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Abstract: Metal-on-metal (MOM) bearings involving
cobalt–chromium (Co–Cr) alloys in total hip arthroplasties
are becoming more and more popular due to their low
wear. Consequences of corrosion products of Co–Cr alloys
are for the most part unclear, and the influence of cobalt
and chromium ions on biofilm formation has never been
studied. Therefore, the aim of this study was to evaluate
how Co–Cr ions affect bacterial growth, biofilm formation,
and architecture. A collection of clinically isolated and
commercially available bacterial strains were exposed to
Co–Cr concentrations as found in serum and above as
found in adjacent tissue. Planktonic growth of bacteria was
inhibited by concentrations of 200,000/93,000 lg/L Co–Cr.
Co–Cr concentrations up to 20/9.3 lg/L as reported
to occur in serum revealed no consistent influence on bio-

film formation, but higher concentrations of 200,000/93,000
lg/L significantly reduced Staphylococcus aureus and
CNS biofilm formation. As indicated by confocal laser
scanning microscopy, no dead bacteria were encountered
in the biofilms, and the metal ion concentrations used
must be classified as growth-inhibiting and not bacteri-
cidal. Long-term clinical data on infection rates for Co–Cr
MOM-bearings are not yet available, but the current
results suggest that Co–Cr ions may yield these prostheses
less prone to biofilm formation and subsequent infection.
� 2008 Wiley Periodicals, Inc. J Biomed Mater Res 88A:
711–716, 2009
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INTRODUCTION

Total hip replacement is a highly successful proce-
dure with a regain of a relatively high quality of life
and an almost instant pain relief. Success of the pro-
cedure resulted in younger cohorts of patients. Many
of these younger patients want to return to a high
level of activity and seek an implant that provides
durability. Larger femoral heads were indicated,1 but
this tended to cause excessive wear in conventional
prostheses (metal ball connected to large stem and a
cup with polyethylene interface). Polyethylene wear
and debris is a suspected cause of osteolysis around
the implant,2,3 which led to the development of alter-
native bearings lacking a polyethylene/metal inter-
face, like the recently reintroduced metal-on-metal
(MOM) bearings. In contrast to metal-on-polyethylene

bearings, wear rates of MOM-bearings turned out to
be impacted in a positive way by increasing the head
size,4,5 yielding 20–100 times less debris than in tradi-
tional metal-on-polyethylene bearings.6 The remark-
ably low wear of MOM-bearings has led to a rapidly
increasing popularity of MOM-articulation in the
treatment of young and active patients.7

Although mid- and long-term clinical results of
MOM-bearings appeared to have demonstrated
excellent durability, recent studies show that there is
at least one MOM-bearing system with peripros-
thetic osteolysis and aseptic loosening, which is pos-
sibly associated with hypersensitivity to metal de-
bris.8,9 Additionally, MOM-articulations are not com-
pletely biologically inert, since they produce metal
particles that can be found in, for example, blood
and urine. These particles tend to corrode and serum
levels of metal ions, mainly cobalt and chromium,
become elevated.10–15 Cobalt and chromium are usu-
ally eliminated only slowly from the body by urine,
and chromium is even retained in the body’s tis-
sues.10,16 These high cobalt and chromium serum
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concentrations may have toxic effects, which include
the increase of bone resorption, and theoretical risks
of delayed-type hypersensitivity, organ toxicity, and
altering of cell homeostasis.17–22 Furthermore, cobalt
and chromium have been shown to be carcinogenic
and mutagenic in human and animal models,23–26

which implies that systemic toxicity and cancer risk
may be possible disadvantages of MOM-articulation.

Alongside these possible disadvantages, it is also
conceivable that the risk of infection is influenced by
metal ions. Infection still remains a significant compli-
cation following total hip replacement and as a con-
servative estimate, affects about 1–2% of all patients
during the life time of an implant.27 In case of infec-
tion, bacteria adapt a biofilm mode of growth on the
surface of the prosthesis, which represents a basic
survival mechanism of the organisms28 to external
(500–5000 times increased antibiotic resistance29,30)
and internal environmental factors (the host immune
system). The increased antibiotic resistance of biofilms
causes major difficulties in patient treatment. Removal
and replacement of an infected implant is usually
required to eliminate the infection with accompany-
ing trauma and increased costs to the health
service.31–33 Copper and zinc are known for their bac-
tericidal properties and impact on biofilm forma-
tion,34 but no research efforts have been undertaken
towards the specific influence of the cobalt-chromium
ion combination on biofilm formation, despite exten-
sive other studies into MOM-bearings.35–37

The aim of this in vitro study is to evaluate the
influence of cobalt and chromium ions on bacterial

growth, biofilm formation, and architecture for a col-
lection of clinically isolated and commercially avail-
able bacterial strains.

MATERIALS AND METHODS

Bacterial strains

Gram-positive organisms account for most bacteria found
in infected hip arthroplasties. Coagulase negative staphylo-
coccus (67%) was found to be the predominant organism,
although Staphylococcus aureus (13%) is gaining impor-
tance.38 Therefore, a total of 13 staphylococcal strains were
used in this study (Table I), chosen to represent their fre-
quency of occurrence in clinical infection. Eight strains were
isolated with extensive biomaterial culturing39 from
explanted metal-on-polyethylene joint prostheses from indi-
vidual patients with septic loosening and retrieved during
revision surgery (Department of Orthopaedic Surgery at the
University Medical Center Groningen, The Netherlands)
and five additional strains were of ATCC origin.

Cobalt and chromium ions

Metal ion concentrations of 2/0.93; 20/9.3; 20,000/9300;
200,000/93000 lg/L Co–Cr were applied throughout this
study. The lowest Co concentration of 2 lg/L was inline
with previously found Co serum concentrations11–15 and
the proportion Co–Cr in this study was chosen similar to
most MOM-bearings currently used in Europe (661% Co
and 29% Cr). The second-lowest level of 20/9.3 lg/L Co–
Cr was chosen to represent higher serum levels, described
in the literature. Higher concentrations of metal ions were

TABLE I
The Percentage of Growth Stimulation/Reduction After 24 h of Metal Ion Exposure

Co/Cr Ion Concentration (lg/L)

2/0.93 20/9.3 20,000/9300 200,000/93,000

Staphylococcus aureus
Staphylococcus aureus 5296 4% 24% 28% 212%
Staphylococcus aureus 7388 23% 27% 210%* 217%*
Staphylococcus aureus ATCC 12600 15% 9% 215% 235%*
Staphylococcus aureus ATCC 25923 24% 0% 0% 211%*
Staphylococcus aureus ATCC 51153 4% 4% 0% 0%

Mean (SD 5 8%) 3% 0.4% 27% 215%*
CNS

CNS 7391 4% 26% 220% 245%*
CNS 5115 29% 27% 211% 220%
CNS 5295 7% 11% 0% 24%
CNS 7319 24% 0% 28% 28%
CNS 7349 24% 4% 232%* 247%*
CNS 5147 29% 22% 29% 238%*
CNS ATCC 35984 10% 21%* 5% 228%*
CNS ATCC 14990 23% 0% 3% 221%*

Mean (SD 5 13%) 21% 3% 29% 226%*

*Indicates a significant difference versus growth in the absence of metal exposure, i.e. 0% growth stimulation/reduction
(p < 0.05).
Values are averages including standard deviations from three experiments with separately cultured bacteria, yielding an

average mean standard deviation of 11%. Note that mean values in bold represent the mean including standard deviations
over the collection of isolates involved. Growth reductions appear as negative numbers.
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used, since the local concentration of metal ions in the sy-
novial fluids is expected to be much higher than the serum
concentrations.

Based on a previously described method,40 0.847 mg
cobalt salt (CoCl2.6H2O, Sigma) and 0.475 mg chromium
salt (CrCl3�6H2O, Merck) were dissolved in 10 mL tryptone
soya broth (TSB) (Oxoid, Basingstoke, United Kingdom).
These samples contained 200,000/93,000 lg/L Co–Cr and
were diluted with broth to reach the concentrations and
Co–Cr proportions needed for the experiments.

Planktonic growth evaluation

Three S. aureus strains and two CNS strains were ran-
domly chosen for growth curve evaluation. These isolates
were routinely cultured from frozen stock on blood agar
plates at 378C for 24 h. Precultures were inoculated with a
single plate colony, grown in 10 mL TSB and incubated
aerobically overnight at 378C. From the resulting suspen-
sion, 1 mL was inoculated overnight with 45 mL TSB,
45 mL TSB with 20,000/9300 lg/L Co–Cr or 45 mL TSB
with 200,000/93,000 lg/L Co–Cr. The absorbance at 600 nm
(A600) was determined using a spectrophotometer. All
growth curve experiments were performed twice with sepa-
rately cultured bacteria.

Biofilm formation in microtiter plates

All strains mentioned in Table I were routinely cultured
from frozen stock on blood agar plates at 378C for 24 h.
Precultures were inoculated with a single colony from
plate grown in 10 mL TSB and incubated overnight aerobi-
cally at 378C. A bacterial suspension of 200 lL (2 lL pre-
culture and 198 lL fresh TSB) supplemented with different
concentrations of metal ions, was used to inoculate a well
of a 96-well polystyrene flat-bottomed tissue culture plate
(Falcon, Becton Dickinson, Oxnard, CA) for biofilm forma-
tion. After 24 h at 378C, the growth media and planktonic
cells in the 96-wells plates were removed from the biofilms
by carefully replacing the volume of the wells twice with
200 lL 10 mM potassium phosphate, pH 7.0 by pipetting,
while taking care that air-liquid interface passages over
the biofilms were avoided. The wells were subsequently
stained with 200 lL 1% crystal violet. After 30 min, excess
stain was replaced with 200 lL demineralised water as
described above, and the crystal violet was dissolved in
200 lL of ethanol–aceton (80:20 vol/vol). The absorbance
at 575 nm (A575) was determined using a microtiter plate
reader (Fluostar Optima) to determine the amount of crys-
tal violet, as a measure of biofilm growth. The influence of
Co–Cr ions on biofilm formation was evaluated by meas-
uring the percentage of growth stimulation/reduction
according to

growth stimulation=reduction

¼
�
A

575 presence Co�Cr � A
575 absence Co�Cr

�

A
575 absence Co�Cr

3 100

Thus inhibitory effects of the presence of Co–Cr ions
appear as negative numbers in the outcome parameter. All

experiments included six replicate wells and were per-
formed three times with separately cultured bacteria.

Biofilm architecture determination by
confocal laser scanning microscopy

Two of the five strains used for growth curve evalua-
tion, S. aureus 7388 and a CNS 5147, were used for visual-
izing biofilm architecture. These isolates were routinely
cultured from frozen stock on blood agar plates at 378C
for 24 h. Precultures were inoculated with a single colony
from plate grown in 10 mL TSB and incubated overnight
aerobically at 378C. From the above mentioned bacterial
suspension, 25 lL was inoculated with respectively 3 mL
TSB, 3 mL TSB with 2/0.93 lg/L Co-Cr or 3 mL TSB with
200,000/93,000 lg/L Co–Cr in a 6-wells polystyrene tissue
culture plate (Costar). After 24 h of incubation at 378C, bio-
films were stained with calcofluor white (Bayer) to visual-
ize extracellular polymeric substance (fluorescent blue),
and with LIVE/DEAD Baclight viability kit (Molecular
Probes Inc., Eugene, Oreg.), to visualize live (fluorescent
green) and dead (fluorescent red) bacteria. After 15 min
incubation in the dark, confocal images were collected
using a Leica TCS-SP2 microscope with a 403 water objec-
tive. Images were obtained at 1–2 lm intervals down
through the biofilm and the number of images, therefore,
corresponded with the thickness of the biofilm. The confo-
cal laser scanning microscopy (CLSM) experiments were
performed twice with separately cultured bacteria.

Statistical analysis

Differences in optical densities of biofilms grown in the
absence and presence of metal ions were analyzed for sig-
nificance by the Student t-test for paired samples. A 95%
(p < 0.05) confidence interval was applied for statistical
significance.

RESULTS

Planktonic growth

Figure 1 summarizes the planktonic growth of
S. aureus 7388 and a CNS 5147 in the absence and
presence of different concentrations of Co–Cr ions.
Clearly for these two strains as well as for the other
three strains involved in planktonic growth experi-
ments (data not shown), planktonic growth was not
significantly influenced by Co–Cr as compared with
the control when the ion concentrations were less than
20,000/9300 lg/L Co–Cr, but at the highest concentra-
tion of 200,000/93,000 lg/L Co–Cr all S. aureus and
CNS strains showed significant growth reduction.
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Biofilm formation

Table I summarizes the effects of different concen-
trations of Co–Cr ions on biofilm formation of the
S. aureus and CNS strains involved. Whereas most
isolates show growth reductions that increase with
increasing Co–Cr concentrations, some strains are
clearly stimulated in their growth at low metal ions
concentrations (S. aureus ATCC 12600 and CNS
ATCC 35984). At the highest metal ion concentra-
tions, however, all strains are reduced in their
growth. When averaged over all isolates of a given
species, it becomes clear that S. aureus and CNS
are inhibited in their growth when Co–Cr concentra-
tions are above 200,000/93,000 lg/L. At that concen-
tration, CNS is slightly more affected than S. aureus.

Biofilm architecture

CLSM images of the S. aureus 7388 and CNS 5147
biofilms grown in the absence and presence of Co–
Cr ions revealed a decrease in the number of live
bacteria due to the presence of Co–Cr ions (see Fig.
2). Sectional analysis of each biofilm layer (about
1 lm in thickness) made it possible to demonstrate
the three-dimensional structure of biofilms, and
revealed that the biofilms formed in the absence of
Co–Cr ions had a thickness of 42 lm (S. aureus) and

Figure 1. Growth curves of two clinically isolated strains:
S. aureus 7388 and CNS 5147 in the absence and presence
of metal ions. Error bars indicate the standard deviation of
the mean calculated from two growth curve experiments
with separately cultured bacteria. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 2. CLSM images (375 3 375 lm) of S. aureus 7388 (top) and CNS 5147 (bottom) biofilms, grown in the absence
(left) and presence of 2/0.93 lg/L (middle) and 200,000/93,000 lg/l (right) Co–Cr ions. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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35 lm (CNS), respectively. While in the presence of
the highest concentration Co-Cr ions (200,000/
93,000 lg/L) biofilm thickness and density is remark-
ably reduced to 15 lm and 8 lm, for S. aureus and
CNS, respectively, confirming that CNS is slightly
more affected. Neither dead bacteria nor slime were
observed, regardless of the absence or presence of Co–
Cr ions or the strain involved.

DISCUSSION

MOM-bearings for joint arthroplasty have regained
popularity in the treatment of young patients because
they offer wear rates low enough to prevent the bear-
ing from wearing out in a lifetime, but little is known
about the way infectious microorganisms behave to-
ward the Co–Cr surfaces involved in MOM-bearings.
Recently, Anwar et al. showed that wear debris from
MOM-bearings accelerate the growth rate of planktonic
bacteria.41 To our knowledge, this is the first study
that focuses on the influence of cobalt and chromium
ions on biofilm formation.

An intriguing novel finding from this study was
that biofilm formation and planktonic growth were
inhibited by a high dose of chromium and cobalt
ions. The highest concentration of metal ions
(200,000/93,000 lg/L Co–Cr) used, reduced biofilm
formation by 15% and 26% with respect to a control
for two collections of S. aureus and CNS strains,
respectively. The lower metal concentrations
revealed no consistent influence on biofilm or on
planktonic growth. CLSM images of the biofilm con-
firmed the results retrieved by light absorbance and
showed that biofilm thickness and density were only
affected by exposure to the highest concentration
Co–Cr. The highest metal ion concentration caused a
reduction in biofilm thickness of more than 50%.

The exact role of either cobalt or chromium in
staphylococcal biofilm formation is still unclear and
hypothetically involves competition with Fe for
uptake in the cell. Iron is an important nutrient ele-
ment required by the bacterial metabolism, and in-
terference with its uptake could provide an effective
mechanism to contain infection. This suggestion is
confirmed by a study on the effect of cobalt on Pseu-
domonas aeruginosa,42 demonstrating inhibition of
iron-dependent metabolic activities of the bacterium
leading to growth retardation and cell death.

Cobalt chromium alloys had not been available
before the 1950s and it was at that moment when
the first designs of MOM-bearings were described.
Initially, infection rates of early MOM-bearings
developed in the 1960s, such as the McKee-Farrar
arthroplasty were high and ranged from 0% to 6%
with antibiotic prophylaxis and from 0.5% to 11%

without, but at that time in many centers no clean
air enclosures were used.42 However, the durability
of these designs was quite poor and at present the
durability of the bearing surfaces has been improved
by appropriate surface finishes and forging proc-
esses. Preliminary data over short follow-up times of
these newly developed MOM-bearings show lower
infection rates than of the early designs. Milosev
et al. reported six revisions because of infection in a
cohort of 640 total hip replacements after a 7.1-year
follow up.43 In addition, Korovessis et al. reported
three infections in a consecutive series of 217 total
hip replacements after 6.4 years.8 However, no large,
long-term outcome studies are presently available.

Although the reductions in biofilm formation
observed in the present study seem to be in line
with the few clinical data on infection rates of MOM-
bearings, it must be acknowledged that reliable infor-
mation about the exact local concentrations of Co–Cr
around prostheses is not available. However, in local
antibiotic treatment it is recognized that local antibiotic
concentrations can become up to 5000 times higher
than serum levels,44 which suggest that Co–Cr concen-
trations around a MOM-bearing may be as high as
100,000/46,500 lg/mL. In addition, serum levels of
metal ions have demonstrated great variability from
patient to patient.45 Moreover, local concentrations of
Co and Cr ions in the synovial fluids will probably
exceed these serum levels significantly, particularly in
poorly engineered implants or in case of increased
wear rate because of malpositioning of the compo-
nents, impingement, or loosening.

CONCLUSIONS

In conclusion, planktonic bacterial growth, biofilm
growth and thickness were significantly reduced by
Co–Cr concentrations of 200,000/93,000 lg/L, which
are higher than observed in serum, but not unlikely
around a prosthesis or in synovial fluid. This sug-
gests that MOM-bearings may be less prone to bio-
film formation and subsequent infection.
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