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Seasonal dynamics and operational monitoring of 
hedgerow olive tree transpiration in response to 
applied water 
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Abstract 
We used 2012 sap-flow measurements to assess the seasonal dynamics of daily 

plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. 
‘Arbequina’) with a well-watered (HI) control treatment A, to supply 100% of the crop 
water needs, and a moderately watered (MI) treatment B, which replaced 70% of crop 
needs. We then tested the hypothesis of indirectly monitoring olive ETc from readily 
available vegetation index (VI) and ground-based plant water stress indicators. In the 
process, we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees, 
we defined Kcb as the basal transpiration coefficient, and we related Kcb to the 
remotely sensed soil-adjusted vegetation index (SAVI) through a Kcb-SAVI functional 
relationship. For the MI treatment, we defined the actual transpiration ETc as the 
product of Kcb and the stress reduction coefficient Ks, and we correlated Ks with MI 
midday stem water potential (ψst) values through a Ks-ψ functional relationship. 
Operational monitoring of ETc was then implemented with the relationship ETc = 
Kcb(SAVI) × Ks(ψ) × ET0 derived from the FAO56 approach and validated, taking as 
inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) 
and high goodness-of-fit of prediction were observed (R2=0.94, RSME=0.2 mm day-1, 
P=0.0015), allowing us to consider that, under field conditions, it is possible to predict 
ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are 
known. 
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INTRODUCTION 
Operational tools for precise quantification of actual ETc under field conditions are 

important, and their development requires appropriate correction of the standard and 
tabulated potential Kcb crop coefficient values (Allen et al., 1998), by adopting a stress 
coefficient (Ks) to obtain the actual Kc as the product Ks×Kcb. The conundrum is the setting of 
Ks to adjust for stress effects. 

Transpiration of olive trees is mainly controlled by canopy conductance, as derived 
with the model of Orgaz et al. (2007). Nevertheless, the main challenge in such models 
remains the integration of the effect of water stress. For operational applications, the Kcb 
approach has been linearly related to remotely sensed vegetation indices (VI) such as the 
normalized difference vegetation index (NDVI) or the soil-adjusted vegetation index (SAVI) 
(Huete, 1988; Pôças et al., 2015). On the ground, field monitoring of crop water stress has 
been achieved with the development of plant-based measurement methods such as sap flow 
(Green et al., 2003) and leaf water potential (Moriana et al., 2012). 

In this study, we hypothesized that directly relating readily available VI of well-
watered olive trees to ground-based plant water-stress indicators might provide indirect 
assessment of the actual transpiration and water requirements of olive orchards. In this 
context, the objectives of this paper were: (1) to determine the transpiration dynamics and 
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related crop transpiration coefficients of a hedgerow olive orchard in southern Portugal 
during the course of the summer under two (well-watered and moderate) irrigation regimes, 
(2) to validate whether treatment A-derived Kcb is from a well-watered treatment, by 
comparing field-derived sap-flow ETc values to ETc values obtained with the Penman-
Monteith (PM) model incorporating values from the Orgaz et al. (2007) daily mean 
conductance (gc) model, (3) to analyze the dynamics and derive Kcb-SAVI and Ks-ψst 
relationships, and (4) to assess the feasibility of integrating those relationships into the 
FAO56 model, and of using SAVI and ψst measurements as inputs to monitor hedgerow olive 
tree transpiration in southern Alentejo. 

MATERIAL AND METHODS 

Study site 
The experiments were conducted during 2011 and 2012 in a commercial hedgerow 

olive orchard near Évora in southern Alentejo, Portugal (38°24’47.03”N 7°43’38.36”W; 
altitude 75 m a.s.l.). The orchard was established with 6-year-old ‘Arbequina’ trees in grids of 
3.75×1.35 m (1976 trees ha-1) in a north-south orientation, and in a sandy loam Eutric 
Cambisoil (WRB, 2006). Climate in the region is typically Mediterranean, and summer and 
year-round ET0 were 506 and 1212.8 mm, respectively, for the two irrigation seasons. 

Irrigation treatments 
Two plots of 450 trees were selected for the experiments and subjected to one of two 

irrigation treatments: a control treatment A, in which trees were irrigated to replace 100% 
of daily crop water need (HI), and a moderate (MI) deficit irrigation treatment B to provide 
approximately 70% of the water applied to treatment A. Treatments A and B were serviced 
by 2.3 and 1.6 L h-1 emitters, respectively, spaced 0.75 m apart in the row. Irrigation 
scheduling and time of water delivery to trees were the same for both treatments. Crop 
water needs for treatment A were calculated based on the crop coefficient approach of Allen 
et al. (1998). Totals of 296 and 206 mm water were applied to treatments A and B in 2012 
for an equivalent amount of 251 and 207 mm in 2011 (1 June to 30 September). 

Field measurements 
Predawn leaf (ψpd; MPa) and stem (ψst; MPa) water potentials were measured from 

late May to early September with a pressure chamber (PMS Instruments, Corvallis, WA, USA). 
Leaf area index (LAI) measurements were taken periodically with a ceptometer (Accupar-
LP80, Decagon Devices Inc., Pullman, WA, USA). Sap flow (SF) in treatments A and B was 
monitored continuously from late May to early September using the compensation heat 
pulse (CHP) method (Green et al., 2003) and used to obtain olive transpiration. 

Tool description 
With data from year 2011, we calibrated the Orgaz gc equation (Orgaz et al., 2007) to 

our olive orchard conditions, to obtain the following gc equation (mm s-1) for our olive 
orchard: 

= −sp
c d3

QR
g (2.43T 0.87)

10 D
 (1) 

where Q (dimensionless) is the fraction of intercepted photosynthetically active radiation 
(PAR), Rsp (W m-2) is the mean daytime PAR irradiance, D (kPa) is the mean daytime vapor 
pressure deficit, and Td (°C) is the mean daytime temperature. Subsequently, we determined 
gc and ETc for our orchard conditions in 2011 and 2012 by inputting the gc values into the 
Penman-Monteith (PM) equation (Monteith and Moss, 1977). We also compared our 
observed (SF-based) ETc outputs with the simulated (PM-based) ETc values. Agreement 
between 2012 simulated (PM-based) and observed (SF-based) ETc outputs was then 
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analyzed using the root-mean square error (RMSE) and the Willmott index of agreement (IA) 
(Willmott, 1982). 

Remotely sensed spectral band data from moderate resolution imaging spectrometer 
(MODIS; http://reverb.echo.nasa.gov/reverb/) sensors provided data for calculation of SAVI 
values (Huete, 1988). The FAO56 model (Allen et al., 1998) was used to predict olive tree 
transpiration, where ETc is described as: 

ETc = Kcb Ks ET0 (2) 

where seasonal values of Kcb, the unstressed plant transpiration coefficient, are the ratio of 
ETc from treatment A daily SF-based values to ET0. They were further correlated with 
canopy reflectance-derived SAVI to obtain a functional Kcb-SAVI relationship, subsequently 
used in the following equation to predict Kcb from known values of SAVI. We followed a 
similar approach to predict values of the stress reduction coefficient Ks. In this case, we 
correlated Ks with midday stem water potential (ψst) values obtained from the stress 
treatment B to provide us with a Ks-PWSI functional relationship able to predict Ks from 
known values of ψst. Operational monitoring and validation of ETc were then accomplished 
with the following final relationship: 

ETc=Kcb(SAVI) Ks(ψ) ET0 (3) 

RESULTS AND DISCUSSION 

Dynamics of ETc and plant water status 
The results of gc estimated from our calibrated Equation 1 were included in the 

Penman-Monteith equation to obtain the PM-based ETc for 2011. We then assessed whether 
the PM-based ETc values were related to unstressed SF-based ETc from treatment A field 
data. The PM-based ETc showed good agreement with ETc field values, with R2=0.96, 
RMSE=0.4 mm day-1, p<0.01, and regression coefficient b close to 1.0 (data not shown). Such 
results confirm that treatment A was obtained under non-limiting conditions. Figure 1 plots 
2012 predicted PM- and SF-based transpiration in treatments A and B and applied water. 

 

Figure 1. Seasonal course of predicted (PM-based) and observed (SF-based) transpiration 
rates (a), and applied irrigation to treatments A (HI) and B (MI) (b). 

http://reverb.echo.nasa.gov/reverb/
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Statistical goodness-of-fit (IA=0.89; RSME=0.24 mm day-1) also validated treatment A 
as irrigated under non-limiting conditions (well-watered, HI). For the period from 1 June to 
30 September, treatment A total SF-based transpiration was 320.4 mm, while simulated PM-
based transpiration was 306.3 mm. For the stress treatment B, SF-based transpiration was 
estimated as 185 mm, 87 mm short of treatment A. 

Concurrent weather and water treatments had meaningful effects on 2012 plant-water 
relation parameters (Figure 2). Generally, midday stem water potential stayed stable and 
high until around 21 June (DOY 173) and decreased afterwards to its lowest values in mid-
July (DOY 188), during late pit-hardening phase, when it reached its lowest value for the 
growing period, -1.9 MPa for treatment A and -2.8 MPa for treatment B. During late pit 
hardening, deficit was applied as convenient for this low-sensitive period to water stress 
(Moriana et al., 2012). Water application was enough in treatment A for ψst to generally stay 
higher than -1.5 MPa, showing the non-limiting condition of treatment A. In the MI 
treatment B, ψst values generally stayed below the -1.5 MPa threshold value from mid-June 
to the end of September (DOY 179-265). ψst values support the non-limiting condition of 
treatment A. 

 

Figure 2. Seasonal course of predawn (ψpd) and midday stem water potential (ψst) of 
treatments A and B. Data points are means of measurements. 

Transpiration coefficients, SAVI and PWSI relationships 
Figure 3 shows the relationship between Kcb and SAVI values (R2=0.79). The linear Kcb 

relationship was estimated with the aim of obtaining Kcb from VIs. For our olive orchard, 
estimating Kcb with SAVI gives b=1.73 and R2=0.79. 

 

Figure 3. Relationship between Kcb from June to September and corresponding MODIS-
based SAVI values. Regression parameters and function fitted to data are also 
reported. 
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The relationship in Figure 4 was estimated with the aim of obtaining Ks from ground-
based treatment B midday stem water potential measurements. Values of Ks correlated well 
with ψst (R2=0.79), showing ψst decreasing with Ks as water stress progresses. 

 

Figure 4. Relationship between mean Ks and midday stem water potential (ψst) for 
treatment B, showing regression parameters and function fitted to data (Ks-ψst). 

The relationship shows that Ks values around 0.6 represent the threshold for well-
irrigated olives, for a midday stem water potential of around -1.5 MPa. The Kcb-SAVI and Ks-
ψst derived relationships in Figures 3 and 4, respectively, were used in FAO56 Equation 2 to 
derive the relationship in Equation 3. It was further used with data from year 2011 to 
monitor the course of ETc and validate the derived relationship. 

Monitoring ETc with SAVI and PWSI 
We validated our established FAO56 Equation 3 by comparing its results with field ETc 

data collected from treatment B in 2011. The Kcb-SAVI and Ks-ψst functional relationships 
included in Equation 3 were implemented with the derived functions fitted to data and 
presented in Figures 3 and 4, respectively, and taking as inputs collected SAVI and ψst data 
from year 2011. Figure 5 displays the correlation between predicted and observed ETc 
values, giving a high goodness-of-fit and low estimated error (R2=0.94, RSMD=0.2 mm day-1, 
P=0.0015). The good fit and low estimated error of 6% validate our model (Equation 3) and 
warrant its use for the purpose of this study, of trying to encompass ETc of olives under mild 
water-stress conditions. Such facts encourage the use of Equation 3 for operational 
monitoring of ETc of olive trees in response to SAVI-derived satellite data and ψst field-
collected datasets. 

 

Figure 5. Relationship between predicted and observed olive tree transpiration in 2011. 
Predicted values were obtained from the Kcb-SAVI and Ks-ψst functional 
relationships presented in Figures 3 and 4, respectively. 
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CONCLUSIONS 
Successful establishment of the Kcb-SAVI and Ks-ψst relationships made it possible to 

incorporate them into the dual FAO56 Kc-ET0 approach by way of proposed Equation 3 and 
to obtain olive ETc values for deficit irrigation treatment B. The approach adequately models 
actual olive transpiration. Further tests are desirable, however. 
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