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Abstract. The median problem is a classical problem in genome rear-
rangements. It aims to compute a gene order that minimizes the sum
of the genomic distances to k ≥ 3 given gene orders. This problem is
intractable except in the related Single-Cut-or-Join and breakpoint rear-
rangement models. Here we consider the rooted median problem, where
we assume one of the given genomes to be ancestral to the median, which
is itself ancestral to the other genomes. We show that in the Single-Cut-
or-Join model with single gene duplications, the rooted median problem
is NP-hard. We also describe an Integer Linear Program for solving this
problem, which we apply to simulated data, showing high accuracy of
the reconstructed medians.

1 Introduction

Reconstructing the evolution of genomes at the level of large-scale genome rear-
rangements is an important problem in computational biology [17,19]. There
are several computational problems related to rearrangements, ranging from
the computation of pairwise distances in a given rearrangement model to the
reconstruction of complete phylogenetic trees, often following a parsimony app-
roach [12]. Among these problems, the reconstruction of ancestral gene orders
given a species phylogeny has been considered in various frameworks, including
the so-called Small Parsimony Problem (SPP), which aims at proposing gene
orders at the internal nodes of the given species phylogeny while minimizing the
sum of the genome rearrangement distances along its branches. The simplest
instance of the SPP is the Median Problem, where the given phylogeny contains
a single ancestral node whose gene order is to be reconstructed. In the present
paper, we introduce novel results about the median problem, in a context where
gene duplications are considered.

The median problem was introduced in 1996 [21], motivated by its applica-
tion to iterative algorithms for solving the SPP [3]. Early results suggested that,
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even in the simple breakpoint distance model, computing a median gene order is
intractable [20], and heuristics based on the Traveling Salesman Problem (TSP)
were introduced to solve the breakpoint median problem [3,7]. However, in 2009,
Tannier, Zheng and Sankoff proved that computing a median gene order that is
allowed to contain an arbitrary mixture of linear and circular chromosomes was
tractable in the breakpoint distance model, by using a reduction to the prob-
lem of computing a Maximum Weight Matching (MWM) [22]. This tractability
result, the first of its kind in genome rearrangements, renewed the interest in
gene order median problems, although most of the following work presented
intractability results, even on variations of the breakpoint distance [5,9,14].
A notable exception was the Single-Cut-or-Join (SCJ) distance, introduced by
Feijão and Meidanis [11], where it was shown that both the SCJ median problem
and the SCJ SPP are tractable.

Gene duplication is another important evolutionary mechanism, ranging from
single-gene duplication to whole-genome duplications (WGD) [13,15]. The first
models of evolution by genome rearrangements considered the case of genomes
with equal gene content, thus disregarding gene duplication and gene loss. When
considered as a possible evolutionary event, gene duplication most often leads
to intractability results, even for the simple pairwise gene order distance [1,4,6].
Notable exceptions include again variants of the SCJ distance. In [23] it was
shown that in an evolutionary model including SCJ and whole-chromosome
duplications, the pairwise distance problem is tractable. More recently, we intro-
duced a variant of SCJ including single-gene duplications where the distance
between an ancestral genome and a descendant genome can be computed, when
orthology relations between the descendant and ancestral genes are provided [10].
We also showed that a directed median problem where the median is the ances-
tor of k given genomes is tractable, again by reduction to a MWM problem.
These results raised the question of tractability boundaries towards the SPP in
a rearrangement model, including gene duplication.

In the present work, we show that a different median problem, which involves
an additional given ancestral genome, is intractable. More precisely, we introduce
the rooted median problem, where we are provided with k + 1 ≥ 3 genomes,
A,D1, . . . , Dk, such that A is ancestral to D1, . . . Dk, and we are looking for a
median M , whose gene content and orthology relation to the given genomes are
provided, that minimizes the sum of the directed distances between A and M ,
and M and the Dis, in the distance model defined in [10]. In Sect. 3, we prove
that this median problem is NP-hard even when k = 2. In Sect. 4, we describe a
simple Integer Linear Program (ILP) for this problem, based on a reduction to a
colored MWM problem. We provide in Sect. 5 experimental results on simulated
data.

2 Preliminaries

Genes and Genomes. A genome consists of a set of chromosomes, each being
a linear or circular ordered set of oriented genes. Following the usual encoding
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of gene orders, we represent a genome by its gene extremity adjacencies. In this
representation, a gene g is represented using a pair of gene extremities (gt, gh),
gt denotes the tail of the gene g and gh denotes its head, and an adjacency is a
pair of gene extremities that are adjacent in a genome. If a gene gi is denoted
with a subscript, we will denote the tail of gi by gi,t and its head by gi,h. A gene
extremity is free if it does not belong to an adjacency.

We assume that a given gene g can have multiple copies in a genome, the
number of copies being called its copy number. A genome in which every gene has
copy number 1 is a trivial genome. A non-trivial genome sometimes cannot be
represented unambiguously by its adjacencies, that can form a multi-set, unless
we distinguish the copies of each gene, for example by denoting the copies of a
gene g with copy number k by g1, . . . , gk. Nevertheless, we identify a genome with
its multi-set of gene extremity adjacencies, which we call adjacencies from now.
A chromosome is a maximal contiguous sequence of genes; a chromosome with k
genes can have either k − 1 adjacencies, in which case it is a linear chromosome,
or k adjacencies, in which case it is a circular chromosome.

Evolutionary Model. In this work, following [10], we consider a model of directed
evolution in which, when comparing two genomes, we assume one, denoted by
A, is a trivial genome and an ancestor of the other genome, denoted by D.

We now describe the evolutionary events defining our evolutionary model.
Genome rearrangements are modeled by Single-Cut-or-Join (SCJ) operations,
which either delete an adjacency from a genome (a cut) or join a pair of free
gene extremities (a join), thus forming a new adjacency. For duplication events,
we consider two types of duplications, both creating an extra copy of a single
gene: Tandem Duplications (TD) and Floating Duplications (FD). A tandem
duplication of an existing gene g introduces an extra copy of g, say g′, by adding
an adjacency ghg′

t, and, if there was an adjacency ghx by replacing it by the
adjacency g′

hx. A floating duplication introduces an extra copy g′ of a gene g as
a single-gene circular chromosome by adding the adjacency g′

hg′
t.

Given A and D, we denote by gene family all copies of a given gene observed
in A and D. By definition, there is exactly one copy of the gene in A and there
might be several, paralogous, copies of the gene in D. We assume here that every
gene in A has at least one descendant gene in D and conversely, every gene in D
has exactly one ancestral gene in A, so we do not consider gene gains or losses.

Problem Statements. In [10], Feijão et al. introduced the directed SCJ-TD-
FD (d-SCJ-TD-FD) distance problem that asks to compute the minimum
number of SCJ, TD and FD operations needed to transform A into D, denoted by
dDSCJ(A,D). They showed that this problem is tractable and that the distance
can be computed using a simple set-theoretical formula, extending naturally the
distance formula for the SCJ with no duplication model.

A first median problem was also introduced in [10], the directed SCJ-TD-
FD (d-SCJ-TD-FD) median problem, defined as follows: given D1, . . . , Dk

(k ≥ 2) (possibly) non-trivial genomes, such that no gene family is absent from
any Di, compute a trivial genome A on the same set of gene families, that
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Fig. 1. In part (a), each color represents a gene family from A. Notice that each gene
in D1 and D2 can be traced to a unique gene in M whereas a gene from A might
have multiple daughters in M . Part (b) displays the gene tree of the gene family in
blue (indicated by arrows in part (a)). Since the gene a2 undergoes duplication (dark
squares) to form g1 and g3 in M , M is not trivial w.r.t A. (Color figure online)

minimizes
∑k

i=1 dDSCJ(A,Di). It was shown that this median problem is also
tractable through a simple reduction to a MWM problem.

In the present work, we introduce the rooted SCJ-TD-FD (r-SCJ-TD-
FD) median problem. We are given k + 1 ≥ 3 genomes, A, D1, . . . , Dk such
that A is a trivial genome, ancestor to the Di’s. The goal of the rooted median
problem is to find a genome M which is a descendant of A and an ancestor of
D1, . . . , Dk, minimizing the sum of its distance to A and to the D′

is. Following
the approach introduced in [10], we assume we are given the gene content Γ of
M and the orthology relations between A and M , as well as between M and the
D′

is. This implies that every gene of M (resp. D1, . . . , Dk) has a unique ancestor
in A (resp. in M), so M is a trivial genome compared to the D′

is but might
not be compared to A (see Fig. 1 for an illustration). To formally handle this
difference, we assume that all copies of a gene g of A in M (i.e. the genes of M
whose ancestor in A is gene g) are distinguishable (e.g. labeled, say g1, . . . , gk)
and, for a given gene gi of M , we denote its ancestor in A by a(gi). Then for
a given genome M on Γ , we denote by Ma the genome where every gene g is
relabeled by a(g). The goal of the rooted median problem is to find a genome
M that minimizes the following function:

dDSCJ(A,Ma) +
k∑

i=1

dDSCJ(M,Di). (1)

Remark 1. If we assume there is no duplication from A to M , i.e. both have the
same gene content, then the MWM algorithm introduced in [10] for the directed
median problem applies to the rooted median problem and the problem is thus
tractable. So the difficulty in solving the rooted median problem is to account
for duplications from A to M .
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The Pairwise Distance Formula. Given a gene g ∈ Γ , we call a g-tandem array
a sequence of consecutive adjacencies ghgt; if this sequence forms a circular
chromosome, it is called a g-chromosome. Given a genome X, we call an adja-
cency ghgt an observed duplication if g has more than one copy in X. Observed
duplications are part of a g-tandem array or a g-chromosome. Let r(X) be the
genome obtained from X by successively deleting an observed duplication from
X, chosen arbitrarily, until there remains no observed duplication. Note that
this corresponds to deleting every ghgt adjacency, except that we keep one in
the special case in which all copies of g are organized in g-chromosomes, as shown
in Fig. 2. We call r(X) the reduced genome of X. We define t(X) = |X − r(X)|,
the number of adjacencies to delete to transform X into r(X). Formally, the
multi-set difference X −Y between two multi-sets X and Y of adjacencies is the
multi-set obtained as follows: it contains k copies of a given adjacency if and
only if X contains exactly k more occurrences of this adjacency than Y (with
k = 0 being possible).

at ah bt bh bt bh bt bh ct ch dt dh et eh fh ft fh ft gt gh et eh ht hh ht hh

at ah bt bh ct ch dt dh et eh fh ft gt gh ht hh

X

r(X)

Fig. 2. An example of the reduced genome r(X), of the genome X. Note that an
instance of hhht is retained so that r(X) contains at least one representative of gene
family h. All observed duplications are removed in r(X). Here, t(X) = |X −r(X)| = 5.

The directed SCJ-TD-FD distance between an ancestral genome A and a
descendant genome D is given by [10]:

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A, r(D)) + t(D) (2)

where δ(A, r(D)) is the difference between the number of genes of r(D) and
the number of genes of A (i.e. the number of duplications from A to r(D)). We
introduce1 now a slightly different formulation of dDSCJ that will be useful in
our hardness proof:

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A,D) − t(D) (3)

Remark 2. For dDSCJ(M,Di), the value of t(Di) does not depend on our choice
of M , for i = 1, . . . , k. We will therefore assume that the D′

is are reduced (hence
we may refer to r(Di) as simply Di instead). However t(Ma) has an impact on
dDSCJ(A,Ma), and so we will not assume that M is reduced.

1 The proof is given in the Appendix.
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3 The Rooted Median Problem Is NP-hard

We show that finding the optimal gene order for M is NP-hard even for k = 2,
by reduction from the 2P2N-3SAT problem [2]2. In 2P2N-3SAT, we are given n
variables x1, . . . , xn and m clauses C1, . . . , Cm, each containing exactly 3 literals.
Each xi variable appears as a positive literal in exactly 2 clauses, and as a
negative literal in exactly 2 clauses. Note that since each variable occurs in
exactly 4 clauses and each clause has 3 literals, m = 4n/3. An example of a
2P2N-3SAT instance is shown in Fig. 3.

We now describe how we transform the xi variables and Cj clauses into an
instance of the rooted median. The genes of M are

Γ = {g+1 , γ+
1 , g−

1 , γ−
1 , . . . , g+n , γ+

n , g−
n , γ−

n , c1, . . . , cm, α1, . . . , α2n−m}

The genes g+i , γ+
i , g−

i , γ−
i correspond to the xi variable, and cj to the clause Cj .

The purpose of the 2n − m = 2n/3 special αi genes will become apparent later.
To simplify matters, every adjacency in our reduction is between the tails of

two genes. Hence, the heads of each gene of A,D1 and D2 are telomeres (linear
chromosomes extremities), so that all chromosomes are linear and have at most
2 genes. From now, we will omit the t subscript from the extremities for these
adjacencies, with the understanding that every adjacency is between tails; for
instance, we may write g+i γ+

i for the adjacency g+i,tγ
+
i,t.

We can now describe A, D1 and D2. The genes of A are g′
1, γ

′
1, . . . , g

′
n, γ′

n,
c′
1, . . . , c

′
m, α′

1, . . . , α
′
2n−m. The genes g+i and g−

i (resp. γ+
i and γ−

i ) are dupli-
cates of g′

i (resp. γ′
i), and there are no other duplications in M compared to A.

Formally, for each i ∈ [n], put a(g+i ) = a(g−
i ) = g′

i, a(γ+
i ) = a(γ−

i ) = γ′
i and for

each j ∈ [m], put a(cj) = c′
j . Finally, for each i ∈ [2n − m], put a(αi) = α′

i. The
adjacencies of A are {g′

iγ
′
i : i ∈ [n]}.

The genomes D1 and D2 are identical, i.e. they contain the same set of genes
and of adjacencies. We simply describe the set of adjacencies of D1 and D2 with
the understanding that if an extremity, say x, appears in two adjacencies xy and
xz, then the two x are the tails of two distinct copies of the same gene on two
distinct chromosomes. The adjacencies of D1 and D2 are described as follows.

– For each i ∈ [n], add to D1 and D2 the adjacencies g+i γ+
i and g−

i γ−
i .

– For each i ∈ [n], let Cj1 , Cj2 be the two clauses in which xi occurs positively
and let Ck1 , Ck2 be the two clauses in which xi occurs negatively. Add to D1

and D2 the adjacencies g+i cj1 and γ+
i cj2 . Similarly, add to D1 and D2 the

adjacencies g−
i ck1 and γ−

i ck2
3.

– Finally, for each i ∈ [n] and each j ∈ [2n − m], add to D1 and D2 the
adjacencies g+i αj , g

−
i αj , γ

+
i αj and γ−

i αj .

2 This problem is sometimes called the (3,B2)-SAT problem, where B2 indicates that
the literals are balanced with two occurrences each.

3 Intuitively, these adjacencies represent using a literal to satisfy a specific clause. For
instance, the adjacency g+

i cj1 represents “setting xi to true and satisfying Cj1”.
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This completes our construction. The intuition behind our hardness proof is
that for each i ∈ [n], we need to pick one of g+i γ+

i or g−
i γ−

i in M , as we will
show. Simultaneously, we would like to include as many adjacencies which are in
both D1 and D2. It will possible to choose the positive and negative adjacencies
and match all the cj and αj if and only if the 2P2N-3SAT instance is satisfiable.

It will be useful to think of D1 (and D2) as the set of adjacencies which are
allowed to belong to M , as stated in the following.

Lemma 1. Let a be an adjacency in M , such that a /∈ D1 (equivalently, a /∈
D2). Then M − {a} achieves a smaller total distance to A, D1 and D2 than M .

Proof. By cutting a, we increase the distance to A by at most 1, but decrease
the distance to D1 and D2 by 1 each. This is because |(M − {a}) − D1| + |D1 −
(M − {a})| = |M − D1| − 1 + |D1 − M |, the value of δ(M,D1) is unchanged and
t(D1) = 0 by assumption (and the same holds for D2). Therefore removing a
from M yields a better median genome. ��

g−1 g+1 γ+
1 γ−

1 g−2 g+2 γ+
2 γ−

2 g−3 g+3 γ+
3 γ−

3

c1 c2 c3 c4

α1 α2 α3 α4Clauses

Variables x1, x2, x3

C1 = x1 ∨ x2 ∨ x3
C2 = x1 ∨ x2 ∨ x3
C3 = x1 ∨ x2 ∨ x3
C4 = x1 ∨ x2 ∨ x3

Fig. 3. An example of a 2P2N-3SAT instance, with an illustration of the genes of M
(only the gene tails are shown) and the adjacencies that are allowed by D1 and D2. The
fat edges represent pairs of adjacencies of which at least one must be present according
to Lemma 2. Among the cj extremities, only the adjacencies for c2 are shown.

Therefore, we may assume that every adjacency of a median M belongs to D1

and D2. Note that this implies that M contains no observed duplications (with
respect to A), as no such adjacency is in D1 and D2. Thus we will ignore the
t(Ma) = 0 term in dDSCJ(A,Ma) (Eq. (3)), and we will not make a distinction
between Ma and r(Ma), as these are equal.

Another property of M is that it must contain at least one “positive” or one
“negative” adjacency for each i ∈ [n].

Lemma 2. For i ∈ [n], M contains at least one of g+i γ+
i and g−

i γ−
i .

The proof of this lemma is provided in the Appendix.
We now formally prove the hardness of computing the SCJTDFD median.
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Theorem 1. The rooted SCJ-TD-FD median problem is NP-hard.

Proof. Let x1, . . . , xn and C1, . . . , Cm be a 2P2N-3SAT-instance, and let
A,D1,D2 and the genes Γ of M be the corresponding instance of the r-SCJ-TD-
FD median genome problem. We will show that the given 2P2N-3SAT instance
is satisfiable if and only if there exists a median genome M satisfying

dDSCJ(A,Ma) + dDSCJ(M,D1) + dDSCJ(M,D2) ≤ 2|D1| − 2n + 4δ(M,D1)

(⇒) Suppose that the 2P2N-3SAT can be satisfied by an assignment of the xi

variables to true or false. Construct a median genome using the following steps.

1. For each i ∈ [n], if xi is set to true, then add g−
i γ−

i to M , and if instead xi

is set to false, add g+i γ+
i to M .

2. Then, add to M these adjacencies in an algorithmic fashion: for each j =
1, 2, . . . ,m, consider clause Cj and let xi be any variable satisfying Cj .

– If xi is set to true, then note that g+i and γ+
i have not been matched in

Step 1. Add g+i cj to M if g+i is not part of an adjacency of M yet, or add
γ+

i cj to M otherwise.
– If instead xi is set to false, then g−

i and γ−
i have not been matched in

Step 1. Add g−
i cj if g−

i is not part of an adjacency in M yet, or add γ−
i cj

to M otherwise.
Note that since each xi can satisfy at most two clauses, it will always be
possible to find an extremity to match cj with.

3. Finally, observe that so far each of the g+i , g−
i , γ+

i and γ−
i extremities are in

an adjacency M , except 4n − 2n − m = 2n − m of them. Associate each such
extremity g with a distinct αj extremity arbitrarily, and add each gαj to M ,
noting that there are just enough αj genes to do so.

Note that M contains n+m+2n−m = 3n adjacencies in total, exactly n of
which correspond to an adjacency of A (those included in Step 1). Also, every
adjacency of M occurs in both D1 and D2. We have

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − t(Ma)
= 0 + 2n + 2n − 0 = 4n

As for D1 and D2,

dDSCJ(M,D1) = dDSCJ(M,D2) = |D1 − M | + |M − D1| + 2δ(M,D1)
= |D1| − 3n + 0 + 2δ(M,D1)

Therefore the total distance is 4n + 2(|D1| − 3n + 2δ(M,D1)) = 2|D1| − 2n +
4δ(M,D1), as we predicted.

(⇐) Suppose that there exists a median genome M of total distance at most
2|D1| − 2n + 4δ(M,D1). By Lemma 1, we may assume that every adjacency of
M is present in both D1 and D2.

With the next two claims, we will prove that M has exactly 3n adjacencies,
of which exactly n are adjacencies corresponding to those in A.
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Claim 1. |M | ≤ 3n, and |M | = 3n only if every cj and αj extremity is in some
adjacency of M .

For the rest of the proof, denote by q the number of distinct adjacencies
ab ∈ A for which there exists xy ∈ M such that a(x)a(y) = ab.

Claim 2. |M | = 3n and q = n.

The proofs of both claims will be discussed in detail in the Appendix.
Because q = n, Claim 2 implies that for each i ∈ [n], (at least) one of g+i γ+

i

and g−
i γ−

i is in M . This lets us define as assignment for our 2P2N-3SAT instance:
for each i ∈ [n], set xi to true if g−

i γ−
i is in M , and otherwise set xi to false. We

claim this this assignment satisfies every clause.
To see this, let Cj be a clause and let cj be its corresponding extremity in M .

By Claim 2, every extremity that is part of some adjacency in D1 must be part
of an adjacency in M , including cj . Thus there is some e such that cje ∈ M . By
Lemma 1, the adjacency cje must also be in D1, and by construction either (1)
e ∈ {g+i , γ+

i } for some xi that occurs positively in Cj , or (2) e ∈ {g−
i , γ−

i } for
some xi that occurs negatively in Cj . Suppose that case (1) applies. Then cjg

+
i

or cjγ
+
i being in M means that g+i γ+

i /∈ M , implying in turn that g−
i γ−

i is in
M . In this situation, we have set xi to true and we satisfy Cj . Suppose instead
that case (2) applies. Then g−

i γ−
i /∈ M , in which case we have set xi to false

and satisfy Cj . As the argument applies to any clause Cj , this concludes the
proof. ��
Remark 3. In the reduction above, none of the considered genomes contain a g-
tandem array or a g-chromosome. So our result also implies the hardness of the
rooted median problem where the distance between two genomes A and D, where
A is an ancestor of D, is computed in a simpler way as |A−D|+|D−A|+2δ(A,D),
i.e. does not contain a term related to reducing the descendant genome.

4 An Integer Linear Program

We now describe a simple Integer Linear Program (ILP) to solve the rooted
median problem. The key idea, already used in previous median problems [10,22]
is to convert the rooted median problem into an instance of a MWM problem,
albeit with certain additional constraints. More precisely, in this approach we
define a complete graph G on the extremities gh and gt of every gene g in Γ .
A pair of distinct extremities defines an edge and thus a potential adjacency in
M , which is thus defined by a matching in G. Each edge is assigned a weight
that reflects the number of descendant genomes which contain the corresponding
adjacency. Further, each edge is assigned a color that reflects its corresponding
adjacency in the ancestral genome, if any, and the number of colors of the selected
edges also contributes to the weight of the matching defining the median M .
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An Alternative Formulation for the Distance. We first introduce an alterna-
tive formula to compute the directed distance, denoted by dDSCJ(u, v), from an
ancestor u to a descendant v. For the rooted median problem, the pair (u, v) can
represent either the pair (A,Ma) or any pair (M,Di). The new formulation is
easier to handle in an ILP framework than Eq. (3). We denote by nv(g) the num-
ber of copies of gene g in v, by nv(ghgt) the number of occurrences of adjacency
ghgt in v, and by tv(g) the number of observed duplications of gene g in v. Note
that tv(g) ∈ {nv(ghgt) − 1, nv(ghgt)}, the case tv(g) = nv(ghgt) − 1 occurring
when adjacencies ghgt form only g-chromosomes. Further, let t(v) =

∑
g∈Γu

tv(g)
denote the total number of observed duplications in v, where Γu is the set of
genes of u and also the alphabet of genes of v.

To rewrite dDSCJ(u, v), we introduce an indicator variable αg,uv, where
αg,uv = 1 if ghgt is common to both u and v, but all occurrences were removed
while reducing v. Formally, αg,uv = 1 if ghgt ∈ u ∩ v and ghgt /∈ r(v); otherwise
αg,uv = 0. It is then relatively straightforward to show4 that

dDSCJ(u, v) = |u − v| + |v − u| + 2δ(u, v) − 2t(v) + 2
∑

g∈Γu

αg,uv (4)

This formulation is interesting due to the fact it does not rely on the notion
of a reduced genome. We will discuss later how variables αg,uv and tv(g) can be
handled simply in an ILP framework.

Reformulating the Objective Function. We now use Eq. (4) to reformulate the
objective function of the rooted median problem5.

Claim 3. Minimizing the function Eq. (1) defining the evolutionary cost of a
median M is equivalent to maximizing the following expression:

k∑

i=1

⎛

⎝2|M ∩ Di| − 2
∑

g∈ΓM

αg,MDi

⎞

⎠+2|A∩Ma|+2t(Ma)−2
∑

g∈ΓA

αg,AMa − (k+1)|M | (5)

where ΓA and ΓM are the set of genes of A and M , respectively, and so also the
gene alphabets for M and the Dis, and variables αg,AMa

and αg,MDi
are defined

as αg,uv above.

Such a reformulation of the objective function is inspired by [10]. This revision
enables us to translate the problem as an instance of a colored MWM problem,
as will be made clear in the subsequent paragraphs.

An Interpretation as a Colored MWM Problem. The terms αg,uv and t(Ma)
in Eq. (5) account for the presence of observed duplications. In the absence of
observed duplications however, solving the rooted median problem requires find-
ing a matching in G that maximizes the sum of the weight of the selected edges
4 A proof is provided in the Appendix.
5 The proof of this claim is discussed in the Appendix.
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and of the number of colors represented by the matching edges. The matching
edges weight is partly accounted for by the term |M ∩ Di|, while on the other
hand, |A ∩ Ma| determines the number of colors used in the matching. Using
the intersection terms in the objective function, we now interpret the notion of
weight and color of an edge in terms of decision variables of an ILP.

In order to compute |M ∩ Di|, we introduce the variable γi(e) denoting the
existence of a potential adjacency e of M in a genome Di: we put γi(e) = |e∩Di|,
i.e. γi(e) = 1 if e ∈ Di and 0, otherwise. For each adjacency e in the graph G,
the weight w(e) of e is determined using the weight function w : E(G) → N:

w(e) = 2

(
k∑

i=1

γi(e)

)

− (k + 1)

Since M is trivial w.r.t. every Di, the weights for edges e ∈ M will account
for the term

∑k
i=1 2|M ∩ Di| − (k + 1)|M | in Eq. (5). However, this principle

does not work with A. Indeed, it is possible that x1y1 ∈ M and x2y2 ∈ M such
that a(x1)a(y1) = a(x2)a(y2) ∈ A. In this situation, only one of x1y1 or x2y2
can contribute to |A ∩ Ma|, but both |x1y1 ∩ A| and |x2y2 ∩ A| equal to 1. In
other words, we cannot simply sum the adjacencies of Ma which are in A.

To address this issue, we introduce the notion of a color family. Let mA be the
number of adjacencies in A. Each number from the set {1, 2, ...,mA} represents
a distinct color. We arbitrarily assign a distinct color from this set to each
adjacency in A. If E(G) is the edge set of G, representing all possible adjacencies
in M , then every adjacency in E(G) is assigned a color from {1, 2, ...,mA}∪{0},
consistent with the orthology relations: the adjacency xy ∈ M receives color
i �= 0 if the adjacency a(x)a(y) is present in A and was assigned color i, and
color 0 if a(x)a(y) is not present in A. The set of adjacencies having the same
color i form a color family, represented by Ei. We denote by C the coloring
function E(G) → {0, 1, ...,mA} defined as described above. Notice that a color
i contributes exactly once to the term |A ∩ Ma| if there exists at least one
adjacency in M that belongs to the color family i.

Reducing the Size of the ILP. The size of the ILP we are about to describe is poly-
nomial in the sum of the considered genomes. As the total number of adjacencies
is quadratic in the number of genes in M , it can reach large values when dealing
with large genomes, thus making the ILP challenging to solve in practice. We
show that the set of decision variables can be restricted to specific adjacencies,
which we call candidate adjacencies.An adjacency xy is a candidate adjacency
for the median if at least

⌊
k+1
2

⌋
+ 1 genomes from the set {A,D1,D2, ...,Dk}

contain xy (where here A contains xy if a(x)a(y) ∈ A). Lemma 3, proved in the
Appendix, shows that the number of adjacencies to consider in an ILP is linear
in the sum of the sizes of the input genomes.

Lemma 3. There exists an optimal median consisting of only candidate adja-
cencies. Furthermore, when k is even, an adjacency which is not a candidate
adjacency can not be a part of any optimal median.
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Remark 4. The difficulty of the rooted median problem stems from the fact
that duplication from M to the Dis can create conflicting adjacencies, where a
median gene extremity belongs to several candidate adjacencies. It is interesting
to observe that this can happen only due to convergent evolution, i.e. the fact
that the same adjacency is created independently in several Dis. This suggests
that in the practical context of a limited level of convergent evolution, the rooted
median problem is easy to solve.

The ILP for the Rooted Median Problem. We can now provide the complete
ILP formulation to solve the rooted SCJ-TD-FD median problem. Let x(e) be
a binary decision variable denoting the inclusion of edge (candidate adjacency)
e ∈ E(G) in M . Also, let ci be a binary decision variable indicating if at least
one edge with color i belongs to M . From the previous paragraph, one can write
the objective function as
Maximize:

∑

e∈E(G)

w(e)x(e) + 2
mA∑

i=1

ci + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa
− 2

k∑

i=1

∑

g∈ΓM

αg,MDi

We now describe the constraints of the ILP. The first set of constraints con-
cern the consistency of the set of chosen adjacencies, that ensures that each
gene extremity in M belongs to at most one adjacency, or in other words that
M is a matching for the graph G (these are the first two sets of constraints
below). Next, we use an additional set of constraints to determine the values of
ci, i = {1, 2, ...,mA}. If at least one adjacency of color i is present in the median,
ci = 1, otherwise ci = 0. The following inequalities define these color constraints:

∑

e=(yh,z)

x(e) ≤ 1 ∀y ∈ ΓM (6)

∑

e=(yt,z)

x(e) ≤ 1 ∀y ∈ ΓM (7)

ci =

⌈∑
C(e)=i x(e)

|Ei|

⌉

∀i ∈ {1, 2, ...,mA} (8)

Note that for ci above, the constraints of the type x = �y� are not linear, but
if x is restricted to be in {0, 1}, it can be replaced by the constraint y ≤ x ≤ y+ε,
where ε is very close to 1, say 0.999. A similar trick can be used for floor functions.

In order to compute αg,uv for every pair (u, v) – where either u = A, v = Ma

or u = M,v = Di for some i – and every gene g ∈ Γu, we use some additional
constraints. Let pv(e) be the binary variable denoting if the adjacency e exists
in v. We use an indicator variable λg,uv such that λg,uv = 1 if and only if all
copies of g are involved in ghgt adjacencies. Consequently, λg,uv = 1 ensures the

existence of the ghgt adjacency in r(v). Thus, λg,uv =
⌊

nv(ghgt)
nv(g)

⌋
. Further, we use

Λg,uv to indicate if at least one instance of ghgt has been observed in v. Thus, we
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can represent Λg,uv as
⌈

nv(ghgt)
nv(g)

⌉
. Since we already know the gene orders of A

and each Di, the values of pA(e) and pDi
(e) are known. Further, pM (e) = x(e).

Thus, we obtain the following constraints for every gene g and branch (u, v):

λg,uv =
⌊

nv(ghgt)
nv(g)

⌋

(9)

Λg,uv =
⌈

nv(ghgt)
nv(g)

⌉

(10)

αg,uv = min(pu(ghgt), Λg,uv − λg,uv) (11)
tv(g) = nv(ghgt) − λg,uv (12)

We use the fact that if ghgt /∈ v for some g then ghgt /∈ r(v). Thus, if ghgt /∈ v,
λg,uv = 0 thereby ensuring the correctness of constraints to find αg,uv. Again,
note that the min function is not linear, but that a constraint x = min(y, z) can
be replaced by x ≥ y and x ≥ z, assuming that x, y, z ∈ {0, 1}.

5 Experimental Results

We ran experiments on simulated data in order to evaluate the ability of the
ILP to correctly predict the gene order of the median genome. The input for the
program, including gene orders for the ancestor genome A and the descendant
genomes Di, along with the orthology relations, generated using the ZOMBI
genome simulator [8]. The ILP was solved using the Gurobi solver.

Simulations Parameters. Our input genomes consisted of one ancestor A and
two descendants D1 and D2. We started with the ancestral genome A as a single
circular chromosome consisting of 1000 genes, belonging to different gene families
(so without duplicate genes). The genome A evolved into the median genome
M using duplications, inversions and translocations. The genome M was further
evolved along two independent branches to yield the descendant genomes, D1

and D2. The total number of rearrangements (inversions + translocations) from
A to M and from M to Di was varied from 100 to 500, in steps of 100. The
parameter for duplication events was kept constant throughout the experiments.
The average number of duplicated genes, over all three branches collectively,
was found to be 362.8 with a standard deviation of 82 genes. Considering the
number of duplication events, the mean and standard deviation of segmental
duplications over the three branches was 72.6 and 15.8 respectively. The lengths
of segmental duplications, inversions and translocations were controlled using
specific extension rates. These extension rates (all between 0 and 1) are the
parameters of a geometric distribution dictating the respective lengths. Thus,
the length of the segment being acted upon would be 1 if the extension rate
parameter is set to 1 and would increase as the parameter value reduces. In our
experiments, the inversion, translocation and duplication extension rates were
0.05, 0.3 and 0.2 respectively. For each setting (number of rearrangements) we
ran 40 simulations.
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Results. For each simulation, we compared the optimal median according to the
ILP to the actual median generated by the simulator. For each group, we mea-
sured the average precision and recall statistics. The ILP predicts the median
genome in the form of its adjacency set. Thus, in this context, precision refers
to the ratio of number of correctly predicted adjacencies to the total number
of adjacencies in the computed optimal median. On the other hand, recall rep-
resents the ratio of the correctly predicted adjacencies to the total number of
adjacencies in the actual median. For each instance, we measured the number
of candidate adjacencies used in the ILP. Additionally, to evaluate the effective-
ness of our approach, we also measured the number of adjacencies in the solution
which were common to all genomes (A,D1 and D2) and those common to only
two of the three.

An overview of the results is given in Table 1. The ILP rarely predicts an
erroneous adjacency to be a part of the optimal median, with a near-perfect
precision. This property is observed throughout the experiments irrespective
of the number of rearrangement events. On the other hand, the ILP predicts
more than 90% of the median for lower rates of rearrangement and a decreasing
trend is observed as the number of rearrangement events increase. This can be
partly attributed to the decrease in the number of candidate adjacencies. In
general, the number of candidate adjacencies is lower than the true number of
adjacencies in the median, as including other adjacencies may result in a non-
optimal median. This, however, emphasizes the practicality of Lemma 3, as the
number of adjacency variables is significantly reduced. It can also be observed
that the number of adjacencies common to all genomes decreases with increase
in rearrangements. These adjacencies will be preferred by the ILP on account of
higher weight.

Table 1. Statistics of the ILP median experiment on simulated data.

Events Adj. in
true
median

Cand.
adj.

Adj. in
ILP
median

Precision Recall % Adj.
common
to all
genomes

% Adj.
common
to two
genomes

No. of
optimal
solutions

Avg. time
per run
(in sec)

100 1514 1503 1493 0.9998 0.9859 86.43 13.57 2.3 53

200 1107 1062 1044 0.9991 0.9428 69.49 30.51 15.8 29

300 1312 1192 1155 0.9985 0.8758 52.94 47.06 40.3 38

400 1151 985 961 0.9981 0.8329 49.44 50.56 393.7 51

500 1430 1174 1132 0.9972 0.7897 46.68 53.32 3682.6 84

Another notable observation is the increase in the number of optimal solu-
tions with larger rates of rearrangement. This correlates naturally with the
decrease in the number of adjacencies which are common to all genomes. For
only 100 rearrangements, the ILP outputs a unique optimal median in most
runs, with an overall average of 2.3 solutions. However, the average number of
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optimal solutions exceeded 3000 in case of 500 rearrangements. Despite a pool of
optimal solutions, the SCJ distance between the actual median and an optimal
median does not vary by much. If the SCJ distance between the actual median
and a randomly chosen optimal median is D, then the distance between the
actual median and any other optimal median was observed to stay within the
range (D − 2,D + 2). For most of our simulations, the ILP output an optimal
median in under a minute, with the exception of the case with 500 rearrangement
events.

6 Conclusion

In this chapter, we introduced the directed and rooted median problems and
studied them under the SCJ-TD-FD model. We proved that computing the
median with the most parsimonious directed distance for an ancestor A and
descendants Di, i = 1 to k is NP-hard by reduction from the 2P2N-3SAT prob-
lem. This contrasts with the directed median problem which does not involve
an ancestral genome A. An interesting feature of our hardness proof is that it
relies on two identical descendant genomes, showing a sharp tractability bound-
ary between the directed pairwise distance problem and the rooted median of
three genomes problem. Similarly to other SCJ-related median problems, our
rooted median problem aims at selecting adjacencies among candidate adja-
cencies which are seen in a majority of the given input genomes; nevertheless
the possibility of conflicting median adjacencies due to convergent evolution is
at the heart of the intractability of the problem (Remark 4). To address this
intractability, we provide a simple Integer Linear Program that computes an
optimal median. Without surprise, we observe that our ILP outputs a more reli-
able estimate of the median in case of lower rates of rearrangements. Moreover,
we observe that despite having many more optimal solutions for higher rates of
rearrangement, the distance of a random solution from the actual median does
not deviate by much.

Our work can be commented with regard to the Small Parsimony Problem
under the directed SCJ-TD-FD model. The hardness result of the rooted median
problem likely implies the corresponding SPP problem is also NP-hard. This
motivates our current work about extending the rooted median ILP toward the
SPP. It is worth noting that our median ILP can also be used to solve the SPP by
iterative application from an initial assignment of ancestral gene orders, similarly
to the early SPP solvers for genome rearrangements such as GRAPPA [18].
Considering the multiplicity of the solutions, it also remains to be investigated
if the sampling and subsequent analysis of co-optimal evolutionary scenarios, in
a similar manner as [16], is possible within this framework.
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Appendix

Proof of Eq. ( 3). We remind that the original pairwise distance formula
(Eq. (2)) is

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A, r(D)) + t(D)

and we want to prove it is equivalent to

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A,D) − t(D).

Notice that the 2δ(A, r(D)) term from the original formula was switched
for the 2δ(A,D) term. Consider the difference in the number of genes from
D to r(D). Each time we remove a ghgt observed duplication from D while
reducing it, it corresponds to removing a copy of g from D. Thus D has t(D)
more genes than r(D), so that 2δ(A,D) = 2δ(A, r(D)) + 2t(D). This implies
2δ(A,D) − t(D) = 2δ(A, r(D)) + t(D). ��
Proof of Lemma 2. Suppose that for some i, M contains none of g+i γ+

i or
g−

i γ−
i . Note that M does not contain g+i γ−

i nor g−
i γ+

i , by Lemma 1. This implies
that g′

iγ
′
i /∈ Ma, as we have excluded all the four possibilities of having this

adjacency in Ma.
Consider the median M ′ obtained from M by adding g+i γ+

i , cutting the
adjacencies that g+i and γ+

i were contained in, if needed. If g+i and γ+
i are both

telomeres in M , then it is easy to check that M ′ = M + g+i γ+
i (M augmented

by the adjacency g+i γ+
i ) attains a better distance than M since g+i γ+

i ∈ D1,D2

and a(g+i )a(γ+
i ) = g′

iγ
′
i ∈ A (this decreases the distance by 3).

Suppose that g+i x ∈ M for some x, and that γ+
i is a telomere in M . By

Lemma 1, g+i x is in both D1 and D2, which implies that x = cj or x = αj

for some j. This implies in turn that a(g+i )a(x) /∈ A. We can argue that M ′ =
M − g+i x + g+i γ+

i is better. To see this, observe that |M ′ − D1| = |M − D1| and
|D1 − M ′| = |D1 − M | (and the same with D2). On the other hand, recalling
that g′

iγ
′
i /∈ Ma, we have |M ′

a − A| = |Ma − A| − 1 (because a(g+i )a(x) /∈ A and
a(g+i )a(γ+

i ) ∈ A) and |A − M ′
a| = |A − Ma| − 1 (because a(g+i )a(γ+

i ) ∈ A). We
have thus decreased the distance by 2. The same argument applies if g+i is a
telomere but γ+

i is not.
Finally, suppose that g+i x and γ+

i y are adjacencies of M . As we argued above,
a(g+i )a(x) /∈ A and a(γ+

i )a(y) /∈ A. Letting M ′ = M − g+i x − γ+
i y + g+i γ+

i , we
find that |M ′ − D1| = |M − D1| and |D1 − M ′| = |D1 − M | + 1. As the same
holds with D2, we have increased the distance to D1 and D2 by 2. On the other
hand, |A − M ′

a| = |A − Ma| − 1 and |M ′
a − A| = |Ma − A| − 2. To sum up, the

total distance decreases by 1. ��
Proof of Claim ( 1). Call an extremity e of a gene in Γ matchable if there
exists an adjacency of D1 that contains e. By Lemma 1, the adjacencies of M only
contain matchable extremities. The g+i , g−

i , γ+
i and γ−

i extremities account for 4n
matchable extremities. The cj genes account for m matchable extremities and the
αj genes for 2n−m matchable extremities. Thus there are 4n+m+2n−m = 6n
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matchable extremities. Because an adjacency contains 2 extremities, there can
be at most 3n adjacencies in M . The second part of the claim follows from the
fact that we have to assume that every cj and αj is matched to attain this
bound. ��
Proof of Claim ( 2). By the definition of q, we have |A − Ma| = n − q and
|Ma − A| = |M | − q. It follows that

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − t(Ma)
= n − q + |M | − q + 2n − 0
= |M | + 3n − 2q

Using Lemma 1, we also have dDSCJ(M,D1) = |M−D1|+|D1−M |+2δ(M,D1) =
0 + |D1| − |M | + 2δ(M,D1). Thus the sum of the 3 distances is

|M | + 3n − 2q + 2|D1| − 2|M | + 4δ(M,D1) ≤ 2|D1| − 2n + 4δ(M,D1)

(this inequality is due to our initial assumption on the total distance of M).
After simplifying, this gives 5n ≤ |M | + 2q. By Claim 1, |M | ≤ 3n and because
A has n adjacencies, q ≤ n. Hence, this inequality is only possible if |M | = 3n
and q = n. ��
Proof of Eq. ( 4). From Eq. (3), we have dDSCJ(u, v) = |u−r(v)|+ |r(v)−u|+
2δ(u, v) − t(v). However, it is easier to express the distance without the reduced
genome terms. Hence, we eliminate the need for computing the reduced genomes
by replacing |u− r(v)| and |r(v)−u| by suitable expressions as follows. We show
that (1) |u − r(v)| = |u − v| +

∑
g∈Γu

αg, and (2) |r(v) − u| = |v − u| − t(v) +∑
g∈Γu

αg. Substituting the terms in Eq. (3) yield Eq. (4).
(1) Consider first the difference between u − r(v) and u − v. Suppose that

xy ∈ u − v but xy /∈ u − r(v). Then xy ∈ r(v) but xy /∈ v, which is not possible.
Thus the difference can only be due to some xy ∈ u− r(v) such that xy /∈ u− v.
This means that xy /∈ r(v) and xy ∈ v, which only happens when xy = ghgt

for some gene g. As we have xy = ghgt ∈ u ∩ v and ghgt /∈ r(v), we also have
αg = 1, by definition. Since only one such adjacency is possible for each gene g
(because u is trivial), u − r(v) and u − v differ only by adjacencies on genes for
which αg = 1. We have shown that |u − r(v)| = |u − v| +

∑
g∈Γu

αg.
(2) Now consider the difference between r(v) − u and v − u. Note that there

are t(v) adjacencies in v not in r(v), all observed duplications of the type ghgt. Let
g ∈ Γu. If ghgt /∈ u, then all of the t(g) observed duplications in g are counted in
v − u but not in r(v) − u. This is also true when ghgt ∈ u and ghgt ∈ r(v). In
these cases, αg = 0. However when ghgt ∈ u∩ v but ghgt /∈ r(v), there are t(g)− 1
of the ghgt adjacencies counted in v − u not counted in r(v) − u (this is because
exactly one ghgt adjacency of v can be matched with the ghgt adjacency in u, and
r(v) has no such adjacency). This case occurs precisely when αg = 1. This shows
that |r(v) − u| = |v − u| − ∑

g∈Γu
(t(g) − αg) = |v − u| − t(v) +

∑
g∈Γu

αg. ��
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Proof of Claim ( 3). By Eq. (4), we know that

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − 2t(Ma) + 2
∑

g∈ΓA

αg,AMa

dDSCJ(M,Di) = |M − Di| + |Di − M | + 2δ(M,Di) − 2t(Di) + 2
∑

g∈ΓM

αg,MDi

where ΓA and ΓM are the set of genes in the gene orders of A and M , respectively,
and so also the genes alphabets for M and the Dis. Variables αg,AMa

and αg,MDi

are defined as αg,uv above.
For any two adjacency sets X and Y , we use the identity |X −Y |+ |Y −X| =

|X| + |Y | − 2|X ∩ Y | to obtain

dDSCJ(A,Ma) = |A| + |Ma| − 2|A ∩ Ma| + 2δ(A,Ma) − 2t(Ma) + 2
∑

g∈ΓA

αg,AMa
,

dDSCJ(M,Di) = |M | + |Di| − 2|M ∩ Di| + 2δ(M,Di) − 2t(Di) + 2
∑

g∈ΓM

αg,MDi
.

This eliminates the need to count the actual number of cut and join events
along every branch. Instead, it suffices to compute the common adjacencies in
the parent and child genomes (using the terms |A ∩ Ma| and |M ∩ Di|) for each
branch (A,Ma) and (M,Di).

For a median M , let s(M) = dDSCJ(A,Ma) +
∑k

i=1 dDSCJ(M,Di) be the
score of M . It follows easily from above that

s(M) =

[

|A| + 2δ(A,Ma) +
k∑

i=1

(|Di| + 2δ(M,Di))

]

−
⎡

⎣
k∑

i=1

⎛

⎝2|M ∩ Di| + 2t(Di) − 2
∑

g∈ΓM

αg,MDi

⎞

⎠

+ 2|A ∩ Ma| + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa
− (k + 1)|M |

⎤

⎦

Let N = |A|+2δ(A,Ma)+
∑k

i=1

(|Di| + 2δ(M,Di) + 2t(Di)
)
. Given that N

depends only on A and Di and not on M , it is constant (note that δ(A,Ma)
and δ(M,Di) are constant as the gene content of M is an input to the problem).
Thus in order to minimize the score s(M), we only need to maximize the term:

k∑

i=1

⎛

⎝2|M ∩ Di|−2
∑

g∈ΓM

αg,MDi

⎞

⎠ + 2|A ∩ Ma| + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa − (k + 1)|M |

which is negated in s(M), as required in Eq. (5). ��
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Proof of Lemma ( 3). To prove this lemma, we start with a median containing
a non-candidate adjacency. For odd values of k, we prove that removing the
non-candidate adjacency results in another median of the same cost whereas for
even k, it is shown that the resultant median (on removing the non-candidate
adjacency) is better. We temporarily ignore the influence of reduced genomes
for this proof.

Consider an adjacency xy that is not a candidate. Recall that since xy is not
a candidate it is present in at most

⌊
k+1
2

⌋
genomes from {A,D1, ...,Dk}. Assume

that M is a median genome and xy is present in M . Further, assume that M
is optimal. Thus, the sum of the distances dDSCJ(A,Ma) +

∑k
i=1 dDSCJ(M,Di)

should be the least over all medians. Let M ′ be the genome obtained by removing
xy from M .

Let Dxy ⊆ {D1, ...,Dk} be the set of descendant genomes that contain xy,
and let Dxy be the set of those that do not. For any Di ∈ Dxy, the adjacency need
not be cut along (M,Di), however it has to be added along (M ′,Di), introducing
an extra cost of 1 to the total distance. Thus, dDSCJ(M,Di) = dDSCJ(M ′,Di)−1,
for all Di ∈ Dxy. On the other hand, if Di /∈ Dxy, then it does not contain xy.
Consequently, for all such Di, the adjacency has to be cut along (M,Di) but
not along (M ′,Di) (since M ′ does not contain it in the first place). Thus, for all
Di /∈ Dxy, dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1.

Further if A contains a(x)a(y), it need not be cut along (A,Ma) but may
need to be cut along (A,M ′

a) thereby introducing a possible extra cost of 1
(note here the possibility that some x∗y∗ ∈ M distinct from xy such that
a(x∗)a(y∗) = a(x)a(y)). Thus, dDSCJ(A,Ma) ≥ dDSCJ(A,M ′

a) − 1. If instead,
A does not contain xy then it has to be joined along (A,Ma) and not along
(A,M ′

a). Unlike the previous case, the cost of the join is unavoidable. Hence,
dDSCJ(A,Ma) = dDSCJ(A,M ′

a) + 1.

Case 1: A contains xy. Then |Dxy| ≤ ⌊
k+1
2

⌋ − 1.

dDSCJ(A,Ma) ≥ dDSCJ(A,M ′
a) − 1

dDSCJ(M,Di) = dDSCJ(M ′,Di) − 1 ∀Di ∈ Dxy

dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1 ∀Di /∈ Dxy

Summing over all the input genomes, we get

dDSCJ(A,Ma) +
∑

Di∈Dxy

dDSCJ(M,Di)≥ dDSCJ(A,M ′
a)+

∑

Di∈Dxy

dDSCJ(M ′,Di)

+ |Dxy| − (|Dxy| + 1)

We know that |Dxy|+1 ≤ ⌊
k+1
2

⌋
. If k is even, |Dxy| > |Dxy|+1. Hence,

dDSCJ(A,Ma)+
∑

Di∈Dxy

dDSCJ(M,Di)> dDSCJ(A,M ′
a)+

∑

Di∈Dxy

dDSCJ(M ′,Di)
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Thus, the cost of M ′ is better than that of the optimal median M and
we have a contradiction. If k is odd, then |Dxy| = |Dxy| + 1 and hence
both M and M ′ incur the same overall cost. In other words, the removal
of a non-candidate adjacency does not increase the cost of the optimal
median. Thus, iteratively removing all such adjacencies will yield an
optimal median that consists solely of candidate adjacencies.

Case 2: A does not contain xy. Then |Dxy| ≤ ⌊
k+1
2

⌋
.

dDSCJ(A,Ma) = dDSCJ(A,M ′) + 1
dDSCJ(M,Di) = dDSCJ(M ′,Di) − 1 ∀Di ∈ Dxy

dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1 ∀Di /∈ Dxy

The analysis in this case is similar to Case 1. On adding all the equations
and using |Dxy| ≤ ⌊

k+1
2

⌋
, once again we reach a contradiction when k

is even. When k is odd, both M and M ′ yield the same overall distance.
Thus, we can still obtain the optimal median by iteratively removing
non-candidate adjacencies.

Thus, when k is odd, there exists at least one optimal median consisting only
of candidate adjacencies. However, when k is even, the optimal median must
consist only of candidate adjacencies. ��
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