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Abstract 

In the context of the paradigms founding the Quality by Design and Process Analytical 

Technology initiatives, the work herein presents a computational approach to support the 

decision-making process, in particular, about the feasibility of a product defined for some a 

priori given quality characteristics.  

The approach is based on the computation of the pareto-optimal front when 

simultaneously minimizing the expected differences between the predicted and the desired 

characteristics. Thus, the feasibility is tackle as an optimization problem with the novelty of 

doing so simultaneously for all the characteristics, preserving the correlation structure, but by 

handling each individual characteristic separately. 

With data from a low-density polyethylene production process, with fourteen process 

variables and five measured characteristics of the final polyethylene, solutions are found to 

define the Design Space for targeted quality characteristics on the product, and without the 

need of explicitly inverting the PLS (Partial Least Squares) prediction model fitted to the 

process.  

 

Keywords: Process Analytical Technology; Quality by Design; Partial Least Squares; Pareto 

optimality; process decision making; industrial processes 

 

1. Introduction 

The need of more organised approaches to process and product development with the aim 

of consistently guaranteeing quality and value to processes and products has been formally 

identified [1] by the pharmaceutical industry as the Quality by Design (QbD) initiative, but the 

concept can be extended to any industrial process, in particular, chemical processes.  

In any case, the implementation of these concepts requires the quantitative 

characterization of process and product performance and, also, some modelling techniques 

that support decision-making, usually, multivariate models that relate the input variables 

(process parameters, material properties, etc.) and product quality (measured characteristics 

of the final product), which is the setting of the so-called Process Analytical Technology (PAT). 

In fact, in [2] it is already stated that the identification of optimal operating conditions for large 
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and complex chemical processes is done using advanced mathematical tools largely developed 

by the process systems engineering community. 

The fitting of such prediction models is usually implemented via latent variable modelling 

techniques by exploitation of historical databases from experiments, current manufacturing 

process or historical products. The relevance of such a model, in the words of Ottavian et al. 

[3], is that coupling the information provided by the model to engineering knowledge about 

the process represents a formidable tool to advance the knowledge on the underlying physical 

and chemical phenomenon occurring in the process, therefore significantly contributing to 

improve the overall process understanding.  

Besides, such latent variable models, specifically a PLS (Partial Least Squares) model is able 

to capture the correlation among quality characteristics, and also the correlation across 

process variables and quality characteristics. An additional advantage is that we can use the 

residual Q and Hotelling’s T
2
 statistics to assess the adequacy of a sample before predicting its 

expected quality characteristics. 

Once a validated model to predict product characteristics is available, the focus turns to 

the desired quality characteristics, those that define a target product. Consequently, the issue 

now is that these characteristics should be somehow reverted into the necessary process 

variables, if any, that would produce the target product. Here, ‘process variable’ is used in 

general terms, referring to controllable factors but also to other factors that influence the 

process such as raw material properties, process parameters, processing conditions, etc., 

which may not be directly controllable but, in general, are controlled. 

In this context, the procedure of looking for the process variables that will produce a 

product with desired characteristics is known as latent variable model inversion (LVMI). Much 

of the effort invested in this regard involves the study of the feasibility of a given product by 

studying the conditions for mathematically inverting the system, which is related to the 

‘effective’ dimension of both the latent space and the responses space [4], and ensuring that 

the picked solution matches the correlation structure among quality characteristics [5]. A 

detailed explanation as well as a good summary of procedures and examples in the 

pharmaceutical field can be found in [3] and a summary of references (commented) up to 2012 

in the supplementary material in [6]. 

In the direct mathematical matrix inversion scenario, it is not possible to add constraints in 

the desired quality characteristics. With that purpose, the problem can be re-defined as an 

optimization problem. For example, looking for the scores that minimize the quadratic 

weighted difference between the desired and the predicted characteristics, provided a limiting 

value of Hotelling T
2
 is not surpassed in [7]. In [6] a new statistic is proposed to check the 

ability of the model to reconstruct the regressor vector.  

In this optimization context, the problem is then posed as a least squares problem, linear if 

the predicting models is linear, like in [5,8], or nonlinear in [9] where GP (Genetic 

Programming) nonlinear models relating latent vectors (PCA –Principal Component Analysis 

scores) for X and Y blocks are used as predicting models, solving also a weighted least squares 

problem.  

The alternative approach presented herein is to pose the study of the feasibility of a given 

product also as an optimization problem, by directly looking for the process variables that 

predict final product characteristics close enough to the desired ones. However, this is done 
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simultaneously for all the characteristics (the product is unique) but by handling each 

individual characteristic separately.  

Both goals can be achieved when estimating the pareto-optimal front (see for instance 

[10]) that contains the best possible solutions for each variable independently and trade-off 

solutions among characteristics when the product is unfeasible. As a consequence, the PLS 

regression model is computationally inverted which, as far as the authors know, is done for the 

first time. 

The proposed procedure is explained in section 2 trying to keep the theory to the minimum 

necessary, and then section 4 shows some of its characteristics. The first two cases, sections 

4.1 and 4.2, address the computational inversion from the latent variable space or from the 

process variable space, respectively. Section 4.3 tackles the feasibility of a new product, and 

section 4.4 shows some other possibilities of the methodology, as far as they can be posed as 

optimization problems.  

 

2. Model-base optimal selection of process variables 

2.1 Optimization engine 

It has already been said that the procedure is mainly an optimization procedure for looking 

for process variables that predict a final product with some previously defined quality 

characteristics. To clearly state the procedure, we divide it into the four necessary components 

[2], namely, a predictive model, that is, a mathematical expression that relates process 

variables with product characteristics, which is usually fitted with a process-representative 

data set; an objective function, which is a quantitative measure of the adequacy of a candidate 

solution; some constraints related to both process variables and product characteristics, 

mainly the former; and an optimization engine to search among the candidate solutions to find 

the optimal ones according to the defined objective function, while adhering to the 

constraints.  

In more precise terms, let Y be a ( )n q×  matrix that contains the set of q response 

(output) variables, that is, q measured properties on the final product that define its quality 

characteristics. Matrix X ( )n p×  on the other hand gathers the available set of p predictor 

input variables, what we called the process variables i.e., the variables that describe the 

situation of the process that gave rise to the product whose characteristics are recorded in Y. 

These data matrices are used to fit a multivariate prediction model, let it be denoted as f , 

to predict Y from X. It should be noted that f  is a functional mapping between a p-

dimensional space and a q-dimensional space, that is, a vector multivariate function, defined 

in some precise domain, D, the one determined by the controlled process variables. Notice 

that defining D is in fact a form of defining constraints on the process variables. 

Then, given a target vector yt that describes some desired characteristic, the feasibility of 

such product must be studied and, if this is so, the predictor vector D∈x  with the 

corresponding process variables should be estimated. In other words, it is about studying the 

existence of some viable x such that  

( )ˆ f=y x   (1) 
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is, in practice, equal to the given yt. Mathematically speaking, this is ( )1
tf −=x y , 

provided f  is invertible and 
1f −

 denotes its inverse. 

As an alternative to the explicit inversion of the prediction model f , the approach 

presented here is a computational approach that consists on taking into account its 

optimization nature, that is, to look for D∈x  such that the predicted ŷ  (Eq. (1)) and the 

target ty  are similar enough.  

Given that we have more than one quality characteristic, the mentioned similarity is, in 

fact, between two vectors. In the present case, it is computed as the absolute difference 

between each coordinate, that is, each characteristic is individually considered and compared 

to the corresponding characteristics in the predicted vector. Consequently, we look for D∈x  

such that the predicted value  ( )ˆ f=y x  minimizes all these differences. More formally, the 

problem can be written as 

{ } { },ˆminimize , 1,..., minimize , 1,...,i i t id i q y y i q= = − =
x x

   (2) 

where ( )ˆ f=y x  for a given D∈x  and multivariate prediction model f.  

Eq. (2) defines the function to be minimized, which is a vector function. This is so because 

there are q differences (one per coordinate) to be simultaneously minimized. In a general 

context, it is said that there are multiple individual objectives to be met in the optimization 

problem, or multiple criteria to be optimized simultaneously, and as such, a problem like this 

one is known as a multi-objective or multicriteria minimization problem.  

However, a multidimensional space, such as the space of the individual differences in Eq. 

(2), is not well ordered (see, for instance [11]) and, consequently, the optimization problem is 

no longer well defined in the sense that, in general, there might not be a solution that 

simultaneously provides the minimum values attainable for all the objectives (i.e., all the 

vector coordinates in Eq. (2)) at once.  

This approach to the optimization problem, posing it as a vector function to be optimized, 

already makes a huge difference with the alternative of transforming the multiple different 

criteria into a single-criterion (for example, with a weighted sum), which is then optimized.  

In any case, to tackle the problem, a partial order useful in this vector optimization context 

is the Pareto order which is defined, for two q-dimensional vectors, as  

( ) ( )1 2 1 2, ,..., ' , ' ,..., 'q qd d d d d d≺   when ' 1,2,...,i id d i q≤ ∀ =   (3) 

It seems clear that any pair of vectors are not necessarily comparable with this relation, 

but, when the vectors are comparable, the preferred solution for a minimization problem is 

the one that gives ( )1 2, ,..., qd d d .  

 

For a finite set of vectors, those that are not comparable to one another with the Pareto 

order constitute the set of non-dominated solutions. When considering the set of non-

dominated solutions of the entire feasible space we have the so-called Pareto optimal front. In 

a multicriteria optimization context the Pareto-optimal front thus contains the Pareto-optimal 
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solutions for each given criterion, that is, when moving along the front necessarily one of the 

criteria is improved though at least another one is worsened. In particular, it contains the 

solutions that provide the minimum attainable value in each individual criterion. 

The optimization engine to look for the Pareto-optimal front is a computational approach 

by using an evolutionary algorithm, primarily because we need to maintain a population of 

solutions. Contrary to the usual need of convergence of all the members in a population 

towards a single optimum value, in this case, we need to estimate the whole pareto-optimal 

front thus the population must converge to different solutions spread along this front, so non-

dominance among solutions and maintenance of the dispersion are the two main 

characteristics to be taken into account along evolution.  

Hence, the population is made up by points in the domain of the process variables, D, 

evaluated (vector fitness function) according to the individual proximity to yt and it evolves by 

moving these points inside D looking for non-dominated vectors (in the q-dimensional space) 

according to the criteria to be optimized, in this case, the minimization problem as defined in 

Eq. (2), with the partial order among differences defined in Eq. (3).  

In each generation of the evolution, a new population is created, as usual, by selection, 

crossover, and mutation; and the new elements are evaluated according to the criteria to 

obtain the corresponding fitness value. Then, by considering the enlarged population formed 

by joining the current population (parents) and the new generated offsprings, the update is 

made by firstly sorting all of them in sequential levels of non-dominance and selecting among 

these levels in order until completion of the new population. If in the last level we need to 

arrive to fill the population there is more solutions than needed, only the most dispersal ones 

are selected according to the crowding distance [12]. More details about the implementation 

can be found in [13], which is in the context of experimental design. In this field, a similar 

methodology allowed the computation of ad-hoc experimental designs with competing criteria 

[14,15]. 

 

2.2 Prediction model and constraints 

As for the regression method, we will use a PLS2 model between predictor matrix X with 

values of p process variables and response matrix Y that contains the measured q quality 

characteristics.  

This adds constraints for the optimization problem posed in eq. (2) further to the constraint 

already written (x should be in D). To check consistency with the latent space defined by the 

PLS2 model, critical values for a given confidence limit (0.95 along the present work) for both Q 

and T
2
 statistics cannot be surpassed for any candidate vector of process variables x.  

The computation of these statistics are as follows: 

Given a PLS2 model with k latent variables, the relation between the model and X via loadings 

Pk and scores Tk, is described by the following equation (as usual, upper t means transposing) 

 
t

k kX = T P + R   (4) 

If ri is the i-th row of residual matrix R in eq. (4), the Q = ri ri
t
 residual index indicates the 

difference or residual between the value of the i-th sample and its projection on the subspace 
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of the model. Its critical value at an α confidence level is obtained by the Jackson-Mudholkar 

method [16]. 

The Ti
2
 Hotelling statistic for the i-th sample is the sum of the normalized squared scores, 

defined as Ti
2
 = (ti ti

t
) / λi where ti is the i-th row of Tk in eq. (4) and λi the eigenvalue 

corresponding to the i-th latent variable. Ti
2
 is a measure of the Mahalanobis distance from 

each sample to the centroid, measured in the projection plane (hyperplane) of the PLS2 model 

considered. At a confidence level α the threshold value is computed as (k (n−1) / (n−k)) Fk,n-k,α, 

where Fk,n-k,α is the critical value of a F distribution with k degrees of freedom in the numerator 

and n−k in the denominator.  

Finally, if the quality characteristics are unequally important, the procedure can be also applied 

with weighted responses, by using weights defined by the user according to the different 

relevance of each response. 

 

3. Software 

The main routines implementing the evolutionary algorithm to estimate the pareto-

optimal front are home-made programs written in Matlab® (The Mathworks, Inc., Natick, MA, 

USA). The PLS_Toolbox (Eigenvector Research, Inc., Manson, WA, USA) for Matlab has been 

used for all the calculations with PLS models. Also, Statgraphics Centurion XVII (Statpoint 

Technologies Inc., The Plains, VA, USA) has been occasionally used.  

 

4. Results and discussion 

To illustrate the methodology, data [17, 18] from a low-density polyethylene production 

process is used. They correspond to two tubular reactors connected in series, so that the 

process depends on 14 (process) variables. Data from 50 products are recorded, with the 

corresponding fourteen process variables and five characteristics measured in each produced 

polyethylene to qualify it.  

Table 1 summarizes the process variables, as well as their mean and standard deviation 

values. Also, minima and maxima are in Table 1 because they define the searching domain D, 

that is, the viable settings of the process variables. The last rows in Table 1 contain the same 

information for the five quality characteristics. 

The differences in magnitude and variability are noticeable for both the process variables 

in X (50 × 14) and the product characteristics in Y (50 × 5).  

Now, the focus is on the quality characteristics, which in this case are defined for each 

product in the five-dimensional space. In this space, the variation of each variable in the 

dataset is small (which is not surprising for a controlled process), the maximum and minimum 

values of each characteristic in Y in Table 1 show that the range of each response variable is no 

larger than 9.7% of the corresponding mean.  

Besides, some of them are highly correlated as can be observed in the lower triangular 

part of the correlation matrices written in Table 2. An opposite behaviour of Y2 with respect to 

both Y4 and Y5 is expected due to the high negative correlation coefficients, namely -0.80 and -

0.92, respectively, that appear in the second column in Table 2, contrary to the situation with 
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Y1 which is positively correlated with them (0.88 and 0.74 are their respective correlation 

coefficients) and, thus, negatively correlated with Y2, r = − 0.71. 

To start the procedure, a prediction model that relates process variables in X with product 

characteristics in Y is needed. We fitted a PLS (Partial Least Squares) model by using autoscaled 

values in X as regressors to predict the five responses in Y, also autoscaled. By using venetian 

blinds (with 7 splits and 1 sample per split) as cross-validation method and taking into account 

the variance explained in both X and Y, and the prediction of the five responses in the training 

set, four latent variables were selected.  

The four latent variables PLS2 model explains 65.97% of the variance in regressors (X-block) 

and 92.63% of the variance in the Y-block. The fitted PLS2 model provides values of R
2
 equal to 

0.92, 0.97, 0.77, 0.98 and 0.99 in fitting and 0.88, 0.94, 0.65, 0.95 and 0.98 in crossvalidation 

for response variables Y1, Y2, Y3, Y4 and Y5, respectively. The stability of the model is remarkable 

since the values in fitting and crossvalidation are very similar.  

Also, the PLS2 model has been evaluated by performing permutation test where the Y-block is 

shuffled allowing the calculation of the probability that the results obtained with the 

unperturbed Y-block are significant or not. The self-predicted and cross-validated residuals of 

each permutation are compared to the original residuals using the Wilcoxon, Sign and 

Randomized t-tests. The three tests (in fitting and in crossvalidation) ensure that the model is 

significant with a confidence level greater than 0.995 for each of the five variables. 

 

 4.1 Producing a product with average quality 

The first case serves to explain the steps when looking for the settings of process variables 

to guarantee a given product, typically the product we are producing, i.e, the one whose 

quality characteristics are defined by the mean value of each variable in Y. According to Table 

1, the ‘average’ product, which is now the target or desired vector that contains the required 

characteristics, is  

( )
( ),1 ,2 ,3 ,4 ,5

( )

0.1330, 27320.4, 164054.9, 0.796, 26.11

, , , ,

t

t t t t t

mean

y y y y y

=
=

=

y Y

   (5) 

 

Notice that the PLS model was fitted to the process with autoscaled X and autoscaled Y, 

thus, the mean value of X is projected into the origin of the latent space (all the scores are null) 

and consequently, the PLS model predicts null responses, which correspond to the mean value 

of Y. That means that there is at least one vector in the process variables space that 

guarantees the quality characteristics sought. 

For looking for the process variables to achieve a product with the characteristics in yt, the 

procedure is applied with a population size of 150 chromosomes, that is, one hundred and fifty 

14-dimensional vectors selected inside the hyper-cube defined by the range of the process 

variables in X, detailed in the last column of Table 1, and that constitutes the space of 

allowable process variables, D.  
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Then, offsprings are generated with uniform selection among the elements in the current 

population in pairs, simple crossover (with uniform selection of the crossing point) and 20% of 

the coordinates are randomly modified (that is, the probability of mutation is 0.2) also with 

uniform probability.  

To evaluate the members of the population and compute fitness, the fitted PLS should be 

applied, provided it is applicable to the ‘potential’ process variables. To check whether the 

generated vectors are in the same latent space as the one used to fit the model, we use Q and 

T
2
 statistics so that offsprings with any of them larger than the corresponding critical values at 

95% confidence level are directly discarded.  

In this way, predictions of quality characteristics are obtained with the PLS model and 

these predictions are compared, individually, with the target ones. After 1000 generations, the 

non-dominated solutions of the final population constitute the estimate of the Pareto-optimal 

front, 116 solutions in this case.  

The first remark is that one might have thought that the pareto-optimal front should have 

consisted of a single point (no conflict among the five objectives, so the front reduces itself to 

a single point) since the product is feasible. The variation observed in the estimated front is 

due to the stopping criteria. It has been already stated one of the characteristics that make 

evolutionary algorithms suitable for this problem, the fact that they maintain a population of 

solutions. Another characteristic is that the mutation guarantees that every point in D can be 

reached during evolution, although there is little chance to exactly pick a specific exact value 

because the search space is an infinite set. The expected behavior of the method is to 

converge towards this point, but, in practice, as any other iterative method, the evolution 

should be stopped at some point. We have used the number of generations as stopping 

criteria.  

In practical terms, to take into account the whole variability before deciding about the 

solutions obtained, we need to state which differences are, in practice, null differences. Let’s 

assume that individual differences below, say, the 20% of the range of Y are undistinguishable 

from the practical point of view. This means we have established a threshold value,  

( )0 0.0015,229,2492,0.015,0.12=d   (6) 

After rounding the values to the precision of the corresponding units and by imposing this 

threshold (which is an additional constraint to the optimization problem), we discard those 

solutions among the front that surpass this threshold in at least one of the coordinates. The 82 

remaining ones correspond to process variables that would produce the target characteristic in 

the resulting product.  

These eighty-two 14-dimensional vectors containing the process variables in the pareto-

optimal front are written in full in the supplementary material (Sheet ‘case1’ of the file 

pofs.xlsx), along with the fitness values di, i=1, …, 5, and some global measures.  

In detail, the first fourteen columns are for the process variables in the pareto-optimal 

front, in the order of Table 1. Because it is known that the mean value of X, ( )= 1 2 14, ,...,x x xx , 

constitutes a set of process variables to achieve yt, for each setting of process variables 

( )1 2 14, ,...,x x x in the pareto-optimal front, the difference between it and the theoretical 
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solution is computed as a root squared error, ( )
=

= −∑
14

2

X

1

RSE
i i

i

x x and added in the table 

after the X’s values. An analogous calculation in the responses space (i.e., for the expected 

differences di) would be ( )
= =

= − =∑ ∑
5 5

2 2

Y ,

1 1

ˆRSE
t i i i

i i

y y d . These values are also written as 

the last column in the spread sheet and used to sort the different solutions in the pareto-

optimal front, in increasing order of RSEY.  

However, this is just a reduction of all the differences into a single number. The individual 

differences when comparing the predicted and target responses are the ones that qualify the 

performance of each solution in terms of pareto optimality. For instance, three of the solutions 

in the pareto-optimal front have the differences and RSEY of Table 3.  

Despite the fact that the RSEY in the second row is twice the one of the first row, globally 

the second is a better solution for all the responses but Y3. The RSEY in the third row is almost 

40 times greater than that of the second and more than 75 times than the one of the first but 

it is again only a consequence of the value achievable for Y3 because this last solution is a much 

better solution for Y1 and Y5 and better for Y2.  

This also illustrates the kind of information we have in the trade-offs found in the pareto-

optimal front. For moving from the first to the second row in Table 3, it is necessary to let Y3 be 

separated (not much) from its desired value to have the other four characteristics closer to 

their desired values. Notice that the differences are reduced at least in a 30% comparing to the 

ones in the first row, except for d4 that is the same. Looking at the last row, the target value for 

Y5 can be achieved (d5 = 0) simultaneously reducing d1 and d2 as long as we let Y4 and Y3 move 

further away from the desired values.  

The first two columns in Table 4 reproduce the minimum and maximum of each column in 

the spreadsheet so that we see that, in fact, the minimum value of each difference di, last rows 

in Table 4, is 0. That means that there are settings for the process variables to guarantee the 

exact value of, at least, each individual characteristic (each coordinate of yt). Again, these 

solutions have interest since they are somehow the ‘extremes’ of the pareto-optimal front, 

though these are now theoretical properties because, in the context established with d0, we 

see that all the maxima are below the threshold, meaning that all the predicted values are, in 

practice, equal to yt. 

Table 4 also shows the variation of RSEX, from 4.82 to 29.41 among the computed 

solutions, and RSEY in [29.66, 2490.89]. More interestingly, the first rows show the individual 

variation of each coordinate in the process variables. Comparing the individual intervals with 

those in Table 1, we see that the pareto-optimal solutions are, indeed, around the theoretical 

value (the mean) but do not spread over the whole domain, but in shorter intervals, 

specifically for X1, X2, and from X8 to X11 and, to a lesser extent, X3 and X6.  

Although we are not as interested in each coordinate independently as in the whole 

vectors that define the set of process variables, it is clear that these settings in the pareto-

optimal front lie in a sub-region inside the domain. In this region, these solutions show some of 

the variability of the settings of the process variables that we can afford without affecting the 

quality defined for the product, yt. Consequently, they are elements of the design space for yt.  
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Although all the settings in the pareto-optimal front are equal in relation to the intended 

quality, they might be not so in terms of the settings of the process variables. To describe 

these settings in the pareto-optimal front, a principal component analysis (PCA) is performed 

with the process variables. Fig. 1a) depicts their scores in the plane made up by the first two 

principal components. Six points are highlighted, numbered according to the row they have in 

the supplementary material, and representative of different score’s behaviour.  

To give an indication about the differences among these setting for the process variables, 

Table 5 identifies the solution (among these six) in which the minimum and maximum values 

of each process variable are attained. For example, solution number 69 has the maximum 

values of X1, X2, X3, X8, and X9 and the minimum of X4, X5, X7, X12, and X13, whereas the 

maximum of X4 and X12 are achieved in solution 52 together with the minimum of X2, X3, X6, 

and X14. The inspection of Table 5 shows that the six vectors contain settings that are 

maximum or minimum in at least one process variable, which is different in each one. Last 

column in Table 5 is the percentage of the range of these six solutions as against the whole 

range in X (Table 1). For instance, the range of X1 among the six highlighted points (the 

maximum achieved in solution 69 minus the minimum in solution 22) is the 29% of the range 

this variable has in the historical data in X. Except for four of the process variables, this 

percentage is larger than 50%, that is, the six highlighted settings for the process variables are 

not only different from each other but they are well separated in the process variables space. 

The corresponding quality characteristics for the settings in the pareto-optimal front are 

visualized in the biplot in Fig. 1b), corresponding to a new PCA now in the 5-dimensional 

output space. The points highlighted are the corresponding to the six settings in Fig. 1a) and 

Table 5. It is observed how solutions 22 and 52 maximize Y2 and Y4, respectively, while solution 

57, despite its central position in Fig. 1a), maximizes Y3 and Y1. Finally, solution 69 minimizes Y3 

and Y1. 

In relation to the theoretical solution in this case (the mean value of process variables), in 

general longer evolutions, usually combined with larger populations, would be needed to get 

closer to it. In our case, with a population of three thousand vectors of process variables in D 

evolving for ten thousand generations, the population converges to a single point, the mean in 

X corresponding to the zero in the latent spaces (scores).  

 

4.2 Further exploring the design space 

For the purposes here, we take the quality characteristics of one of the products already 

in matrix Y, for example the first one, so that there is no doubt the product is feasible. On the 

other hand, the settings in X provide a direct solution to the problem (though there is some 

variability both in the process variables and in the predictions computed with the PLS model). 

To explore the effect of this variability, a run of ten thousand generations with a 

population of 500 potential solutions moving towards spread and non-dominated solutions, 

provides a final population with an estimate of the pareto-optimal front made by 477 points, 

318 of which with all the differences below d0 (Eq. 6) 

The values of the members of the front that, in practice, predict the same quality 

characteristics along with the differences obtained (fitness values d1-d5) are in sheet ‘case2’ in 

the supplementary material. Like in the previous case, the extremes (maximum and minimum) 
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are noted in the first rows, and also the corresponding values of RSEX (15
th

 column) and RSEY 

(last column) are included. 

When projecting these 318 settings of the process variables into the model of two 

principal components built with X, all the scores of the computed pareto-optimal solutions are 

around the scores of the ‘real’ one. Likewise, the scores on the first two PCs of the predicted 

responses are around the desired one in the plane corresponding to the model built with Y 

(figures not shown here). 

More interestingly, to explore the pareto-optimal solutions, a PCA model with the process 

variables in the pareto-optimal front was computed. Fig. 2a), which depicts the scores on the 

first two principal components, shows three clear groups, marked with different symbols and 

colours. To identify the points, the same symbols and colours are used in Fig. 2b) that is the 

biplot of a new PCA made up with the predicted quality characteristics (Y-space) to see the 

effect of the corresponding process variables (X-space in Fig. 2a).  

The groups in Fig. 2a) are not so clear in Fig. 2b), though it is identifiable that the process 

variables depicted as green squares in Fig. 2a) gives larger values of Y4 and lesser values of Y2, 

but always inside the range of acceptable values, according to Eq. (6), which is the property 

that allows users to guide the analysis of these optimal solutions according to their specific 

needs. 

Also, except for Y3, notice the similarity between the positions of variables Yi projected in 

the biplot in Fig. 1b) (case 4.1) and their position in Fig. 2b), both showing the relation among 

characteristics when exploring pareto-optimal solutions. This arrangement is different from 

the one when decomposing matrix Y, Fig. 3a). 

 

4.3 Feasibility of a product with given characteristics 

In sections 4.1 and 4.2 we do not directly address the feasibility of a product. Instead, we 

know that the product is feasible, either theoretically by looking at the latent variable space in 

section 4.1 or an actual product in the process variable itself in section 4.2. The two situations 

illustrate the use of the methodology to somehow estimate the variability that should be 

expected and to explore the design space for given characteristics. 

So, let us consider the desired characteristics for a new product given in Eq. (7)  

( )0.13, 26800, 160000, 0.82, 25.9des =y   (7) 

All of them, individually, are inside the values already achieved in matrix Y, see Table 1, 

but with different structure. This difference can be seen, for instance, in Fig. 3 that depicts the 

characteristics of the projection of ydes into the two-component PCA model built with 

autoscaled Y, Figure 3a) is the biplot, Fig. 3b) contains the values of the Q and T
2
 statistics.  

Although ydes is projected well inside the model, in terms of T
2
, we can see that it has a 

very large Q-residual, well above the limit (95% confidence level, dashed line in Fig. 3b). This 

fact, by itself, implies that the product is unfeasible [8] because it does not respect the 

structure of the quality characteristics. 

However, it can be worthy to explore the extent of the conflict among the desired 

properties. To that end, several runs of the algorithm have been conducted to minimize all the 
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differences (in absolute value) between the predicted quality characteristics and the new 

target characteristics defined in Eq. (7). In the different runs, population size and probability of 

mutation have been varied with longer evolution times (more generations) to study the 

stability of the estimated pareto-optimal front. This is not a systematic study about the effect 

of the different metaparameters of the evolutionary algorithm on the estimated Pareto-

optimal front. Rather, the different runs in different conditions (a couple of minutes each, 

more or less) converging to similar final populations was taken as a sign of reproducibility and 

stability of the estimated fronts.  

One of these typical runs, after rounding to the corresponding units and extracting the 

non-dominated solutions, provide 121 settings of process variables with their corresponding 

fitness (the vector of individual differences, in absolute value). The minima and maxima of the 

process variables in the pareto optimal front and of the expected differences, in absolute 

value, are in the last two columns of Table 4. In spite of having process variables that exactly 

predict each individual characteristic (the minimum difference in all the coordinates is 0, the 

already mentioned theoretical extremes of the pareto-optimal front), the maximum values in 

each coordinate are much larger than in the first two columns of Table 4 to such an extent that 

no solution verifies that all the differences d1 to d5 are below the threshold value stated in d0, 

Eq. (6). In fact, we also see that the range of the process variables is practically the same as in 

Table 1, which is another indication that the algorithm explored the whole domain trying to 

comply the desired values but ‘fail’ to do so. That means that, in practice, we would have to 

change some of the desired characteristics to obtain a set of viable process variables; 

otherwise, as we already knew from Fig. 3, the product is unfeasible with the present process.  

Nevertheless, the obtained estimate of the pareto-optimal front is already a description of 

the feasible solutions near the desired one. In that sense, it can help the user in deciding about 

the target characteristics and the way they can be redefined, if it were the case. In that sense, 

the approach presented here is different from the situation if we were mathematically 

inverting the matrix model, where possibly the user would have to start a sequential 

procedure trying different possibilities or combinations of responses to guarantee the values 

of one or several of the desired characteristics. In its present form, the own nature of the 

pareto-optimal front states that the user will have settings that would allow to reach, at least, 

each individual value of the desired characteristics, limited to the values of the others.  

If some other alternatives must be explored, that is, the individual zeros (constrained by 

the values of the others) are not good enough, then the optimization algorithm can be guided 

in a different way by defining the optimization criteria accordingly. To illustrate this property, a 

new run has been conducted to explore the possibility of guaranteeing some of the desired 

values in ydes (at least two) without imposing the remaining ones.  

The 449 solutions in the pareto optimal front extracted from the enlarged population (the 

one with the old and new solutions) is in the sheet ‘case3’ of the file in the supplementary 

material. Table 6 shows the differences, in absolute value, as against all the values in ydes, from 

some solutions extracted from the front.  

The solution number 1, whose differences in achieving ydes are in the first row of Table 6, 

has zeros in the columns corresponding to responses (quality characteristics) Y2 and Y3, so we 

have settings for the process variables (in the supplementary material) to guarantee the 

desired values for both Y2 and Y3.  
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Maintaining the desired value of Y3, and with larger differences for Y1, Y5, and especially 

Y2, the settings linked to solution #2 guarantee also Y4; larger distance to Y2 should be allowed 

to reduce the distance in Y5 and achieve the desired value for Y1 in solution #3 together with 

the desired value of Y3.  

Analogously, solution #4, much larger distance to the desired value of Y2 allows obtaining 

the value in Y5, still achieving the value in Y3, and maintaining the distance in Y4; whereas some 

more distance in both Y2 and Y3 are needed to guarantee the desired values for Y1 and Y5 in 

solution #5. 

If, additionally, the practical differences defined by the threshold in d0 are taken into 

account, then there are in fact 122 possible settings to guarantee one of the targeted values, 

257 for guaranteeing two of the characteristics, and 70 for simultaneously achieving three of 

the desired values. No solution is found with more than three. 

Similar systematic approaches can be conducted, depending on the goal of the study, 

which in all the cases can give insights about what characteristics could be optimized at the 

expense of what others. 

 

4.4 Maximize all the quality characteristics 

 This section extends the possibilities of the method being exposed, which is indeed an 

optimization engine, so the procedure can also be used to handle optimization problems 

expressed in its usual way. For example, we may wonder if it is possible to maximize all the 

quality characteristics, or maximize two of them minimizing the other three, or any other of 

the different situations that the person responsible of the process might want to explore.  

Then, let us suppose that we want to study if, with the actual process, there are process 

variables that simultaneously maximize all the responses. In this particular case-study, we 

know that the problem does not have a unique solution due to the correlation among quality 

characteristics, the one observed in the lower part of Table 2: strong negative correlation of Y2 

as against the other three (Y1, Y4 and Y5) evidences their opposite behaviour whereas these 

three, on their part, show positive correlation and can be simultaneously maximized. However, 

we need to know the extent of the conflict, and the maximal value attainable for each 

characteristic. 

Contrary to the previous sections, there is not a specified target value because we do not 

know how much each quality characteristic can be improved (increased) when the process 

variables are in D. In other words, the direct matrix inversion is not well defined for a problem 

like this one that we can handle by re-defining the objective in Eq. (2) as: 

{ }ˆ , 1,2,...,=iy i qmaximize   (8) 

With the restrictions already stated, i.e., maintaining the defined domain for the process 

variables, D, and the restriction of being projected into the latent space defined by the PLS2 

prediction model.  

The modified setting of the problem forces to change the fitness values, which are no 

longer differences, but expected quality characteristics. Adapting the fitness accordingly and 

applying the algorithm for a thousand generations with population size 1000 and probability of 
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mutation 0.15, the resulting pareto-optimal front has 734 elements, sheet ‘case 4’ in the 

supplementary material, where also the expected quality characteristics are written. 

It is worth repeating that now the fitness values are not differences but expected values 

of the quality characteristics. The correlation among the achievable values of the quality 

characteristics when they are guided towards larger values, upper triangular part in Table 2, 

reflects that the achieved solutions maintain the correlation among the quality characteristics 

while also keeping their optimal character.  

In that sense, the extremes of the pareto-optimal front would correspond to the 

individual maxima attainable for each quality characteristic. The intervals of variation of the 

process variables in the Pareto-optimal front and the corresponding predicted quality 

characteristics are written in Table 7, where we can see that, indeed, all the process variables 

are inside D, covering the whole allowable space. 

Also, comparing to the maximum values we already have in Y (Table 1) each individual 

characteristic Yi can be slightly improved with the present state of the process but at the cost 

of obtaining the minimum values already achieved in Y for some other characteristic. This last 

property cannot be deduced from Table 7, but following the different solutions in sheet 

‘Case4’ in the supplementary material.  

Table 8 shows the whole set of simultaneously attainable quality characteristics for the 

‘extreme’ solutions in the pareto-optimal front, that is, the ones with the maximum value in 

one characteristic. They are identified by the row number in the file in supplementary 

material.  

Thus, Table 8 shows that to predict the maximum attainable value for Y2 (28163 in the 

second row in Table 8 that corresponds to row 541 in the supplementary material), values of 

0.1294 should be assumed for Y1 that is almost its minimum value (0.1289 in Table 1), middle 

values for Y3 (among the achievable ones in the pareto-optimal front, from 160135 to 172930, 

Table 7), and again almost the minimum values in the pareto-optimal front of 0.747 for Y4 and 

25.67 for Y5. The situation with Y3 is completely different; its best value can be achieved with 

smaller ‘lost’ in the other four characteristics. Y1, Y3 and Y4 on their part have their 

corresponding individual maxima around the largest values simultaneously attainable for the 

three characteristics, linked to middle values of Y3 and among the worst values for Y2. 

 

5. Conclusions 

The possibilities of a computational approach to help in the decision-making process have 

been shown. It allows tackling the feasibility of a product with desired final characteristics as 

an alternative to the explicit inversion of the mathematical prediction model, which is usually a 

latent variable model needed to predict the quality characteristics as a function of the process 

variables. To be precise, a PLS2 model is computationally inverted here for the first time. 

By posing the issues to be tackled (the day-to-day decision making) as a multicriteria 

optimization problem, the proposed method helps in the study of an ongoing process in the 

framework of QbD. The procedure allows constraints on the process variables, on the quality 

characteristics or even in the latent variable space.  

The fact of having the pareto-optimal front for each given problem facilitates the study of the 

feasibility of products jointly with the needed process variables and their allowable variation. 
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In that sense, it allows the definition of the design space. Even if the product is unfeasible, the 

estimate of the pareto-optimal front is still useful for exploring the conflict and decide about 

possible modifications of some of the desired characteristics.  

The flexibility of the proposed procedure is shown as an alternative for studying the feasibility 

or unfeasibility of a given product that is characterised by defining a vector of targeted quality 

characteristics; or as a mean to handle other situation such as the possibility of optimizing 

(maximize, minimize, maintain a given value) one or several quality characteristics in a 

simultaneous way.   

There are some open questions to be further studied. One of them refers to the precision of 

the conclusions attainable that, as usual when working with prediction methods, are limited 

for the goodness of the model when predicting. Besides, the effect on the design space of this 

uncertainty, and of the one due to the projection of X into the latent space, needs to be 

systematically addressed.  
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Figure captions  

Figure 1. Case 4.1. Principal components analyses computed with the solutions in the pareto-

optimal front: a) Scores of process variables; b) Biplot of quality characteristics. The number 

that identifies some of them is the number that corresponds to their position in the 

supplementary material (Sheet ‘case 1’ of pofs.xlsx) 

Figure 2. Case 4.2. Separate principal components analyses computed with the solutions in the 

pareto-optimal front for a) process variables, and b) quality characteristics. Different symbols 

are used to synchronise the process variables in Fig. 2a) with the expected quality 

characteristics in the biplot of Fig. 2b). 

Figure 3. Projection of ydes in Eq. 7, red square, into the two principal components model 

computed for Y. Biplot in a); values of Q and T
2
 statistics in b) where the dashed lines mark the 

limits computed at 95% confidence level. 
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Table 1. Process variables and product characteristics measured for a low-density 

polyethylene. The last columns contain mean, standard deviation, minimum and 

maximum of each variable. 

 

 Name Explanation 
Mean 

(Standard deviation) 
Interval of variation 

Process 

variables in X 

X1 

inlet temperature to 

zone 1 of the reactor 

206.94 K  

(1.61) 
[204.13, 209.88] 

X2 

maximum 

temperature along 

zone 1 

296.45 K  

(1.85) 
[292.96, 300.19] 

X3 
outlet temperature 

from zone 1 

232.71 K  

(4.20) 
[225.61, 240.25] 

X4 

maximum 

temperature along 

zone 2  

284.21 K  

(2.24) 
[279.28, 288.74] 

X5 
outlet temperature 

from zone 2 

242.44 K  

(2.76) 
[235.76, 246.76] 

X6 

temperature of inlet 

coolant to zone 

116.94 K  

(0.56) 
[115.91, 118.00] 

X7 
temperature of inlet 

coolant to zone 2 

117.82 K  

(0.499) 
[116.90, 118.58] 

X8 

percentage along 

zone 1 where Tmax1 

occurs 

0.0295 % 

(0.0019) 
[0.026, 0.033] 

X9 

percentage along 

zone 2 where Tmax2 

occurs 

0.5796 % 

(0.0053) 
[0.569, 0.592] 

X10 
flow rate of initiators 

to zone 1 

0.4631 g s
-1

 

(0.0269) 
[0.4089, 0.5053] 

X11 
flow rate of initiators 

to zone 2 

0.4648 g s
-1

  

(0.0282) 
[0.4081, 0.5091] 

X12 

flow rate of solvent to 

zone 1 [% of 

ethylene] 

665.77 %  

(6.14) 
[655.025, 676.97] 

X13 

flow rate of solvent to 

zone 2 [% of 

ethylene]  

246.32 %  

(2.29) 
[242.07, 250.10] 

X14 
pressure in the 

reactor  

3004 atm  

(19) 
[2970, 3033] 

Product 

(quality) 

characteristics 

in Y 

Y1 

cumulative 

conversion  

0.1330 

(0.00177) 
[0.1289, 0.1366] 

Y2 
number average 

molecular weight  

27320 

(262) 
[26758, 27904] 

Y3 
weight average 

molecular weight  

164055  

(3063) 
[157505, 169964] 

Y4 
long chain branching 

per 1000 C atoms  

0.7964  

(0.0173) 
[0.752, 0.829] 

Y5 
short chain branching 

per 1000 C atoms 

26.11  

(0.15) 
[25.84, 26.43] 
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Table 2. Pearson’s correlation coefficients for the variables in Y, lower triangular part; and for 

the predicted Y in case 4.4, upper triangular part. The correlation coefficients of 1, between a 

variable and itself, are omitted. 

 

 Y1 Y2 Y3 Y4 Y5 

Y1  -0.94 0.20 0.98 0.91 

Y2 -0.71  0.10 -0.91 -0.98 

Y3 0.37 0.18  0.32 -0.22 

Y4 0.88 -0.80 0.42  0.83 

Y5 0.74 -0.92 -0.14 0.71  
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Table 3. Case 4.1. Fitness values (d1 to d5) for three pareto-optimal solutions. The last column 

refers to the root squared error (RSE) when comparing the predicted and target 

characteristics.  

 

d1 d2 d3 d4 d5 RSEY 

0.00112 12.2 31 0.0002 0.06 33.3143 

0.00072 8.9 66 0.0002 0.03 66.5974 

9.0 10
-5

 2.1 2486.8 0.0048 0 2486.8009 
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Table 4. Intervals of variation of the solutions in the Pareto-optimal fronts for cases 4.1 (first 

two columns) and 4.3 (last two columns). yt is defined in Eq. (5) and ydes in Eq. (7). 

 

  Case 4.1 Case 4.3 

 Name Minimum Maximum Minimum Maximum 

Process 

variables 

X1 205.17 207.87 204.13 209.88 

X2 293.27 298.63 292.96 300.19 

X3 227.97 240.25 225.81 240.25 

X4 279.28 288.53 279.59 288.74 

X5 235.76 246.08 236.53 246.69 

X6 116.10 117.59 115.91 118.00 

X7 116.90 118.49 117.01 118.58 

X8 0.026 0.031 0.026 0.033 

X9 0.574 0.587 0.569 0.592 

X10 0.4268 0.4847 0.4089 0.5053 

X11 0.4269 0.5021 0.4243 0.5091 

X12 656.24 674.86 658.78 676.97 

X13 242.07 249.21 242.07 247.52 

X14 2977 3033 2970 3010 

RSEX  4.8242 29.4130   

Differences 

in absolute 

value 

d1 0 0.0014 0 0.0056 

d2 0 203 0 945. 

d3 0 2489 0 11516. 

d4 0 0.014 0 0.066 

d5 0 0.11 0 0.48 

RSEY  29.6626 2490.8930   

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

Table 5. Case 4.1. Comparison of the pareto-optimal solutions marked in Fig. 1. See text for 

details. 

 

Variable minimum maximum % of range 

X1 22 69 29 

X2 52 69 74 

X3 52 69 77 

X4 69 52 98 

X5 69 2 and 36 55 

X6 52 2 and 36 49 

X7 36 and 69 2 91 

X8 2 69 64 

X9 2 69 42 

X10 22 36 57 

X11 52 57 38 

X12 69 52 60 

X13 69 22 89 

X14 52 22 60 
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Table 6. Case 4.3. Fitness values di when predicting the desired values in Eq. (7) without 

imposing all the values at once. 

 

Number d1 d2 d3 d4 d5 

1 0.00381 0 0 0.0052 0.419 

2 0.00422 64 0 0 0.438 

3 0 673.4 0 0.0465 0.073 

4 0.00026 741.2 0 0.0472 0 

5 0 876.4 2247 0.0518 0 
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Table7. Case 4.4. Maximum and minimum values of the process variables (Xi) and the 

predicted characteristics ( ˆiy ) obtaining when trying to maximize all of them  

Variable minimum maximum 

X1 204.13 209.88 

X2 292.96 300.19 

X3 225.61 240.25 

X4 279.28 288.74 

X5 235.76 246.76 

X6 115.91 118 

X7 116.90 118.58 

X8 0.026 0.033 

X9 0.569 0.592 

X10 0.4089 0.5053 

X11 0.4081 0.5091 

X12 655.02 663.56 

X13 242.07 250.10 

X14 2970 3033 

1ŷ  0.1290 0.1386 

2ŷ  26603 28163 

3ŷ  160135 172930 

4ŷ  0.7469 0.8515 

5ŷ  25.64 26.55 
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Table 8. Values of the quality variables for the solutions in the pareto-optimal front that reach 

the maximum in each individual characteristic (in bold in the main diagonal). 

 

Row in sheet ‘Case 4’ Y1 Y2 Y3 Y4 Y5 

541 0.1386 26742 168070 0.845 26.47 

16 0.1294 28163 166273 0.754 25.67 

285 0.1357 27409 172930 0.824 26.05 

601 0.1381 26679 167982 0.852 26.41 

715 0.1375 26677 163387 0.830 26.55 
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