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Abstract

Object classification according to their shape and size is of key importance in many scientific fields.
This work focuses on the case where the size and shape of an object is characterized by a current. A
current is a mathematical object which has been proved relevant to the modeling of geometrical data,
like submanifolds, through integration of vector fields along them. As a consequence of the choice of a
vector-valued Reproducing Kernel Hilbert Space (RKHS) as a test space for integrating manifolds, it is
possible to consider that shapes are embedded in this Hilbert Space. A vector-valued RKHS is a Hilbert
space of vector fields; therefore, it is possible to compute a mean of shapes, or to calculate a distance
between two manifolds. This embedding enables us to consider size-and-shape classification algorithms.
These algorithms are applied to a 3D database obtained from an anthropometric survey of the Spanish
child population with a potential application to online sales of children’s wear.

keyword Currents Statistical Shape Analysis Reproducing Kernel Hilbert Space Children’s body
shapes k−means.

1 Introduction

Many problems in medical imaging analysis and computer vision involve the classification of objects based
on their shapes or on their sizes and shapes. A significant amount of research and activity has been carried
out in recent decades in the general area of shape analysis.

Throughout this work we are going to work with bodies, i.e. geometrical objects with bounded boundaries.
Several mathematical frameworks have been proposed in the literature to deal with such objects, three of
these being the most widely used. Firstly, functions can be used to represent closed contours of the objects
(curves in 2D and surfaces in 3D); secondly geometrical objects can also be treated as subsets of Rm and,
finally, these geometrical objects can be described as sequences of points that are given by certain geometrical
or anatomical properties (landmarks). Shapes, in all these settings, are embedded into a space which is not
a vector space (in a large number of cases it is a smooth manifold) and on which no natural metric is defined.
This makes the definition of statistics particularly difficult; for example, there is no simple explicit way to
compute a mean [Pennec, 2006].

Recently we have considered the space of planar shapes, represented by simple closed plane curves with a
Sobolev-type metric [Gual-Arnau et al, 2015]. This space has the property of being isometric to an infinite-
dimensional Grassmann manifold of 2-dimensional subspaces, and we have used this isometry to compute
geodesics, distances between shapes and mean shapes and we have applied these concepts in order to study
different biomedical applications. The corresponding theory for the shape space of surfaces was generalized
by [Bauer et al, 2011]. However, these results consider parameterized curves and surfaces.

In this approach, the contour of each body (curve in R2, surface in R3, or hypersurface in Rn), is
represented by a mathematical structure named current, where unparameterized curves and surfaces are
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considered. This framework is not limited to a particular kind of data. Indeed, it provides a unifying frame-
work to process any set of points, curves and surfaces or a mixture of these. No hypothesis on the topology
of the shapes is assumed. In particular, it is robust to changes of connectivity of the structures. Moreover,
it is weakly sensitive to the sampling of shapes and it does not depend on the choice of parameterization.
However, the main advantage of this setting is that shapes are embedded into a vector space provided with
an inner-product; hence, it is possible to use easy statistical tools.

A current is a mathematical object which has been proved relevant for modeling geometrical data like
curves and surfaces [Vaillant and Glaunès, 2005, Glaunes and Joshi, 2006, Durrleman et al, 2009].

From integration on manifolds [Morgan, 2008, Lang, 1995], if Ωp denotes the space of differential p-forms
in Rn, each p-dimensional submanifold X in Rn (in particular, X may be the contour of a geometrical object)
can be represented by an application that integrates each p-form along X, i.e. by an application

CX : Ωp −→ R (1)

w −→
∫
X

w,

such application CX , is called a p-current.
In addition, it is possible to associate a subspace of currents to a Reproducing Kernel Hilbert Space

(RKHS) by duality. A RKHS is a Hilbert space of mappings which has useful properties. Moreover, these
associations allow us to represent each set of piecewise-defined manifolds by a function in a RKHS [Durrleman,
2010].

Given a set of geometrical objects (curves or surfaces), our aim is to apply classification techniques
developed for Euclidean spaces in order to divide the m objects into k appropriate clusters. A Hilbert space
and, even more so, a RKHS can be considered the natural extension of the usual Euclidean spaces Rn. The
completeness of Hilbert spaces gives a framework in which to work with infinite-dimensional vectors as the
limit of finite-dimensional vectors.

This paper arose as the result of an important study conducted by the Valencian Institute of Biome-
chanics, the ultimate objective of which was to help decision makers (parents/relatives/children) in the size
selection process when shopping online for children’s wear.

A 3D anthropometric study of the child population in Spain was carried ot for that purpose. After the
study was completed, a database was generated consisting of 739 randomly selected Spanish children between
3 and 12 years of age. They were scanned using the Vitus Smart 3D body scanner from Human Solutions,
a non-intrusive laser system formed by four columns housing the optic system, which moves from head to
feet in ten seconds, performing a sweep of the body. Our work focuses on one of the aims of this study: to
define of an efficient sizing system.

A standard sizing system classifies a specific population into homogeneous subgroups based on certain
key body dimensions [European Committee for Standardization, 2002, Chung et al, 2007, Ibáñez et al, 2012].
Most of the standard sizing charts propose sizes based on intervals over just two or three anthropometric
dimensions. However, correlations between anthropometric measures show great variability in body pro-
portion and as a result it is not possible to cover so many different body morphologies with these kinds of
models.

In this paper, instead of using clustering methods to divide the population into sizes by simply using a set
of anthropometric variables, we propose to use the body shapes represented by currents and the well-known
k-means algorithm in the corresponding space.

The original k-means algorithm [Steinhaus, 1956, Lloyd, 1957], endeavors to find a partition such that the
sum-of-squares error between the empirical mean of a cluster and the objects in the cluster is minimized. It
tries to approximate this optimum k-partition by iterating. Starting with k arbitrary initial cluster centers,
an initial k-partition is obtained, assigning each object to its closest cluster center. Next, the new k cluster
centers are re-calculated as the mean of the observations of the clusters resulting from the previous step.
This loop is continued until no further changes are made. Many procedures were developed in subsequent
decades to improve this classic algorithm; see e.g. Kanungo et al [2002] and Nazeer and Sebastian [2009].
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Even though the k-means algorithm was first proposed over 50 years ago, it is still one of the most widely
used algorithms for clustering [Jain, 2010].

Our implementations have been written with MATLAB [2014].
The article is organized as follows: Sections 2 and 3 concern the theoretical concepts of currents and

Reproducing Kernel Hilbert Spaces. In section 4 the k-means algorithm in the RKHS space is introduced.
An experimental study with synthetic figures is conducted in Sections 5 and 6. The application for classifying
children’s body shapes is detailed in Section 7. Finally, conclusions are discussed in Section 8.

2 From bodies to elements in a Reproducing Kernel Hilbert Space
through currents

Let B1, B2, . . . , Bm be m bodies in Rn whose boundaries Si = ∂Bi, (i = 1, 2, . . . ,m), are smooth hyper-
surfaces in Rn. In this section we introduce the theoretical foundations to represent Si as elements in a
Reproducing Kernel Hilbert Space (RKHS). In order to do that, we will first represent the hypersurfaces Si
as geometrical currents.

Currents were introduced by De Rham in 1955 and by the 1960 paper by Federer and Fleming on ‘Normal
and Integral Currents”, which was awarded the 1986 AMS Steele Prize for a paper of fundamental or lasting
importance; but their use in computational anatomy is recent (J. Glaunés. PhD thesis. 2005).

Let Ωn−1 denote the space of continuous (n − 1)−forms on Rn. The space of (n − 1)−currents on
Rn is the topological dual Ω′n−1; i.e. the space of linear and continuous forms on Ωn−1; and it is a fact
that every hypersurface S of Rn with a finite volume can be represented by an element of Ω′n−1. That is,
from integration on manifolds [Morgan, 2008], we know that any (n− 1)−dimensional form of Ωn−1 can be
integrated along the hypersurface S, which associates with S a (n− 1)−current CS such that:

CS(ω) =

∫
S

ω, ∀ω ∈ Ωn−1. (2)

The application S −→ CS is injective but not surjective (not all the currents can be represented by integration
on a hypersurface (geometrical currents)).

Suppose that the hypersurface S is a parameterized surface r : D ⊂ Rn−1 −→ Rn with r(D) = S, then
r(x) = r(x1, x2, . . . , xn−1) ∈ S, and

CS(ω) =

∫
S

ω =

∫
D

ω(r(x))

(
∂r

∂x1
∧ · · · ∧ ∂r

∂xn−1

)
dx1 . . . dxn−1. (3)

This representation is fully geometric in the sense that it only depends on the hypersurface structure
and not on the choice of parameterization. Moreover the representation of a surface as a geometrical current
distinguishes between isometric hypersurfaces (that is, hypersurfaces obtained as rotations and/or transla-
tion). On the other hand, the opposite current −CS represents the same hypersurface but with the opposite
orientation (since the flux through the hypersurface has the opposite sign in this case).

2.1 Vectorial representation of geometrical currents

A form ω ∈ Ωn−1 can be associated with a vector field ω̄ on Rn thanks to the isometric mapping between
the (n− 1)-form on Ωn−1 and the vectors on Rn. Then,

CS(ω) =

∫
D

ω(r(x))

(
∂r

∂x1
∧ · · · ∧ ∂r

∂xn−1

)
dx1 . . . dxn−1

=

∫
D

Det

(
∂r

∂x1
, . . . ,

∂r

∂xn−1
, ω̄(r(x))

)
dx1 . . . dxn−1.

(4)

Formally, the association between forms and vectors is given by the Hodge star operator and duality
[Do Carmo, 2012].
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2.2 Particular cases: planar curves and surfaces

As stated in the introduction, we are interested in the particular cases of planar closed curves and compact
surfaces (contours of bodies in R2 or R3).

Let α : I = [a, b] −→ R2 be a parameterized regular oriented simple curve in R2. We associate with α
the function (geometrical current)

Cα(ω) =

∫ b

a

ω̄(α(t)) · α′(t) dt, (5)

where ω̄ is a vector field in R2 and · denotes the inner product in R2.
Let S be an orientable parameterized surface in R3 given by r : U ⊂ R2 −→ R3; that is, r(U) = S. We

associate with S the function (geometrical current)

CS(ω) =

∫
U

ω̄(r(u, v)) · (ru(u, v) ∧ rv(u, v)) du dv, (6)

where ω̄ is a vector field in R3, · denotes the inner product in R3, ru = ∂r/∂u and rv = ∂r/∂v.

Then, to characterize hypersurfaces (mainly curves and surfaces) from the above expressions, we measure
how these integrals vary as the vector field ω varies. However, instead of considering all the vector fields,
we will define a test space of square-integrable vector fields where ω varies. In particular, as in Durrleman
[2010], we will choose as the test space a vector-valued Reproducing Kernel Hilbert Space (RKHS).

It is important to note that in this case the application S −→ CS will not be injective; that is, the same
geometrical current CS , as a map defined in a RKHS, may represent two different hypersurfaces. Therefore,
the choice of the appropriate RKHS will depend on the application proposed.

2.3 Operator-valued kernels and test space vector-valued RKHS.

This section gives a definition of a vector-valued Reproducing Kernel Hilbert Space from the Riesz represen-
tation theorem and studies its properties.

The abstract theory of scalar-valued RKHS was developed by Aronszajn [1950]. A scalar-valued RKHS
is a Hilbert space of functions f : Rn → R with some practical properties. In recent years years, the study
of RKHS has been extended to vector-valued functions (the space contains vector fields from Rn to Rn)
(see Carmeli et al [2006], Micchelli and Pontil [2005] and Caponnetto et al [2008]) and it has now become a
widely studied theory .

Let L(Rn) be the Banach space of bounded linear functions from Rn to Rn.

Definition 2.1 Let W be a Hilbert space of vector fields from Rn to Rn. An operator K : Rn×Rn → L(Rn)
is said to be an operator-valued reproducing kernel (rk) associated with W if

1. for every x, α ∈ Rn, K(·, x)(α) ∈W (where K(·, x)(α)(y) = K(x, y)(α) ∈ Rn, ∀y ∈ Rn) and,

2. K satisfies the ”reproducing property”; that is, ∀ω ∈W and x, α ∈ Rn

ω(x) · α = 〈K(·, x)(α), ω〉W

Definition 2.2 Let W be a Hilbert space of vector fields from Rn to Rn. W is a vector-valued RKHS if
there is an operator-valued reproducing kernel (rk) associated with W .

The next theorem (see below) is a sort of converse to this: if a function K is both symmetric and positive
definite, then there is a Hilbert space of vector fields from Rn to Rn for which it is a reproducing kernel.
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Definition 2.3 A function K : Rn × Rn −→ L(Rn) is said to be an operator-valued positive definite and
self-adjoint kernel if for each pair (x, y) ∈ Rn × Rn, K(x, y) ∈ L(Rn) is a self-adjoint operator and

N∑
i,j=1

αi ·K(xi, xj)(αj) ≥ 0,

for every finite set of points {xi}Ni=1 in Rn and {αi}Ni=1 in Rn.

Theorem 2.4 If K is an operator-valued positive definite and self-adjoint kernel, then there is a unique
RKHS, W , such that K is the operator-valued reproducing kernel (rk) associated with W .

It is essential to bear in mind that the proof of this theorem is based on constructing the space W through
the completion of H0 := span{K(·, x)(α) / x, α ∈ Rn} ⊂W .

For ω1 =

N1∑
i=1

K(·, xi)(αi), ω2 =

N2∑
j=1

K(·, xj)(βj) ∈ H0, define

〈ω1, ω2〉H0 :=

N1∑
i=1

N2∑
j=1

αi ·K(xi, yj)(βj). (7)

The vector-valued RKHS W associated with the kernel K, that, from now on, will be denoted as HK , is the
closure of H0, that is, the span of vector fields of the form K(x, ·)(α) for every x ∈ Rn and α ∈ Rn is dense
in HK . For this reason, the inner product in HK between ω1, ω2 ∈ H0 is the limit of expression (7) when
N1, N2 tend to infinity.

Having established the vector-valued RKHS test space HK , currents will be evaluated in HK ; that is, the
space of currents considered is H∗K (it contains the continuous linear functions from HK to R) which includes
the geometrical currents as a subset. The space of currents H∗K is a vector space with the operations sum
(+) and product (·) as in a standard space of functions [Durrleman, 2010].

Therefore, the idea is to build the vector space spanned by the vector fields of the form K(x, .)(α) and
to make this space complete by adding the limit of every Cauchy sequence to it. This construction make it
possible to process discrete meshes of surfaces and continuous surfaces (limit of such a finite combination)
in the same setting.

2.4 Curves and Surfaces as elements in a vector-valued RKHS

We are now going to use the properties of the RKHS, HK in order to rewrite the geometrical currents asso-
ciated with curves in R2 and surfaces in R3.

Let ω be a vector field in HK(R2,R2). Then, by using Eq. (5), the geometrical current associated with
a curve α becomes:

CKα (ω) =

∫ b

a

ω(α(t)) · α′(t) dt = 〈
∫ b

a

K(α(t), ·)(α′(t))dt, ω〉HK , (8)

and by Eq. (6), the geometrical current associated with the parameterized surface S = r(U) is:

CKS (ω) =

∫
U

ω̄(r(x)) · η(x) dx = 〈
∫
U

K(r(x), ·)(η(x)) dx, ω〉HK (9)

where x = (u, v), dx = du dv, η(x) = ru ∧ rv is the orthogonal vector to the surface S at the point r(x), and
ω and

∫
S
K(r(x), ·)(η(x))dx ∈ HK(R3,R3).
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Figure 1. Curve in R2 and its elements

Until now, each hypersurface has been associated with an element in the vector space H∗K . However,
the Riesz Frèchet Theorem (Conway [2013]) establishes that there is an isometric, linear, bijective mapping
LHK : HK → H∗K , defined by LHK (ω)(ω′) := 〈ω, ω′〉HK , ∀ω, ω′ ∈ HK . As a consequence, the space H∗K is
isometric to HK , and then each hypersurface can be associated with a vector field in HK .

Therefore, as a result of the Riesz-Frèchet Theorem, it is possible to represent the parameterized curve
α defined in [a, b], by an element in HK(R2,R2); that is

α −→ CKα (ω) = 〈
∫ b

a

K(α(t), ·)(α′(t))dt, ω〉HK ∼=
∫ b

a

K(α(t), ·)(α′(t))dt, (10)

where ∼= denotes the isometric element from the Riesz-Frèchet Theorem, and to represent a parameterized
surface S by

S −→ CKS (ω) =

∫
U

ω̄(r(x)) · η(x) dx = 〈
∫
U

K(r(x), ·)(η(x)) dx, ω〉HK ∼=
∫
U

K(r(x), ·)(η(x)) dx (11)

Consider now that the curve α is only known at a finite number, p, of points {t1 < t2 < . . . , < tp}, that
constitute a partition of the interval [a, b]. Let yj = α(tj) ∈ R2 ∀j = 1, · · · , p , let xj ∈ R2 denote the center
of the segment [yj , yj+1] and let τj = yj+1 − yj be an approximation of the tangent vector (the finer the
partition the better). Then,

α −→ CKα (ω) ∼=
∫ b

a

K(α(t), ·)(α′(t))dt = lim
p→∞

p∑
j=1

K(xj , ·)(τj) ∼
p∑
j=1

K(xj , ·)(τj). (12)

In practical applications each curve α will be represented by a finite addition which is an approximation
to the vector field.

If we suppose we have a triangulation of S where each triangle yjyj+1yj+2 is represented by the vector
field K(xj , ·)(τj) where xj = 1

3 (yj + yj+1 + yj+2) and τj = 1
2 (yj+1− yj)∧ (yj+2− yj) (τj is the normal vector

to the triangle, whose norm encodes the area of the triangle); then,

S −→ CKS (ω) ∼=
∫
U

K(r(x), ·)(η(x)) dx ∼
p∑
j=1

K(xj , ·)(τj). (13)

The finite addition tends towards the integral as the mesh is refined. This finite addition is an approx-
imation to the vector field

∫
S
K(r(x), ·)(η(x))dx, and it will be the representation which will be used as a

consequence of its computational simplicity.
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Figure 2. Triangulated surface in R3 and its elements

Consequently, we deal with curves and surfaces as vector fields in HK . Thus, the distance between two
surfaces (or curves) is defined as the distance between the corresponding elements in Hk; that is, if ϕ1 and
ϕ2 are two elements in the RKHS associated with two surfaces S1 and S2; then,

d(S1, S2)2 = d(ϕ1, ϕ2)2 = 〈ϕ1 − ϕ2, ϕ1 − ϕ2〉HK = 〈ϕ1, ϕ1〉HK − 2〈ϕ1, ϕ2〉HK + 〈ϕ2, ϕ2〉HK (14)

Using finite approximations to ϕ1 =

p∑
j=1

K(x1j , ·)(τ1j ) and ϕ2 =

p∑
j=1

K(x2j , ·)(τ2j ) we have

〈ϕ1, ϕ2〉HK =

p∑
i=1

p∑
j=1

τ1i ·K(x1i , x
2
j )(τ

2
j ). (15)

Moreover, the sample mean in the vector-valued RKHS HK is calculated in the same way as in Euclidean
spaces [Hsing and Eubank, 2015]. Given a sample ϕ1, ..., ϕm the sample mean is:

ϕ̄ =

∑m
l=1 ϕl
m

=

 m∑
l=1

p∑
j=1

K(xlj , ·)(τ lj)


m

, (16)

ϕ̄ ∈ HK ; however, in general, ϕ̄ is not a geometrical current associated with a surface.

The distance between surfaces, obtained from the distance between the corresponding geometrical cur-
rents, gives a global estimate of the shape dissimilarity between objects. This distance will be used for the
definition of an efficient sizing system for the child population, in which a global dissimilarity shape measure
between bodies that does not highlight where the differences occur locally is needed.

7



3 Choice of the operator-valued reproducing kernel

The choice of the kernel determines the vector-valued RKHS and especially its metric. The choice of this
metric is therefore crucial and must be adapted to every particular application.

Based on this, we are going to use a particular class of operator-valued kernel K defined as follow:

Definition 3.1 Let D ⊆ Rn be a non-empty subset, and K : D × D → L(Rn) an application. Then, for
each x, y ∈ D, the operator K(x, y) is defined by

K(x, y) : Rn −→ Rn (17)

α −→ K(x, y)(α) := k(x, y) · α

where k : D×D → R is a symmetric and positive semi-defite function, (i.e. k(x, y) = k(y, x) ∀x, y ∈ D and∑
i,j

aik(xi, xj)(aj) ≥ 0 for finite sets {ai} ∈ R, {xi} ∈ D).

Proposition 3.2 The operator-valued K established in the previous definition is well defined, symmetric
and positive semi-definite, so there is a unique RKHS vector-valued HK(D,Rn) ⊂W := {ω : D −→ Rn} (or
simply HK) with K as its rk.

Proof. Given (x, y) ∈ D ×D, the operator K(x, y) is obviously linear. In addition, K(x, y) is bounded
because its norm is bounded by |k(x, y)|:

‖K(x, y)‖ = sup{‖K(x, y)(α)‖Rn : α ∈ Rn, ‖α‖Rn ≤ 1} ≤ |k(x, y)|. (18)

Moreover, as k is symmetric and positive semi-definite, K immediately has these properties. Hence, K
is an operator-valued reproducing kernel and there is a unique RKHS vector-valued HK(D,Rn) with K as
its rk. �

Although it is not known how to choose the “best” kernel for a given application, translation-invariant
isotropic scalar kernels of the form k(x, y) = k(‖x−y‖Rn) are often used. In particular the Gaussian function
(also called the Gaussian kernel)

k(x, y) := e

−‖x− y‖2Rn
λ2 . (19)

where λ > 0 is a scale parameter (bandwidth), defines an operator-valued K : D × D → L(Rn) that is
particularly important in the literature, called Vector-Valued Gaussian, Kernel which fixes a vector-valued
RKHS HK(D,Rn) with K as its rk. This fixed vector-valued RKHS has the following expression (Quang
et al [2010])

HK(D,Rn) = {f ∈ C0(D,Rn) ∩ L2(D,Rn) :

∫
Rn
e
λ2‖ξ‖2Rn

4 ‖f̂(ξ)‖2Rndξ <∞} (20)

where f̂ is the Fourier transform of f .

Proposition 3.3 Given D ⊆ Rn a non-empty subset; Kλ : D × D → L(Rn) the operator defined as in
Eq.(17) through the Gaussian Kernel k with parameter λ (Eq. 19), and HKλ the RKHS established by Kλ,
if λ1, λ2 ∈ R : 0 < λ1 ≤ λ2, then HKλ2

⊆ HKλ1
.

Proof. If f was in HKλ2
, using the space expression (20), the integral with λ2 would be finite and larger

than the integral with parameter λ1,
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∫
Rn
e
λ21‖ξ‖2

4 ‖f̂(ξ)‖2dξ ≤
∫
Rn
e
λ22‖ξ‖2

4 ‖f̂(ξ)‖2dξ <∞

Hence, f ∈ HKλ1
. In conclusion, the smaller the value of λ > 0 , the greater the space HKλ established.

�

Remark 3.4 Choice of parameter λ

Since, the smaller the value of λ > 0 , the greater the space HKλ established, (proposition 3.3). It is important
to note that the larger HKλ , the better the differentiation between geometrical data, because since the test
space would be greater, it would be more likely to identify different values that the current has in vector
fields. Thus, the smaller the value of λ > 0, the greater the precision for characterizing geometrical data.
For this reason, if λ is too small, the distance in RKHS detects tiny geometrical details and too much noise
could be captured. In conclusion, it is essential to choose a suitable parameter balancing the two previous
ideas, so λ > 0 should be the typical scale at which the vector fields ω ∈ HK(D,Rn) may vary spatially.

4 k-means algorithm in the RKHS space

In this section we review the classic k-means partitioning algorithm and we comment how adapt it to the
RKHS space introduced in the previous section.

Given m data points x1, ..., xm in Rp and a k-partition C = (C1, . . . , Ck) of the set O = {1, . . . ,m} of
underlying objects, with non-empty classes, let:

W (C) =

k∑
i=1

∑
l∈Ci

‖xl − x̄i‖2, (21)

where x̄i denotes the centroid of the data points.
As is well known, the classic k-means clustering approach looks for a k-partition C of O such that a

minimum value of W (C) is reached. This one-parameter optimization problem is equivalent to the two-
parameter optimization problem:

W (C, z1, . . . , zk) =

k∑
i=1

∑
l∈Ci

‖xl − zi‖2, (22)

where minimization is also w.r.t. all vectors Z = (z1, . . . , zk) of k points z1, . . . , zk from Rp (class represen-
tatives, class prototypes).

The k-means algorithm tries to approximate an optimum k-partition by iterating the partial minimization
steps [Bock, 2007]:

Algorithm 1 • STEP 1. Given an initial partition C(0), obtain the centroid vector Z(0) = (x̄01, . . . , x̄
0
k).

Set i = 1.

• STEP 2. Given a centroid vector Z(i−1), obtain C(i) minimizing Eq.(22) with respect to C, assigning
each point to the class whose centroid has the minimum Euclidean distance to it;

• STEP 3. Given C(i), minimize Eq.(22) with respect to Z, obtaining the new centroid vector Z(i) =
(x̄i1, . . . , x̄

i
k), the sample means.

• STEP 4. Set i = i+ 1 and go to STEP 2 until convergence is reached.

9



By construction, this algorithm yields a sequence Z(0), C(1), Z(1), C(2), Z(2), ... of centroids and partitions
with decreasing values of the objective function (Eq. 22) that typically converges towards a (typically local)
minimum value.

The new centroid vector obtained at each STEP 3 of this algorithm decreases the value of the objective
function because of the fact that the sample mean minimizes the Euclidean distance of any point in the
cluster.

In this paper, our sample is a set of vector fields ϕj =

p∑
i=1

K(xji , ·)(τ
j
i ) ∈ HK (j = 1, . . . ,m) which

represent geometrical data by currents. The adaptation of the above algorithm to the RKHS space of these
vector fields is straightforward.

In this space the proximity between elements in the sample (Euclidean distance in equations 21 and 22)
is measured through distance of vector fields in HK . Thus, in the functions to minimize in the previous
Algorithm, the Euclidean distance must be replaced by the distance given in equation 14.

The sample means of STEP 3 in the previous algorithm are obtained using Eq. 16.

5 Experimental 2D Study

In this section we study the performance of our procedure in a shape classification problem using a known
database of synthetic figures called the MPEG7CEShape-1 PartB database. It includes binary images
grouped into categories like cars, faces, watches, horses and birds with images corresponding to the same
item, but showing noticeably different shapes.

To perform this experimental study, three classes from this database of synthetic figures were considered:
cars, faces and watches. Each class contains 20 elements (binary images) except the watch class where two
of them were rejected (watch-2 is an atypical element because of its very large size and watch-8 is turned
and our theoretical framework considers size and shape). The figures were centered and the contour αk from
each of them defined an oriented smooth curve which was discretized by 100 points {ykj }100j=1 (yk1 = yk100)
for k = 1, . . . , 58. Moreover, face figures were rotated by 90 degrees, in order to keep a common horizontal
orientation in all synthetic figures (establishing the correspondence with children database, where all the
elements are registered and have the same position). For each k ∈ {1, . . . , 58}, from {ykj }100j=1, we defined

xkj =
1

2
(ykj + ykj+1) the centers of the segments and the vectors τkj = ykj+1 − ykj , ∀j = 1, . . . , 99, which define

the vector field

99∑
j=1

K(xkj , ·)(τkj ) in HK(D,R2).

In this experimental study, we were interested in analyzing similar situations to the ones that will appear
in our real application in Section 7. We therefore considered two scenarios. In the first, all the 58 synthetic
figures were contracted or expanded to reach the same length in the X axis, establishing the similarity
between this length and the height of a child. Fig. (3) shows an example of an object from each class in this
first situation. The points {xkj }99j=1 are plotted in black and the vectors {τkj }99j=1 from each curve are plotted
in different colors.

In the second scenario, half of the synthetic figures from each category were enlarged by a scale factor
of 1.5. In this case there were two different ”heights” for each class of figures. Moreover, each figure of the
sample was multiplied by a random coefficient ranging between 1 and 1.1, in order to change the ”height”
of the figures somewhat.

Fig. (4) shows an example of an object from each group in the second situation, in which there are two
”heights” from each class of shapes.

The k-means algorithm presented in section 4 was then applied to both scenarios, choosing as the value
of the parameter λ the standard deviation of the points {xkj }99j=1, k = 1, . . . , 58 which define the curves of
the sample of each scenario. So we defined the Gaussian kernels with λ = 50.16 in the first scenario and
with λ = 67.35 in the second. In the first scenario the k-means algorithm recovered the three groups in
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Figure 3. An object from each class from synthetic 2D database (scenario 1).
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Figure 4. An object from each class from the 2D synthetic database (scenario 2).
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Figure 5. An object from each class from the 3D synthetic database (scenario 1).

Figure 6. An object from each class from the 3D synthetic database (scenario 2).

accordance with the categories of figures in the database. In the second scenario, the k-means algorithm
with k=6, grouped together the figures of the database with the same ”height” and shape, as hoped.

6 Experimental 3D Study

In this section we describe the experiments carried out with a database of 3D figures, to test the same
situations as in the previous 2D database. Now three classes of 3D objects: ellipsoids, spheres and pears
are considered. Each class contains 10 elements centered in the origin and the contour from each of them is
defined by an oriented smooth triangulated surface immersed in R3. Each surface k, is defined from 10000

triangles with barycenter xkj and normal vectors τkj , j = 1, . . . , 10000, being
10000∑
j=1

K(xkj , ·)(τkj ) in HK(D,R3)

the vector field associated with each surface.
We consider the same scenarios as above. In the first, (Fig. (5)) all figures have approximately the same

length in the Y axis (same ”height”).
Fig. (6) shows the second scenario, in which there are two ”heights” for each class of 3D objects.
The k-means algorithm was applied in both scenarios. Once again the value of parameter λ was chosen

as the standard deviation of the points {xkj }10000j=1 , k = 1, . . . , 30 (following the criterion also used for the 2D
database). The values obtained were λ = 0.6237 in the first scenario and λ = 0.7934 in the second. Once
again, the k-means algorithm recovered the three groups with the three different geometrical objects in the
first scenario, and correctly segmented the figures of the second scenario into six groups, in relation to their
”height” and shape.
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7 Application to classifying children’s body shapes

The aim of this section is to show how the aforementioned methods can be used to develop a more efficient
apparel sizing system that can increase accommodation of the population, taking into account the child’s
body shape. This classification could then be used to choose the most suitable size in a potential online
sales application. Before presenting the application, it is fundamental to emphasize a consideration about
the current children sizing system, which is based on the sex and the height or the age of buyers, i.e. when a
child wants to buy a T-shirt, he/she has to purchase the size associated with his/her height. It is important
to observe that this size is designed for a specific body shape; however, there is a great deal of variability in
body shapes of children with a same height. For example, if the size associated with the child’s height does
not fit as a consequence of his/her body shape, he/she has to buy the previous or next size of T-shirt, which
will probably be too short/long for him/her. In conclusion, it is essential to create a new sizing system which
takes into account both: size and shape of the body.

A randomly selected sample of Spanish children aged 3 to 10 years old were scanned using a Vitus Smart
3D body scanner from Human Solutions. Each child was situated standing and looking forward; and the
body shape was stored as a set of 3075 3D-landmarks (homologous points on his/her surface). The children
were asked to wear a standard white garment in order to standardize the measurements. From the 3D
mesh, several anthropometric measurements were calculated semi-automatically by combining automatic
measurements based on geometric characteristic points with a manual review.

For each child, the landmarks observed made it possible to define an oriented smooth triangulated surface
immersed in R3, with a total of 4668 triangles and the k-means algorithm adapted to the RKHS space can
be applied.

The question of the number k of clusters to choose is a difficult problem in data clustering and in
particular, in our application. From the point of view of defining a sizing system, it is not profitable to
design many sizes because it would be very expensive for apparel companies. On the other hand, because
the objective of an apparel sizing system is to accommodate as large a percentage of the population as
possible, it is not reasonable to define too few sizes either.

As there is a different size system for each sex, in order to illustrate our procedure the subset of the girls
older than 6 was chosen from the whole data set. Children younger than 6 have difficulties in maintaining
a standard position during the scanning process, so they were excluded from our data set. This selection
results in a sample of size 195. According to the European standard UNE-EN 13402-3, this age range has 4
different sizes associated with it (1190-1250 mm, 1250-1310 mm, 1310-1370 mm, 1370-1430 mm).

Consequently, we propose two possible sizing system. The first, aims to divide each height range suggested
by the UNE-EN 13402-3 standard into two groups (two sizes). We will thus obtain two different sizes for girls
with different body shapes within a common height range of. By using this model, most clothes should fit
their buyers. The second sizing system, divides the sample into a lower number of groups (a similar number
to that proposed by UNE-EN 13402-3), but bearing in mind the shape and size of the body, not just the
height of the children.

Therefore, the body contour from each girl in our data-set is represented by an oriented triangulated
smooth surface. For the j-th triangle of the surface of the k-th girl, its barycenter xkj and the normal vector

to the surface in xkj , τkj , are calculated. Then, the contour of body of a child is associated with the vector

field

4668∑
j=1

K(xkj , ·)(τkj ) in HK(D,R3) where D = [−472.73, 487.26]× [−824.72, 735.28]× [−156.69, 203.30] mm.

Following the same procedure as with the experimental databases, the k-means algorithm with k=2 is
applied to each group corresponding to each height range (1190-1250 mm, 1250-1310 mm, 1310-1370 mm,
1370-1430 mm) within the sample. By using λ1 = 107.69, λ2 = 178.39, λ3 = 186.98 and λ4 = 196.26,
respectively, in each range, we obtain eight groups, which define the first new recommend sizing system.
Each size is described using the median values (mm) of the anthropometric measurements of the group, as
in Table (1):

Fig. (7) shows part of a group of girls who belong to the same height range (1370-1430 mm). The bodies
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Size Height Chest length Waist length Hip length Group size

T1 girl 1209 604 538 656 15
lower (1190-1250)

T2 girl 1227 670 610 739 29
upper (1190-1250)

T3 girl 1273 643 563 688 20
lower (1250-1310)

T4 girl 1282 696.5 643.5 767 31
upper (1250-1310)

T5 girl 1331 644 564.5 701 32
lower (1310-1370)

T6 girl 1346 733 669 807 23
upper (1310-1370)

T7 girl 1393 677 586 750 31
lower (1370-1430)

T8 girl 1410.5 797.5 722 856.5 14
upper (1370-1430)

Table 1. First sizing system proposed for heights between 1190 and 1430 mm.

of the first row of the image are associated with size T7, and the second row corresponds to T8 in the new
sizing system.

Moreover, in Fig. (8) it is possible to compare some anthropometric measurements of the two groups
obtained within the 1190-1250mm height range. Something similar occurs in the height.

To reduce the number of sizes in the previous model, a second model is proposed, which is probably
cheaper for the clothing companies. It consists of considering all members of the subsample together and
applying k-means algorithm to divide the sample into different groups according to the shape and height of
the children.

As mentioned above, the question of which number k of clusters to choose is a difficult problems in data
clustering. Several methods have been proposed and used in the literature to make this decision Kaufman
and Rousseeuw [1990], Jain [2010].

In our application we combine the ”elbow criterion” with a goodness of clustering measure: the silhouette.
The idea of the ”elbow criterion” is based on plotting the objective function of Eq. 21 against the

number of clusters. The first clusters greatly decrease the objective function, but at some point the marginal
decrement will drop, giving an angle in the graph. The number of clusters is chosen at this point, hence the
”elbow criterion”.

The silhouette of an object is a measure of how close is the object in the neighboring clusters compared
with data within its cluster. A silhouette close to 1 implies the datum is in an appropriate cluster, while
a silhouette close to -1 implies the datum is in the wrong cluster. The average of the silhouette gives us a
measure of the goodness of a clustering.

In Fig. (9) we can see the plot of the objective function (a) and the silhouette (b) against the number
of clusters. Taking into account both criteria, we chose to apply the k-means algorithm with k=5 and
λ = 183.43. A partition of the sample is therefore obtained according to the height and size of the children.
Fig.(10) shows the box diagrams of some anthropometric measurements within each group generated.

Moreover, we define the new sizing system based on these groups using the median of the anthropometric
measurements from each group, as shown in Table (2):

Fig. (11) shows part of a group of girls who belong to the same size T1.
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Figure 7. Girls who are associated with T7 (first row) and T8 (second row) in tthe first sizing system.

(a) (b)

(c) (d)

Figure 8. Height(a), waist length(b), hip length(c) and chest length(d) from the 2 groups obtained (1190-
1250mm).
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Figure 9. Study of the ”elbow criterion” in (a) and silhouette for different values of k in (b).

(a) (b)

(c) (d)

Figure 10. Height (a), waist length (b), hip length (c) and chest length (d) from the 5 groups obtained
(1190-1430mm).
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Size Height Chest length Waist length Hip length Group size

T1 girl 1241 610 540 661 57
T2 girl 1259 678 622 754 39
T3 girl 1362 660 571.5 723.5 56
T4 girl 1361.5 747.5 673 814 34
T5 girl 1417 832 767 903 9

Table 2. Second sizing system proposed for heights between 1190 and 1430 mm.

Figure 11. Girls who are associated with T1 in the second sizing system.

8 Discussion

In this paper we have proposed an approach that represents a novel method in terms of using the current-
based approximation to shape and size analysis in a clustering procedure and it has been applied in order to
define a more efficient children’s sizing system. The data are transformed on elements in an RKHS space and
the well-known k-means clustering algorithm has been adapted to it. An experimental study with simple
synthetic objects was successfully conducted to validate the procedure.

We have proposed two ways of defining an efficient sizing system. First, we segmented the data set using
height, which is currently the most widely used method. We then applied the k-means algorithm with the
number of sizes established within each class as k = 2. In this way, the first segmentation provides a first
easy input to choose the size, while the resulting clusters obtained optimize shape classification within each
initial input. This first classification would provide a large percentage of accommodation but perhaps an
excessively large number of sizes. To reduce the number of sizes, in the second system proposed, the k-means
algorithm is applied to all members of the subsamples and goodness of clustering criteria were applied to
choose the optimal number of groups. In both cases, the clustering results have been described in terms of
anthropometric dimensions within each group.
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