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A B S T R A C T

Carbon Fibre Reinforced Polymer (CFRP) is a reliable and light fibre-reinforced

plastic which contains carbon fibre, nowadays are extensively used wherever

high strength-to-weight ratio and rigidity are required, such as aerospace, au-

tomotive, structures, sports goods and technical applications. The material

properties of such kind of composites depend on the strength-providing part,

carbon fibre, and the bonder of the reinforcements together, a polymer resin.

Composites offer the designer a combination of properties not available in

traditional materials. As with all materials that are used to make objects and

structures, there is a need to be able to inspect the equipment to determine its

fitness for purpose or use. Inspection of composite material poses a particu-

lar challenge since the materials are often non-homogeneous and anisotropic.

Flaws can occur in composites at any stage of the lifecycle, i.e., during pro-

duction or in-service, most likely in fibre distribution or the matrix. Typical

examples of flaws found in composites are delamination, cracks, disbonds,

impact, fibre breakage, voids, etc.

The integrity and degradation of composite structures have been tradition-

ally evaluated by nondestructive testing (NDT) or by nondestructive evalua-

tion (NDE), now being potentially assessed by structural health monitoring

(SHM), to assure the performances of these structures. The detection of flaws

is vital in ensuring the safety and timely repair of structures. In comparison

with conventional NDE techniques such as ultrasonic scanning and radiog-

raphy which have been well developed over half a century, damage identi-

fication using Lamb waves is in a stage of burgeoning development. Lamb

waves are guided waves having dispersive behaviors that propagate in the

thin plate or shell structures. The use of Lamb wave in SHM is attractive for

the last couple of decades since a large area of structure can be interrogated

from only a few locations. The detection of damages comes from the interac-

tion of Lamb waves with disturbances in the compositions.

In 2011, Prof. Teramoto has proposed a novel NDE technique named by dy-
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namic shear strain analysis [90]. In this research, the effectiveness of dynamic

shear strain analysis is assessed to detect the subsurface damage in the com-

posite laminates. The technique focusing on the near-field imaging method

over the fundamental mode of antisymmetric Lamb wave field. The incom-

ing wave field strikes at the boundary of the flaw generates evanescent wave

field which diminishes exponentially. The orthogonal pair of out-of-surface

shear strains follows linearity condition in the flawless region. In contrast,

at the boundary of the defect, the requirement violates as the scattered wave

field does not follow the path of incident one. A covariance matrix consisting

the vector of shear strain has been adopted in such way that the determinant

of the matrix exhibits any value other than zero at the region of violation. As

a whole, the image of the defect is reconstructed. This thesis makes explicit

the applicability of the dynamic shear strain analysis to orthotropic material

in the context of unidirectional, bi-directional, and quasi-isotropic laminate

by means of numerical experiments.
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1
I N T R O D U C T I O N

1.1 background and motivation

In structural designs, the trend is always to become more ambitious. For ex-

ample, buildings get taller, bridges get longer and aircrafts get bigger. This

lead to an increase in the requirement to provide both cost savings concern-

ing maintenances and safer environments by preventing structural failures.

One of the possible means to achieve this goal is by the application of the

Structural Health Monitoring (SHM) systems (Fig.1.1). By providing addi-

tional safety measures, the SHM systems enable the life of the structures to

be maximized and reduce the structural life costs.

Nowadays, CFRP materials have been a growing popularity in a wide spec-

trum of the industries. They have been extensively used in the engineering

process and become an important material in aircrafts, power plants, con-

structional structures, ships, cars, rail vehicles, robots, prosthetic devices,

sports equipment, etc. CFRP based products offer a better strength-to-weight

and stiffness-to-weight ratios due to the reduced weight of the structure. The

major advantage of such kind of material is the ability of controllability fiber

alignment. Other advantageous properties include good acoustic and ther-

mal insulation, low fatigue and corrosion.

CFRP can be damaged during manufacturing as well as in service by many

ways, and these damages are most likely depend on the working environ-

ment experienced and the sensitivity of the particular materials used. The

mechanism of damage includes static overload, impact, fatigue, hygrothermal

effects, overheating, lighting strike, creep, etc. It can be either local or cover-

ing a wide area. Damage constitutes a severe discontinuity because they do

not transfer interlaminar shear stresses and, under compressive loads, they

can cause rapid and catastrophic buckling failure [1]. The integrity of such
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structures needs to be determined NDT to assure the performance of service.

(a) Wind turbine inspec-
tion (photo courtesy of
Kaufer online).

(b) Aircraft fuselage inspec-
tion (photo courtesy of San-
dia National Lab.,USA).

(c) Bridge inspection
(photo courtesy of Aspen
Aerials, USA).

Fig. 1.1: An overview of potential application fields for SHM techniques

1.2 conventional techniques on ndt

NDT methods are developed to detect and characterize flaws and also to

determine the material properties of the test specimen. The development of

computational tools, along with a more widespread understanding made it

possible to devise techniques for NDT. There has no clearly defined boundary

for NDT [38]; traditionally, it is considered that there are five primary and

established methods that are discussed below:
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Liquid Penetrant Testing (PT)

PT is thought of one of the most widely used NDT methods in the detection

of surface discontinuities in nonporous solid materials. It is a popular way

of NDT as it is useful for both magnetic and nonmagnetic materials. The

technique focuses on the ability of a liquid to be drawn into a clean surface

discontinuity by capillary action. After a period usually called the "dwell

time", excess surface penetrant is removed and a developer applied. The

developer acts as a blotter that draws the penetrant from the discontinuity.

Several steps following in PT method are schematically illustrated in Fig.1.2.

PT inspection offers the advantage of a visual inspection by making defects

easier to see for the inspector.

Fig. 1.2: Schematic of various steps followed in liquid penetrant testing
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Magnetic Particle Testing (MT)

MT is one of the most widely utilized NDT methods since it is fast and

relatively easy to apply. Part surface preparation for MT is not as critical

as it is for some other methods. MT can be used to inspect a variety of

product forms including castings, forgings, and weldments. To magnetize the

component be investigated is the first step of MT. Presence of any defects on

or near the surface will create a leakage field. After the component has been

magnetized, iron particles are employed to the surface of the magnetized part

either in a dry or wet suspended form. The particles will be attracted and

cluster at the flux leakage fields, thus forming a visible indication that the

inspector can detect (Fig.1.3). MT works best for flaws which are elongated

rather than round.

Fig. 1.3: Sketch of magnetic particle testing

Radiographic Testing (RT)

RT is practiced in a wide range of applications including medicine, engineer-

ing, forensics, security, etc. In NDT, radiography is one of the most impor-

tant and widely employed methods. In RT, the part to be inspected is placed

between the radiation source and a piece of radiation sensitive film. The ra-
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diation that passes through the component will expose the film and forms a

picture of that. The film solidity depends on the amount of radiation reach-

ing the film through the test component where darker areas indicate more

exposure (higher radiation intensity) and lighter areas indicate less exposure

(lower radiation intensity). This variation in the image darkness can be used

to determine thickness or composition of material and would also reveal the

presence of any flaws or discontinuities inside the material (Fig.1.4). The

strength of RT is its ability to detect internal, no-linear imperfections whereas

the two dimensional views sometimes drawback of the technique[82][51][72].

Fig. 1.4: Radiographic testing

Eddy Current Testing (ECT)

ECT instruments are usually small and portable. The method is utilized only

on electrically conductive materials, and just a tiny area can be interrogated

at a time. An energized electromagnetic coil induces an AC magnetic field

into the test specimen. The fluctuating magnetic field generates a circulating

electric eddy current. The presence of a flaw increases the resistance to the

flow of eddy currents. This is indicated by a deflection on the measuring

5



instruments (Fig.1.5). It is suitable for detection of surface cracks and sub-

surface damage as well [82][74].

Fig. 1.5: Eddy current testing

Acoustic Emission Testing (AET)

AET can provide the information on the origination of a flaw in a stressed

component. The technique based on the concept that discontinuities in parts

release energy while subjected to stress. This energy travels in the form of

high-frequency stress waves. The waves received with the transducers, con-

verts the energy into the voltage, further processed as AE signal data (Fig.1.6).

Analysis of collected data comprises the characterization of the received sig-

nals according to their respective source location, voltage intensity, and fre-

quency content [59][82][55][30][21].

Ultrasonic Testing (UT)

UT uses high-frequency sound waves (typically in the range between 0.5 and

15 MHz) to conduct examinations and make measurements. In general, UT

6



Fig. 1.6: Acoustic emission testing

is based on the capture and characterization of either the reflected waves

(pulse-echo) or the transmitted waves (through-transmission). Each of them

is used in particular applications, though the former system is more useful

since it requires one-sided access to the object. In pulse echo technique, the in-

strument converts electrical pulses into mechanical vibrations. These pulses

travel across the tested specimen and reflect from flaws because of their dif-

ferent acoustic nature. The returning reflected pulses are re-converted to

electrical energy and displayed as signals or images. The position and size

of these signals correspond to the position and size of the flaws (Fig.1.7). Ap-

propriate choosing of the instrument can display the information in various

ways. These techniques are referred as A-, B-, and C-scans. A-scan refers to

Fig. 1.7: Pulse echo technique
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a single point measurement whereas the B-scan measures along a single line.

The C-scan nothing but collection of B-scan forming a surface contour plot.

In general, this method is highly sensitive to small surface and deep flaws in

the material [82][69][38].

1.3 modes of sound wave propagation in elastic solid

Ultrasound based NDT based on the vibration in materials can be termed

as acoustics. Acoustics is focused on particles that contain many atoms that

move in harmony to produce a mechanical wave. When the particles of a

medium are displaced from their equilibrium positions, internal restoration

forces arise. These elastic restoring forces between particles, combined with

the inertia of the particles, lead to the oscillatory motions of the medium. In

solids, sound waves can propagate in four principal modes that are based on

the way the particles oscillate, termed as the longitudinal wave, shear wave,

surface wave (Rayleigh wave), and in thin materials as plate wave (Lamb

wave).

1.3.1 Longitudinal Wave

Longitudinal waves are the waves that transfer energy in the same direction

as the disturbance in the medium of propagation (Fig.1.8). Sometimes longi-

tudinal waves are called compressional or compression waves, because they

produce compression or rarefaction during traveling through the medium

and pressure waves because they provide increases and decreases in pressure.

This type of waves include sound waves (particle displacement, the velocity

of particles propagated in the elastic media, and vibrations in pressure) and

seismic P-waves (created by earthquakes and explosions).
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Fig. 1.8: Displacement of the array of points due to longitudinal wave

1.3.2 Transverse Wave

In case of transverse waves, the displacement of the medium is in right an-

gle to the direction of wave propagation (direction of energy transfer). If a

transverse wave is moving in the horizontal direction, particles motion are

in up and down directions that lie in the vertical direction (Fig.1.9). Here

the formation of crest and trough takes place at regular interval. Vibration

in strings, ripples on the water surface, seismic S-waves and electromagnetic

waves are the example of a transverse wave.

Fig. 1.9: Displacement pattern of points due to transverse wave
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1.3.3 Surface wave (Rayleigh Wave)

The wave propagating on the surface of an infinite solid half-space is firstly

described by Lord Rayleigh [73]. They are always generated when a free

surface exists in a continuous boundary and include both longitudinal and

transverse motions. In an elastic, homogeneous half space, particle motion on

the surface always follow an elliptic path normal to the surface and parallel

to the direction of wave propagation whereas the major axis of the ellipse

is vertical (Fig. 1.10). Particles motion decrease exponentially in amplitude

with the increase of the distance from the surface. This type of surface wave

may generate from the massive earthquake and can travel around the globe

several times before dissipating.

Fig. 1.10: Particle trajectory in Rayleigh wave

1.3.4 Plate wave (Lamb Wave)

Though the longitudinal wave and shear wave are most widely used in con-

ventional UT, the application of guided structural waves, i.e., Lamb waves in

SHM applications for thin structures gain a high interest within the research

communities due to its considerably long propagation ranges [87]. Lamb (or

plate) waves are similar to the surface waves and can only be generated in
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thin plates. Horace Lamb [54] extended Rayleigh analysis to wave propa-

gating within the free isotropic plates with the parallel surface. They usu-

ally produce when a wave strikes a surface at an incident angle where the

identical component of the incident source wave velocity is equal to the test

specimen wave velocity. The particle motions are similar to the elliptical path

for surface waves. Among a number of modes with Lamb wave, symmet-

rical and anti-symmetrical modes (named by the motion pattern about the

mid-plane of the plate) draw a deep concern for their broad applicability in

the field of NDT. Lamb wave propagate at high frequencies giving it high

resolutions from its smaller wavelengths. This behavior makes Lamb waves

sensitive to small damages in the structure i.e. impact damages. The use of

lamb waves is potentially a practical solution to detect the damage with trac-

tion free boundaries [3]. In this type of elastic wave, particle motion lies in the

plane that contains the direction of wave propagation and the plate normal

(the direction perpendicular to the plate) [54]. Lamb waves are dispersive

and multi-modal causing complicated wave signals and data interpretations

in damage detection processes. In general composite materials, these dis-

persive and multi-modal characteristics are also directionally dependent [70].

The main advantage of Lamb wave is that both sides, as well as the interior of

the structure, can be sensed from only one location on one side of the struc-

ture, which makes in situ monitoring viable.In general, Lamb waves belong

to a family of guided waves, which is guided by the plate boundaries when

it propagates. Thus, in literature, it is also known as guided waves in plates.

Other classes of guided waves have also been studied in the research. Love

showed mathematically that SH waves are also solutions to the wave equa-

tion in plates [56] . These waves have a shearing motion in the plane of the

plates. Later, Stonely described wave propagating at the interface between

two solids [83]. Conditions for the propagating and the leaky wave modes

between two solid are given in [79][68]. Leaky waves are the waves that lose

its energy to the surrounding.

1.4 overview on lamb wave based ndt

NDT systems involving Lamb waves can be classified in two ways [85]:
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• Passive system: Only sensors are required to detect the Lamb waves

produced by damages in the structures. It deals mainly with the prob-

lem of damage localization.
• Active system: Lamb waves are excited into the structures using actua-

tors and sensed by sensors with the damage information. It gives the

opportunity for utilizing certain mode types and frequency ranges.

Lamb waves can be generated by many types of transducers [87]. Among

them, some well used systems are: Ultrasonic probe, Laser transducers, Piezo-

electric transducers, Interdigital/Comb transducers, and Optical fiber trans-

ducers.

Following Snell’s law, ultrasonic probes are used widely for actuating and

sensing of single Lamb modes using angled wedge prism [53, 28, 62, 92].

Besides these contact based innovations, several non-contact methods were

introduced like air-coupled [17, 16] and fluid coupled [31] transducers to

omit the difficulties arise by the earlier types. The main problems for these

transducers are, (i) The required downtime of the inspected structures, and

(ii) the inspected structures must be accessible from both sides. Moreover,

such methods may be less efficient for detecting near-surface damage [4].

The Lamb waves excitation using the laser-based ultrasonic waves and the

lamb wave sensing using the laser interferometers are high precision mea-

surement techniques [37, 95, 29]. Fabry-Perrot and heterodyne interferome-

ters are the most frequently employed devices for this purpose.

The piezoelectric transducers (PZT) deliver excellent performance in Lamb

wave generation and acquisition [10, 26, 27]. Easy integration, negligible

mass and volume, excellent mechanical strength, wide frequency response,

low power consumption, low acoustic impedance are several advantages in

using such kind of transducers. Composite versions of PZT transducers are

available i.e., the microfiber composites and the active fiber composites [9, 6].

Polyvinylidene fluoride (PVDF) piezoelectric polymer transducer features

better flexibility, higher dimensional ability, more stable piezoelectric coef-

ficients over time in comparison with piezoelectric ceramic transducers [45].

This kind of interdigital transducer is suitable to accommodate more versatile

applications with reduced cost [61, 13]. Bu was adjusting the space between

interdigital electrodes, Lamb waves with controllable wavelength can be pro-
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duced by PVDF [60]. PVDF transducers are mainly used as sensors due to

the low actuating force.

Optical fibre sensors have been increasingly adopted in damage identification

due to its lightweight, wide bandwidth, good compatibility, long life and

low power consumption [15]. Fibre Bragg Grating (FBG) sensor is success-

fully and effectively used in this class to detect the Lamb waves.The embed-

ded FBG sensors have more sensitivity to the Lamb waves than the surface

mounted FBG sensor [87].

A proper Lamb mode efficient for damage detection should show several dis-

tinguishing characteristics such as (1) non-dispersion, (2) low attenuation, (3)

high sensitivity, (4) secure excusability, (5) good detectability and (6) toilets

selectivity [100]. As the narrow bandwidth input signal can prevent wave

dispersal effectively, windowed tone burst, rather than pulse is frequently

adopted as the Lamb signal. The minimum resolvable distance (MRD) approach

can determined the most suitable cycle number and frequency for a Lamb

mode [99]. Modes S0 and A0 are usually possess very low MRD values. The

basic symmetric mode and anti-symmetric mode are usually used in practice.

Although S0 is preferred in the majority of the studies utilization of A0 is in-

creasing due to its short wavelength. It was found that S0 exhibits reasonable

sensitivity to defects anywhere in the thickness, while A0 is more sensitive to

surface cracks or corrosion. In particular, it has been shown that A0 is highly

effective for detecting delamination and transverse ply cracks [25, 45, 60, 48,

33].

The Lamb wave signals from the sensors are processed to indicate the pres-

ence of damage. Various signal processing and identification techniques are

available, in particular: (i) time domain analysis [94, 81, 102], (ii) frequency

domain analysis[19, 96, 50, 41], and (iii) integrated time-frequency domain

analysis [49, 98, 86, 71].

Except for a few successful applications in damage identification, the direct

times series analysis is normally incapable of isolating defect-scattered infor-

mation appropriately from noise. Moreover, a benchmark signal is essential

for comparison. Frequency domain analysis needs a significant volume of

the signal captured from different positions, a number of transducers must

be ensured to scan the entire structural surface. To overcome the shortcom-

ing of previous two methods, the combination of time information with fre-
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quency data is introduced. Rather than direct time-frequency analysis, in

practice, several variants are more popular, such as short time Fourier transform,

Winger-Ville distribution, and Wavelet transform. From a historical perspective,

a wavelet transform is a dominant tool for signal processing than others.

Other signal processing tools that can be used for Lamb wave signal analysis

include cepstrum investigation [103], blind deconvolution [104], cyclostation-

ary processes [78] and probability analysis [5].

Concerning in overall damage identification, the Lamb wave based damage

identification algorithms can be either forward or inverse. The forward anal-

ysis deals with the uniqueness of the solution whereas in case of inverse

analysis, the solution can be ambiguous. The triangulation method [48, 94]

and the time reversal imaging method [97, 46] are the well known direct anal-

ysis for damage detection. Inverse algorithm is well capable iof identifying

damage by applying artificial intelligence and tomography [43, 39, 80, 75,

65]. Advanced neural network system is the pivotal technique among all in

AI-based method [88, 84, 67].

1.5 introduction to cfrp

CFRP is a composite made with carbon fibres embedded in a polymar, com-

monly an epoxy matrix. the fibres, which are usually 7− 15 µm in diameter,

are bundled together to form a tow, which can then be woven into fabric or

laid down unidirectionally to form a lamina. A single lamina has a thick-

ness of about 0.05− 0.2 mm, and so to obtain suitable mechanical engineer-

ing components, many laminae are stacked in same or different directions

to form a laminate. This fibre directionality contributes to the anisotropy in

CFRP, which means the phase velocity is typically much higher in the fiber

direction and lower perpendicular to the fiber direction.

1.5.1 Classification of CFRP laminate

Usually, CFRP can be classified according to the fiber orientation, as:
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• Unidirectional laminate: In this sort of laminate, the fiber angle in any

ply is parallel to the fiber angle in every other ply (Fig.1.11). From a

mechanics point of view, this is a thick lamina.

• Cross-ply laminate: Here, the fiber angle in any plane is normal to at

least one other rely upon and parallel to any other ply or plies (i.e., con-

tains only 0 and 90◦ plies)

• Angle-ply laminate: Fibre angle of any ply is not restricted to parallel

and normal directions.

Fig. 1.11: Orientation of carbon fibre in unidirectional laminate

Besides the above sorting criteria, CFRP can also be classified based on the

stacking sequence of fiber:

• Symmetric laminate: In a symmetric laminate all plies above the mid

plane have the same angle as the ply in the equivalent position below

the half space of the material (Fig.1.12). The plane contains the half

space acts as the plane of symmetry.

• Antisymmetric laminate: Here, the centerline plane is a plane of anti-

symmetry, i.e., all plies above this plane have the opposite angle as the

ply in the equivalent position below the centerline.

• Asymmetric laminate: the centerline plane of the material does not act

either as a plane of symmetry or antisymmetry.
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Fig. 1.12: Stacking sequence of fibre in symmetrically balanced laminate

1.5.2 Common defects in CFRP

CFRP components encountered various types of damage, and their mecha-

nism might differ one from another based on their physical and mechanical

properties, results in the adverse influence in performance. These include

in-plane flaws (delamination), across the plane flaws (matrix crack), and vol-

umetric flaws (void). Such flaws can be schematically shown in Fig 1.13.

According to the formation of the defect, they can be discussed as follows:

Fig. 1.13: Schematic representation of delamination and crack occurred in
CFRP
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Impact damage

Impact damage of composites during manufacture and in-service can oc-

cur in different locations including near the edge or on the edge of the struc-

ture. This kind of defect is the result of foreign object damage such as stone,

bird strike, dropping of an object, etc. This defect results in matrix cracks,

fibre breaking and delamination in composites. Good correlation has been

found between the impact energy and its corresponding damage initiation

in glass-fiber composites [105]. A noticeable agreement also been found be-

tween the impact and its bad effect on the laminate thickness [24][89] and

stacking sequence as well [58]. The impact damage may cause the reduction

of residual strength by up to 50% in CFRP [36].

Fibre breakage

Most of the fibres tend to fracture in tension in a brittle manner [44]. Dam-

age is initiated at failure points of weaker fibre which break during initial

loading. The shear stresses around those points cause the resin and the inter-

faces to degrade and leads to crack which propagate along the fibre-matrix

interfaces.

Delamination

In composites, repeated cycle stresses, the impact can cause layers to sep-

arate with significant loss of mechanical toughness is called delamination. It

means the lack of adhesion between two layers of laminates [34]. Due to

weak adhesive bonding, fibre pull-out may occur which causes the delamina-

tion [47].

Voids

A void is a pore that remains unoccupied in a laminate. Voids in CFRP

can regularly occur in small or large. Large voids may be occur during the

manufacturing process while small ones are often found adjacent to the fibre.

It can affect the mechanical properties of the composite as a void is a non-

uniformity in a composite material. It can act as a crack nucleation site as
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well as allow moisture to penetrate the composite [44]. A small change in the

percentage of void content (1− 3%) can reduce the mechanical properties of

the composite by up to 20% percent. Voids exist in all forms of composite

with variations in their incidence depending on the fabrication route and

matrix type [14]. Typical defects are shown in Fig. 1.14

(a) Toughened CFRP panel damaged
by impact [35]

.

(b) Micrograph of a composite show-
ing broken fiber [36]

.

(c) Delamination between fiber layers
[42]

.

(d) Zoomed view of the CFRP plate
having void [42]

.

Fig. 1.14: Real life examples of typical defects encountered in CFRP

1.5.3 Application and demand of CFRP

CFRP composites are usually preferred in the application where strength,

low weight, stiffness and outstanding fatigue characteristics are requirements.

CFRP allows ’light-weighting’ in transportation applications such as auto-
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mobiles and aircrafts which leads to the reduction of energy consumption

through fuel savings. It is approximated that every 10% of vehicle mass sav-

ings results in a 6%− 8% improvement in fuel economy [23]. This benefit

enhances alternative fuel based vehicles to improve fuel economy as well as

achieve longer driving distances between refueling. Nowadays in aerospace

sector, CFRP offers the best alternative of aluminum and because of that

from 2015, the aerospace and aviation sector consumes the most significant

amount of CFRP than any other practical field. In case of designing of wind

turbines, uses of CFRP enables blade length extension, leading to more wind

energy capture per turbine as well as the development of a maximum range

of wind resources. Using CFRP in pressure vessel allows the wide range of

operating pressure with lighter weight and thus increases the lifespan than

the conventional metal-based containers. Other than these sectors, CFRP can

exclusively use in oil and gas industry, civil infrastructure, sports utility, ma-

rine, etc. Global demand for CFRP in various sectors projected by industry

experts with a constant compound annual growth rate (CAGR) of 9− 10%,

is shown in Fig. 1.15. Due to growth of end-use industries, in the inevitable

Fig. 1.15: CFRP demand projections by weight for the applications analyzed
[52]

future, North America is anticipated to continue its domination as the most

extensive market of CFRP.

In contrast with the excellent use of composites in a wide area of industry, it
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is inevitable to secure its perfect and secured functional application. NDT of

such materials offers a vast area of research.

1.6 objective

The behavior of the Lamb wave propagation in plates needs to be understood

first before any meaningful utilization in the NDT applications either through

analytical, numerical and experimental investigations. The first step in utiliz-

ing Lamb waves is to understand its dispersive behaviors [87]. Study on the

Characteristic dispersive curves of fundamental anti-symmetric (A0) mode

Lamb wave for Composite Laminates (CL) thus clears the priority before ap-

plying the damage detection technique. Subsurface damages and obstacles in

plates are typically detected through the scattering effects of Lamb waves. An-

alytical perfect solutions to study the scattering phenomena do not exist due

to the anisotropic behavior and multilayer characteristics of composite lami-

nates. This study uses a three-dimensional (3D) Finite Element Model (FEM)

to provide physical insight into the scattering characteristics of in composite

laminates. An analysis of the application of dynamic shear strain technique

to detect subsurface damage in CFRP laminates is the primary goal of this

thesis.

1.7 thesis outline

This thesis discussed the efficient and effective application of the novel near-

field imaging technique based on the fundamental anti-symmetric A0 Lamb

wave mode, dynamic shear strain analysis to detect the subsurface damage

in anisotropic (CFRP) material.

Focusing on that, the introductory chapter gave the fundamental of the wave

propagating modes in elastic solid and NDT techniques existing nowadays

with summarized illustration along with the review on Lamb wave based

technique in the context of NDT. Following, the background knowledge of

CFRP material including its classification and probable types of damage they
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are often encountered in the working area are also stated. Later chapters are

discussed the following topics.

Chapter 2 gives the fundamentals of Lamb wave. Beside explaining the lin-

earized theory of elasticity and steady state two dimensional wave charac-

teristics, derivation of Lamb wave is discussed in this chapter. The chapter

ended up with the velocity dispersion criteria of Lamb wave.

Chapter 3 discusses the wave propagation in anisotropic media. Starting from

a perfect anisotropic material, all of the symmetry classes with the derivation

of characteristic stiffness matrix for each class are described satisfactorily. The

nature of the plane wave propagation in the horizontally transverse isotropic

(HTI) media is discussed in the second part of the chapter with the mathe-

matical formulation of the phase velocity.

Based on the deduced phase velocity and frequency equation of Lamb wave

in previous chapters, chapter 4 illustrates the velocity dispersion characteris-

tics for unidirectional laminate based on the material properties considered

in this study. Besides that, stiffness of bi-directional laminate and quasi-

isotropic laminate is evaluated based on the fundamentals mechanics of CL.

The novel near-field imaging technique is discussed in chapter 5. The method

deals with the quantitative evaluation in the overlapping region of the inci-

dent and scattered wave. For isotropic material, the technique concluded

with the image reconstruction of subsurface defect in the vicinity of the de-

fect by considering the time based out-of-plane displacement of each node

over the A0-mode Lamb wave field.

Chapter 6 describes the 3D FEM modeling and simulation for characteriza-

tion of CFRP. The geometry of probes and tested samples are modeled, and

their parameters are set up in the simulation software. The multiphysics

explicit software LS-DYNA is used to develop the geometry, meshing, and

simulation as well. The interaction of A0-mode Lamb wave and the subsur-

face defect for each laminate are characterized by the directivity pattern of

the scattered wave at the boundary of the defect. Stored time series data is

analyzed using the C program. Numerical results are thoroughly discussed

in the later part of the chapter in the context of image reconstruction of the

defect for unidirectional, bi-directional and quasi-isotropic laminate.

Chapter 7 concludes the results and achievements of the entire research work.
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The future work includes the system development of damage inspection in

the anisotropic material.
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2
F U N D A M E N TA L S O F L A M B WAV E S

Derivation of Lamb wave equation started with the deformation of an elastic

body. An elastic body has a neutral undeformed state to which it returns

when all external loads are removed.

2.1 linearized theory of elasticity

The equations governing the linearized theory of elasticity are presented in

the following used notation:

position vector : x (coordinates xi)

displacement vector : u (components ui)

strain tensor : εεε (components εij)

stress tensor : τττ (components τij)

Apart from these, differentiation with respect to a variable will be indicated

by a comma followed by an index as:

ui,j =
∂ui

∂xj

Deformation

When all the particles that make up a body move together without any con-

siderable change in the shape of the body, it can refer to rigid body motion.

In contrast, if the shape of the body changes, we can refer to this as deforma-
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tion. To differentiate between this two, we are going to consider the relative

motion of neighboring points. Consider the displacement u of a point at x

corresponding to an arbitrary origin x0 (Fig.2.1).

Fig. 2.1: Generalized displacement of a line segment dx. Point x0 displaces by
amount u(x0), whereas the other end point, x0 + dx, displaces by u(x0 + dx)

The first two terms in a Taylor’s series expansion about the origin,

ui(x) = ui(x0) +
∂ui

∂xj

∣∣∣∣∣
x0

dxj + · · · · · · i = 1,2,3 (2.1)

The first term, ui(x0), represents a rigid body translation whereas all neighbor-

hood points of x0 share the equal displacement. The second term gives the

relative displacement in terms of the gradient of the displacements ∂ui
∂xj

, or ∇u

in vector notation.

Displacement equation

The partial derivatives ∂ui
∂xj

make up the displacement gradient tensor, a second

rank tensor with nine independent components:
∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 (2.2)
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The displacement gradient tensor can be distracted into two parts, symmetric

and antisymmetric, as follows:

ui(x) = ui(x0) +
1
2

(∂ui

∂xj
+

∂uj

∂xi

)
︸ ︷︷ ︸

Symmetric part

dxj +
1
2

(∂ui

∂xj
−

∂uj

∂xi

)
︸ ︷︷ ︸

Antisymmetric part

dxj + · · · . (2.3)

Symmetric part of the displacement gradient tensor can be defined as In-

finitesimal strain tensor with six independent components whereas the anti-

symmetric part can be termed as Rotation with remaining three independent

components. Symmetric part arises in case of pure shear condition whereas

the antisymmetric part takes place in pure rotation condition (Fig.2.2). Ne-

glecting the higher order terms, we can see that the displacement u(x) is

composed of three components- rigid body translation, strain and rigid body

rotation.

Fig. 2.2: Deformation follows (a) pure share (b) pure rotation characteristics
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The Strain Tensor

The infinitesimal strains are given by

εij =
1
2
(ui,j + uj,i) (2.4)

The Linear strain tensor in the xi coordinate system is

εij =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 e33

 (2.5)

The components of the strain tensor εij, can be written as:

ε11 = u1,1 =
∂u1

∂x1

ε22 = u2,2 =
∂u2

∂x2

ε33 = u3,3 =
∂u3

∂x3

ε12 =
1
2
(u1,2 + u2,1) =

1
2

(∂u1

∂x2
+

∂u2

∂x1

)
ε23 =

1
2
(u2,3 + u3,2) =

1
2

(∂u2

∂x3
+

∂u3

∂x2

)
ε31 =

1
2
(u3,1 + u1,3) =

1
2

(∂u3

∂x1
+

∂u1

∂x3

)

(2.6)

The stress vector

Consider a homogeneous body and an interior point A(xi). Cut through at

that point with a plane with exterior normal n. The stress vector at A for

direction n can be defined as

tn = lim
∆A→0

∆t
∆A

where ∆A is a differential area surrounding A on the cutting plane.
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The stress tensor

Consider the equilibrium of an elemental tetrahedron at some point whose

faces are normal to x1, x2, x3 and n leads to the expression

ti = τijnj (2.7)

where ti is the component of t in the xi direction, and nj are the components

of n. The nine values τij are the components of the stress tensor

τij =


τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 (2.8)

Conservation of mass

Consider a material of volume V of surface S. The total mass is given by

m =
∫

V
ρdV (2.9)

As a material volume contains the same material at any instance, the total

mass of the material in a material volume is constant:

d
dt

∫
V

ρdV = 0 (2.10)

Taking the derivative inside the integral returns

∫
V

dρ

dt
dV =

∫
V

[∂ρ

∂t
+

∂

∂xi
(ρvi)

]
dV = 0 (2.11)

For arbitrary V,
∂ρ

∂t
+ ρvi,i = 0 (2.12)
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Conservation of momentum

Consider the volume V of surface S. Associated with every point of V will

be a acceleration ai (acceleration field a = ü), while acting on the body will be

surface traditions ti and body forces hi. According to the Newton’s second

law of motion, the force acting on a particle is equal to the rate of change of

linear momentum:

F =
d
dt
(mv) (2.13)

The equation of conservation of momentum for a material is obtained by by

postulating that the rate of change of linear momentum of the material con-

tained in a material volume is equal to the total force acting on the material

volume: ∫
S

tidS +
∫

V
hiρdV =

∫
V

ρaidV (2.14)

where ρ is the body density. Substitute ti = τijnj in the surface integral:

∫
S

τijnjdS +
∫

V
hiρdV =

∫
V

ρaidV (2.15)

To transform the surface integral to a volume integral we can use Gauss’

divergence theorem. For any vector field v:∫
S

a.ndS =
∫

V
div.adV (2.16)

or in component form ∫
S

ajnjdS =
∫

V

∂aj

∂xj
dV (2.17)

Consequently the equilibrium integral can be reduced to∫
V
[τij,j + hi − ρai]dV = 0 (2.18)

for an arbitrary volume, we must have

τij,j + hi − ρai = 0 (2.19)
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If we ignore the body force, the equilibrium equation becomes

ρüi = τij,j (2.20)

Conservation of moment of momentum

This principle holds that the time rate change of moment of momentum is

equal to the sum of the moments on the body.

d
dt

∫
V

r× vρdV =
∫

S
r× tdS +

∫
V

r× hρdV (2.21)

In tensor form ∫
V

eijkükxjρdV =
∫

S
eijktkxjdS +

∫
V

eijkhkxjρdV (2.22)

In differential form, applying Gauss’s theorem returns∫
S

eijktkxjdS =
∫

S
eijkxj(τlknl)dS =

∫
V

eijkxjτlk,ldV (2.23)

Carrying out the differentiation gives∫
S

eijktkxjdS =
∫

V
(eijkτjk + eijkxjτlk,l)dV (2.24)

Inserting (2.24) in (2.22), and using the results of conservation of momentum,

gives ∫
V
(eijkτjk)dV = 0 (2.25)

or

eijkτjk = 0 (2.26)

This returns to

τij = τji i 6= j (2.27)

Equation (2.27) implies that the stress tensor is symmetric.
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Constitutive equations

Constitutive equation provides the relation between states of deformation

with states of traction. From the assumption of a direct functional relation-

ship between stress and strain of the form

τij = τij(εij) (2.28)

Consider zero initial stress, expanding τij = τij(εij) in a power series returns

(discarding the constant term and higher order terms)

τij = Cijklεkl (2.29)

Here, Cijkl is the fourth order (3× 3× 3× 3 = 81 independent components)

stiffness tensor responsible for the material properties (directional depen-

dency of velocity). Symmetrical characteristics of stress and strain reduces

the number to 36 (discussed in next chapter) and can be written with the

following notation as:

C =



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212


The medium is elastically homogeneous if the components of Cijkl are con-

stants. Applying of Voigt notation (replacement of the four-subscript notation
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with two-subscript form as: 11→ 1; 22→ 2; 33→ 3; 23,32→ 4; 31,13→
5; 21,12→ 6 ) into the above equation leaves a more simpler form of C as:

C =



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


The material is isotropic when there are no preferred directions in the material,

and the elastic constants must be the same whatever the orientation of the

Cartesian coordinate system in which the components of the stress tensor (τij)

and strain tensor (εij) are evaluated. For such material, the stiffness matrix

contains only 2 independent component and hence can be expressed as

CISO =



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0
C11−C12

2 0 0
C11−C12

2 0

symmetric C11−C12
2


(2.30)

Introducing Lamé’s parameters as

λ = C12

µ =
1
2
(C11 − C12)

(2.31)
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Where λ is the combination of Young’s modulus E, the bulk modulus K,

and Poisson’s ratio ν, µ describes the rigidity of the medium. Using this

parameters, (2.30) can be shown as

CLAME =



λ + 2µ λ λ 0 0 0

λ + 2µ λ 0 0 0

λ + 2µ 0 0 0

µ 0 0

µ 0

symmetric µ


(2.32)

By using the Lamé’s constants, Cijkl can be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.33)

Substituting (2.33) in (2.29) resulting as

τij = λεkkδij + 2µεij (2.34)

where δij is the Kronecker delta, defined as

δij =

1 if i = j

0 if i 6= j

Equation (2.34) can be resolved as following:

τ11 = λ
(∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
+ 2µ

∂u1

∂x1

τ22 = λ
(∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
+ 2µ

∂u2

∂x2

τ33 = λ
(∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3

)
+ 2µ

∂u3

∂x3

τ12 = τ21 = µ
(∂u1

∂x2
+

∂u2

∂x1

)
τ23 = τ32 = µ

(∂u2

∂x3
+

∂u3

∂x2

)
τ13 = τ31 = µ

(∂u3

∂x1
+

∂u1

∂x3

)

(2.35)
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If the strain-displacement relations are substituted into Hooke’s law, and

the expressions for the stresses are subsequently substituted in the stress-

equations of motion, we obtain the displacement equations of motion.

(λ + µ)uj,ji + µui,jj + ρhi = ρüi (2.36)

In the absence of body force

(λ + µ)uj,ji + µui,jj = ρüi (2.37)

The vector equivalent notation of the displacement-equation of motion (2.37)

is:

(λ + µ)∇∇.u + µ∇2u = ρü (2.38)

This system of equations represents three equation, as

(λ + µ)
(∂2u1

∂x2
1
+

∂2u2

∂x1∂x2
+

∂2u3

∂x1∂x3

)
+ µ∇2u1 = ρ

∂2u1

∂t2

(λ + µ)
( ∂2u1

∂x2∂x1
+

∂2u2

∂x2
2
+

∂2u3

∂x2∂x3

)
+ µ∇2u2 = ρ

∂2u2

∂t2

(λ + µ)
( ∂2u1

∂x3∂x1
+

∂2u2

∂x3∂x2
+

∂2u3

∂x2
3

)
+ µ∇2u3 = ρ

∂2u3

∂t2

Equation (2.37) can be easily uncoupled by eliminating two of the three dis-

placement components which results in fourth order partial differential equa-

tions. A convenient way to express the elements of the displacement vec-

tor regarding derivative of the potentials as the potentials satisfy uncoupled

wave equations.

Helmholtz decomposition

Helmholtz decomposition states that the displacement field of a material can

be expressed as the sum of the gradient of a scalar potential φ and the curl of

a vector potential Ψ, as

u =∇φ +∇×Ψ (2.39)
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Substitution of the displacement representation (2.39) into (2.38) yields

(λ + µ)∇∇.[∇φ +∇×Ψ] + µ∇2[∇φ +∇×Ψ] = ρ
∂2

∂t2 [∇φ +∇×Ψ]

Since ∇.∇φ =∇2φ and ∇.∇×Ψ = 0, upon rearranging, we obtain

∇[(λ + 2µ)∇2φ− ρφ̈] +∇× [µ∇2Ψ− ρΨ̈] = 0 (2.40)

Clearly, the displacement representation (2.39) satisfies the equation of mo-

tion if

∇2φ =
1
α2 φ̈

∇2Ψ =
1
β2 Ψ̈

(2.41)

where α and β are the longitudinal (dilatational) and transverse (distorsional)

velocity of component

α =

√
(λ + 2µ)

ρ

β =

√
µ

ρ

(2.42)

Equation (2.41) is uncoupled wave equation. Though the scalar potential φ

and components of the vector potential Ψ are coupled through the boundary

conditions, the use of the displacement decomposition simplifies the analysis.

By selecting the particular appropriate solutions of (2.41) regarding arbitrary

functions or integrals over arbitrary functions, a boundary-initial value prob-

lem can be solved.

It should be noted that (2.39) relates the three components of the displace-

ment vector to four other functions: the scalar potential and the three compo-

nents of the vector potential, as follows:

u1 =
∂φ

∂x1
+

∂ψ3

∂x2
− ∂ψ2

∂x3

u2 =
∂φ

∂x2
− ∂ψ3

∂x1
+

∂ψ1

∂x3

u3 =
∂φ

∂x3
+

∂ψ2

∂x1
− ∂ψ1

∂x2

(2.43)
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The components ψ1,ψ2,ψ3 of the vector potential Ψ satisfy the equations

∇2ψ1 =
1
β2 ψ̈1

∇2ψ2 =
1
β2 ψ̈2

∇2ψ3 =
1
β2 ψ̈3

(2.44)

So, following (2.35), stresses can be written in terms of the displacement

potentials as

τ11 = λ∇2φ + 2µ
[∂2φ

∂x2
1
+

∂

∂x1

(∂ψ3

∂x2
− ∂ψ2

∂x3

)]
τ22 = λ∇2φ + 2µ

[∂2φ

∂x2
2
− ∂

∂x2

(∂ψ3

∂x1
− ∂ψ1

∂x3

)]
τ33 = λ∇2φ + 2µ

[∂2φ

∂x2
3
+

∂

∂x3

(∂ψ2

∂x1
− ∂ψ1

∂x2

)]
τ12 = τ21 = µ

[
2

∂2φ

∂x1∂x2
+

∂

∂x2

(∂ψ3

∂x2
− ∂ψ2

∂x3

)
− ∂

∂x1

(∂ψ3

∂x1
− ∂ψ1

∂x3

)]
τ23 = τ32 = µ

[
2

∂2φ

∂x2∂x3
− ∂

∂x3

(∂ψ3

∂x1
− ∂ψ1

∂x3

)
+

∂

∂x2

(∂ψ2

∂x1
− ∂ψ1

∂x2

)]
τ31 = τ13 = µ

[
2

∂2φ

∂x1∂x3
+

∂

∂x3

(∂ψ3

∂x2
− ∂ψ2

∂x3

)
+

∂

∂x1

(∂ψ2

∂x1
− ∂ψ1

∂x2

)]

2.2 steady-state two-dimensional wave

Consider the elastic half-space depicted in Fig.2.3. The material is assumed

Fig. 2.3: An elastic half space
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to be unbounded to the bottom of the infinite plane boundary. A Cartesian

coordinate system is oriented with the negative x3 direction pointing into the

material and the x1− x2 plane coincident with the perimeter of the half space.

Assume that the motion of the material is described by the displacement field

as:

u1 = u1(x1, x3, t),

u2 = 0,

u3 = u3(x1, x3, t)

(2.45)

Thus the motion is two-dimensional: it is independent of the coordinate nor-

mal to the plane (x1 − x3), and the component of the displacement normal

to the plane is zero. This type of motion is called plane strain. Applying this

condition in (2.43) gives,

u1 =
∂φ

∂x1
− ∂ψ2

∂x3
,

u3 =
∂φ

∂x3
+

∂ψ2

∂x1

(2.46)

Where φ = φ(x1, x3, t) and ψ2 = ψ2(x1, x3, t). The potentials φ and ψ2 are

governed by the following wave equations

∂2φ

∂t2 = α2
(∂2φ

∂x2
1
+

∂2φ

∂x2
3

)
,

∂2ψ2

∂t2 = β2
(∂2ψ2

∂x2
1
+

∂2ψ2

∂x2
3

) (2.47)

Let us assume a solution of the equation of potential φ that is harmonic, or

oscillatory function of time:

φ = f (x3)ei(k1x1−ωt) (2.48)

Where the wave number is k1, the frequency ω is prescribed and the arbi-

trary function f (x3) must be determined. Assume that the solution for the

potential φ has the form of a steady state wave propagating in the positive
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x1 direction. Substituting this expression into (2.47) returns that the function

f (x3) must satisfy the ordinary differential equation

d2 f (x3)

dx2
3

+
(ω2

α2 − k2
1

)
f (x3) = 0 (2.49)

The solution of this equation result in solutions for φ that have very different

characters depending on whether ω2/α2 > k2
1 or ω2/α2 < k2

1. Consider only

the first case where the plane waves propagating in the x1 − x3 plane. It is

convenient to use the complex exponential function to write the solution of

(2.49):

f (x3) = Aeik3x3 + Be−ik3x3

where A and B are constants and

k3 =

√
ω2

α2 − k2
1

Substituting this form of the solution for f (x3) into (2.48), the solution be-

comes

φ = Aei(k1x1+k3x3−ωt) + Bei(k1x1−k3x3−ωt) (2.50)

The first term of (2.50) describes a plane wave equation. At any time t the

value of φ is constant on planes defined by the equation

k1x1 + k3x3 = constant

Consider two successive peaks of a plane wave having wavelength λ, propa-

gating in x1 − x3 plane at an angle of θ to the horizontal direction with wave

speed α. The wavelength is related to the wave number k by λ = 2π/k. Using

Fig. (2.4), the wave number k1 and k3 can be written as:

k1 =
2π

λ1
=

2π

λ
cosθ = k cosθ,

k3 =
2π

λ3
=

2π

λ
sinθ = k sinθ

where the wave number k = ω/α. With this result, first part of (2.50) can be
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Fig. 2.4: Lines along two succeeding peaks of the plane wave

expressed in terms of the propagation direction θ as:

φ = Aei(kx1 cosθ+kx3 sinθ−ωt) (2.51)

From (2.46), the components of the displacement field of the steady state

compressional wave illustrated as

u1 =
∂φ

∂x1
= ikAcosθei(kx1 cosθ+kx3 sinθ−ωt),

u3 =
∂φ

∂x3
= ikAsinθei(kx1 cosθ+kx3 sinθ−ωt)

From these expressions, it is found that the displacements of the points of the

material are parallel to the propagation direction of the compressional wave.

Equation (2.51) is a convenient expression for a plane compressional wave

with propagation direction θ relative to the x1 axis.

An expression of solution for a plane shear wave with propagation direction

θ with x1 axis can be assumed in the same fashion for the potential ψ2, as:

ψ2 = Cei(kSx1 cosθ+kSx3 sinθ−ωt) (2.52)
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where C is a constant and the wave number kS = ω/β. From (2.46), the

components of the displacement field of the steady state compressional wave

illustrated as

u1 = −
∂ψ2

∂x3
= −ikSC sinθei(kSx1 cosθ+kSx3 sinθ−ωt),

u3 =
∂ψ2

∂x1
= ikSC cosθei(kSx1 cosθ+kSx3 sinθ−ωt)

These expressions show the displacements of the points of the material are

parallel to the propagation direction of the shear wave.

2.2.1 Reflection of compressional wave

Consider the elastic half space, and take the assumption that a plane com-

pressional wave with known frequency and known complex amplitude prop-

agates toward the free boundary of the half space shown in Fig.2.5. The

Fig. 2.5: Elastic half space with a plane compressional wave incident on the
boundary

equation of such propagating waves can be expressed with a potential as:

φ = Iei(kx1 cosθ+kx3 sinθ−ωt) (2.53)
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where I is the complex amplitude an the wave number k = ω/α. The wave

propagates in the positive x1 and positive x3 direction. The boundary of the

geometry is stress free:

[τijni]x3=0 = 0

The unit vector normal to the boundary has components n1 = 0,n2 = 0,n3 = 1,

so from this condition stress boundary conditions become

[τ13]x3=0 = 0,

[τ23]x3=0 = 0,

[τ33]x3=0 = 0

That is, the normal stress and the two components of shear stress on the

boundary is zero. For the two dimensional motion consideration, the stress

component τ23 is identically zero. The displacement field must satisfy the

other two boundary condition, returns as:

[τ13]x3=0 =
[
µ
(∂u1

∂x3
+

∂u3

∂x1

)]
x3=0

= 0,

[τ33]x3=0 =
[
λ

∂u1

∂x1
+ (λ + 2µ)

∂u3

∂x3

]
x3=0

= 0
(2.54)

The boundary conditions can be satisfied by taking the assumptions that the

incident compressional wave causes a reflected compressional and a reflected

shear wave, and therefore the compressional potential φ and the shear poten-

tial ψ2 becomes:

φ = Iei(kx1 cosθ+kx3 sinθ−ωt) + Pei(kx1 cosθP−kx3 sinθP−ωt),

ψ2 = Sei(kSx1 cosθS−kSx3 sinθS−ωt)
(2.55)

where P and S are the complex amplitude of the reflected compressional and

shear waves. The propagation direction is θP and θS respectively. The wave

number of reflected shear wave kS can be defined by kS = ω/β. Reflected

waves propagate in the positive x1 and positive x3 direction. Substituting
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Fig. 2.6: The reflected compressional and shear wave

(2.55) into (2.46), the displacement field can be written as

u1 = (u1)I + (u1)P + (u1)S

= iIk cosθei(kx1 cosθ+kx3 sinθ−ωt) + iPk cosθPei(kx1 cosθP−kx3 sinθP−ωt)

+ iSkS sinθSei(kSx1 cosθS−kSx3 sinθS−ωt),

u3 = (u3)I + (u3)P + (u3)S

= iIk sinθei(kx1 cosθ+kx3 sinθ−ωt) − iPk sinθPei(kx1 cosθP−kx3 sinθP−ωt)

+ iSkS cosθSei(kSx1 cosθS−kSx3 sinθS−ωt)

(2.56)

where the subscripts I, P, and S refer to the incident, compressional, and

shear waves.

2.2.2 Reflection of shear wave

Assume that a plane shear wave with known frequency and known complex

amplitude is incident on the free boundary of an elastic half-space at an angle

of θ with x1 axis. For a particular range of value of the propagation direction,

assuming that, the incident wave causes a reflected shear wave with prop-

agation direction θS and a reflected compressional wave with propagation

direction θP, as shown in Fig.2.7. The compressional and the shear potential
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Fig. 2.7: Elastic half space with a plane shear wave incident on the boundary

can be written as:

φ = Pei(kPx1 cosθP−kPx3 sinθP−ωt),

ψ2 = Iei(kx1 cosθ+kx3 sinθ−ωt) + Sei(kx1 cosθS−kx3 sinθS−ωt)
(2.57)

where I, P, and S are the complex amplitude of the incident, reflected com-

pressional and shear waves. The wave numbers k = ω/β and kP = ω/α. From

these potentials, displacement field can be obtained as

u1 = (u1)P + (u1)I + (u1)S

= iPkP cosθPei(kPx1 cosθP−kPx3 sinθP−ωt) − iIk sinθei(kx1 cosθ+kx3 sinθ−ωt)

+ iSk sinθSei(kx1 cosθS−kx3 sinθS−ωt),

u3 = (u3)P + (u3)I + (u3)S

= −iPkP sinθPei(kPx1 cosθP−kPx3 sinθP−ωt) + iIk cosθei(kx1 cosθ+kx3 sinθ−ωt)

+ iSk cosθSei(kx1 cosθS−kx3 sinθS−ωt)

(2.58)

where the subscripts I, P, and S refer to the incident, compressional, and

shear waves.
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2.3 lamb waves

Consider the propagation of two-dimensional (2D) steady state waves along

a plate of elastic material with stress-free surfaces (Fig.2.8). The displacement

Fig. 2.8: A plate of elastic material with free surfaces

field of two dimensional motion in terms of scalar potential φ and ψ2 is quite

similar stated in (2.45) and (2.46). Assume solutions for φ and ψ2 that describe

a steady state wave propagating along a plate:

φ = f (x3)ei(k1x1−ωt),

ψ2 = g(x3)ei(k1x1−ωt)
(2.59)

Substituting these equations into (2.47), the functions f (x3) and g(x3) can be

written as follows

f (x3) = AsinkPx3 + BcoskPx3,

g(x3) = C sinkSx3 + D coskSx3
(2.60)

where

kP =

√
ω2

α2 − k2
1,

kS =

√
ω2

β2 − k2
1
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The resulting solutions for φ and ψ2 are

φ = (AsinkPx3 + BcoskPx3)ei(k1x1−ωt),

ψ2 = (C sinkSx3 + D coskSx3)ei(k1x1−ωt)
(2.61)

where A, B,C, D are four constants determined by the boundary conditions.

α and β are the velocities of compressional and shear modes, respectively,

defined in (2.42). It can be seen that Lamb waves are the superposition of

compressional and shear waves. An infinite number of modes exist simulta-

neously, superimposing on each other between the upper and lower surfaces

of the plate, finally leading to well-behaved guided waves (Fig.2.9).

Fig. 2.9: Wave propagation in a thin plate as a result of superimposing of
compressional and shear waves

Let use the solutions (2.61) to determine the displacement components:

u1 = [ik1(AsinkPx3 + BcoskPx3)− kS(C coskSx3 − D sinkSx3)]ei(k1x1−ωt),

u3 = [kP(AcoskPx3 − BsinkPx3) + ik1(C sinkSx3 + D coskSx3)]ei(k1x1−ωt)

(2.62)

The term containing A and D describe the antisymmetric distributions of

u1 with respect to the centerline of the plate. On the other hand, the term

containing B and C describe the symmetric distributions (Fig.2.10). In the

same way, distribution of u3 is also follow the symmetric and antisymmetric

pattern with respect to the mid plane of the plate (Fig.2.11). Consider the
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Fig. 2.10: (a) Antisymmetric and (b) symmetric distributions of u1

Fig. 2.11: (a) Symmetric and (b) Antisymmetric distributions of u3

part of the solutions for φ and ψ2 that result in a symmetric distribution of

u1:

φ = BcoskPx3ei(k1x1−ωt),

ψ2 = C sinkSx3ei(k1x1−ωt)
(2.63)

The resulting expressions for u1 and u3 are

u1 = [ik1BcoskPx3 − kSC coskSx3]ei(k1x1−ωt),

u3 = [−kPBsinkPx3 + ik1C sinkSx3]ei(k1x1−ωt)
(2.64)

the boundary conditions at the free surfaces of the plate are

[τ13]x3=±h =
[
µ
(∂u1

∂x3
+

∂u3

∂x1

)]
x3=±h

= 0,

[τ33]x3=±h =
[
λ

∂u1

∂x1
+ (λ + 2µ)

∂u3

∂x3

]
x3=±h

= 0
(2.65)
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With the aid of (2.64), the first condition of (2.65) can be expressed as

[
µ
{ ∂

∂x3

(
(ik1BcoskPx3 − kSC coskSx3)ei(k1x1−ωt)

)
+

∂

∂x1

(
(−kPBsinkPx3

+ik1C sinkSx3)ei(k1x1−ωt)
)}]

x3=±h
= 0[

µ
{
(−ik1kPBsinkpx3 + k2

SC sinksx3)ei(k1x1−ωt) + (−kPBsinkPx3+

ik1C sinksx3)ik1ei(k1x1−ωt)
}]

x3=±h
= 0

which further reduces to

−2ik1kPBsinkPh + (k2
S − k2

1)C sinkSh = 0

−2ik1kPBsinkPh + (ω2/β2 − 2k2
1)C sinkSh = 0

(2.66)

Similarly, from (2.64) and the second condition of (2.65),

[
λ
{ ∂

∂x1

(
(ik1BcoskPx3 − kSC coskSx3)ei(k1x1−ωt)

)}
+ (λ + 2µ)

{ ∂

∂x3(
(−kPBsinkPx3 + ik1C sinkSx3)ei(k1x1−ωt)

)}]
x3=±h

= 0[
λ
{
(ik1BcoskPx3 − kSC coskSx3)ik1ei(k1x1−ωt)

}
+ (λ + 2µ)

{
(−k2

PBcoskPx3

+ik1kSC coskSx3)ei(k1x1−ωt)
}]

x3=±h
= 0

inserting the condition further reduces the equation as

{−λk2
1 − (λ + 2µ)k2

P}BcoskPh + 2µik1kSC coskSh = 0

{2µk2
1 − (λ + 2µ)ω2/α2}BcoskPh + 2µik1kSC coskSh = 0

(2.67)

Equation (2.66) and (2.67) leaves two homogeneous equations in terms of B

and C:[
{2µk2

1 − (λ + 2µ)ω2/α2}coskPh 2iµk1kS coskSh

−2ik1kP sinkPh (ω2/β2 − 2k2
1)sinkSh

][
B

C

]
= 0 (2.68)
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This eigenvalue problem has a nontrivial solution for B and C only if the

determinant of the coefficients is equal to zero.

{2µk2
1 − (λ + 2µ)ω2/α2}(ω2/β2 − 2k2

1)coskPhsinkSh

− 4µk2
1kPkS coskShsinkPh = 0 (2.69)

The frequency equation becomes

tankSh
tankPh

= −
4kPkSk2

1
(k2

1 − k2
S)

2
(2.70)

This is the Rayleigh-Lamb frequency equation for the propagation of the sym-

metric waves in a plate.

Now consider the part of the solutions for φ and ψ2 from (2.61) that result in

an antisymmetric distribution:

φ = AsinkPx3ei(k1x1−ωt),

ψ2 = D coskSx3ei(k1x1−ωt)
(2.71)

Following (2.62), inserting the antisymmetric condition leaves the expression

for u1 and u3 as:

u1 = [ik1AsinkPx3 + kSD sinkSx3]ei(k1x1−ωt),

u3 = [kP AcoskPx3 + ik1D coskSx3]ei(k1x1−ωt)
(2.72)

Inserting the equation (2.72) in stress free boundary condition (2.65) gives

two homogeneous equations in terms of A and D;[
2ik1kP coskPh (ω2/β2 − 2k2

1)coskSh

{2µk2
1 − (λ + 2µ)ω2/α2}sinkPh −2iµk1kS sinkSh

][
A

D

]
= 0 (2.73)

Further reduces of this equation turn out as a frequency equation:

tankSh
tankPh

= −
(k2

1 − k2
S)

2

4kPkSk2
1

(2.74)
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This gives the Rayleigh-Lamb equation for antisymmetric waves in a plate.

We may combine the frequency equations for symmetric and antisymmetric

waves into a single equation given by

tankSh
tankPh

+
[ 4kPkSk2

1
(k2

1 − k2
S)

2

]±1
= 0 (2.75)

where +1 is for symmetric and −1 is for antisymmetric.

The frequency equations have an infinite number of roots whereas each root

yields a propagation mode that satisfies the boundary conditions at the free

surfaces of the plate. The symbols Si and Ai (i = 0,1 · · · ) stand for the sym-

metric and antisymmetric Lamb modes, respectively, with the subscript being

the order and in particular S0 and A0 being the lowest-order (fundamental

order) symmetric and antisymmetric lamb modes, respectively.

The schematics of particle motion in the symmetric and antisymmetric Lamb

wave modes are plotted in Fig.2.12, indicating the displacement direction of

Fig. 2.12: Lamb wave

particles and resulting motion. Si modes predominantly have radial in-plane

displacement direction of particles, and in contrast, Ai modes mostly have

out-of-plane displacement. Thats because a symmetric wave mode is often

described as compressional, showing thickness bulging and contracting; and

an antisymmetric mode is known as flexural, presenting contact thickness

flexing.

The propagation of Lamb waves can be characterized by phase (vp) and group
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(vg) velocity. The phase velocity is referred to as the propagation speed of the

wave phase of a particular frequency contained in the overall wave signals,

which can be linked with the wavelength. The group velocity is referred to

as the velocity with which the overall shape of the amplitudes of the wave

propagates through space (the velocity of wave energy transportation).

2.4 velocity dispersion of lamb waves

As with most guided waves, Lamb waves are dispersive; that is, their velocity

of propagation depends on wave frequency (or wavelength), plate thickness

and as well as on the elastic constants and density of the material. This

phenomenon is called dispersion. The graphic depiction of solutions of the

dispersion equations is called dispersion curves. The Lamb wave dispersion

equation (2.75) does not generally offer analytical solutions, rather in most

cases can only be solved using graphic or numerical methods. Steps are given

below, followed to numerically solve the equation to achieve the dispersion

curves numerically [76].

1. an initial frequency-thickness product ( f .h)0 is chosen;

2. made an initial estimate of the velocity (vp)0;

3. evaluated the signs of each of the left-hand sides of equation (2.75) by

assuming they are not equal to zero;

4. chosen another velocity (vp)1 > (vp)0 and re-evaluated the signs of equa-

tion (2.75);

5. steps 3 and 4 are repeated carefully until the sign changes. A root

must exist in the interval where a sign change occurs, as the functions

involved are continuous. Assumed that it occurred between velocities

(vp)n and (vp)n+1;

6. used bisection method to locate the root precisely in the interval (vp)n <

(vp) < (vp)n+1;

7. continued the process at the current ( f .h) for other roots; and

8. chosen another ( f .h) and repeated the steps through 2 to 7.
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As an example, for the mechanical properties of steel plate (E = 205 GPa,ν =

0.27, and ρ = 7800 kg/m3), the dispersion curves of various Lamb wave

in accordance with following above steps are depicted in Fig.2.13. Such

Fig. 2.13: Fundamental order Lamb wave dispersion curves in a steel plate of
1.00 mm in thickness

curves are used to describe and predict the relationship between frequency,

phase/group velocity, and thickness. The fundamental mode symmetrical

and anti-symmetrical modes deserve special attention as they are the only

modes exist over the entire frequency spectrum. Moreover, in practical situa-

tions, they carry more energy than higher-order modes. Fig. 2.13 illustrated

that the antisymmetric mode is high dispersive in the low-frequency regime.

2.5 lamb waves in multiple layer

Elastic waves in composite laminates is become also a matter of great interest

nowadays as its applications in various engineering sectors increased expo-

nentially. Considering a plate comprised of homogeneous layers, the propa-

gation of Lamb waves inside the plate includes not only scattering at the up-
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per and lower boundary but reflection and refraction between layers might

occur. Expanding (2.38) to an N-layered laminate, the displacement field u,

within each layers much satisfy the Navier’s displacement equations[77], and

for nth layer

µn∇2un + (λn + µn)∇(∇.un) = ρn ∂2un

∂t2 (n = 1,2, ·N) (2.76)

Variables in the above equation are distinguished by the superscript for each

individual layer. Equation (2.39) is the most efficient way to decompose the

displacement fields, and further to obtain the displacement, strain and stress

in each individual layer, as detailed elsewhere [77][20].

51



3
A N I S O T R O P I C WAV E P R O PA G AT I O N

The wave propagation in anisotropic media is different to the simplest model,

the isotropic case. The most significant difference between this two class

holds the directional dependent velocity of wave propagation. Furthermore,

unlike the isotropic case, three modes are available in wave propagation: L

(longitudinal/compressional), SV (shear-vertical) and SH (shear-horizontal)

waves (Fig.3.1). The particle vibration of such modes is neither parallel nor

Fig. 3.1: Waves in solids

perpendicular to the propagation direction. These cases are referred to as

quasi-longitudinal and quasi-shear. The wavefronts of the quasi-modes do

not lie normal to the energy propagating direction, and thus the phase and

group velocities do not coincide with each other. Among all of the classes

in anisotropy, Transversely Isotropic (TI) medium is the most simple class. A

TI medium is characterized by the existence of a single plane of isotropy and

one single axis of rotational symmetry which is normal to the isotropic plane.

All of the planes containing the axis of symmetry represents a plane of mirror

symmetry. An example of a TI material is the on-axis unidirectional fiber com-

posite lamina with the fibre are circular in cross section. A TI medium with
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a vertical axis of symmetry leads to a horizontal plane of isotropy is called

a Vertical Transverse Isotropic (VTI) medium. The medium with the symmetry

axis tilted with respect to the earth’s surface is called Tilted Transversal Isotropic

(TTI) medium. Tilting the symmetry axis all the way up to the surface pro-

duces a Horizontal Transversal Isotropic (HTI) medium [93][11](Fig.3.2). Both

Fig. 3.2: HTI model due to a system of parallel vertical cracks

VTI and HTI media can be treated as the special cases of the orthorhombic

symmetry class. The wave propagation velocity in TI media can be computed

from the material density and the stiffness tensor that relates elastic stress and

strain. In case of TI media (both VTI and HTI) the number of independent

component in stiffness matrix is 5. The reduction process for HTI media is

discussed thoroughly in the next section.

3.1 anisotropic symmetry classes

Recall (2.29), The generalized Hooke’s law for a material is given as

τij = Cijklεkl (i, j,k, l = 1,2,3) (3.1)

where,
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• τij is a second order tensor called stress tensor (9 components).

• εkl is second order tensor known as strain tensor (9 components).

• Cijkl is a fourth order tensor known as stiffness tensor (34 = 81 indepen-

dent elements). The individual elements are referred by various names

as elastic constants.

To solve the above equation for strains in terms of stresses, the determinant

of the stiffness matrix must be nonzero.

Stress tensor offers symmetric characteristics, that is, τij = τji. Thus there are

six independent stress components. Hence from (3.1),

τji = Cjiklεkl (3.2)

Subtracting (3.2) from (3.1) leads to the following equation

Cijkl = Cjikl

There are six independent ways to express i and j reduces the number of

independent stiffness component from 81 to 54, when l and k remain fixed.

Symmetric behavior of strain component can be expressed as εkl = ε lk. So the

Hooke’s law can be written focussing on this symmetric behavior as

τji = Cjilkε lk

which returns

Cijkl = Cjilk

Therefore six independent ways of expressing l and k leads to the reduction

of independent stiffness component to 36, when i and j remain fixed. With

54



this reduced number of independent stress, strain and stiffness components,

matrix form of the Hooke’s law can be written as

τ11

τ22

τ33

τ23

τ13

τ12


=



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212





ε11

ε22

ε33

2ε23

2ε13

2ε12


The identical system of equations can be written in a two-subscript notation

(usually called Voigt notation) as follows:

τi = Cijε j (3.3)

where,

τ1 = τ11 ε1 = ε11

τ2 = τ22 ε2 = ε22

τ3 = τ33 ε3 = ε33

τ4 = τ23 ε4 = 2ε23

τ5 = τ31 ε5 = 2ε31

τ6 = τ12 ε6 = 2ε12

Equation (3.3) can be expressed in matrix form as:

τ1

τ2

τ3

τ4

τ5

τ6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1

ε2

ε3

ε4

ε5

ε6


(3.4)
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Equation (3.4) can be inverted so that the strains are given in terms of the

stresses: 

ε1

ε2

ε3

ε4

ε5

ε6


=



S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66





τ1

τ2

τ3

τ4

τ5

τ6


(3.5)

Where Sij’s are called the compliances and the matrix of compliances is called

the compliance matrix. The number of independent elastic constants can be

reduced further, if there exists a strain energy density function W.

The Strain Energy Density Function W is given as

W =
1
2

Cijεiε j

with the property

τi =
∂W
∂εi

A material with existence of W with the above property is called as Hyperelas-

tic Material. For this kind of material, we can write,

W =
1
2

Cjiε jεi

which leads to the identity Cij = Cji. Thus, the stiffness matrix is symmetric.

This symmetric matrix has 21 independent elastic constants. The material

with 21 independent elastic constants is called as Anisotropic Material, and

this is the most general case, called by Triclinic media. The stiffness matrix is

given as follows:

CTRI =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

symmetric C66


(3.6)
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Material symmetry

It should be recalled that both the stress and strain tensor follow transforma-

tion rule and so is the stiffness tensor.

τ′ij = akial jτkl

ε′ij = akial jεkl

C′ijkl = amianjarkaslCmnrs

(3.7)

where aij are the direction cosines from i to j coordinate system. The prime

indicates the quantity in new coordinate system.

When the function W is expanded using the contracted notations for strains

and elastic constants, W has the following form:

W =
1
2
[C11ε2

1 + 2C12ε1ε2 + 2C13ε1ε3 + 2C14ε1ε4 + 2C15ε1ε5 + 2C16ε1ε6

+ C22ε2
2 + 2C23ε2ε2 + 2C24ε2ε4 + 2C25ε2ε5 + 2C26ε2ε6

+ C33ε2
3 + 2C34ε3ε4 + 2C35ε3ε5 + 2C36ε3ε6 + C44ε2

4

+ 2C45ε4ε5 + 2C46ε4ε6 + C55ε2
5 + 2C56ε5ε6 + C66ε2

6] (3.8)

The function W has the following form in terms of strain components:

W = W[ε2
1, ε1ε2, ε1ε3, ε1ε4, ε1ε5, ε1ε6, ε2

2, ε2ε2, ε2ε4, ε2ε5, ε2ε6,

ε2
3, ε3ε4, ε3ε5, ε3ε6, ε2

4, ε4ε5, ε4ε6, ε2
5, ε5ε6, ε2

6] (3.9)

With the above mentioned concept, consider some special cases of material

symmetry.

Symmetry with respect to a plane

Let assume that the anisotropic material has only one plane of mate-

rial symmetry. A material with one plane of material symmetry is called

as Monoclinic material. Monoclinic symmetry has been identified from seis-

mic measurement[101]. An exciting example of monoclinic medium with

a vertical symmetry plane is that of a single vertical system of rotationally
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non-invariant fractures with micro-corrugated faces in isotropic host rock

[11]. Consider the x1 − x2(x3 = 0) plane as the plane of material symme-

Fig. 3.3: Material behavior symmetric with a plane

try (Fig.3.3). This symmetry can be formulated with the change of axes as

follows: 
x′1
x′2
x′3

 =


1 0 0

0 1 0

0 0 −1




x1

x2

x3


With this change of axes,

∂x′i
∂xj

= δij j = 1,2

∂x′i
∂x3

= −δi3

So, the transformed strain tensor can be written as

ε′11 = ε11,

ε′22 = ε22,

ε′33 = ε33,

ε′23 = −ε23,

ε′13 = −ε13,

ε′12 = ε12
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Now, the function W can be expressed in terms of the strain components ε′ij.

If W is to be invariant, then it must be of the form

W = W[ε2
1, ε2

2, ε2
3, ε2

4, ε2
5, ε2

6, ε1ε2, ε1ε3, ε1ε6, ε2ε3, ε2ε6, ε3ε6, ε4ε5]

Comparing this with equation (3.9), it can be concluded that

C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0

Thus, a monoclinic material can be characterized by 13 independent elastic

components. With this reduced number of independent elastic components,

stiffness matrix becomes

CMONO =



C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

C55 0

symmetric C66


(3.10)

The number of independent stiffness can be reduced from 13 to 12 by aligning

the horizontal coordinate axes with the polarization vectors of the vertically

propagating shear waves, which eliminates the element C45 [40].

Symmetry with respect to two orthogonal plane

Assume that the material under consideration has one more plane, say

x2 − x3 is plane of material symmetry along with x1 − x2 as in previous one

(Fig.3.4). These two planes are orthogonal to each other. This can be mathe-

matically formulated by the change of axes as
x′1
x′2
x′3

 =


−1 0 0

0 1 0

0 0 −1




x1

x2

x3
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Fig. 3.4: Material behavior symmetric with two orthogonal plane

This change of axis causes

∂x′i
∂xj

= −δij j = 1,3

∂x′i
∂x2

= δi2

This gives us the required strain relations as

ε′11 = ε11,

ε′22 = ε22,

ε′33 = ε33,

ε′23 = −ε23,

ε′13 = ε13,

ε′12 = −ε12

We can get the function W simply by substituting ε′ij in place of εij and using

contracted notations for the strains

W = W[ε2
1, ε2

2, ε2
3, ε2

4, ε2
5, ε2

6, ε1ε2, ε1ε3, ε2ε3]

From this, it is easy to see that

C16 = C26 = C36 = C45 = 0
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Thus, the number of independent constants reduces to 9. The resulting stiff-

ness matrix is given as

CORTHO =



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

symmetric C66


(3.11)

An Orthotropic material has two orthogonal planes as plane of symmetry. Usu-

ally, when two orthogonal planes are planes of material symmetry, the third

mutually orthogonal plane is also plane of material symmetry. This type of

medium can be caused by two or three mutually orthogonal fracture systems

or two identical system of fractures making an arbitrary angle with each other.

For such material, equation (3.5) can be re-write in terms of E, ν, and G as:

ε1

ε2

ε3

ε4

ε5

ε6


=



1
E1

− ν21
E2
− ν31

E3
0 0 0

− ν12
E1

1
E2

− ν32
E3

0 0 0

− ν13
E1
− ν23

E3
1

E3
0 0 0

0 0 0 1
2G23

0 0

0 0 0 0 1
2G13

0

0 0 0 0 0 1
2G12





τ1

τ2

τ3

τ4

τ5

τ6


(3.12)

The nine independent constants of (3.12) have the following meanings:

• Ei is the Young’s modulus of the material in direction i = 1,2,3; for ex-

ample, τ1 = E1ε1 for uniaxial tension in the direction 1.

• νij is the Poisson’s ratio representing the ratio of a transverse strain to

the applied strain in uniaxial tension; for example, ν12 =−ε2/ε1 for uni-

axial tension in the direction 1.

• Gij is the shear moduli representing the shear stiffness in the corre-

sponding plane; for example, G12 is the shear stiffness for shearing in

the 1− 2 plane.
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From symmetry of the stiffness matrix,

ν23E3 = ν32E2

ν13E3 = ν31E1

ν12E2 = ν21E1

HTI media

This is obtained from an orthotropic material. We develop the constitu-

tive relation for a material with transverse isotropy in x2 − x3 plane. This is

obtained with the following form of the change of axes:
x′1
x′2
x′3

 =


1 0 0

0 cosΘ sinΘ

0 −sinΘ cosΘ




x1

x2

x3


Now, we have

∂x′1
∂x1

= 1

∂x′2
∂x2

=
∂x′3
∂x3

= cosΘ

∂x′2
∂x3

= −∂x′3
∂x2

= sinΘ

∂x′1
∂x2

= −
∂x′1
∂x3

=
∂x′2
∂x1

= −∂x′3
∂x1

= 0

From this, the strains in transformed coordinate system are given as:

ε′11 = ε11

ε′22 = ε22 cos2 Θ + 2ε23 cosΘsinΘ + ε33 sin2 Θ

ε′33 = ε22 sin2 Θ− 2ε23 cosΘsinΘ + ε33 cos2 Θ

ε′23 = (ε33 − ε22)cosΘsinΘ + ε23(cos2 Θ− sin2 Θ)

ε′13 = (−ε12 sinΘ + ε13)cosΘ

ε′12 = (−ε12 cosΘ + ε13)sinΘ
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Here, it is to be noted that the shear strains are the tensorial shear strain

terms. For any angle of θ

ε′22 + ε′33 = ε22 + ε33

ε′22ε′33 − (ε′23)
2 = ε22ε33 − (ε23)

2

(ε′12)
2 + (ε′13)

2 = (ε12)
2 + (ε13)

2

and therefore, W must reduce to the form

W = W(ε22 + ε33, ε22ε33 − ε2
23, ε33, ε2

12 + ε2
13, |εij|)

Now, substitute above equations in the function W using the Cij matrix as

given in equation (3.11) and express in terms ε′ij. Then, for W to be invariant

follow the following:

• If we observe the term containing (ε11)
2 and (ε′11)

2 then we conclude

that C11 is unchanged.

• Now compare the terms containing ε12, ε13 and ε′12, ε′13. From this com-

parison we see that C55 = C66.

• Now compare the terms containing ε22, ε33, ε23 and ε′22, ε′33, ε′23. This com-

parison leads to C12 = C13, C22 = C33 and C44 =
1
2(C22 − C23) and C23 is

unchanged. We can write, C23 = C33 − 2C44.

Thus, for transversely isotropic material with x1 as plane of symmetry (in

plane x2 − x3) the stiffness matrix becomes as:

CHTI =



C11 C12 C12 0 0 0

C22 C23 0 0 0

C22 0 0 0
C22−C23

2 0 0

C55 0

symmetric C55


(3.13)
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Thus there are only 5 independent elastic constants for a HTI medium. Equa-

tion (3.12) can be written with a horizontal axis of symmetry:

ε1

ε2

ε3

ε4

ε5

ε6


=



1
E1

− ν12
E2
− ν31

E2
0 0 0

− ν12
E2

1
E2

− ν32
E2

0 0 0

− ν13
E2
− ν23

E2
1

E2
0 0 0

0 0 0 1
2G23

0 0

0 0 0 0 1
2G13

0

0 0 0 0 0 1
2G13





τ1

τ2

τ3

τ4

τ5

τ6


(3.14)

3.2 plane waves in hti media

Phase velocity

Analytical description of plane waves in HTI started with considering the

equation of motion by dropping the body force. Expressing the tractions

acting across the surface of that volume in terms of the stress tensor τij yields

ρüi = τij,j

Generalized Hooke’s law can be termed as:

τij = Cijklεkl

Here, Cijkl is the fourth order stiffness tensor responsible for the material

properties, and εkl is the strain tensor and can be defined as

εkl =
1
2
(uk,l + ul,k)

Restricting the wave propagation theory to linearly elastic media by adopting

Hooke’s law is the most crucial simplifying assumption in both isotropic and

anisotropic wave propagation. Substituting Hooke’s law and the definition of
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strain tensor into the general wave equation, and assuming that the stiffness

coefficients are either constant or vary slowly in space, we find:

ρüi = Cijkl
∂εkl
∂xj

=
1
2

Cijkl
∂

∂xj
(uk,l + ul,k)

=
1
2

Cijkl(uk,jl) +
1
2

Cijkl(ul,jk)

Since the tensor Cijkl is symmetrical with respect to the suffixes k and l, we

can interchange these in the first term, which then becomes identical with the

second term. Thus the equation of motion becomes

ρüi = Cijkluk,jl

The above-mentioned equation is valid for elastic, arbitrary anisotropic, and

homogeneous media. A solution to this equation can be assumed to take

the form of a plane wave. This assumption is useful because any wave field

can be described as a superposition of plane waves. The displacement of a

particle at time t and distance x1 due to a one-dimensional plane wave can

be described using:

u1(x1, t) = Acos(k1x1 −ωt) (3.15)

where A is the wave amplitude, ω is the angular frequency, and k is the wave

number vector, related with the phase velocity (v) by ω = kv. This is often

expressed in exponential form using Euler’s formula (eix = cos(x) + i sin(x))

as:

u1(x1, t) = Aei(k1x1−ωt) (3.16)

A three-dimensional plane wave in a tensor notation is therefore given by

ui = AUiei(kixi−ωt) (3.17)

where Ui represents the polarization vector U. Differentiating the plane wave

twice with respect to time yields:

üi = ω2AUiei(kixi−ωt) = ω2ui (3.18)
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In a similar way, differentiating the wave equation twice with respect to dis-

tance yields:

uk,jl = k jkluk (3.19)

Combining (3.19) and (3.18) gives:

ρω2ui = Cijklk jkluk (3.20)

The wave vector ki is related to the wavenumber k through:

ki = kni (3.21)

where ni represents the wavefront propagation direction. Using the definition

of phase velocity (k = ω/v) and equation (3.20) yields:

Cijklnjnluk = ρv2ui (3.22)

Introducing Christoffel symbol, Gik =Cijklnjnl, which depends on the medium

properties (stifness) and the direction of wave propagation, (3.22) can be writ-

ten in the following form:

Gikuk = ρv2ui (3.23)

Following the properties of the stiffness tensor (Cijkl = Cklij), the Christoffel

matrix is symmetric (Gik = Gki). By considering 3D space as the space of all

vectors, equation (3.23) can be considered as the eigenvalue problem, where

ρv2 is a constant called the eigenvalue and U is the associated eigenvector

[63]. Thus, we can write:

[Gik − ρv2IM]


U1

U2

U3

 = 0M (3.24)

where, 0M is an M× 1 vectors of zeroes. Equation (3.24) is called a homoge-

neous equation because the right-hand side consists of zeros. It has a nontriv-

ial solution (U 6= [0,0, .......,0]T) if and only if the determinant of [Gik− ρv2IM]

is zero, or

|Gik − ρv2IM| = 0 (3.25)
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where

|Gik − ρv2IM| =

∣∣∣∣∣∣∣∣
G11 − ρv2 G12 G13

G21 G22 − ρv2 G23

G31 G32 G33 − ρv2

∣∣∣∣∣∣∣∣ (3.26)

Equation (3.26), also called the characteristics equation, is the polynomial of

order 3 in ρv2. As Gik is symmetric, then all of the roots are real. They

may, however, have repeated values, be negative, or zero. For any given

phase direction n in anisotropic media, (3.26) yields three possible solutions;

each solution represents one wave-type [8] of the phase velocity v, which

corresponds to the longitudinal (P) wave, the fastest mode, and two shear (S)

waves. Therefore, an anisotropic media (all other classes than isotropic) splits

the shear wave into two modes with different velocities and polarization. The

velocities of the split S-waves coincide with each other in specific directions

leads to the shear wave singularities [22][40].

Phase velocities in HTI media can be calculated by proper handling of (3.26),

focusing on the Christoffel matrix.

G = DCDT

where,D =


k1 0 0 0 k3 k2

0 k2 0 k3 0 k1

0 0 k3 k2 k1 0

 (3.27)

C defines the stiffness matrix. The 3 by 6 derivative matrix D, a function

of the wavenumber vector (k1,k2,k3), defines the plane wave propagation

direction under consideration. For any wavenumber vector k, the symmetry

of the matrix DCDT assures that, we can always find three distinct modes

associated with three orthogonal particle-motion directions.

The Christoffel matrix for HTI (symmetry about x1 axis) media becomes:


k1 0 0 0 k3 k2

0 k2 0 k3 0 k1

0 0 k3 k2 k1 0





C11 C12 C12 0 0 0

C22 C22 − 2C44 0 0 0

C22 0 0 0

C44 0 0

C55 0

symmetric C55





k1 0 0

0 k2 0

0 0 k3

0 k3 k2

k3 0 k1

k2 k1 0
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which reduces to
C11k2

1 + C55k2
2 + C55k2

3 (C12 + C55)k1k2 (C12 + C55)k1k3

(C12 + C55)k1k2 C55k2
1 + C22k2

2 + C44k2
3 (C22 − C44)k2k3

(C12 + C55)k1k3 (C22 − C44)k2k3 C55k2
1 + C44k2

2 + C22k2
3


(3.28)

Inserting the concept of wave number vector from (3.21), components of the

christoffel matrix can be written as

G11 = C11n2
1 + C55n2

2 + C55n2
3

G22 = C55n2
1 + C22n2

2 + C44n2
3

G33 = C55n2
1 + C44n2

2 + C22n2
3

G12 = G21 = (C12 + C55)n1n2

G23 = G32 = (C22 − C44)n2n3

G13 = G31 = (C12 + C55)n1n3

(3.29)

In TI media all planes containing the symmetry axis are equivalent, wave

propagation can be studies in single vertical plane. For this study, considering

[x1 − x3]-plane (n2 = 0) gives the following equation from (3.24)
C11n2

1 + C55n2
3 − ρv2 0 (C12 + C55)n1n3

0 C55n2
1 + C44n2

3 − ρv2 0

(C12 + C55)n1n3 0 C55n2
1 + C22n2

3 − ρv2




U1

U2

U3

 = 0

(3.30)

Because in the [x1 − x3]-plane G12 = G21 = G23 = G32 = 0, (3.30) splits into

independent equations for the pure transverse (U1 = U3 = 0) and in-plane

(U2 = 0) particle motion. Expressing the unit vector n in equation (3.30) in

terms of the phase angle θ with the symmetry (x1) axis, i.e. n1 = cosθ,n3 =

sinθ

C11 cos2 θ + C55 sin2 θ − ρv2 0 (C12 + C55)cosθ sinθ

0 C55 cos2 θ + C44 sin2 θ − ρv2 0

(C12 + C55)cosθ sinθ 0 C55 cos2 θ + C22 sin2 θ − ρv2


U1

U2

U3

 = 0 (3.31)

Setting (U1 = U3 = 0) resulting the phase velocity of the transversely polar-

ized mode

vSH(θ) =

√
C55 cos2 θ + C44 sin2 θ

ρ
(3.32)
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Equation (3.32) describes the SH-wave with the polarization vector confined

to the horizontal plane. The another two eigensolutions must be orthogonal

to each other, first and third equation of (3.31) gives the following set:[
C11 cos2 θ + C55 sin2 θ − ρv2 (C12 + C55)sinθ cosθ

(C12 + C55)sinθ cosθ C55 cos2 θ + C22 sin2 θ − ρv2

][
U1

U3

]
= 0 (3.33)

Equation (3.33) depicts that, phase velocity and polarization of P- and SV-

waves depend on four stiffness coefficients (C11,C22,C55,and C12).

The phase velocity thus can be derived by inserting the condition stated in

equation (3.25) into equation (3.33):

2ρv2(θ) = (C11 + C66)cos2 θ + (C33 + C66)sin2 θ

±
√
[(C11 − C66)cos2 θ − (C33 − C66)sin2 θ]2 + 4(C13 + C66)2 sin2 θ cos2 θ

(3.34)

where the plus sign in front of the radical corresponds to the P-wave, and the

minus sign to the SV-wave. If the waves travel along the symmetry (x1) axis

(θ = 0), equation (3.33) further simplifies to[
C11 − ρv2 0

0 C55 − ρv2

][
U1

U3

]
= 0 (3.35)

One of the solutions of (3.35) corresponds to a pure P-wave polarized in the

direction of propagation:

vP(θ=0) =

√
C11

ρ
; U1 = 1,U3 = 0 (3.36)

The other solution is a shear (SV) wave with a horizontal in-plane polarization

vSV(θ=0) =

√
C55

ρ
; U1 = 0,U3 = 1 (3.37)

and from equation(3.32)

vSH(θ=0) =

√
C55

ρ
(3.38)
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Let consider the wave propagating in the x3 direction, that means θ = π/2,

equation (3.35) and (3.32) gives:

vP(θ=π/2) =

√
C22

ρ
U1 = 0,U3 = 1

vSV(θ=π/2) =

√
C55

ρ
U1 = 1,U3 = 0

vSH(θ=π/2) =

√
C44

ρ

(3.39)

Due to the transversal isotropic condition in x2− x3 plane, wave propagating

in the x2 direction follows the same equation as (3.39).

So, in an orthogonal coordinate system, for HTI media with x1 axis as the

symmetrical axis, phase velocities can be observed as


v11 v12 v13

v21 v22 v23

v31 v32 v33

 =


√

C11
ρ

√
C55
ρ

√
C55
ρ√

C55
ρ

√
C22
ρ

√
C44
ρ√

C55
ρ

√
C44
ρ

√
C22
ρ


Although (3.34) is not complicated and can be efficiently used for numeri-

cal computations, it provides the little insight into the dependence of phase

velocity on the elastic properties of the medium. A much more convenient

way to simplify the phase-velocity function in HTI media is to replace the

standard notation by Thomsen parameters [91].

3.3 concept of group velocity

The group velocity (vg) of a wave is the velocity with which the overall shape

of the wave’s amplitudes propagates through space. It determines the di-

rection and speed of energy propagation. The difference between the group

velocity and phase velocity vectors caused by velocity variations with either

frequency or angle. Figure 3.5 shows the group velocity vector in a homoge-

neous medium is aligned with the source receiver direction, in contrast with

that, the phase velocity vector is orthogonal to the wavefront. Because of the
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Fig. 3.5: In a homogeneous anisotropic medium, the group-velocity (ray) vec-
tor points from the source to the receiver (angle ϑ). The corresponding phase-
velocity (wave) vector is orthogonal to the wavefront (angle θ)

presence of anisotropy in the medium, the wavefront is not spherical. Figure

3.6 illustrates that the envelope of a wave packet is propagating with a group

velocity. Auld explains the concept of phase and group velocity by consid-

ering a modulated wave constructed of two waves of slightly different wave

number (k) and angular frequency (ω) [8].

Consider two plane wave propagating in x1 direction with nearly close k and

ω as:

u1
3 = Aei(k1x1−ω1t)

u2
3 = Aei(k2x1−ω2t)

Resultant wave composed of superposition of u1
3 and u2

3:

u3 = u1
3 + u2

3

= Asin(k1x1 −ω1t) + Asin(k2x1 −ω2t)

= 2A
[

sin
(k1 + k2)x1 − (ω1 + ω2)t

2
cos

(k1 − k2)x1 − (ω1 −ω2)t
2

]
= 2A

[
sin
{(k1 + k2

2

)
x1 −

(ω1 + ω2

2

)
t
}

cos
{(k1 − k2

2

)
x1 −

(ω1 −ω2

2

)
t
}]

= 2Asin(kx1 −ωt)cos
(∆k

2
x1 −

∆ω

2
t
)

The first term in this equation is the high frequency carrier wave. The velocity

of the carrier wave can be seen to tend to the phase velocity as the small
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differences in k and ω tend to zero. The second term is the lower frequency

modulation envelope and the group velocity of this envelope is given by:

vg =
∆ω

∆k
→ ∂ω

∂k
(3.40)

So the resultant equation can be expressed as

u3 = 2Asink(x1 − vpt)cos
∆k
2
(x1 − vgt) (3.41)

Rearranging as:

u3 = Z sin(kx1 −ωt) (3.42)

where Z denotes the envelope function of the wave packet and it follows the

characteristics of steady state wave equation.

Fig. 3.6: Wave packet advancing forward in isotropic media, i.e. envelope
and carrier wave forwarding in the same direction

The envelope function carries the information of energy propagation. In

case of the isotropic continuum, the envelope function and the carrier wave

propagating in the same direction (Fig.3.6), whereas in anisotropic media,

they follow the different path.

72



4
M AT E R I A L P R O P E RT I E S A N D
M E C H A N I C S O F C O M P O S I T E
L A M I N AT E S

To make calculations and communication about the laminate easier, choosing

a coordinate system is important. Furthermore, the coordinate system used

for the laminate usually determine its stacking sequence. In this study, the

x-axis is chosen for all 0◦ plies and consequently y-axis for all 90◦ plies. The

angle starts from the x-axis and rotate to the fiber direction of the ply being

defined. Clockwise rotations are positive angles, and counterclockwise rota-

tions are negative angles. The symmetric laminate started with the angle of

outermost ply and written up the ply angles sequentially until the mid-plane,

separated by a comma, subscripted the brackets with an "s". Further simpli-

fication is made with two or more plies of the same orientation are grouped

together. As example: [θ]n means the laminate made-up with n-plies where

each ply having fibre direction of θ◦.
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4.1 properties of material

According to the deduced stiffness matrix in equation (3.13) for HTI elastic

media, the following elastic properties of carbon-epoxy considered in this

study (values are in GPa):

CHTI =



96.0 3.60 3.60 0 0 0

9.60 7.01 0 0 0

9.60 0 0 0

1.23 0 0

3.30 0

symmetric 3.30


(4.1)

Where, the components are related by

C11 =
Et(1− ν2

p)

1− ν2
p − 2νpνpt − νpνptνtp

C22 =
Ep(1− νptνtp)

1− ν2
p − 2νpνpt − νpνptνtp

C23 =
Ep(νp + νptνtp)

1− ν2
p − 2νpνpt − νpνptνtp

C12 =
Ep(νp + νpνtp)

1− ν2
p − 2νpνpt − νpνptνtp

C55 = µt
νtp

Et
=

νpt

Ep

Mass density of the material is taken as 1500 kg/m3. Based on these param-

eters, the calculated fundamental antisymmetric mode phase velocity disper-

sion curve in the fiber direction and perpendicular to the fiber direction for

such material depicted in Fig.4.1. In this study, the frequency of 30 kHz is

considered for analysis. Directional dependence of the phase velocity is a

key property of an anisotropic material. To investigate this criteria for unidi-

rectional ply laminates, the fiber orientation must be transformed to the new

coordinate system. Any cartesian coordinate system (xyz), suppose we trans-

form to a new coordinate system (x′y′z′) (consider both coordinate system
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Fig. 4.1: Calculated A0-mode phase velocity dispersion curves for HTI mate-
rial

share same origin), is obtained by rotating the coordinate axes through an

angle θ about the vertical (z) axis and the direction cosines of such transfor-

mation matrix can be written as:
cosθ sinθ 0

−sinθ cosθ 0

0 0 1


For a 4th order matrix, the transformation matrix becomes [12]

T =



cos2 θ sin2 θ 0 0 0 2sinθ cosθ

sin2 θ cos2 θ 0 0 0 −2sinθ cosθ

0 0 1 0 0 0

0 0 0 cosθ −sinθ 0

0 0 0 sinθ cosθ 0

−sinθ cosθ sinθ cosθ 0 0 0 −sin2 θ + cos2 θ
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Based on above discussion, for a given stiffness matrix C (3.13), transformed

components of new stiffness matrix can be shown as:

C′ =



C′11 C′12 C′13 0 0 0

C′22 C′23 0 0 0

C′33 0 0 0

C′44 0 0

C′55 0

symmetric C′66


and formulated by:

[C′] = [T][C][T−1]

The transformed components are evaluated as:

C′11 = C11 cos4 θ + 2C12 sin2 θ cos2 θ + C22 sin4 θ + 4C55 sin2 θ cos2 θ

C′12 = (C11 + C22 − 4C55)sin2 θ cos2 θ + C12(sin4 θ + cos4 θ)

C′13 = C12 cos2 θ + C23 sin2 θ

C′22 = C11 sin4 θ + C22 cos4 θ + 2(C12 + 2C55)sin2 θ cos2 θ

C′23 = C12 sin2 θ + C23 cos2 θ

C′33 = C33

C′44 =
(C22 − C23

2

)
cos2 θ + C55 sin2 θ

C′55 =
(C22 − C23

2

)
sin2 θ + C55 cos2 θ

C′66 = (C11 + C22 − 2C12 − 2C55)sin2 θ cos2 θ + C55(cos4 θ + sin4 θ)

Polar diagram in Fig. 4.2 depicts the angular dependency of phase velocity of

the A0-mode Lamb wave for f = 30 kHz, evidencing the maximum velocity

along 0◦ direction and it illustrates that the phase velocity direction is dif-

fer from the group velocity direction at almost every angle. The figure shows

that the phase velocity of the first antisymmetric Lamb mode at 30 kHz varies

between 221 m/s in the fiber direction and 170 m/s in the direction perpen-

dicular to the fibers. Polar plot shown in Fig. 4.3 highlights the radial trend,

where the origin of polar reference is shifted by 150 m/s.
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Fig. 4.2: Theoretically calculated angular dependency of phase velocity of the
A0-mode Lamb wave for f = 30 kHz

Fig. 4.3: Polar variation of phase velocity of the A0-mode Lamb wave for
f = 30 kHz
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According to the new coordinate system and based on the material prop-

erties, for fiber direction 30◦, stiffness matrix of an orthotropic materials be-

comes, and its corresponding dispersion curve is shown in Fig.4.4.

C′30◦ =



55.60 19.56 4.45 0 0 0

15.22 6.15 0 0 0

9.60 0 0 0

1.80 0 0

2.80 0

symmetric 19.27



Fig. 4.4: Theoretically calculated A0-mode dispersion curve for 30◦ fiber di-
rection

For 60◦ fiber direction , dispersion curve is in Fig.4.5.

C′60◦ =



15.23 19.56 6.16 0 0 0

58.38 4.45 0 0 0

9.60 0 0 0

2.80 0 0

1.80 0

symmetric 19.27
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Fig. 4.5: Theoretically calculated A0-mode dispersion curve for 60◦ fiber di-
rection

4.2 mechanics of composite laminates

The following assumptions are taken to analysis the composite laminates [64]:

1. Thickness of the laminate is very small compared to its other dimen-

sions.

2. The entire plies are perfectly bonded.

3. The laminae and laminate are linear elastic.

4. The through thickness stresses and strains are negligible.

Consider a HTI material, the in-plane stress-strain relations can be written

as: 
σ1

σ2

τ6

 =


Q11 Q12 0

Q22 0

symmetric Q55




ε1

ε2

γ6



This reduced stiffness matrix Q have the same subscript notation like C and

follows the engineering constant likely, describes the elastic behavior of the

ply in-plane loading. As the stress in each ply varies through the thickness
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Fig. 4.6: Procedure of distance measurement from the middle plane to the
layer of CL to calculate ABD matrix

of the laminate, constitutive equation for such laminate can be expressed in

terms of resultant forces (N) and moments (M) and formulated in a matrix

form as: 

N1

N2

N6

M1

M2

M6


=



A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26

A61 A62 A66 B61 B62 B66

B11 B12 B16 D11 D12 D16

B21 B22 B26 D21 D22 D26

B61 B62 B66 D61 D62 D66





ε0
1

ε0
2

γ0
6

κ1

κ2

κ6
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Where,

Aij = Extensional stiffness matrix =
n

∑
κ=1

(Qij)n(hκ − hκ−1)

Bij = Coupling stiffness matrix =
1
2

n

∑
κ=1

(Qij)n(h2
κ − h2

κ−1)

Dij = Bending stiffness matrix =
1
3

n

∑
κ=1

(Qij)n(h3
κ − h3

κ−1)

ε0 = Vector of mid-plane strain

κ = Vector of mid-plane curvature

hκ = Vertical position in the ply from mid-plane

Qij = Transformed reduced stiffness matrix in arbitrary direction

=


Q11 Q12 Q16

Q22 Q26

symmetric Q66


The 6× 6 ABD matrix serves a connection between the applied loads and the

associated strains in the laminate. Moreover, it defines the elastic properties

of the entire laminate. For any arbitrary fiber direction θ, components of the

reduced matrix can be calculated by:

Q11 = Q11 cos4 θ + Q22 sin4 θ + 2(Q12 + 2Q66)sin2 θ cos2 θ

Q22 = Q11 sin4 θ + Q22 cos4 θ + 2(Q12 + 2Q66)sin2 θ cos2 θ

Q12 = (Q11 + Q22 − 4Q66)sin2 θ cos2 θ + Q12(cos4 θ + sin4 θ)

Q66 = (Q11 + Q22 − 2Q12 − 2Q66)sin2 θ cos2 θ + Q66(cos4 θ + sin4 θ)

Q16 = (Q11 −Q12 − 2Q66)sinθ cos3 θ − (Q22 −Q12 − 2Q66)(cosθ sin3 θ)

Q16 = (Q11 −Q12 − 2Q66)cosθ sin3 θ − (Q22 −Q12 − 2Q66)(sinθ cos3 θ)

4.2.1 Quasi-Isotropic (QI) laminate

QI CL has commonly been popular in the industries due to their multi-axial

load handling capability. As some elastic properties of QI CL approximate

the equivalent isotropic properties in engineering materials, they are suitable
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for traditional industrial design. Although fiber reinforced composites made

up from unidirectional plies enable optimized lay-ups for specific applica-

tions, symmetric QI lay-ups are used in practice. The π/4([0/ ± 45/90]s)

combination of balanced carbon-epoxy QI CL is considered in this study. Fi-

bre orientation of such laminate illustrates in Fig. 4.7.

Fig. 4.7: Fibre orientation of [0,±45,90]s QI laminate

Stacking sequence of such QI laminate can be shown in Fig. 4.8(Left)

Fig. 4.8: Stacking sequence of (Left) [0,±45,90]s QI laminate and (Right)
[(0,90)2]s cross-ply laminate
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This sort of stacking sequence denies unexpected coupling effects in var-

ious applications, results in an in-plane stiffness that is independent of the

composite’s orientation.

Considering the equations and engineering constants mentioned above, ABD

matrix can be calculated as:

N1

N2

N6

M1

M2

M6


=



42.15 14.25 0 0 0 0

42.15 0 0 0 0

symmetric 13.95 0 0 0

0 0 0 5.70 1.02 −0.656

0 0 0 1.65 −0.656

0 0 0 symmetric 1.00





ε0
1

ε0
2

γ0
6

κ1

κ2

κ6


The extensional stiffness matrix shows that the in-plane behavior of the lami-

nate resembles the characteristic of the isotropic material, and the laminate is

balanced as well (A16 = A26 = 0). The zero coupling stiffness matrix depicts

that the considered laminate is balanced. Though the laminate is symmetric,

D16 and D26 can not be zero. However, by stacking the layers alternatively at

+θ and −θ, it can only be minimized, especially if the layers number is large.

Furthermore, despite showing the in-plane isotropic characteristics, the non-

zero bending stiffness matrix confirms the QI behavior in the considered CL.

4.2.2 Cross-ply laminate

A laminate is called cross-ply laminate if all the plies used to fabricate the

laminate are only 0◦ and 90◦. Typical orientation of such laminate depicts in

Figure 4.9.
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Fig. 4.9: Fibre orientation of [(0,90)2]s cross-ply laminate

Figure 4.8 (Right) shows the stacking sequence of such laminate. For

considered balanced laminate, ABD matrix can be determined as:

N1

N2

N6

M1

M2

M6


=



52.8 3.60 0 0 0 0

52.8 0 0 0 0

symmetric 3.30 0 0 0

0 0 0 5.75 0.182 0

0 0 0 3.05 0

0 0 0 symmetric 0.274





ε0
1

ε0
2

γ0
6

κ1

κ2

κ6


Among all components of [A], and [D], the zero value of A16, A26, D16, and

D26 proves that the laminate is cross-ply. [B] = 0 proves that the laminate

is symmetric. It can also be seen that, for QI laminate, the A66 component

has a relation with A11 and A12 component likewise the isotropic material,

whereas in case of cross-ply laminate, A66 component does not show such

characteristics.
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5
D Y N A M I C S H E A R S T R A I N A N A LY S I S

The method was so developed to detect the damage of specimens as a novel

technique in the field of guided wave based NDT [90]. The potential of high

frequency fundamental antisymmetric mode (A0) of lamb wave is chosen in

this evaluation. The technique considers the near-field imaging phenomena

of surface displacement. Assuming that a known incident field impinges on

the surface to be imaged and the scattered field is measured very close to

it so that exponentially small, evanescent components of the waves are sig-

nificant and can be measured. It should make sure that the measurements

have to be made very close to the surface. These measurements are used in

the inversion, consequently, the imaging resolution found much better than

the wavelength of the incident field. The evaluation technique can be summa-

rized in several steps: (a) After irradiating the lamb wave signal, obtained the

time series data consisting vertical displacement of the surface, (b) measur-

ing the shear strain at each point by means of filtering process from collected

data (Orthogonal pair of the out-of surface shear strain exhibit linear char-

acteristics in a flawless region, whereas at the region of defect, non-linearity

arises due to the development of evanescent wave), (c) A covariance matrix is

adopted composed of the vector of out-of-surface shear strains, (d) the deter-

minant of the matrix reveal any value other than zero at all points within the

region of developed evanescent waves. Thus the image of the boundary of

the defect reconstructed. The analytical study of the technique for isotropic

continuum discussed as follows:

The vertical displacement of the A0 mode Lamb wave satisfies the two di-

mensional wave equation. Analyzing the near field of the scattering object,

let consider the scattering wave field from the boundary of a cylindrical sub-

surface defect. The geometrical relation of the cylindrical subsurface defect

and the incident plane wave is depicted in Fig. 5.1. The radius of the cylinder,
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Fig. 5.1: Geometrical relation among the plane wave and the cylindrical defect

a, satisfies the following condition:

a� λ

2π

where, λ is the wavelength of the incident Lamb wave. The observation point

P and the scattering point Q can be defined as

−→
OP = r =

(
r cosξ

r sinξ

)
,

−→
OQ = a =

(
acosζ

asinζ

)
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The normal vector on Q, n and the wave vector, k can be denoted as:

n =

(
cosζ

sinζ

)
,

k =

(
k

0

)
=

(
2π
λ

0

)

In the lowest frequency band, A0-mode is the most dominant Lamb wave and

its phase velocity decreases proportionally with the square root of the prod-

uct of frequency and plate thickness. The dynamic out-of-plane displacement,

excited by the incident plane wave, observed at P can be expressed as

fi(r, t) = exp(ikTr)exp(−iωt) (5.1)

The steering term can be decomposed with Neumann’s series expansion as

exp(ikTr) = J0(kr) + 2
∞

∑
n=1

in Jn(kr)cos(nξ) (5.2)

where kT, Jn denote the transpose of the wave number vector, and n-th order

Bessel function respectively. Focusing on the normal displacement of the top

surface, the scattered wave field from the cylindrical boundary can be written

in multiple expansion form, as:

fs(r, t) =
(

A0H(1)
0 (kr) + 2

∞

∑
n=1

AnH(1)
n (kr)cos(nξ)

)
exp(−iωt) (5.3)

where H(1)
n denotes the first kind n-th order Hankel function and the function

is defined outside the cylinder, r > a. the incoming wave front on the top

surface, can be denoted as

fb(r, t) =
(

B0 J0(ktr) + 2
∞

∑
n=1

Bn Jn(ktr)cos(nξ)
)

exp(−iωt) (5.4)

87



At the boundary of the defect, three A0-mode Lamb waves satisfy the con-

tinuity of the normal displacement and derivatives across the boundary as

follows:

fi(a, t) + fs(a, t) = fb(a, t)

∇( fi(a, t) + fs(a, t))Tn =∇( fb(a, t))Tn

Consequently, An and Bn can be defined as

An = −
kt
k − 1
kt
k + 1

in
d
da Jn(ka)

d
da H(1)

n (ka)

Bn =
2

kt
k + 1

in Jn(ka)
Jn(kta)

(n = 1,2, ......)

Being that the circumference of the defect is much smaller than the wave-

length, 2πa� λ, the following approximation are satisfied [2]:

J0(ka) ' 1

J0(ka) ' 1
Γ(n + 1)

(1
2

ka
)2

d
da

H(1)
0 (ka) = −kH(1)

1 (ka)

' −ik
1
π

(1
2

ka
)−1

d
da

H(1)
n (ka) = −kH(1)

n+1(ka) +
n
a

H(1)
n (ka)

' −i
1

aπ
Γ(n + 1)

(1
2

ka
)−n

d
da

J0(ka) = −kJ1(ka)

' −k
(1

2
ka
)

d
da

Jn(ka) = kJn−1(ka)− n
a

Jn(ka)

' 1
a

1
Γ(n)

(1
2

ka
)n

(5.5)
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Here, Γ denotes the gamma function, if n is a positive integer: Γ(n) = (n−
1)!. Based on the above limiting forms for small arguments, the outgoing

scattered wave field can be approximated as [90]:

fs(r, t) ' kt − k
kt + k

{
− iπ

(ka
2

)2
H(1)

0 (kr)− 2π
(ka

2

)2
H(1)

1 (kr)cosξ

+ 2
∞

∑
n=2

in+1 π

nΓ2(n)

(ka
2

)2n
H(1)

n (kr)cos(nξ)
}

exp(−iωt) (5.6)

Thus an incoming wave field can be expressed as well, as [90]:

fb(r, t) ' 2k
kt + k

(
J0(ktr) + 2

∞

∑
n=1

in kn

kn
t

Jn(ktr)cos(nξ)
)

exp(−iωt) (5.7)

Considering the first two dominant term of (5.6) and (5.7), the approximation

of total wave field expression outside (‖r‖> a) and inside (‖r‖ ≤ a) the defect

returns as:

f̃out(r, t) = fi(r, t) + fs(r, t)

'
[

exp(ikr cosξ) +
kt − k
kt + k

{
− iπ

(ka
2

)2
H(1)

0 (kr)
}

− 2π
(ka

2

)2
H(1)

1 (kr)cosξ
]

exp(−iωt)

(5.8)

f̃in(r, t) = fb(r, t)

' 2k
kt + k

(
J0(ktr) + 2i

k
kt

J1(ktr)cosξ
)

exp(−iωt)
(5.9)

The orthogonal pair of the dynamic out-of-plane shear strains is given by the

gradient of the total wave field outside of the defect as follows:

∇ f̃out =

 ∂ f̃out(r,t)
∂r

1
r

∂ f̃out(r,t)
∂ξ

 (5.10)

where,

∂ f̃out(r, t)
∂r

=
(kt − k

kt + k

)[
ik cosξ exp(ikr cosξ) + ikπ

(ka
2

)2
H(1)

1 (kr)

+ 2π
(ka

2

)2
{−kH(1)

2 (kr) +
1
r

H(1)
1 (kr)}cosξ

]
exp(−iωt)

(5.11)
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1
r

∂ f̃out(r, t)
∂ξ

=
(kt − k

kt + k

)[
sinξ

{
− ik exp(ikr cosξ)

+ 2π
(ka

2

)2 1
r

H(1)
1 (kr)

}]
exp(−iωt)

(5.12)

Reducing the disturbance caused by the noise and fluctuations of the signal

intensity, the covariance matrix of the dynamic out-of-plane shear strains is

adopted as:

R =

(
Rrr Rrξ

R∗rξ Rξξ

)

= lim
T→∞

1
T

∫ T

0
(∇ f̃ (r, t)∇T f̃ ∗(r, t))dt

(5.13)

where R∗rξ is the complex conjugate of Rrξ . The first component of the matrix

can be written as follows:

Rrr = lim
T→∞

1
T

∫ T

0

∂ fi(r, t)
∂r

∂ f ∗i (r, t)
∂r

dt

+ lim
T→∞

1
T

∫ T

0

∂ fs(r, t)
∂r

∂ f ∗s (r, t)
∂r

dt

+ lim
T→∞

1
T

∫ T

0

∂ fi(r, t)
∂r

∂ f ∗s (r, t)
∂r

dt

+ lim
T→∞

1
T

∫ T

0

∂ fs(r, t)
∂r

∂ f ∗i (r, t)
∂r

dt

(5.14)

However, the terms of mutual correlation of the incident and scattered wave

field are reduced to be zero. This is because the scattered wave field is out of

phase with the incident wave field except than on the rim of the cylindrical

defect. With this consideration, Rrr reduces to:

Rrr = lim
T→∞

1
T

∫ T

0

∂ fi(r, t)
∂r

∂ f ∗i (r, t)
∂r

dt

+ lim
T→∞

1
T

∫ T

0

∂ fs(r, t)
∂r

∂ f ∗s (r, t)
∂r

dt

' k2 cos2 ξ +
(kt − k

kt + k

)2(2π

r

)2(ka
2

)4

.
[{( ikr

2

)2
− ikr cosξ + cos2 ξ

}∣∣∣H(1)
1 (kr)

∣∣∣2
+ ik2r2H(1)

1 (kr)H(1)
2 (kr)− 2kr cosξH(1)

1 (kr)H(1)
2 (kr) + (kr)2

∣∣∣H(1)
2 (kr)

∣∣∣2 ]
(5.15)
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Other components are given in the same way

Rrξ =
1
r

lim
T→∞

1
T

∫ T

0

∂ fi(r, t)
∂r

∂ f ∗i (r, t)
∂ξ

dt

+
1
r

lim
T→∞

1
T

∫ T

0

∂ fs(r, t)
∂r

∂ f ∗s (r, t)
∂ξ

dt

' −k2 cosξ sinξ +
(kt − k

kt + k

)2(2π

r

)2(ka
2

)4
sinξ

.
[( ikr

2
− cosξ

)∣∣∣H(1)
1 (kr)

∣∣∣2 + krH(1)
1 (kr)H(1)

2 (kr)
]

(5.16)

Rξξ =
1
r2 lim

T→∞

1
T

∫ T

0

∂ fi(r, t)
∂ξ

∂ f ∗i (r, t)
∂ξ

dt

+
1
r2 lim

T→∞

1
T

∫ T

0

∂ fs(r, t)
∂ξ

∂ f ∗s (r, t)
∂ξ

dt

' k2 sin2 ξ

+
(kt − k

kt + k

)2(2π

r

)2(ka
2

)4[
sin2 ξ

∣∣∣H(1)
1 (kr)

∣∣∣2 ]
(5.17)

Therefore, when (‖r‖ > a), the determinant of the R becomes:

|R| = RrrRξξ − Rrξ R∗rξ

'
(kt − k

kt + k

)2(2π

r

)2(ka
2

)4
sin2 ξ

[
k2
[{( ikr

2

)2
− ikr cosξ + cos2 ξ

}∣∣∣H(1)
1 (kr)

∣∣∣2
+ ik2r2H(1)

1 (kr)H(1)
2 (kr)− 2kr cosξH(1)

1 (kr)H(1)
2 (kr) + (kr)2

∣∣∣H(1)
2 (kr)

∣∣∣2 ]
+ k2 cos2 ξ

∣∣∣H(1)
1 (kr)

∣∣∣2 + (kt − k
kt + k

)2(2π

r

)2(ka
2

)4 ∣∣∣H(1)
1 (kr)

∣∣∣2
.
[{( ikr

2

)2
− ikr cosξ + cos2 ξ

}∣∣∣H(1)
1 (kr)

∣∣∣2
+ ik2r2H(1)

1 (kr)H(1)
2 (kr)− 2kr cosξH(1)

1 (kr)H(1)
2 (kr) + (kr)2

∣∣∣H(1)
2 (kr)

∣∣∣2 ]
− 2k2 cosξ

[( ikr
2

+ cosξ
)∣∣∣H(1)

1 (kr)
∣∣∣2 ]

− k2 cosξ(kr)
{

H(1)
1 (kr)H(1)

2 (kr) + H(1)
1 (kr)H(1)

2 (kr)
}

+
(kt − k

kt + k

)2(2π

r

)2(ka
2

)4[{( ikr
2
− cosξ

)∣∣∣H(1)
1 (kr)

∣∣∣2 + krH(1)
1 (kr)H(1)

2 (kr)
}

{( ikr
2
− cosξ

)∣∣∣H(1)
1 (kr)

∣∣∣2 + krH(1)
1 (kr)H(1)

2 (kr)
}]]

(5.18)
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On the basis of the above discussion, the determinant of the covariance ma-

trix, |R|, possesses following characteristics:

• |R| > 0, when the scattered wave fronts propagate along the any differ-

ent direction of the incident wave front.

• |R| concentrates its own energy within the near-field of the surrounding

of the boundary of the cylindrical defect.

Therefore, the distribution of |R| is utilized for the near-field imaging of

defects. On the contrary, inside the defected region, each component of R

can be approximated as:

Rrr = lim
T→∞

1
T

∫ T

0

∂ fb(r, t)
∂r

∂ f ∗b (r, t)
∂r

dt

'
( 2k

k + kt

)2
.
[

J1(ktr)2k2
1 +

{ J1(ktr)
ktr

− J2(ktr)
}2

cos2 ξk2
]

Rrξ =
1
r

lim
T→∞

1
T

∫ T

0

∂ fb(r, t)
∂r

∂ f ∗b (r, t)
∂ξ

dt

' −2
r

( 2k
k + kt

)2[{2k
kt

J1(ktr)
ktr

− J2(ktr)
}

J1(ktr)k cosξ sinξ − i J1(ktr)k sinξ
]

Rξξ =
1
r2 lim

T→∞

1
T

∫ T

0

∂ fb(r, t)
∂ξ

∂ f ∗b (r, t)
∂ξ

dt

' 4
( 2k

k + kt

)2( k
ktr

)2
J2
1(ktr)sin2 ξ

Thus in approaching to the center of the cylinder (‖r‖ ≤ a), the determinant

of R is reduced to be negligible.

Working principle of the technique can be summarized as when a plane wave

strikes at the boundary of the defect, it scattered in its way. The scattered

wave overlaps with the incident wave and develop evanescent wave. Such

type of wave conserved its energy at the center of the development region

and attenuated accordingly. The orthogonal pair of out-of-plane shear strain

at that point violate the linearity. The determinant of the adopted covariance

matrix becomes more significant than zero at that point. Each location of

violation of linearity thus detected which eventually forms the shape of the

defect boundary and consequently, the image is reconstructed.

In this study, the well established above mentioned damage detection tech-

nique applied in CFRP material. The algorithm remains the same though the
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strategy is quite different by the plane wave propagation as the phase and

group velocity direction is the no longer same way. Rather than the devel-

opment of an analytical model, we examine the procedure numerically to in-

vestigate its effectiveness in unidirectional, bidirectional and quasi-isotropic

CL.
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6
N U M E R I C A L E X P E R I M E N T S

The chapter mainly discussed computer generated investigations based on

the mathematical formulation of the previous chapter. The investigation

presents the application of dynamic shear strain analysis to detect finite sub-

surface defect in CFRP laminate, composed with HTI and orthotropic mate-

rial focusing on unidirectional, cross-ply, and quasi-isotropic fibre orientation

laminate. Analytical data obtained by using the multiphysics simulation soft-

ware package LS-DYNA. At the beginning, we are going to discuss the FEM

generation of the 3D geometry of the specimen and extracted data analy-

sis technique toward applying the damage detection technique. To coop with

the software package, in this chapter, cartesian coordinate is denoted by x,y,z

instead.

6.1 finite element model

3D FE method is employed to simulate the Lamb wave propagation, scat-

tering and transmitting at a subsurface cylindrical hole of composite lami-

nates. The multiphysics software package LS-DYNA is used to generate the

geometry, perform the meshing of the model and numerical simulations. CL

consisting of 8-ply unidirectional carbon/epoxy laminate but with different

stacking sequences are considered. Density of each lamina is 1500 kg/m3.

The dimension of the FE models is 6 mm × 6 mm × 1 mm. For a flawless

laminate, each lamina is modeled using eight-noded 3D reduced integration

solid brick elements and shown in Fig.6.1. Vertical (z) directional degree of

freedom (DoF) allowed to the nodes. The zero-strain condition is considered

in all planes for designing a flawless anisotropic (HTI to be more specific)

specimen. The theoretically calculated wavelengths for 0◦ to 90◦ fiber direc-
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Fig. 6.1: 3D model plate meshing in flawless region

tion are between 7.36 mm to 5.66 mm. A very fine mesh of having in-plane

square shape with dimensions .05 mm× .05 mm is used for the entire model,

which guarantees that more than 17 nodes exist per wavelength in any prop-

agation direction in any laminate which satisfy the literature [7, 57, 65]. The

thickness of each layer is 0.125 mm and 8 layers give an overall 1 mm of thick-

ness. The time step is automatically controlled, depending on the smallest

element size, which is sufficient to capture any A0-mode Lamb wave propa-

gation. For each lamina, fiber direction is set carefully and the enlarged view

in Fig. 6.2 shows the fiber direction for 0◦ lamina.

The A0-mode Lamb wave signals are obtained by monitoring the out-of-

plane nodal displacement of the nodes located at the surface of the laminate.

Allowing normal directional DoF ensures that only the A0-mode is detected

as the SH0-modes have zero out-of-plane displacements at the surface. To

investigate the anisotropic behavior of the considered 3D model, a sample

run is carried out in a 0◦ fiber directional flawless laminate ([0]8) allowing

the wave propagation from a point source of 0.75 mm transducer area with a

frequency of 30 kHz. Contours of normal displacement of the particles taken

into account and Fig.6.3 illustrates that the wave frontal profile follows the

information given in stiffness matrix (equation 4.1). a cylindrical subsurface

hole located at the center of the laminate is created by removing FE elements
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Fig. 6.2: Fiber direction (red arrow) along the horizontal axis, blue vertical
line indicates the model boundary

Fig. 6.3: Wave propagation in HTI model at 20 µs after irradiation (x axis
indicates the fibre direction)

to generate a defected plate. Surround the flaw; the lamina is modeled using

the combination of hexahedral and triangular elements and shown in Fig.6.4.

Figure 6.5 shows the zoomed view of the eight-layered FE model with cylin-

drical defect. The A0-mode Lamb wave is excited by applying out-of-plane

nodal displacement to the surface nodes of 6 mm× 1 mm transducer area at

the L end of the model (Fig.6.6) and the wave assumed to be propagate along

x direction of the geometry.

The excitation signal is a 30 kHz mono-cycle sinusoidal tone burst. All

planes of the object including the defected region satisfy the stress-free con-

ditions except the source plane. Wave propagation at different state in [0]8
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Fig. 6.4: Meshing of the 3D model surround the defect

Fig. 6.5: 3D FE zoomed in model at the cylindrical hole defected region

is depicted in Fig.6.7. The normal displacement of the top surface particles

continuously monitored from the very beginning of the irradiation till the

end at a specified time interval.

Wave propagation along the x-coordinate in Fig.6.7 illustrates that in the

flawless region, each point exhibits same out-of-plane displacement. At the

boundary of the defect, the incident wave faces the obstacle and reflected

back and transmitted as well over the defected region. The absorbing surface

criteria is chosen at the R end and it takes 14 µs to reach the boundary from

the source plane.
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Fig. 6.6: Geometrical specifications and schematic diagram of the configura-
tion for FE simulations

6.2 interaction of A0 -mode lamb wave with subsurface defect

Reflection and transmission at defect

The reflection and transmission of the A0-mode Lamb wave at the defect

are studied in this section. The FE model described in the previous section

was used to simulate the [0 ]8, [30 ]8, [60 ]8, and [90 ]8 laminate with a 1 mm

diameter subsurface defect. As the damage detection technique stated in this

thesis working with the overlapped wave in the vicinity of the damage, a

number of measurements were taken at r = 0.5 mm and 140◦ ≤ θ ≤ 220◦

with 10◦ interval to obtain the reflection wave from the defect. In contrast,

at the r = 0.5 mm and 0◦ ≤ θ ≤ 30◦ and 330◦ ≤ θ ≤ 350◦with 10◦ interval,

transmission wave were measured. Figure6.8 shows the maximum amplitude

of the reflected and transmitted waves from the defect, respectively, where
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the amplitudes of the reflected and transmitted waves are normalized by the

maximum amplitude measured on the surface at that instant. As shown in

the figure, [0 ]8 laminate shows the maximum whereas [90 ]8 laminate shows

the maximum amplitude of the reflected wave and the variation is symmetric

along the axis passing through the center of the defect. On the other hand, it

is also depicted that [60 ]8 and [90 ]8laminate shows the negative amplitude

in case of the transmitted wave and in both case the [30 ]8 and [60 ]8 laminate

shows that the amplitude pattern is not symmetric.

Amplitude comparison at the defect boundary

This section employs the validated FE model to study the A0-mode Lamb

wave reflected characteristics at defect with different directional laminate us-

ing the overlapped wave amplitude. The excitation is at the left boundary of

the model and θ = 180◦ according to the coordinate system. The out-of-plane

displacement of 36 nodal points located at r = 0.5 mm and 0◦ ≤ θ ≤ 360◦

with 10◦ step increments were monitored. On the boundary of the defect, the

scattered wave overlapped with the incident wave and the condition of linear-

ity violated. This distance fulfills the near-field requirement thus the evanes-

cent waves can be achieved. For each case, two simulations were carried

out with the same meshing for the intact and defected plate, and the results

are compared after 14 µs of the excitation. The out-of-plane displacement

at the measurement points is normalized by the maximum displacement on

the surface at that time. Figure 6.9 and 6.10 shows the reflected wave pat-

tern in a defected plate and flow pattern in the flawless plate and compared

utilizing the out-of-plane displacement at the measurement points. It should

be stated that the out-of-plane displacement is normalized by the maximum

displacement measured on the surface at that instant and the negative am-

plitude is considered as zero. It can be seen that the fiber direction of each

laminate affect the wave propagation. The phenomena is too certain that the

backward reflection is larger than the forward reflection. Starting from the 0◦

fiber direction, with the increase of angle, the forward reflection amplitude

becomes smaller and in case of [60 ]8 and [90 ]8 laminate, it becomes negative

(zero considered in this study). Furthermore, the flow pattern and reflected
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amplitude follows the almost symmetric pattern for [0 ]8 and [90 ]8 laminate,

based on the axis passing through the defect and differ for another couple

of unidirectional fiber laminate. Moreover for [30 ]8 and [60 ]8 laminate, re-

flected amplitude of the flawless plate is always smaller than the defected

plate. In contrast, for [0 ]8 and [90 ]8 laminate, the forward reflected ampli-

tude of the flawless plate is larger than the defected plate. This property of

[0 ]8 and [90 ]8 laminate dominates in the [(0, 90)2 ] s laminate and the Fig.

6.10(b) clearly depicts the nature of reflection for cross-ply laminate. As the

QI ([0,±45, 90 ] s) laminate composed on 4-layers of angular directional fiber

ply, this follows the nature of [0 ]8 and [90 ]8 laminate (Fig. 6.10(c)). The

overall reflected amplitude pattern of [(0, 90)2 ] s laminate is showing more

symmetric behavior than [0 ]8 and [90 ]8 laminate. It can be concluded that,

in every case, the reflected amplitude in the defected laminate is quite notice-

able from the flow pattern in the flawless laminate.

Directivity Pattern of Scattered Wave

Now we are interested in quantitative analysis of the scattered normal dis-

placement in the vicinity of the defected region for unidirectional, bi-directional

and QI laminate by means of plotting the Directivity Pattern (DP). For DP

studies, the additional out-of-plane displacement due to interaction between

the incident wave and the defect is extracted by using the baseline subtraction

technique. The subtraction can be achieved by carrying out two simulations

with the same meshing for the intact and defected laminate. The out-of-plane

displacement of the scattered wave uS
z (x , t) is evaluated by

uS
z (x , y , t) = uT

z (x , y , t) − u I
z (x , y , t) (6.1)

where uT
z (x , y , t) and u I

z (x , y , t) are the out-of-plane displacement compo-

nents at measuring points of a certain time, or the defected and intact lam-

inates, respectively. The pattern is constructed by determining the absolute

normalized amplitude of the scattered wave. Figures 6.11 and 6.12 show the

SDP of the 30 kHz incident wave at the 1 mm diameter circular subsurface

defect. All scattering amplitudes are normalized by the maximum absolute
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amplitude of the incident wave at the defect center location of the intact lam-

inate [66].

DP for each laminate on the boundary of the defect indicates that there

is a definite variation in amplitude almost in every angle. The zero value in

Fig. 6.11(a) quite understandable as in those points, both of the values nullify

each other which is also illustrated in Fig. 6.9(a). Another point of interest

to be noted, the DP is not symmetric with respect to the 0◦ direction for the

symmetric subsurface defect although it looked like symmetry in Fig. 6.9(a).

This phenomena is another differentiable criteria of anisotropic material from

the isotropic as in case of isotropic material the scattering DP is perfectly

symmetric [18, 32]. This characteristic indicates that the DP of composite

laminates is more complicated than that in the isotropic material. Figure 6.11,

6.12 shows that with the same geometrical configuration of the subsurface

defect, the scattering characteristics are dependent on the fiber direction and

the maximum amplitude is found in Fig. 6.11(b) and 6.11(c), i.e. for [30 ]8

and [60 ]8 laminate. These characteristics of scattering at the boundary of the

defect will leave the footprints in the reconstructed image described in this

thesis, discussed in the later sections.

6.3 data analysis

The A0-mode Lamb wave propagation characteristics are described in the

previous section. In case of every laminates, the time series based out-of-

plane displacement data on the top surface is recorded for implementing the

damage detection technique. The analysis is first implemented for a flawless

plate. Figure (6.13) illustrates the time-dependent out-of-plane displacement

distribution for [0 ]8 flawless laminate. From this time series data, the shear

strain of every point is measured against the orthogonal spatial coordinate.

The orthogonal pair of out-of-plane shear strains are calculated by Sobel filter.

The Sobel operator performs a 2D spatial gradient measurement on an image.

The filter is well known for edge detection. This filtering technique utilizes
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two 5 × 5 kernels: one estimates the gradient in the x-direction, while the

other estimates that in the y-direction and formulated by:

f x (x , y , t) =
2

∑
ε=−2

2

∑
$=−2

Sobel 5×5
x (ε , $)

. f (x − ε∆x , y − $∆y , t)

f y (x , y , t) =
2

∑
ε=−2

2

∑
$=−2

Sobel 5×5
y (ε , $)

. f (x − ε∆x , y − $∆y , t)

(6.2)

Schematic of Sobel filtering process can be shown in Fig. 6.14. The analy-

sis concluded with the findings of each component of the covariance matrix

using the following summation of the decaying series

Rx x =
1

N ∆ t

N

∑
n=0

κ n . f x (x , y , (N − n)∆ t)

. f x (x , y , (N − n)∆ t)∆ t

Rxy =
1

N ∆ t

N

∑
n=0

κ n . f x (x , y , (N − n)∆ t)

. f y (x , y , (N − n)∆ t)∆ t

Ryy =
1

N ∆ t

N

∑
n=0

κ n . f y (x , y , (N − n)∆ t)

. f y (x , y , (N − n)∆ t)∆ t

(6.3)

Where κ satisfies the following relation:

κ = exp−∆ t/γ

The time-constant, γ, should be much longer than the period of the incident

wave as this value controls the integral duration. According to the concept,

for a flawless specimen, the determinant of the covariance matrix becomes

zero everywhere on the top surface corresponding to its out-of-plane dis-

placement distribution (Fig.6.15).
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The fundamental antisymmetric mode lamb wave allowed to propagate

from left to right of the model. The functionality of the entire damage detec-

tion technique discussed in the later sections.

6.4 experimental results and discussion

Numerical experiments conducted to assess the performance of the dynamic

shear strain analysis of lamb wave field in the subsurface defected composite

plate in focusing the detection of damage. Several experiments have been car-

ried out for several cases one after another depending on the fiber direction.

Figure 6.16-6.19 illustrates the overall flaw detection technique for unidirec-

tional laminate. Though the signal with identical criteria allowed to irradiate

from the left vertical surface, normal displacement distribution indicates that

the wave propagation affects by the fibre direction. After impinging the in-

cident wave field on the boundary of the defect, the scattered wave motion

thus impact in the same fashion. The development of evanescent wave fol-

lowing the overlapping of the incident and scattered wave varies with each

other. Each case the determinant of the adopted covariance matrix trace the

evanescent waves quite satisfactorily. In the first case, the most perfect image

reconstructed among all other cases. In other cases, the interaction between

the incident wave and the defect is more substantial than the first instance

and much more energy releases at the boundary of the defected region. The

evanescent wave thus cover a bit more area. Nevertheless, in each case the

reconstructed image reveals the shape of the subsurface defect. The zero-

valued all other regions than the defect boundary indicates that, the deter-

minant of the covariance matrix working satisfactorily in detecting the fault.

Hence the dynamic shear strain analysis can trace the subsurface damage in

unidirectional CFRP laminate independent of the fibre direction.

To coop with the practical applications, an experiment is carried out for cross-

ply ([(0, 90)2 ] s) laminate. The wave is assumed to propagate in the fibre

direction of the top layer. Figure 6.20 illustrates the particles vertical displace-

ment and outcome of application of dynamic shear strain analysis.

In the QI [0,±45, 90 ] s case, A0-mode lamb wave assumed to be propagate

in the fibre direction of top layer. Figure 6.21 illustrates the particles vertical
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displacement and outcome of application of dynamic shear strain analysis.

From the observation of the reconstructed image of the defect for cross-ply

and QI laminate, it can be said that, the dynamic shear strain analysis can

effectively and efficiently trace the evanescent wave field.

Thus this novel technique can detect the subsurface defect in unidirectional,

cross-ply and QI CFRP laminate.
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(a) (b)

(c) (d)

Fig. 6.7: Typical contour snapshots of FE simulated out-of-plane displacement
for the [0]8 laminate at different time instances, (a) soon after excitement at
3 µs, (b) just after A0-mode Lamb wave interaction with a 1 mm diameter
circular subsurface defect at 7 µs, (c) wave after leaving the defected zone at
11 µs, and (d) wavefront just before arriving on the boundary at 14 µs.
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(a)

(b)

Fig. 6.8: Normalized amplitude of the (a) reflected and (b) transmitted waves
from a 1 mm diameter circular subsurface defect as a function of θ by 30 kHz
incident wave.
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(a)

(b)

(c)

Fig. 6.9: Amplitude comparison between the flawless plate and defected plate
during the interaction of 30 kHz incident A0-mode Lamb wave and 1 mm
subsurface defect after 14 µs of the excitement at the boundary of the defect
for (a) [0 ]8 laminate, (b) [30 ]8 laminate, (c) [60 ]8 laminate.
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(a)

(b)

(c)

Fig. 6.10: Amplitude comparison between the flawless plate and defected
plate during the interaction of 30 kHz incident A0-mode Lamb wave and
1 mm subsurface defect after 14 µs of the excitement at the boundary of the
defect for (a) [90 ]8 laminate, (b) [(0, 90)2 ] s laminate, (c) [0,±45, 90 ] s lami-
nate.
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(a)

(b)

(c)

Fig. 6.11: DP for (a) [0 ]8 laminate, (b) [30 ]8 laminate, (c) [60 ]8 laminate at
the boundary of the subsurface defect after interaction with 30 kHz incident
wave.
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(a)

(b)

(c)

Fig. 6.12: DP for (a) [90 ]8 laminate, (b) [(0, 90)2 ] s laminate, (c) [0,±45, 90 ] s
laminate at the boundary of the subsurface defect after interaction with
30 kHz incident wave.
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Fig. 6.13: Out-of-plane displacement distribution in a [0 ]8 flawless laminate
after 7 µs micro-s of irradiation

Fig. 6.14: Analysis process of orthogonal pair of shear strains by Sobel filtering
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Fig. 6.15: Calculated determinant of the covariance matrix corresponding
to the out-of-plane displacement in a flawless specimen, normalized by its
maximum value
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant of covariance matrix normal-
ized by the maximum value

Fig. 6.16: Snapshot of out-of-surface displacement and calculated distribu-
tion of normalized determinant after 14 µs after irradiation for [0 ]8 laminate
(dashed circle indicates the original position of artificial cylindrical defect)

.
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant normalized by the maximum
value

Fig. 6.17: Snapshot of out-of-surface displacement and calculated distribution
of normalized determinant after 14 µs after irradiation for [30 ]8 laminate
(dashed circle indicates the original position of artificial cylindrical defect)

.
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant normalized by the maximum
value

Fig. 6.18: Snapshot of out-of-surface displacement and calculated distribution
of normalized determinant after 14 µs after irradiation for [60 ]8 laminate
(dashed circle indicates the original position of artificial cylindrical defect)

.
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant normalized by the maximum
value

Fig. 6.19: Snapshot of out-of-surface displacement and calculated distribution
of normalized determinant after 14 µs after irradiation for [90 ]8 laminate
(dashed circle indicates the original position of artificial cylindrical defect)

.
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant normalized by the max-
imum value

Fig. 6.20: Snapshot of out-of-surface displacement and calculated distribu-
tion of normalized determinant after 14 µs after irradiation for [(0, 90)2 ] s
laminate (dashed circle indicates the original position of artificial cylindrical
defect).
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(a) Distributions of out-of-surface displacement

(b) Distributions of the determinant normalized by the maximum
value

Fig. 6.21: Snapshot of out-of-surface displacement and calculated distribu-
tion of normalized determinant after 14 µs after irradiation for [0,±45, 90 ] s
laminate (dashed circle indicates the original position of artificial cylindrical
defect).
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7
C O N C L U S I O N

Lamb waves can propagate in thin plate-like structures i.e., in metallic plates

and fibre-reinforced composite laminates, including symmetric (S i) and anti-

symmetric (A i) modes. Lamb waves feature some unique and complex prop-

erties, including dispersion, mode conversion, directional dependence of wave

speed, the difference in phase and group velocities. These mechanisms give

Lamb waves sensitive to damage in structures. Taking advantage of recent

advances and technical breakthroughs in sensor technology, manufacturing,

electronic packaging, signal processing, informatics, diagnostics, applied me-

chanics and material sciences, damage identification and structural health

monitoring (SHM) techniques using Lamb waves have been the subject of

intensive research and development in the past decades. Now on the verge

of maturity for diverse engineering applications, this emerging technique has

exciting potential to facilitate continuous and automated surveillance of the

integrity of engineering structures in a cost-effective manner.

In this research, key aspects concerning understanding, developing and im-

plementing A0-mode Lamb wave based subsurface damage identification

and SHM are explained from theoretical fundamentals to engineering ap-

plications. Both of the fundamental modes can be used for identifying dam-

age, though the antisymmetric mode outperforms the symmetric pair in two

ways: one, it is sensitive to vertical cracks and two, it offers shorter wave-

length, larger magnitude and greater ease of activation. Analytical study of

the incident, scattered and transmitted A0-mode Lamb wave field is elabo-

rated significantly for isotropic as well as for TI material. Besides that, phase

velocity equation is derived for TI material, and dispersion curves are drawn

based on the properties of the carbon-epoxy combination. Unidirectional,

Bidirectional and Quasi-isotropic combinations are considered to interrogate

subsurface damage.

Damage identification using algorithms based on imaging approaches has in-
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creasingly been adopted for practical application due to obvious advantages

including the intuitive depiction of damage and potential to depict multiple

damages. In particular, various signal features, such as ToFs can be used

to construct an image presenting the probability of the presence of damage.

But the ToF based technique face difficulty to the dispersive behavior of Lamb

waves. Avoiding difficulties caused by such property, a quantitative near-field

acoustical imaging technique is applied to classify the subsurface defected re-

gion within the composite laminates. This novel technique estimates elasticity

characteristics of the area of interest somewhat inhomogeneity contrasted to

the surrounded materials. However, an overlap of strong incident waves with

the weak scattered waves is arduous to elucidate from the observed signals.

The discussed imaging method utilizes the determinant of covariance matrix

comprised of shear strains calculated from the out-of-plane displacements,

observed on the top surface of the object. The determinant particularly de-

notes the distribution of correlated intensity modulation of the incident wave-

fronts with scattered ones and shows significant value in the overlapping re-

gion. The image reconstruction technique can be summarized in following

steps:

1. gathering a time series data of out-of-plane displacement of the top sur-

face

2. calculating the orthogonal set of out-of-plane shear strains

3. deducting the determinant of covariance matrix formulated with above

vector

4. reconstructing the silhouette wave frontal image surround the defected

region

The propagation characteristics of Lamb waves and the physical interpreta-

tion of the dynamic shear strain analysis are explored in terms of FEM. The

subsurface defected plate is prepared by introducing an artificial cylindrical

defect of 1 mm in diameter. The 3D model is created with the combina-

tion of eight-noded solid elements and six-noded wedge elements under the

Multiphysics platform LS-DYNA. The zero-strain condition is considered in

all surfaces except the source. A mono-cycle sinusoidal wave of 30 kHz is

generated and the vertical particles out-of-plane displacement is observed
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throughout the entire simulation time. The interaction between the A0-mode

Lamb wave and the subsurface defect is investigated through the directiv-

ity pattern of the scattered wave at the boundary of the defect. It is found

that the fiber orientation of laminate made the significant effect on scattering.

Recorded time series displacement data further analyzed through Sobel filter

and a decaying series to reconstruct the image of the defect. The numerically

simulated results depict in good agreement with the analytical assumption.

In every case, it is proved that the determinant of the adopted covariance

matrix based on the orthogonal pair of out-of-surface shear strain vector can

detect the linearity violation points. Thus, it can be concluded that, the pro-

posed novel method can detect subsurface damage in CFRP.

7.1 future work

Realistic model of defect

An only cylindrical subsurface defect in a flat plate has been studied in this

thesis. But in the real world, the shape of the damage might not be per-

fectly cylindrical and the plate to be interrogated might have a different shape

(Fig.7.1). So, models will have to be performed in two major steps. First, the

variation of defect shape with the 2D model should be considered and sec-

ond, one can move on to 3D plate design and study more pragmatic defects.

Fig. 7.1: Example of defect to be studied
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Wavelet-based analysis

Dynamic shear strain analysis developed on the incident of the plane wave

at the defect and the corresponding scattering from that. In the analytical

analysis, it is difficult to model the plane wave equation for calculating spa-

tial shear strain in case of anisotropic material as the wave number does not

direct to the wave propagation direction. Next step should have to taken to

model the Hanning windowed wavelet and make the analysis accordingly.

In such case, equation (3.42) can be considered as the equation of incident

wave. Schematic of such model to be analyzed can be shown in Fig.7.2. As

the technique developed to measure the points within the evanescent wave re-

gion, scattered wavefield particularly will not cause any effect in the analysis.

Fig. 7.2: A wavelet advancing toward the defect in anisotropic material
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Using higher modes

The present study on dynamic shear strain analysis solely focuses on A0-

mode. Though, in the low-frequency region, this mode can play the signifi-

cant role, a better approach may be to use a higher order mode such as A1.

The higher operating frequency is the advantage of using higher mode as a

better resolution can be achieved.

In comparison with conventional NDE techniques such as ultrasonic scan and

radiography which have been well developed over decades, damage identifi-

cation and SHM using ultrasonic wave field imaging have been in a stage to

play a vital role as an emerging tool of NDE. With authors outlook upon fur-

ther development of this technique for practical applications, it is envisioned

that the new research will have to address all issues discussed in this section

in the coming years.
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