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Abstract 
Automatic white balancing works quite well on average, but 

seriously fails some of the time. These failures lead to completely 

unacceptable images. Can the number, or severity, of these 

failures be reduced, perhaps at the expense of slightly poorer 

white balancing on average, with the overall goal being to 

increase the overall acceptability of a collection of images? Since 

the main source of error in automatic white balancing arises from 

misidentifying the overall scene illuminant, a new illumination-

estimation algorithm is presented that minimizes the high 

percentile error of its estimates. The algorithm combines 

illumination estimates from standard existing algorithms and 

chromaticity gamut characteristics of the image as features in a 

feature space. Illuminant chromaticities are quantized into 

chromaticity bins. Given a test image of a real scene, its feature 

vector is computed, and for each chromaticity bin, the probability 

of the illuminant chromaticity falling into a chromaticity bin given 

the feature vector is estimated. The probability estimation is based 

on Loftsgaarden-Quesenberry multivariate density function 

estimation over the feature vectors derived from a set of synthetic 

training images.  Once the probability distribution estimate for a 

given chromaticity channel is known, the smallest interval that is 

likely to contain the right answer with a desired probability (i.e., 

the smallest chromaticity interval whose sum of probabilities is 

greater or equal to the desired probability) is chosen. The point in 

the middle of that interval is then reported as the chromaticity of 

the illuminant.  Testing on a dataset of real images shows that the 

error at the 90th and 98th percentile ranges can be reduced by 

roughly half, with minimal impact on the mean error.   

Introduction 
Illumination estimation is usually the first step in automatic 

white balancing of digital images. Once the RGB of the illuminant 

is known, it can be used to adjust the other image RGBs to make a 

more pleasing image. Many illumination-estimation algorithms 

have been proposed [2, 13, 15] and they tend to work reasonably 

well on average, but they often (perhaps, for 1 image out of 50) fail 

dramatically. The accuracy of illuminant estimates is often 

measured in terms of the angle in degrees between the estimated 

versus actual RGB of the illumination. Many methods are able to 

obtain mean and median angular errors under 4 degrees on the 

standard image test sets, but at the same time have maximum errors 

over 25 degrees. Images that are white balanced based on such 

inaccurate estimates are universally unacceptable. Although the 

mean and median measures are valuable error measures, users are 

perhaps more likely to be concerned with the number of failures 

than with the number of cases that are marginally poorer, say, 

having an error of 5 degrees instead of 4.  We do not evaluate user 

preference metrics here, but presuppose that the failure cases are 

important, and propose a way of using the results from existing 

illumination-estimation algorithms that combines them in a 

probabilistic way that leads to lower large errors.       

There are two general approaches to computational color 

constancy. The goal of the first approach is to create illuminant-

invariant descriptors. Examples include [7, 10, 12]. The second 

approach aims to predict what the image of the scene would be 

under a canonical illuminant.  This is usually accomplished by 

estimating the RGB of the scene illumination, and then adjusting 

the image accordingly [2, 13]. This paper focuses on the 

illumination-estimation step of this second approach.  

State-of-the-art illumination-estimation algorithms [13] 

perform well in terms of median error (i.e., the error at the 50th 

percentile). However, little attention has been given to reducing 

the errors at the 90th or 99th percentiles. If at least 99% of our 

images are required to be acceptable then it is the error at the 99th 

percentile that is important.  

This paper presents a new method called the Reduced Worst 

Case algorithm (RWC) for minimizing the errors at any specified 

percentile. For example, it is possible to tune the algorithm to 

minimize the 90th or 99th percentile errors. The algorithm combines 

image features consisting of the output from an existing algorithm 

such as Edge-based Color Constancy [22] or MaxRGB [9] with a 

characterization of the image gamut in terms of its minimum rgb 

(r=R/(R+G+B) etc.) and maximum rgb values [18]. The RWC 

algorithm is evaluated on the standard SFU database of 321 images 

[3]. The results show a significant decrease in the high percentile 

error accompanied by only a modest increase in the median error. 

The paper is structured as follows: Section 2 describes related 

work. Section 3 describes the algorithm and features used in more 

detail. Section 4 presents the results of the accuracy tests for 

various combinations of features and desired percentile settings. 

Section 5 is the conclusion. 

Related Work 
There are illumination-estimation algorithms [5, 4] that 

combine multiple clues and/or results from different algorithms 

using an average or weighted average. Various forms of consensus 

were explored by Bianco et al. [4]. Machine learning techniques 

for combining results were explored by Li et al. [16] and Cardei et 

al. [5]. However, none of these methods attempts to minimize 

worst-case errors at a given percentile.  

Perhaps closest to the RWC algorithm proposed here is that 

of Chakrabarti et al. [6], which uses a multivariate Gaussian 

probability distribution of features derived from the spatial 

frequencies of training images of scenes illuminated by a canonical 

illuminant. As well, there is the algorithm of Schaefer et al. [21] 
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that combines algorithms capable of producing the likelihood of an 

input image being illuminated by a particular illuminant.  

The algorithm we propose for combining the features differs 

from that of Chakrabarti et al. in that a Gaussian (and therefore 

symmetric) distribution of the feature probabilities is not assumed. 

Moreover, the algorithm is trained using scenes illuminated by 

wide set of illuminant spectra and therefore is not limited to von-

Kries diagonal transforms when constructing the models. Unlike 

Schaefer’s algorithm, RWC can combine outputs of any algorithm 

regardless of whether or not they produce likelihood estimates. 

Neither Chakrabarti’s nor Schaefer’s algorithms focus on 

minimizing high-percentile errors as proposed in this paper. In 

terms of minimizing large errors, Cubical Gamut Mapping [18] 

attempts to minimize the maximal error, but it cannot be tuned to 

minimize the error for a given percentile. 

Proposed Reduced Worst Case Algorithm 
The proposed RWC algorithm estimates each of the three 

channels of the rgb chromaticity separately. Although any one of 

the channels in principle can be calculated from the other two, all 

three are estimated separately in order to improve the stability of 

the final estimate. Values in each chromaticity channel are 

quantized into N bins of equal size. Given an input image, the 

algorithm estimates the probability of the scene illuminant having 

the chromaticity associated with a particular bin. Once the 

probability distribution estimate for a given chromaticity channel 

is known, the smallest interval that is likely to contain the right 

answer with a desired probability (i.e., the smallest chromaticity 

interval whose sum of probabilities is greater or equal to the 

desired probability) is chosen. The point in the middle of that 

interval is then reported as the chromaticity of the illuminant. 

Given an accurate probability distribution, the algorithm will not 

make an error greater than ½ of the interval in the desired 

percentage (e.g., 90%) of the images. Figure 1 shows an example 

of the computed probability distribution estimate for a single 

channel, an interval covering chromaticity bins with at least 90% 

chance, and the resulting chromaticity returned by the algorithm. 

Note that the answer does not have to correspond to the maximum 

likelihood estimate.  

 

 
Figure 1. An example of the probability estimate of the illuminant’s r 

chromaticity. The smallest interval covering the desired percentile is shown in 

grey. The middle of the interval is shown in solid black. The algorithm returns 

the r chromaticity of 0.3, even though the maximum likelihood estimate for the r 

chromaticity is 0.2. 

The algorithm depends on correctly estimating the probability 

distribution of the illuminant chromaticity as a function of the 

chromaticity component bins. For each bin ci, a model is created 

consisting of all feature vectors, Fij, collected from training images 

Tij, j=1, ….Mi whose actual illuminant corresponds to the 

chromaticity component bin ci represents.  

The feature vector Fij contains: 

 

• The estimated illumination chromaticity rgb for image Tij 

provided by each of the underlying algorithms (e.g., from 

MaxRGB, Greyworld, and Edge-based Color Constancy),  

• The minimum r, minimum g, and minimum b from Tij, 

• The maximum r, maximum g, and maximum b from Tij. 

 

The minimum rgb and maximum rgb together provide a rough 

measure of the image’s color gamut. As shown by Forsyth [8], the 

gamut is a useful feature because the illumination directly affects 

the gamut of image colors.  

Given an input image, I, of a scene taken under an unknown 

illuminant, its feature vector, F, is constructed the same way by 

concatenating the chromaticity estimates of the underlying 

algorithms along with the minimum and maximum rgb values.  To 

estimate the probability P(ci|F) that the unknown illuminant’s 

chromaticity corresponds to bin ci, Bayes rule is used:  

 

( ) ( ) ( )iii cPcFPFcP |~|  (1) 

 

The probability P(F|ci) of feature vector F  belonging to bin ci 

is based on Loftsgaarden-Quesenberry multivariate density 

function estimation [17] for the point in feature space occupied by 

F relative to all the training feature vectors Fij in the bin ci. The 

value fi(F) of the probability density function fi at point F is 

estimated as  

 

fi est =
k ni( )−1

ni
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Γ d 2( )d

2rdπ d 2
 (2) 

 

where ni is number of training points in the bin ci, k(n) is  a non-

decreasing sequence of positive integers (smallest integer greater 

or equal to n1/4 is used here), d is the dimensionality of F, r is a 

radius of the smallest sphere centered around F that covers at least 

k(ni) training points Fi,j from bin ci, and Γ is the gamma function. 

The term (Γ(d/2)d)/(2rdπd/2)   is an inverse of the volume of a 

sphere of radius r in a d-dimensional space. Assuming that           

Pest(F|ci) ~ fi est(F) and removing the constant terms yields 
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As a result, the probability estimate Pest(ci|F) in Eq. (1) is 

easily computed from the feature vectors Fi,j obtained during 

training. 

r chromaticity 

0.2 0.4 0.6 

Probability Estimate 
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Results 
Simon Fraser University dataset [3] includes reflectance 

spectra, illuminant spectra, a set of test images with measured 

illumination and associated camera spectral sensitivity functions. 

The 1995 reflectance spectra are of Macbeth colorchecker patches, 

Munsell chips, DuPont paint chips, and other objects and surfaces. 

The dataset includes a set of 87 spectra that uniformly cover a 

convex region of rg-chromaticity space containing real measured 

illuminants. The camera sensor sensitivities are for the SONY 

DXC-930 camera used to capture the test images.  

For training, approximately 6,500 synthetic images were 

generated [18] using the 1995 reflectance spectra, the set of 87 

illuminant spectra, and the camera sensor sensitivities. The images 

were generated using a random illuminant and between 2 and 32 

random reflectance spectra. Each scene contained two 

perpendicular planes forming a background and randomly placed 

spheres of random size. A computer graphics image of the scene 

was then generated using PovRay 3.6 ray tracing graphics software 

[19]. Sample images are shown in Figure 2. 

 

 
Figure 2. Five examples of synthetic training images generated using 

POWRay. 

All testing is based on captured, not synthesized, images. The 

SFU color dataset [3] includes images of 51 scenes illuminated by 

11 different illuminants. The images are provided in 16-bit linear 

RGB triplets in the color space of the SONY DXC-930 video 

camera. The dataset is divided into four sets of 223, 98, 149 and 59 

images, respectively. The set of 223 images contains minimal 

specularities, the set of 98 images contains non-negligible 

dielectric specularities, the set of 149 images contains metallic 

specularities, and finally the set of 59 images contains fluorescent 

surfaces. In order to be able to compare the performance of RWC 

to that of others as reported in the literature, the algorithm is 

evaluated on the 321 images from the combined non-specular and 

dielectric sets.  Unfortunately, the other publicly available test sets 

are not useful for testing RWC because they do not include the 

camera sensor sensitivities (e.g., the Gehler set [11]) or they are all 

of outdoor scenes (e.g., the Barcelona set [20]) and hence include 

only a very limited range of illuminants. 

Features used in the algorithms include illumination estimates 

from MaxRGB and Edge-based Color Constancy [22] and the 

minimum and maximum rgb chromaticities in the image. The 

following combinations of features were evaluated:  

 

1. MaxRGB 

2. MaxRGB plus Edge-based Color Constancy 

3. MaxRGB plus minimum rgb and maximum rgb 

4. Edge-based Color Constancy plus MaxRGB, minimum rgb, 

and maximum rgb. 

 

The following types of pre-processing were applied to the 

images depending on the method being used: 

 

• Dark-pixel removal. Dark pixels, that is, those with (R + G + 

B) < Threshold, are removed. The Threshold is set relative to 

the average of the R+G+B values collected from all pixels in 

the image.  

• Clipped-pixel removal. Pixels whose RGB values are above 

the upper limit of the camera’s dynamic range are removed. 

The threshold is set to 98% of the maximum RGB value. 

• Gaussian smoothing. Gaussian smoothing reduces the noise 

and is used as a pre-processing step for the Edge-based Color 

Constancy method [22, 14]. 

• Even blocks pre-processing [18]. The size of the 

neighborhood N is set to 5.  

 

MaxRGB and the computation of the minimum rgb and 

maximum rgb features are all subjected to dark-pixel removal, 

clipped-pixel removal and even-blocks pre-processing. Edge-based 

Color Constancy is subjected to Gaussian smoothing, which is an 

intrinsic part of that algorithm. 

The results are evaluated in terms of angular error [1, 2, 13, 

15]. Treating rgb chromaticities as vectors in a 3D space, the 

angular error is the angle in degrees between the rgb chromaticity 

of the estimated illuminant and the rgb chromaticity of the actual 

scene illuminant. Figures 3 and 4 and Table 1 show the results.  

The plot in Figure 3 shows the angular errors obtained using 

MaxRGB, Edge-based Color Constancy, and 4 variants of the 

RWC algorithm corresponding to the 4 different feature sets. The 

variants are all set to minimize the 90th percentile error. From 

Figure 3, it is easy to see that RWC outperforms both MaxRGB 

and Edge-based Color Constancy for 75th percentile and higher 

errors. At the 90th percentile, the difference is quite significant, 

with the error reduced by almost half. The variants that include the 

minimum rgb and maximum rgb features obtain errors of less than 

10 degrees for up to 93% of the test set, while at the same time 

performing similarly to Edge-based Color Constancy in the lower 

portion of the percentile range. RWC running with MaxRGB and 

Edge-based features outperforms the Edge-based Color Constancy 

algorithm on the whole range. It is interesting to see that MaxRGB 

performs extremely well for the first 40% of the percentile range. 

The plot in Figure 4 shows the effect of choosing different 

percentiles at which to minimize the illumination-estimation error. 

The figure compares MaxRGB alone to RWC using the estimates 

from MaxRGB and Edge-based Color Constancy as features when 

minimizing the 50th, 90th, 98th and 99.9th percentile errors. The 

50th-percentile-optimized algorithm outperforms the others in the 

40-65 percentile range, the 90th-percentile-optimized leads in the 

65-83 percentile range, the 98th-percentile-optimized algorithm 

leads in 84-90 percentile range and the 99.9th-percentile-optimized 

algorithm leads at the high-percentile errors. The differences 
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between the desired best performance and actual best performance 

percentile range are likely caused by imperfections in the 

probability estimation. 
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Figure 3. Performance of MaxRGB algorithm, Edge-based Color Constancy 

(EBCC) and 4 variants of the proposed RWC algorithm corresponding to the 4 

different feature sets described above. The algorithms attempt to minimize the 

90
th
 percentile error. The x-axis ranges from 0 to 100%, and the y-axis shows 

angular error at the given percentile.   
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Figure 4. Performance of MaxRGB versus the RWC algorithm with features of 

MaxRGB and Edge-based Color Constancy minimizing the 50
th
, 90

th
, 98

th
 and 

99.9
th
 percentile errors.  

Table 1 shows the performance of the various algorithms 

when RWC optimizes the 90th percentile angular error. The 

comparison is in terms of the median error, the error at the 90th and 

98th percentiles, the maximum error, the mean error and the root 

mean square error. The RWC variant based on MaxRGB combined 

with Edge-based Color Constancy outperforms either of them 

taken separately, especially at the 90th percentile. Adding the 

image gamut information provided by of the minimum rgb and 

maximum rgb yields a further improvement at the 98th percentile. 

 

Table 1: Performance of the Edge-based Color Constancy 

(EBCC), MaxRGB and 4 variants of RWC (using MaxRGB, using 

both MaxRGB and EBCC, using MaxRGB with the minimum 

and maximum rgb, using MaxRGB, EBCC and the minimum 

and maximum rgb) when optimizing the 90
th
 percentile angular 

error reported in terms of the median error, root mean square 

error, mean error, 90
th
 percentile error, 98

th
 percentile error, 

and maximum error. 

Method Avg RMS 50th 90th  98th  Max 

EBCC                             5.3 7.8 2.8 14.4 23.4 27.2 

MaxRGB             5.2 8.2 3.0 14.9 22.8 25.3 

RWC on 

MaxRGB                                     

4.0 5.6 2.8 8.3 17.4 21.5 

RWC on 

MaxRGB 

& EBCC                    

3.8 5.6 2.4 9.6 16.9 21.7 

RWC on 

MaxRGB 

& minmax  

4.1 5.4 3.2 8.7 13.9 22.6 

RWC on 

MaxRGB, 

EBCC & 

minmax  

4.2 5.3 3.2 8.5 13.8 22.5 

 

 

Conclusion 
Our goal was to improve estimation of the scene illuminant’s 

chromaticity in the sense of reducing the number and seriousness 

of poor estimates even if that reduction comes at the cost of 

slightly poorer estimates on average. A novel algorithm was 

presented that accomplishes this goal, in essence by hedging the 

bets, so to speak, of estimates obtained from other standard 

illumination-estimation algorithms. The RWC is a general 

framework so other algorithms can be substituted for the MaxRGB 

and Edge-based algorithms tested thus far. Testing on a dataset of 

real images shows that the proposed reduced-worst-case method 

can reduce the error at the 90th or 98th percentile range by as much 

as 50% with only a marginal increase in the mean error. 
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