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Neurogenetic profiles delineate large-scale
connectivity dynamics of the human brain
Ibai Diez1,2 & Jorge Sepulcre1,3

Experimental and modeling work of neural activity has described recurrent and attractor

dynamic patterns in cerebral microcircuits. However, it is still poorly understood whether

similar dynamic principles exist or can be generalizable to the large-scale level. Here, we

applied dynamic graph theory-based analyses to evaluate the dynamic streams of whole-

brain functional connectivity over time across cognitive states. Dynamic connectivity in local

networks is located in attentional areas during tasks and primary sensory areas during rest

states, and dynamic connectivity in distributed networks converges in the default mode

network (DMN) in both task and rest states. Importantly, we find that distinctive dynamic

connectivity patterns are spatially associated with Allen Human Brain Atlas genetic tran-

scription levels of synaptic long-term potentiation and long-term depression-related genes.

Our findings support the neurobiological basis of large-scale attractor-like dynamics in the

heteromodal cortex within the DMN, irrespective of cognitive state.

DOI: 10.1038/s41467-018-06346-3 OPEN

1 Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston 02114 MA, USA.
2Neurotechnology Laboratory, Health Department, Tecnalia Research & Innovation, Derio 48160, Spain. 3 Athinoula A. Martinos Center for Biomedical
Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129 MA, USA. Correspondence and
requests for materials should be addressed to J.S. (email: sepulcre@nmr.mgh.harvard.edu)

NATURE COMMUNICATIONS |  (2018) 9:3876 | DOI: 10.1038/s41467-018-06346-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

mailto:sepulcre@nmr.mgh.harvard.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Neurons of the human brain are assembled to form
dynamic systems from local to large-scale distributed
spatial scales. Dynamic activity and oscillatory synchro-

nization of neurons shape the communication among cerebral
areas and are thought to generate complex self-organizing and
adaptive patterns of functional connections1. While enormous
advances in the study of spikes and focalized microcircuits have
led to insights regarding the dynamic behavior of neurons, the
features that support cooperative dynamic communications of the
human brain at a larger scale are less well understood. For
instance, the characterization of the temporal changes of func-
tional connectivity networks remain elusive, and there are no
commonly accepted notions about how self-organizing collective
interactions of neurons emerge at the large-scale brain level2,3.
Thus, investigations are needed to understand the dynamic pat-
terns supported by human whole-brain functional connectivity.

Since Poincaré’s seminal advances on recurrence of dynamic
systems and phase space, there has been great interest in inves-
tigating the temporal flow of activity and connectivity in the brain
by analyzing the non-linear transitions of discrete variable states2.
Models based on experimental work have revealed several
dynamic properties of neurons. Neural circuits forming directed
cycles exhibit repetitive or recurrent temporal dynamics and
attractor behaviors—a dynamic pattern that a system tends to
evolve or settle into4,5. The study of recurrent dynamic patterns
has also expanded from the microscopic scale to the meso- and
macroscopic levels of analysis to improve our understanding of
the intrinsic dynamics of large and distant regions of the brain6.
Findings from electroencephalogram (EEG) experiments have
also pointed to the existence of recurrent, reverberant or attractor
patterns—such as limit cycle and fixed-point attractors7,8—that
in turn might explain the large-scale multi-stable synchronicity of
the brain. Other studies have associated the sustained EEG
oscillations in epileptic seizures with transitions toward limit
cycle or chaotic attractors7,9.

Thus, the present study aimed to characterize the brain con-
figurations that show repeated dynamic connectivity toward
precise locations in the cortical mantle during multiple task
performances. Building upon previous descriptions in computa-
tional modeling that utilize structural and functional neuroima-
ging techniques10,11, we propose an empirical and data-driven
approach to describe the underlying dynamic patterns of large-
scale functional connectivity networks in two ways. First, we
characterized large-scale connectivity changes in time by loca-
lizing nodes that display a high degree of functional streams (or
dynamic paths on graphs) converging to specific points of the
cortical space and across multiple brain states as a proxy of
attractor-like behavior. We conjectured that there are network
nodes that are targeted by other nodes of the brain network, in
which information streams are repeatedly formed towards them.
Second, we investigated whether dynamic connectivity of large-
scale brain networks are founded on specific cellular and mole-
cular mechanisms through neuroimaging–genetics expression
interactions in the human cerebral cortex12–15.

Results
Large-scale dynamics of human brain functional connectivity.
Our analysis of dynamic connectivity in task performances using
stepwise functional connectivity (SFC) as a proxy for recurrent
network behaviors (Fig. 1) yielded distinct findings for local and
distributed connectivity maps (cortical maps in Fig. 2). Local
dynamic connectivity during task performances converged
repeatedly in areas associated with attentional processes and task
monitoring such as the lateral occipital, frontoparietal or dorsal
attention networks (cortical maps in Fig. 2a; line graphs in Fig. 2a;

note that line graphs represent the SFC values or connectivity
paths that reach specific voxels repeatedly). In contrast, dis-
tributed dynamic connectivity during wide task performances
predominantly converged in regions of the default mode network
(DMN), particularly in the precuneus/posterior cingulate cortex
and midline prefrontal areas (cortical maps in Fig. 2b). During
the time course of each task, local dynamic connectivity accu-
mulated a disproportionate number of local streams that reached
attentional and task-related areas, while changes in distributed
connections showed that global streams of connectivity con-
sistently reached prominent areas of the DMN in all time win-
dows for all types of tasks (line graphs in Fig. 2b; note that line
graphs represent the SFC values or connectivity paths that reach
specific voxels repeatedly). Interestingly, the distributed dynamic
connectivity map can only be achieved after the exclusion of
modular connections, while the topology of the local dynamic
connectivity map is equivalent to the map obtained when
all connectivity is included in the analysis (see Fig. 2a and Sup-
plementary Fig. 3).

The results of our analyses assessing local dynamic connectivity
during task performances and resting-state yielded distinctive
cortical patterns (cortical maps in Fig. 3). While local task-related
connectivity converged in attentional and monitoring areas, local
resting-state connectivity tended to dwell in the somatomotor,
visual and auditory cortices (cortical maps in Fig. 3a). Conversely,
we found that distributed recurrent dynamic connectivity during
both task and resting-state allocate similarly at the spatial level,
involving areas of the DMN (cortical maps in Fig. 3b). Similar
results were obtained for local and distributed dynamic
connectivity with the two replication datasets (Pearson's correla-
tion of 0.98 for local and 0.90 for distributed, see Supplementary
Fig. 6). Moreover, we observed that the strength of global
dynamic connectivity streams converging in the DMN forced
those participating regions to be closely together—although
without triangle motifs (see methods for details)—within the
topological space in a consensus task connectivity network
(network graph in Fig. 3c). Finally, as our SFC approach is able
to describe dynamic trajectories of connectivity on graphs, we
also analyzed specific trajectories of dynamic connectivity using
the original and replication datasets. We evaluated the cortical
areas with specific SFC values and tested if dynamic trajectories of
paths remain inside or go outside those areas. We found that
cortical areas with high local and distributed dynamic con-
nectivity (or SFC values) tend to display dynamic paths that
remain repeatedly inside those areas, while regions with low SFC
values display dynamic paths that go toward cortical areas with
high SFC values (Fig. 4).

Dynamic connectivity and its cortical genetic signature. To
understand the neurobiological basis of large-scale dynamic
connectivity, we compared the average maps of Fig. 3 with the
cortical expression of neuro-related genes (~3700) from the Allen
Human Brain Atlas. We obtained the spatial similarity between
each comparison (see histograms in Fig. 5a, b). We found the
gene expression levels of 211 and 195 genes were distributed
along the cortical mantle similarly as the local and distributed
connectivity maps, respectively (>1.65 SD). Using false discovery
rate (FDR)-corrected Gene Ontology (GO) overrepresentation
analysis (FDR-corrected q < 0.005), we found that genes asso-
ciated with the local dynamic connectivity map displayed an
overrepresentation of action potential and ion channel-related
genes, while genes associated with the global dynamic con-
nectivity map were more functionally engaged in long-term
potentiation (Fig. 5 and Supplementary Tables 2 and 3). Other
overrepresented functional annotations from both lists of genes
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were associated with neuron and axon development and synaptic
transmission (bar graphs in Fig. 5a, b). Interestingly, when we
investigated the specific long-term potentiation (LTP) genes (as
well as the counterpart long-term depression (LTD) genes)
associated with dynamic connectivity maps, we found that the
local map involved 4 LTP (CA7, GRIN2A, STX1B, SYT12) and 3
LTD (KCNB1, PNKD, PICK1) genes, while the distributed map
included 9 LTP (CHRNB2, CRH, EGFR, NTRK2, LGI1, PRKCE,
PRNP, RIMS1 and STX1B) and 1 LTD gene (SLC30A1) (>1.65
SD, see histogram in Fig. 5 and the Venn diagram in Fig. 6a).
Using a stringent cutoff (1.96 SD), we found that the local map
involved 1 LTP (SYT12) and 1 LTD (KCNB1) gene, while the
distributed map included 6 LTP (CRH, LGI1, PRKCE, PRNP,
RIMS1 and STX1B) and 1 LTD (SLC30A1) genes (Venn diagram
in Fig. 6a). Finally, we found that the spatial association patterns
between cortical maps of dynamic changes and three of these
genes displayed multiple comparison corrected significant

differences between the local and distributed patterns (Fig. 6b;
familywise error rate (FWE) <0.05). Namely, we found that the
spatial relationships between the local map and KCNB1 (LTD)
and SYT12 (LTP) genes are significantly different than the same
spatial relationships with the distributed map (p= 0.0011 and
p= 0.0002, respectively). Moreover, the spatial relationship
between the distributed map and the PRNP gene (LTP) is sig-
nificantly different than the same spatial relationship with the
local map (p= 0.0031).

Discussion
In this study, we studied empirical functional connectivity data
over time during various cognitive states to reveal the zones of the
human brain in which convergence of recurrent connectivity
occurs. Our aim was to detect and map the specific areas engaged
in attractorness-like behavior at the local and distributed levels.
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Fig. 1 a Dynamic connectivity was evaluated using network configurations over windows of time through association matrices and graph changes. Three
binary examples of time points are displayed for illustration purposes, although the real data are computed as weighted graphs. b To describe the local
patterns of dynamic connectivity as well as distributed network changes outside local modules, we separately investigate the direct and indirect neighbors
of all given investigated nodes in the entire cortex. As seen in the diagrams, this strategy enables the comparison of modular (or local) connectivity and
distant connectivity. c SFC is used to investigate the functional streams that converge at specific points of the cortex (network phase space). Top left:
diagram of converging streams in a given node. Top right and top center: calculation of the recurrence of streams targeting voxels over time at the whole-
brain level (lines graph and density graph). Bottom: Due to the segregation between local and distributed networks, we can independently investigate the
local and distributed recurrence connectivity. The diagrams represent the cerebral cortex and red areas with high accumulative degree of recurrent streams
hitting them over time. d Local and distributed recurrence connectivity maps are compared with neuro-related genes of the human transcriptome
(theoretical example shown as the green cortical map) via spatial similarity using a linear regression approach (scatterplot)
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As previously suggested, we assumed that the human brain has
numerous recurrent dynamic sources and networks that may
produce multiple attractors in a multi-stability scenario6,10.
Neural activity does not occur in isolation but is synchronized
with other neuronal signals. This organization tends to repeat
over time, and some coupled regions tend to be orchestrated
more frequently and recurrently than others. Connectivity
between brain areas via phase synchronization forms functional
networks, and dynamic and transient patterns arise from the
cooperation and competitiveness among them. Moreover, recur-
rent activity across neural networks is thought to yield self-
organized and multi-scaled dynamics patterns in the human
brain2,11,16,17. At the spatial level, it has been demonstrated that
flows of activity spread from specific areas toward certain local or
distant locations of the cortex. In general, this property of brain
activity streaming repeatedly toward precise locations can be seen
or conceptualized as an attractor or attractor-like behavior. In the
past, neural network modeling has reproduced feasible scenarios
of recurrent or attractor-like dynamic patterns at the synaptic and
neuronal levels. Since the introduction of the concept put forth by
Lorente de No and Hebb of reverberation as neural activity that
reiterates in a network, researchers have studied the implications
of recurrent neuronal activity in cell assembly formation and

cellular memory processes in brain circuits, which are key com-
ponents of cortical networks18. However, it is still poorly
understood how these types of dynamics transfer or generalize to
larger spatial scales and whether self-organized patterns, such as
reverberancy/recurrence or attractorness, arise from the func-
tional connections of the human cortex. The existence of self-
organized and attractor dynamic patterns in the human brain
networks has been postulated to be critical to our understanding
of how cognitive processes, behavior, action–perception cycles or
mind–brain–body integration form in humans16,19,20. Compared
to previous studies, our study employed a data-driven approach
that goes directly from empirical functional connectivity mag-
netic resonance imaging (fcMRI) data to the investigation of the
biological basis supporting large-scale dynamic patterns of the
human brain. By doing so, we show that the DMN displays
dynamic connectivity and genetic features that favors it as the
main attractor network of the human brain.

As recently stated by Friston21,22, “to properly understand
neural processing, one has to move beyond classical information
theoretic approaches and look at the itinerant dynamics that
underpin self-organization in nonequilibrium systems, like the
brain, that maintain a steady state or homeostasis”. Previously,
many studies have found that signal equation modeling and post
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hoc validation with EEG or functional MRI data supports the
existence of attractor behavior of the large-scale human
brain11,21. An attractor system describes dynamic trajectories
over a specific phase space that is considered structurally stable
when perturbations produce slight modifications in its shape. In
this context, we can speculate that if multiple stable attractors co-
exist in the human brain functional connectome with their spe-
cific attraction basins, we should be able to describe repetitive
patterns of dynamic synchrony and functional connectivity
streams over time in specific cortical locations. In contrast, if
brain attractors are highly unstable and with many bifurcation
points (criticality), then our ability to detect consistent repetitive
behaviors in specific points of the space should diminish. To
investigate this hypothesis, we studied many different brain states
(or natural perturbations associated with different task perfor-
mances) in order to capture multiple attractors. In other words,
we investigated the connectivity patterns that are stable and
recurrent across many cognitive states. As a result of our analyses,
we found that local networks in modal, as previously suggested23,
and attentional cortices—dorsal and ventral attentional systems

as well as in the frontoparietal network—exhibit attractor prop-
erties in different cognitive states, while distributed attractors in
the heteromodal cortex are present and stable regardless of cog-
nitive states.

Although much is recognized about the connectional proper-
ties of the functional connectome, the neurobiological and genetic
foundation of its dynamic mechanisms are less well known. In
this work, we showed that recurrence connectivity in local net-
works relate to a mix of synaptic potentiation and neuronal
excitability genes, particularly KCNB1, a voltage-gated potassium
channel related to LTD and the regulation of neurotransmitter
release24, as well as SYT12, a member of the synaptotagmin gene
family that mediates LTP, synaptic-vesicle exocytosis and
calcium-dependent regulation of synaptic trafficking24. Thus, our
cortical pattern of attractorness in local networks match the
cortical gene expression of several genes related to synaptic
potentiation in both LTD and LTP profiles. These findings are in
agreement with recent studies reporting associations between
cortical synchronous activity and genetic expression of ion
channel functionality15. Additionally, it has been previously
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demonstrated that resting-state connectivity profiles of resting-
state MRI data relate to the gene expression levels of ion channel
genes such as DRD2, GLRA2, HTR2C, KCNS1, KCTD4 and
SCN1B14. As experimentally postulated, the dynamics of neuronal
recurrence or attractors arise from the synaptic potentiation25. In
our study, we included a genetic analysis to better understand
LTP- and LTD-related gene functions and found that both are
critical to explain the dynamic profiles of local networks in which
we can postulate that a versatile level of flexible construction and
destruction of connections (depending on whether the individual
is currently engaged in primary modal, attentional or task-related
processes) is needed.

Importantly, we found that the distributed recurrence of
dynamic connections in the DMN relies on a distinctive genetic
profile that mostly depends on LTP genes (such as PRNP), which
encodes a membrane glycosylphosphatidylinositol-anchored gly-
coprotein associated with Creutzfeldt–Jakob disease, fatal familial
insomnia, Gerstmann–Straussler disease, Huntington disease-like
1 and kuru, all neurological diseases with signs of sustained
aberrant neuronal activity24. Moreover, following Hebb’s spec-
ulation that transient memories are maintained by reverberation
until stable synapses are acquired18, it is possible to support the
idea that networks with dynamic recurrence and LTP genetic
expression are the substrate for consolidation of cellular mem-
ories in the human cortex. Thus, a predominant LTP profile may
be relevant to induce consistent connectivity recurrence at the
distributed spatial scale and to support a potential attractorness
behavior regardless of cognitive state. Based on our dynamic
connectivity findings in which the DMN remains constantly
recurrent across all brain states at the distributed level, we

postulate that the DMN has a main role in stabilizing the entire
large-scale system. This interpretation is consistent with the
especulative role of the DMN as a “global workspace” and large-
scale brain integrator19,26–30. In the past, modeling approaches
have supported DMN functionality as a global integrator or
facilitator to communicate different network states, mostly via the
cortical hubs or rich club. For instance, previous findings show
that the emergence of resting-state patterns reflects the explora-
tion of network configurations around a large stable network
core10,31–34. Our results support that distributed dynamic con-
nectivity in the DMN may favor those easily reachable and
stable global brain configurations.

In this study, we provide evidence of the dynamic organization
of recurrent connectivity and its neurogenetic transcriptomic
signatures in the human brain. Our findings show a multi-
stability scenario of the human whole-brain functional con-
nectivity in which the temporal patterns of connectivity tend to
converge into specific points of the connectome space at the local
and distributed levels. Importantly, they also support the notion
that the DMN plays an important role as a global attractor-like
network across cognitive states, in which network configurations
in heteromodal cortices confer dynamic properties in search of
stability when large distances and distributed connectivity are
engaged. Therefore, if only distributed connectivity is under
consideration, the human brain may tend to display a uni- rather
than a multi-stable dynamic system. In this study, we did not
investigate whether the human brain shows metastability states,
which is defined as a winner-less dynamic between networks
forms—“a subtle blend of integration and segregation”17—and
future research is needed in this sense. Moreover, the large-scale
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global connectivity–genetic associations in KCNB1 (LTP), SYT12 (LTD) and PRNP (LTP) genes (FWE correction <0.05)
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nature of our study precludes us from making inferences about
how the macroscale recurrence integrates with the micro-
neuronal level, although our neuroimaging–genetic findings
shorten the gap between the two.

Methods
Overview. In this study, we used a graph theory approach called SFC12,35 to
analyze dynamic functional connectivity data in which local and distributed con-
nectivity has been previously segregated (Fig. 1a, b). Given that the dynamic
properties of an attractor system are better characterized under multiple pertur-
bation conditions, we studied the brain under multiple task conditions to explore
many natural perturbation conditions of the functional connectome. Using SFC,
we studied whether a dynamic system shows converging and repetitive behavior
toward specific network coordinates during different states of the network phase
space. We first obtained discrete network configurations over time (Fig. 1a). Then,
for each node in the brain, we separated the connectivity that belongs to its direct
neighbors (the local dynamic connectivity condition) and beyond those neighbors
(the distributed dynamic connectivity condition) (Fig. 1b), as well as the condition
without connectivity segregation (see the section “Stepwise functional connectivity
analysis” for details). As neighboring nodes engage in high connectivity strength,
local connectivity overshadows distributed dynamic patterns emerging from dis-
tantly connected areas. Therefore, it is relevant to separate these two types of
information in order to study modifications within local neighborhoods as well as
long-range network dynamics between cortical regions. This strategy has proven to
be effective to study large-scale connectivity organizational principles12,36. After
this step, we calculated the functional streams and degree of paths that repeatedly
reach each node of the brain (Fig. 1c). Finally, in order to gain insights into their
biological meaning, we investigated the association between local and distributed
recurrent dynamic connectivity patterns with the cortical gene expression levels
from the Allen Human Brain Atlas (Fig. 1d)37 (http://human.brain-map.org;
neuroimaging implementation by French and Paus38).

Participants. All neuroimaging data were provided by the Human Connectome
Project, WU-Minn Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil; 1U54MH091657) funded by the 16 National Institutes of Health
(NIH) Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Washington
University. A total of N= 30 randomly selected healthy controls were included in
this study; 14 males and 16 females between 22 and 35 years old. High-resolution T1
anatomical images, and functional magnetic resonance images (fMRI), later con-
verted into fcMRI, from the Human Connectome Project were used in this study.
Apart from the main sample, we included two additional independent samples of 30
individuals each from the Human Connectome Project (both with 17 females and
13 males between 22 and 36 years old) for replication purposes. For more infor-
mation on the acquisition parameters, see Supplementary Methods and the Human
Connectome Project documentation (http://www.humanconnectome.org/).

Experimental design. All task and rest conditions were designed and performed as
part of the Human Connectome Project (http://www.humanconnectome.org/). For
specific details about the experimental designs, see Supplementary Methods. Subjects
were asked to complete 7 different cognitive tasks and 1 rest task inside the MR
(Supplementary Table 1). Emotion processing (valenced facial masking task): Parti-
cipants were presented with two faces (expressing anger or fear) or two shapes at the
bottom and one at the top of the presentation and were asked to choose which of the
two images at the bottom match the image at the top. Gambling (risk/reward):
Participants guessed the number on a mystery card in order to win or lose money. To
do so, they were asked to indicate if they thought the mystery card number was
greater or less than 5 by pressing designated buttons. They were then given feedback
indicating the number on the card and size of the reward or loss. Language (story and
symbol representation): Participants interleaved blocks of a story task (brief auditory
stories and a question about the topic) and a math task (requires subjects to complete
addition and subtraction problems). Motor: Participants were presented with visual
cues that asked them to either tap their left or right fingers, squeeze their left or right
toes or move their tongue to map motor areas. Relational processing: Participants
were presented with two pairs of objects and were asked to decide what dimension
(either shape or texture) differed across the first pair of objects before deciding
whether the second pair of objects also differs along that same dimension. Social
cognition: Participants were presented with objects (squares, circles, and triangles)
that interacted in some way or moved randomly on the screen. Participants then
stated whether the objects had a mental interaction or if they were not sure if this
interaction existed. Working memory: Participants were presented with pictures of
places, tools, faces and body parts followed by a 2-back working memory task and 0-
back working memory task. Rest condition: Participants were instructed to simply rest
with their eyes open—with relaxed fixation on a projected bright cross-hair on a dark
background and presented in a darkened room—without falling asleep or thinking
about anything in particular.

Stepwise functional connectivity analysis. Conventional fcMRI approaches
derive connectivity information from the entirety of the blood oxygen level
dependent (BOLD) time series and result in a time-averaged brain network graph.
However, as brain network dynamic changes occur at a higher temporal scale,
other strategies have been used to take full advantage of the non-stationarities that
reside in temporal information contained in the fcMRI data39. For instance, the
sliding window approach extracts the dynamic interactions between brain areas by
using a time moving window along the BOLD time series. As demonstrated by a
recent study using simultaneous calcium and hemodynamic signals, short time
windows represent transient neuronal co-activation that allows the capture of more
information about different brain states compared to static connectivity40. In this
study, we examined different window lengths and customized high-pass filtering to
investigate dynamic connectivity patterns. At the conceptual level, shorter window
lengths provide higher temporal resolution but the estimated correlation coeffi-
cients are noisy and prone to error. Longer window lengths, on the contrary, might
yield more precise estimates, but lack temporal fidelity and tend toward the time-
averaged solution41,42. Supplementary Table 2 shows all window sizes used in the
analyses, from 30 to 6041. In the main sections of this study, we present findings in
which a window size of 30 s each (TR= 0.72; 42 time points) was used to split the
fcMRI data, with 1 lagged time point between them17. Our overlapping criterion
was designed to obtain smooth transitions between network states. Before splitting
the time series into different windows of 30 s, a high- and low-pass filter with a
cutoff frequency of 0.01 Hz and 0.08 Hz was applied to remove spurious
fluctuations42,43 (alternative window sizes and high-pass filters in Supplementary
Fig. 4; static condition, no sliding window approach Supplementary Fig. 5). The
Pearson's correlation of the time series of all the voxels in each time window was
computed, which generated a functional connectivity matrix for each time window.
We used a whole-brain mask—containing cortical gray matter, subcortical struc-
tures and cerebellum—of 5138 voxels to extract the BOLD time series and applied
the sliding window approach. This step generated a 5138 × 5138 association matrix
per sliding window (sliding windows varied between task ranging from 147 to 376).
All the connections with negative correlation values or correlation values with a
p value less than 0.05 were removed from the functional matrices to eliminate the
network links with poor interpretability and low temporal correlation, which are
likely to be attributable to noise44. Finally, we applied a variance-stabilizing
transformation (Fisher's transformation) to all correlation coefficients of associa-
tion connectivity matrices as a final step before our graph theory-based analysis
(c in equation condition 1 to 3)45.

As recently described, network algorithms offer new opportunities to understand
the brain network structure by exploring the transversal connectivity patterns across
multiple relay stations6,46–49. For instance, they have increased our knowledge of the
structural and functional hierarchies and hubs organization (cortical core of hubs
and rich club) that integrate large-scale networks in the human brain13,35,50–52. In
this study, in order to detect recurrent patterns of connectivity streams, we used a
graph theory method sensitive to network path connectivity changes over time.
Given that dynamic connectivity changes are expected to occur at local and
distributed levels, we computed the dynamic version of the SFC method in each
voxel of the brain under three separate conditions including (1) local and distributed
connections without network topological segregation (Eq. 1; also called total
connectivity (TC) in the text); (2) only direct or immediate neighborhood
connections via triangle motifs (Eq. 2; also called local or modular connectivity (LC)
in the text; Fig. 1b); and (3) connections outside the local neighborhood or triangle
motifs (Eq. 3; also called distributed connectivity (DC) in the text; Fig. 1b).
Therefore, it is important to remark that our local and distributed terms relates to
network-based topology and not to Euclidean distances within the human brain.

(Eq. 1: TC)
TC for node i is computed as:

S1ði; jÞ ¼ c i; jð Þ�minðcÞ
maxðcÞ�minðcÞ

Ssði; jÞ ¼
Pn

k¼1

Ss�1 i; kð Þ�minðSs�1Þ
maxðSs�1Þ�minðSs�1Þ

c k; jð Þ�minðcÞ
maxðcÞ�minðcÞ i≠ j; s > 1½ �

TC ið Þ ¼ P7

s¼1

Pn

j¼1

Ss i; jð Þ�minðSsÞ
maxðSsÞ�minðSsÞ

; ð1Þ

where c is the association connectivity matrix, n is the number of nodes (voxels) in
association connectivity matrix and Ss represents the normalized stepwise
connectivity matrix for step s. TC is the weighted degree or sum of all stepwise
connections per node.

(Eq. 2: LC)
LC for node i is computed as:

SL1ði; jÞ ¼ c i; jð Þ�minðcÞ
maxðcÞ�minðcÞ S2 i; jð Þ≠ 0½ �

SLsði; jÞ ¼
Pn

k¼1

SLs�1 i; kð Þ�minðSLs�1Þ
maxðSLs�1Þ�minðSLs�1Þ

c k; jð Þ�minðcÞ
maxðcÞ�minðcÞ i≠ j; s > 1½ �

LC ið Þ ¼ P7

s¼1

Pn

j¼1

SLs i; jð Þ�minðSLsÞ
maxðSLsÞ�minðSLsÞ

; ð2Þ

where c is the association connectivity matrix, n is the number of nodes (voxels) in
association connectivity matrix and SLs represents the normalized local stepwise
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connectivity matrix for step s. LC is the weighted degree or sum of all stepwise
connections per node.

(Eq. 3: DC)
DC for node i is computed as:

SD1ði; jÞ ¼ S4ði; jÞ S1 i; jð Þ ¼ S2 i; jð Þ ¼ 0½ �
SDsði; jÞ ¼

Pn

k¼1

SDs�1 i; kð Þ�minðSDs�1Þ
maxðSDs�1Þ�minðSDs�1Þ

c k; jð Þ�minðcÞ
maxðcÞ�minðcÞ i≠ j; s > 1½ �

DC ið Þ ¼ P6

s¼1

Pn

j¼1

SDs i; jð Þ�minðSDsÞ
maxðSDsÞ�minðSDsÞ

; ð3Þ

where c is the association connectivity matrix, n is the number of nodes (voxels) in
association connectivity matrix and SDs represents the normalized distributed
stepwise connectivity matrix for step s. DC is the weighted degree or sum of all
stepwise connections per node.

The network topological segregation in triangle motifs allows for the
investigation of local modules as well as connectivity outside these modular
components. Therefore, all SFC analyses were applied to the same data with the
exception of including all (total connectivity), only local neighborhood (local
dynamic connectivity) or excluding local neighborhood (distributed dynamic
connectivity) connections. Of note, the original description of SFC analysis was
developed in time-averaged conditions and used seeds of interest to reveal
connectivity transitions across specific systems12,35. In the present investigation, we
extended the SFC method toward the analysis of all possible voxels and time
windows of the fcMRI data. Because of the occurrence of coordinated and
synchronized connections in time across the entire human brain, we used whole-
brain analysis to capture predominant profiles of SFC. Thus, for each functional
matrix corresponding to each time window, both the local SFC and distributed SFC
were computed. This process is done simultaneously for all voxels in the mask in
each condition (total, local and distributed SFC) via matrix multiplication in
Matlab (v8.0, The Mathworks Inc., Natick, MA). Mean SFC detects the
concurrently time-dependent connectivity changes and finds nodes in which
multiple-step paths (also refer here as functional connectivity streams or just
functional streams) converge repeatedly across windows (Fig. 1c). Importantly, our
SFC approach is a weighted strategy in which the strengths of all connections were
included in the analysis (Fig. 1a shows a binary example for illustration purposes
only). For each time window, we used the association matrix to calculate the
connectivity steps from each node to the rest of nodes in the graph topological
space until seven steps were completed. We selected seven connectivity steps as our
sequence detection criteria based on previous findings on diameter and path
lengths between pairs of nodes in functional connectivity graphs35, in which more
than seven steps does not improve the communicability between nodes (see
Supplementary Fig. 1 for a visualization of 1 to 7 steps using a single visual seed in
the occipital cortex in the Emotion Task; note that this is for illustration purposes
because our approach computes the SFC simultaneously in all gray matter seeds of
the human brain). Importantly, there are two strategies to calculate SFC in sliding
windows. The calculation of connectivity steps of a given voxel toward the rest of
the voxels can be obtained within each discrete sliding window (1 to 7 connectivity
steps within the same association matrix of a given window) or across multiple
sliding windows (1 to 7 connectivity steps transversally in consecutive association
matrices). We tested both strategies in this study. As they yield analogous outcomes
(see Supplementary Fig. 2), we presented the discrete strategy in the main text.
Although SFC relies on Gaussian assumptions when exploring connectivity
between neighbors, it also extracts non-linear information from the relationships
between nodes that are not directly connected and separated by multiple relay
stations. To obtain a single local and distributed SFC map per subject, we
computed the mean of all SFC weighted degree maps that contain the connectivity
convergences extracted from each time window. Finally, performing the mean of
the 30 subjects, we obtained the local and distributed SFC maps for each of the
performed tasks. In these final maps, a larger dynamic SFC degree in a particular
voxel indicates higher connectivity streams from the rest of the brain, thus reaching
that specific voxel many times, while a smaller degree means low connectivity
dynamic convergences.

Dynamic SFC map association with cortical gene expression. We used the
average SFC maps of all task conditions and the Allen Human Brain Atlas to
investigate whether genetic transcription profiles underlie the local and distributed
recurrent functional connectivity or attractor-like capabilities of the human brain.
The Allen Human Brain Atlas provides whole-brain genome-wide expression
patterns for six human subjects37. We used a previously generated surface anato-
mical transformation of the transcriptional profiles of protein-coding genes (20736
genes) based on 58692 measurements of median gene expression in 3702 brain
samples38 This anatomical transformation is based on the 68 cortical regions of the
Desikan–Killiany atlas and covers the entire cortex53. First, we converted the
average SFC maps of task local and distributed connectivity from the voxel level to
68 Desikan–Killiany regions. We averaged the SFC values of the voxels belonging
to each of the 68 cortical regions of the Desikan–Killiany atlas to obtain two vectors
describing local and distributed connectivity during task. We used the transcrip-
tional profiles of protein-coding genes to quantify the similarity with our con-
nectivity maps. Second, we investigated the spatial cortical similarity between these

SFC maps and cortical expression profiles using GO term analysis with a focus on
“Neuro” annotations54,55 (see Supplementary Tables 3 to 6 for profile details with
and without the a priori selection of neuro-related genes). The subset neuro-related
genes were obtained from the official tool of the GO Consortium for searching and
browsing the GO annotations, AmiGO. The 20736 genes were reduced to 3719
neuro-related genes. The Pearson's correlation approach between the local and
distributed vectors and the final list of gene expression vectors was used to evaluate
the spatial similarity between then. Third, we built histogram distributions of
spatial similarity values to obtain the genetic expression patterns of genes that are
significantly associated with the SFC maps. Fourth, we applied an initial statistically
significant cutoff (>1.65 SD; based on 90% confidence interval) to obtain a broad
list of genes in order to perform GO overrepresentation tests and elucidate the
significant functional annotations related to local and distributed attractor-like
maps. We used PANTHER13.1 software and Fisher’s exact with FDR multiple test
correction to perform the statistical testing (FDR at <0.005). We used the GO
Biological Process annotation dataset, as we were interested in the investigation of
neuro-related biological processes and not in Cellular Component or Molecular
Function annotations. Fifth, we used an a priori strategy to investigate the synaptic
LTP and LTD genes associated with the regional and global attractor-like maps.
We obtained all genes classified as having LTP and LTD functionality from the GO
annotation system (AmiGo; LTP=GO:0050806/GO:0060291, positive regulation
of synaptic transmission, long-term synaptic potentiation; and LTD=
GO:0050805/GO:0060292, negative regulation of synaptic transmission and long-
term synaptic depression). Then, we compared the GO LTP and LTD lists with a
restricted list of genes related to local and distributed connectivity maps using a
Venn diagram and a stringent statistically significant cutoff (>1.96 SD; based on
95% confidence interval) to concisely detect their functional assignment. Finally,
we used a regression statistical approach to compare the regression slopes of the
spatial associations between the local and distributed connectivity maps and spe-
cific candidate genes of LTP and LTD that were functionally detected in the pre-
vious step. We used an FWE Bonferroni correction at p < 0.05 to correct for
multiple comparisons in these contrast analyses.

Visualization. Cortical data maps were projected on the brain surface using the
population-average landmark- and surface-based (PALS) surface (PALS-B12)
provided with Caret software56. We used the “interpolated voxel algorithm” and
“multi-fiducial mapping” settings and a scale based on weighted degree of SFC to
display cortical maps in Figs. 2 and 3. We used Gephi software and an energy
layout for the graph visualization in Fig. 3. The energy layout algorithm is a force
layout method based on a network energy procedure that arranges the nodes in
a network by minimizing the length and crossing of links and optimizing
the optimal lengths and positions of them. This network correspond to the
combination of the average local and distributed SFC matrices from task-related
maps of Fig. 3a, b. We first z-score normalized both matrices and to avoid
high density of links and improve visualization we plotted all connections above
z > 3.9 (p < 0.001).

Code availability. All codes for imaging analysis are available for the research
community from the corresponding author (J.S.) upon reasonable request.

Data availability
All neuroimaging and genetic data that support the findings of this study are available
from the Human Connectome Project (https://www.humanconnectomeproject.org) and
the Allen Human Brain Atlas (https://human.brain-map.org).
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