIn(S) if S is

not of the form &{li : Si}i∈I . Given a session type T , we define

leafSet(T )={T1, . . . , Tn | noIn(Ti) and ∃ input context A s.t. T =A[Tk]k∈{1...n}}

The leaf set of a session type T is the set of subterms reachable from its root

through a path of inputs. For example, the leaf set of the term &{l1 : µt.⊕ {l2 :

t}, l3 : &{l4 : ⊕{l2 : µt.⊕ {l2 : t}}}} is {µt.⊕ {l2 : t},⊕{l2 : µt.⊕ {l2 : t}}. If

we consider the l.h.s. term in the last judgement in Example 3.2, we have that

leafSet(&
{
l2 : &{l2 : S}, l3 : S

}
) = {S}.520

During the check of subtyping, according to Figure 2 (rule Out), when a

term in the r.h.s. having input accumulation has to mimic an output in front

of the l.h.s., such output must be present in front of all the leafs of the tree.

In this case, the checking continues by anticipating the output from all the

leafs. The following auxiliary function output anticipation indicates the way a525

term changes after having anticipated a sequence of outputs. Notice that in

the definition we make use of the assumption on single-out session types, by

considering single-choice output selections.

Definition 3.4 (Output Anticipation). Partial function antOut(T, li1 · · · lin),

with T single-out session type and li1 · · · lin sequence of labels, is inductively

defined as follows:

antOut(T, li1 · · · lin)=

T if n = 0

A[Tk]k if outUnf(antOut(T, li1 · · · lin−1))=A[⊕{lin: Tk}]k

We say that T can infinitely anticipate outputs, written antOutInf(T ), if there

exists an infinite sequence of labels li1 · · · lij · · · such that antOut(T, li1 · · · lin) is530

defined for every n.

25



The function antOut(T, l̃) anticipates all outputs in the sequence l̃. For example,

the function applied to &{l : µt.⊕ {l1 : ⊕{l2 : t}}, l′ : ⊕{l1 : µt.⊕ {l2 : ⊕{l1 :

t}}}} and the sequence (l1, l2) would return the same term, while it would be

undefined with the sequence (l1, l1). If we go back to our running Example 3.2,535

we have that antOut(S, l1) = &
{
l2 : &{l2 : S}, l3 : S

}
. Moreover, we have that

antOutInf(S) holds because the label l1 can be infinitely anticipated.

The definition of antOutInf(T ) is not algorithmic in that it quantifies on

every possible natural number n. Nevertheless, as we show below, it can be

decided by checking whether for every session type obtained from T by means540

of output anticipations, all the terms populating its leaf set can anticipate the

same output label. Although such process may generate infinitely many session

types, the terms populating the leaf sets are finite and are over-approximated by

the function reach(T ), which always returns a finite set and is defined as:

Definition 3.5 (Reachable Types). Given a single-out session type T, reach(T )545

is the minimal set of session types such that:

1. T ∈ reach(T );

2. &{li : Ti}i∈I ∈ reach(T ) implies Ti ∈ reach(T ) for every i ∈ I;

3. µt.T ′ ∈ reach(T ) implies T ′{µt.T ′/t} ∈ reach(T );

4. ⊕{l : T ′} ∈ reach(T ) implies T ′ ∈ reach(T ).550

Notice that reach(T ) is populated by those session types obtained by con-

suming in sequence the initial inputs and outputs, and by unfolding recursion

only when it is at the top level. As an example, consider the session type S of

the Example 3.2. We have

reach(S)=
{
S,⊕

{
l1 : &

{
l2 : &{l2 : S}, l3 : S

}}
,&
{
l2 : &{l2 : S}, l3 : S

}
,&{l2 : S}

}
555

For every type T , we have that the terms in reach(T ) are finite; in fact,

during the generation of such terms, eventually the term end or a term already

considered is reached. The latter occurs after consumption of all the inputs and

outputs in front of a recursion variable already unfolded.

26



Proposition 3.2. Given a single-out session type T , reach(T ) is finite and it560

is decidable whether antOutInf(T ).

Subtyping algorithm for single-out types. We are now ready to present

the new termination condition that once added to the subtyping procedure in

Figure 2 makes it a valid algorithm for checking subtyping for single-out types.

The termination condition is defined as an additional rule, named Asmp2, that565

complements the already defined Asmp rule by detecting those cases in which

the subtyping procedure in Figure 2 does not terminate.

The new rule is defined parametrically on the session type Z, which is the

type on the right-hand side of the initial pair of types to be checked (i.e. the

algorithm is intended to check V≤Z, for some type Z). We start from the initial

judgement ∅ ` V ≤t Z and then apply from bottom to top the rules in Figure 2,

where ≤a is replaced by ≤t , plus the following additional rule:

S ∈ reach(Z) antOutInf(S) |γ| < |β|
leafSet(antOut(S, γ)) = leafSet(antOut(S, β))

Σ, (T, antOut(S, γ)) ` T ≤t antOut(S, β)
Asmp2

We first observe that this termination rule can be applied to the last judgement of

our running Example 3.2. We have already seen that S ∈ reach(S), antOutInf(S)

holds, antOut(S, l1) = &
{
l2 : &{l2 : S}, l3 : S

}
and that leafSet(&

{
l2 : &{l2 :570

S}, l3 : S
}

) = {S}. We now observe that antOut(S, ε) = S and leafSet(S) = {S},

hence we can conclude that we can apply the above termination rule Asmp2 to

the last judgement in Example 3.2 by instantiating γ = ε and β = l1.

The first property of the new algorithm that we prove is termination. In-

tuitively, we have that this new termination rule guarantees to catch all those575

cases where the term on the right grows indefinitely, by anticipating outputs and

accumulating inputs. These infinitely many distinct types are anyway obtainable

starting from the finite set reach(Z), by means of output anticipations. Hence

there exists S ∈ reach(Z) that can generate infinitely many of these types:

this guarantees antOutInf(S) to be true. As observed above, the leaves of such580

infinitely many terms are themselves taken from the finite set reach(Z). This

27



guarantees that the algorithm, among the types that can be obtained from S,

visits two terms having the same leaf set. These, even if syntactically different,

are equivalent as far as the subtyping game is regarded.

Concerning the precise definition of the algorithm, in order to avoid the585

possibility of applying two distinct rules to the same judgement, we give rule

Asmp2 the same priority as rule Asmp (both rules have highest priority). Also

in this case, we use Σ ` T ≤t S → Σ′ ` T ′ ≤t S
′ to denote that the latter can

be obtained from the former by one rule application, and Σ ` T ≤t S →err, to

denote that there is no rule that can be applied to the judgement Σ ` T ≤t S.590

We can now state the termination and soundness of the algorithm:

Theorem 3.2. Given two single-out session types T and S, the algorithm ap-

plied to the initial judgement ∅ ` T ≤t S terminates.

Theorem 3.3. Given two single-out session types T and S, we have that there

exist Σ′, T ′, S′ such that ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err if and only if there595

exist Σ′′, T ′′, S′′ such that ∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′ →err.

Finally, we can conclude the decidability of asynchronous subtyping for

single-out session types.

Corollary 3.1 (Decidability for Single-out Types). Asynchronous subtyp-

ing for single-out session types ≤sout is decidable.600

We now show that the above decidability results hold also for the ≤tin,sout

relation (where we further restrict the asynchronous subtyping relation not to

admit contravariance on input branchings). In the algorithm we just modify

the rule In of Figure 2 by changing the constraint J ⊆ I in the premise into

J = I, thus obtaining modified versions of Σ ` T ≤a S → Σ′ ` T ′ ≤a S
′ (and605

Σ ` T ≤a S →err) and Σ ` T ≤t S → Σ′ ` T ′ ≤t S
′ (and Σ ` T ≤t S →err).

We have that Proposition 3.1, where relation ≤tin is considered instead of

≤, termination Theorem 3.2 and soundness Theorem 3.3, where the modified

judgments ≤a and ≤t are considered, still hold (they are proved with exactly

the same proofs as those reported in Appendix B for the original statements).610

28



Corollary 3.2. Asynchronous subtyping for single-out session types without

input contravariance ≤tin,sout is decidable.

3.3.2. Asynchronous Subtyping for Single-in Types

First of all we notice that an obvious consequence of Corollary 3.1 is that

also ≤sin,sout is decidable (we just have to add a preliminary check verifying615

that both types are single-in). Moreover, exploiting dual closeness, i.e. the fact

that T ≤sin S if and only if S≤sout T (see Section 2.1), we can use the algorithm

presented for single-out types also for the case of single-in types.

Corollary 3.3 (Decidability for Single-in Types). Asynchronous subtyp-

ing for single-in session types ≤sin is decidable.620

We can therefore identify an asynchronous dual closed subtyping relation

that stands in the boundary of decidability.

Corollary 3.4 (Decidability for Single-in or Single-out Types). The

asynchronous dual closed subtyping relation ≤sin∪≤sout is decidable.

Finally, similarly as we did for T ≤sin S, by exploiting Proposition 2.2 we625

can use the modified algorithm employed for ≤tin,sout subtyping for deciding the

remaining relation ≤sin,tout.

Corollary 3.5. Asynchronous subtyping for single-in session types without out-

put covariance ≤sin,tout is decidable.

4. Undecidability Results630

We now move to undecidability results. We first consider bounded asyn-

chronous subtyping ≤bound. The proof in this case is a variant of the proof we

already presented in our previous work [10], where we encoded the problem of

checking (non) termination in queue machines (a well-known Turing powerful

formalism) into checking session subtyping. Technically speaking, we resort to a635

29



different property, namely bounded non termination, that we here show to be

undecidable for queue machines.

The second, and main, undecidability result concerns subtyping without

output covariance and input contravariance ≤tin,tout. The proof in this case

requires deep modifications to our proof technique, due to the impossibility640

to exploit covariance/contravariance in the queue machine encoding. We deal

with the absence of covariance/contravariance by saturating each point of choice

on the entire considered alphabet. This has a strong impact on the encoding

because it introduces additional choices, in the session types, whose continuations

do not correspond to the behaviour of the considered queue machine. This645

problem is solved by ensuring that these additional choices and the corresponding

continuations are irrelevant as far as subtyping checking is concerned. Such

solution, however, works only for a fragment of queue machines (that we call

single-consuming queue machines) that we prove to be Turing complete as well.

We consider this second result interesting for the following reason: the650

previous undecidability proofs [10, 11] made use of both output covariance/input

contravariance (already present in synchronous session subtyping) and output

anticipation (specific for asynchronous subtyping), hence our new proof shows

that the source of undecidability is to be precisely localized into the latter as

the former is not necessary to prove undecidability.655

We first report the definition of queue machines.

4.1. Queue Machines

Queue machines are a formalism similar to pushdown automata, but with a

queue instead of a stack. Queue machines are Turing-equivalent [15].

Definition 4.1 (Queue Machine). A queue machine M is defined by a six-660

tuple (Q,Σ,Γ, $, s, δ) where:

• Q is a finite set of states;

• Σ ⊂ Γ is a finite set denoting the input alphabet;

30



• Γ is a finite set denoting the queue alphabet;

• $ ∈ Γ− Σ is the initial queue symbol;665

• s ∈ Q is the start state;

• δ : Q× Γ→ Q× Γ∗ is the transition function.

A configuration of a queue machine is an ordered pair (q, γ) where q ∈ Q

is its current state and γ ∈ Γ∗ is the content of the queue (Γ∗ is the Kleene

closure of Γ). The starting configuration on an input string x ∈ Σ∗ is (s, x$).670

The transition relation →M from one configuration to the next one is defined as

(p,Aα)→M (q, αγ), when δ(p,A) = (q, γ). A machine M accepts an input x if it

blocks by emptying the queue. Formally, x is accepted by M if (s, x$)→∗M (q, ε)

where ε is the empty string and →∗M is the reflexive and transitive closure of

→M . Intuitively, a queue machines is a Turing machine with a special tape that675

works as a FIFO queue.

The Turing completeness of queue machines is discussed by Kozen [15] (page

354, solution to exercise 99). A configuration of a Turing machine (tape, current

head position and internal state) can be encoded in a queue, and a queue machine

can simulate each move of the Turing machine by repeatedly consuming and680

reproducing the queue contents, only changing the part affected by the move

itself. The undecidability of termination for queue machines follows directly

from such encoding.

4.2. Bounded Asynchronous Subtyping

We now consider the notion of bounded asynchronous subtyping ≤bound we685

introduced in Section 2.1,

The proof of undecidability of ≤bound follows the approach we already used

to prove the undecidability of single-choice asynchronous subtyping << [10] (that

we have commented in the Introduction). The idea is to define, given a queue

machine M and its input x, two session types S and T , such that S is a subtype690

of T if and only if M does not accept x. More precisely, the type S models the

31



a) Finite Control

[[q]]S =



µq.&{A :⊕{BA1 : · · · ⊕ {BAnA
: [[q′]]S∪q}}}A∈Γ

if q 6∈ S and δ(q, A) = (q′, BA1 · · ·BAnA
)

q if q ∈ S

b) Queue

[[C1· · ·Cm]] = &{C1 : . . .&{Cm : µt.⊕ {A : &{A : t}}A∈Γ}}

Figure 3: Encoding of the Finite Control and the Queue of a Queue Machine

finite control of the queue machine M while the type T models the queue that

initially contains the sequence x$.

More precisely, the encoding of queue machines is as follows [10].

Definition 4.2 (Queue Machine Encoding). Let M = (Q,Σ,Γ, $, s, δ) be a695

queue machine, and let C1, · · · , Cm ∈ Γ, with m ≥ 0, q ∈ Q and S ⊆ Q. The

finite control encoding function [[q]]S and the queue encoding function [[C1 · · ·Cm]]

are defined as in Figure 3(a) and Figure 3(b) respectively. The initial encoding

of M with input x is given by the pair of types [[s]]∅ and [[x$]].

The basic idea behind the encoding of the finite control is to use a recur-700

sively defined type with a recursion variable q for each state q of the encoded

queue machine M . The type corresponding to the recursion variable q starts

with an input with multiple choices, one for each possible symbol that can

be consumed from the queue. The continuation is composed of a sequence of

single-choice inputs labeled with the symbols BA1 . . . B
A
nA

, where BA1 . . . B
A
nA

are705

the symbols enqueued by the queue machine when, in state q, consumes A from

the queue. Assuming that q′ is the new state of M after execution of this step

(i.e. δ(q,A) = (q′, BA1 . . . B
A
nA

)), the type becomes the one corresponding to the

recursive variable q′.

On the other hand, the type modeling the queue with contents C1 . . . Cm710

is denoted with [[C1 . . . Cm]]: this type starts with a sequence of single-choice

32



inputs labeled with the symbols C1 . . . Cm, followed by a recursive type. Such

type starts with an output with multiple-choices, one for each symbols that

can be enqueued, followed by a single-choice input having the same label. This

particular type has the following property: if one label A of the multiple-choice715

output is selected for anticipation during the subtyping simulation game, the

corresponding single-choice input labeled with A is enqueued at the end of the

sequence of inputs preceding the recursive definition. This perfectly corresponds

to the behaviour of the queue in the modeled queue machine.

As mentioned above, this encoding has been already used to prove the720

undecidability of << [10]. More precisely, we proved that given a queue machine

M = (Q,Σ,Γ, $, s, δ) and an initial input x, we have that [[s]]∅<<[[x$]] if and only

if x is not accepted by M (i.e. M does not terminate on input x). The same

result does not hold for the bounded asynchronous subtyping because there are

cases in which M does not accept x but [[s]]∅ 6≤bound[[x$]], in particular, those725

cases in which the subtyping simulation game generates unbounded accumulation

of inputs. For this reason we have to consider a more complex undecidable

property for queue machines: bounded non termination, i.e., the ability of a

queue machine to have an infinite computation while keeping the length of the

queue bounded. We now define the notion of boundedness for queue machines730

and then prove that bounded non termination is undecidable.

Definition 4.3 (Queue Machine Boundedness). Let M be a queue machine

and x a possible input. We say that M is bound on input x if there exists k such

that, for every q and γ such that (s, x$)→∗M (q, γ), we have that |γ| ≤ k.

Lemma 4.1. Given a queue machine M and an input x, it is undecidable735

whether M does not terminate and is bound on x.

Following the proof technique we already used to prove undecidability of <<,

i.e. by reducing the termination problem for queue machines into subtyping

checking [10], we can prove also the undecidability of ≤bound by reduction from

the bounded non termination problem.740

33



Theorem 4.1. Given a queue machine M = (Q,Σ,Γ, $, s, δ) and an input string

x, we have that [[s]]∅≤bound[[x$]] if and only if M does not terminate and is bound

on x.

Corollary 4.1. Bounded asynchronous subtyping ≤bound is undecidable.

4.3. Undecidability of Asynchronous Subtyping without Output Covariance and745

Input Contravariance

We now move to the proof of undecidability of ≤tin,tout, the asynchronous

subyping relation, we introduced in Section 2.1, that does not admit output

covariance and input contravariance by imposing matching choices to have the

same set of labels.750

The proof technique is still based on an encoding of queue machines, but we

have to significantly improve the encoding discussed in the previous subsection.

In fact, the encoding of Figure 3 exploits both input contravariance (in the

matching between the multiple-choice input at the beginning of the encoding

of the finite control and the initial single-choice inputs of the queue encoding)755

and output covariance (in the matching between the multiple-choice output at

the beginning of the recursive part of the queue encoding and the single-choice

outputs in the encoding of the finite control).

The new encoding that we propose saturates all choices, both inputs and

outputs, with labels corresponding to the entire queue alphabet. The addition760

of these labels and of the corresponding continuations, introduces new possible

paths in the subtyping simulation game. We are able to make these additional

behaviour irrelevant, but at the price of restricting the class of encoded queue

machines. These queue machines are named single consuming queue machines;

their characteristic is to guarantee that in two subsequence actions, at least one765

of the two will enqueue symbols.

Definition 4.4 (Single Consuming Queue machine). We say that a queue

machine M = (Q,Σ,Γ, $, s, δ) is single consuming if δ(q, a) = (q′, ε), for some q,

a and q′, implies that there exist no b and q′′ such that δ(q′, b) = (q′′, ε).

34



We have that single consuming queue machines are still Turing-complete (see770

Appendix C.2 for the detailed proof based on an encoding of queue machines

into single consuming queue machines):

Theorem 4.2. Given a single consuming queue machine M and an input x,

the termination of M on x is undecidable.

We prove the undecidability of ≤tin,tout by encoding single consuming queue775

machines into the subtyping simulation game. Following the approach already

discussed in the previous subsection, given a queue machine, our encoding

generates a pair of types, say T and S, such that T encodes the finite control and

S encodes the queue. Then, the subtyping T ≤tin,tout S simulates the execution

of the machine.780

We are now ready to present the definition of the new encoding where we make

use of the following new notation: {li : Ti}i∈I ] {lj : Tj}j∈J = {lk : Tk}k∈I∪J .

Definition 4.5 (Encoding Single Consuming Queue machines). Let M =

(Q,Σ,Γ, $, s, δ) be a queue machine such that q ∈ Q, S ⊆ Q and C1, · · · , Cm ∈ Γ,

with m ≥ 0. The finite control encoding function [[[q]]]
S

and the queue encoding785

function [[[C1 · · ·Cm]]] are defined as in Figure 4(a) and Figure 4(b) respectively.

As discussed in the previous subsection, the idea is that the type encoding the

finite control is able to perform an input on each of the symbols in Γ, and continue

according to the definition of the transition function δ. The type representing the

queue then matches such input with the correct symbol depending on the state790

of the queue. For instance, in the encoding described in the previous subsection,

if we denote with T and S the types representing the finite control and the queue

respectively, and if Γ = {A,B} and symbol A is on the head of the queue, we

have T = &{A : . . . , B : . . .} and S = &{A : . . .}: type T is able to react to any

symbol that may be present on the queue (like the transition function δ), while795

type S reacts with the actual value on the queue, symbol A. Unfortunately,

such idea exploits contravariance for inputs. Therefore, it must be the case, in

the new encoding, that the input in S is of the form &{A : . . . , B : . . .}. We

35



a) Finite Control

[[[q]]]
S

=


µq.&{A :{{BA1 · · ·BAnA

}}S∪{q}
q′

}A∈Γ

if q 6∈ S and

δ(q, A) = (q′, BA1 · · ·BAnA
)

q if q ∈ S

b) Queue

[[[C1 . . . Cm]]] =

 µt⊕
{
A : &

({
A : t

}
]
{
A′ : T ′′

}
A′∈Γ\{A}

)}
A∈Γ

if m = 0

&
({
C1 : [[[C2 . . . Cm]]]

}
]
{
A′ : T ′′

}
A′∈Γ\{C1}

)
otherwise

where:

{{B1 · · ·Bm}}Tr =

[[[r]]]
T

if m = 0

⊕
({
B1 : {{B2 . . . Bm}}Tr

}
]
{
A′ : T ′

}
A′∈Γ\{B1}

)
otherwise

T ′ = µt.&
{
A1 : ⊕{A2 : t}A2∈Γ

}
A1∈Γ

T ′′ = µt.&
{
A1 : &

{
A2 : ⊕{A3 : t}A3∈Γ

}
A2∈Γ

}
A1∈Γ

Figure 4: Encoding of the Finite Control and the Queue of a Single Consuming Queue Machine

make sure that if label A is selected then the simulation of the queue machine

continues. Otherwise, an infinite subtyping simulation game is started (starting800

from B in the example).

Also the insertion of symbols in the queue was simulated in the encoding of

the previous subsection by exploiting output covariance. The type representing

the finite control performs a single-choice output that is matched by a multiple-

choice output having the effect of adding a corresponding symbol at the end of805

the input accumulated in the type modeling the queue. Also in this case, we

have to add choices to the type modeling the finite control: also in this case we

ensure that these extra paths start an infinite subtyping simulation game.

These additional paths make the subtyping simulation game highly non-

deterministic and such that several paths that the game can take differ from810

36



what the encoded machine does. We discuss in detail the various cases which

our encoding in Figure 4 can be in:

1. The encoding of the finite control reads the correct symbol. We represent

the machine reading a symbol A from the queue while being in state

q, with an input type of the form &{A : {{BA1 · · ·BAnA
}}S∪{q}
q′

}A∈Γ, where815

each branch corresponds to a possible symbol that can be read. On the

other hand, a queue C1 · · ·Cm is encoded as an input type of the form

&
({
C1 : [[[C2 . . . Cm]]]

}
]
{
A′ : T ′′

}
A′∈Γ\{C1}

)
where the branch with label

C1 represents the actual content of the queue. Hence, in the simulation

game, if the finite control reads symbol A and this is matched by the820

correct symbol in the queue, then the type {{BA1 · · ·BAnA
}}S∪{q}
q′

deals with

inserting symbols BA1 · · ·BAnA
into the queue.

2. The encoding of the finite control reads the wrong symbol. In this case,

the encoding of the finite control picks a symbol that is not that in the

queue head. In order to match it, the encoding of the queue will take825 {
A′ : T ′′

}
A′∈Γ\{C1}

. Type T ′′ is designed in a way that it can match every

move of the finite control, by repeatedly alternating two inputs with a

subsequent output on every queue symbol. Note that, since inputs cannot

be anticipated, matching every move is feasible only if the encoded machine

is single consuming.830

3. The encoding of the finite control writes the correct symbol. Once the finite

control has read a symbol, it performs {{B1 · · ·Bm}}Tr , which simulates

the writing of B1 · · ·Bm into the queue. If m = 0 then it moves to the

encoding of the next state according to function δ. Otherwise, it translates

to the type ⊕
({
B1 : {{B2 . . . Bm}}Tr

}
]
{
A′ : T ′

}
A′∈Γ\{B1}

)
. The queue,835

in order to match B1 (and B2, . . . , Bm) can always anticipate outputs

with the term µt⊕
{
A : &

({
A : t

}
]
{
A′ : T ′′

}
A′∈Γ\{A}

)}
A∈Γ

which, after

consuming a label A will add an input with label A, simulating the adding

of A to the queue.

4. The encoding of the finite control writes the wrong symbol. In this case, the840

37



finite control writes a symbol to the queue with ⊕
({
B1 : {{B2 . . . Bm}}Tr

}
]{

A′ : T ′
}
A′∈Γ\{B1}

)
. However, the simulation executes the wrong output

(with any A′ 6= B1) and continues as T ′. In this case, T ′ continues removing

and adding any value from the queue, indefinitely. Note that it may remove

the wrong value from the queue overlapping with case 2. In this case, the845

requirement that the queue machine is single consuming is not necessary.

Example 4.1. In order to further clarify our encoding, consider a queue ma-

chine with states {s, q} (where s is the starting state), queue alphabet Γ = {X,Y }

and transition relation δ such that δ(s,A) = (q, A) and δ(q,A) = (s, ε), for every

A ∈ Σ. Clearly, the machine terminates on any input. The encoding of the finite850

control is the following session type:

[[[s]]]
∅

= µs.&

 X : ⊕{X : [[[q]]]
s
, Y : T ′}

Y : ⊕{Y : [[[q]]]
s
, X : T ′}


[[[q]]]
{s}

= µq.&

 X : ⊕{X : s, Y : T ′}

Y : ⊕{Y : s, X : T ′}


Assume, e.g., that the queue initially contains the string XY . The machine will

empty the queue by visiting state q twice and terminate in state s with the empty

queue. If we now run the subtyping simulation game between the encoding of855

finite control above and the encoding of the queue we will end up with two types

that are not in subtyping: the encoding of the state s starting with an input and

the encoding of the empty queue that does not match it.

The encoding of the finite-control and of the queue are such that the following

properties hold: given a queue machine M with initial state s and initial queue860

symbol $, if M does not accept x then it is possible to define an asynchronous sub-

typing relation that includes the pair ([[[s]]]
∅
, [[[x$]]]); moreover, if [[[s]]]

∅≤tin,tout[[[x$]]]

then it is possible to conclude that M does not terminate (i.e. does not accept)

on input x. We thus have the following:

38



Theorem 4.3. Given a single consuming queue machine M = (Q,Σ,Γ, $, s, δ)865

and an input string x ∈ Σ∗, we have [[[s]]]
∅≤tin,tout[[[x$]]] if and only if M does not

terminate on x.

We can therefore conclude that subtyping without output covariance and

input contravariance is undecidable.

Corollary 4.2 (Undecidability of Subtying without Co/contravariance).870

The asynchronous dual closed subtyping relation ≤tin,tout is undecidable.

In the same way we can also show that ≤tin and ≤tout are undecidable

and provide an alternative proof of undecidability of ≤. This because, since

for the types obtained with the encoding (for which the ability to match via

covariance/contravariance is irrelevant) obviously such relations coincide, i.e.875

[[[s]]]
∅≤tin,tout[[[x$]]] if and only if [[[s]]]

∅≤tin[[[x$]]] if and only if [[[s]]]
∅≤tout[[[x$]]] if and

only if [[[s]]]
∅≤[[[x$]]], Theorem 4.3 holds also if we replace the ≤tin,tout relation

with one of such relations.

Corollary 4.3. Asynchronous subtyping relations ≤tin, ≤tout and ≤ are unde-

cidable.880

5. Related Work

Subtyping for Session Types. Subtyping for session types was first introduced

by Gay and Hole [7] for a session-based π-calculus where communication is

synchronous, i.e., an output directly synchronises with an input. In such case,

the relation allows no output anticipation. However, as in our case, outputs are885

covariant and inputs are contravariant.

To the best of our knowledge, Mostrous et al. [14] were the first to adapt

the notion of session subtyping to an asynchronous setting. Their computation

model is a session π-calculus with asynchronous communication that makes

use of session queues for maintaining the order in which messages are sent.890

They introduce the idea of output anticipation, which is also a main feature of

39



our theory. Mostrous and Yoshida [12] extended the notion of asynchronous

subtyping to session types for the higher-order π-calculus. In the same article,

Mostrous and Yoshida observe that their definition of asynchronous subtyping

allows orphan messages. Orphan message are prohibited with the definition895

of subtyping given by Chen et al. [8]. In their article, they show that such a

definition is both sound and complete w.r.t. type safety and orphan message

freedom.

Undecidability Results. Mostrous et al. [14] proposed an algorithm to check

asynchronous subtyping for multiparty session types. Differently from what900

stated therein, the algorithm does not terminate due to unbounded message

accumulation in the queues, e.g. for the terms in Example 3.1. Such algorithm

inspired our procedure in Section 3.1. The problem of unbounded accumulation

was observed by Mostrous and Yoshida [12]. The impossibility to define a

correct algorithm has been independently proved by Lange and Yoshida [11] and905

Bravetti et. al [10]. Lange and Yoshida [11] reduce Turing machine termination

into a notion of compatibility for communicating automata and, then, transfer

such a result to session types. This proof technique applies only to dual closed

subtyping relations, like the one by Chen et al. [8]. The proof by Bravetti et.

al [10], on the other hand, exploits a direct encoding of queue machines into910

session subtyping. This made it possible to prove undecidability of all the other

notions of asynchronous subtyping in the literature. Unlike the encoding in this

paper (Figure 4), both encodings take advantage of the use of output covariance

and input contravariance. For example, by exploiting this feature, the queue

machine encoding by Bravetti et al. [10] (Figure 3) is much simpler than the915

encoding we need to use here. We notice that our results on undecidability focus

on binary session types. However, it is immediate to generalise this kind of

undecidability results from binary to multiparty sessions (binary session types

are just multiparty session types with only two roles [10]).

Decidability Results. Synchronous subtyping for binary session types is920

decidable [7]. Both Bravetti et al. [10] and Lange and Yoshida [11] investigate

fragments of session types for which asynchronous subtyping becomes decidable.

40



However, such fragments are much more limited, and far from having practical

applications, with respect to those considered here. Both address cases where

one of the compared types is a single-choice session type, i.e. all its branchings925

and selections are single-choice. Thus they are both, basically, special cases of

our subtyping for single-in or single-out types (≤sin ∪≤sout). In particular, Lange

and Yoshida give an algorithm for deciding subtyping between a general session

type and a single-choice session type. Although it may seem that such case is

not properly included in our decidable subtyping relation for single-out/single-in930

types, covariance and contravariance ensure that all types containing at least

one multiple input branch and one multiple output selection (both reachable

in the subtyping simulation game) cannot be related with a single-choice type.

Bravetti et al. [10] prove decidability for relations <<sin and <<sout that pose an

analogous restriction to the branching/selection structure, but that allow for935

orphan messages. <<sin and <<sout are fragments where related types (T, S) are

such that, either T is single-choice and S is single-in (<<sin), or T is single-out

and S is single-choice (<<sout). For types that do not produce orphan messages,

the sutyping of Bravetti et al. [10] is just a special case of our single-in (≤sin)

and single-out (≤sout) session subtyping.940

Additionally, Lange and Yoshida state the decidability of subtyping for

half-duplex communication [16] and alternating machines: the former coincides

with synchronous subtyping while the latter can be reduced to 1-bounded

asynchronous subtyping as discussed in Section 3.2.

6. Conclusion945

In this article, we have shed light on the boundaries between decidability

and undecidability of asynchronous session subtyping by analyzing two kinds

of restrictions: to the branching/selection structure of inputs/outputs and to

the capabilities of the communication buffer. In particular, considering all

the relations in Figure 1, we have shown: decidability for those in the lower950

part, notably of k-bounded subtyping and of subtyping over single-out or single-

41



in session types; and the undecidability for those in the upper part, notably

of bounded subtyping and of subtyping without output covariance and input

contravariance.

As future work, we plan to develop typing systems for server/client code955

in the context of web services, exploiting our subtyping algorithms for single-

out/single-in session types. Note that, in practice, server code typically connects,

as a client, to other services (e.g. a database server) using another binary session,

according to the commonly used multitier architecture. Thus, in general, when

typing code, we would use for a specific session one of the two algorithms above960

depending if the code is playing the role of the client or of the server in that

session.

Moreover, we plan to investigate whether other kinds of restriction w.r.t.

the two above allow us to obtain a decidable relation (thus retaining general

branching/selection structure for both inputs and outputs and not limiting965

communication buffers).

References

[1] K. Honda, V. T. Vasconcelos, M. Kubo, Language primitives and type

discipline for structured communication-based programming, in: 7th Euro-

pean Symposium on Programming (ESOP’98), Vol. 1381 of LNCS, Springer,970

1998, pp. 122–138. doi:10.1007/BFb0053567.

[2] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types,

in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL 2008), 2008, pp. 273–284.

doi:10.1145/1328438.1328472.975

[3] S. Lindley, J. G. Morris, Embedding session types in haskell, in: Proceedings

of the 9th International Symposium on Haskell (Haskell 2016), 2016, pp.

133–145. doi:10.1145/2976002.2976018.

42

http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2976002.2976018


[4] N. Ng, N. Yoshida, Static deadlock detection for concurrent go by global

session graph synthesis, in: Proceedings of the 25th International Conference980

on Compiler Construction (CC 2016), 2016, pp. 174–184. doi:10.1145/

2892208.2892232.

[5] T. B. L. Jespersen, P. Munksgaard, K. F. Larsen, Session types for rust, in:

Proceedings of the 11th ACM SIGPLAN Workshop on Generic Program-

ming, WGP@ICFP 2015, 2015, pp. 13–22. doi:10.1145/2808098.2808100.985

[6] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types,

J. ACM 63 (1) (2016) 9. doi:10.1145/2827695.

[7] S. J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Inf.

42 (2-3) (2005) 191–225. doi:10.1007/s00236-005-0177-z.

[8] T. Chen, M. Dezani-Ciancaglini, N. Yoshida, On the preciseness of subtyping990

in session types, in: 16th International Symposium on Principles and

Practice of Declarative Programming (PPDP’14), ACM, 2014, pp. 135–146.

doi:10.1145/2643135.2643138.

[9] S. J. Gay, Subtyping supports safe session substitution, in: A List of

Successes That Can Change the World - Essays Dedicated to Philip Wadler995

on the Occasion of His 60th Birthday, 2016, pp. 95–108. doi:10.1007/

978-3-319-30936-1_5.

[10] M. Bravetti, M. Carbone, G. Zavattaro, Undecidability of asynchronous

session subtyping, Inf. Comput. To appear.

URL http://arxiv.org/abs/1611.050261000

[11] J. Lange, N. Yoshida, On the undecidability of asynchronous session

subtyping, in: Foundations of Software Science and Computation Struc-

tures - 20th International Conference, FOSSACS 2017, 2017, pp. 441–457.

doi:10.1007/978-3-662-54458-7_26.

43

http://dx.doi.org/10.1145/2892208.2892232
http://dx.doi.org/10.1145/2892208.2892232
http://dx.doi.org/10.1145/2892208.2892232
http://dx.doi.org/10.1145/2808098.2808100
http://dx.doi.org/10.1145/2827695
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1145/2643135.2643138
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://arxiv.org/abs/1611.05026
http://arxiv.org/abs/1611.05026
http://arxiv.org/abs/1611.05026
http://arxiv.org/abs/1611.05026
http://dx.doi.org/10.1007/978-3-662-54458-7_26


[12] D. Mostrous, N. Yoshida, Session typing and asynchronous subtyping for the1005

higher-order π-calculus, Inf. Comput. 241 (2015) 227–263. doi:10.1016/j.

ic.2015.02.002.

[13] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services

Description Language (WSDL), Tech. rep., W3C (2001).

URL https://www.w3.org/TR/wsdl1010

[14] D. Mostrous, N. Yoshida, K. Honda, Global principal typing in partially

commutative asynchronous sessions, in: 18th European Symposium on

Programming (ESOP’09), Vol. 5502 of LNCS, Springer, 2009, pp. 316–332.

doi:10.1007/978-3-642-00590-9_23.

[15] D. Kozen, Automata and computability, Springer, New York, 1997.1015

[16] G. Cécé, A. Finkel, Verification of programs with half-duplex communication,

Inf. Comput. 202 (2) (2005) 166–190. doi:10.1016/j.ic.2005.05.006.

44

http://dx.doi.org/10.1016/j.ic.2015.02.002
http://dx.doi.org/10.1016/j.ic.2015.02.002
http://dx.doi.org/10.1016/j.ic.2015.02.002
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
https://www.w3.org/TR/wsdl
http://dx.doi.org/10.1007/978-3-642-00590-9_23
http://dx.doi.org/10.1016/j.ic.2005.05.006


Appendix A. Proofs of Section 2

Appendix A.1. Proof of Theorem 2.1 and Propositions 2.1 and 2.2

Lemma Appendix A.1. Given two session types T and S, we have that1020

T≤DCS implies T≤S.

Proof. Given an asynchronous dual closed subtyping relation R we show that

R is also a (orphan-message-free) subtyping relation. To this aim we need to

prove that if (T, S) ∈ R and T = ⊕{li : Ti}i∈I then the additional item in 2. of

Definition 2.4 holds, i.e.1025

• if A 6= [ ]1 then ∀i ∈ I.& ∈ Ti

From A 6= [ ]1 it follows that S, after some possible unfoldings, starts with an

input (it must be in the form A[Ski]
k∈{1,...,m}). As R is an asynchronous dual

closed subtyping relation we have (S, T ) ∈ R. We observe that S, after some

possible unfoldings, starts with an output and T = &{li : T i}i∈I . For item 2.1030

of Definition 2.5, we have that T = A′[⊕{lj : Vkj}j∈Jk ]k∈{1,...,m}, for some input

context A′. This means that all T i contain at least an output selection, which

implies that all Ti contain at least one input branching. �

Lemma Appendix A.2. Given two session types T and S, we have that T≤S

implies T≤DCS.1035

Proof. We show that, given T≤S, it is possible to define an asynchronous dual

closed subtyping relation R s.t. (T, S) ∈ R. Consider

R = {(T, S), (S, T ) | T≤S}

The relation R is dual closed by definition. It remains to show that it satisfies

the four items in Definition 2.5. Let (T, S) ∈ R. There are two cases: T≤S or

S≤T . In the first case all the item holds by definition of orphan-message-free

subtyping relation. We consider now the second case, i.e. S≤T , and proceeds

with a case analysis.1040

45



1. T = end.

We have T = end. Having S≤end, by definition of ≤, in particular by

n applications of item 4. (with n ≥ 0) and one application of item 1., it

follows that S = µt1. . . . µtn.end. Hence S = µt1. . . . µtn.end, then we

can conclude what requested, i.e., ∃n ≥ 0 such that unfoldn(S) = end.1045

2. T = ⊕{li : Ti}i∈I .

We have T = &{li : T i}i∈I . Having S≤&{li : T i}i∈I , by definition of ≤, we

have two possible cases.

(a) By n applications of item 4. (with n ≥ 0) and one application of

item 3., it follows that S = µt1. . . . µtn.&{lj : Sj}j∈J , with J ⊆ I1050

and unfoldn(S) = &{lj : S′j}j∈J with S′j≤T j for every j ∈ J . Hence

S = µt1. . . . µtn.⊕{lj : Sj}j∈J , then we can conclude what requested,

i.e., unfoldn(S) = [⊕{lj : S′j}j∈J ]1, J ⊆ I and ∀j ∈ J.(Tj , S′j) ∈ R.

Notice that we have used the fact that unfoldn(S) = unfoldn(S) and

we have considered an input context A = []1.1055

(b) By n applications of item 4. (with n ≥ 0) and one application of item

2., it follows that T = &{li : T i}i∈I = A[⊕{lp : Tkp}p∈Jk ]k∈{1,...,m}

(hence with 6=[]1), and S = µt1. . . . µtn. ⊕ {lj : Sj}j∈J , with ∀k ∈

{1, . . . ,m}.J ⊆ Jk and unfoldn(S) = ⊕{lj : S′j}j∈J with ∀j ∈

J.S′j≤A[Tkj ]
k∈{1,...,m}. Hence S = µt1. . . . µtn.&{lj : Sj}j∈J . We1060

now observe that there exists an input context A′ and n′,m′ such that

unfoldn
′
(S) = A′[⊕{lm : Skm}m∈Lk

]k∈{1,...,m
′} with ∀k∈{1, . . . ,m′}.I

⊆Lk. This follows from the fact that S≤&{li : T i}i∈I : by repeated

application of the rule 2. of Definition 2.4 (that includes the no orphan

message constraint), we have the guarantee that along all branches of1065

S (and its unfoldings) it is guaranteed to reach an input branching, and

by application of rule 3. (in particular the contra-variance on input

branchings), the labels of such choices include the set of labels of the

initial input branching of &{li : T i}i∈I . We conclude by showing that

what is requested, i.e., ∀i ∈ I.(Ti,A′[Ski]k∈{1,...,m
′}) ∈ R, actually1070

holds. This follows from the fact that A′[Ski]k∈{1,...,m′}≤Ti, which is a

46



consequence of S≤T . In fact, this implies that also unfoldn
′
(S)≤T be-

cause an orphan-message-free subtyping relation is still such even if we

add pairs (unfoldr(V ), Z) assuming (V,Z) already in the relation. Hav-

ing unfoldn(S) = unfoldn(S) = A′[&{lm : Skm}m∈Lk
]k∈{1,...,m

′} and1075

T = &{li : T i}i∈I , it is easy to see that given an orphan-message-free

subtyping relationR′ such that (A′[&{lm : Skm}m∈Lk
]k∈{1,...,m

′},&{li :

T i}i∈I) ∈ R′, the relation obtained by enriching R′ with the pairs

(A′′[Ski]k∈K⊆{1,...,m
′}, T ′i) assuming (A′′[&{lm : Skm}m∈Lk

]k∈K⊆{1,...,m
′},

&{li : T ′i}i∈I) ∈ R′, is still an orphan-message-free subtyping re-1080

lation. Above we adopt an abuse of notation for input contexts:

B[Wk]k∈K⊆{1,...,t} does not have holes numbered consistently from 1

to t, but some numbers in {1, . . . , t} could be missing.

3. T = &{li : Ti}i∈I .

We have T = ⊕{li : T i}i∈I . Having S≤⊕ {li : T i}i∈I , by definition of ≤,1085

in particular by n applications of item 4. (with n ≥ 0) and one application

of item 2., it follows that S = µt1. . . . µtn. ⊕ {lj : Sj}j∈J , with J ⊆ I,

and unfoldn(S) = ⊕{lj : S′j}j∈J with S′j≤T j for every j ∈ J . Hence

S = µt1. . . . µtn.&{lj : Sj}j∈J , then we can conclude what requested, i.e.,

unfoldn(S) = &{lj : S′j}j∈J , J ⊆ I and ∀j ∈ J.(Tj , S′j) ∈ R. Notice that1090

we have used the fact that unfoldn(S) = unfoldn(S).

4. T = µt.T ′.

We first observe that V≤µt.Z implies V≤Z{µt.Z/t}. This directly follows

from the fact that if (V, µt.Z) belongs to an orphan-message-free subtyping

relation, then the same relation enriched with the pair (V,Z{µt.Z/t})1095

is still an orphan-message-free subtyping relation. We now proceed by

considering T = µt.T ′. As S≤T , we have S≤µt.T ′. By the above

observation we have S≤T ′{µt.T ′/t} that implies what requested, i.e.,

(T ′{µt.T ′/t}, S) ∈ R. �

Theorem 2.1. Given two session types T and S, we have T≤S if and only if1100

T≤DCS.

47



Proof. Direct consequence of Lemmas Appendix A.1 and Appendix A.2. �

Proposition 2.1. The ≤tin,tout relation and the ≤sin∪≤sout relation are asyn-

chronous dual closed subtyping relations.

Proof. We first show that ≤tin,tout is an asynchronous dual closed subtyping rela-1105

tion. We consider R = {(S, T ) |T≤tin,toutS} and show that it is an asynchronous

subtyping relation when in Definition 2.4 we require I = Jk in item 2. and I = J

in item 3. to hold. This implies {(S, T ) |T≤tin,toutS} ⊆ ≤tin,tout, thus showing

that ≤tin,tout is dual closed. Given (T, S) ∈ R, we show that S≤tin,toutT implies

items 1.-4. of Definition 2.4 (where we require I = Jk in item 2. and I = J in1110

item 3.), apart from the no orphan message constraint of item 2., by case analysis

on the structure of type T exactly as in the proof of Lemma Appendix A.2

(where ≤tin,tout is considered instead of ≤ and all subset inclusions related to

covariance/contravariance are replaced by subset equalities). Concerning the

no orphan message constraint of item 2., in the case 2.a of the proof of Lemma1115

Appendix A.2 just an [ ]1 input context arises (so it obviously holds); in the case

2.b, instead, a generic input context A′ arises: if A′ 6= [ ]1 then this means that

S, after some possible unfoldings, starts with an output and the constraint is an

immediate consequence of the fact that S≤tin,toutT (as in the proof of Lemma

Appendix A.1).1120

We now show that ≤sin ∪ ≤sout is an asynchronous dual closed subtyping

relation. We use T in and T out to denote the set of single-in and single-out session

types, respectively. We have ≤sin∪≤sout = (≤∩T in×T in)∪ (≤∩T out×T out) =

(≤DC∩T in×T in)∪ (≤DC∩T out×T out), due to Theorem 2.1. We now show that,

for any (T, S) ∈ ≤sin ∪ ≤sout, all constraints considered by Definition 2.5 hold.1125

We take (T, S) ∈ ≤DC ∩ T in × T in, the other case (T, S) ∈ ≤DC ∩ T out × T out

is dealt with symmetrically. Since (T, S) ∈ ≤DC we have that (T, S) satisfies

all constraints in items 1.-4. of Definition 2.5: we just have to additionally

observe that, since all reached pairs belong to ≤DC, they also obviously belong

to ≤DC ∩ T in × T in. Concerning the duality constraint, from (T, S) ∈ ≤DC, we1130

have (S, T ) ∈ ≤DC, hence (S, T ) ∈ (≤DC ∩ T out × T out). �

Proposition 2.2. The ≤sin,tout and ≤tin,sout relations are such that: T ≤sin,tout S

48



if and only if S≤tin,sout T .

Proof. Concerning the only if part, we show {(S, T ) |T≤sin,toutS} ⊆ ≤tin,sout as

follows. We consider R = {(S, T ) |T≤sin,toutS} and show that it is an asyn-1135

chronous subtyping relation when in Definition 2.4 we require I = J in item 3.

to hold and related types to be both single-out. Given (T, S) ∈ R, we obviously

have that T and S are both single-out and we show that S≤sin,toutT implies

items 1.-4. of Definition 2.4 (where in item 3. we require I = J) as in the proof of

Proposition 2.1. The only difference is that, when resorting to the case analysis1140

in the proof of Lemma Appendix A.2 we consider ≤sin,tout instead of ≤ and we

replace all subset inclusions related to covariance/contravariance in item 3. and

the subset inclusion J ⊆ Jk in item 2. by equalities.

Concerning the if part, we show {(S, T ) |T≤tin,soutS} ⊆ ≤sin,tout in a com-

pletely symmetric way by observing that R = {(S, T ) |T≤tin,soutS} is an asyn-1145

chronous subtyping relation when in Definition 2.4 we require I = Jk in item 2.

to hold and related types to be both single-in. In this case, when resorting to the

case analysis in the proof of Lemma Appendix A.2 we consider ≤tin,sout instead

of ≤ and we replace all subset inclusions related to covariance/contravariance in

item 2., apart from J ⊆ Jk, by equalities. �1150

Appendix B. Proofs of Section 3

Appendix B.1. Proof of Proposition 3.1

Proposition 3.1. Given the types T and S, we have that there exist Σ′, T ′, S′

such that T 6≤S if and only if ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err.

Proof. We prove the two implications separately.1155

We start with the only if part and proceed by contraposition. We assume that

it is not true that ∃Σ′, T ′, S′. ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err and show that

T≤S. We first observe that even if we remove rule Asmp from the procedure, it

is still impossible to reach a judgement Σ′ ` T ′ ≤a S
′ on which no rule can be

applied. Let→noAsmp be our decision procedure under the assumption that Asmp1160

is not used. By contraposition, assume ∅ ` T ≤a S →∗noAsmp Σ′ ` T ′ ≤a S
′ →err.

49



We have that there exists an intermediary judgement Σ′′ ` T ′′ ≤a S
′′ such that

∅ ` T ≤a S →∗ Σ′′ ` T ′′ ≤a S
′′ (notice the use of the standard procedure),

(T ′′, S′′) ∈ Σ′′ and Σ′′ ` T ′′ ≤a S′′ →∗noAsmp Σ′ ` T ′ ≤a S′. Within the

sequence of rule applications Σ′′ ` T ′′ ≤a S′′ →∗noAsmp Σ′ ` T ′ ≤a S′ we1165

consider the judgement Σ′′′ ` T ′′′ ≤a S′′′ which is the last one such that

(T ′′′, S′′′) ∈ Σ′′ (such judgement exists as the first one Σ′′ ` T ′′ ≤a S
′′ already

has this property). It is not restrictive to assume that in the sequence Σ′′′ `

T ′′′ ≤a S
′′′ →∗noAsmp Σ′ ` T ′ ≤a S

′ there is no two judgements Σ1 ` T1 ≤a S1

and Σ2 ` T2 ≤a S2 with T1 = T2 and S1 = S2 (otherwise we can shorten1170

the sequence Σ′′′ ` T ′′′ ≤a S
′′′ →∗noAsmp Σ′ ` T ′ ≤a S

′ obtaining a new one

having the same properties). Consider now, in the standard application of

the procedure ∅ ` T ≤a S →∗ Σ′′ ` T ′′ ≤a S
′′, the intermediary judgement

Σi ` T ′′′ ≤a S
′′′ that added (T ′′′, S′′′) to the environment; we have that from this

judgement there exists a standard application of the procedure ∅ ` T ≤a S →∗1175

Σi ` T ′′′ ≤a S
′′′ →∗ Σ′i ` T ′′′′ ≤a S

′′′′ →err simply by considering from Σi `

T ′′′ ≤a S
′′′ the same rules used in the sequence Σ′′′ ` T ′′′ ≤a S

′′′ →∗noAsmp Σ′ `

T ′ ≤a S
′.

Consider now the relation R = {(T ′, S′) | ∃Σ′.Σ′ ` T ′ ≤a S
′ ∈ S} where S

is the minimal set of judgements satisfying the following:1180

• ∅ ` T ≤a S ∈ S;

• if Σ′ ` T ′ ≤a S
′ ∈ S and Σ′ ` T ′ ≤a S

′ ∈ S → Σ′′ ` T ′′ ≤a S
′′, without

applying rule Asmp or RecR2, then Σ′′ ` T ′′ ≤a S
′′ ∈ S;

• if Σ′ ` T ′ ≤a S
′ ∈ S and Σ′ ` T ′ ≤a S

′ ∈ S → Σ′′ ` T ′′ ≤a S
′′ by applying

RecR2, then Σ′′ ` T ′′ ≤a unfoldoutDepth(S′)(S′) ∈ S.1185

We observe that to each judgement Σ′ ` T ′ ≤a S
′ ∈ S it is always possible

to apply at least one rule. In fact, if this is not possible, we would have also

∅ ` T ≤a S →∗noAsmp Σ′′ ` T ′′ ≤a S
′′ →err for a judgement Σ′′ ` T ′′ ≤a S

′′ with

T ′′ = T ′ and S′′ less unfolded than S′. In fact, the unique difference between

the judgements in S and those reachable without adopting Asmp is that those in1190

50



S are more unfolded (see the difference between outUnf(S) used in rule RecR2

and unfoldoutDepth(S′)(S′) used in the definition of S).

We finally show that R is an (orphan-message-free) subtyping relation ac-

cording to Definition 2.4. Let (T ′, S′) ∈ R. Then Σ′ ` T ′ ≤a S
′ ∈ S and it is

possible to apply at least one rule to Σ′ ` T ′ ≤a S
′. We proceed by cases on T ′.1195

• If T ′ = end then item 1. of Definition 2.4 for pair (T ′, S′) is shown by

induction on k = nrec(S′), i.e. the number of unguarded (not prefixed by

some input or output) occurrences of recursions µt.S′′ in S′ for any S′′, t.

– Base case k = 0. The only rule applicable to Σ′ ` T ′ ≤a S
′ is End,

that immediately yields the desired pair of R.1200

– Induction case k > 0. The only rules applicable to Σ′ ` T ′ ≤a S
′

are Asmp and RecR1. In the case of Asmp we have that (T ′, S′) ∈ Σ′,

hence there exists Σ′′ with (T ′, S′) /∈ Σ′′ such that Σ′′ ` T ′ ≤a S
′ ∈ S.

RecR1 can be applied to Σ′′ ` T ′ ≤a S
′. So for some Σ′′′ (= Σ′

or = Σ′′) we have that the procedure applies rule RecR1 to Σ′′′ `1205

T ′ ≤a S′. Hence Σ′′′ ` T ′ ≤a S′ → Σ′′′′ ` T ′ ≤a unfold1(S′).

Since nrec(unfold1(S′)) = k − 1, by induction hypothesis item 1. of

Definition 2.4 holds for pair (T ′, unfold1(S′)), hence it holds for pair

(T ′, S′).

• If T ′ = ⊕{li : Ti}i∈I then item 2. of Definition 2.4 for pair (T ′, S′) is shown1210

as follows.

– If outDepth(S′) = 0 then the only rule applicable to Σ′ ` T ′ ≤a S
′ is

Out, that immediately yields the desired pairs of R.

– If outDepth(S′) ≥ 1 then the only rules applicable to Σ′ ` T ′ ≤a S
′

are Asmp and RecR2. In the case of Asmp we have that (T ′, S′) ∈ Σ′,1215

hence there exists Σ′′ with (T ′, S′) /∈ Σ′′ such that Σ′′ ` T ′ ≤a S
′ ∈

S. RecR2 can be applied to Σ′′ ` T ′ ≤a S′. So for some Σ′′′

(= Σ′ or = Σ′′) we have that the procedure applies rule RecR2

to Σ′′′ ` T ′ ≤a S′. Hence (T ′, unfoldoutDepth(S′)(S′)) ∈ R. Since

51



outDepth(unfoldoutDepth(S′)(S′)) = 0, we end up in the previous case.1220

Therefore item 2. of Definition 2.4 holds for pair (T ′,unfoldoutDepth(S′)(S′)),

hence it holds for pair (T ′, S′).

• If T ′ = &{li : Ti}i∈I then item 3. of Definition 2.4 for pair (T ′, S′) is shown

by induction on k = nrec(S′).

– Base case k = 0. The only rule applicable to Σ′ ` T ′ ≤a S
′ is In, that1225

immediately yields the desired pairs of R.

– Induction case k > 0. The only rules applicable to Σ′ ` T ′ ≤a S
′

are Asmp and RecR1. In the case of Asmp we have that (T ′, S′) ∈ Σ′,

hence there exists Σ′′ with (T ′, S′) /∈ Σ′′ such that Σ′′ ` T ′ ≤a S
′ ∈ S.

RecR1 can be applied to Σ′′ ` T ′ ≤a S
′. So for some Σ′′′ (= Σ′1230

or = Σ′′) we have that the procedure applies rule RecR1 to Σ′′′ `

T ′ ≤a S′. Hence Σ′′′ ` T ′ ≤a S′ → Σ′′′′ ` T ′ ≤a unfold1(S′) .

Since nrec(unfold1(S′)) = k − 1, by induction hypothesis item 3. of

Definition 2.4 holds for pair (T ′, unfold1(S′)), hence it holds for pair

(T ′, S′).1235

• If T ′ = µt.T ′ then item 4. of Definition 2.4 for pair (T ′, S′) holds because

the only rule applicable to Σ′ ` T ′ ≤a S
′ is RecL that immediately yields

the desired pair of R.

We now prove the if part and proceed by contraposition. We assume that

T≤S and show that there exist no Σ′, T ′, S′, such that ∅ ` T ≤a S →∗ Σ′ `1240

T ′ ≤a S
′ →err. So we can assume the existence of a relation R that is an

(orphan-message-free) subtyping relation, according to Definition 2.4, such that

(T, S) ∈ R.

We say that Σ ` T ≤a S →w Σ′ ` T ′ ≤a S
′ if Σ ` T ≤a S →∗ Σ′ ` T ′ ≤a S

′

and: the last rule applied is one of Out, In or RecL rules; while all previous ones1245

are RecR1 or RecR2 rules. As another notation we use input-output-end contexts

B defined as the input contexts in Definition 2.3 with the difference that also

the output construct and end are part of the grammar in the definition.

52



We start by showing that ∃Σ. ∅ ` T ≤a S →∗w Σ ` T ′ ≤a S′ implies

S′ = B[Sk]k∈{1...m}, Sk = µtk.S
′
k, for some tk and S′k, and ∃n1, . . . , nm. (T

′,1250

B[unfoldnk(Sk)]k∈{1...m}) ∈ R. The proof is by induction on the length of

such computation →∗w. The base case is for a 0 length computation: it yields

(T, S) ∈ R which holds. For the inductive case we assume it to hold for all

computations of a length k and we show it to holds for all computations of

length k + 1, by considering all judgements Σ′ ` T ′′ ≤a S
′′ such that Σ `1255

T ′ ≤a S
′ →w Σ′ ` T ′′ ≤a S

′′. This is shown by first considering the case

in which rule Asmp applies to Σ ` T ′ ≤a S
′: in this case there is no such

a judgement and there is nothing to prove. Then we consider the case in

which T ′ = end and Σ ` end ≤a S
′ →∗ Σ′′′ ` end ≤a end (by applying

RecR1 rules) and rule End applies to Σ′′′ ` end ≤a end. Also in this case1260

there is no such a judgement Σ′ ` T ′′ ≤a S
′′ and there is nothing to prove.

Finally, we proceed by an immediate verification that judgements Σ′ ` T ′′ ≤a S
′′

produced in remaining cases are required to be in R by items 2., 3. and 4. of

Definition 2.4: T ′ = ⊕{li : Ti}i∈I (→w is a possibly empty sequence of RecR2

applications followed by Out application), T ′ = &{li : Ti}i∈I (→w is a possibly1265

empty sequence of RecR1 applications followed by In application) or T ′ = µt.T ′

(→w is simply RecL application).

We finally observe that, given a judgement Σ ` T ′ ≤a S
′ such that S′ =

B[Sk]k∈{1...m}, Sk = µtk.S
′
k, for some tk and S′k, and ∃n1, . . . , nm . (T

′,

B[unfoldnk(Sk)]k∈{1...m}) ∈ R we have:1270

• either rule Asmp applies to Σ ` T ′ ≤a S
′, or

• T ′ = end and, by item 1. of Definition 2.4, there exists Σ′ such that

Σ ` end ≤a S
′ →∗ Σ′ ` end ≤a end (by applying RecR1 rules) and rule

End is the unique rule applicable to Σ′ ` end ≤a end, with RecR1 being

the unique rule applicable to intermediate judgements, or1275

• by items 2., 3. and 4. of Definition 2.4, there exist Σ′, T ′′, S′′ such that

Σ ` T ′ ≤a S
′ →∗w Σ′ ` T ′′ ≤a S

′′, with each intermediate judgement having

a unique applicable rule. In particular this holds for T ′ = ⊕{li : Ti}i∈I

53



(→w is a possibly empty sequence of RecR2 applications followed by Out

application), T ′ = &{li : Ti}i∈I (→w is a possibly empty sequence of RecR11280

applications followed by In application) or T ′ = µt.T ′ (→w is simply RecL

application). �

Appendix B.2. Proof of Theorem 3.1

Theorem 3.1. The algorithm for ≤ka always terminates and, given the types

T and S, there exist Σ′, T ′, S′ such that ∅ ` T ≤ka S →∗ Σ′ ` T ′ ≤a S
′ →err if1285

and only if T 6≤kS.

Proof. We first observe that the decision algorithm for k-bounded asynchronous

subtyping terminates. By contraposition, if the algorithm does not terminate,

there exists an infinite sequence Σ ` T ≤a S → Σ1 ` T1 ≤a S1 →∗ Σi `

Ti ≤a Si →∗. Along this infinite sequence infinitely many distinct pairs (T, S)1290

will be added to Σ. As only finitely many distinct terms can be reached as

first element of the pairs, there will be infinitely many distinct terms as second

element. Such terms will have unbounded depth, but this is not possible due

to the constraint added to rule Out that impose the use of k-bounded input

contexts.1295

We now prove that, given the types T and S, there exist Σ′, T ′, S′ such that

∅ ` T ≤ka S →∗ Σ′ ` T ′ ≤a S
′ →err if and only if T 6≤kS.

We start with the if part and proceed by contraposition. We assume that

it is not true that ∃Σ′, T ′, S′. ∅ ` T ≤ka S →∗ Σ′ ` T ′ ≤ka S′ →err and we

build a relation R that we show to be a k-bounded Asynchronous Subtyping1300

relation. The relation R is built from the judgments Σ′′ ` T ′′ ≤ka S′′ exactly

as we did for the ≤a subtyping procedure in the first part (the if part) of

the proof of Proposition 3.1. In such a proof we show R to be an orphan-

message-free subtyping relation, hence we just have to show it to be k-bounded.

It is immediate to observe that, since when applying rule Out to a judgment1305

Σ′′ ` T ′′ ≤ka S′′ we require the input context A to be k-bounded, we may

include in R only pairs (T ′′, S′′) that satisfy the same constraint in item 2 of

k-bounded Asynchronous Subtyping relation definition (Definition 2.7), because

54



otherwise we would have Σ′′ ` T ′′ ≤ka S′′ →∗ Σ′′′ ` T ′′′ ≤ka S′′′ →err by possibly

applying RecR1/RecR2 rules. Hence, as justified in Proposition 3.1 this would1310

lead to violating the assumption that the algorithm does not reach an error.

The justification provided there still holds because judgments Σ′′ ` T ′′ ≤ka S′′1
and Σ′′ ` T ′′ ≤ka S′′2 , with S′′1 and S′′2 that just differ for the level of internal

unfoldings, behave equivalently with respect to errors due to k-boundedness

violations. This because the k-boundedness of context A is established by the1315

Out rule after unfolding in S′′1 /S′′2 all recursions occurring before the first output

of every possible branch by means of the RecR1/RecR2 rules.

We now prove the only if part and proceed by contraposition. We assume

that T≤kS and show that there exist no Σ′, T ′, S′, such that ∅ ` T ≤ka S →∗

Σ′ ` T ′ ≤ka S′ →err. If T≤kS then also T≤S. So we can assume the existence1320

of a relation R that is an orphan-message-free subtyping relation such that

(T, S) ∈ R. We then use exactly the same proof as that of the second part

(the only if part) of the proof of Proposition 3.1 to establish a correspondance

between judgements Σ′′ ` T ′′ ≤ka S′′, such that ∅ ` T ≤ka S →∗w Σ′′ ` T ′′ ≤ka S′′,

and pairs in R (see the construction of the corresponding pair in the proof1325

of Proposition 3.1). Since R includes only pairs that satisfy the constraint in

item 2 of k-bounded Asynchronous Subtyping relation definition (Definition 2.7)

requiring context A to be k-bounded; and since any judgment Σ′′ ` T ′′ ≤ka S′′

such that ∅ ` T ≤ka S →∗w Σ′′ ` T ′′ ≤ka S′′ implies there is in R a corresponding

pair (T ′′, S′′1 ), with S′′1 differing from S′′ just for the level of internal unfoldings,1330

we have that reachable judgments Σ′′ ` T ′′ ≤ka S′′ cannot be such that: Σ′′ `

T ′′ ≤ka S′′ →∗ Σ′′′ ` T ′′′ ≤ka S′′′, by possibly applying RecR1/RecR2 rules, and

Σ′′′ ` T ′′′ ≤ka S′′′ →err due to not satisfying the requirement about the input

context A to be k-bounded in the rule Out. This because the difference in

unfolding levels between S′′ and S′′1 (inside judgment Σ′′ ` T ′′ ≤ka S′′ and1335

the corresponding pair (T ′′, S′′1 ) in R) is not significant: the k-boundedness of

context A is established both in the rule Out and in item 2 of ≤k definition

after unfolding all recursions occurring before the first output of every possible

branch.

55



This observation makes it possible to carry out the proof as in Proposition 3.1,1340

hence to show that there exist no Σ′, T ′, S′, such that ∅ ` T ≤ka S →∗ Σ′ `

T ′ ≤ka S′ →err. �

Appendix B.3. Proof of Proposition 3.2

Lemma Appendix B.1. Given a single-out session type T , reach(T ) is finite.

Proof. We now define a finite set of session types fin(T ), and then we prove that1345

it satisfies all the constraints 1., . . . , 4. in Definition 3.5. Hence reach(T ) ⊆ fin(T )

by definition, from which finiteness of reach(T ) follows.

It is not restrictive to assume that all the recursion variables of T are

distinct: let x1, . . . ,xn be such variables. We consider the rewriting variables

X1, . . . , Xn. Let Ti be such that µxi.Ti occurs in T ; let T ′ be T with Xi1350

that replaces µxi.Ti; and similarly let T ′i be Ti with Xj that replaces each

occurrence of µxj.Tj and xj. We now consider the rewriting rules Xi →1
i T
′
i

and Xi →2
i xi. Given one of the above term S containing rewriting variables,

we denote with close(S) the session type obtained by repeated application of

the rewriting rules in the following way: if Xi occurs inside a subterm µxi.S
′

1355

apply →2
i , otherwise apply →1

i . We now define another closure function on

sets of terms S: subterms(S) = {S′|S′ is a subterm of S ∈ S}. Consider finally

fin(T ) = {close(S)|S ∈ subterms({T ′, T ′1, . . . , T ′n})}. We have that fin(T ) is finite

and it satisfies all the constraints 1., . . . , 4. in Definition 3.5. �

We now report some definitions and results used in the proof of Proposi-1360

tion 3.2.

Definition Appendix B.1. Let T be a single-out session type. A relation

R over reach(T ) is an antEqT relation if (T ′, T ′′) ∈ R implies: there ex-

ist l,A′,A′′ such that outUnf(T ′) = A′[⊕{l : T ′i}]i∈{1,...,n} and outUnf(T ′′) =

A′′[⊕{l : T ′′j }]j∈{1,...,m}, with (T ′i , T
′′
j ) ∈ R for all i ∈ {1, . . . , n} and j ∈1365

{1, . . . ,m}. We say that T ′ antEqT T
′′ if there is an antEqT relation R such

that (T ′, T ′′) ∈ R.

56



Notice that antEqT itself is an antEqT relation because, obviously, the union

of two antEqT relations is an antEqT relation and reach(T ) is finite. Moreover

notice that, given a term T ′ ∈ reach(T ), all terms T ′i (with i ∈ {1, . . . , n}) for1370

which outUnf(T ′) = A′[⊕{l : T ′i}]i∈{1,...,n} are always such that T ′i ∈ reach(T ) as

well (because outUnf(T ′) never unfolds recursions occurring inside terms T ′i ).

Finally, notice that antEqT is decidable in that it is a relation over reach(T ),

which is a finite set.

Definition Appendix B.2. antSetT is the field of antEqT , that is the set of1375

session types T ′ ∈ reach(T ) such that there exists T ′′ with (T ′, T ′′) ∈ antEqT or

(T ′′, T ′) ∈ antEqT .

Lemma Appendix B.2. antEqT is an equivalence relation on antSetT .

Proof. The reflexive, symmetric and transitive closure of an antEqT relation is

an antEqT relation, hence this holds true for antEqT as well. �1380

Lemma Appendix B.3. Let T ′ ∈ reach(T ). We have that antOutInf(T ′) if

and only if T ′ ∈ antSetT .

Proof. We prove the two implications separately, starting from the if part, e.g.

by assuming T ′ ∈ antSetT . By Lemma Appendix B.2 we have T ′ antEqT T
′.

We now prove by induction on m that for every m there exists li1 · · · lim such1385

that antOut(T ′, li1 · · · lim) is defined. If m = 1 it is sufficient to consider li1 = l

where outUnf(T ′) = A′[⊕{l : T ′i}]i∈{1,...,n} (with A′ and T ′i that exist by Defini-

tion Appendix B.1). Consider now that T ′′ = antOut(T ′, li1 · · · lim−1
) is defined.

By Definition 3.4, we have T ′′ = A[Tk]k with outUnf(antOut(T, li1 · · · lim−2
)) =

A[⊕{lim−1 : Tk}]k. As T ′ antEqT T
′, we can apply m − 1 times Definition Ap-1390

pendix B.1 to conclude that Ti antEqT Tj , for every i, j ∈ 1 . . . k. This guarantees

the existence of the input contexts Ak, session types T kr , and label l such that

such that outUnf(Tk) = Ak[⊕{l : T kr }]r. This implies that it is possible to define

antOut(T ′′, l) hence also antOut(T ′, li1 · · · lim) by taking lim = l.

We now move to the only if part assuming that there exists an infinite label se-1395

quence li1 · · · lin · · · such that, for every n, antOut(T ′, li1 · · · lin) is defined. Let R

57



be the minimal relation such that (T ′, T ′)∈R and: outUnf(antOut(T ′, li1 · · · lin−1))

= A[⊕{lin : Tk}]k∈{1...mn}, for any n ≥ 1, implies ∀i, j ∈ {1 . . .mn}. (Ti, Tj) ∈

R. We now show that R above is an antEqT relation. Considered any

(T ′′, T ′′′) in R, we have that there exists h, with h ≥ 1, such that, for some1400

A′, A′′, we have: outUnf(T ′′) = A′[⊕{lih : T ′i}]i∈{1,...,m
′} and outUnf(T ′′′) =

A′′[⊕{lih : T ′′j }]j∈{1,...,m
′′}, with (T ′i , T

′′
j ) ∈ R for all i ∈ {1, . . . ,m′} and j ∈

{1, . . . ,m′′}. This holds, according to the definition of R: for (T ′′, T ′′′) = (T ′, T ′)

by taking h = 1 and by observing that pairs (T ′i , T
′′
j ) ∈ R because they are

added to R in the case n = 1; for any (T ′′, T ′′′) added to R in the case n, by1405

taking h = n + 1 and by observing that pairs (T ′i , T
′′
j ) ∈ R because they are

among the pairs that are added to R in the case n+ 1. �

Proposition 3.2. Given a single-out session type T , reach(T ) is finite and it is

decidable whether antOutInf(T ).

Proof. Direct consequence of Lemmas Appendix B.1, Lemma Appendix B.3 and1410

the finiteness of antSetT . �

Appendix B.4. Proof of Theorem 3.2

Lemma Appendix B.4. Consider two single-out session types T and S. Given

a judgement Σ′ ` T ′ ≤t S
′ such that ∅ ` T ≤t S →∗ Σ′ ` T ′ ≤t S

′, in such a

way that the final rule applied is not RecR2, we have that for all Q ∈ reach(S′)1415

there exist R ∈ reach(S) and a sequence of labels γ such that Q = antOut(R, γ).

Proof. By induction on the length of the sequence of rule applications ∅ `

T ≤t S →∗ Σ′ ` T ′ ≤t S
′. In the base case we have S′ = S. Consider

now Q ∈ reach(S′). Obviously Q = antOut(Q, ε) with Q ∈ reach(S) because

reach(S) = reach(S′).1420

In the inductive case we proceed by case analysis on the last rule application

Σ′′ ` T ′′ ≤t S
′′ → Σ′ ` T ′ ≤t S

′. We have two possible cases:

• We can apply the induction hypotheses on the judgement Σ′′ ` T ′′ ≤t S
′′.

Hence for all Q′′ ∈ reach(S′′) there exist R ∈ reach(S) and a sequence of

58



labels γ such that Q′′ = antOut(R, γ). Consider now Q ∈ reach(S′). We1425

proceed by cases on the applied rule.

For the rules In, RecR1 and Out with A = [ ]1 we have that S′ ∈ reach(S′′)

hence also Q ∈ reach(S′′) because if S′ ∈ reach(S′′) then reach(S′) ⊆

reach(S′′) by definition of reach( ).

If the rule is Out with A 6= [ ]1 we have that S′ = antOut(R, γ · l) with1430

R ∈ reach(S) and γ such that S′′ = antOut(R, γ) and l is the label

of the anticipated output. We limit our analysis to the case in which

Q 6∈ reach(S′′) (in the other cases we can proceed as above). This happens

if Q is obtained by applying rule 2. of Definition 3.5 to remove some but

not all the inputs in front of one of the output anticipated in S′′. Consider1435

now the term V corresponding to Q enriched with the anticipated outputs.

We have that V ∈ reach(S′′) hence there exist R′ ∈ reach(S) and γ′ such

that V = antOut(R′, γ′). But Q = antOut(R′, γ′ · l) hence proving the

thesis.

• We cannot apply the induction hypotheses on the judgement Σ′′ ` T ′′ ≤t S
′′

1440

because the rule used to obtain Σ′′ ` T ′′ ≤t S
′′ is RecR2. As RecR2 cannot

be applied in sequence, it is surely possible to apply the induction hypothesis

on the previous judgement Σ′′′ ` T ′′′ ≤t S
′′′ such that Σ′′′ ` T ′′′ ≤t S

′′′ →

Σ′′ ` T ′′ ≤t S
′′. Then we have that for all Q′′′ ∈ reach(S′′′) we have

Q′′′ = antOut(R, γ) with R ∈ reach(S) and a sequence of labels γ. We1445

also have that the rule applied in Σ′′ ` T ′′ ≤t S
′′ → Σ′ ` T ′ ≤t S

′ is Out,

which is the only rule that can applied after RecR2. Let l be the label

of the output involved in the application of the Out rule. Consider now

Q ∈ reach(S′). We consider two possible cases:

– Q is obtained from S′ by consuming inputs present in the input context1450

A used in the last application of the rule Out. Consider now Q′′′

obtained from S′′′ by consuming the same inputs and performing the

needed unfoldings. Obviously Q′′′ ∈ reach(S′′′): hence, by induction

59



hypothesis, Q′′′ = antOut(R, γ) with R ∈ reach(S). We have Q =

antOut(R, γ · l) hence proving the thesis.1455

– Q is obtained from S′ by consuming strictly more than a sequence

of inputs present in the input context A used in the last application

of the rule Out. This means that Q ∈ reach(W ) where W is a term

starting with an output that populates one of the holes of A in S′′.

But the terms starting with an output that can occur in S′′, assuming1460

∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′, are already in reach(S). In fact

the rules do not perform transformations under outputs, excluding

those strictly performed by top level unfoldings. Hence W ∈ reach(S),

which implies Q ∈ reach(S) from which the thesis trivially follows

(because Q = antOut(Q, ε)). �1465

Corollary Appendix B.1. Consider two single-out session types T and S.

Given a judgement Σ′ ` T ′ ≤t S
′ such that ∅ ` T ≤t S →∗ Σ′ ` T ′ ≤t S

′ and a

pair (T ′′, S′′) ∈ Σ′, we have that S′′ = antOut(R, γ) for some R ∈ reach(S) and

a sequence of labels γ.

Proof. Let (T ′′, S′′) ∈ Σ′. This pair has been introduced by application of one1470

of the rules RecL, RecR1 or RecR2. But before the application of these rules

it is not possible to apply rule RecR2, because after such rule only Out can be

applied. So the pair (T ′′, S′′) corresponds to a sequence of rule applications

∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′ in which RecR2 is not the last applied rule. The

thesis directly follows from Lemma Appendix B.4. �1475

Theorem 3.2. Given two single-out session types T and S, the algorithm

applied to the initial judgement ∅ ` T ≤t S terminates.

Proof. Assume by contraposition that there exists single-out session types T

and S such that the algorithm applied to the initial judgement ∅ ` T ≤t S

does not terminate. This means that there exists an infinite sequence of rule1480

applications ∅ ` T ≤t S → Σ1 ` T1 ≤t S1 →∗ Σi ` Ti ≤t Si →∗. Within this

infinite sequence, there are infinitely many applications of the unfolding rules

60



RecL, RecR1 or RecR2, that implies the existence of infinitely many distinct pairs

(Tj , Sj) that are introduced in the environment (assuming that j ranges over

the instances of application of such rules). All these pairs are distinct, otherwise1485

the precedence of the Asmp rule would have blocked the algorithm. It is obvious

that the distinct r.h.s. Tj are finitely many, because every Tj ∈ reach(T ), which

is a finite set. On the contrary, the distinct Sj are infinitely many, but Corollary

Appendix B.1 guarantees that for each of them, there exists S′j ∈ reach(S) and

a sequence of labels γj such that Sj = antOut(S′j , γj).1490

Due to the finiteness of the possible Tj and S′j , there exists T ′′ and S′′ such

that there exists an infinite subsequence of (Tj1 , Sj1), (Tj2 , Sj2), . . . , (Tjk , Sjk), . . .

such that Tji = T ′′ and Sji = antOut(S′′, γji). It is not restrictive to consider

ji < ji+1 for every i. The presence of infinitely many distinct γji for which

antOut(S′′, γji) is defined, guarantees antOutInf(S′′). Moreover, this guarantees1495

also the possibility to define an infinite subsequence (Tjl1 , Sjl1 ), (Tjl2 , Sjl2 ), . . . ,

(Tjlk , Sjlk ), . . . such that |γjli|< |γjli+1
|. We now consider the leaf sets leafSet(Sjli).

These sets are defined on a finite domain because the subterms of such types

starting with a recursive definition or an output, and preceded by inputs only, are

taken from reach(S). This because the algorithm does not apply transformations1500

under recursive definitions or outputs, excluding the effect of the standard top

level unfolding of previous recursive definitions, which is considered in the defini-

tion of reach(S). Hence there are only finitely many distinct leafSet(Sjli ), that

guarantees the existence of v < w such that leafSet(Sjlv ) = leafSet(Sjlw ). Con-

sider now the judgement Σjlw ` Tjlw ≤t Sjlw . We know that (Tjlv , Sjlv ) ∈ Σjw ,1505

Tjlv = Tjlw , Sjlv = antOut(S′′, γjlv ), Sjlw = antOut(S′′, γjlw ), S′′ ∈ reach(S),

and |γjlv | < |γjlv |. Hence it is possible to apply to such judgement the rule

Asmp2. As Asmp2 has priority, it should be applied on this judgement thus block-

ing the sequence of rule applications. But this contradicts the initial assumption

of non termination of the algorithm. �1510

61



Appendix B.5. Proof of Theorem 3.3

Definition Appendix B.3. Let T ′, T ′′ be single-out session types. We say that

T ′ extAntEqT T
′′ if there exist l,A′,A′′ such that outUnf(T ′)=A′[⊕{l : T ′i}]i∈{1,...,n}

and outUnf(T ′′)=A′′[⊕{l : T ′′j }]j∈{1,...,m}, with T ′i antEqT T
′′
j for all i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}.1515

Moreover, extAntSetT is the field of extAntEqT .

Notice that, all terms T ′i , with i ∈ {1, . . . , n} and T ′′j , with j ∈ {1, . . . ,m},

are in antSetT ⊆ reach(T ). Moreover, notice that extAntEqT is obviously an

equivalence relation on extAntSetT .

Lemma Appendix B.5. Let T ′∈ antSetT and T ′′=antOut(T ′, γ) for some γ.1520

We have that T ′′ ∈ extAntSetT .

Proof. We have to show that there exist l,A for which we have outUnf(antOut(T ′,γ))

= A[⊕{l : Ti}]i∈{1,...,m}, with Ti antEqT Tj for all i, j ∈ {1, . . . ,m}. We de-

note γl = li1 · · · lih , with h ≥ 1. For any n, with 1 ≤ n ≤ h, considered A′

and terms Tk with k ∈ {1 . . .mn} such that outUnf(antOut(T ′, li1 · · · lin−1
)) =1525

A′[⊕{lin : Tk}]k∈{1...mn}, we have that ∀i, j ∈ {1 . . .mn}. Ti antEqT Tj . This is

easily shown by induction on n, applying the definition of antEqT (the base case

is directly derived from T ′ antEqT T
′). The case n = h yields the desired result.

�

Lemma Appendix B.6. Let T ′, T ′′∈ extAntSetT and leafSet(T ′)= leafSet(T ′′).1530

We have that T ′ extAntEqT T
′′.

Proof. It is easy to see that leafSet(T ′)= leafSet(T ′′) implies leafSet(outUnf(T ′))=

leafSet(outUnf(T ′′)). This because outUnf() causes a leaf T ′′′ belonging to both

leafSet(T ′) and leafSet(T ′′) to yield the same new set of leaves leafSet(T ′′′) in

both T ′ and T ′′. By definition of extAntSetT we have that exist l′,A′ such that1535

outUnf(T ′) = A′[⊕{l′ : T ′i}]i∈{1,...,n}, with T ′i antEqT T
′
j for all i, j ∈ {1, . . . , n}.

Similarly, there exist l′′,A′′ such that outUnf(T ′′) = A′′[⊕{l′′ : T ′′j }]j∈{1,...,m},

with T ′′i antEqT T
′′
j for all i, j∈{1, . . . ,m}. From the fact that leafSet(outUnf(T ′))

62



= leafSet(outUnf(T ′′)) we have that l′ = l′′ and that: for all T ′i , with i ∈

{1, . . . , n}, there exists T ′′j , with j ∈ {1, . . . ,m}, such that T ′i = T ′′j ; and, vice1540

versa, for all T ′′j , with j ∈ {1, . . . ,m}, there exists T ′i , with i ∈ {1, . . . , n}, such

that T ′′j = T ′i . Therefore we conclude that T ′ extAntEqT T
′′. �

Notation. We here denote by ≤sa the judgements of the subtyping procedure

that is defined exactly as our procedure (defined in Section 3.1 and based on

applications of the rules therein over judgments of the form Σ ` T ≤a S) with the1545

only difference that the Asmp rule is removed (i.e. the subtyping procedure whose

transitions were denoted by →noAsmp in the proof of Proposition 3.1). Since, in

the absence of the Asmp rule the content of environment Σ is never accessed for

reading, it has no actual effect on the procedure (on rule applications) and can

be removed as well, together with updates on such environment made by the1550

rules. As a consequence we will denote ≤sa judgments just by ` T ≤sa S for

some T and S. Here, differently from the →noAsmp notation used in the proof

of Proposition 3.1, since we adopt a new notation for judgements, we will simply

use: ` T ≤sa S → ` T ′ ≤sa S
′ to denote that the latter can be obtained from

the former by one rule application. Finally, as usual, ` T ≤sa S →err denotes1555

that there is no rule that can be applied to the judgement ` T ≤sa S.

Definition Appendix B.4. A blocking judgment ` T ≤sa S, denoted by `

T ≤sa S →blk, is a judgment such that, for some T ′, S′ we have: ` T ≤sa S →∗

` T ′ ≤sa S
′ →err by applying rules RecL, RecR1 and RecR2 only.

Definition Appendix B.5. An IO step a, denoted by
a−→io , with a ∈ {&l,⊕l |1560

l ∈ L} is a sequence of ≤sa rule applications →∗ such that the last applied rule

is an In (in the case a = &l, where l is the input label singling out which of the

rule premises we consider), or an Out rule (in the case a = ⊕l, where l is the

output label singling out which of the rule premises we consider) and all other

rule applications concern RecL, RecR1 and RecR2 rules only.1565

Definition Appendix B.6. a1 . . . an, with n ≥ 0, is a blocking path for judg-

ment ` T ≤sa S if there exist T ′, S′ such that ` T ≤sa S
a1−→io . . .

an−→io `

63



T ′ ≤sa S
′ →blk (where T ′ = T and S′ = S in the case n = 0).

Lemma Appendix B.7. Let S∈ reach(Z) and ` T ≤sa antOut(S, γ), ` T ≤sa

antOut(S, β) be such that: |γ|< |β| and antOut(S, β) extAntEqZ antOut(S, γ). If1570

a1 . . . an, with n ≥ 0, is a blocking path for ` T ≤sa antOut(S, β) then there

exists a m long prefix of a1 . . . an, with 0 ≤ m ≤ n, that is a blocking path for

` T ≤sa antOut(S, γ).

Proof.

The proof is by induction on n ≥ 0.1575

We start by proving the base case n = 0. That is ` T ≤sa antOut(S, γ)→blk,

i.e. for some T ′, S′ we have: ` T ≤sa antOut(S, γ) →∗ ` T ′ ≤sa S
′ →err by

applying rules RecL, RecR1 and RecR2 only.

We first observe that ` T ≤sa antOut(S, γ)
a−→io is not possible for any

a ∈ {&l,⊕l | l ∈ L}. This because: if we had ` T ≤sa antOut(S, γ)
&l−→io1580

for some l ∈ L, then antOut(S, β) = &{li : Ti}i∈I with l = li for some i ∈ I,

hence we would have that also ` T ≤sa antOut(S, β)
&l−→io ; and if we had

` T ≤sa antOut(S, γ)
⊕l−→io for some l ∈ L, then, since antOut(S, β) extAntEqZ

antOut(S, γ), we would have that also ` T ≤sa antOut(S, β)
⊕l−→io .

Therefore, given that it is not possible that ` T ≤sa antOut(S, γ) →∗ `1585

end ≤sa end by applying rules RecL, RecR1 and RecR2 only (because otherwise

antOut(S, β) would not be defined), we conclude ` T ≤sa antOut(S, γ) →blk

(notice that the number of times a RecL, RecR1 or RecR2 is applicable to a

judgment is finite because we do not have unguarded recursion and RecR2 cannot

be consecutively applied for more than one time).1590

We now consider the induction case for blocking path a1 . . . an of length

n ≥ 1.

We first consider the case a1 = &l for some l ∈ L. Given that antOut(S, β)

is defined and that ` T ≤sa antOut(S, β)
&l−→io , we deduce that antOut(S, γ)

is: either ⊕{l′ : T ′} (possibly preceded by some recursion operators), for some1595

l′, T ′; or &{li : Ti}i∈I (possibly preceded by some recursion operators), for some

terms Ti and labels li such that l = li for some i ∈ I. In the first case we have

64



` T ≤sa antOut(S, γ)→blk, hence the the lemma trivially holds; in the second case

we have ` T ≤sa antOut(S, γ)
&l−→io and we proceed with the proof. We have that

there exist T ′, S′, σ such that ` T ≤sa antOut(S, γ)
&l−→io T

′ ≤sa antOut(S′, γ′)1600

and ` T ≤sa antOut(S, β)
&l−→io T

′ ≤sa antOut(S′, β′), with γ = σγ′ and β = σβ′.

In particular S′ is obtained from S by removing all its initial (single-)outputs

(and intertwined recursions, that are unfolded) until the first input &{li : Ti}i∈I
is reached, which is also removed, thus yielding S′ = Ti for the i ∈ I such

that l = li. This corresponds, in the definition of reach(Z) (Definition 3.5), to1605

repeatedly applying, starting from S ∈ reach(Z), rules 3 and 4 and finally rule 2,

thus yielding S′ ∈ reach(Z). Notice that σ is the sequence of labels of the initial

outputs that were removed during this procedure and that, obviously, |γ| < |β|.

Now, in order to be able to apply the induction hypothesis we have also to

show that antOut(S, β′) extAntEqZ antOut(S, γ′). We observe that antOut(S, γ′)1610

extAntEqZ antOut(S, γ). This holds because antOut(S, γ) is a &{li : Ti}i∈I
term, with l = li for some i ∈ I, possibly preceded by some recursion oper-

ators, and from the following observations: obviously, for any t, T ′′, it holds

µt.T ′′ extAntEqZ T
′′{µt.T ′′/t}; and leafSet(Ti) ⊆ leafSet(&{li : Ti}i∈I). In the

same way, we have antOut(S, β′) extAntEqZ antOut(S, β).1615

It is therefore possible to apply the induction hypothesis to T ′≤sa antOut(S′, γ′)

and T ′ ≤sa antOut(S′, β′) that possesses the shorter blocking path a2 . . . an.

Finally, we consider the case a1 =⊕l for some l∈L. Since ` T ≤sa antOut(S, β)
⊕l−→io and antOut(S, β) extAntEqZ antOut(S, γ), we have that also ` T ≤sa

antOut(S, γ)
⊕l−→io . In particular, we have that there exists T ′ such that `1620

T ≤sa antOut(S, γ)
⊕l−→io T

′ ≤sa antOut(S, γl) and ` T ≤sa antOut(S, β)
⊕l−→io T

′

≤sa antOut(S, βl), where, obviously, |γl| < |βl|. Moreover, since antOut(S, β)

extAntEqZ antOut(S, γ) it is immediate to show (by applying the definitions of

antOut, extAntEq and antEq ) that also antOut(S, βl) extAntEqZ antOut(S, γl).

It is therefore possible to apply the induction hypothesis to T ′≤sa antOut(S,γl)1625

and T ′ ≤sa antOut(S, βl) that possesses the shorter blocking path a2 . . . an. �

Theorem 3.3. Given two single-out session types T and S, we have that there

65



exist Σ′, T ′, S′ such that ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err if and only if there

exist Σ′′, T ′′, S′′ such that ∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′ →err.1630

Proof. We consider the two implications separately starting from the if part.

Assume that ∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′ →err. In this sequence of rule

applications, the new rule Asmp2 is never used otherwise the sequence would

terminate successfully by applying such a rule. Hence, by applying the same

sequence of rules, we have ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ with T ′′ = T ′, S′′ = S′1635

and Σ′′ = Σ′. We have that Σ′ ` T ′ ≤a S
′ →err, otherwise if a rule could be

applied to this judgement, the same rule could be applied also to Σ′′ ` T ′′ ≤t S
′′

thus contradicting the assumption Σ′′ ` T ′′ ≤t S
′′ →err.

We now move to the only if part. Assume that ∅ ` T ≤a S →∗ Σ′ `

T ′ ≤a S
′ →err and that, by contradiction, ∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S

′′ →err1640

does not hold.

From ∅ ` T ≤a S →∗ Σ′ ` T ′ ≤a S
′ →err (since in this sequence of rule

applications the Asmp rule is never used, otherwise the sequence would terminate

successfully by applying such a rule), by applying the same sequence of rules,

we have ` T ≤sa S →∗ ` T ′ ≤sa S
′.1645

We now observe that, since we assumed (by contradiction) that we do not

get the error when using the ≤t procedure, there must exist at least a triple

Σ′′′, T ′′′, S′′′ such that: ∅ ` T ≤t S →∗ Σ′′′ ` T ′′′ ≤t S
′′′ (and correspondingly

` T ≤sa S →∗ ` T ′′′ ≤sa S
′′′ because the Asmp and Asmp2 rules, that would

have led to successful termination, cannot have been applied), Σ′′′ ` T ′′′ ≤t S
′′′

1650

successfully terminates by applying the Asmp or Asmp2 rule, and ` T ′′′ ≤sa S
′′′

has a blocking path.

Let us now consider one of such triples Σ′′′, T ′′′, S′′′ (possessing the above

stated properties) that has a blocking path of minimal length, i.e. there is no

other Σ′′′, T ′′′, S′′′ triple of the kind above such that ` T ′′′ ≤sa S
′′′ has a shorter1655

blocking path. Let a1 . . . an be such a path. Since the Asmp or Asmp2 rule is

applied to Σ′′′ ` T ′′′ ≤t S
′′′, we have S′′′ = antOut(S, β) (in the case of Asmp

this is obtained by Corollary Appendix B.1).

We now consider γ such that (T ′′′, antOut(S, γ)) ∈ Σ′′′ was used in the premise

66



of Asmp or Asmp2 rule: γ = β in the case of the Asmp rule, |γ| < |β| in the case1660

of the Asmp2 rule. Moreover, let us also consider Σγ to be the environment such

that ∅ ` T ≤t S →∗ Σγ ` T ′′′ ≤t antOut(S, γ), where Σγ ` T ′′′ ≤t antOut(S, γ)

is the judgment to which the rule that caused (T ′′′, antOut(S, γ)) to be inserted

in the environment was applied.

We now observe that there exists a m long prefix of a1 . . . an, with 0 ≤ m ≤ n,1665

that is a blocking path for ` T ′′′ ≤sa antOut(S, γ). This is obvious in the

case γ = β; it is due to Lemma Appendix B.7 in the case |γ| < |β|: we

obtain antOut(S, β) extAntEqZ antOut(S, γ) as needed by such a Lemma from

the statements in the premise of rule Asmp2 and by applying Lemmas Appendix

B.3, Appendix B.5 and Appendix B.6.1670

Since we assumed (by contradiction) that ∅ ` T ≤t S →∗ Σ′′ ` T ′′ ≤t S
′′ →err

does not hold, this would be possible only if there existed a triple Σ′′′′, T ′′′′, S′′′′

such that: there is a sequence of rule applications Σγ ` T ′′′ ≤t antOut(S, γ)→∗

Σ′′′′ ` T ′′′′ ≤t S
′′′′ that is a prefix of the sequence of rule applications of the

blocking path for ` T ′′′ ≤sa antOut(S, γ); and Σ′′′′ ` T ′′′′ ≤t S
′′′′ successfully1675

terminates by applying the Asmp or Asmp2 rule. Notice that such a sequence

Σγ ` T ′′′ ≤t antOut(S, γ)→∗ Σ′′′′ ` T ′′′′ ≤t S
′′′′ should necessarily include the

application of, at least, an In rule (causing the algorithm to branch), because

otherwise (given that Σγ ` T ′′′ ≤t antOut(S, γ) →∗ Σ′′′ ` T ′′′ ≤t antOut(S, β))

we could not have that Σ′′′′ ` T ′′′′ ≤t S
′′′′ successfully terminates by applying1680

the Asmp or Asmp2 rule.

However the existence of such a triple Σ′′′′, T ′′′′, S′′′′ is not possible, because

` T ′′′′ ≤sa S
′′′′ would have a k long blocking path with k < n (being such a

path strictly shorter than that of ` T ′′′ ≤sa antOut(S, γ)), thus violating the

minimality assumption about the blocking path length of the Σ′′′, T ′′′, S′′′ triple.1685

�

67



Appendix C. Proofs of Section 4

Appendix C.1. Proof of Theorem 4.1

Lemma 4.1. Given a queue machine M and an input x, it is undecidable

whether M does not terminate and is bound on x.1690

Proof. We first prove that boundedness is undecidable. If, by contraposition,

boundedness was decidable, termination could be decided by first checking

boundedness, and then perform a finite state analysis of the queue machine

behaviour. More precisely, termination on bounded queue machines can be

decided by forward exploration of the reachable configurations until a terminating1695

configuration is found, or a cycle is detected by reaching an already visited

configuration.

We now conclude by observing that given a queue machine M and the input

x, it is not possible to decide whether M does not terminate and is bound on

x. Assume by contraposition one could decide the above property of queue1700

machines. Then boundedness could be decided as follows: transform M in a

new machine M ′ that behaves like M plus an additional special symbol # which

is enqueued every time it is dequeued; boundedness of M on input x can be

decided by checking the above property on M ′ and input #x (in fact M ′ never

terminates and is bound on #x if and only if M is bound on x). �1705

Theorem 4.1. Given a queue machine M = (Q,Σ,Γ, $, s, δ) and an input

string x, we have that [[s]]∅≤bound[[x$]] if and only if M does not terminate and is

bound on x.

Proof. We need a preliminary result: given (q, γ)→M (q′, γ′), if [[q]]∅≤[[γ]] then

we also have that [[q′]]∅≤[[γ′]]. In fact, assuming γ = C1 · · ·Cm and δ(q, C1) =1710

(q′, BC1
1 · · ·BC1

nC1
), we have γ′ = C2 · · ·CmBC1

1 · · ·BC1
nC1

. Having [[q]]∅≤[[γ]], by

one application of item 4. of Definition 2.4, one application of item 3., and nA

applications of item 2., we can conclude that [[q′]]∅≤[[γ′]].

We now observe that if M is not bound on x we have that it is not possible to

have [[s]]∅≤bound[[x$]]. Assume by contraposition that [[s]]∅≤bound[[x$]]. From the1715

previous preliminary result, we have that also [[q′]]∅≤bound[[γ′]] for each reachable

68



configuration (q′, γ′). But due to unboundedness of M on x we have that,

for every k, there is an enqueue operation that is executed when the queue is

longer than k. Assume this happens when the configuration (q′, γ′) performs its

computation action. In order to relate [[q′]]∅ and [[γ′]], we need a relation that1720

contains pairs with the l.h.s. starting with an output and the r.h.s. with an

input context of depth greater than k. But this cannot hold if we fix a maximal

depth smaller than k to the input context.

Now we observe that [[s]]∅≤bound[[x$]] if and only if M does not terminate and

is bound on x. Following the (Only if part) of the proof of Theorem 3.1 [10]1725

stating the undecidability of <<, we prove that if [[s]]∅≤bound[[x$]] then M does

not terminate. Moreover, we also have that M is bound on x in the light of the

previous observation.

Consider now that M does not terminate. As in the (If part) of the same proof

mentioned above, we define C = {(qi, γi) | (s, x$) = (q0, γ0) →M (q1, γ1) →M

· · · →M (qi, γi), i ≥ 0} and the following relation R on types:

R =

{
(

[[q]]∅, [[C1 · · ·Cm]]
)
,(

&{A :⊕{BA1 : · · · ⊕ {BAnA
: [[q′]]∅}}}A∈Γ , [[C1 · · ·Cm]]

)
,(

⊕ {BC1
1 : ⊕{BC1

2 : · · · ⊕ {BC1
nC1

: [[q′]]∅}}} , &{C2 : · · ·&{Cm : Z}}
)
,(

⊕ {BC1
2 : · · · ⊕ {BC1

nC1
: [[q′]]∅}} , &{C2 : · · ·&{Cm : &{BC1

1 : Z}}}
)
,

· · ·(
[[q′]]∅ , &{C2 : · · ·&{Cm : &{BC1

1 : · · ·&{BC1
nC1

: Z}}}}
)

| (q, C1 · · ·Cm) ∈ C, δ(q, C1) = (q′, BC1
1 · · ·BC1

nC1
),

Z = µt.⊕ {A : &{A : t}}A∈Γ }

Following the proof of Theorem 3.1 [10] we show that this relation is an asyn-

chronous subtyping relation. Moreover boundedness of M on x guarantees1730

boundedness on the length of the reachable queue contents C1 · · ·Cm, that im-

plies boundedness of the depth of the input contexts of the r.h.s. of all the pairs

in R. This proves that [[s]]∅≤bound[[x$]]. �

69



Appendix C.2. Proof of Theorem 4.2

Definition Appendix C.1. Let M = ({q1, .., qn},Σ,Γ, $, s, δ) be a queue ma-1735

chine and let # be a special character not in Γ. We denote with [[M ]] the following

single-consuming queue machine ({q1, .., qn, q
′
1, .., q

′
n},Σ,Γ ∪ {#}, $, s, δ′) with δ′

defined as follows:

• δ′(qi, a) = (q′j , ε) if δ(qi, a) = (qj , ε)

• δ′(qi, a) = (qj , γ) if δ(qi, a) = (qj , γ) with γ 6= ε1740

• δ′(qi,#) = (q′i, ε)

• δ′(q′i, a) = (qj ,#) if δ(qi, a) = (qj , ε)

• δ′(q′i, a) = (qj , γ) if δ(qi, a) = (qj , γ) with γ 6= ε

• δ′(q′i,#) = (qi,#)

Given a configuration (q, γ) of [[M ]], we denote with {{(q, γ)}} the configuration1745

(z, β) where z = q, if q ∈ {q1, .., qn}, or z = qi, if q = q′i, while β is obtained

from γ by removing each instance of the special symbol #.

Lemma Appendix C.1. Let M = (Q,Σ,Γ, $, s, δ) be a queue machine and let

x ∈ Σ∗. If (s, x$)→∗M (q, γ) then there exists a configuration (q′, γ′) such that

(s, x$)→∗[[M ]] (q′, γ′) with {{(q′, γ′)}} = (q, γ).1750

Proof. By induction on the number of steps in the sequence (s, x$)→∗M (q, γ).

The base case is trivial. In the inductive case we perform a case analysis. The

unique non trivial case is when the configuration reached by [[M ]] according to

the inductive hypothesis has the queue starting with the special symbol #. In

this case, [[M ]] must perform more transitions, first to consume all the instances1755

of # in front of the queue and then to mimick the new transition of M . �

Lemma Appendix C.2. Let M = (Q,Σ,Γ, $, s, δ) be a queue machine and let

x ∈ Σ∗. If (s, x$)→∗[[M ]] (q, γ) then (s, x$)→∗M {{(q, γ)}}.

70



Proof. By induction on the number of steps in the sequence (s, x$)→[ [M ]]∗(q, γ).

The base case is trivial. In the inductive case we perform a case analysis. The1760

unique non trivial case is when γ starts with the special symbol #. In this case,

M does not perform any new transition as if (q′, γ′) is the new configuration we

have that {{(q, γ)}} = {{(q′, γ′)}}. �

Theorem 4.2. Given a single consuming queue machine M and an input x,

the termination of M on x is undecidable.1765

Proof. The thesis directly follows from the Turing completeness of queue machines,

and the two above Lemmas that guarantee that given a queue machine M and

an input x, s terminates on x if and only if the single-consuming queue machine

[[M ]] terminates on x. This is guaranteed by the fact that if [[M ]] reaches a

configuration with the queue containing only instances of #, it is guaranteed to1770

eventually terminate by emptying the queue. �

Appendix C.3. Proof of Theorem 4.3

Notation. Given a sequence of queue symbols γ, we denote with [[[γ]]]u the set of

session types that can be obtained from [[[γ]]] by replacing each subterm Tk = T ′′

(considering the term T ′′ as defined in Figure 3) with antOut(T ′′, lik1 . . . liknk
), for1775

sequences of labels lik1 . . . liknk
with nk ≥ 0. Observe that [[[γ]]]u is well defined

because T ′′ can anticipate every possible sequence of outputs.

In the following, for simplicity, we will consider the asynchronous subtyping

relation ≤ instead of ≤tin,tout. Nevertheless, we will apply such relation on types

that have all their choices labeled on the same set of labels, hence the two1780

relations obviously coincides on such types.

Lemma Appendix C.3. Given a single-consuming queue machine M = (Q,Σ,

Γ, $, s, δ) and an input string x ∈ Σ∗, if [[[s]]]
∅≤[[[x$]]] then M does not terminate

on x.

Proof. We need a preliminary result: given (q, γ)→M (q′, γ′) and a term S ∈ [[[γ]]]u,1785

if [[[q]]]
∅≤S then there exists S′ ∈ [[[γ′]]]u such that [[[q′]]]

∅≤S′. In fact, assuming γ =

71



C1 · · ·Cm and δ(q, C1) = (q′, BC1
1 · · ·BC1

nC1
), we have γ′ = C2 · · ·CmBC1

1 · · ·BC1
nC1

.

Consider now S ∈ [[[γ]]]u. Having [[[q]]]
∅≤S, by one application of item 4. of

Definition 2.4, one application of item 3., and nA applications of item 2., we can

conclude that there exists S′ ∈ [[[γ′]]]u such that [[[q′]]]
∅≤S′.1790

We now prove the thesis by showing that assuming that M accepts x we

have [[[s]]]
∅ 6≤ [[[x$]]]. By definition of queue machines, we have that: M accepts

x implies (s, x$) →∗M (q, ε). Assume now, by contraposition, that [[[s]]]
∅≤[[[x$]]].

As (s, x$)→∗M (q, ε), by repeated application of the above preliminary result we

have that exists S′ ∈ [[[ε]]]u such that [[[q]]]
∅≤S′. But this cannot hold because [[[q]]]

∅
1795

is a recursive definition that upon unfolding begins with an input that implies

(according to items 4. and 3. of Definition 2.4) that also S′ (once unfolded) starts

with an input. But this is false, in that, by definition of the queue encoding

[[[ε]]] = µt⊕
{
A : &

({
A : t

}
]
{
A′ : T ′′

}
A′∈Γ\{A}

)}
A∈Γ

. �

Lemma Appendix C.4. Given a single-consuming queue machine M = (Q,Σ,1800

Γ, $, s, δ) and an input string x ∈ Σ∗, if M does not terminate on x then

[[[s]]]
∅≤[[[x$]]].

Proof. Assuming that M does not accept x we show that [[[s]]]
∅≤[[[x$]]]. When

a queue machine does not accept an input, the corresponding computation

never ends. In our case, this means that there is an infinite sequence (s, x$) =1805

(q0, γ0)→M (q1, γ1)→M · · · →M (qi, γi)→M · · · . Let C be the set of reachable

configurations, i.e. C = {(qi, γi) | i ≥ 0}. We now define a relation R on types,

where T ′ and T ′′ are as in Figure 3, T0 = ⊕{A : T ′′}A∈Γ and Tn = &{A :

Tn−1}A∈Γ:

72



R =

{
(

[[[q]]]
∅
, SC1···Cm

)
,
(

&{A :{{BA1 · · ·BAnA
}}∅
q′
}A∈Γ , SC1···Cm

)
,(

{{BC1
1 · · ·BC1

nC1
}}∅
q′
, SC2···Cm

)
,
(
{{BC1

2 · · ·BC1
nC1
}}∅
q′
, S

C2···CmB
C1
1

)
,

· · ·(
{{BC1

nC1
}}∅
q′
, S

C2···CmB
C1
1 ···B

C1
nC1

−1

)
| (q, C1 · · ·Cm) ∈ C, δ(q, C1) = (q′, BC1

1 · · ·BC1
nC1

), Sγ ∈ [[[γ]]]u }⋃
{
(

[[[q]]]
∅
, Tn

)
,
(

&{A :{{BA1 · · ·BAnA
}}∅
q′
}A∈Γ , Tn

)
,(

{{BC1
1 · · ·BC1

nC1
}}∅
q′
, Tm

)
,
(
{{BC1

2 · · ·BC1
nC1
}}∅
q′
, Tm

)
,

· · ·(
{{BC1

nC1
}}∅
q′
, Tm

)
| (q, C1 · · ·Cm) ∈ C, δ(q, C1) = (q′, BC1

1 · · ·BC1
nC1

),

if ∃q′′, C s.t. δ(q, C) = (q′′, ε) then n ≥ 2 else n ≥ 1,m ≥ 0 }⋃
{
(
T ′ , Tn

)
,
(
&
{
A1 : ⊕{A2 : T ′}A2∈Γ

}
A1∈Γ

, Tn
)
,
(
⊕ {A2 : T ′}A2∈Γ , Tm

)
| n ≥ 1,m ≥ 0 }⋃
{
(
T ′ , Sγ

)
,
(
&
{
A1 : ⊕{A2 : T ′}A2∈Γ

}
A1∈Γ

, Sγ
)
,
(
⊕ {A2 : T ′}A2∈Γ , Sγ

)
| γ ∈ Γ∗, Sγ ∈ [[[γ]]]u }

We have that the above R is an asynchronous subtyping relation because each of1810

the pairs satisfies the conditions in Definition 2.4 thanks to the presence of other

pairs in R. We can conclude observing that (s, x$) ∈ C implies that ([[[q]]]
∅
, [[[x$]]])

belongs to the above asynchronous subtyping relation R, hence [[[q]]]
∅≤[[[x$]]]. �

Theorem 4.3. Given a single consuming queue machine M = (Q,Σ,Γ, $, s, δ)

and an input string x ∈ Σ∗, we have [[[s]]]
∅≤[[[x$]]] if and only if M does not1815

terminate on x.

Proof. Direct consequence of Lemmas Appendix C.3 and Appendix C.4. �

73


	Introduction
	Previous Results
	Contributed Results

	Session Types and Asynchronous Subtyping
	Subtyping Relation Restrictions

	Decidability Results
	A Subtyping Procedure
	k-bounded Asynchronous Subtyping
	Asynchronous Subtyping for Single-Out or Single-In Types
	Asynchronous Subtyping for Single-Out Types
	Asynchronous Subtyping for Single-in Types


	Undecidability Results
	Queue Machines
	Bounded Asynchronous Subtyping
	Undecidability of Asynchronous Subtyping without Output Covariance and Input Contravariance

	Related Work
	Conclusion
	Proofs of Section 2
	Proof of Theorem 2.1 and Propositions 2.1 and 2.2

	Proofs of Section 3
	Proof of Proposition 3.1
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Proofs of Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3


