IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 7, 2018, accepted July 5, 2018, date of publication July 12, 2018, date of current version August 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2855261

GSaaS: A Service to Cloudify and Schedule GPUs

SERGIO ISERTE"”1, RAUL PENA-ORTIZ2, JUAN GUTIERREZ-AGUADO"“2,
JOSE M. CLAVER?, (Senior Member, IEEE), AND RAFAEL MAYO !

! Department of Computer Science and Engineering, Universitat Jaume I, 12071 Castell6 de la Plana, Spain

2Department of Computer Science, Universitat de Valéncia, 46100 Burjassot, Spain

Corresponding author: Sergio Iserte (siserte @uji.es)

This work was supported by the MINECO and FEDER under Projects TIN2014-53495-R and TIN2017-82972-R.

ABSTRACT Cloud technology is an attractive infrastructure solution that provides customers with an almost
unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to
increase their energy and economic savings by adopting a virtualized resource sharing model. However,
resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although,
general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular,
cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral
component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). For this
reason, we design, develop, and evaluate a service that provides a complete management of cloudified GPUs
(cGPUs) in public cloud platforms. Our solution enables an effective, anonymous, and transparent access
from VMs to cGPUs that are previously scheduled and assigned by a full resource manager, taking into
account new GPU selection policies and new working modes based on the locality of the physical accelerators
and the exclusivity when accessing them. This easy-to-adopt tool improves the resource availability through
different cGPUs configurations for end-users, whilst cloud providers are able to achieve a better utilization
of their infrastructures and offer more competitive services. Scalability results in a real cloud environment
demonstrate that our solution introduces a virtually null overhead in the deployment of VMs. Besides,
performance experiments reveal that GPU-enabled clusters based on cloud infrastructures can benefit from
our proposal not only exploiting better the accelerators, but also serving more jobs requests per unit of time.

INDEX TERMS Cloud computing, platform virtualization, networking, GPU cloudification, GPU resource

management.

I. INTRODUCTION

The adoption of cloud computing in data centers offers new
computational possibilities. From the end-user perspective,
the cloud offers on-demand resources which can be easily
provisioned and decommissioned on-the-fly. From the point
of view of the cloud provider, virtualization, flexible resource
availability, and shareability can lead to important economic
competitiveness and a better exploitation of the infrastruc-
ture [1]. Although many types of resources have been adapted
to this paradigm (i.e: CPUs, volatile/permanent memory
devices, networks,. . .), others, such as GPUs, are not so flex-
ible regarding cloud computing.

Hong et al. [2] discuss about how heterogeneous comput-
ing with GPUs can benefit the cloud computing model and
support the idea of a need for a paradigm shift. Tradition-
ally, the access to GPGPU in the cloud has been aimed to
scientific applications. However, many areas would benefit
from this approach, such as video encoding, sequencing in

bioinformatics, scene rendering in remote gaming, or
machine learning.

PCI passthrough [3] is the most common solution for
providing GPU-enabled VMs, where a VM is configured
with exclusive access to the PCI port of the accelerator. The
PCI bandwidth is increasingly becoming the bottleneck at the
multi-GPU system level, driving the need for new technology
like NVIDIA NVLink [4], which provides higher bandwidth,
more links, and improved scalability for multi-GPU/CPU
system configurations. In this scenario, the number of GPUs
that can be assigned to a VM is limited by the number of
GPUs available in the physical node where the VM is allo-
cated. Moreover, the GPU cannot be shared with other VMs
which may lead to an under utilization of the accelerators.

Despite the rigidness of this solution, it is commonly
adopted by cloud providers like Amazon Web Services
(AWS) [5], Google Cloud [6] and Microsoft Azure [7], which
are the current flagships in Infrastructure as a Service (IaaS).

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

39762 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3654-7924
https://orcid.org/0000-0001-5527-8091
https://orcid.org/0000-0003-1552-3069

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

Google Compute Engine provides GPUs that you can add to
your virtual machine instances [8], whilst AWS and Azure
offer GPU-capable VMs with support to CUDA and OpenCL
through Amazon Elastic Compute Cloud (EC2) [9] and Azure
VMs [10], respectively. Moreover, AWS and Google Cloud
support the NVIDIA GPU Cloud (NGC) [11]. NGC pro-
vides researchers and data scientists with simple access to a
comprehensive catalog of GPU-optimized software tools for
deep learning and high performance computing (HPC) based
on GPU-accelerated containers that take full advantage of
NVIDIA GPUs. However, the deployed containers can only
make use of local available GPUs and are oriented to specific
deep learning applications.

More flexible approaches have been proposed to pro-
vide GPU access to non-GPU-enabled clients with the
aim of accelerating graphics performance of applications.
For instance, NVIDIA GRID GPU [12] and the Intel
KVMGT [13] technology that implement complete GPU vir-
tualization. Amazon EC2 Elastic GPU solution [14] allows
end-users to easily attach low-cost graphics acceleration to
a wide range of EC2 instances over the network. However,
Elastic GPUs are only suited for applications that require a
small or intermittent amount of additional GPU for graph-
ics acceleration, and that use OpenGL graphics support and
Microsoft Windows Server 2012 R2 or above.

Regarding GPGPU, several works have leveraged GPUs
in a more general fashion. GVirtuS [15] and its predeces-
sor gVirtuS [16] supply virtual GPUs (vGPUs) accessible
from any virtual machine in a cloud-based cluster, but they
only consider the private cloud paradigm. gCloud [17] is
a similar solution, but it is not yet integrated in a cloud
computing manager, and the application source code has to
be adapted to run in the virtual environment. The solution
presented by Jun et al. [18] shows some of its bottlenecks
for intensive applications, and details of its integration in a
cloud infrastructure are not given. Vgris [19] has not been
tested on cloud infrastructures and only allows local access
to GPUs. More recently, the benefits of the remote access to
the GPUs using remote CUDA (rCUDA) [20] are evaluated
in [21] presenting the tool as a real CUDA-enabling solution
in cloud environments as well as in clusters. rCUDA does
not virtualize GPUs, but provides remote access to them,
henceforth referred as remote GPUs (rGPUs). Although some
of these projects are showing a high rate of matureness, they
have neglected their integration in real cloud platforms and
the management of the GPU resources.

The main contribution of this paper is the design, imple-
mentation, and evaluation of a reliable service capable of
deploying GPU-enabled VMs through a secure and flexible
access to physical GPUs in public or private clouds; however
security requirements can be relaxed in the private scenario.
The proposed solution relies on:

« A new architectural component to provide VMs access
to ¢cGPUs in multitenant environments, hiding the real
location of the accelerators and detaching their traffic
from the VMs traffic.

VOLUME 6, 2018

« A complete cGPU resource management and scheduling
system, which is an extension of our previous general
purpose GPU management system [22]. It has been
improved by including the necessary logic to support
new working modes based on the locality of the phys-
ical GPUs and the exclusivity when accessing them.
Furthermore, additional GPU selection policies, which
take into account those new working modes, have been
incorporated.

The developed prototype has been integrated in a cloud
platform, OpenStack, and the evaluation process tackles a
performance analysis that not only cover different type of
applications, but also a thorough assessment of the infras-
tructure regarding cGPU-enabled VMs deployment time.
Moreover, we demonstrate the benefits of integrating a
shared service for cGPU resources in production environ-
ments through a series of simulations in different workload
scenarios. Results suggest that our service can improve the
availability and utilization of this type of accelerators.

The rest of the paper is organized as follows. Section II
introduces the technologies used in this work. Section III
describes the basis of the proposed service and the sup-
ported cGPUs working modes. Section IV presents a thor-
ough evaluation that has been performed in order to justify the
appropriateness of our work. Section V evaluates possibilities
offered by the proposed service through simulating a batch
of jobs which compete for the GPU resources. Finally, some
concluding remarks and future work are drawn in Section VI.

Il. BACKGROUND

This section describes the three main technologies used in this
work, which are the following: the cloud platform selected to
deploy our prototype, OpenStack; the framework adopted for
accessing remotely to the GPUs from the virtual machines,
rCUDA; and the service, GPGPUMS, integrated into the
cloud infrastructure to manage registered GPUs.

A. OPENSTACK

OpenStack [23] is a well known cloud infrastructure that can
be used to provide private, public, or hybrid IaaS. It relies
on a set of logical elements such as scheduler, networking,
compute, storage, image manager, etc. Each one of these
elements is implemented as a set of distributed components
that interchange information using a message middleware,
RabbitMQ in our deployment. The management of virtual
machines and networks can be done through a web-based
interface (OpenStack Dashboard), through the command
line client tools, or through HTTP APIs. The Nova service
allows the provisioning of compute instances, whilst the
Neutron service gives network connectivity among them
by creating networks, subnetworks, routers, load balancers,
etc. Particularly, these shared services have been relevant
for the deployment of our service. Nevertheless, OpenStack
includes an extensive list of services, such as Storage,
which provides volumes that can be mounted in the instances

39763

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

Dashboard (GUI) Your Applications Monitoring & Tools

]

-
1

APIs
lNova l Neutron
Compute Networking Storage

OpenStack Shared Services

Standard Hardware

FIGURE 1. OpenStack shared services overview.

as block storage. Figure 1 depicts how these shared services
are interconnected in OpenStack.

This cloud platform can be deployed over different
underlying infrastructures, i.e., using physical or virtual
machines, or a hybrid approach [24]. It also supports the
most recent hypervisors, and its architecture offers flexibil-
ity to create an adaptable cloud, integrating legacy systems,
and non proprietary hardware and software requirements.
KVM [25] is one of the most extended, configurable, open
source, and Linux compliant solutions among current hyper-
visors (VMware, Xen, vBox, etc). Besides, KVM supports
the widest set of OpenStack features. For these reasons,
OpenStack and KVM have been selected to deploy our
prototype.

Commonly, cloud infrastructures enable VMs to access
exclusively to local GPUs by using PCI passthrough. This
limitation can be overcome by integrating accelerators with
native support for virtualization, vGPUs, or by providing
mechanisms to cloudify existing GPUs, cGPUs.

B. rCUDA

rCUDA [26] is a middleware that enables access to any
NVIDIA GPU device present in a cluster from every compute
node. GPUs can also be shared among nodes, and a single
node can use all the graphic accelerators as if they were local.
rCUDA is structured following a client-server distributed
architecture and its client exposes the same interface as the
regular NVIDIA CUDA APIL.

Therefore, applications are not aware that they are exe-
cuted on top this middleware. The integration of remote
GPGPU virtualization with resource management systems
(RMS) such as SLURM [27] completes this appealing tech-
nology, making accelerator-enabled clusters more flexible
and energy-efficient.

rCUDA has been extensively tested on clusters and on pri-
vate virtual environments [21] where the physical location on
the resources can be exposed without risk. However, it does
not fulfill several mandatory features when integrating in a
cloud environment, such as anonymous location of the GPUs,

39764

autonomous configuration, GPGPU RMS, security issues,
networking performance, etc.

C. GPGPUMS

Authors in [22] presented the general purpose GPU manage-
ment system (GPGPUMS), a module for OpenStack that is
in charge of managing remote access to a set of GPUs regis-
tered in the cloud infrastructure. This development leverages
rCUDA to grant remote access to the GPUs in a provider net-
work from any VM. For this purpose, it handles the petitions
of deploying GPU-enabled VMs by scheduling the access to
the accelerators.

GPGPUMS offers several working modes, being the most
relevant for our work the exclusive and shared modes.
A single VM has access to the assigned GPUs in the exclu-
sive mode, whilst GPUs can be assigned to more than one
VMs or several times to the same VM in the shared mode.
In this regard, GPU memory is partitioned and each parti-
tion is referred as a rGPU. A rGPU monopolizes the whole
GPU memory in the exclusive mode. However, the original
implementation of GPGPUMS did not take into account GPU
locality neither was designed to operate in a multitenant
environment. In other words, it configured the VMs to access
the accelerators through a secure shell command and it did
not anonymize the location of the accelerators, what is inad-
missible in public clouds.

These drawbacks motivate us to consider cloudification
as the basis for GPGPUMS improvement and evolution as
a cloud service by defining and implementing: i) new com-
ponents required to deal with multitenancy in public clouds,
and ii) new working modes that take into account not only
the exclusivity when accessing the accelerators, but also
their locality. For this reason, our solution turns rGPUs into
cGPUs, being the later more appropriate for public cloud
environments.

IIl. GPU SCHEDULING AS A SERVICE

GPU Scheduling as a Service (GSaaS) aims to provide a
management layer between the GPUs and the cloud infras-
tructure. In this regard, GSaaS is completely integrated into
the OpenStack architecture as a new shared service (see
Figure 2) in charge of cloudifying and scheduling the access
from VMs to physical GPUs.

Figure 3 shows the involved technologies in GSaaS. As
described in Section II, rCUDA enables the access to GPUs
that are previously scheduled and assigned by GPGPUMS.
Additionally, resource-oriented distributed virtual routing
(RODVR) is the key component that permits multitenancy
by hiding GPU location and providing access to them as
c¢GPUs. GSaaS allows a better integration in the cloud and
prevents unauthorized accesses to physical GPUs, because it
is impossible to access the accelerators from VMs that have
been launched outside the proposed service.

The GSaaS components integration into the control plane
of the cloud infrastructure is depicted in Figure 4.

VOLUME 6, 2018

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

Dashboard (GUI)

APIs

lNova l Neutron l

Compute Networking

Your Applications

o5

Monitoring & Tools

Storage

OpenStack Shared Services GSaaS

Standard Hardware

FIGURE 2. GSaaS: A service to cloudify and schedule GPU access in
OpenStack.

OpenStack

GPGPUMS

FIGURE 3. Technologies integration scheme.

Compute nodes are standard OpenStack computation
nodes that allocate tenant virtual machines. It is worth not-
ing that these nodes do not include GPUs devices, while
compute-GPU nodes have physical GPUs and can allocate
VMs that use them locally as cGPUs. On the other hand,
compute-rGPU nodes have an additional GPU network that
allows their hosted VMs to access remote cGPUs provided
by the compute-GPU nodes. This dedicated GPU network
avoids interference with the VM or management traffic in
OpenStack. An RODVR Endpoint is deployed in each node
(compute-GPU or compute-rGPU) willing to host cGPU-
enabled VMs, whilst rCUDA-server daemons are started only
in compute-GPU nodes. The GSaaS service orchestrates the
deployment of cGPU-enabled VMs by using the GPGPUMS
module and interacting with the cloud infrastructure and with
the RODVR Endpoints through the OpenStack management
network.

While RODVR is responsible for the abstraction of the
real GPU location inside the VM configuration, GPG-
PUMS selects and assigns the most appropriate cGPUs
according to new policies. This setup can also facilitate
the migration of the VM to a different compute node, with

VOLUME 6, 2018

(compute-GPU) or without (compute-rGPU) physical GPUs,
transparently for the VM.

A. BOOTING A cGPU-ENABLED VM

The boot process of a cGPU-enabled VM starts with an
user request sent to GSaaS and requires a set of activities,
as depicted in Figure 5. The request provides information
related to the VM instance (image, flavor, network interfaces,
etc.) and related to the GPUs (number, memory, access mode,
etc). Initially, GPU requirements are checked by GPGPUMS
and if these are satisfied then a call to OpenStack Nova
service is performed to check if the VM requirements can be
fulfilled.

If the request is valid, the VM is created by providing a
script to cloud—init, which is a multi-distribution pack-
age that handles early initialization of the cloud instance. This
script is executed during the VM boot stage and sets rCUDA
environment variables with the number of available cGPUs
and their masked locations. These variables are needed to run
the CUDA application in the VM.

Once the Nova agent starts the specified image (active
state!), the GSaaS service waits until the network is up in the
machine (deployment stage). This ensures that the Neut ron
agent in the compute node has created all the networking
infrastructure for the VM.

Then, concurrently to the VM boot process, GSaaS invokes
the GPGPUMS module to select the GPUs, and immediately
thereafter, each GPU remote access is configured via the
corresponding RODVR endpoint. The GPU information pro-
vided by GPGPUMS is passed to RODVR that inserts rules
in the compute node with the aim of routing packets from
the VM to the assigned GPUs. Due to these rules, packets
that leave a virtual interface attached to the machine with
a masked IP and port are rerouted to the real address of
the host where the rCUDA daemon is running. When both
stages (selection and configuration) have finished the CUDA
application in the VM is ready to be used.

Equation 1 defines the total boot time of a VM when
assigning x cGPUs. The parameters of the equation corre-
spond to the activities in Figure 5, where the VM boot time
is the sum of both checking times (GPU and VM), the VM
activation & creation times and the higher time between the
concurrent activities (VM deployment and GPUs selection &
RODVR configuration).

cGPU — enabledVM Boot Time(x)

= CheckGPU &VMTime
+ VMCreationTime + VMActivationTime
+ max(VMDeploymentTime, GPUsSelectionTime(x)
+ RODVRconfigurationTime(x)) €))]
1 https://wiki.openstack.org/wiki/VMState
39765

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

OpenStack

Controller
Node

OpenStack

Network
Node

OpenStack

Networks

Compute-GPU Node
(Local VM-cGPU access)

Compute-rGPU Node
(Remote VM-cGPU access)

Compute-rGPU Node
(Remote VM-cGPU access)

Compute Node
(No cGPU access)

@8

GPU
Network

GP
X
cGPU
D

OVM with local cGPU_ (@) VM with remote cGPU () VM without cGPU 3¢ RODVR ¢ rCUDA daemons

FIGURE 4. GSaaS components integration diagram, showing proposed node types and interconnection networks.

User

Launch a

OpenStack

CUDA-enabled
VM

Invalid request

GSaaS

Check GPU
request

Invalid

v

Check VM
request

equest O

\
Error

Pass

Y

VM creation

VM activation

VM
deployment

v
@

GPUs selection

RODVR
configuration

FIGURE 5. Activity diagram during the launch of a cGPU-enabled VM.

B. GPU SELECTION POLICIES

GPGPUMS includes a GPU selection policy to host cGPUs
based on a first fit algorithm, which selects the first GPU in

39766

the pool of GPUs (result of a previous filter that takes into
account the user’s locality preferences) with enough available
memory to fulfill the request. In cases of low need for GPU
memory, this policy has as a result a performance cut since
GPUs are massively oversubscribed by the cGPUs. For this
reason, we moved to other policies more aimed to perfor-
mance instead of energy-saving or resource-conservative as
it is first fit. Thanks to the modularity and the plugin-based
architecture of GPGPUMS, we developed a new least load
fit policy that checks the available memory in the whole pool
of GPUs and selects the device with the maximum amount
of free memory. Algorithm 1 describes how decisions are
performed in our least load fit implementation. First of all,

Algorithm 1 GPU Selection Policy Based on a Least Load
Fit Strategy

1: function Select_ GPU(job)
2 gpu_sorted_list = gpus.sort_desc_by(avail_mem)

3 for each gpu in gpu_sorted_list do

4 new_mem = gpu.avail_mem + job.req_mem
5 if new_mem < gpu.total_mem then

6: gpu.update_status(job)

7 return gpu

8 end if

9 end for
10: return null

11: end function

the GPUs are listed and sorted by their current available
memory (line 2). Then, the list of GPUs is iterated (line 3). For
each one, the algorithm calculates the total sum of memory

VOLUME 6, 2018

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

needed in that GPU if the job was assigned to it (line 4),
by retrieving the current amount of available memory in the
GPU (gpu.avail_mem) and the memory requested by the job
(job.req_mem). If the sum of memory fits in the GPU memory
(line 5), the job is assigned to that GPU and its attributes are
updated (line 6), for instance, the GPU available memory will
be reduced by the job requested memory. Finally, the selected
GPU is returned to the GPGPUMS runtime (line 7). Other-
wise, if no GPU had enough memory to host the job (the
c¢GPU request), the algorithm would return NULL and the
request could not be satisfied (line 10).

C. CAPABILITIES AND USAGE EXAMPLES

Users are expected to use the command gsaas with differ-
ent arguments in order to deploy their cGPU-enabled VMs.
Table 1 illustrates the working modes that are provided.

TABLE 1. cGPU-enabled VMs working modes.

MODE
Remote-Exclusive

DESCRIPTION

A VM uses GPUs located in different nodes and
monopolizes the use of the assigned GPUs.

A VM uses GPUs located in different nodes, but
these GPUs can be shared with other VMs.

A VM uses GPUs provided by the compute node
in which it is allocated, but these GPUs can be
shared with other VMs.

A VM uses GPUs provided by the compute node

in which it is allocated, and it monopolizes the use
of the assigned GPUs.

Remote-Shared

Local-Shared

Local-Exclusive

The following list of examples illustrates the usage of the
command and the working modes (information related to the
VM is omitted for simplicity):

e $ gsaas -1 —-ncgpus = 2: The basic invocation
to launch a cGPU-enabled VM. The parameter —1 stands
for launch and —-ncgpus determines the number of
c¢GPUs associated to the VM. By default, cGPUs are
only accessible by one VM (exclusive mode).

e $ gsaas -1 —ncgpus = 2 -poolmem = 2048
-mode = shared: In this case, a user requests
2 ¢GPUs in shared mode (-mode) with a GPU-memory
limitation of 2 GB (-poolmem). In other words,
the scheduler (GPGPUMS) is in charge of managing the
GPU memory in order to meet the request, by assigning
2 ¢GPUs of 2 GB to the VM.

¢ $ gsaas -1 —-ncgpus = 8 -poolmem = 4096
-mode = shared -locality = local: A
user can also define the location of the VM with respect
to the cGPUs. By default, VMs are deployed in compute
hosts determined by the Nova service of OpenStack.
However, if we have the special interest in deploying a
VM in the same compute node where the physical GPUs
are hosted, we will use the argument —locality in
order to indicate it. In this example, a user is launching
a VM with access to 8 cGPUs of 4 GB of GPU memory
each one, in the same compute node where the acceler-
ators are plugged.

VOLUME 6, 2018

e $ gsaas -1 -ncgpus = 2 -locality =
Xlocal: In exclusive mode, locality has the same
meaning. In this case, the VM is deployed in the host
where the 2 GPUs are placed, having exclusive access
to them.

e S gsaas -t —-id = <VMid>: With the argument
—t, which stands for ferminate, together with the iden-
tifier of a VM (-1d), the user is able to stop and destroy
an existent cGPU-enabled VM.

When requirements of launching arguments cannot be met,

the deployment of the VM is aborted with an error (see Check
GPU request activity in Figure 5).

IV. EXPERIMENTAL RESULTS

This section presents a set of experiments that evaluates and
demonstrates the benefits provided by GSaaS. The experi-
ments range from a detailed analysis of the VM deployment
time to the scalability study of different kind of applications
like multi-GPU or distributed computation.

A. EXPERIMENTAL SETUP

The experimental setup used to evaluate the features and
the performance of our proposal is depicted in Figure 6.
It is based on OpenStack Ocata with Neutron and the mi2
plugin to define cloud networking,? and adopts a hybrid cloud
infrastructure approach [24]. Virtual and physical machines
run an Ubuntu 16.04 operating system.

The master node (master) and the three compute-rGPU
nodes (compute[0-2]-rGPU) have 2 Intel XEON E5-2630-
v3 sockets (8 cores at 2.40 GHz each) with 32 GB of DDR3-
2200 SDRAM and a 2 TB hard drive. Each processor provides
16 virtual CPUs (vCPUs) due to the hyper-threading technol-
ogy, and therefore 32 vCPUs are available per node.

The master node hosts the virtualized OpenStack con-
troller and network nodes. Each virtualized node is con-
figured with 8 vCPUs, but the controller has 10 GB of
RAM memory and the network node has 6 GB of RAM.
Moreover, the GSaaS elements have been deployed in a VM
with 2 vCPUs and 2 GB of RAM as part of the hybrid
infrastructure.

The Compute-GPU node has 2 Intel XEON E5-2603-v4
sockets (6 cores at 1.70 GHz) for a total of 12 cores with
32 GB of DDR-2133 SDRAM and a 1 TB hard drive. Further-
more, it is equipped with 4 NVIDIA Quadro M4000 GPUs
with 8 GB of memory each. The compute-GPU node can
allocate tenant VMs which make use of its local GPUs.

The 3 networks (Management, VM, and GPU) use 10 GbE
network cards respectively connected through 3 NetGear
proSAFE Plus (XS708E) switches.

B. PERFORMANCE METRICS

Metrics provided by the experimental setup can be classi-
fied into 3 main groups according to their origin: metrics
from tenant VMs, metrics from their hosts, and metrics from

2https ://docs.openstack.org/ocata/networking-guide/

39767

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

compute0-rGPU

<<Compute-rGPU node>> | s nnl
n=sa=
CUDA
app rCUDA RODVR n ==
HTTP —

Endpoint

QOVS br-int
OVS br-tun

computel-rGPU

<<Compute-rGPU node>> | e mw
CUDA nss=— Management
rCUDA s Network switch
AP — lient RODVR il
IR rre e
E / Endpoint

Overlay
Network switch

GPU
Network switch

QOVS br-int
QOVS br-tun

e

s

O

master

i \ <<master node>>

\

<<OpenStack Controller Node VM>>

m OpenStack [j
"l"" w Services —: _=

[
[

<<OpenStack Network Node VM >>

SN J10M3ISN
jueus)
SN JM1OMISN

jueuay

QOVS br-int
OVS br-tun

<<GSaaS VM >>

.’I.
Y

U]

compute-GPU

------- CUDA <<Compute GPU Node>>
=71 RODVR | app .. "CUPA
Endpoint, e
p N T

RODVR rCUDA rCUDA

rules daemon daemon
: (IP,port1) (IP,port4)

QOVS br-int Virtual NIC

3 P
QOVS br-tun

FIGURE 6. Experimental setup deployed in a hybrid cloud infrastructure based on OpenStack.

the GPUs (using nvidia-smi tool). With the purpose of
detecting overhead conditions, memory and processor uti-
lization is measured for each physical and virtual machine.
Moreover, the detailed deployment time when evaluating the
booting process, or the execution time for each performance
test, are collected to characterize the user utilization pattern.
Furthermore, the performance of each GPU is metered by
the memory and CPU utilization of the running processes,
the power consumption, and the usage rate.

All the experiments were executed 50 times in order to
obtain trustworthy statistical measurements.

C. INFRASTRUCTURE DEPLOYMENT EVALUATION

This section analyzes the scalability of deploying CUDA-
enabled VMs from two different points of view: a VM with
multiple cGPUs, and multiple single-cGPU VMs.

First, cGPUs scalability has been evaluated by assessing
the detailed temporal cost of booting a VM depending on
the number of cloudified GPUs assigned to it. Specifically,
we have performed a series of experiments that measure each
time considered in Equation 1 when booting a VM with 0 to
75 cGPUs in 25-cGPU steps. The VM is booted using a flavor
of 1 vCPU, 768 MB RAM and each cGPU requiring 100 MB
of memory. Results are shown in Table 2 and Figure 7.

39768

2548

Mz;ﬁg

20.67 20.67

22.63 22.64

204

Time (s)

— Boot
— GSaaS management
VM deployment

0 25 50 75
Number of Assigned cGPUs

FIGURE 7. Boot time of a virtual machine when increasing the number of
assigned cGPUs.

The boot time of a cGPU-enabled VM is the elapsed
time between the invocation of a gsaas command and the
moment when the requested cGPUs are ready to be used.
GSaaS checking times are not affected by the number of
c¢GPUs as can be seen in Table 2. VM creation and VM acti-
vation times show a small increase of time with the number
of ¢cGPUs. The boot time is basically determined by the

VOLUME 6, 2018

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

TABLE 2. Detailed time (seconds) of GSaaS booting a VM with a different number of assigned cGPUs.

GSaaS management

cGPUs GSaaS checking VM creation VM activation =~ VM deployment (Selection & RODVR) Boot Time
0 - 0.6817 1.2808 20.6710 - 22.6335
25 0.0047 0.6740 1.2626 20.6755 7.9014 22.6368
50 0.0047 0.7397 1.2588 20.6769 15.6715 22.7101
75 0.0046 0.7515 1.3121 20.6745 23.3833 25.4815

maximum between the time required by OpenStack to deploy
the VM and the time required by GSaaS to select GPUs
and configure the access to each cGPU in the compute node
where the VM is allocated (named GSaaS management time).
As can be seen in Figure 7, the GSaaS management time
increases linearly with the number of cGPUs to configure.
However, the VM deployment time is bigger than the GSaaS
management time up to around 62 cGPUs. The overhead
when assigning 50 cGPUs is almost negligible, since it rep-
resents only an increase of 0.2% in the boot time with respect
to the base case of booting the VM without cGPU. In the case
when 75 cGPUs are assigned, the GSaaS management time
is bigger than the VM deployment time and the boot time has
an overhead of 12%.

Conversely, VMs scalability has been evaluated by study-
ing the deployment of multiple single-cGPU VMs when
varying from 15 to 90 in 15-VM steps. Experiments use the
three compute-rGPU nodes (compute[0-2]-rGPU) to fairly
allocate the VMs, and they wait for 10 seconds between
consecutive invocations to the gsaas command. Each VM is
booted using the same flavour as in the previous experiment.
Results are shown in Figure 8. The Y-axis represents a
zoomed-in region of the time, which indicates an almost neg-
ligible increment in the time, mainly due to the performance
deterioration of the compute nodes that host all the VMs.

22.80-
2275-
©
g
£ 22.70-
H
=)
22.65-
22.65
J_ No cGPU
-+ 1cGPU
22.60-
15 30 45 60 75 90

Number of Virtual Machines

FIGURE 8. Boot time of non-GPU-enabled VMs compared to
cGPU-enabled VMs.

D. PERFORMANCE EVALUATION

Three different applications have been chosen in order to
study different aspects of our proposal. First, the importance
of the VM-GPU tenant locality and the GPU shareability is
analyzed. Then, a multi-GPU scenario, where all the cGPUs

VOLUME 6, 2018

of a VM work together to solve a problem, is examined.
Finally, a distributed CUDA-enabled application uses the
message passing interface (MPI) paradigm to parallelize a
problem in several processes.

1) GPU LOCALITY AND SHAREABILITY

In this experiment we leverage CUSHAW [28], a well-
established leading next-generation sequencing read align-
ment CUDA compatible software package. This problem
allows us to check the behavior of GSaaS when there is
a significant amount of data to be transferred from host to
device and vice versa. The VM sends to the GPU the human
reference genome (around 2.4GB) and the sequenced chro-
mosome (in our case 240MB for the sample human chromo-
some Chrl) to be analyzed. When the alignment finishes it
receives the result (around 200 MB).

With this application we analyze the effect of the cGPU
locality and the impact of sharing accelerators. For this pur-
pose, 2 instances of CUSHAW are concurrently executed in a
VM equipped with 4 vCPUs, 8 GB of memory and 2 cGPUs.
While the exclusive cGPUs match 1-to-1 the GPUs, in the
shared mode, each cGPU allocates 4 GB of memory of the
same physical GPU. Furthermore, we distinguish between
two deployment locality options: local if the VM is deployed
in the same host where the GPUs are installed (compute-
GPU) or remote if they are in a non-GPU compute node
(compute-rGPU).

Figure 9 depicts the total execution time of both CUSHAW
instances running concurrently. Results of the exclusive sce-
nario show an increment of 5% in execution time when
the experiment is performed using remote access instead of

Exclusive Shared

bl
20 18.96
18.28 18.39

1743

Execution Time (s)
S

Local Access ~ Remote Access Local Access ~ Remote Access

FIGURE 9. Mean execution time of CUSHAW for exclusive and shared
modes using local and remotes deployment localities.

39769

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

local access, because the VM has to reach other compute host
to transfer the data to and from the accelerator. The shared
scenario presents a similar general behavior.

Worth noting is that the execution time in the shared
scenario does not double the time obtained in the exclusive
scenario, because there are periods with different GPU usage.
Therefore, it is possible to execute two CUSHAW works
simultaneously during the low usage periods without a real
drawback when considering remote locality or GPU share-
ability.

All in all, since the exclusive mode allocates for a cGPU the
whole memory of a physical GPU, memory-based policies
such as least load fit or first fit have no difference in the
resource scheduling and the resource waste is inevitable.
However, if we combine the locality with exclusive mode,
we can appreciate variations in the performance of the
applications.

2) MULTI-GPU COMPUTATION AND SCHEDULING POLICIES
Multi-GPU applications leverage all the assigned cGPUs
to the VM to perform their operations. A classical Multi-
GPU application based in the Monte Carlo algorithm, widely
used in this kind of tests, is found in the NVIDIA SDK.
MonteCarloMultiGPU?3 is a single-process application which
evaluates fair call price for a given set of European options
using a Monte-Carlo approach, taking advantage of all
CUDA-capable cGPUs assigned to the VM.

In this regard, we have deployed a VM with 30 vCPUs
and 30 GB of RAM. Furthermore, through GSaaS, we have
progressively attached to the VM more cGPUs (with 4 GB
of memory) in order to evaluate the productivity of Mon-
teCarloMultiGPU when sharing GPUs. The VM can own
up to 8 cGPUs (each GPU has 8 GB of memory) with this
configuration.

Figure 10 depicts the number of options calculated per sec-
ond (throughput) by MonteCarloMultiGPU when assigning
an increasing number of cGPUs to the VM and considering
different working modes (local and remote) and selection
policies (first fit and least load fit).

As in the previous section, local-remote modes do not
present any significant improvement. However, when com-
paring selection policies we can appreciate important differ-
ences in the results.

From the perspective of an end-user, least load fit policy
provides better results up to 4 cGPUs. In this particular
case, this policy selects 4 different GPUs to host the first 4
c¢GPUs, while first fit hosts the first 2 ¢cGPUs in the same
GPU, the third and forth ¢cGPUs in the second GPU and
so on, oversubscribing the accelerators earlier. Least load
fit prioritizes devices with lower allocation of memory; that
is why least load fit selects different accelerators (exclusive
usage) for the cGPUs until they are finished (up to 4), then
from the 5th cGPU on, GPUs are oversubscribed.

3 http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86
_website/samples.html#MonteCarloMultiGPU

39770

300000

W~

2 200000 /-

8 I

@

-

2

& 100000 Experiment

4 First fit (remote)

-®- First fit (local)
Least load fit (remote)
Least load fit (local)

z

1 2 3 4 5 6 7 8
Number of ¢cGPUs

FIGURE 10. MonteCarloMultiGPU throughput using different cGPUs
assignation policies.

On the other hand, the first fit policy depicts a more
appealing approach for a cloud provider. This policy deploys
c¢GPUs in one accelerator while it has enough memory to
host them. With the requirement of 4 GB of memory per
c¢GPUs, each physical device can host up to 2 cGPUs, hence
we are using few GPUs at the expense of worse performance
(fewer options calculated per second). However, depending
on the pay-per-use price of the cGPUs, a user can sacrifice
the performance if the economic outcome is worth it.

3) DISTRIBUTED GPU-ENABLED COMPUTATION

For this last experiment we have employed a distributed
application with support for GPUs. The application, CUDA-
MEME [29], is an ultra-fast scalable motif discovery algo-
rithm. Particularly, we have used mCUDA-MEME, a further
extension of CUDA-MEME in terms of sensitivity and speed,
which enables users to use a GPU per MPI process in order
to accelerate motif finding. The application was configured
to work over the input dataset nrsf_2000. fasta, from
its test-cases, with a maximum size of 2,000,000 elements.

mCUDA-MEME 1is capable of using all the GPUs in a
host whereas there is spawned, at least, the same amount of
MPI processes. This feature limits the grade of parallelism to
the number of installed GPUs in the target host. Apart from
that, GPUs involved in the resolution of mCUDA-MEME are
not fully computationally loaded. This experiment provides
an insight into the use of GSaaS, which demonstrates its
versatility when it comes to improve the performance of an
application and the system utilization.

To increase the parallelism with the same hardware infras-
tructure, we share the GPUs in order to provide access to
more cGPUs in 2 different ways. On the one hand, we setup
a VM with 12 ¢cGPUs (intranode distributed computation).
On the other hand, we deploy up to 12 single-cGPU VMs
(internode distributed computation). Both scenarios aim to
increase the performance of mCUDA-MEME instances by
spawning more MPI processes with access to a GPU. The
VM for the intranode experiment consisted of 30 vCPUs and
30 GB of RAM, while the internode VMs were equipped with

VOLUME 6, 2018

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

2 vCPUs and 4 GB of RAM. Each cGPU was configured
with 1 GB of memory, and GPGPUMS with the least load
fit policy.

Figure 11 shows the average time of 50 executions of
mCUDA-MEME with an increasing number of CUDA-
enabled processes running on the same VM (intranode)
and on independent VMs (internode). For the sake of
clarity, we have omitted the result of 1 cGPU (that is,
3,997.56 seconds) and beyond 12 processes, which did not
show further performance improvement. Increasing the num-
ber of CUDA-enabled MPI processes, by sharing the 4 under-
lying physical GPUs, reduces the execution time in both
modes. However, offloading the processes in different VMs
(internode scenario) provides better results. The intranode
scenario processes run on the same compute host (where
the VM is running), whilst the internode scenario processes
run on different VMs, spread across the 3 compute hosts.
Hence, compute hosts have less burden and the performance
increases.

X Mode
— Internode
Intranode

2000+

1500 -

1000 -

Execution Time (s)

500 -

4 5 6 7 8 9 10 11 12
Number of CUDA-enabled MPI processes

[SE
w

FIGURE 11. mCUDAmeme execution time with different number of
CUDA-enabled MPI processes running on the same VM (intranode) and
on different VMs (internode).

Worth noting is that the low utilization rate of the acceler-
ators gives us an improvement opportunity. Figure 12 illus-
trates the average utilization rate of each physical GPU
(obtained from the nvidia-smi command with a sampling
rate of 1 second) during the execution of mCUDA-MEME for
the configuration of different processes, when considering
intranode (Figure 12a) and internode (Figure 12b) modes.
Both charts depict a pattern where utilization rate increases a
step every 4 processes. Once the 4-process point is exceeded,
where each process is using exclusively one of the 4 GPUs
available, GPUs are oversubscribed by the subsequent pro-
cesses. As it is shown in Figure 12b, processes running on
different VMs can exploit better the GPUs, utilizing them
almost a 20% more than the intranode counterpart.

V. PRODUCTION ENVIRONMENT PROJECTIONS
After experimentally showing the benefits of GSaaS on a real
infrastructure, we now supplement the study with the analysis

VOLUME 6, 2018

801 [Jepuo[Jcrut [l cruzllGPuU3

=
(=]
]

353
(=]

Mean GPU Utilization (%)
S
S

12 3 4 5 6 7 & 9 10 11 12
Number of MPI processes in the same VM

(a)

80

60 M A

Mean GPU Utilization (%)
S

N

12 3 4 5 6 7 & 9 10 11 12
Number of MPI processes in different VMs

(®)

FIGURE 12. GPU utilization rate for both distributed modes. (a) Intranode
mode. (b) Internode mode.

of using GSaaS in production environments where physical
resources are managed by a job scheduler.

In production clusters, users submit their resource requests
in the shape of jobs. An increase in the number of completed
jobs per unit of time has been proved in many studies by
combining a remote access GPU technology with an RMS.
For instance, Iserte et al. [30] show how a HPC cluster can
boost its throughput by combining rCUDA and Slurm.

If the submitted jobs instanced VMs requiring a certain
amount of GPUs, the scheduler should be able to manage
those jobs and the underlying resources. In order to analyze
the behavior of our framework in a production environment,
we have developed a simulator based on SimPy.*

The simulator implements a job scheduler combining
SimPy features such as: resource management and waiting for
other processes. Moreover, the simulator has been developed
to take decisions depending on the available GPUs and on the
request in order to determine whether a job is executed or not.
For this purpose, the simulator is provided with a naive job
scheduling policy, sufficiently satisfactory to demonstrate
the benefits of GSaaS in production environments. This
policy implements a first come first served (FCFS) algorithm

4https://simpy.readthedocs.io

39771

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

without backfilling, in other words, not allowing jobs to
overtake others.

In order to evaluate the GSaaS approach, we simulated the
execution of a workload of jobs, where each job requested a
quantity of single-GPU nodes for a given time. The workloads
were based on the Lublin-Feitelson model [31], a complex
statistical model that derives from actual traces and considers,
among other features: the resources requested by the jobs,
the job execution times and the jobs interarrival times. In
an effort to emulate our 4-GPU infrastructure, jobs were
restricted to use a maximum of 4 nodes (with 1 GPU each
one). Additionally, the GPU memory partitions were limited
to 1 GB with the aim of deploying up to 32 cGPU-enabled
VMs (8 GB x 4 GPUs), instead of the 4 physical GPUs
without the cloudified approach. Furthermore, the experiment
assumes that the maximum quantity of GPU memory needed
by a jobis 1 GB.

Table 3 contains the estimated processing time of the
workloads with different cGPU configurations. Results show
a reduction in time of a 50% with the 2X increment of
accelerators.

TABLE 3. Expected execution time of a workload with different cGPU
configurations.

cGPUs Assigned memory Expected execution time
4 8GB 53.35 hours
8 4GB 26.73 hours
16 2GB 12.71 hours
32 1GB 6.89 hours

Nevertheless, when a physical GPU is shared among
different processes, the performance of these processes is
degraded. A previous work [21] analyzed this degradation
when several programs are running at the same time in a
GPU. This study involves a set of commonly used scientific
applications, where in the worst case, two instances of the
same application running concurrently, experienced an incre-
ment in the execution time of 1.75X. This set of applications
includes mCUDA-MEME, where two instances need a 10%
more time to finish, while 3 concurrent instances complete
their execution using 1.4X the original individual time.

As scientific applications in production environments do
not usually spend all the execution time running on the GPU
(they have different CPU-GPU computational stages and also
spend time transferring data between them), executing con-
current instances do not imply to double or triple the comple-
tion time. Although, sharing resources has proved to benefit
the global throughput of the system, the performance reduc-
tion cannot be dismissed. For this reason, we have included a
sharing factor overhead that increments the running time of
the jobs by a defined factor.

Figure 13 shows the speedup obtained after applying: a
null sharing overhead factor (1X), a higher overhead of 1.5X
and a maximum theoretical sharing overhead of 2X, which
doubles the job execution time. It represents the estimated
speedups of sharing GPUs among VMs regarding different

39772

4X-

3X-

Speedup
[3°)
bl

Time sharing factor overhead: @ 1 4 1.5 2
0X -
8 (4GB) 16 (2GB)
Number of cGPUs (GPU memory assigned)

4 (8GB)

FIGURE 13. Simulated speedup when applying different time sharing
factors overhead.

overhead factors. The simulation reaches up to 4 concurrent
jobs running over the physical accelerator (16 cGPUs), each
one requesting 2 GB of GPU memory. Results indicate an
speedup in the range of 2-4X.

VI. CONCLUSIONS AND FUTURE WORK

Although many application areas would benefit from suitable
cloud solutions based on GPUs, cloud providers are only
offering instances with exclusive access to local GPUs by
using PCI passthrough. This limitation can be overcome by
providing cGPUs from existing devices that do not support
native virtualization, as we extensively demonstrate in this
paper.

This work designs, develops and evaluates GSaaS, a ser-
vice to cloudify and schedule the access to physical GPUs
from VMs, aimed to public cloud infrastructures. The pro-
posed service relies on a set of 3 distributed components,
integrated between the cloud infrastructure and the physical
GPUs. In this sense, rCUDA enables remote access to the
GPUs, which are previously cloudified and scheduled by
RODVR and GPGPUMS, respectively. These components
offer 4 cGPU working modes: local-exclusive, local-shared,
remote-exclusive, and remote-shared.

The main benefits achieved by GSaaS are: adaptive
scheduling of GPU resources, decoupling of the interface
between the client and the rtCUDA server, hiding the real loca-
tion of the resources, preventing GPU unauthorized accesses,
and detaching VM traffic from GPU traffic by using a dedi-
cated network. Besides, the proposed solution automates the
configuration of its distributed components.

A GSaaS prototype has been evaluated in an actual cloud
deployment based on OpenStack. We have demonstrated
its versatility in different scenarios where GSaaS can be
leveraged to scale-up applications, facilitate the provision
of accelerators or increase the utilization rate of the GPU.
Deployment scalability experiments denote that our solution
introduces low overhead, since the deployment time is only
increased 0.2% when assigning 50 cGPUs to a VM. Perfor-
mance experiments reveal the importance of VM-GPU tenant

VOLUME 6, 2018

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

IEEE Access

locality and GPU shareability in different scenarios. Results
show that the application performance is barely affected, and
the proposed service can exploit better the GPUs, increasing
their utilization up to a 20% in a distributed scenario. Finally,
through a simulation, we unveil the potential of resource man-
agement tools like GSaaS when dealing with many requests.

We are exploring the usage and adaptation of the compo-
nents provided by the networking plane of the cloud infras-
tructure to provide access to scheduled cGPUs as future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable, insightful comments that improve the quality
of this paper.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Mastelic, A. Oleksiak, H. Claussen, 1. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,” ACM
Comput. Surv., vol. 47, no. 2, 2014, Art. no. 33.

C.-H. Hong, I. Spence, and D. S. Nikolopoulos, “GPU virtualization
and scheduling methods: A comprehensive survey,” ACM Comput. Surv.,
vol. 50, no. 3, 2017, Art. no. 35.

J. P. Walters et al., “GPU passthrough performance: A comparison
of KVM, Xen, VMWare ESXi, and LXC for CUDA and OpenCL
applications,” in Proc. IEEE 7th Int. Conf. Cloud Comput. (CLOUD),
Jun./Jul. 2014, pp. 636-643.

NVIDIA NVLink Fabric. Accessed: Jun. 1, 2018. [Online]. Available:
https://www.nvidia.com/en-us/data-center/nvlink/

AWS: Amazon Web Services. Accessed: Feb. 6, 2018. [Online]. Available:
http://aws.amazon.com

Google Cloud Platform. Accessed: Feb. 6, 2018. [Online]. Available:
https://cloud.google.com/
Microsoft Azure. Accessed:
https://azure.microsoft.com/
GPUs in Google Compute Engine. Accessed: Feb. 6, 2018. [Online].
Available: https://cloud.google.com/compute/docs/gpus/

Amazon Elastic Compute Cloud EC2. Accessed: Feb. 6, 2018. [Online].
Available: http://aws.amazon.com/ec2

Microsoft Azure: GPU Optimized Virtual Machine Sizes. Accessed:
Jun. 1, 2018. [Online]. Available: https://docs.microsoft.com/en-
us/azure/virtual-machines/windows/sizes-gpu/

NVIDIA GPU Cloud: GPU-Accelerated Containers. Accessed:
Jun. 1, 2018. [Online]. Available: https://www.nvidia.com/en-us/gpu-
cloud/

NVIDIA GRID Technology. Accessed: Feb. 20, 2018. [Online]. Available:
www.nvidia.com/object/grid-technology.html

Intel Graphics Virtualization Technology (Intel GVT). Accessed:
Feb. 20, 2018. [Online]. Available: https://01.org/igvt-g/blogs/
wangbo85/2017/intel-gvt-g-kvmgt-public-release-q22017

Amazon EC2 Elastic GPUs. Accessed: Jun. 1, 2018. [Online]. Available:
https://aws.amazon.com/ec2/elastic-gpus/

R. Montella et al., “On the virtualization of CUDA based GPU remoting
on ARM and X86 machines in the GVirtuS framework,” Int. J. Parallel
Program., vol. 45, no. 5, pp. 1142-1163, Oct. 2016.

G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU transpar-
ent virtualization component for high performance computing clouds,” in
Proc. Euro-Par Conf. Parallel Process. Springer, 2010, pp. 379-391.

K. M. Diab, M. M. Rafique, and M. Hefeeda, “Dynamic sharing of GPUs
in cloud systems,” in Proc. IEEE 27th Int. Parallel Distrib. Process. Symp.
Workshops PhD Forum (IPDPSW), May 2013, pp. 947-954.

T. J. Jun, V. Q. Dung, M. Yoo, D. Kim, H. Cho, and J. Hahm, “GPGPU
enabled HPC cloud platform based on openstack,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2014.

Z.Qi,]J. Yao, C. Zhang, M. Yu, Z. Yang, and H. Guan, “VGRIS: Virtualized
GPU resource isolation and scheduling in cloud gaming,” ACM Trans.
Archit. Code Optim., vol. 11, no. 2, 2014, Art. no. 17.

A. J. Pefia, C. Reafio, F. Silla, R. Mayo, and E. S. Quintana-Orti, and
J. Duato, “A complete and efficient CUDA-sharing solution for HPC
clusters,” Parallel Comput., vol. 40, no. 10, pp. 574-588, 2014.

Jun. 1, 2018. [Online]. Available:

VOLUME 6, 2018

(21]

(22]

(23]

(24]

(25]
[26]

(27]

(28]

[29]

(30]

(31]

F. Silla, S. Iserte, C. Reaiio, and J. Prades, “On the benefits of the remote
GPU virtualization mechanism: The rCUDA case,” Concurrency Comput.,
Pract. Exper., vol. 29, no. 13, p. e4072, 2017.

S. Iserte, F. J. Clemente-Castell, A. Castello, R. Mayo, and
E. S. Quintana-Orti, “Enabling GPU virtualization in cloud
environments,” in Proc. 6th Int. Conf. Cloud Comput. Services
Sci. (CLOSER), Rome, Italy, 2016, pp. 249-256.

OpenStack: The Open Source Cloud Operating System. Accessed:
Feb. 6, 2018. [Online]. Available: http://www.openstack.org/software/

E. Chirivella-Perez, J. Gutiérrez-Aguado, J. M. Claver, and J. M. A. Calero,
“Hybrid and extensible architecture for cloud infrastructure deploy-
ment,” in Proc. 15th IEEE Int. Conf. Comput Inf. Technol., Oct. 2015,
pp. 611-617.

1. Habib, “Virtualization with KVM,” Linux J., vol. 2008, no. 166,
Feb. 2008, Art. no. 8.

A.J. Pe na, “Virtualization of accelerators in high performance clusters,”
Ph.D. dissertation, Univ. Jaume I, Castellon de la Plana, Spain, 2013.

S. Iserte et al., “SLURM support for remote GPU virtualization: Imple-
mentation and performance study,” in Proc. IEEE 26th Int. Symp. Comput.
Archit. High Perform. Comput. (SBAC-PAD), Oct. 2014, pp. 318-325.

Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: A CUDA compatible
short read aligner to large genomes based on the Burrows—Wheeler trans-
form,” Bioinformatics, vol. 28, no. 14, pp. 1830-1837, 2012.

Y. Liu, B. Schmidt, W. Liu, and D. L. Maskell, “CUDA-MEME: Acceler-
ating motif discovery in biological sequences using CUDA-enabled graph-
ics processing units,” Patter Recognit. Lett.,vol. 31, no. 14, pp. 2170-2177,
Oct. 2010.

S. Iserte, J. Prades, C. Reano, and F. Silla, “Increasing the performance
of data centers by combining remote GPU virtualization with Slurm,” in
Proc. 16th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGrid),
May 2016, pp. 98-101.

U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs,” J. Parallel Distrib. Comput.,
vol. 63, no. 11, pp. 1105-1122, 2003.

SERGIO ISERTE received the B.S. and M.S.
degrees in computer engineering in 2011 and
the M.S. degree in intelligent systems from Uni-
versitat Jaume I, Spain, in 2014, where he is
currently pursuing the Ph.D. degree in computer
science. His research interests are mainly in high-
throughput computation which include parallel
shared and distributed runtimes, resource manage-
ment, in clusters and clouds, and energy-efficient
high-performance systems.

RAUL PENA-ORTIZ received the Ph.D. degree
in computer science from the Universitat Politec-
nica de Valencia, Spain. He has around 20 years’
experience in software engineering and qual-
ity, especially in the application of scientific
research knowledge to fix industrial problems
related to web-based applications and their ideal
deployments, publishing various papers in leading
journals and conferences. He worked in several
universities, research centers, and software com-

panies, participating in more than 50 national and international research and
innovation projects. He is currently an Adjunct Lecturer with the Universitat
de Valéncia, Spain. His research is aimed at designing and evaluating
distributed architectures based on cloud and fog computing.

39773

IEEE Access

S. Iserte et al.: GSaaS: Service to Cloudify and Schedule GPUs

JUAN GUTIERREZ-AGUADO received the Ph.D.
degree in computer science from the Universitat
de Valencia, where he is currently an Associate
Professor. He has taught undergraduate and
graduate courses on image processing, pro-
gramming, mobile devices, server-side program-
ming, and cloud computing. He has authored or
co-authored of journal papers in computer vision,
image processing, and recently in cloud infras-
tructure architectures and monitoring. His current

research focuses on distributed and cloud computing.

JOSE M. CLAVER (M’00-SM’14) received the
M.Sc. degree in physics from the Universitat de
Valencia (UV) and the Ph.D. degree in com-
puter science from the Universitat Politecnica de
Valencia, Spain. He was with the Electronics and
Computer Architecture Department, University of
Castilla-La Mancha, Spain, from 1985 to 1991,
and also with the Department of Computer Sci-
ence, Universitat Jaume I, Spain, from 1991 to
2007. Since 2007, he has been a Professor with

the Department of Computer Science, UV. He has taught undergraduate
and graduate courses on computer architecture, embedded systems, high-
speed networks, and parallel computing. He has authored or co-authored
over 60 research publications on these subjects. His research interests include
parallel and cloud computing, computer architecture, computer networks,

and embedded systems.

39774

RAFAEL MAYO received the B.S. and Ph.D.
degrees in computer science from the Universi-
tat Politécnica de Valéncia in 1991 and 2001,
respectively. Since 2002, he has been an Asso-
ciate Professor with the Department of Computer
Science and Engineering, Universitat Jaume 1.
His research interests include the optimization of
numerical algorithms for general processors and
for specific hardware, and their parallelization on
both message-passing parallel systems (mainly

clusters) and shared-memory multiprocessors. Nowadays, he is involved in
several research efforts on HPC energy-aware systems, cloud computing,
and HPC system and development tools.

VOLUME 6, 2018

	INTRODUCTION
	BACKGROUND
	OPENSTACK
	rCUDA
	GPGPUMS

	GPU SCHEDULING AS A SERVICE
	BOOTING A cGPU-ENABLED VM
	GPU SELECTION POLICIES
	CAPABILITIES AND USAGE EXAMPLES

	EXPERIMENTAL RESULTS
	EXPERIMENTAL SETUP
	PERFORMANCE METRICS
	INFRASTRUCTURE DEPLOYMENT EVALUATION
	PERFORMANCE EVALUATION
	GPU LOCALITY AND SHAREABILITY
	MULTI-GPU COMPUTATION AND SCHEDULING POLICIES
	DISTRIBUTED GPU-ENABLED COMPUTATION

	PRODUCTION ENVIRONMENT PROJECTIONS
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	SERGIO ISERTE
	RAÚL PEÑA-ORTIZ
	JUAN GUTIÉRREZ-AGUADO
	JOSE M. CLAVER
	RAFAEL MAYO

