How Multi-Illuminant Scenes Affect Automatic Colour Balancing

Liwen XU, Brian FUNT
School of Computing Science, Simon Fraser University

Abstract

Many illumination-estimation methods are based on the assumption that the imaged scene is lit by a single source of illumination; however, this assumption is often violated in practice. We investigate the effect this has on a suite of illumination-estimation methods by manually sorting the Gehler et al. ColorChecker set of 568 images into the 310 of them that are approximately single-illuminant and the 258 that are clearly multiple-illuminant and comparing the performance of the various methods on the two sets. The Grayworld, Spatio-Spectral-Statistics and Thin-Plate-Spline methods are relatively unaffected, but the other methods are all affected to varying degrees.

Keywords

Colour balancing, illumination estimation, digital photography.

INTRODUCTION

The usual first step in automatic colour balancing of digital imagery is to estimate the chromaticity of the illumination. Although there are some recent exceptions (Beigpour 2014; Gijsenij 2012; Joze 2013), most illumination-estimation methods assume that the relative spectral power distribution of the illumination is constant throughout the scene. However, many scenes contain multiple illuminants with differing SPDs, and we investigate the effect this has on automatic colour balancing.

Somewhat surprisingly, the Gehler et al. (Gehler 2008) "Colorchecker" data set of 568 images, which is widely used in evaluating competing illumination-estimation methods, contains many images of multiple-illuminant scenes. For example, Figure 1 depicts an indoor scene that also includes a window through which daylight is clearly falling on the counter. Is the scene illuminant the light from inside the room or outside the window? Figure 2 shows an outdoor scene with at least three illuminant types: the cloudy sky, the shadowed areas, and the traffic light.

Each image in the Colorchecker dataset contains an Xrite/Macbeth ColorChecker, which is used to provide a ground-truth measure of the illumination's 'colour'. However, since many of the scenes do contain multiple illuminants, a single such measurement cannot possibly represent the colour of all the illuminants correctly, but rather must represent some sort of compromise. Whether the illumination-estimation method assumes there is a single illuminant or multiple illuminants, a single colorchecker cannot correctly represent the ground-truth illumination in a multi-illuminant scene. In this paper, we investigate how much of an effect this has on a representative set of illumination-estimation methods; namely, MaxRGB (Funt 2012), Grayworld (Weijer 2007), Shades-of-Gray (Finlayson 2004), Edge-based (Weijer 2007), N-jet (Gijsenij 2010), Thin-Plate-Spline (Shi 2011) and Spatio-Spectral Statistics (Chakrabarti 2012).

SCENE CLASSIFICATION

The Gehler et al. dataset (Gehler 2008) contains 568 images taken with two digital single lens reflex cameras, a Canon 5D and a Canon 1D. All images were saved in Canon RAW format. Each image contains an Xrite/Macbeth ColorChecker for reference. The image coordinates (measured by hand) of each Colorchecker square are provided with the dataset. In the tests below, we used the Shi et al. (Shi 2011) reprocessed version of the Gehler et al. data. The original dataset consists of non-linear TIFF images that were automatically generated from the RAW data. The reprocessed dataset contains PNG images that are linear and do not include any automatic white balancing or de-mosaicing.

We manually sorted the original 568 images into two groups according to whether the images were of single-illuminant or multiple-illuminant scenes. Sorting in this way is difficult because it can be hard to discern the nature of the scene illumination from the image. Figure 1 shows a typical case where the presence of multiple sources of illumination is very clear. Similarly, the traffic light in Figure 2 is an obvious additional illuminant. Figure 3 shows a situation in which it seems pretty clear that there is only a single illuminant. Figure 4 shows a somewhat ambiguous case, since there are areas in direct sun and others in shadow. The Colorchecker itself appears to be partly in sun and partly in shadow. There are also the clouds in the distance. However, this appears to be a typical outdoor scene basically dominated by sunlight/skylight and so we classified it as a single-illuminant scene. If we were to be any more strict in our interpretation of what constitutes a single-illuminant scene then almost the entire dataset would be classified as multiple-illuminant. Based on this type of analysis of each image, the 568 dataset is divided into 310 single-illuminant and 258 multiple-illuminant scenes. We denote the two images subsets as S (single) and M (multiple), and the full set of 568 images as F . The complete lists of image numbers for sets S and M are listed in the Appendix.

Figure 1 Example of a multiple-illuminant scene with light coming both from the room and window.

Figure 2 Example of a multiple-illuminant scene containing a visible light source.

Figure 3 Example of a clearly single-illuminant scene.

Figure 4 Example of a somewhat ambiguous scene with sunlight and shadow but classified as single-illuminant nonetheless.

COMPARATIVE PERFORMANCE ON SINGLE-VERSUS MULTIPLE-ILLUMIANT SCENES

We evaluate the illumination-estimation performance of all the methods separately on subset S, subset M, and the complete set F. The illumination-estimation methods are MaxRGB (Funt 2012), Gray-World (Weijer 2007), Shades of Gray (Finlayson 2004), Edge Based (Weijer 2007), N-jet (Gijsenij 2010), TPS (Shi 2011) and Spatio-Spectral Statistics (Chakrabarti 2012). The image pixels occupied by the Colorchecker in each image areas are replaced with zeros for the tests. These methods all estimate the rg-chromaticity of the illumination. The error in a given estimate is measured relative to the measured ground-truth illumination chromaticity. The error is evaluated in terms of the angular difference in degrees between the two chromaticities after each chromaticity is converted to a 3 -vector as (r, g, 1-r-g). The overall accuracy across a given test set of images is reported in terms of the mean, median, RMS and maximum errors.

Table 1: Comparative illumination-estimation performance evaluated in terms of angular error. MaxP (MaxRGB w/o preprocessing), MaxM (MaxRGB after median filtering, GW
(Grayworld), EB (Edge-Based, first and second order), 1-jet (Gamut mapping), 2-jet (Gamut mapping), SSS-ML (Spatio-Spectral Statistics with maximum likelihood, SSS-GP (Spatio-Spectral Statistics with general prior). Md (Median), Mn (Mean).

	Set S				Set M				Complete Dataset			
	Md	Mn	RMS	Max	Md	Mn	RMS	Max	Md	Mn	RMS	Max
MaxP	4.6	7.3	9.9	27	16	14	16	50	9.1	10	13	50
MaxM	3.1	5.3	7.8	26	8.8	10	13	42	4.7	7.7	11	42
GW	4.0	5.5	7.3	25	3.3	3.8	4.7	15	3.6	4.8	6.2	25
SoG (norm=6)	2.9	4.8	6.8	23	7.4	8.4	10	36	4.5	6.4	8.7	36
EB1 (norm=6)	2.6	4.6	6.8	26	7.2	9.0	12	38	3.8	6.6	9.4	38
EB1 (norm=1)	3.8	4.7	5.6	17	3.4	4.1	4.9	16	3.6	4.4	5.3	17
EB2	2.7	5.0	7.2	28	8.9	9.9	13	47	4.4	7.2	10	47
1-jet 3-fold	2.8	4.4	6.2	24	6.0	7.7	9.9	32	4.1	5.9	8.1	32
2-jet 3-fold	2.9	4.3	6.1	21	5.9	7.7	9.8	32	4.2	5.9	8.0	32
TPS 3-fold	2.6	3.5	4.5	17	3.0	3.6	4.5	15	2.7	3.5	4.5	17
SSS-ML	2.9	3.7	4.8	22	3.1	3.7	4.5	15	3.0	3.7	4.7	22
SSS-GP	2.9	3.6	4.7	22	3.0	3.6	4.4	15	3.0	3.6	4.6	22

The MaxRGB tests include MaxRGB without preprocessing and MaxRGB with median filtering MaxM (Funt 2012). The N -jet algorithms are tested using threefold cross-validation. Because the images are from two different cameras and the training is specific to each camera, we train and test on the images from each camera separately and then combine the results. TPS is also evaluated using threefold cross-validation.

DISCUSSION

The results in Table 1 show that the effect of multiple scene illuminants on illumination-estimation performance varies substantially across the various methods. MaxRGB is strongly influenced by the presence of multiple illuminants. Whether MaxRGB includes image preprocessing or not, the presence of multiple illuminants seriously influences the results. As Table 1 shows, the error is approximately tripled. For example, the median error for the MaxRGB variant MaxM rises from 3.1 to 8.8 degrees for the change from subset S to subset M. In other words, MaxRGB works very well when the single-illuminant assumption holds, but fails when it is violated. Since MaxRGB is based on estimating the maximum value in each of the R, G, B channels, it is particularly vulnerable to the presence of light sources such as the traffic light in Figure 2.

Interestingly, Grayworld's performance appears to be unaffected by the presence of multiple illuminants since the median angular error on sets S, M and F is 4.0, 3.3, and 3.6, respectively. Although its overall performance is poorer than several of the other methods, it has the advantage of being stable. The Shades of Gray approach is controlled by the choice of the Minkowski norm to vary between the extremes of Grayworld and MaxRGB. A norm of 6 has been reported to work well (Finlayson 2004). As a compromise between Grayworld and MaxRGB, however, its performance is then affected by the presence of multiple illuminants, with a median angular error of $2.9,7.4$ and 4.5 , on sets S, M and F , respectively.

Just as Shades of Gray is more sensitive to the presence of multiple illuminants than Grayworld, the Edge-Based method using norm $=6$ is more sensitive than the Edge-Based method using norm $=1$. For the norm $=1$ case, Edge-Based is simply averaging derivatives within each RGB channel instead of the RGB values themselves. With norm = 6, the Edge-Based method weights the large derivatives, which are likely to arise from illumination boundaries in multiple-illuminant scenes, more heavily thus leading to a concomitant increase in angular error. The performance of the 1-jet and 2-jet Gamut Mapping methods also degrades when the single-illuminant assumption is violated. For 1-jet, the median angular on S of 2.8 degrees increases to 6.0 degrees for M. Gamut mapping assumes that the gamut of RGBs and the gamuts of their derivatives are limited by the illuminant. In the presence of multiple illuminants these image gamuts expand such that the constraint used to estimate the illuminant is no longer as strong or accurate.

The learning-based methods appear to account for the presence of multiple illuminants quite well. The performance of the Spatio-Spectral Statistics methods tends to be very good and quite unaffected by multiple illuminants. With median angular errors of 2.6 (set S), 3.0 (set M) and 2.7 (set F), the Thin-Plate Spline method (TPS) is both the least affected by multiple illuminants and also attains the minimum error of all the methods on each of the three datasets.

ACKNOWLEDGMENT

Funding was provided by the Natural Sciences and Engineering Research Council of Canada

REFERENCES

Beigpour, S., C. Riess, J. van d Weijer, and E. Angelopoulou. 2014. Multi-illuminant estimation with conditional random fields. IEEE Trans. on Image Processing 23(1): 83-96.
Chakrabarti, A. K. Hirakawa, and T. Zickler. 2012. Color constancy with spatio-spectral statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(8): 1509-1519. Accompanying computer implementation downloaded from http://vision.seas.harvard.edu/colorconstancy/. Accessed February 23, 2015.
Finlayson, G. and E. Trezzi. 2004. Shades of gray and colour constancy. In Proc. IS\&T/SID $12^{\text {th }}$ Color Imaging Conf. Springfield, VA, 37-41.
Funt, B., and L. Shi. 2012. MaxRGB reconsidered. Journal of Imaging Science and Technology 56(2): 020501-1-020501-10.
Gehler, P., C. Rother, A. Blake, T. Minka, and T. Sharp. 2008. Bayesian color constancy revisited. In Proc. IEEE Computer Society Conf. on Computer Vision and Patern Recognition. Anchorage, Alaska, 1-8.
Gijsenij, A., T. Gevers, and J. van deWeijer. 2010. Generalized gamut mapping using image derivative structures for color constancy. Int. J. Computer Vision. 86, 127-139. Accompanying computer implementation downloaded from http://colorconstancy.com/. Accessed February 27, 2015.
Gijsenij, A., R. Lu, and T. Gevers. 2012. Color constancy for multiple light sources. IEEE Trans. on Image Processing 21(2): 697-707.
Joze, H.R.V. and Mark S. Drew. 2013. Exemplar-based colour constancy and multiple illumination. IEEE Trans. on Pattern Analysis and Machine Intelligence 36(5): 860-873.
Shi, L., W. Xiong, and B. Funt. 2011. Illumination estimation via thin-plate spline interpolation. J. Opt. Soc. Am. A 28(5): 940-948. Accompanying computer implementation downloaded from http://www.cs.sfu.ca/~colour/code/. Accessed February 25, 2015.
Shi, L. and B. Funt. Re-processed version of the Gehler color constancy dataset of 568 images. Downloaded from http://www.cs.sfu.ca/~colour/data/shi_gehler/. Accessed Sept. 2014.
Weijer, J. van de, T. Gevers, and A. Gijsenij. 2007. Edge-based color constancy. IEEE Trans. Image Processing. 16(9): 2207-2214.
Accompanying computer implementation downloaded from http://lear.inrialpes.fr/people/vandeweijer/software. Accessed February 25, 2015.

APPENDIX

Image numbers of single-illuminant scenes: 12347101112141718192123273233 3435363738394041444546474849505254565758596364656667686970 7176777879808182838485868788899091929394959699100101102103 104105106107108109110111112113114115116117118119121122126127128 129130131132134135136137139140141142143144147149150151152153154 155156157158159160161162163164165166168169170171172173174176177 178179180185186187188189191193196197199200203204206212219224225 226227228229230232233234235248249250251253254255256257258259260 261262264265266267268269270271273274275281282283285286287288289 291292293295298299300301302303304305306307308309310342343344353 355358359362364365367372377381384386394395396398401402407410411 414416417418419420422423424425427428429430431432433434436437439 441444449451453454455456458459461462463466473474475478479480482 484487489490491493494496500502503504516522528530536537538541543 546549560561562564

Image numbers of multiple-illuminant scenes: 5689131516202224252628293031 4243515355606162727374759798120123124125133138145146148167175 181182183184190192194195198201202205207208209210211213214215216 217218220221222223231236237238239240241242243244245246247252263 272276277278279280284290294296297311312313314315316317318319320 321322323324325326327328329330331332333334335336337338339340341 345346347348349350351352354356357360361363366368369370371373374 375376378379380382383385387388389390391392393397399400403404405 406408409412413415421426435438440442443445446447448450452457460 464465467468469470471472476477481483485486488492495497498499501 505506507508509510511512513514515517518519520521523524525526527 529531532533534535539540542544545547548550551552553554555556557 558559563565566567568.

Address: Brian Funt, School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada E-mails: funt@sfu.ca, xuliwenx@gmail.com

