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Abstract 
With the rise of Multi-resistant strains of previously treatable pathogenic 

microorganisms, some of which immune to all known antibiotics, we face a public health 

crisis that threatens the lives of anyone prone to infection. This challenge needs to be faced 

on many fronts and an important step to finding a solution is to replenish our antibiotic 

arsenals with new drugs that evade current antibiotic resistance strategies. The majority of 

these compounds have traditionally been sourced from, or inspired by, natural products – 

compounds produced by living things. This continues to be a valuable resource as the 

millennia of development through natural selection has made for precisely adapted 

molecules with desired antibiotic properties. Unfortunately natural products research has 

experienced stagnation due to high rates of rediscovery and low returns on research 

investment. Fortunately the widespread use of cheap sequencing technologies, influx of 

complete whole genomes, and tools used to process them have simultaneously been on the 

rise. These “genome mining” tools have only begun to highlight chemical potential that has 

been hidden from traditional approaches from a diverse set of genera. As the detection of 

various classes of Biosynthetic Gene Clusters (BGCs), areas of the genome responsible for 

production of these compounds, has matured there are now more leads generated than can 

be experimentally verified. The problem now is to prioritize these leads for those that have 

the highest potential for downstream experiments. Common prioritization schemes include: 

using comparative genomics to highlight unique or shared BGCs, focusing on novel genera 

besides the traditional prolific producing organisms, and highlighting BGCs that imply 

antibiotic activity via antibiotic resistance determinates. This research is focused on 

providing automated and accessible tools to preform these analyses in high-throughput. In 

addition to the prioritization and de-replication of potential BGCs, applications to enrich for 

novel leads via resistance determinant and target screening are also presented. As the 

number of genomes from different taxa begins to rise, shifting from a single genome analysis 

to a comparative pan-genome approach also shows promise to reinvigorate natural products 

research. The tools in this research that leverage these approaches will be continually 

maintained on free public servers for the furthered research and discovery of new antibiotic 

and anti-infective compounds to ensure the threat of antibiotic resistance is controlled. 
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Zusammenfassung 
Der Anstieg von multiresistenten Mikroorganismen, die zuvor behandelbar waren und 

von denen einige immun gegenüber allen bekannten Antibiotika sind, hat zu einer 

öffentlichen Gesundheitskrise geführt. Diese Herausforderung gilt es an verschiedenen 

Fronten anzugehen. Dabei besteht ein wichtiger Schritt darin, unsere Antibiotika-Arsenale 

mit neuen Medikamenten aufzustocken, welche es schaffen die derzeit bekannten 

Resistenzstrategien zu umgehen. Die meisten dieser chemischen Verbindungen wurden 

traditionell aus Naturstoffen (d.h. von Lebewesen produzierten Substanzen) gewonnen, oder 

durch diese inspiriert. Nach Jahrtausende währender Entwicklung durch natürliche Selektion 

weisen diese Naturstoffe sehr präzise Eigenschaften, auf und stellen somit eine wertvolle 

Ressource für z.B neue Antibiotika dar. Aufgrund hoher Wiederentdeckungsraten und 

niedriger Forschungsinvestitionen hat die Erforschung von Antibiotika aus natürlichen 

Produzenten in den letzten Jahrzehnten stagniert. Neue Sequenziertechnologien ermöglichen 

es nun riesige Datenmengen zu erheben. Parallel dazu wurde eine Fülle an Anwendungen 

entwickelt die es ermöglichen diese Genomdaten zu verarbeiten. Mit Hilfe dieser "Genom-

Mining" Anwendungen wird es möglich das Potenzial zur Produktion von Naturstoffen 

aufzuzeigen, das verschiedenen Gattungen innewohnt, und das durch traditionelle 

Aufarbeitungsmethoden bislang nicht zutage kam. Auch Methoden zur Identifikation von 

Biosnythese-Genclustern (BGCs), d. h. Regionen im Genom, die für die Produktion 

bestimmter Substanzen verantwortlich sind, werden ständig weiterentwickelt. Das führt 

dazu, dass immer mehr Biosynthese-Gencluster entdeckt werden, die verantwortlich sein 

könnten für die Produktion neuer Antibiotika.  Das Problem besteht nun darin, diejenigen 

Gencluster zu priorisieren, die das höchste Potenzial zur Produktion von Antibiotika haben, 

um den Aufwand für weiterführende Laborexperimente zu minimieren. 

Zu den gängigen Methoden bei der Priorisierung von BGCs gehören: 1) 

Vergleichsmethoden die einzigartige oder häufig vorkommende BGCs unterscheiden; 2) die 

Fokussierung auf neue Gattungen neben den traditionellen Produzenten und 3) die 

Identifikation von BGCs mit antibiotischer Aktivität über Antibiotika-

Resistenzbestimmungen.  
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Im Rahmen der vorliegenden Arbeit wurden automatisierte und benutzerfreundliche 

Computeranwendungen entwickelt, welche die o.g. Priorisierungsmethoden unterstützen 

und es ermöglichen diese im Hochdurchsatz durchzuführen. Neben der Priorisierung 

potenzieller BGCs ist es mit Hilfe dieser Anwendungen auch möglich neue, unbekannte 

BGCs zu identifizieren. Aufgrund der stetigen Zunahme von Genomesequenzen aus 

unterschiedlichen Taxa und den damit verbunden Möglichkeiten, sind wir überzeugt, dass 

der Wechsel im Fokus von Einzelgenomanalysen hin zu vergleichenden Genomanalysen 

einen wiederbelebenden Effekt auf die Naturstoffforschung haben wird.  

Es ist unser Ziel die hier entwickelten Anwendungen mit freiem Zugang  auf 

öffentlichen Servern bereitzustellen und instand zu halten um sie für die zukünftige 

Erforschung und Entwicklung neuer Antibiotika und Antiinfektiva zur Verfügung zu stellen. 
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1 Introduction 

Antibiotics are commonplace in today’s world and are a cornerstone of modern medicine. 

From prevention in post-surgery applications to subduing a fatal pathogen, it is easy to say 

that without these medical wonders, countless lives would be lost. Additionally, these 

compounds have been used as invaluable tools for scientific research that have furthered our 

understanding of microorganisms. Unfortunately, the efficacies of these discoveries are 

beginning to wear off as antibiotic resistance continues to rise. Due to widespread use and 

misuse of these compounds we have seen growing selection for resistant variants of once 

treatable pathogens. Some of these “superbugs” have even shown to be resistant against all 

known antibiotic treatments (1). Furthermore, this threat is accelerated by the fact that 

discovery and development of new antibiotics have slowed (2). The use of the variety of 

discovered compounds with bactericidal or bacteriostatic properties is roughly a century in 

the making, a mere blip on the time scale of species evolution. This historical context helps 

to highlight the integral role these compounds play in human health and in understanding 

the rise in antibiotic resistance. The historical sourcing of compounds from natural sources, 

“natural products,” also shows how the main avenue of discovery has evolved and where it 

can be improved. Unfortunately stagnation due to high rates of rediscovery has impeded 

progress in natural products. While we risk falling into another pre-antibiotic era, we are 

simultaneously at a unique time for leveraging advances in genomics to reinvigorate 

discovery. With the ever-increasing number of fully sequenced genomes, enabling large-scale 

comparative analysis, and the addition of automated methods to process this data, we have 

the resources to remain in a world with effective antibiotics.  

The pre-antibiotic era and arrival of antibiotics 

The historical accounts of the “pre-antibiotic” era refer mainly to the pre-World War II 

period before widespread use of antimicrobial agents. Indeed antibiotics have been around 

for much longer as life evolved strategies to compete. In human history, there is evidence 

showing traces of the antibiotic tetracycline in bone marrow from north African fossils 

during the roman period (3, 4). Fungus-growing ants in the amazon basin have been in 

symbiosis with antifungal producing bacteria for at least 50 million years (5). The label of 
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pre-antibiotic merely aims to highlight the sharp contrast of medical practices to those that 

followed the discovery of targeted anti-microbial treatments.  

Microbial infections posed a serious health risk prior to and during the early part of the 

20th century. Cholera, tuberculosis, typhus, and syphilis, among other diseases, plagued 

populations of all ages with staggering death tolls. Tuberculosis (TB), or “white plague”, was 

a leading cause of mortality during the turn of the century in western countries and earned 

the title “Capitan of the men of death” (6). Caused by an infection of the lungs by 

Mycobacterium tuberculosis, this disease has loomed over mankind throughout history with 

evidence of infection in a 9000-year-old fossil (7). Likewise, cholera has caused millions of 

lost lives worldwide with several recorded pandemics before the turn of the century (8). 

Accounts have even shown that microbial infections eclipsed the number of combat 

fatalities in wartime, with one study showing “spotted fever” resulted in the death of 600,000 

Turkish soldiers (9). Indeed pathogens were a serious threat to public health with little means 

of defense at the time. 

Prior to using targeted treatments against microbial infections, various general antiseptics 

and methods were employed such as the use of zinc, silver nitrate, and mercury. Injections 

and oral tablets of mercury were standard treatments for syphilis and later included other 

heavy metal agents such as arsenic and bismuth. For surviving patients there was risk of 

lifelong damage from toxicity (10). Of the most widely used and relatively effective tactics 

were those that caused no harm to the patient. Rest and fresh air were often the major 

prescription for tuberculosis sufferers during this time but was shown to have high rates of 

relapse (11). Other tuberculosis treatments included the pneumothorax or plombage surgical 

procedures, which involved the collapsing of an infected lung to allow it to heal (12). Besides 

treatment of disease causing infections, surgical wards in general carried the high risk of 

fatalities before antiseptics and antibiotics were in use. Mortality of amputees was as high as 

60% in the early 1900s largely due to gangrene and sepsis (13). Despite the causes of these 

microbial borne disease being known, with the discovery of microorganisms dating back to 

the mid-17th century (14), there was a dearth of treatment options that could selectively 

eradicate them. 

While research of various chemotherapies against microbes had already proven to be 

effective, with the synthetic discoveries of “Salvarsan” (15) and Sulfanilamide (16), their 

impact remained limited in the medical community due to reported side effects and issues 
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regarding storage. It wasn’t until the arrival of penicillin that widespread antibiotic use began 

to take hold. Alexandar Fleming discovered the compound in 1928 from the fungus 

Penicillium chrysogenum, and further application by Howard Florey and Ernst Chain earned 

them the Nobel Prize in 1945 due to its enormous impact on public health (17, 18). This 

discovery launched natural products research into its own scientific field resulting in the 

golden age of antibiotics. Penicillin was the first bactericidal compound in the beta-lactam 

class of antibiotics, which remains the largest class of antibiotics to date. This compound 

was effective due to the signature characteristic of attacking the production of peptidoglycan, 

a crucial element of cell walls in gram-positive bacteria. The efficacy of this targeted wonder-

drug lead to further natural products research and several other classes of antibiotics from a 

variety of natural sources soon followed. By 1944 Albert Schatz and Selman Waksman 

isolated streptomycin from the bacterium Streptomyces greiseus, which proved to be the first 

antibiotic treatment of tuberculosis (19). By halting protein production via binding to the 

universally shared 30S ribosomal subunit in bacteria, this compound was effective against 

both gram-positive and gram-negative bacteria, making it one of the first broad-spectrum 

treatments against a variety of infections (20). The expansion of new molecules and new 

classes of molecules rapidly proceeded with the addition of chloramphenicols, tetracyclines, 

and macrolide-lincosamide-streptogramins (MLS) under a decade later (21). With this new 

set of medical tools, countless lives have been saved, on the order of millions, not only by 

eradication of pathogenic infections but also through increased post-surgery survival (22). 

Throughout this period, however, mass production of these compounds and uses in 

industries such as agriculture, animal husbandry, and aquatic farming have been met with 

decreasing effectiveness due to the rise in antibiotic resistance (23). 

 

The rise of antibiotic resistance and decline of discovery 

Antibiotic resistance is a broad term used to describe a variety of means that help an 

organism survive antibiotic treatments. It is a natural evolutionary phenomenon whereby 

resistance is favored when under appropriate selection. Resistance is nearly as old as 

antibiotic production itself as illustrated with the example of beta-lactamases, enzymes that 

inactivate drugs such as penicillin by cleaving the amide bond of the beta-lactam ring; these 

genes have been shown to originate as far back as two billion years ago (24). Different 

mechanisms can confer resistance, which include general intrinsic factors such as lacking the 
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antibiotic target to sophisticated methods of cell protection. For instance, a gram-negative 

bacteria lacks a cell wall and thus would be unaffected by antibiotics targeting peptidoglycan, 

a key cell wall component. Preventing entry of an antibiotic or making enzymes that export 

them from the cell have been an effective tactic of defense; these export systems are also 

notable in their high export efficiency and broad spectrum of substrate specificities (25). For 

example, the Escherichia coli housekeeping efflux system AcrAB-TolC are shown to effectively 

export 8 different classes of antibiotics (26).  

Target replacement is another strategy that involves using a mutated variant that is 

insusceptible to attack while retaining its function. This has been seen with resistant 

ribosomal polymerase (rpoB), a target of the antibiotic rifampicin in the genus Salinispora 

(27). As these modified versions may not have the same fitness under normal conditions, 

other species have been seen to harbor a resistant copy alongside the original (28). Similar to 

target replacement, target modification or target protection utilizes factors to either 

chemically alter or block the mechanisms of action on the target to render the antibiotic 

insusceptible. Examples of methyltransferases that act to alter ribosomal subunits have 

shown to render the target insusceptible to once fatal antibiotics (29). The protection of 

DNA gyrase and topoisomerase against Fluoroquinolone antibiotics has also been shown 

with pentapeptide repeat proteins such as Qnr (30).  

Inactivation or degradation of the antibiotic itself is another method that has shown to 

be prevalent (31). And lastly, global adaption describes cellular or population responses to 

antibiotic attack that evade potency. For example, bypassing of a susceptible pathway, as is 

the case with daptomycin resistant enterococci (32), or forming biofilms to protect the 

population (33). Many of these systems evolved naturally before widespread antibiotic use 

and in some cases have bifunctional roles that could be involved in other ecological 

processes (34). Also, random mutations have shown to spawn resistance, even during a short 

time scale (35). However widespread selection for these traits via dissemination of antibiotics 

have shown to be a factor leading to the rise in resistant strains (36).  

Resistance acquisition though mutational changes and selection over generations has been 

an important source for the rise of these traits as well. Bacteria also have an accelerated 

mechanism for acquiring resistance besides mutation - horizontal gene transfer (HGT). The 

ability to acquire DNA, even directly from the environment (37), has given bacteria an 

additional edge for rapid adoption of these defense tactics. Usually this involves the 
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exchange of DNA by a process of conjugation, whereby physical contact and some method 

of trans-membrane donation occur; additionally, DNA uptake directly from the environment 

(transformation) and exchange via a vector such as a bacteriophage (transduction) can result 

in HGT. In some cases, segments of chromosomal DNA can be directly transferred, as seen 

in Mycobacterium species, which can span across species and produce a variety of mosaic 

variants of recipient cells (38). HGT has been proven to facilitate the spread of resistance 

and pathogenicity (39, 40), with transfers demonstrated to take only a few hours to fully 

disseminate into a population as illustrated with conjugal F-plasmids in E. coli (41). This 

further compounds the threat of resistance as pathogenic bacteria can acquire these traits 

from widespread non-pathogenic sources in a relatively short timeframe (42). HGT has 

therefore helped to explain the swift response to historical antibiotic use. 

When given the proper selection conditions, these traits can be highly advantageous, as 

illustrated with the rise of resistance in the last few decades. The threat of antibiotic 

resistance has been recognized early on, as Fleming noticed insufficient doses lead to a 

population of bacteria that were trained to tolerate penicillin. As hypothesized, the 

emergence of penicillin resistant staphylococci were documented in the early 1950s and 

resulted in many countries limiting use to prescription only (43). Methicillin, another beta-

lactam antibiotic, was soon used to combat resistant strains, however, the pattern of 

resistance continued resulting in Methicillin Resistant Staphylococci aureus (MRSA). Many 

pathogens have acquired resistance over the following years including E. coli, Salmonella 

enterica, and Klebsiella pneumoniae, especially against the widely used beta-lactam class of 

antibiotics. By 2010, nearly 1000 resistance related beta-lactamases had been discovered (44). 

As time has progressed, we have seen the rise of strains with combined resistance to multiple 

classes of antibiotics, also known as Multi Drug Resistant (MDR) bacteria. According to the 

World Health Organization (WHO), some of these “superbugs” are capable of evading 

nearly all known compounds such as carbapenem-resistant enterobacteriaceae (CRE), named 

one of the critical threats to human health (45). In 2014, an estimated two million people 

were infected with some form of MDR in the United States resulting in 23,000 fatalities, 

roughly equivalent to that in the European Union (46). The spread of resistance can be far-

reaching and rapid, with examples spanning across the European Union and significant 

increases in as little as 2 years (Figure 1.1) 
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Figure 1.1: (a) Spread of E. coli strains resistant to third-generation cephalosporin 2003-2016. (b) Increase in 

Klebsiella pneumoniae strains resistant to carbapenems 2009-2011. Data sourced from European Centre for 

Disease prevention and Control (ECDC), Atlas of Infections Diseases. http://atlas.ecdc.europa.eu/ accessed 

May 12 2018. 

 

Today, we are again facing the scourge of tuberculosis with the increase in MDR 

Mycobacterium tuberculosis and extensively drug resistant (XDR) strains, which are resistant to 

expensive second-line fluoroquinolones (47). The Center for Disease Control (CDC) 

estimates nearly one-forth of the world population is infected with latent TB with 1.7 million 

recorded deaths resulting in 2016 (48). Fortunately, the percentage of resistant strains has 

remained stable over the last 20 years, with the proportion of tested strains at 8.7% and 1.4% 

for isoniazid resistance and MDR resistance respectively (49). The direct impact of fully 

resistant variants would be devastating to modern medicine. Losing these invaluable tools 

could also indirectly negate medical advancements by having a patient survive a procedure 

but not the infection. To ensure the rise of resistance does not overcome our current 

medical tools, it is therefore critical to engage this threat on a variety of fronts from 

legislative safeguarding to development of new treatments. 

Unfortunately, there has been a decline in new drugs to market after the pre-1970 “golden 

age” when most of the currently known classes of antibiotics had been discovered. The last 

30 years have seen a drop in the number of approved antibiotics with significant stagnation 

over the last decade (Figure 1.2).  
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Figure 1.2: Decline in approved antibiotics from 1980 – 2015, boxes depict total for the time span. Data 

adapted from Bassetti, et al. (50), with updated approvals from Deak, et al. (51) depicted in a cumulative 10 year 

timespan. Orange trend line represents the moving average.  

 

Additionally, roughly two-thirds of these known antibiotic classes target the cell-envelope or 

ribosome only, and nearly all new post-millennial approvals are from known classes (51–53). 

Although new approvals have been made over recent years, including additions from fully 

synthetic efforts, there still remains a lack of innovative new discoveries. This situation 

further compounds the risk of resistance, as resistant strains may also be insusceptible to 

new drugs that attack the same target (cross resistance). The decline in new drugs to market 

is due, in part, to an expensive and timely development pipeline, coupled with lower financial 

returns for developers. Compared to other classes of drugs, antibiotics may only yield a 

fraction of research and development efforts, with some examples earning up to 30 times 

less revenue of a non-antibiotic drug (54). This threatens future development in the private 

sector, as fewer resources will be devoted to research with weak returns. Besides the high 

cost of development, there exists stagnation in the discovery phase of drug development.  

Currently, the main route for discovery has been sourcing from nature. These natural 

products are specialized compounds, also known as Secondary Metabolites (SMs), that are 

extracted from plants, animals, and various microorganisms. Today, the majority of 

antibiotics are either natural products or synthetics derived or inspired from natural products 

(55). One reason for this dominance is that natural products are the results of millions of 

years of evolution and thereby overcome difficult development hurdles such as efficient 

target binding and cell penetration (56). Because of this fact, natural products remain an 
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important field of research in the hunt for novel antibiotics and anti-infectives. However, the 

problem of rediscovery from these sources has been a big contributor to the stagnation in 

the drug development process. The time and effort used in the discovery of known 

compounds with the same activities impedes progress. This problem is partially due to heavy 

reliance on traditional discovery and screening methods that may not capture entire chemical 

space or simply limited due to focusing on historically familiar sources (56, 57). To 

reinvigorate the discovery pipeline we must therefore utilize new technologies and 

techniques, as well as expand the search to include promising underexplored sources. 

 

Thesis Outline 

This thesis is organized into two background sections and three research chapters that 

address improvements in natural product discovery using computational tools. In Chapter 3 

we discuss the development of a new tool for prioritizing natural products with emphasis on 

novel drug target identification. In Chapter 2 we discuss the use of a tool developed to aid in 

the prioritization of new bacterial sources via a high-resolution phylogenetic workflow. 

Chapter 1 demonstrates the application of gene similarity methods to aid in the 

determination of known natural products and the diversity assessment of secondary 

metabolites. Details about the objectives of each research project can be found in section 

three. Finally, a discussion of all efforts and future outlook are addressed in section six.  
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2 Background 

2.1 Drug Discovery from Natural Sources 

Beginning with the discovery of penicillin, antibiotics have predominantly come from 

fungal, plant, or bacterial sources. These natural products have continued to fuel the 

discovery pipeline, as most known antibiotics are either inspired by natural products or are 

direct compounds (58). These producers have occupied a wide variety of environments and 

evolved under various selective pressures over the course of natural history, resulting in a 

wealth of compound diversity. Terrestrial bacteria have been extensively exploited, as the 

rich soil ecosystem affords an array of competitors and resources (59). It was noticed early 

on by Waksman and colleagues that particular soil-dwelling microbes, which formed 

complex networks and associations with surrounding plants and fungi, were found to kill 

other bacteria in co-cultures (60). It wasn’t until later that these microbes were demystified 

and classified as bacteria belonging to the prolific Actinobacteria class. Members of this 

lineage, such as the genera Streptomyces, are historically the richest known sources of 

antibiotics (61). Focus on these bountiful sources is largely attributed to the observed 

chemical diversity they harbor. A few examples of this genus alone illustrate a spread of 

small to large secondary metabolites produced (Figure 2.1).  

 

 
Figure 2.1: Variety of structures from antibiotic natural products from the genus Streptomyces from multiple 

classes: Vancomycin, Amphotericin, Streptomycin, Thiostrepton, and Pentalenolactone  

 

This diversity has been the prime reason why natural products have been such a fruitful 

reservoir of useful compounds, with over 200,000 known molecules (62). Over the course of 
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natural selection, these secondary metabolites have been pre-screened for those that have 

interesting biological activities, such as ones with bactericidal properties. Leveraging the 

“research and development” of millions of years of evolution has been beneficial, but 

unfortunately there has been stagnation in the traditional discovery pipeline largely due to 

rediscovery of the same compounds (63). This problem is a major issue for this traditional 

“top-down” discovery model as it relies on a reasonable amount of luck to justify resources 

for prospecting (64). Fortunately, it has been shown that there are still many untapped areas 

of chemical diversity in new organisms and environments from which the traditional 

methods can benefit, such as underexplored myxobacteria and cyanobacteria genera (65). 

Additionally, with the advent of “bottom-up” approaches using gene sequencing we can 

systematically improve and expand the search for new compounds. 

2.1.1 Traditional discovery pipeline 

The basic workflow for natural products discovery over the last century has revolved 

around screening chemical extracts from collected organisms and natural sources (Figure 

2.2). These extracts can be taken directly from the environment, prepared from raw biomass, 

such as solubilizing plant material, or by first cultivating a sample. For microorganisms, this 

is largely done via isolation of a producing strain and culturing to allow it to manufacture the 

potentially useful compounds. Culturing can also act as a screening step, as seen with 

Alexander Fleming’s penicillin producing fungi, by growing in a co-culture assay.  
 

 
Figure 2.2: Traditional natural product discovery workflow. Extracts can be made directly from environment or 

through cultured microbes. Time intensive screening, chemical profiling, and fractionation are done before a 

lead can be further tested downstream. Multiple extraction and screening methods may be required to optimize 

detection. 

 
A more common approach is to test the extracts directly using biological and toxicity assays, 

for example, placing either raw extracts or chemical fractions on a lawn of target bacteria to 
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determine antibiotic activity or use other multiplexing screens that look for various activities. 

While straightforward and robust, these steps can be labor intensive and time consuming, 

especially for organisms that need up to several months to accumulate enough biomass for 

testing. Once activity is established, accumulating enough material for downstream analysis is 

needed. This can be a problem if the source is from a slow growing organism or if it does 

not produce significant amounts of product. This is especially important for manufacturing, 

as many of these natural products are complex compounds that would require several multi-

synthesis steps to be produced synthetically. Often this is too expensive and without the core 

structure production from the source, there would be no feasible way to produce the 

potential drug at a practical scale. After this barrier is overcome, the compound can then 

move on past the discovery stage to undergo further interrogation, toxicity screening, and 

structure elucidation before becoming a viable antibiotic. Despite these throughput 

bottlenecks, most of our known antibiotics have resulted from this process and hundreds of 

thousands of compounds have been isolated to date (66). Issues with this model, besides 

time and energy expense, are the inherent bias toward organisms that can be cultured in the 

lab in a timely manner and toward compounds that are produced in large enough quantities. 

This is a big drawback considering the majority of known microbes are “uncultivable” – 

extremely difficult to grow with standard techniques (67). Furthermore, certain products are 

only produced under specific conditions or stimuli and some products are governed by 

complex regulation systems, for example pristinamycin biosynthesis in Streptomyces (68). 

Unfortunately this makes it unfeasible to test every permutation for each organism manually, 

further restricting sampled compounds. This pipeline is therefore currently selecting for a 

subpopulation of chemical space and is at least in part responsible for the high rate of 

compound rediscovery. This problem is not a significant hindrance to development if caught 

early in the pipeline, however, the issue is that significant time and effort is usually already 

invested when an elucidated structure is known. This dissuades investment in discovery and 

further stuns progress.  

Fortunately, efforts to improve this pipeline are underway. Using different media and 

growth conditions is one solution. Testing conditions of stress by manipulating carbon, 

nitrogen, phosphorous or iron supply is another tactic that has shown to produce a range of 

metabolites from the same sample (69). Rather than trying to mimic optimal growth 

conditions for “uncultivable” bacteria in the lab, another technique is to culture a sample in 
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situ – in the original habitat. Technologies such as the isolation chip (Ichip) have been 

recently developed to do this via permeable membranes so that clonal colonies can be grown 

directly where they were found (70). This technique has already lead to the discovery of a 

novel antibiotic, Teixobactin, that was produced by a new species of beta-proteobacteria, 

provisionally named Eleftheria terrae (71). Efforts to search for new sources in different 

environments such as marine sediment or an organism’s microbiome are another expansion 

of discovery; one study showed over 25 thousand new compounds have already been 

discovered from marine sources around the globe (72). Even specific niches can harbor 

useful compounds; for example, isolated fungi from a microbial mat in an iron rich spring 

lead to the discovery of six new natural products (73). Symbiotic microbes also hold 

significant potential, as it has been observed that their hosts rely on the defenses that they 

produce (74).  For example, marine Actinobacterial strains associated with the sponge 

Halichondria panicea have shown to produce 88 new putative compounds (75). 

Identifying known molecules early on is another helpful endeavor. Computational 

methods such as Global Natural Product Social Molecular Networking (GNPS), are great 

tools for connecting elements in experimental mass spectra with those in a database (76). 

With this method, raw extracts or fractionated samples can be de-convoluted into a vector 

of chemical components. This is then displayed as an association network with spectra of 

known compounds. These methods are a great benefit to discovery, but still have a limited 

throughput requiring screening organisms under different conditions. These top-down 

approaches will continue to serve direct routes to discovery especially as this pipeline is 

expanded. Though to further solve the problem of rediscovery, we can also take a bottom-

up approach and look beyond the apparent products toward the blueprints of these diverse 

compounds - their genes. 

2.1.2 Genetic Research Unveils Natural Product Biosynthesis 

Not only are Streptomyces one of the richest known sources of antibiotics, they also served 

as a model for understanding the biosynthesis of these valued compounds. With the study of 

organisms like Streptomyces coelicolor, new genomic tools were developed which helped to 

illuminate novel mechanisms of biosynthesis. David Hopwood used this strain to devise a 

genetic linkage map that established a means of associating genetic loci with observed 

phenotypes (77). This lead to the discovery of a plasmid responsible for methylenomycin A 
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production in S. coelicolor, which also included the resistance gene (78). Sanger sequencing 

and genetic manipulation techniques further enabled the correlation of specific genes 

responsible for expressed compounds. One major observation in microbes is that nearly 

every class of these production systems packages the required genes in close proximity to 

one another. These Biosynthetic Gene Clusters (BGCs) then form a cohesive recipe for the 

formation of these natural products that not only contain the core machinery for synthesis, 

but also accessory enzymes involved in tailoring, resistance, and export. These genetic tools 

exposed the origins of the vast chemical diversity of these specialized compounds and 

accelerated discovery by giving valuable insight into the genomic basis of natural product 

production.  

Various systems of secondary metabolite production were later discovered including the 

ribosomally synthesized and post-translationally modified peptides (RiPPs), terpene 

synthases (TPS), and other derivatives of primary metabolism. The large macro enzyme 

complexes or collections, Non-Ribosomal Peptide Synthetases (NRPS) and Polyketide 

Synthases (PKS), were of particular interest due to the combinatory “assembly line” design, 

which helped explain the variety of observed chemical structures. The organization of PKSs 

showed similarities with products from Fatty Acid Synthases (FAS) with its composition of 

acyl subunits. Likewise, the genes responsible showed similar architecture to eukaryotic FAS 

type I as well as bacterial FAS II genes. In general NRPS and PKS BGCs were seen to have 

various domains that correlated to the number of subunits used to produce the end product, 

the so called co-linearity rule (79). Modules of the PKS type I consist of core catalytic 

domains that propagate and condense various acyl monomers: acyl transferase (AT), 

ketosynthase (KS), acyl carrier protein (ACP), and thioesterase (TE); Additional domains 

involved in modifications include ketoreductase (KR), dehydratase (DH), enoylreductase 

(ER), methyltransferase (MT), and others involved in special tailoring such as cyclization. 

The key observation that these multi-domain modules correlated with each unit of the 

molecule gave a standard recipe for the assembly of such complex structures. A specific 

order of these modules thus forms a macro-enzyme factory for the production of a 

particular metabolite. This is accomplished via a stepwise set of reactions where monomers 

propagate through a starter module, elongation modules, and termination module to form a 

growing chain that is then released. The AT domain catalyzes the loading of an acetyl-CoA, 

or one of its derivatives, to the ACP domain by a thioester linkage. The growing chain is 
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then passed to the KS domain of the next module, via catalysis by the KS domain. The chain 

bound to the KS domain and monomer bound to the current ACP domain, usually a 

malony-CoA or methylmalony-CoA, condense via the KS domain N-terminus activity. This 

results in an elongation of one unit as the chain passes from module to module (Figure 2.3). 

  

 
Figure 2.3: Conceptual example of modular PKS type I chain extension. AT domains select for the propionyl-

CoA starter unit and Methylmalonyl-CoA extender units. Additional dehydratase (DH) and enoylreductase 

(ER) domains not shown here. 

 

Each module may also contain additional domains that perform modifications to the 

previous unit in the chain, for example, the reduction of a double bond to a single by the ER 

domain or conversion of a ketone to an alcohol by the KR domain. The final step in the 

process releases the compound via the TE domain, which might involve a cyclization step. 

In addition to the macro enzymatic modular PKS, further divisions of iterative type I, trans-

AT, type II, and type III systems have been described (80).  

Similar to PKS systems, NRPS biosynthesis is analogous in modular design, with amino 

acids including nonproteinogenic variants used as monomers instead of acyl units (81). 

Additionally, due to the similar design to PKS systems, hybrid systems have been observed 

whereby acyl units may be used or where whole PKS production schemes are fused (82). 

NRPS modules contain three required catalytic domains – Adenylation (A), Peptide Carrier 

Protein (PCP), and Condensation (C). The first step in the process is activation of the starter 

or extender units by the A domain which uses ATP to form the reactive aminoacyl-

adenylate. The PCP domain then catalyzes the loading to its 4'-phospho-pantethine (4’PP) 
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cofactor via a thioester bond. This unit then delivers the attached monomer to a nucleophile 

acceptor position in the C domain where it condenses with another unit in the electrophile 

donor position. This newly extended peptide is then moved to the downstream C domain, 

where further cycles can continue chain elongation. Alternatively, a C domain may be 

replaced with a Cy domain, which also catalyzes cyclization in addition to condensation of 

the upstream peptide. A variety of other tailoring functions can be included in a module as 

well, including: epimerization, formylation, methylation, oxidation, and reduction domains. 

Final cleavage of the completed chain can either be accomplished with a TE domain as with 

PKS, or a reduction domain that reduces the thioester bond to an alcohol or aldehyde. Post 

processing of the completed peptide is also seen using other tailoring enzymes; this can 

include halogenation, hydroxylation, glycosylation, and acylation.  

With these two systems alone it is clear that a vast diversity of chemical novelty can be 

achieved with small changes in the order of modules or addition of the many possible 

tailoring steps involved. To add to this chemical potential, terpene biosysnthesis likewise has 

produced a large variety of compounds with approximately 60,000 known structures (83). 

Enzymes required for terpene synthesis can be found in bacteria, fungi, or plants, with the 

later being more common. Enzymes of this class all utilize five carbon building blocks, 

specifically isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP). These 

precursors are generated from primary metabolism either from the mevalonate (MVA) 

pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway present in most 

bacteria. These precursors are then condensed into a variety of intermediates of variable 

chain length with enzymes such as farnesyl diphosphate and geranyl diphosphate among 

others. Different classes of TPSs then utilize these intermediates to produce more diverse 

structures. One key feature of TPS biosysnthesis is the formation of reactive carbocation 

intermediates that can lead to a mixture of products from a single pathway (84). With this 

feature and their ability to work as a multi-substrate enzymes (85), terpenes possess a great 

potential for chemical diversity.  

The structural diversity of ribosomally synthesized molecules is clearly evidenced by the 

array of proteins that preform the necessaries of life, which RiPP pathways have exploited. 

RiPPs are a broad class of compounds that span an umbrella of modifications and cleavage 

of peptides produced from transcribed DNA; consequentially, RiPPs are responsible for 

several classes of compounds: lanthipeptides, cyanobactins, and thiopeptides, among others. 
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This class has shown applications in a number of commercial uses and is host to diverse 

biological activities. Although smaller molecule antibiotics have been sourced from RiPPs, 

these enzymes often produce large structures, typically over 1000 daltons, with macrocyclic 

rings (86). Biosynthesis involves an N-terminal leader strand of the precursor peptide that 

helps in recognition and guiding the various enzymes that act on the core segment; 

optionally, there may also be a C-terminal recognition site to aid in cyclization or excision. 

Modification reactions occur on the core peptide and depending on the class of RiPP, these 

modifications can include dehydration, prenylation, and cyclization, among others. The 

newly modified core peptide is then excised via a proteolysis step and a mature compound is 

produced. 

Another class deriving form primary metabolism is the saccharides, which are responsible 

for a number of key cellular functions such as cell wall biosynthesis in gram-positive bacteria. 

Including hybrids of other classes, these pathways have helped to produce a significant 

amount of useful secondary metabolites including the life-saving antibiotics kanamycin and 

streptomycin. This class is also responsible for some virulence factors in pathogens that help 

protect against the host immune system such as the capsular polysaccharides (CPS) and 

lipopolysaccharides (LPS). CPSs are long chain repetitive glycan strings that can form 

differing protective layers around a bacterial cell helping to avoid recognition or attack by the 

host cells. General synthesis involves formation of CPS repeat units in the cytoplasm 

followed by export and polymerization into a fully formed capsule outside of the cell 

membrane. LPSs are also extracellular components that are comprised of an O-antigen, 

oligosaccharide, and a fatty-acid portion. These structures can serve intricate functions, such 

as modulating immune response, masquerading as a host cell, or altering its antigen profile 

diversity thereby evading immune detection (87). Saccharides are also a host to various 

endotoxins that can have serious human health impact. Given the varied biological activities, 

this class is shown to harbor many useful and harmful secondary metabolites and further 

expands the chemical profile of microorganisms. 

Unveiling of the various production systems has helped in understanding the source of 

natural product chemical diversity. The key packaging of these systems in BGCs has also 

helped in determining the means of antibiotic resistance by investigating the surrounding 

genomic context. One example is the resistant gyrB gene included in the novobiocin BGC of 

Streptomyces spheroids (88). These “self-resistance” genes are a convenient way for an antibiotic 
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producer to avoid suicide by coupling the expression of both simultaneously; for example, 

modification of cell wall precursors via vanX, vanH, and vanA genes in the vancomycin-like 

producer Amycolatopsis balhimycina (89). Genomic context can also help to highlight which 

residues are responsible for resistance, thus giving clues to mechanism of action and 

revealing a compounds target; in the case of self-resistance via a modified target, as seen with 

rpoB genes in Salinispora species, genetic comparisons were used to highlight resistance 

conferring areas of the gene (27). This understanding has aided in structure prediction, 

increasing compound production, and discovery of new products. By focusing on the BGCs 

directly, rather than simply the source organism, this bottom-up approach is an attractive 

route to discovery. This also expands discovery, as the entire chemical potential of an 

organism can be accessed via its genetic potential despite undetectable production of 

compound or lack of gene expression. 

2.1.3 Genomics Accelerates Natural Product Discovery 

Gene manipulation tools and gene sequencing technologies have helped in the 

understanding of secondary metabolite production but also provided many useful 

applications for discovery. As seen with the plasmid-derived methylenomycin producer, 

transplantation of the entire production pathway into a new host is possible with a single 

plasmid transformation. It was also shown that the resistance gene accompanied this BGC 

which conferred methylenomycin resistance in the new host (78). Transplanting of 

chromosomal BGCs has also been widely utilized in discovery. Generation of F-plasmids 

containing sheared chromosomal DNA usually up to 40 killobase-pair (kb) produces a 

fosmid library, which can then be used to transform and screen recipients for the expected 

phenotype (90). This heterologous expression of an entire BGC can be very helpful in 

identifying, studying, or increasing yields of a natural product. Not only does this help 

confirm the hypothesis of a responsible cluster but also it makes for an easier platform to 

unveil key aspects of the product’s formation. Transplanting BGS into model hosts can also 

enable gene manipulation tools that may not be established in the native host. For example, 

if production shows yields below detection, or the cluster is not expressed under laboratory 

conditions, then the insertion of a strong inducible promoter can activate this “silent 

cluster”; This protocol was shown to lead to the discovery of several novel metabolites (91). 

Likewise, gene deletion studies have helped to identify the genes that contribute to 
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production of a particular compound. By interrogating these gene “knock-outs” we can 

compare different stages in the synthesis process, which can ultimately help in structure 

elucidation or in describing the biosynthesis pathway. Another benefit of heterologous 

expression is safer investigation of products from dangerous pathogens by introducing them 

into a non-pathogenic organism. Heterologous expression of BGCs has been shown to be a 

valuable avenue for accessing uncultivable sources using BGCs from environmental DNA as 

well (92). PCR amplification of PKS related genomic regions were shown to produce 

recombinant environmental libraries, which lead to the discovery of eight novel PKS BGCs 

from diverse phylogenetic origins (93). Sequencing-free technologies such as DNA 

microarrays have also contributed to discovery by allowing for gene expression data to be 

studied in a rapid testing format (94). Sequence-guided discovery has also lead to the targeted 

expression of specific BGCs in a genome. Instead of generating a random fosmid library, 

technologies such as Transformation-associated recombination (TAR) cloning can be used, 

which has shown to capture specific regions of chromosomal DNA as high as 300kb (95). 

This can be used to design and capture specific areas of a genome or environmental sample 

and systematically discover their products. Genomic context has also helped in synthetic 

biology techniques, which has applications in optimization of known natural product yields 

and also in discovery of unknown or unnatural BGC derivatives (96).  

Simply having the gene sequences alone has given research a step forward by helping to 

predict or answer key questions of natural product formation. For example by studying the 

variations in A-domains sequences of NRPS systems, we now know of ten residues in the 

binding pocket that are largely responsible for amino acid specificity (97). This 

“nonribosomal code” gives the ability to predict building blocks involved in biosynthesis 

from sequence, albeit not directly analogous to definitive translation as with DNA codon 

triplets. More sophisticated computational techniques of substrate prediction using these 

sequences have been developed with high accuracy however (98, 99). Of the main benefits 

of having the blueprints in hand is the ability to screen for natural products via their 

identified BGCs without the need to culture or perform biological screening. This has also 

unveiled hidden secondary metabolite potential by exposing silent gene clusters even in 

heavily studied organisms such Streptomyces coelicolor (100). Over the last decade tens of 

thousands of complete, or near complete, bacterial genomes have become publicly available 
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which has further exposed potential for secondary metabolite production using BGC 

prediction software (Figure 2.4). 

 
Figure 2.4: (a) JGI GOLDS completed genomes (http://gold.jgi.doe.gov). (b) Cluster prediction statistics 

from the Atlas of Biosynthetic gene Clusters (ABC) (101) sourced form (http://img.jgi.doe.gov) accessed May 

15 2018 

 

In addition to the increase in available genomic data the throughput and cost of 

sequencing has improved. With increases in throughput approaching 900 gigabase-pairs with 

the Illumina HighSeq X, this gives enough depth to compile multiple genomes in one run 

from a mixed environmental sample known as a meta-genome (102). This volume of data 

will require automated methods to be effectively leveraged. Thus with the maturation of 

analysis tools over the past years, and drop in sequencing cost, there is a new avenue for 

high-throughput screening available that can help overcome stagnation in the discovery 

pipeline. 

 

2.2 Computational Methods and Automated Genome Mining 

Downstream computational analysis of data is always reliant on the condition of the initial 

data. With the advancement of sequencing technologies it is therefore important to 

understand the limitations and future prospects for the generation of sequencing data. This 

introduction is meant to briefly describe various technologies in use to generate whole-

genome data, a more in depth comparison of sequencing and assembly methods are 

referenced here (102–104). The increase in public genomes and drop in sequencing cost is 

largely due to the high-throughput “next-gen” sequencing technologies such as 454, 
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Illumina, and Ion Torrent sequencers; These methods all rely on a “shotgun” approach 

whereby DNA is randomly fragmented into shorter pieces, sequenced in parallel, and then 

computationally reassembled based on overlapping portions of sequenced ends. Each of 

these technologies generates reads through a process of sequencing by synthesis where a 

successful incorporation of nucleotide is read by the instrument. In practice, an initial 

sequencing may not be enough for a complete assembly and results in a “draft genome” - a 

set of unlinked contiguous sequences called contigs. This poses a problem as initial versions 

providing short read lengths are difficult to assemble, particularly for the repetitive 

sequences often seen in various BGCs. This problem of BGC’s split on separated contigs 

could be solved through more re-sequencing efforts or using phylogenetic classifiers, such as 

NaPDoS (105), to connect them. Fortunately new entries into the market such as PacBio, 

and Oxford Nanopore sequencers have given a solution by using much longer read lengths 

via a single-molecule approach (102). With reads lengths around 10-15kb (102) smaller 

BGCs might be contained in a single read while larger BGCs will have a higher chance of full 

assembly. While read length is improving so is the throughput of data, which is allowing for 

higher resolution metagenomic surveying of sources. As demonstrated with programs such 

as MEGAN, we can pre-screen metagenomic data directly for their taxonomic and 

metabolic potential without the need of assembly (106). In addition to genomic data RNA 

sequencing has become a means to probe the expression of genes, which also provides 

another avenue for discovery (107). As these technologies improve and increasing volumes 

of data are seen there is a continually growing opportunity available for genome mining. 

Furthermore, with the increase in amount and diversity of whole genomes, a powerful 

approach using comparative genomics is on the horizon. 

2.2.1 Natural Product Genome Mining 
 

Genome mining is an attractive route to drug discovery because of the ease of obtaining 

genomes, its high-throughput capacity, and it requires relatively inexpensive in-silico analysis 

compared with experimental screening. The inaccessible “dark-matter” of uncultivable 

genomes can also be probed via meta-genome sequencing. This pipeline predominately 

involves searching for known BGC signature genes and analyzing the surrounding region. 

This motif-based technique has been the main route for manual and automated genome 

mining and with the addition of motif-free methods a wealth of predictions have been 
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found. Automated methods have sense matured and are able to reliably predict many classes 

of BGCs in fungal, plant, and bacterial genomes. Although there is still headway to be made, 

particularly with the more complicated fungal genomes (108), these methods are able to 

predict the NRPS, PKS, RiPP, terpene, saccharide and hybrid classes effectively. Besides 

BGC identification these tools also provide information such as accessory gene annotation, 

genomic context, and structure prediction of a product. A community-updated list of these 

cluster-mining tools can be found at the “The Secondary Metabolite Bioinformatics Portal” 

(109) (http://secondarymetabolites.org) and detailed method overviews have been reviewed 

in publication 4 as well as elsewhere (110, 111). Among these programs, antiSMASH (112), 

PRISM (113), SMURF (114), and CLUSEAN (115), achieve rapid searches of seed signature 

genes via high fidelity Hidden Markov Models (HMMs) and the updated HMMER3 

algorithm (116). These models are based on sequence alignments of known signatures, for 

example KS domains for PKS clusters, which can outperform BLAST (117) searches in 

terms of speed and sensitivity. Once these anchors are identified a cluster is then defined 

based on a drop in signature gene density to identify boundaries. In addition to signature 

gene methods, probabilistic approaches such as clusterfinder (118), which is also integrated 

into antiSMASH, uses a technique of assigning every gene a likelihood of being apart of a 

BGC based on a large training set of currently known BGCs. Another interesting approach 

is the screening of regulation binding motifs for known up-regulation of a natural product. 

This method, INBEKT, was shown to identify the zincophore ethylene diamine disuccinic 

acid ([S,S]-EDDS) in Amycolatopsis japonicum (119);  This was also shown to be generally 

applicable to other ionophores as publication 6 demonstrates the detection of 

aminopolycarboxylic acid siderophores (120). 

To complement these motif-dependent and probabilistic methods, several motif-

independent methods have been developed. As these approaches do not rely on previously 

known architectures of BGCs there is the potential to discover unknown systems of 

secondary metabolite production. One example, EvoMining (121), is based on the 

observation that many biosynthesis schemes have evolutionary roots in primary metabolism 

and so by looking for these “gene expansions” - duplicated and repurposed genes, we can 

identify regions of natural product biosynthesis. This method was shown to identify two 

previously uncharacterized enzymes, an argininosuccinate lyase used in the biosysnthesis of 

leupeptin, and a divergent AroA family enzyme, which lead to the discovery of a novel 
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arseno-organic compound (121). Likewise an approach that uses gene expression data to 

identify co-expressed clusters, MIDDAS-M (122), was shown to identify a BGC responsible 

for ustiloxin B production in fungi (123). RiPP detection in fungi remains a challenge using 

motif-dependent methods however this proof of principle highlights the possibility of 

finding classes that might elude motif methods. While this requires transcriptomic data, it is 

a valuable addition with an advantage to connect disparate genetic loci involved in 

biosynthesis as seen in plant genomes. Due to the difficulty to obtain a completed plant 

genome, this has helped to identify and connect contigs with hard to detect BGCs (124, 

125). A third method, MIPS-CG (126), utilizes a comparative approach that analyzes co-

localization of gene clusters in non-syntenic regions. By comparing to other genomes it 

highlights areas where these clusters have been evolutionarily maintained and possibly 

horizontally transferred to different organisms. This was shown to identify a kojic acid BGC 

(127).  

With hundreds of thousands of processed antiSMASH jobs and over a million predicted 

clusters (with redundancies) from the IMG-ABC database (101), there are currently vast 

amounts of leads to investigate in wet-lab experiments. Therefore this poses a new challenge 

to prioritize and de-replicate these leads to efficiently interrogate them.  

2.2.2 Prioritizing Natural Product Leads 

The volume of predictions to investigate is infeasible to undertake using current biological 

screening methods. Even in an individual genome there can be many clusters identified, for 

example, Streptomyces bingchenggensis BCW-1 shows at least 47 BGCs for known and predicted 

secondary metabolites, with a large number of silent clusters (128). Being able to select 

which of these clusters have interesting biological activities or might be promising antibiotics 

is thus a high priority for genome mining. The first undertaking of de-replication, or 

identifying all clusters that are identical but found from different sources, has already begun 

in the last few years. This initial step of cataloging known clusters has amassed thousands of 

BGC sequences in currently updated databases. The MiBIG database (129) houses one of 

the largest collections of experimentally verified full and partial BGCs with over 1400 

clusters. The Joint Genome Institute (JGI) has over a million clusterfinder results for all 

public isolates at the Atlas of Biosynthetic gene Clusters (ABC) (101). The recently released 

antiSMASH database maintains over 20,000 clusters from 3,900 unique isolates (130). In 
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order to effectively query these databases methods for gene similarity searching have been 

developed. MultiGeneBlast (MGB) allows for a cumulative search of entire operons or gene 

clusters by combining loci information and individual BLAST protein searches (131). 

Originally developed for the antiSMASH platform, this standalone program is able to query 

all sequenced public genomes from the NCBI GenBank database to help locate all similar 

clusters of a query. To use this method for de-replication however would be time 

consuming, as this would require a computationally expensive pairwise search of all gene 

cluster genes. Also the scoring scheme is great for sorting top likely hits, but because it is not 

a metric there would be difficulty in defining a similarity threshold to automate and would 

require manual inspection. To solve this issue, other gene cluster similarity metrics have been 

developed. One method uses protein family (Pfam) (132) annotation to calculate pairwise 

functional similarity of every cluster (Figure 2.5).  

 
Figure 2.5: Example gene cluster network depicting Gene Cluster Families (GCFs) that produces like 

compounds. Data was generated using the MiBIG database (129) as detailed in publication 4, Ziemert et 

al(133).  Colored regions depict gene cluster type with examples of known compounds circled based on MIBiG 

annotations. 
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This was used to develop a gene cluster similarity network of thousands of BGCs that 

showed three subfamilies for the large class of aryl-polyene BGCs (118). Despite the 

divergent sequence similarity for clusters of shared compounds, the method was able to 

associate these BGCs due to the higher order functional Pfam similarity measure. These 

networking techniques are therefore well suited for de-replication of like compounds. 

Furthermore the gene cluster network showed many groups of similar clusters in the 

network, gene cluster families (GCF), which had no described member. Thus by studying 

the diversity of these networks this method can also be used as a tool for prioritization as 

well as de-replication by exploring under-represented potential. These methods were shown 

to be effective as demonstrated in publication 2 and 3. 

Many prioritization schemes have been adopted and the variety adds to the success rate 

by using multiple perspectives. One immediate method is prioritization by seeking novel 

chemical structures or interesting moieties. This has been widely employed through chemical 

spectra networking using platforms such as GNPS. For gene cluster data this tactic relies on 

gene product predictions. While this remains a difficult task recent advancements have 

improved upon current core structure perditions by interrogating mass spectrometry data as 

seen with PRISM (113) . As new structures inevitably lead to new chemical properties this is 

a valuable approach to identify compounds with new activates. Using this broad approach 

does not guarantee activity however. Other methods have taken a different approach to 

enrich for antibiotic activity. One such method, target directed genome mining (134), uses 

the fact that an antibiotic producer will encode a means of defense, which is then used as a 

marker for prioritization. Specifically this method aims to highlight a co-localized resistant 

target in a BGC. This helps save time with experimental screening by enriching for clusters 

with a higher probability of antibiotic activity; and it also gives a head start on elucidating the 

mechanism of action. This method can still lead to compounds with novel modes of action 

despite utilizing a known target. This has predominately been a manual screening process 

which publication 3, the Antibiotic Resistant Target Seeker (ARTS), aims to automate and 

address. Another popular approach is to focus on new taxa that harbor high levels of 

secondary metabolite production. Just as members of the Actinobacteria class have been 

exploited, new prolific clades have been discovered with promising resulting leads such as 

cyanobacteria and myxobacteria (135–137). The biosynthetic potential of these broad order 
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and family groupings can also differ for more specific taxonomic levels as seen with 

myxobacteria (138). Accurate phylogenetic placement of a particular species can thus serve 

as an indicator of the productive potential of a sample before experimental screening. This 

can also help to avoid resampling of closely related species and expand efforts more 

effectively. Phylogenetic classification has also shown to be a valuable tool to prioritize 

individual BGCs as seen with NaPDoS (105), a web tool to detect and classify conserved 

domains in NRPS and PKS BGCs. Because bacterial taxonomy is complicated by several 

factors, such as horizontal transfer, accurate phylogenetic classification is a non-trivial time 

consuming process. The Automated Multi-Locus Species Tree (autoMLST) in manuscript 1 

was therefore developed to solve this problem and help to prioritize prolific sources. 
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3 Research Objectives 

 

This thesis is focused on developing computational tools to aid the discovery of novel 

antibiotics from prokaryotes. The major goals of this research are to prioritize the wealth of 

leads form current genome mining methods and provide an orthogonal detection technique 

to complement current motif based strategies. Additional goals are to automate and simplify 

gold-standard species designation methods to identify promising new sources, and to apply 

these tools with comparative methods such as gene cluster networking to remove redundant 

leads to highlight novel antibiotic predictions. 

Design requirements for distributed applications are to conform to these following 

criteria: Accessible to broad set of users, computationally feasible to host freely on in-house 

infrastructure, and open-source to enable widespread use and progress in natural product 

discovery. Specific objectives are detailed below. 

 

Gene cluster networking: 

§ Preform comparative analysis of gene clusters for de-replication 

§ Highlight sources rich in diverse BGCs and aid exploration of other prioritization criteria 

 

Automated Multi-Locus Species Tree (autoMLST): 

§ Provide accessible web interface for non-specialists to perform high-resolution species 

phylogenies 

§ Simplify workflow to accelerate species identification 

§ Help direct efforts on new promising sources of natural products 

 

Antibiotic Resistant Target Seeker (ARTS): 

§ Automate target-directed genome mining by highlighting known resistance factors and 

cross-referencing with predicted BGCs 

§ Expand this process to include putative novel targets using several criteria associated 

with known resistant targets 

§ Prioritize gene cluster predictions with other resistance annotations 

§ Provided orthogonal approach to BGC detection methods  
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Chapter 1 

4 Gene cluster networking 

4.1 Introduction 
 

Genome mining has shown to be a valuable avenue for the discovery of new anti-

invectives from natural sources (139, 140). While several tools offer robust detection of 

nearly all known classes of Biosynthetic Gene Clusters (BGCs), including antiSMASH (112), 

RiPPMiner (141), clusterfinder (118), and PRISM (113), they do not help to prioritize which 

are the most likely candidates for novel activity. Because these predictions can lead to a large 

amount of potential clusters that require laborious experimental investigation there is a need 

for efficient de-replication and prioritization of these predictions. With over a million 

clusters predicted from the JGI Atlas of Biosynthetic gene Clusters (ABC) it is critical to 

eliminate identical clusters and define structurally similar classes in order to leverage this 

resource effectively. Methods for identifying homologous single genes have been in use for 

well over two decades using tools such as NCBI BLAST (142); however few methods have 

been developed for homology detection of whole clusters. MultiGeneBlast (131) is one such 

application that uses an “all vs. all” BLAST search of genes in a cluster and combines 

location information from the subject searches to get a cumulative score. This method has 

shown to work well and can identify similar clusters via a prioritized list of best hits as 

demonstrated in the included cluster blast feature in antiSMASH (143). However this 

method has some drawbacks that require manual investigation and does not lend itself well 

for automated de-replication. The non-symmetric scoring of the algorithm can result in a 

fragmented cluster producing highly identical hits with a full cluster for instance; also the 

highly repetitive genes in BGCs can lead to inflated similarity scores. Gene synteny is also 

weighted into the scoring of the algorithm, which is not always conserved for similar BGCs 

in other multiple taxa; for example, microcystin producers P. agardhii and M. aeruginosa 

have similar BGC composition for the same compound but with several rearrangements and 

inversions of genes (144). This issue is problematic for other synteny based cluster methods 

such as SYNS (145), SynBlast (146), and Synima (147). Additionally varying ranges of scores 

can be produced depending on the cluster size, and score thresholds would need to be 
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defined on an individual basis. Other similarity approaches that use phylogenetic clustering 

of key domains and alignments of profile HMMs have been demonstrated (105, 148). 

Scoring metrics have also been proposed to solve this problem and this has enabled an 

automatic approach to assign distances between clusters (118, 149). These distances can then 

be used for the de-replication and similarity networking of all clusters to help drive 

prioritization efforts. By grouping these like BGCs into Gene Cluster Families (GCFs) a 

secondary metabolite diversity map can then be inferred. The method described in 

Cimermancic et al. uses a functional similarity approach rather than a strict sequence 

homology score to define these GCFs. First all protein domains are annotated in query and 

subject and then compared using a symmetric composition metric via the Jaccard index 

combined with a domain duplication index. More recent applications of this method, such as 

BiG-SCAPE (150), have also included multiple sequence alignments to further distinguish 

domains but the experimentally confirmed weighting of factors remained over 85% reliant 

on these Jaccard and duplication indices (150). The end result showed that similar clusters 

could be associated despite having low sequence homology by using this protein similarity 

based approach. 

Members of the Actinobacteria class have been one of the richest sources of antimicrobial 

compounds particularly from soil dwelling environments (151). Considering this, clusters 

form these taxa were used as the focus for exercising the gene cluster networking methods. 

One main goal in the design of this networking method is to be big-data capable and so we 

used the Joint Genome institute’s Atlas of Biosynthetic gene Clusters database, JGI-ABC 

(101), which had over 4700 Actinobacteria genomes at the time. By using this set as well as 

other characterized sets, such as the experimentally confirmed catalog in the MiBIG 

database (129), it was possible to assess other potentially rich natural product environments 

by investigating the diversity and overlap with these references; as shown in publication 2, 

“Sequencing rare marine actinomycete genomes reveals high density of unique natural 

product biosynthetic gene clusters” (152), a map of cluster diversity could be built which 

helped to prioritize underexplored organisms from marine environments – “rare marine 

actinomycetes” (RMAs). This also identified which individual clusters were distinct from 

others in the reference that could potentially harbor novel chemistry. The same methods 

were also implemented in publication 3, “Comparative genome mining reveals phylogenetic 

distribution patterns of secondary metabolites in Amycolatopsis” (153), were differences in 
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natural product diversity could be seen at the genus level. This also helped to quickly identify 

potentially novel compounds and the use of high-resolution phylogeny added an extra layer 

of metadata to the networks, which helped in GCF prioritization. 

4.2 Methods 

4.2.1 Implementation of gene cluster networking 

Workflow Overview 

Cluster similarity scoring first relies on accurate protein family designation of all tested pairs 

of clusters. This step was achieved using pre-annotated clusters from the JGI-ABC dataset 

or with the Pfam-A (132) database and Hidden Markov Model (HMM) scans implemented 

in HMMER3 (116). The resulting domain table of hits was generated using the ‘domtblout’ 

option of the hmmsearch application. Distance values between all pairwise combinations of 

hits were generated using custom python scripts and a parsed list of domain tables as input 

(scripts available at: https://bitbucket.org/malanjary_ut/clustsimscore). Scores and cluster 

IDs were combined with annotations which produced an undirected graph file in GML 

format that could then be read by network exploration tools such as Gephi (154). The final 

graph is then visualized using the Yifan Hu (155) layout to spatially organize nodes based on 

edge weights in Gephi (Figure 6.1). 

 

 
Figure 6.1: Workflow example of gene cluster networking steps (a) Protein domains are annotated for each 

BGC. (b) Accelerated calculation of similarity scores for all combinations of BGC pairs. (c) Parsing and 

visualization of final network 

 

Similarity Scoring 

Parsing of all HMM domain results yielded a set of unique Pfam domain IDs (x) for each 

cluster ID (i or j). The occurrence count of each Pfam domain was also stored in a count 

matrix (C):  
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𝑥 = 𝑃!,𝑃!,… ,𝑃!        𝑃 = {𝑖𝑑! ∈ [𝑃𝑓𝑎𝑚_𝑖𝑑𝑠]} 

𝐶!,! =
𝑐!! ⋯ 𝑐!!
⋮ ⋱ ⋮
𝑐!! ⋯ 𝑐!"

    𝑐 ∈ ℕ 

 

The scoring uses two metrics to calculate total cluster distance - the Jaccard and domain 

duplication index. The Jaccard index, J(𝑥! , 𝑥!), is a symmetric composition based index that 

measures the ratio of common Pfams and all Pfams present in both clusters: 
 

𝐽 𝑥! , 𝑥! =
| 𝑥! ∩ 𝑥!  |
| 𝑥! ∪ 𝑥!  |    ∈ [0,1] 

 

The domain duplication index, DDS(i,j), is calculated for a cluster pair (i,j) as the sum of all 

differences in corresponding Pfam count divided by the sum of the maximum count 

(excluding Pfams that are not present in either). The negative exponent is then taken as 

described in Lin et al.(149) resulting in a measure of equivalent repetition of domains. 

𝐷(𝑖, 𝑗) =  |𝐶!" –𝐶!"|       𝑀(𝑖, 𝑗) =
!

!!!

max (𝐶!" ,𝐶!")
!

!!!

 

𝐷𝐷𝑆 𝑖, 𝑗 =  𝑒!
!(!,!)
!(!,!)    ∈ [0,1] 

 

The final similarity score is then defined as a weighted sum, S(i,j), of the Jaccard index and 

domain duplication index as demonstrated previously in Cimermancic et al. (118) 

 

𝑆 𝑖, 𝑗 = 0.36 ∗ 𝐽 𝑥! , 𝑥! + 0.64 ∗ 𝐷𝐷𝑆 𝑖, 𝑗  

 

Parallel Implementation 

To accelerate processing, parallel computation of many pairs of (i,j) clusters could be 

achieved through matrix operations for the Jaccard and domain duplication steps. The 

resulting vectors could then be summed after scalar multiplication to give a vector of 

similarity scores that correspond to each (i,j) cluster pair. Sub-matrices of the count matrix 

Cm,n (m cluster IDs and n Pfam IDs), A and B, are used as inputs to the final equation: 
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𝐴 = 𝐶 1, 𝑟; 1,𝑛          𝐵 = 𝐶 1, 𝑟; 1,𝑛   ∶   𝑟 < 𝑚 

𝑺𝒑 𝑨,𝑩 = 𝟎.𝟑𝟔 ∗ 𝑱𝒑 𝑨,𝑩 + 𝟎.𝟔𝟒 ∗𝑫𝑫𝑺𝒑 𝑨,𝑩  

 

The parallel version of the Jaccard function, Jp, uses the Hadamard product of A and B to 

identify Pfams present. Any column with a zero will also result in zero for each row pair 

(resulting in set intersection effectively). This is calculated via a Boolean matrix, X, where all 

elements > 0 are converted to 1: 
 

𝐻 𝐴,𝐵 = (𝐴 ∘ 𝐵)!,! =  (𝐴)!"(𝐵)!" 

𝑋!,! = 𝑏𝑜𝑜𝑙  𝐻 𝐴,𝐵  = 𝑝!" ∈ {0,1}  

 

Likewise the sum of A and B was used to define a Boolean matrix U (set union) of elements. 

A row-wise sum of these Boolean matrices was then taken to obtain a count vector of 

intersections and unions. These are then used to give a result vector of Jaccard indices: 
 

𝑈!,! = 𝑏𝑜𝑜𝑙  𝐴 + 𝐵 = 𝑞!" ∈ {0,1} 

𝑱𝒑 𝑨,𝑩 =
𝒓𝒔𝒖𝒎(𝑿)
𝒓𝒔𝒖𝒎(𝑼) =   

𝒑𝟏𝒊𝒏
𝒊!𝟏

𝒒𝟏𝒊𝒏
𝒊!𝟏

 ,… ,
𝒑𝒓𝒊𝒏

𝒊!𝟏

𝒒𝒓𝒊𝒏
𝒊!𝟏

  

The parallel version of the domain duplication function (DDSp) also returns a solution 

vector by using the element-wise maximum function form NumPy (156) and matrix 

subtraction. The Exp function simply takes the exponent of each element in the vector: 
 

𝐴 − 𝐵 = 𝐶 = 𝑎!"            max 𝐴,𝐵 = 𝐷 = max 𝑝!" , 𝑞!" !" = (𝑏!") 

𝐷! = 𝑟𝑠𝑢𝑚 𝐶 = 𝑎!!  ,… , 𝑎!"

!

!!!

!

!!!

 

𝑀! = 𝑟𝑠𝑢𝑚 𝐷 = 𝑏!!  ,… , 𝑏!"

!

!!!

!

!!!

 

𝑫𝑫𝑺𝒑 𝑨,𝑩 =  𝑬𝒙𝒑(−  
𝑫𝒑

𝑴𝒑
) 
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Cluster pairs, A and B, are generated such that all possible combinations of (i,j) clusters are 

represented with an iterative approach using m-1 pairs of (A,B) sub-matrices. The approach 

matches each cluster once with every other cluster without taking order into account (Figure 

6.2). This simplistic method generates all combinations by matching the first (m-i) rows with 

the last (m-i) rows as illustrated below (m’ accounts for -1 indexing) for i > 0 and i < m: 
 

A = C[0 : (m’ - i)]; B = C[i : m’] 

 
Figure 6.2: Illustration of sub matrix generation where top red sections produce the submatrix A, and bottom 

blue sections produce the submatrix B. The example count matrix C is a 20x5 set, thus m-1 (19) pairings are 

needed to produce all 190 combinations of cluster rows. This is equal to the number of combinations, C(n,2) = 

n!/(n-2)!2! = 190 = 1+2+3…+19. 

 

Comparison of A and B pairs are further accelerated using the multiprocessing python 

toolkit to parallelize calls to Sp(A,B). Results are finally collected and then written to a 

tabulated file of distances. 

4.2.2 BGC Networking in Publication 2 

 
Data Collection and Genome Sequencing 

Data obtained from the JGI ABC database consisted of clusterfinder results of all public 

Actinobacteria isolates. The clusterfinder approach uses a probabilistic assignment of 

genomic regions to define BGCs and gives a prediction probability score for each cluster. 

FASTA sequences of all clusters with a score above 0.80 were then downloaded from: 

https://img.jgi.doe.gov/cgi-bin/abc along with Pfam (132) annotations. RMA genomes 

from the JGI database that were not included in the clusterfinder results were also 
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downloaded. Previously collected isolates from the Scripps Institute of Oceanography (SIO) 

were sequenced using 400bp Ion Torrent PGM sequencing as detailed in Schorn et al (152). 

BGCs for these genomes were then determined using antiSMASH 3.0 with clusterfinder 

enabled at a 0.8 threshold. 

 

Gene Cluster Networking and Diversity Assessment 

Pairwise similarities of all collected BGCs (detailed in section 6.2.1) were used to first de-

replicate identical or nearly identical clusters by clustering those with similarities >= 0.99. 

The resulting list was used to identify all groups of nodes, Gene Cluster Families (GCFs), via 

Gephi’s connected components function. One member was then kept per GCF and the 

number of de-replicated nodes was logged in the retained clusters’s metadata. After all de-

replicated nodes were removed from the initial similarity list a final network with a threshold 

greater than 0.6 was made using Gephi; The Yifan Hu (155) layout method was then used to 

visualize clusters. Gene cluster diversity was analyzed using common indices for species 

diversity such as the Shannon index (157). To normalize for different sample sizes of gene 

clusters the True Diversity index was calculated as a function of the Shannon index (158). 

Additionally the number of gene clusters that had at least one connection to any other 

cluster was compared to the total number of predicted clusters in a particular group to 

obtain that group’s gene cluster uniqueness score. 

 

4.2.3 BGC Networking in Publication 3 

 
Data Collection and BGC Identification 

Genomes from the genus Amycolatopsis were collected from the NCBI (142) and JGI-IMG 

databases (101) if they were high quality drafts with under 300 contigs and not from single 

cell sequencing. Additional strains from the Tuebingen collection, Amycolatopsis sp. H5 and 

KNN 50.9b, were sequenced using the Illumina HiSeq 1500 System as detailed in Adamek et 

al (153). Final assemblies were produced using the gsAssembler software (Newbler) v2.8 and 

submitted to the NCBI Prokaryotic Gene Annotation Pipeline for annotation (159). BGCs 

were then identified using antiSMASH v3.0 with default settings (143). A manual curation of 

all BGCs was done to improve border prediction accuracy as described in Adamek et al 

(160) using Artemis (161) to trim boundaries. 
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High-Resolution Phylogeny 

A Multi-Locus Sequence Analysis (MLSA) was preformed to generate a high-resolution 

species tree of collected strains using several conserved housekeeping genes: atpD, clpB, 

gapA, gyrB, nuoD, pyrH, and rpoB. DNA alignments of each of the extracted genes were 

preformed using Clustal W (162). These were then concatenated to form a supermatrix of 

DNA sites. A Maximum Likelihood tree was then constructed in MEGA6 (163). 

Designation of major clades was also confirmed via pairwise ANIm values using JspeciesWS 

(164).  

 

Manual GCF Identification and BGC Networking 

Manual inspection using MultiGeneBlast (131) results and antiSMASH annotation were 

preformed on all clusters to define a curated set of GCFs. The following criterion was used 

to define a GCF: 1) BGCs share a similar genetic architecture showing a majority of genes 

that have the same function. 2) Genes required over a 50% BLAST amino acid similarity 

with at least 80% coverage to be considered similar. 3) Modular composition and BLAST 

similarity of KS and C domains for PKS and NRPS BGCs were also discriminated. These 

results were then recorded to a pairwise matrix for absence or presence and clustered using 

hierarchical cluster analysis in PAST (165). Rarefaction curves were produced from this 

manually curated set to determine BGC richness using EstimateS (166). Automated BGC 

networking was preformed (detailed in section 6.2.1) on all trimmed BGCs and a cutoff of 

0.65 was chosen as it best reflected the manual curation set. Distance tables were then 

imported into cytoscape 3.4.0 for clustering and visualization (167). 

 

4.3 Results 
 

Performance Requirements 

As the number of pairwise combinations for cluster comparisons would increase at roughly 

half an exponential rate a key design parameter was to implement a method that could 

accommodate the tens of thousands of clusters available in the JGI-ABC database. An initial 

implementation using an iterative approach was found to be limited in throughput despite 

using a multi-processing enabled workflow. Comparisons between the first iterative 
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approach and sub matrix parallel design were conducted by using a randomly sampled BGCs 

from the Actinobacteria dataset in publication 2. Tests using 1,000 to 5,000 clusters showed 

a dramatic speed difference of approximately 1860X (Figure 6.3).  

 

 
Figure 6.3: (a) Speed comparison of iterative approach (blue) vs parallel (red) shows an 1860x difference in 

combinations/second. (b) Amount of combinations needed for pairwise comparisons; equals n*(n-1)/2 

combinations for n clusters. 

 

The iterative approach finished in 32.3 hours for a 5000-cluster (~12.5 million 

combinations) test while the parallel version completed in 67 seconds (single CPU time). 

With this new implementation the large dataset of approximately 68 thousand clusters in 

publication 2 could then be computed and explored in a reasonable time. Memory 

requirements were higher for the parallel version but manageable at 6Gb for a 68K cluster 

comparison. 

 

Networking Validation 

BGCs de-replicated in the JGI ABC set showed to have identical annotations for known 

product where applicable. Annotated MiBIG clusters were also networked using this method 

to show that the similarity measures were effectively grouping identical compounds (Figure 

6.4).  
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Figure 6.4: Networking of BGCs from MiBIG v1.3 that show groupings of frequent compound annotations. 

Nodes that did not show similarity above a 0.6 score are not displayed in the network. 

 

As not all derivatives and related compounds are displayed the top identical product names 

were visualized in the network to confirm that they appear in the same GCF. This showed 

that the majority of those surveyed formed isolated groups while other clusters were found 

in subsections nested within a larger connected portion of the graph. General compound 

names, such as the capsular polysaccharides, form several isolated groups at the 0.6 similarity 

cutoff but were later seen to correlate to the assignment of compound based on their MiBIG 

structure annotation. These clusters were also apart of the “partial” sets in MiBIG so the 

possible incomplete clusters could affect the clustering efficiency. Likewise the separated 

carotenoid and prodigiosin nodes are marked as “partial” and only show similarity above a 

0.5 threshold. Overall the majority of the compounds represent a single GCF illustrating that 

the network approach can be used to group identical and related compounds. BGC classes 

were also well organized in the network as seen in publication 4 with similar classes 

associating together in the network (Figure 2.4). 

4.3.1 BGC networking in Publication 2: “Sequencing rare marine actinomycete 

genomes reveals high density of unique natural product biosynthetic gene 

clusters” 

 
The collection of all Actinobacteria gene clusters filtered for those greater than a 0.8 

clusterfinder probability resulted in 68,207 clusters from 4732 isolate genomes as of June 
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2016. After de-replication of nodes that showed a score of 0.99 and above, 22419 

representative nodes remained. Many of these removed duplicates were seen to be identical 

clusters from sequencing projects of very similar species, and occasionally the same strain, as 

seen with Mycobaterium Tuberculosis (Over 2200 isolates sequenced as of May 2018). Only 1325 

of the representative clusters were responsible for all redundancy with the top 32 de-

replicated clusters accounting for half of the repetition. A histogram of all possible scores 

was used to determine the de-replication and final clustering thresholds (Figure 6.4); this 

choice was taken to obtain a conservative figure for cluster diversity while limiting the 

connectivity of nodes. Other thresholds were also tested and the metadata pertaining to 

BGC cluster type was analyzed to see how many edges had matching node type vs. 

mismatching types (Figure 6.5).  
 

 
Figure 6.5: (a) Histogram depicting number of clusters binned at various edge values form 0.5 to 1.0. 

Selections greater than or equal to 0.99 were used to condense identical clusters (purple). The remaining edges 

above 0.6 were then used to define final connected GCF (blue). (b) Mismatched nodes as percentage of total 

edges at each binned similarity range. Red bar indicates edges that were omitted after cutoff selection. 

 

As some annotations had multiple designations, ex: nrps-pks hybrid and nrps, a partial 

match with one or more annotations was considered a match. The number of mismatches 

was then calculated relative to the total number of edges for each binned similarity value. 

Because some discrepancies remained in the annotations, such as “null” or “putative” 
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designations, some mismatches (<2%) were tolerated. This results in a broader clustering by 

compound family and related core structures, which may under-represent compound 

diversity. Despite the underestimate of compound diversity 2970 GCFs were defined and 

split into two groups: one of highly connected nodes and the other with sparsely connected 

nodes to better visualize GCFs (Figure 6.6). 
 

 
Figure 6.6: Highly connected portion of the network. Type I PKS macrolides such as oligomycin (1) and 

erythromycin (2) are within the larger PKS GCF. Siderophores, such as mycobactin (3) reside in the hybrid NRPS-

PKS section. Cyclic depsipeptides, including homologues to pristinamycin (4) reside within the NRPS GCF. 

Rifamycin (5) and analogues form an isolated GCF. Figure adapted from Schorn et al. (152) 

 

A useful method to correlate GCFs to compounds was to include MiBIG annotations. This 

too was a sparse measure of identifying compound groupings as only 3% of the total GCFs 

had at least one member from the MiBIG database. Those that did show annotations 

correlated with their respective BGC type, for example Type I PKS macrolides such as 
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oligomycin and erythromycin lie within this PKS GCF subsection. The large network shows 

many of the known classes of BGCs in isolated GCFs but the main connected component 

shows subsections that are not ideally resolved. For example PKS and NRPS clusters can be 

linked through the various NRPS/PKS hybrid clusters. The majority of the GCFs were seen 

in the second half of the network, which better illustrates diversity of RMA genomes (Figure 

6.7). 

 
Figure 6.7: Majority of GCFs in 2nd network with BGCs from RMA genomes highlighted in pink. Figure 

adapted from Schorn et al. (152) 

 

Here it can be seen that many of the RMA clusters form isolated, RMA only, communities 

with few that overlap with the other GCFs in the network. In addition to the lack of overlap 

in the resulting network, the number of BGCs that showed no significant similarity 
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(singletons) was 78% of the total BGCs from RMA genomes. This means a large portion of 

RMA secondary metabolite potential contained unique clusters not represented in the JGI 

Actinobacteria dataset. BGCs from marine Streptomyces, a promising source of natural 

products (168), were compared in order to assess the overlap. Additionally the diversity of 

GCFs, a measure of amount and size of GCFs, was also calculated and compared (Table 

6.1).  

 

  # BGCs # Strains # GCFs % BGCs in network 
True 
Diversity 

RMA 1386 21 153 22.44 86.1595 
Marine 
Streptomyces 1925 24 143 21.4 73.6128 

 
Table 6.1: Network statistics for BGCs from RMA genomes compared with marine derived Streptomyces. Table 

adapted from Schorn et al (152) 

 
The comparison shows very similar figures for GCF overlap despite slightly less isolate 

sampling in the RMA set. It is notable that despite the many sequenced terrestrial strains of 

Streptomyces in the JGI database the majority of marine derived clusters do not appear in the 

network (78.6%). Furthermore the shared clusters between RMA and the marine Streptomyces 

group only showed 4 GCFs (3% of RMA). This implies that there is still low sampling from 

both groups and more genomes from these sources would expand the known chemical 

space. Besides the low overlap and chance of rediscovery, the diversity of clusters also 

showed to be relatively high. True diversity, interpreted roughly as the effective number of 

GCFs if they were equally populated, showed similar potential to marine Streptomyces, which 

means many different chemical structures can be found in these sources. 

 

4.3.2 BGC Networking in Publication 3: “Comparative genome mining reveals 

phylogenetic distribution patterns of secondary metabolites in Amycolatopsis” 

 

The results from this study helped to compare manually defined GCFs with the same 

automated approach in publication 2. The majority of the GCFs at a threshold of 0.65 

matched with the manually defined clusters but for some there was a merging of GCFs, 

which was expected using this global threshold as seen in publication 2. The example in 

Figure 6.8 shows the inclusion of clusters that had similar gene architectures but were 
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separated in the manual process based on C-domain similarity and module arrangement, 

which is not considered in the automated similarity method. The broader BGC class 

designation was shown to be consistent across all GCFs with the exception of one hybrid 

cluster included in an NRPS GCF. 

 

 
Figure 6.8: Gene cluster networking of Amycolatopsis strains. (a) Network colored by BGC class. 1. Albachelin-

like NRPS clusters; 2. 2-methylisoborneol; 3. Glycopeptides; 4. Rifamycin; 5. ECO-0501; 6. macrotermycin-like 

PKS clusters; 7. Octacosamicin. (b) Networked colored by major phylogenetic groupings defined by MLSA 

(A,B,C,D) and other organisms. (c) Example of automated networking that include related NRPS BGCs 

(predicted structures shown) but were defined separately using manual criteria. Figure adapted from Adamek et 

al. (153) 
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Major phylogenetic clades were found via MLSA in this study and were used to annotate 

the network in Figure 6.8b. Interestingly, these major clades were shown to correlate to 

certain GCFs forming isolated clade specific communities. This clade specific metabolite 

potential also corroborated the heat-map analysis using manual GCFs performed in this 

study. The number of singleton clusters was another aspect that showed species specific 

potential with 21% of the total BGCs showing no similarity to each other; this implies an 

addition of about 6-7 unique BGCs on average for every strain that is sequenced. There were 

also some universally shared GCFs and others that were only shared between two clades. 

Notably, over half of the highlighted known compound groups happen to be multi-species 

GCFs suggesting a prioritization for shared clusters might be useful. These antibiotic clusters 

provide broad benefit and therefore perhaps many species have taken advantage of them, 

this idea has also been previously suggested (62). The combination of phylogenetic 

classification and network display thus provided a rapid survey of metabolite variety. Clades 

A, B, and C harbor the highest richness and diversity and so efforts spent on these species 

may have higher returns for new compounds; In particular, clade A shows to account for 

nearly half of the non-singleton GCF diversity (46%). In contrast, those from clade D have 

the majority of its non-singleton GCFs represented in the latter clades. This observation was 

also reflected in the average number of BGCs per isolate with 37, 34, and 30 clusters for 

clades A, B, and C respectively. An average of 18 for group D and related organisms, A. 

sacchari and A. taiwanensis, was shown to help prioritize efforts toward sources from the later 

clades. 

Besides investigating diversity and uniqueness, identification of known compounds were 

used to highlight GCFs with potentially novel compounds. While several GCFs formed 

isolated known compounds, this compound grouping was not perfect at this threshold as it 

was shown that some similar but distinct BGCs were found in an automated GCF (Figure 

6.8c). The difference between NRPS BGC-7 and NRPS BGC-27 for example were grouped 

because of the highly similar architecture but showed to have borderline C-domain BLAST 

similarity at around 51-60%. These inclusions were seen to only have a single connection to 

the group however so would likely be resolved at higher similarity score thresholds. The 

inclusion of a hybrid cluster with the only mismatched automated GCF was also only 

connected by a single edge. Given these were related BGCs it could be useful to have this 
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larger binning of compounds in order to prioritize those with drastically different structures 

from known BGCs however.  

The compound examples shown were from manual identification via the included 

MultiGeneBlast analysis in antiSMASH. To test the automated identification of known 

compounds the same networking method was used with the inclusion of gene clusters from 

the MiBIG v1.3 database. This showed to not only highlight most of the previously 

identified compound groups but also several other GCFs with known members from diverse 

phylogenetic origins (Figure 6.9). 

 

 
Figure 6.9: Amycolatopsis BGCs networked with known BGCs from the MiBIG database. 1. albachelin-like 

NRPS and similar clusters (see fig S6); 2. 2-methylisoborneol; 3. glycopeptides; 4. rifamycin; 5. ECO-0501; 6. 

macrotermycin-like PKS clusters; 7. octacosamicin; 8. chelocardin 
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With the added database unknown links could also be established as with the chelocardin 

cluster. A total of 11 unknown singletons could then be identified in this way. The larger 

networks also showed to span and connect previously isolated GCFs helping to establish 

related families. However the results mostly show that the majority of the Amycolatopsis 

GCFs are without significant similarity to what is in the MiBIG database. Compared to the 

original 133 GCFs 111 remain that do not have any connection to MiBIG nodes. These 

results show that the Amycolatopsis genomes are a promising source with little overlap to 

experimentally verified natural products. 

4.4 Discussion 
 

This implementation of gene cluster networking showed to be a rapid automated 

approach not only to de-replicate known compounds, but also to survey cluster diversity and 

prioritize uniqueness. Highly similar gene clusters and their compounds were shown to 

associate reliably with the simplistic Pfam composition metric in reasonable time after 

implementing the parallel vector method. Not shown here was the processing time for Pfam 

annotation, as this was previously calculated from the JGI-ABC database, however this step 

is rapidly achieved using the HMMER3 package (116) and is usually included for major 

genome annotation pipelines. With the processing time improvements this method is 

scalable for big-data applications shown to cope with tens of thousands of putative clusters. 

An extrapolation of 1 million clusters would result in a reasonable 29 days of single CPU 

time to calculate all comparisons. This would be infeasible using MultiGeneBlast or other 

BLAST similarity approaches, which might also require manual curation. As more genomes 

and meta-genomes are sequenced, and as sequencing throughput increases, this aspect of 

throughput is crucial to the downstream analysis of genomic data. As illustrated in 

publication 2, the initial clustering of identical compounds with the 0.99 thresholds resulted 

in a significant amount of de-replication. Nearly 67% of the data was shown to be redundant 

due to the multiple sequencing projects with identical species included in the Actinobacteria 

dataset. Although all combinations needed to be tested for similarity first this reduction 

helped to expedite network exploration and processing time for visualizing the final network.  

Subsequently the new non-redundant set was used to identify known compounds and 

help determine which sources harbored the highest GCF diversity. As seen with the low 

overlap to previously sequenced Actinobacterial genomes in publication 2, the RMA 
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potential was shown to be a promising source for natural product discovery. Furthermore 

the distribution of these products into many isolated GCFs showed that higher chances of 

chemical diversity could be seen and that this group, along with other marine Streptomyces, 

warrants more sampling. This networking approach helped to solve two problems in the 

natural products pipeline: eliminating rediscovery of known compounds, and prioritization 

of sources based on potential novelty and diversity. An alternative prioritization prospect, as 

seen in publication 3, is to focus on GCFs that show heterogeneous phylogenetic 

composition, as several of the known antibiotic compounds were shared across different 

taxa. This idea that more ubiquitous ecologically advantageous compounds, such as 

antibiotics, have a higher chance of being shared across different genera has also been 

previously argued (62). Besides these prioritization possibilities the rapid screening of known 

compounds was demonstrated in publication 3 with the inclusion of the MiBIG database. 

This showed that several of the Amacolatopsis BGCs were unknown and harbor potentially 

novel compounds. This approach will only improve overtime as more contributions are 

made expanding and centralizing known compounds form BGCs. Currently this is 

somewhat limited as the majority of cataloged clusters are without an experimentally verified 

product, known as “orphan clusters”. Once these links are established, as structure 

prediction and experimental evidence improves, this approach can lead to effective 

elimination of rediscovery of natural products. 

In addition to the fast processing time the clustering accuracy was shown to be reliable 

by associated known compound groups. Validation using the MiBIG database of known 

clusters showed to group identical compounds into isolated sections; this was also seen in 

publications 2 and 3. In publication 3 there was clear separation of BGC classes with the 

exception of 1 hybrid cluster. With the larger JGI dataset more mixing was seen for the 

highly connected GCFs in publication 2. This cross connectivity was seen in the larger 

network due to the inclusion of more hybrids, which bridged PKS and NRPS classes. One 

factor could be the difference between trimmed vs. untrimmed clusters in the two 

publications. This difference was not tested but it highlights that automated cluster 

prediction may include some flanking genes that do not participate in the cluster which can 

lead to lower or higher scores depending on genomic context. Fortunately improvements to 

automated cluster boundary prediction have been developed in the new release of 

antiSMASH v4.0 (112), so this effect can be reduced. One solution to this mixing issue, if 
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BGC class is known beforehand, is to network each class separately to better distinguish 

GCFs from related groupings. This approach is used in a recent BGC networking program 

BiG-SCAPE (150).  

Compared to the manually grouped approach in publication 3, which took several days 

of laborious work, the automated GFCs showed agreement for the majority of families but 

with some groupings occasionally including distinct but related BGCs. The example shown 

highlights this drawback but based on the compound predictions this discrepancy might be 

favorable as all of the structures shared a similar core scaffold which means GCFs will be 

conservatively defined leading to highlights for distinct core structures. Considering the time 

saved and throughput allowed from this method this shortcoming is acceptable, and the 

broader groupings may lead to more reliable prioritizations of novel compounds. Increasing 

the similarity thresholds is a solution to improving the resolving power however this comes 

at a cost of over estimation of compound diversity and higher singleton count. Other ideas 

for more resolved GCFs were explored but not implemented in this study such as using 

additional local cutoffs for large highly connected clusters or adaptive thresholds based on 

BGC type, size, or composition. Ultimately the simplistic approach was taken to ensure no 

bias toward a higher compound diversity was generated and to conservatively estimate novel 

prospects. A potential improvement to the GCF definitions could be made in future 

implementations by not only considering edge weight but also node connectivity. As seen in 

publication 3 some of the inaccurate cluster inclusions showed only a single connection to 

the GCF. This could be used for example to refine GCFs by examining all sparsely 

connected nodes via more strict cutoffs using a secondary threshold. Another interesting 

solution is to define GCFs using the Markov Cluster Algorithm (MCL), which can identify 

local groupings in large connected sections by simulating stochastic flow between 

connections in the graph (169). This method was not tested in these studies but can be 

applied using the current output format of the networking scripts. 

Overall this BGC networking implementation was show to be effective and capable of 

de-replicating and prioritizing the wealth of publicly available BGC predictions as shown in 

publication 2 and 3. This demonstration has shown the basic application of combining 

databases of known natural products and prospecting GCF diversity but this method also 

enables a range of comparative analysis. As seen with the combination of phylogenetic 

classification metadata, it is possible to identify products shared among a broad range of 
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taxa, which might serve as a clue that the product is an advantageous compound. A variety 

of other metadata could also be used to cross-reference the network such as the inclusion of 

known resistance factors, known drug targets, or results from bioassays. This integration of 

bioassay data was demonstrated to work well for molecular network approaches (170). One 

interesting possibility is to cross reference gene cluster networking with molecular networks, 

which can help give an intersection of predictions for higher confidence leads; this can also 

be used to aid structure elucidation of an unknown cluster or establish a predictive link 

between orphan clusters and compounds. These comparative possibilities have only started 

in recent years and are likely to improve as the number of available genomes and meta-

genomes continues to grow. With the increase in these diverse datasets, and expansion of 

known product databases, this gene cluster networking method is already showing promise 

to reinvigorate the natural products discovery pipeline (171).  
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Chapter 2 

5 Automated high-resolution species trees (autoMLST) 
 

5.1 Introduction 

As demonstrated in chapter 1, natural product sources can vary significantly in secondary 

metabolite potential not only from a broad phylogenetic perspective but also within the same 

genus (153). Even within the same species there can be variation as seen in Verrucosispora and 

Salinaspora strains (172, 173). Accurate taxonomic classification of bacterial isolates is 

therefore an important tool to help identify viable sources and reduce natural product 

rediscovery (174). Understanding the true evolutionary phylogeny also has important 

applications to a variety of research. In natural products research it is often helpful to 

express the Biosynthetic Gene Clusters (BGCs) that encode these compounds of interest in 

a heterologous host due to issues with cultivation, expression in the native organism, or to 

avoid handling pathogenic strains. Choosing the closest relative of an isolate to increase 

compatibility of the transplanted BGC is a common idea as GC percent and codon usage 

will be similar. For example, a 100X increase in production was seen with tubulysin 

expression in a host more related to the native organism (175). Thus an accurate 

classification can identify a suitable host that has similar metabolic context as the source. 

This benefit is especially helpful when complicated pathways or unique precursor supply 

chains are involved (176). In addition to uncovering sets of related organisms for 

comparative analysis, a full species phylogeny can also help to highlight horizontal gene 

transfer via reconciliation of individual gene trees with the species tree (177). Phylogenetic 

background can also provide clues to BGC function as demonstrated in publication 5 where 

the acquisition of a new group of siderophores (salinichelins) coincided with the loss of 

known desferrioxamine clusters due to functional redundancy (178). Understanding the 

evolutionary background of a species is an informative tool but also simply providing a 

rigorous taxonomic identification can reduce errors in genome databases and help to guide 

experiments with proper comparative context. As current classification schemes still remain 

a challenge (179) systematic genomic classifications, such as using whole genome Average 
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Nucleotide Identity (ANI), are becoming a popular proposal to solve the taxonomy 

difficulties for prokaryotes (180). 

Classical species delineation of bacterial isolates has utilized morphological and chemical 

properties, which remain an important factor in defining a type strain – an isolate that 

represents a particular species based on rigorous phenotypic and genomic criteria. Genomic 

data has long been in use though DNA-DNA hybridization techniques however due to labor 

intensive and time consuming processing this method has been largely supplanted by 

genomic sequencing of conserved areas, mainly the 16S ribosomal RNA sequences present 

in all bacteria (181). While this quick and inexpensive sequence to obtain has served to 

delineate much of the known genomes in public databases, there still remain some 

difficulties with using 16S sequencing alone. Using such a conserved region that maintains a 

strong purifying selection has its benefits as a taxonomic marker, however these same 

properties can also lead to low phylogenetic signal and reduced resolving power at the strain 

or species level as evidenced by the high similarity definition of species 98-99% (182). 

Additionally, complications when using partial 16S sequences (183) or selection of a 

sequence in an organism that contains multiple variants (184) can be a source of misleading 

designations. Despite these drawbacks 16S sequencing has remained the workhorse of 

taxonomic identification of submitted genomes due to large catalogues of these sequences 

that enable a rapid classification via similarity screens with tools such as BLAST (117, 185–

187). This method continues to be the most widely used due to low sequencing costs and 

highly accessible rapid processing. While similarity serves as a useful heuristic to evolutionary 

history, it is important to note that the commonly used blast identity measure can lead to 

multiple species designations in genera with highly similar sequences (188).  

An alternative to similarity scores is to model evolutionary history using phylogenetic 

methods that take into account parameters of evolution such as higher rates of transitions 

compared with transversions. Techniques to calculate a resulting tree of sequence evolution 

range from faster distance based methods, Unweighted Pair Group Method with Arithmetic 

Mean (UPGMA) and Neighbour-joining (NJ), to computationally rigorous character-based 

approaches: Maximum parsimony (MP), Maximum-likelihood (ML), and Bayesian Inference 

(BI). These later methods rely on an alignment of sequences where differences are 

interrogated to explain how they have evolved and are related. In general the character-based 

approaches can search and evaluate many hypothesis to arrive at a more accurate result 
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(189). These methods rely on evaluating many topologies, which require a computationally 

expensive search considering there are (2n - 3)!! (1*3*5*7…2n-3) possible rooted tree 

topologies (190); fortunately efficient non-exhaustive algorithms have roughly O(n2) 

complexity for n species using the Sub-tree Prune and Re-graft (SPR) approach of tree 

searching (191). Several models of evolution can be used which range from those with 

simplistic constant rates of evolution and few parameters to sophisticated models accounting 

for a variety of parameters. This extensive modeling can lead to a more accurate hypothesis 

of species relationship than from similarity alone (191). Unfortunately the variety of 

processing techniques discourages widespread use as best practices are not immediately 

apparent to non-specialists. Recently this barrier to use is being reduced through accessible 

web interfaces that utilize the computationally expensive ML approaches, such as IQ-TREE 

(192, 193) and RaxML (194). Additional measures such as model finding, included in IQ-

TREE (195), automatically detects the most simplistic model that best explains the genetic 

data; this is a valuable step as the choice of model can give varied results using likelihood or 

Bayesian methods (196). These advancements have made it easier to perform a more 

rigorous analysis to identify the evolutionary relationship between a set of genes. However 

this process can often be insufficient in delineating confidant species splits using 16S data 

alone. The use of Multi-Locus Sequence Analysis (MLSA), a technique that integrates many 

genomic loci to increase phylogenetic signal, has shown improved resolving power and 

highlights the inaccuracies of relying on 16S data only (197). MLSA trees have primarily been 

processed by concatenating all aligned genes into a super-matrix as input for tree inference. 

Other approaches infer a species tree by first building gene trees separately and combining 

them using coalescent theory as this can be beneficial for recent or rapidly diverging lineages, 

or if other complications are present (198, 199). However the choice of which genomic loci 

is important as using genes subject to HGT can impair accurate estimation (200). Criteria 

such as using single copy ubiquitous housekeeping genes, restricted to genes with low 

synonymous vs. non-synonymous (dN/dS) mutations, help to focus on vertically inherited 

genes with low phylogenetic noise (201). Currently this has been a manual process that 

depends on the organisms in question but generally includes various ribosomal genes, and 

other ubiquitous essential genes such as DNA/RNA polymerase proteins as seen from the 

public database pubMLST (202). 
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To expedite this process and bring these methods into more widespread use we present 

the Automated Multi-Locus Species Tree (autoMLST). The goal of this project is to provide 

a simplistic “BLAST like” interface that can automate each step of this workflow and 

provide easy access to high-resolution methods of species inference. While existing sites aim 

to have similar accessibility to these methods such as EDGAR (203) and PATRIC (204), 

these only automate the tree inference step; additionally these methods do not include 

features such as model finding or use faster forms of tree inference such as NJ methods. 

From selection of appropriate reference organisms to final tree construction the autoMLST 

server aims to provide a quick means of obtaining an initial species designation by 

automating each step of the process. Also by providing annotations such as pairwise ANI 

estimates and BGC potential of a particular clade, autoMLST can help with discriminating 

query genomes for natural product prioritization. The application is presented in two 

pipelines: one that utilizes rapid placement on predefined trees, and a de-novo approach that 

handles costly computational time by limiting to the most relevant organisms. 

5.2 Methods 

 
Workflow Overview 

This workflow is designed to automate MLSA tasks including selection of genomes to final 

tree construction (Figure 5.1).  

 
Figure 5.1: autoMLST workflow to automate reference genome and single copy gene selection. Alignment and 

trimming of each gene is first preformed then depending on user selection a placement tree or de novo tree is 

built. The user can also select to use a concatenated alignment or coalescent approach to build the final tree. 
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All front-end code and workflow scripts are open source and available at: 

https://bitbucket.org/ziemertlab/automlst. First, query genomes are screened against 

reference and type strains genomes using rapid ANI estimation via MASH (205). The 

nearest organisms are then selected and ubiquitous essential genes that appear in single copy 

are identified. Alignments of each gene are performed followed by automated refining using 

the “automated1” option in trimAL (206); this is designed to improve accuracy of maximum 

likelihood trees by removing aligned sites with a high proportion of gaps and variability. 

Finally a tree is produced using a rapid placement method or full inference from a maximum 

of 20 query genomes per run. 

 

Reference Genomes and Build Process 

Reference genomes were obtained from NCBI Refseq (207) in September 2017 and genbank 

files were then converted to a SQL database which includes all sequences and taxon 

metadata. To reduce redundant strains the top 10 highest quality genomes were retained for 

genomes that showed the same species taxid, as determined using the most complete 

“assembly level” metadata and lowest scaffold count; Any genomes marked as type strain or 

reference genome were retained and all that had ambiguous designations for genus were 

removed. The application begins by parsing all user submitted FASTA or GenBank 

sequences and uses chromosomal sequences to perform ANI estimation using MASH (205). 

Reference genomes with the highest ANI to each query and average ANI to the entire query 

group are then selected. Preference for type strains is given by allowing higher distances 

(+5% ANI) when selecting the nearest reference organisms. All sequences are then 

integrated with the query sequences into a final temporary SQL database. Searches for gene 

homologs are preformed using HMMER (116) and essential gene models. These models 

were collected from Pfam (132) and “equivologs”, orthologous genes with confirmed 

conserved functions, from TIGRFAM (208); reference genomes have these searches pre-

computed. The results are then added to the database where a gene matrix of all organisms is 

produced. The resulting matrix is screened for all single copy genes present in every genome 

and prioritized via pre-calculated dN/dS values. These values were determined based on 

codon alignments of reference organisms using Pal2Nal (209) and the PAML (210) 

application “yn00” and averaged. To reduce computation time a maximum of 100 genes are 

selected from the prioritized gene set. Nucleotide alignments of all genes are preformed 



 62 

using MAFFT (211) which can perform in fast mode (FFT-NS-2) or local iterative (L-INS-i) 

as an option. Guide trees are also written during alignment with the “treeout” option; these 

are optionally used to further filter gene selection by removing trees with the highest median 

distance to all other trees (up to one standard deviation). Depending on the selection of 

workflow, trees are built with IQ-TREE (de novo workflow) or placed onto reference gene 

trees using the Evolutionary Placement Algorithm (EPA) in RaxML (212). The de novo 

workflow also has two modes: concatenated alignment inference or coalescent tree 

inference. This allows the comparison of both methods to identify areas of the tree that 

might be problematic. Each step is automated by default but can also be manually refined 

for gene selection and organism selection. A reanalyze button in the final results makes this 

process easier if a user wants to compare other gene sets or organisms. 

For the rapid placement workflow, reference sets of families were built using type strains 

with identical NCBI family IDs. These sets included all families that had 10 or more 

members marked as type strain or reference genome and showed 10 or more single copy 

genes. Each set was built by running the command line version of autoMLST to obtain and 

align all unfiltered single copy genes. Gene trees were then built using IQ-TREE with 1000 

bootstrap replicates and General Time Reversible (GTR) model. This was done using the 

ultra-fast bootstrap setting UFboot2 (213). Query genomes are matched with the applicable 

reference set by using the top MASH distances to find a reference set, or if none is found 

the user is notified. The single copy genes from the query organisms are then added to the 

reference alignments with the “--add" option in MAFFT. The updated alignments are used 

in conjunction with the precompiled reference tress and RaxML EPA to produce gene trees 

with placed query sequences. A final coalescent tree is then inferred from all gene trees with 

the ASTRAL-III v5.5 (214) application. 

For the de novo approach, a total of 50 organisms including up to 20 query genomes are 

used as input. Alignment and refining are also done with MAFFT and trimAL. If the extra 

screening options are enabled the guide trees produced in the MAFFT alignment step are 

used to remove genes that show conflicting topologies. This is done by discriminating 

median pairwise Robinson-Foulds (RF) distances of each gene tree to the group of every 

other tree. This value represents the symmetric difference of splits in one tree but not the 

other. The highest values within one standard deviation of all median RF distances are then 

removed. After all single copy genes have been aligned they are either concatenated into a 
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partitioned alignment by default or optionally used directly to build a coalescent species tree 

using ASTRAL. The partitioned alignment is processed with the partition-aware features in 

IQ-TREE (215) which allows for gene specific parameters of evolution. Model selection and 

bootstrapping are also optionally performed in the same step. The final tree is then displayed 

in the browser, which allows for dynamic coloring schemes to depict type strains and 

organisms that belong to similar ANI groupings. 

 

ANI Clans and Validation 

As bacterial species definitions remain a challenge, with known misnomers and ambiguous 

assignment due to human error (216), we decided to use a systematic approach using ANI 

for validation. Definition of ANI “clans”, groups of organisms with closely matching ANI 

values, were based on pairwise MASH distances of all reference genomes whereby all 

distances below various thresholds were used as input for Markov clustering using the MCL 

application (169). MASH distances were converted to yield a percent ANI to obtain an edge 

weight for clustering and three analyses were made at 97, 95, and 90 percent ANI thresholds. 

Below 90 percent was omitted due to higher rates of error in the ANI estimation as reported 

in MASH (205). Each group was given a unique clan ID and a final translation file associates 

each genome with the clan IDs at each threshold. These designations are directly used in 

final tree visualization by highlighting all non-singleton clans so that the user can quickly 

estimate clade distinctions or problems with the evolutionary hypothesis (Figure 5.2).  

 
Figure 5.2: (a) Example of ANI clan visualization with Mycobacterium type strain (or representative genome) 

where a 97% threshold is shown. (b) Conceptual example of ANI scoring calculation using strict monophyletic 

branches as all descendants of the least common ancestor of clan. If multiple monophyletic groups exist the 

largest will be selected. 
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These groupings were also used to validate generated trees by checking if related genomes 

clade together on tree branches; this was done by using the Environment for Tree 

Exploration (ETE3) python library (217) to identify the largest monophyletic group (strictly 

homogeneous) for each ANI clan. The proportion of maximum monophyletic members to 

the total was then used to assess tree placement; a score of 100% would be given if all 

members appear in one branch with no other genomes included. This is done for every non-

singleton ANI clan and the average is reported for each tree tested at various ANI clan 

definitions. All previously generated concatenated family trees composed of type strain 

organisms or reference genome were used for the validation.  

To include more singleton ANI groupings and inspect branch length designations, a test 

of pairwise ANI values were correlated with pairwise tree distances between all nodes. A 

measurement of one leaf to another was done via multiple calls to “get_distance” in ETE3 

and all pairs were matched with pairwise ANI values over 85%. The Pearson correlation 

coefficient and corresponding p-values were then automated using the Scipy library (218). 

Tree coverage, the ratio of leaves sampled to determine score, was also calculated by taking 

all leaves that had at least one data point divided by total leaves. Further validation of all 

branches was done by inspecting leaf and internal node bootstrap support values 

summarized via the average and ratio of well-supported splits in a given tree; this ratio was 

calculated as the number of supports equal to or greater than 80 divided by the total number 

of support values. Support values for the coalescent method uses a slightly different 

calculation of “local posterior probability” where quartet branches from all gene trees are 

used to define the probability of that topology (219). With the concatenated approach a 

random sampling (bootstrapping) of aligned sites are used to generate many resulting trees 

to infer support (213).  

A comparison case study was also preformed using the manual high-resolution 

Amycolatopsis phylogeny generated in publication 3. These were submitted to the webserver 

after removing the restriction to number of genomes and ran using default settings with the 

de novo workflow in concatenated mode. Tree visualization was done using the tanglegram 

algorithm in Dendroscope (220) to compare topologies and similar groupings defined 

previously were highlighted. 
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Performance Testing 

All speed tests were performed on a development webserver with 6 virtual cores equivalent 

of a 2.2GHz Xenon processor. Job submissions were made through the web interface to 

simulate real-world usage. A subsection of 40 genomes, ranging from 1-10 Mega-base-pair 

(Mbp), were taken at random from different families that were apart of the placement 

workflow. These were used so that we could also ensure proper placement of queries by 

relating with the corresponding reference genome in the tree. Tests of three workflows were 

made for each genome: Model Finder Plus (MFP) with bootstrapping enabled, de novo 

workflow with default options, and the placement workflow with default options. Start and 

complete times were taken from the run logs and used to generate average processing times 

and variance. 

5.3 Results 

5.3.1 Reference Generation and Performance 

Over 22,000 genomes were integrated into the SQL database after limiting downloaded 

genomes to 10 per identical NCBI species ID. These genomes spanned 393 families and 

1,995 different genera. The distribution of families was fairly even for the top 21 groups, 

which represented roughly half of the genomes in the database (Figure 5.3a).  

 
Figure 5.3: (a) Distribution of reference genomes by family showing the top 21 families comprising 50% of 

the database. (b) Average run times for 40 test runs using genomes from different families. Three separate runs 

were made per genome using model finding and bootstrap options (green), default de novo workflow (red), 

and default placement workflow (blue)  
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In contrast 119 families showed only one or two isolates to represent the entire family. 

With respect to genus the top 6 groups accounted for 18.1% of the reference genomes. 

Pseudomonas, Streptomyces, and Bacillus were the top sequenced isolates accounting for 10.7% of 

the reference, followed by Mycobacterium, Lactobacillus, Streptococcus, and Staphylococcus. The 

remaining top half of the database had fairly even coverage between 0.35 – 1.75% 

representing 50 genera in total. However, 1168 genera only contained 1 or 2 genomes as 

representatives. Genomes marked as type strain or representative genome showed 6060 

isolates spanning 354 families. For the placement workflow a total of 128 families were 

found to have over 10 members, ranging from 11 to 313 members, and were used to 

generate reference trees.  

Application performance was shown to be rapid with all 120 test-runs showing no 

reported errors. The placement workflow showed to have an average runtime of 45 seconds 

with a 6X and 23X increase in time for the de novo and MFP runs respectively (Figure 5.3b). 

The de novo workflow ranged from 4-5 minutes per run. However, with model finder and 

bootstrapping options enabled this increased to 10-27 minutes. This translates to an 

acceptable throughput of over 480 submissions a day using the de novo approach with 

defaults. These test runs were checked for placement and all methods positioned the query 

genomes alongside the corresponding reference nodes from which they were taken. A 

comparison of the alternate workflows to de novo showed very similar topologies with 

average RF distances of 8.1 (SD 7.3) and 7.3 (SD 7.2) for the placement and MFP workflows 

respectively. The differences were seen to mainly occur in closely related sections with short 

branch lengths and lower support values. 

The development server was launched on April 10th 2018 and has aided in ongoing 

debugging efforts. As of the end of June 2018, 283 genomes were processed successfully. A 

total of 22 runs were logged as erroneous for three major reasons: Sequence parsing was not 

handling genbank records with missing sequences (annotations only), no family reference 

could be identified for some queries using the placement workflow, and multiple families 

were detected for one placement run. Measures have been taken restricting the use of 

genbank files without sequence and more error prompts given to the user so that they are 

notified to try a different set of organisms when using the placement workflow; also 

suggestions to limit a placement to one genome per run have been added.  
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5.3.2 Tree Validations 

ANI clan validation 

Family trees tested for validation were generated using the genome sets from the placement 

workflow except using a reconstructed tree with the default de novo workflow. Scoring via 

the monophyletic criteria showed the vast majority of trees had a perfect grouping of all 

ANI clans (>90% of applicable trees) with none below an average score of 0.75 for all three 

clan groupings tested (Figure 5.4). Similar results were seen for both the concatenated 

alignment and coalescent workflow with the exception of one tree with a score of 0.55 in the 

coalescent results. The topologies between the two workflows were also compared and seen 

to be similar with 25 families showing identical trees. Because tree sizes ranged widely the 

average of the RF distance ratio to maximum RF distance was taken and shown to be 0.09 

(SD 0.07) showing limited differences in topology. Some trees could not be scored as they 

only formed singleton ANI clans (no other member found above ANI level), which are not 

considered in the average scoring; therefore these were assessed using the remaining 

validation methods. 
 

 
Figure 5.4: Histograms of monophyletic scoring of ANI clans at three clan definitions: 97, 95, and 90 percent 

ANI. (a) Scores from the concatenated workflow. (b) Scores from the coalescent workflow. 

 

The ratio of leaves in multi-member ANI clans was calculated to determine what percent 

coverage of the trees were scored. This value ranged widely between each family with a 

minimum of 4% to 71% tree coverage. The average for the 97, 98, and 90 percent ANI 

groupings showed coverage percentages at 21, 23, and 33 respectively (with standard 
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deviations of 14, 14, and 18). Because many isolates in the tree could not be scored with this 

method we tested pairwise ANI scores at lower thresholds and calculated branch support 

values as an alternate validation for these singleton branches. 

 

Bootstrap support validation 

The bootstrap support values extracted from each of the validation trees were shown to be 

well supported for not only peripheral branches close to the leaves but also many internal 

branches as seen from the histograms of support values (Figure 5.5). This shows the 

majority of trees have nearly every split (over 90% of branches) confidently supported with a 

bootstrap support of 80 or higher. For the concatenated workflow over half of the trees 

have all branches well supported.  Furthermore, all trees from both the concatenated and 

coalescent workflow showed average support values over 85; standard deviations for both 

workflows ranged form 0 to 21.3 with 90% of the trees under 15. 
 

 

Figure 5.5: (a) Histogram of well-supported branches. This was represented as a ratio of branches with 

bootstrap support >= 80 divided by total support count for each tree. (b) Histogram of average support values. 

 

By visual inspection the lower support values were usually seen near short branch length 

leaves of highly similar genomes or on internal branches where distant ancestral splits began 

to diverge. The comparison between coalescent and concatenated support values cannot be 

made as they represent two different definitions of support. Despite the lower values seen 

with the coalescent approach both illustrate confidant support for ancestral divergence. 

 

Branch length validation 

To assess if evolutionary distances in the trees (branch lengths) are estimated appropriately 

pairwise node distances were plotted against their corresponding ANI values. By using a 
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lower pairwise ANI threshold of 85% for the correlation a higher proportion of the tree 

could be scored compared with the ANI clan method. However ANI estimation is less 

precise below 90, this is apparent in the ANI vs. branch length plots (Figure 5.6). 
 

 
Figure 5.6: Example of pairwise node distances correlated with pairwise ANI values for the Streptomycetacea 

family. (a) Concatenated tree method. (b) Coalescent tree method. 

 

For the concatenated alignment a clear linear relation was seen especially for values between 

88-100% ANI. In contrast the coalescent distances, represented in coalescent units (221), did 

not correlate well with ANI. All trees from this method showed terminal leaf distances fixed 

at a distance of 1 thus skewing the comparison. This analysis was repeated for trees that had 

over five ANI connections and P-values less than 0.01. The resulting Pearson correlation 

coefficients were subsequently shown to have a strong relation for the concatenated method 

but not for the coalescent method (Table 5.1). Tree score coverage also showed an average 

of 57-64%. 

 

	
Concatenated		 Coalescent	

	
Coverage	 Pearson	 P-value	 Coverage	 Pearson	 P-value	

Min	 17.6%	 -0.998	 2.03E-261	 17.6%	 -0.998	 1.41E-55	
Max	 93.8%	 -0.730	 7.35E-03	 93.8%	 -0.248	 9.90E-03	
Average	 57.7%	 -0.932	 2.25E-04	 64.2%	 -0.623	 1.04E-03	
Stdev.	 18.6%	 0.060	 1.00E-03	 18.6%	 0.175	 2.23E-03	

 
 
Table 5.1: Tree coverage and correlation calculation statistics for concatenated and coalescent trees 

 
 
 The tested trees therefore illustrated that branch length designations were corroborated by 

evolutionary distances as defined by ANI. However the low correlation seen with the 

coalescent method confirmed that branch lengths were better estimated via the concatenated 

method and measures to adjust terminal branch lengths for coalescent leaves are needed. 
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Reference tree comparison 

 The manual MLSA analysis done in publication 3 highlighted four major clades within the 

Amycolatopsis genus, which were also represented in the autoMLST tree. The automatically 

generated tree used the default settings in de novo concatenated mode but with manual 

selection of the same out-group, Nocardia farcinica IMF 10152. Additionally 5 reference type 

strains were automatically added by autoMLST, which were the exact genomes of the 

corresponding queries. These added reference strains were removed when generating the 

final tanglegram comparison to make it easier to visualize (Figure 5.7). Besides having the 

same major clades the tree topologies were similar with a RF distance of 26 out of a 

maximum of 86. The differences in closely related strains accounted for most of the 

topology conflicts.  

 

 
Figure 5.7: Tanglegram comparison of trees generated automatically with autoMLST (left) and using manual 

MLSA analysis (right). The manual MLSA tree file was provided by Dr. Adamek generated from publication 3 

(153). Groups defined in this study are indicated using the same color scheme and labels as in Adamek et al. 
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For example the A. mediterranei clade, which had the shortest branch lengths and 

consequently the lowest support values (<65) in both trees, was responsible for 8 of the 

different splits in the trees. Although these strain level distinctions are less certain, one 

notable improvement by using more genes (85 selected) with the autoMLST method is that 

there were fewer polytomies (unresolved bifurcation) in the tree compared to the 7 gene 

manual MLSA; in contrast to the 5 out of 6 A. mediterranei strains in unresolved branches, 

only 2 of these strains were unresolved in the autoMLST tree. The genes automatically 

selected also overlapped with the majority of those used in the manual process including 

atpD, gyrB, and pyrH; two alternate subunits corresponding to nuoD and rpoB genes were also 

included. Furthermore, the automated selection overlapped with 19 of those found in the 

pubMLST database with many other commonly used MLSA genes including: ribosomal 

subunits, DNA / RNA maintenance, and DNA translation proteins. The support values for 

both trees were very similar with average values of 85 (SD 27) and 87 (SD 22) for the 

autoMLST and manual tree respectively; Also the ratio of well supported leaves equal to or 

greater than 80 were identical at 0.75. 

5.4 Discussion 

Classifying bacterial genomes by 16S sequencing is fast and accessible to many non-

specialists but unfortunately this approach is limited in the resolution it can produce due to 

high sequence similarity. Fortunately MLSA analyses, which often include 16S sequences, 

have been employed over the years to solve this resolution problem (201); however the 

complications and lack of standardization have made them less accessible to a variety of 

research. Even the initial steps of finding appropriate species, outgroup organisms, and the 

best set of genes is non-trivial unless a user is familiar with the taxa. We therefore developed 

a tool that automates each step of the process and is accessible though an intuitive web 

interface. The aim of this project is to bring these high-resolution common best practices, 

such as using ML tree inference, model selection, and bootstrap analysis, into a rapid 

procedure that can be as widely used as 16S BLAST searching. Automation of gene and 

reference organism selection is a unique aspect of the project that allows for “one touch” 

processing of query genomes. This means anyone unfamiliar with the taxa in question can 

quickly process their genomes for an initial hypothesis.  
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While automation is the major goal, we heavily stress that inferring the evolutionary 

history from a snapshot of present sequences is inherently complicated and great care should 

be taken when concluding a species tree. As a disclaimer, all results and input quality should 

be closely scrutinized when concluding a final hypothesis; taking the autoMLST results for 

granted should be avoided. This quality control process is simplified as we have provided 

features for easy exploration of the tree and allow all raw data and alignments to be 

downloaded for inspection and confirmation. For example, by toggling the branch length 

view a user is able to identify erroneous branches that might be artificially long due to 

sequencing artifacts and thus potentially misplaced. The ANI grouping visualization also 

allows for a second sanity check by illustrating groups that should be closely related on the 

tree. We also provide alternative practices such as coalescent tree building to help encourage 

multiple perspectives to support a hypothesis; this is made easier as every job allows for 

rapid re-analysis in the results page. Finally, inspecting the alignments is a crucial step to 

identify problematic genes or organisms, which can be used to guide a reanalyzed job. 

In spite of this disclaimer nearly all of the default automated trees generated for 

validation of each tested family showed to be well supported as defined by the two methods 

of bootstrap and coalescent support. These validation trees were analyzed as-is to get a sense 

of default performance. They also show that ANI clans are grouped effectively in the 

majority of all family trees. The few families that showed lower ANI grouping ratios further 

highlight the need to preform manual inspection and reanalysis of a result. Trees that were 

found to have lower ANI grouping values are currently being reanalyzed to provide a more 

accurate placement tree. Branch length accuracy was also verified in the concatenated 

workflow. The correlation with ANI shows both measures of evolutionary distance 

corroborate each other, however this was not seen with the coalescent approach. We are 

actively exploring methods to rectify this disadvantage of inaccurate branch lengths in this 

optional coalescent method. As the error seems to come from fixed terminal branch 

distances perhaps a hybrid definition of branch lengths using coalescent distances and 

average nucleotide substitutions for all genes can be used. Despite this, the topologies of the 

two methods were shown to be largely in agreement by RF distances. Likewise, similarity 

between the placement, MFP, and de novo workflows were in agreement as illustrated with 

the performance test genome set.  
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While the reference genomes used showed to span a robust variety of taxa the results 

indicated that our current publicly available sequenced genomes are still heavily skewed 

toward model taxa. Overtime the increase in whole genomes, and those from metagenomic 

data, will help to even out this bias and yield more complete databases. Because the de novo 

method does not rely on these references any unknown set of organisms can still be 

processed so long as they share enough conserved single copy genes in the entire query. The 

placement method however is limited in this respect; nevertheless many researchers are 

focused on model taxa and so would benefit from this rapid option. This workflow was 

shown to be a fast alternative with processing time under a minute using the performance 

test set. The accuracy of the placement was also confirmed as all genomes were placed with 

the corresponding reference leaves in these tests. More confirmations using variant strains 

are also actively being tested via the development sever to further validate this workflow. So 

far the user feedback has been positive overall despite being in the beta testing phase. With 

regard to throughput, the initial development server showed to be sufficient in supporting 

hundreds of submissions per day using the longer de novo workflow. Considering this, 

future redundant production servers will be capable for handing a high capacity of 

submissions. For more demanding needs users are able to download and install this server 

freely. Currently this process must be done from source but following the completion of a 

release candidate version we will package this using container solutions to make for easy 

deployment on any private server. We are actively working on this to help collaborators at 

the Fraunhofer institute setup a local version of autoMLST. 

The comparison to the high-resolution Amycolatopsis tree in publication 3 is a clear 

example of how the manual MLSA process can be accelerated by autoMLST yielding 

comparable results. Major branches between strains were shown to be identical which 

highlighted the key subdivisions of BGC production within the genus, as defined in Ademek 

et al (222). The subtle differences in strain level topologies accounted for most of the 

discrepancies in the two trees, which is expected considering these branches have the lowest 

support values. This could simply be a consequence of variable placement in tree inference 

due to the highly identical genome sequences. The time saved by using this pipeline is a clear 

advantage over the manual process but also leveraging more phylogenetic signal via sampling 

a larger pool of conserved single copy genes helped increase tree resolution. Although this 

did not make major differences in the topology it resolved some strain level polytomies, 
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which may be important for research that requires discrimination of genomes of the same 

species; as seen with some natural product producers this variability within the same species 

can thus be identified. Overall these tests demonstrated that the tool has met the design 

goals for automating the laborious process of generating high-resolution species tress with 

results similar to manual methods. This example shows how a query genome can be 

classified into the different subdivisions of the genus and can therefore be used as a 

prioritization tool for discovering new natural products. 

Although this initial version is available to the public and can be immediately used 

efforts to improve this application are ongoing. In addition to further validation with other 

comparative studies we aim to provide automatically updated reference genomes and assist 

the application of strain prioritization for natural products discovery. In its current state 

prior knowledge or literature research is required to assess if the organism is placed in a 

prolific clade rich in BGCs. We therefore are adding an extra visualization layer to the final 

tree to show basic counts for BGC detection. After cataloging of known BGCs in reference 

genomes present in public BGC databases, such as the antiSMASH database (130), these will 

be used to group prolific clades. Counts for BGCs present in the query genomes can also be 

included if these are present in the genbank file. In the meantime this prioritization process 

can be largely achieved using the ANI clan groupings and searching the secondary 

metabolite potentials of like group members. Besides the application of natural product 

discovery prioritization, this tool can currently be used to identify ideal related strains and 

provide an easy automated way to classify an unknown genome with higher fidelity than 

using 16S sequences alone. Although it is preferred to use at least draft quality genomes, the 

application with PCR fragment sequences is also possible if enough core genes are included. 

With the downloadable MLST alignments from a family or genus of interest this can be 

predefined and even help to generate primers for inexpensive PCR sequencing. Considering 

sequencing costs continue to fall this may be irrelevant in the future however. 
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Chapter 3 

6 Targeted genome mining with ARTS 

 

6.1 Introduction 

The rise in resistant pathogens coupled with the decline of new antibiotics to market is a 

serious threat to human health that is accelerated via the dissemination though horizontal 

gene transfer (HGT) (223, 224). This health crisis must be addressed on several fronts to be 

effective. Efforts to replenish our antibiotic arsenals are a major factor to controlling this 

problem however stagnation in the drug discovery pipeline has hampered leads to new 

effective compounds (58). The majority of antibiotics have been and continues to be 

inspired by natural products – secondary metabolites (SM) produced by living organisms; 

often these are the first members of novel classes of compounds (225–227). Decades of 

exploiting rich resources, such as soil dwelling microbes from the Actinobacteria class, have 

proven to be fruitful using traditional cultivation and extraction techniques but lately these 

methods have experienced high rates of rediscovery (228). These techniques involve a 

process of collection, cultivation, and bio-activity screening that can lead to several time 

limiting bottlenecks and “filters” of chemical potential. For example organisms that take 

much longer to grow or do not thrive in laboratory environments go uninvestigated. It is 

estimated that the vast majority 90-99% of microbes are “uncultivable” in the lab (70, 225) 

which can be a serious contributor to the rediscovery of known chemical space. Additionally, 

hidden potential has even shown to be present in cultivated species with the presence of 

“silent gene clusters” (58) identified using new genomic techniques. These Biosynthetic 

Gene Clusters (BGCs) go unexpressed under laboratory conditions or are under complicated 

regulation so evade current screening methods. The antibiotic discovery phase is therefore in 

need of new methods to further the search for new compounds. Over the last few years 

reinvigoration with the application of “genome mining” methods has helped to expand this 

search (171). Mature applications such as antiSMASH (229), clusterfinder (118), and PRISM 

(113) can effectively detect several classes of SM systems and have resulted in large databases 

of putative BGCs to investigate; Another interesting detection method, EvoMining (121), 
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uses gene duplications from primary metabolism, “gene expansions”, as a marker for BGC 

detection, which can potentially discover completely novel classes of BGCs. These methods 

have lead to known cluster databases, such as MiBIG (129), and those with a vast array of 

potentially viable antibiotics. For example, the “Atlas of Biosynthetic gene Clusters”, a 

component of the “Integrated Microbial Genomes” Platform of the Joint Genome Institute 

(JGI IMG-ABC) (101) shows over a million putative BGCs as of June 2018. The vast 

majority of these predictions have no known compound associated with them (orphan 

clusters) as only 0.2 % of the database has experimentally verified products. 

With no shortage of potential to investigate the main limiting factor to exploiting 

genome mining is now to prioritize these leads for laborious wet-lab experiments. One 

interesting approach uses the fact that many antibiotic producers also include the 

corresponding resistance determinate so as not to commit suicide (230). This idea was 

exploited by Wright and colleagues to enrich microbial libraries for producers of selected 

antibiotic scaffolds by enriching for those with self-resistance mechanisms (231). Methods of 

antibiotic protection include genes that encode for: transporters to export the compound out 

of the cell (26), proteins that neutralize its activity (31), or a target protein with a resistant 

mutation (27). With the later case a second copy of the protein is maintained, possibly due to 

the fact that the unaltered version of the protein results in higher fitness when the antibiotic 

is not present (28); in addition to duplication these resistance targets are often found within 

the BGC and are potentially horizontally acquired (232, 233). This simple tactic of co-

expression with the antibiotic allows the organism to protect itself during production. Based 

on these concepts, Moore and colleagues screened for duplicated essential genes that are co-

localized within putative BGCs to identify potential new targets. Using this genome mining 

tactic they were able to identify a fatty acid synthase (FAS) resistance gene in a hybrid BGC 

(134); The expression of the cluster and structure elucidation revealed the product was a 

previously described group of compounds that inhibit the FAS-II system (234, 235). This 

shows that not only does this tactic provide a valuable way to enrich for antibiotic activity in 

putative clusters, but also it can give downstream experiments a head start by hinting at the 

mode of action. While this method is beneficial it has mainly been employed manually or 

requires computational expertise to automate. 

Another helpful clue for prioritization is the detection of HGT, as BGCs or resistance 

determinates are known to be subject to HGT (236). Detecting HGT has traditionally been 
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accomplished by interrogating compositional features of the DNA that are incongruent with 

the whole of the organism. For example, if an area of low GC content in a high GC 

organism is found it its possible this region was acquired horizontally. Organisms also show 

preference for certain degenerative codons, which have also been exploited for HGT 

detection (237). However these markers are subject to mutation toward the preference of the 

host and so this method can be problematic when detecting distant HGT events. With the 

advent of many whole genomes, comparative phylogeny has provided another option that 

has shown to be a reliable inference for HGT (238). A phylogeny of sequences of the same 

gene derived from vertical inheritance, orthologous genes, can show if the gene is divergent 

from the species phylogeny. Therefore by interrogating discrepancies in the gene trees with 

the species tree one can find HGT candidates. However this process is complicated by the 

fact that not all incongruences are caused by HGT. A combination of gene duplication, 

resulting in paralogous genes, and loss events can lead to incongruent trees. This incomplete 

lineage sorting can be overcome through various model based or probabilistic approaches 

that assume a parsimonious or likelihood explanation (238). Thus more confidant detection 

of HGT can be made using these approaches even for ancient events that have mutated 

overtime. 

Here the Antibiotic Resistant Target Seeker (ARTS) (239) was developed to examine 

these three criteria: essential gene duplication, co-localization within a BGC, and 

phylogenetic evidence of HGT. To bring these methods into widespread use for natural 

product discovery we built an intuitive web interface with dynamic output to help the user 

explore these results effectively. The major goal of this project is to automate the steps 

required to perform target directed genome mining, however ARTS is also useful as an 

orthogonal cluster prediction method. By using the criteria and explorative functions in the 

results known and putative resistance determinants can be used as markers to identify BGCs 

that elude motif based detection, similarly demonstrated with gene expansions searches in 

EvoMining. This process involves detection of duplications from a list of shared essential 

genes anywhere in the genome. ARTS also screens for experimentally verified resistant 

targets and other known resistance determinates to quickly prioritize by a particular target or 

any known resistance (for example, beta lactamases).  
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6.2 Methods 

 
Workflow Overview 

The ARTS workflow does three criteria analyses on submitted sequences to determine 

duplication, co-localization, and HGT for all genes in an essential gene set (Figure 6.1).  

 

 
Figure 6.1: ARTS workflow overview. After extraction of know resistance and essential “core” genes criteria 

are crossed referenced. Duplication uses deviation from reference copy number, HGT is determined using 

phylogenetic reconciliation, and BGC co-localization is tested via overlapping gene and cluster boundaries. 

Finally results are presented to quickly identify prioritized clusters and to dynamically explore putative novel 

targets. Figure adapted from Alanjary et al (239) 

 

Users submit whole genome or BGC sequences in Genbank, FASTA, or EMBL format as 

input; alternatively an NCBI accession number or antiSMASH job ID can be used to retrieve 

data automatically. The annotated Genbank is then parsed using Biopython (240) to identify 

all protein coding sequences, rRNAs, and cluster annotations. The first step includes BGC 

identification using antiSMASH (241) if this is not already provided in the genbank file. 

Afterward known resistance models are detected using those collected from the “The 

Comprehensive Antibiotic Resistance Database” (CARD) and ResFams (242–245). Essential 

gene sets, defined by conserved “core genes” from complete genomes (see reference and 

core gene section), are then detected in the query using HMMER3 (116). HMM domain 
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results are parsed and the best model hit for a gene is extracted if it passes 50% coverage 

length thresholds of both model and gene; this value was chosen to allow for missing 

domains and incomplete sequences while reducing fragmented hits. The identified core and 

known resistance genes are then screened for their location within BGCs by examining 

overlapping boundaries. Finally core genes are screened for HGT using the generated gene 

trees and species tree. Additional searches using Domain of Unknown Function (DUF) 

models from the Pfam (132) database and are used to highlight potential novel chemistry in 

a cluster; custom user submitted models can also be supplied in the advanced section of the 

program. All results are then summarized into an interactive output table to rapidly cross 

reference known and putative novel antibiotic targets. 

 
Reference set and core gene selection 

NCBI’s RefSeq (246) database was used to download complete genomes to build the current 

Actinobacteria reference. By using complete genomes errors derived from missing genes in 

draft genomes can be avoided for the core gene calculation. Essential genes are inferred by a 

comparative genomics approach where ubiquitous “core genes” are those consistently found 

in reference organisms as detected using HMMER and Hidden Markov Models (HMMs) 

from the TIGRFAM (208) protein family database; In addition, predefined core genes from 

the TIGRFAM v15 “bacterial core gene set” (GenProp0799) are included. All TIGRFAM 

homologous proteins with emphasis on conserved function, “equivologs”, and their 

hypothetical and domain variants are used for essential gene analysis. After HMM detection, 

counts for genes were recorded in a gene matrix consisting of all reference genomes. Family 

specific core genes are then defined as genes present in greater than 95% of genomes relative 

to each family based on the count matrix. Families with less than 10 genomes were 

combined and a lower ubiquity threshold of 90% is used instead to account for the more 

distant relationship. These core genes were then analyzed to build several gene trees used for 

accelerated gene tree creation. All core gene sequences are extracted into corresponding 

multi-record FASTA files and, where applicable, out-group sequences added using model 

matches from various sequences of Proteobacteria. Each core gene protein FASTA file is 

then aligned with MAFFT (211) followed by a codon alignment with Pal2nal (209). Trimmed 

copies of each codon alignment are made using trimAL (206) with the maximum likelihood 

optimized “automated1” setting. RaxML (194) is used to build each tree with 100 bootstrap 
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replicates using GTR-GAMMAI model selection. Pairwise selection (dN/dS) values were 

calculated for each alignment using the yn00 tool from the PAML (210) package and the 

median of all Nei-Gojobori dN/dS values were logged to the model metadata. Metadata for 

functional classification are taken from model descriptions and associated main categories in 

TIGRFAM Roles. Additional statistics such as global ubiquity percentages and how often a 

gene appears as a single copy are also recorded to allow the user to further prioritize selected 

genes. 

 

Core gene filtering 

To help identify viable targets and reduce false positives a filtered set of core genes is used in 

the default search mode. However the optional “exploration mode” omits this filtering to 

allow for searching of a broader set of core genes. Core genes associated with transport or 

regulatory functions were removed based on terms found in the model descriptions. We also 

noticed several common metabolic enzymes associated with biosynthesis in a BGC. These 

were removed if the protein sequences from the corresponding HMM seed alignments 

yielded positive hits for high frequency BGC Pfams. High frequency biosynthetic Pfams are 

determined using clusterfinder (118) Pfam frequency data where those above a frequency of 

50 were used. This threshold was conservatively chosen based on the histogram of different 

Pfams (Figure 6.2). 

 
Figure 6.2: Clusterfinder frequencies defined from a manually curated set of 732 known BGCs (118). The 

common Pfams found in BGCs (red) were removed. Figure adapted from Alanjary et al (239) 
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6.2.1 Criteria Screening 
 
Duplication screening 

Duplication is determined comparatively to the reference set of organisms where median 

counts were calculated for each core gene. This was used to reduce the effect of outliers. A 

divergence from the norm is then defined as gene counts that are higher than these values 

plus their standard deviations in the reference set. Genes with counts greater than this 

baseline are recorded along with the bit-score, scaffold location, and reference count 

statistics provided for manual review. 

 

BGC proximity screening 

All detected core gene and known resistance genes that intersect with BGC boundaries on 

the same scaffold are marked for co-localization. Visualizations are appended to the 

antiSMASH generated graphics and colored by criteria to quickly identify the type of 

proximity hits in the “proximity” section of the results. Results from DUF and resistance 

model hits are also appended to cluster annotations in a similar manner where hits for both 

resistance and core models are marked indicating a known target; these are labeled 

“CoreRes” - a core model that is also in the known resistance set. 

 

Phylogenetic screening 

If the user sequences are compatible with the Actinobacteria reference set the phylogenetic 

screening can be used to detect HGT. Input sequences that do not have enough core genes, 

or sequences not part of the reference phyla will fail this screen or produce inaccurate results 

so the option to omit this screening is provided. The screening for HGT involves making 

sequence alignments of every detected core gene followed by gene and species tree 

inference. Alignments are accelerated using the reference set by adding the extracted 

nucleotide core sequences to the pre-trimmed reference codon alignments using the add 

method in MAFFT (mafft --add). Appended alignments are stored for user export and 

trimmed copies are made using the “automated1” method in trimAl. Trimmed alignments 

and existing reference trees are then used with the Evolutionary Placement Algorithm (EPA) 

(247) option available in RAxML to produce all gene trees. The species tree is then inferred 

from a coalescent of multi-locus gene trees using ASTRAL (248). The set of gene trees used 

are all single copy genes present in every reference and query organism with non-



 82 

synonymous vs. synonymous (dN/dS) mutation ratios less than 1; 16S rDNA sequences are 

also included if present. Each gene tree is then reconciled with the species tree to delineate 

incongruences due to duplications, transfers, and loss; this is determined using the 

parsimonious criteria defined functions in ranger-dtl-U (177) tool using default HGT cost 

values. All transfers involving the query organism are then parsed and sorted and an 

additional filtering to mask intra-genus transfers is applied based on the name of the query to 

highlight inter-genus transfers. 

 

6.2.2 Performance and validation testing 
 
Processing time was calculated using the 200 genomes from the validation testing. These 

jobs were spread evenly across two redundant servers running a 4-core and 8-core system 

equivalent to 2.2GHz Xenon processors per core. Errors were also logged based on failed 

runs that were recorded in the run queue database. Validation testing consisted of selecting 

known clusters and genomes that had experimentally verified self-resistance mechanisms via 

literature searches. Results for all searches were sourced from NCBI pubmed and the MiBIG 

database with additional findings reported from discussions with colleagues from the Scripps 

Institute of Oceanography (SIO). All known examples were screened thought the web 

interface to see if ARTS marked these genes as hits. 

 

6.3 Results 

To our knowledge, ARTS currently remains the only public web server that automates an 

extended target-directed genome mining that includes potentially novel targets. It 

demonstrates significant timesaving over manual methods by automating all criteria screens 

and helps with exploration of results via the interactive output. The webserver 

(https://arts.ziemertlab.com) and analysis scripts are open source and available freely to the 

public with source repository at: https://bitbucket.org/ziemertlab/arts 

 

Usage and performance 

From the public release in May 2017 over 2,000 jobs have been processed with positive 

feedback and feature requests from users as of June 2018. Overall less than 2% of the jobs 

showed to have errors, which were mainly related to lack of core genes discovered and file 
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format errors. The main request has been providing more reference sets, which we are 

actively working on. The collaboration with researchers at Novartis, to help setup and test a 

local beta version, also showed no error reports and positive feedback overall. Using the 

accelerated phylogenetic method, processing time was significantly reduced compared to a 

similar manual analysis. Phylogenetic analysis of all core genes, with alignments and 

Maximum-Likelihood tree construction, took over 89 hours of processing time alone on a 

16-core machine. By leveraging the pre-computed reference, the analysis took 15 minutes 

using the same resources with ARTS for one run. 

 

Output and interactive layout  

The results are presented in various panels by criteria sections: core genes, resistance models, 

gene duplications, BGC proximity, and phylogeny. All sections can be searched and sorted 

by various additional properties to help identify potential targets (Figure 6.3).  

 

 
Figure 6.3: Screenshots of ARTS interactive layout sourced form the public example Salinispora tropica CNB-

440. Shown here are the dynamic tables in the core gene section, BGC visualization in the proximity section, 

and tree comparisons in the phylogeny section. Figure adapted from Alanjary et al (239) 

 

Sorting the core gene table by positive BGC hits and phylogeny will yield all core genes 

found in a BGC with HGT evidence. More details can be seen for each detected gene by 

expanding a row in these tables with links to other sections. Modified antiSMASH cluster 
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visualizations are augmented with ARTS hits which can also be sorted by hit type and count 

for rapid prioritization. A side-by-side visualization of phylogeny hits is also provided for 

user confirmation. All tables, trees and core gene alignments can be exported and saved for 

additional analysis from the export section. To help discriminate putative target hits, gene 

properties are also presented in the core gene section including: functional classification, 

average selection pressure (dN/dS) values, and how widespread the essential gene is relative 

to reference organisms (ubiquity); these can be used to help assess the viability of a target. 

Examples of all inputs and detailed tutorials have also been generated and are available on 

the help section: https://arts.ziemertlab.com/help. 

 

Reference set and core genes 

The complete Actinobacteria genomes as of September 2016 were comprised of those from 

189 species representing 22 different families. Members from the genera Corynebacterium, 

Streptomyces, and Mycobacterium had the highest number of genomes with 14.8%, 9.5%, 

and 7.9% representation of the reference respectively. The remaining 83 genera showed 

relatively even representation between 0.5-4.2%. To verify that core genes inferred from 

reference organisms are essential, comparisons to experimentally verified essential genes 

were preformed. A total of 664 core gene models were identified using the union of family 

specific core genes. After gene filtering for those commonly involved in BGCs, 432 

remained for the default search mode. A comparison to the Database of Essential Genes 

(DEG) v13 (249), a repository of genes found to be essential via experimental study, shows 

538 genes in the unfiltered set match to one or more records. The functional classification of 

each was used to inspect the distribution of genes relative to the DEG set (Figure 6.4). All 

reference core genes compared to all ARTS hits showed enrichment for essential functions 

including: protein and amino acid synthesis, energy and metabolism, and transcription - 

Supplemental S4 (239). A variety of approaches to determine essential genes can be found in 

literature where ubiquity and conservation of sequence are properties frequently exploited 

(250–252). These properties were further interrogated to assess if the core genes represent 

essential genes. Nearly the entire core gene set shows dN/dS values less than 1, illustrating 

many are under purifying selection, with a mode of 0.35 and range of 0.05-1.05. Other 

ubiquity measures showed that many were shared with all species and usually present in 

single copy as seen in Supplemental S5 (239). 
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Figure 6.4: Functional classification of all core genes used in ARTS and those found in the Database of 

Essential Genes (DEG) (249). Figure adapted from Alanjary et al (239) 

 

While more than half of the genes are present in over 90% of genomes, many are specific to 

certain genera. One example is the 20S proteasome, which is essential to some 

Actinobacteria genera but is lacking in others with only 64% global reference ubiquity. By 

defining core genes relative to family and then taking the union, this specific function is 

captured. All gene trees were saved and bootstrap analysis was preformed to assess the 

quality of each tree. Each tree was analyzed individually and the final species tree was then 

analyzed using the coalescent of 30 single copy genes (Figure 6.5). 

 
Figure 6.5: Histogram of bootstrap values from resulting coalescent species tree. Figure adapted from Alanjary 

et al (239) 
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In addition to the well-supported species tree the individual gene trees showed 520 gene 

trees had most of the branches (mode of all branches) over 95 with median values of 70-80, 

Supplemental S6 (239). 

6.3.1 Self-resistance gene detection results 
 
Positive examples from whole genomes 
 
After extensive literature searching and discussions from colleagues 14 cases of self-

resistance genes in genomes of at least draft quality were analyzed using ARTS (Table 6.1).  

Product	 Resistance	gene		 Organism	

Gene	
Accession	
(ref)	

ARTS	
hits	

Criteria	
hits		
(	>2,	>3)	

BGCs	
(total,	core	
hit,	res	hit	)	

Genes			
(core,	
total)	

Novobiocin	 duplicated	gyrB	
Streptomyces	niveus	
NCIMB	11891	

WP_03123
2360	(88)	

D	,	B	,	
R,	*P	 25	,	5	 30	,	11	,	8	

383	,	
7815	

Clorobiocin	 duplicated	gyrB	

Streptomyces	
roseochromogenes	
DS	12.976	

AAN65247	
(253)	

D	,	B	,	
R,	*P	 46	,	13	 43	,	19	,	13	

396	,	
9055	

Albicidin	

pentapeptide	
repeat	protein	for	
GyrB	

Xanthomonas	
albilineans	GPE	PC73	

CBA16025	
(254)	 B	,	R	 1	,	0	 8	,	7	,	3	

309	,	
3208	

Streptolydigin		 mutated	rpoB	
Streptomyces	lydicus	
NRRL2433	

AAQ19729	
(255)	 R	 28	,	2	 35	,	10	,	13	

384	,	
8518	

Rifamycin	 mutated	rpoB	
Amycolatopsis	
mediterranei	S699	

AAS07760	
(256)	 R	 28	,	5	 30	,	11	,	8	

379	,	
9575	

Rifampicin	 duplicated	rpoB	
Nocardia	farcinica	
IFM	10152	

BAD59497.
1	(257)	 D,	R	 21	,	3	 17,	13,	7	

550	,	
5946	

Thiocillin	
duplicated	
ribosomal	L11	

Bacillus	cereus	ATCC	
14579	

AAP11944,	
AAP11947	
(258)	 D	,	B	 2	,	0	 10	,	5	,	2	

310	,	
5255	

Erythromycin	

duplicated	23S	
rRNA	
methyltransferase	

Saccharopolyspora	
erythraea	
NRRL23338	

WP_00995
0391	(259)	

**D	,	B	
,	P	,	R	 49	,	9	 36	,	13	,	13	

422	,	
7198	

Agrocin	84	
duplicated	Leu-
tRNA	synthase	

Agrobacterium	
radiobacter	K84	

ACM31456	
(260)	 D	 2	,	0	 10	,	4	,	0	

317	,	
6684	

Thiolactomycin	 duplicated	FabB/F	
Salinispora	pacifica	
DSM	45543	

ALJ49913	
(134)	 No	hits	 18	,	3	 25	,	10	,	9	

365	,	
4784	

Salinospora-
mide	A	

duplicated	beta-
proteasome	
subunit	

Salinispora	tropica	
CNB-440	

ABP53490	
(232)	

D	,	B	,	P	
,	R	 16	,	2	 19	,	9	,	7	

362	,	
4536	

Vancomycin	
Peptidoglycan	
remodeling	

Amycolatopsis	
orientalis	DSM	40040	

CCD33128	
(261)	

B,	R	
***	 34,	7	 39	,	16	,	17	

381	,	
8194	

Cephamycin	
duplicated	beta-
lactamase	

Streptomyces	
clavuligerus	ATCC	
27064	

AAF86620	
(262)	 B,	D,	R	 26	,	3	 45	,	20	,	15	

546	,	
7730	

GE2270	
duplicated	
elongation	factor	

Planobispora	rosea	
ATCC	53733	

AGY49599,	
AGY49600	
(263)	 D	,	B	,	P	 26	,	4	 26	,	13	,	9	

372	,	
8176	

Notes:	*	Intra-genus	phylogeny	hits	only	seen;	**	Other	hits	found	using	the	advanced	noise	cutoff	“E1”	(90%	model	noise	
cutoff);	***	Only	vanX	gene	is	detected	

 
Table 6.1: Positive examples of genomes with known self-resistance mechanisms analyzed with ARTS default 

mode. Hits to ARTS criteria are shown as; D: Duplication, B: BGC proximity, P: Phylogeny, R: Resistance 

model. Rows in grey indicate non-actinobacteria genomes, yellow indicate non-applicable BGC co-localization. 

Figure adapted from Alanjary et al (239) 



 87 

 

In all but one case these genes showed hits for at least one criterion and in approximately 

two thirds of examples two or more criteria were highlighted. Three of these examples 

showed resistance targets outside of the cluster boundaries making the co-localization 

criteria inapplicable; likewise the phylogeny criteria was not applied for the three cases of 

non-actinobacteria organisms. For the missing case of FabB/F detection this was due to low 

homology and high confidence thresholds – by default ARTS uses the trusted cutoff values 

present in each HMM model. By using the optional exploration mode cutoffs these can be 

detected but with an increase in false positives. In the three cases of rpoB resistance these 

were only shown to highlight one criterion due to the fact that these do not appear to be co-

localized in the cluster. Additionally only one of the three resistance genes were detected in 

Amycolatopsis orientalis DSM 40040 example due to strict similarity thresholds. Despite these 

cases over 80% of all genes were identified in the positive examples. This also resulted in a 

manageable average of 21 (SD 14.7) genes flagged for over one criterion out of 391 genes; 

for over two criteria this showed an average of 4 (SD 3.6) highlighted for this positive 

example set. 

 
Positive examples from the MiBIG database 

We identified 26 clusters from the MiBIG database with known self-resistance mechanisms 

to test with ARTS. Although the genomic context is missing, and so duplication or 

phylogeny could not be assessed, other criteria were able to highlight the known examples. 

The four missed examples were all duplicated resistance targets that were not detected due 

to the lack of genomic context and low scoring homology hit (Table 6.2).  

 
Product	 Resistance	gene	 Organism	 Accession	(ref)	 BGC	ID	 ARTS	Hit	

Yatakemycin	
Copy	of	DNA	
glycosylase		

Streptomyces	sp.	TP-
A2060	 ADZ13541	(264)	 BGC0000466	 No	hit	

Azinomycin	
Copy	of	DNA	
glycosylase		 Streptomyces	sahachiroi	 ABY83174	(265)	 BGC0000960	 No	hit	

Avilamycin	
duplicated	23S	rRNA	
methyltransferase	

Streptomyces	
viridochromogenes	
Tue57	

AAG32067,	
AAG32066	(266)	 BGC0000026	 No	hit	

Kalimantacin	 duplicated	FabI	

Pseudomonas	
fluorescens	
BCCM_ID9359	 ADD82948	(267)	 BGC0001099	 No	hit	

 
Table 6.2: ARTS results showing missed cases of self-resistance genes from the MiBIG database. Figure 

adapted from Alanjary et al (239) 
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The remaining 22 cases showed to be flagged as core gene or resistance models (Table 6.3). 

 

Product	 Resistance	gene	 Organism	 Accession	(ref)	 BGC	ID	 ARTS	Hit	

Griselimycin	 Copy	of	dnaN	
Streptomyces	sp.	DSM	
40835	 AKC91855	(268)	 BGC0001414	 Core	+	Res.	

Coumermycin	 Copy	of	gyrB	
Streptomyces	
rishiriensis	DSM	40489	 AAO47226	(269)	 BGC0000833	 Core	+	Res.	

Novobiocin	 Copy	of	gyrB	
Streptomyces	niveus	
NCIMB	9219	 AFI47646	(88)	 BGC0000834	 Core	+	Res.	

Albicidin	
pentapeptide	repeat	
protein	for	GyrB	

Xanthomonas	
albilineans	GPE	PC73	 CBA16025	(254)	 BGC0001088	 Res.	

Cystobactamide	
pentapeptide	repeat	
protein	for	GyrB	 Cystobacter	sp.	Cbv34	 AKP45389	(270)	 BGC0001413	 Res.	

Rifamycin	 mutated	rpoB	
Amycolatopsis	
mediterranei	 AAS07760	(256)	 BGC0000136	 Core	+	Res	

Rubradirin	
two	copies	of	Initiation	
factor		

Streptomyces	
achromogenes	subsp.	
rubradiris	

CAI94679,	
CAI94684	(271)	 BGC0000141	 Core,Core	

Thiocillin	
two	copies	of	
Ribosomal	protein	L11	

Bacillus	cereus	ATCC	
14579	

AAP11944,	
AAP11947	(258)	 BGC0000612	 Core,Core	

GE2270	
two	copies	of	
elongation	factor	

Planobispora	rosea	
ATCC	53733	

AGY49599,	
AGY49600	(263)	 BGC0001155	 Core,Core	

Erythromycin	
duplicated	23S	rRNA	
methyltransferase	

Saccharopolyspora	
erythraea	NRRL2338	

WP_009950391	
(259)	 BGC0000055	 Res.	

Pikromycin	
duplicated	23S	rRNA	
methyltransferase	

Streptomyces	
venezuelae	ATCC	15439	

AAC69328,	
AAC69327	(272)	 BGC0000094	 Res.	

Mupirocin	
duplicated	Ile-tRNA	
synthetase	

Pseudomonas	
fluorescens	NCIMB	
10586	 AAM12927	(273)	 BGC0000182	 Core	

Borrelidin	
duplicated	Thr-tRNA	
synthetase	 Streptomyces	parvulus	 CAE45679	(274)	 BGC0000031	 Core	

Indolmycin	
duplicated	Trp-tRNA	
synthase	

Streptomyces	griseus	
ATCC12648	 AJT38681	(275)	 BGC0001206	 Res.	

Salinosporamide	A	
duplicated	beta-
proteasome	subunit	

Salinospora	tropica	
CNB-440	 ABP53490	(232)	 BGC0001041	 Core	+	Res.	

Eponemycin	
duplicated	beta-
proteasome	subuint	

Streptomyces	
hygroscopicus	ATCC	
53709	 AHB38505	(276)	 BGC0000345	 Core	+	Res.	

Vancomycin	
Peptidoglycan	
remodeling	

Amycolatopsis	orientalis	
HCCB	10007	

CCD33128,	
CCD33129,	
CCD33130	(261)	 BGC0000455	 Res.	

Cephamycin	
duplicated	beta-
lactamase	

Streptomyces	
clavuligerus	ATCC	
27064	 AAF86620	(262)	 BGC0000319	 Res.	

Platencin	 duplicated	FabB/F	
Streptomyces	platensis	
MA7339		 ACS13710	(277)	 BGC0001156	 *Core	

Thiolactomycin	 duplicated	FabB/F	
Salinispora	pacifica	
DSM	45543	 ALJ49913	(134)	 BGC0001237	 *Core	

Thiotetroamide	 two	copies	of	FabB/F	
Streptomyces	
afghaniensis	NRRL5621	

ALJ49924,	
ALJ49919	(134)	 BGC0001236	 *Core,*Core	

Andrimid	
One	copy	of	acetyl-CoA	
carboxyltransferase	 Pantoea	agglomerans	 AAO39114	(278)	 BGC0000956	 Res.	

 
Table 6.3: ARTS results showing positive examples of self-resistance form the MiBIG databse. Purple boxes 

show putative resistance, as in vitro experiment are not confirmed. Grey boxes and those marked with (*) show 

E1 exploration mode using 90% of normal bit-score thresholds. Figure adapted from Alanjary et al (239) 
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The 23S rRNA methyltransferase, was identified in clusters for Erythromycin and 

Pikromycin but not Avilamycin due to its significantly truncated sequence in this cluster. The 

results show that although these were single cluster submissions ARTS is still able to detect 

the resistance factors in the vast majority of cases. This illustrates that although using whole 

genomes is beneficial to take advantage of all criterion, draft or fragmented genomes can still 

be used to highlight self-resistance factors in clusters. 

 

Positive examples from genomes outside reference phylogeny 

ARTS so far includes one reference for the prolific Actinobacteria class however, as 

demonstrated by the positive results for all three examples from Firmicutes and 

Proteobacteria (Table 6.1), ARTS can still be applied to organisms that are not apart of the 

reference phylum. Because many of the core genes are ubiquitous to all of bacteria and in 

single copy the co-localization and duplication criteria served to identify these cases. One 

interesting example is the Agrocin 84 producer Agrobacterium radiobacter K84. This genome 

showed a duplicated Leu-tRNA synthetase, the target of Agrocin 84, located on the pAgK84 

plasmid. This area did not show to be a BGC using default detection however, so only the 

duplication criteria highlighted the area. Indeed this was shown to be apart of the producing 

cluster (260) and only after a extended BGC search using clusterfinder was a putative 9kb 

segment identified. While more manual exploration is required to identify these types of hits 

some of the exploration functions made this process very simple. For example, by 

discriminating the duplicates by global ubiquity and single copy hits this example showed to 

be in the top three rows of the core gene table. Furthermore, the lower homology score seen 

with the resistant copy and clear origin from a plasmid helped to quickly show this gene was 

a likely potential resistant target. This demonstrates that not only can ARTS be used 

successfully without the phylogenetic criteria but also that it can function as an orthogonal 

cluster detection method, which can complement current methods.  

 

Detection frequency 

As the rate of false resistance targets is unknown in these genomes we used total detection 

frequency as a means of estimating worst-case false positive rates. All tests also used the 

optional exploratory mode to assess the upper range of hit frequencies. The complete 
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Actinobacteria set including positive example genomes from NCBI RefSeq comprised 200 

complete isolates in total that were tested. All clusters from the MiBIG v1.3 set were also 

run though the ARTS web interface for testing. For the complete genome tests, each 

criterion except phylogeny showed a hit rate of 5% of core genes; this resulted in less than 

20 hits on average for those with two or more criteria selected (Table 6.4).  

 
Hit type Average SD Min Max 
Core 489 79 271 653 
Duplication 27 23 0 96 
BGC proximity 27 24 0 140 
Phylogeny 125 88 7 422 
Two + 16 16 0 83 
Three + 2 4 0 22 

 
Table 6.4: Average ARTS detection counts for 200 tested genomes. Figure adapted from Alanjary et al (239) 

 
The maximum values for these detections were rare. Despite these higher values the major 

discriminatory power is illustrated by the cross-referencing of criteria, where even in the 

most extreme case only 22 potential genes with three criteria are left to investigate. Although 

the figures for HGT seem high other reports have stated similar values of approximately 

35% HGT for Actinobacteria (279). With the higher figures seen for phylogeny it is therefore 

recommended to use this measure in conjunction with other criteria however. Overall few 

average hits were seen for those with multiple criteria as seen with many of the positive case 

studies. For example Planobispora rosea, the producer of the thiazolyl peptide GE2270, shows 

positive hits for duplication, co-localization, and HGT for the resistant target elongation 

factor (EF-Tu); these modifications present in the domain II have also only been seen in 

thiazolyl resistant Bacillus subtilis (263) implying this may indeed have been shared 

horizontally. 

The MiBIG clusters used totaled 1409 characterized BGCs. For comparison to the 

default ARTS analysis, using the filtered set of core genes, we examined the clusters for 

function and percent of clusters that showed ARTS hits. For single hits in a BGC roughly a 

third and a quarter of clusters showed hits to core genes or resistance models respectively 

(Figure 6.6). Compared to the default core gene mode this figure falls by more that half 

largely due to the reduction of transport proteins (cell envelope), protein synthesis, and 

energy and metabolism enzymes (Figure 6.6a). The functional classification of hits also 
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shows a significant amount of “unclassified” or “other” core gene hits, which underscores 

the possibility of finding resistance factors that are currently uncharacterized. 

 

 

 
 
Figure 6.6: (A) Functional classification of all MiBIG hits from ARTS. The inner ring represents all core genes 

(exploration mode) with the outer showing the filtered set. (B) Core gene counts of ARTS hits relative to all 

BGCs analyzed. Purple shows the default ARTS search and blue shows the exploration mode search. Figure 

adapted from Alanjary et al (239) 

 
Some multiple core gene hits are seen in a single cluster but with a sharp reduction in the 

filtered core list. For those with much higher values, some genes were found in peripheral 

areas of the cluster. Thus we believe clusters with high core gene hits are likely due to 

inaccurate cluster boundaries which happen to include neighboring areas of the genome that 
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contain core genes. As seen in Figure 6.7 the extra core gene annotation with ARTS might 

also help establish true cluster boundaries, which remains a difficult problem to be solved. 

 
Figure 6.7: Comparison of positive example cluster from Streptomyces roseochromogenes DS 12.976 (a) where core 

genes are shown in yellow, known resistance in green and hits for both shown in purple. This is compared with 

another cluster in the genome (b) with a high number of core gene hits likely due to boundary issues. Figure 

adapted from Alanjary et al (239) 

 

6.4 Discussion 

 
With the many BGC predictions from current genome mining applications it is important to 

effectively enrich these prospects for those that will yield successful drug candidates without 

performing exhaustive experimental screening. Target directed genome mining affords an 

attractive approach to the prioritization of antibiotic clusters as it also helps to accelerate 

downstream experiments by providing clues to identify the target protein. This prioritization 

can be done using high confidence known resistance targets or instead be used to screen 

hundreds of putative essential genes to discover novel targets and antibiotics with new 

modes of action. This proof of concept was shown in other independent studies using 

duplication as a marker (134) as well as illustrated in the validation studies here. A key design 

goal for ARTS, besides the automation of this task, is to help make the many disparate 

results digestible to users. The integration of several dynamically presented tables is an easy 

to use solution that proved to rapidly identify each of the positive examples. Confirmation of 

each criterion could also be immediately visualized using the multiple sections in the final 

results. These functions proved beneficial when identifying the hits that showed few criteria. 

For example with the Nocardia farcinica IFM 10152 genome only duplication and known 

resistance was seen, as the resistant rpoB gene was not present in any of the BGCs. Filtering 

by function and checking the homology score quickly identified the resistant variant rpoB2 as 

the lower score indicated a divergent version. The occasional high number of criteria hits in 

exploration mode also neglects to account for these post-filtering capabilities presented to 

the user. To illustrate this the Streptomyces roseochromogenes genome showed the highest number 
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of results for genes with two or more criteria, 73 using trusted cutoffs. By focusing on key 

categories such as DNA metabolism and transcription only 2 hits from this list are seen 

(including the positive control); filtering by protein and amino acid synthesis, another 

common target category, also shows a manageable hit count of 20. Moreover, although 94 

duplications hits were found in this case, when sorted by single copy prevalence the resistant 

gyrB is ranked third in the list with only 11 hits over a 0.9 threshold. Due to this rapid 

filtering provided by the interactive navigation, potential false positives were intentionally 

retained to enable exploration and cross-examination with the other provided properties in 

the table. This way the user can explore the results and make more educated judgment calls 

to avoid excluding potential novel targets. 

Although we have allowed the possibility of more false positives, results for total 

detection frequency showed to be manageable. The number of hits to curate per genome 

averaged between 10-30 genes with two criteria or more. Compared to the 664 possible 

essential genes, these highlights can be investigated relatively quickly. Alternatively, focus can 

be placed on high confidence known targets and known resistance factors which showed to 

highlight only 25% of the clusters in the MiBIG database. Likewise a third of the BGCs on 

average were highlighted with known resistance in the whole genome tests. The main source 

of high ARTS hit counts came form the phylogeny HGT screening. Because many of these 

were due to intra-genus transfers an additional filtering of inter-genus transfers is provided if 

the user has genus annotation in the genbank file. Here reported transfers of the same genus 

will be excluded to only highlight less common HGT events that might be more significantly 

related to resistance acquisition. This measure only helps to reduce the events seen in the 

highly represented genera in the reference such as those seen in Streptomyces and 

Corynebacterium however. The curation using the provided tree view in the phylogeny panel 

of the results is also helpful in reducing the number of potential hits. This view also helps to 

identify the potential source of HGT as the variant gene will be placed near a related genome 

from where it originated. This can aid further investigation if the source organism has a 

similar known resistance mechanism. 

The Actinobacteria reference set showed to have higher representations of well studied 

genera such as Streptomyces but nevertheless showed modest coverage of 86 of the 130 known 

genera (280) in the class. With continued efforts and an increase in high quality genomes this 

should be expanded in the next iterations of ARTS along with representatives from other 
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promising natural product producers such as Cyanobacteria and Myxobacteria (135, 137). 

Expanded reference sets will help to improve HGT detection and provide more specific sets 

of essential genes but even without the use of the reference set the application can prove 

beneficial as seen with the Firmicutes and Proteobacteria positive examples. By using known 

resistance factors, known targets, duplication, and co-localization criteria, promising clusters 

can be highlighted independently of the reference phylogeny. These factors also illustrated 

that a potential BGC that is not identified can be highlighted by ARTS, as seen with the 

Agrocin 84 producing genome. Therefore this application has the potential to highlight 

novel BGCs for which we have no known biosynthesis motifs for detection from the 

duplication criterion alone. 

Future and concurrent work to improve this pipeline nevertheless involves expanding 

the reference and improving HGT detection as this factor was shown to help discriminate 

potential leads; with the Planobispora rosea ATCC 53733 positive example, the probable HGT 

event helped to reduce the number of leads from 26 to 4 by using HGT as the third criteria. 

With the completion of the autoMLST application this process of reference generation can 

now be accelerated with the potential to provide family specific reference sets rather than 

using higher order taxonomy. These smaller taxa groupings can also allow alternative 

methods of species tree inference, such as concatenation, so long as the set of organisms 

remain low runtimes can remain practical. However the accelerated coalescent approach 

remains beneficial as it can support a larger span of organisms that can be computed in 

reasonable time. This was shown to handle close to 200 taxa with a speed increase of 350X 

compared to building all trees de novo. Besides the improvement of reference sets, updated 

models for new known resistance is in progress. In case there are models of interest that are 

not present in the current version of ARTS we have also included the ability for users to 

provide their own. In the advanced section a user can submit a valid HMM for either core 

genes or known resistance genes along with their genomes. Another useful feature would be 

the detection of homologous recombination events in addition to HGT. This remains a 

difficult process however as it would require screening several segments of one gene, which 

would dramatically increase processing time. However integration of other methods (281) is 

a possibility. The release of the antiSMASH API and their fast processing mode can also 

help to accelerate run times for jobs submitted to ARTS (112); this new version also 

improves cluster boundary prediction and so we hope to include this with the next release. 
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In addition to these updates we are actively using the software for BGC prioritization. By 

taking advantage of the recently released antiSMASH database (130) we are currently 

identifying candidates with reoccurring ARTS hits to highlight interesting leads. Preliminary 

results show common hits that are duplicated and co-localized in a BGC include various 

ribosomal subunits, a common target area for antibiotics. Also several known targets are 

seen and co-localized in the initial list including: gyrB, EF-Tu, and dnaN. As these data are not 

yet complete we hope to interrogate the results shortly with the hope of finding associated 

clusters for new targets or known targets with new susceptibilities. 

Overall this first version of ARTS showed to accomplish the goals of automating the 

target directed genome mining approach with nearly every positive example showing 

detection. With the upper bound of hit frequencies remaining manageable, especially when 

using the post-processing curation features, this study showed to validate ARTS as a useful 

prioritization and exploration tool. Having worked with our collaborators at Novartis we 

were also able to provide easy installation and deployment solutions for this application via a 

simple container image; additional documentation to install from source on various Linux 

operating systems is also included. Novartis has also contributed a Virtual Private Server 

(VPS) cloud image though Amazon Web Services (AWS), which can help with quick 

deployments. To encourage more widespread use of these prioritization methods we also 

will continue to maintain the public server as we provide new versions. Ultimately we hope 

that this application will encourage broader use of these prioritization schemes for the 

natural product community. As we search for new antibiotics to combat the threat of clinical 

drug resistance it is crucial that we utilize comparative approaches to fully leverage the 

growing set of genomic data and enhance the impact of each downstream experiment.  
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7 Discussion and Conclusions 

7.1 Overview and ongoing efforts 

The danger of regressing to a time without useful antibiotics is a paramount concern in 

this research. While we are focused on replenishing our defenses against harmful 

microorganisms via new effective antibiotics, we acknowledge that additional measures will 

be needed to fully solve this problem. With proper legislative safeguards for our antibiotics 

and development of new innovative techniques, such as combination therapies (282) and 

phage treatments (283), we hope to remain in an era where we can continue to treat 

microbial infections. The comparative techniques developed here have been shown to help 

with the discovery of antibiotics but can also serve a broader impact to a variety of research. 

From industrial compounds such as biodegradable surfactants (284) to a variety of anti-

invectives, natural products have shown to be a great source for many beneficial 

compounds. For example, a candidate anti-cancer compound salinisporamide A, a potent 

proteasome inhibitor (285), is also highlighted in ARTS. These techniques have come at a 

critical time as our traditional methods have been plagued with rediscovery of previously 

known compounds. Fortunately whole genomic data has continued to increase and with the 

improvement of sequencing technologies it is projected to increase at an accelerated rate. 

Shotgun metagenomic sequencing is also emerging as a means to obtain a large amount of 

whole genomes from taxa that previously could not be cultured and analyzed (286, 287).  

Not only does the volume of data hold more promise for investigating a wider space of 

chemical potential, but also the high diversity of whole genomes can enable more powerful 

comparative analysis. By shifting from single genome mining techniques to a multi-genome 

perspective we can start to fully leverage these data. The demonstrations in this thesis have 

showed some basic applications such as de-replication of known compounds and 

prioritization of likely leads but further development and integration of these techniques can 

help to highlight the “dark matter” of genomics for discovery. 

In Chapter 1 the application of large-scale genome networking was demonstrated to 

identify areas of known chemical potential by using databases such as MiBIG. This 

application is of immediate help as it can mask those clusters that will lead to rediscovered 

compounds and save time for investigating other likely leads. Currently our databases remain 

sparse but continue to grow, as more experimental data is added. To complement the 
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confirmation via experimentally verified products, computational efforts to associate orphan 

clusters to other known compounds are also underway. Improvements in structure 

prediction from sequence (113) have shown to be a promising method for achieving these 

ends as well. Furthermore, the prospect of cross-referencing these gene cluster networks 

with GNPS techniques is an attractive possibility to expanding orphan clusters into this de-

replication process. This rapid grouping of similar BGCs also hinted at other perspectives to 

help guide discovery. For example many of the effective compounds in the Amycolatopsis 

network from publication 3 showed to be apart of multi-species GCFs. With this extra 

annotation of high-resolution phylogeny, one possible application could be selecting for 

multi-species GCFs that have no known product. This idea of searching for common rather 

than unique BGCs has been proposed elsewhere (62), as the hypothesis is that antibiotics 

could be universally beneficial in contrast to unique secondary metabolites which might only 

have a benefit to a specific ecological niche. This example briefly illustrates the potential for 

cross-referencing different metadata in this comparative perspective by using a variety of 

results from bioassays and demonstrates the discriminatory power of using a multi-genome 

comparative approach. With the development of the tools presented in this thesis we now 

are actively looking to integrate these methods. In particular, classifying organisms by high-

resolution species trees using autoMLST can achieve a similar analysis as in publication 3. 

Also the incorporation of results from ARTS is another prospect for annotating these gene 

cluster networks; if multiple organisms show the same low confidence putative target then 

perhaps it is worth investigating. For instance, a hypothetical essential protein that 

consistently shows up in similar clusters may be worth experimental effort. This can lead to 

more adventurous exploration with the ultimate goal of discovering novel compounds and 

drug targets. 

Apart from providing more detailed metadata for comparative use, the high-resolution 

species trees in autoMLST (Chapter 2) aims to serve a demanding need for fast and fine-

grained taxonomic identification. Although 16S data may not yield definitive results in some 

cases, it has a clear advantage of being fast and intuitive to a wide range of users. This aspect 

of being accessible is one of the major goals of the autoMLST server, which involves the 

integration of several workflows into a single pipeline. We have therefore generated a simple 

“BLAST like” web interface to achieve the multiple steps required to use modern MLSA 

methods. This application is distinct from similar web based phylogeny methods in that it 
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automates each step of the process, including non-trivial gene and organism selection. It 

provides advanced features such as model finding, bootstrap analysis, ANI estimation, and 

complementary methods of analysis so problems in inference can be easily identified. 

Automation of such a complicated process comes with the disclaimer that hypothesis should 

not be taken for granted. Despite this disclaimer, the several validation perspectives showed 

that the majority of the resulting trees were well supported by default processing. This was 

determined from branch support values, topological consistency with ANI values, and a 

comparison to manual analysis. While automation has shown to work well in the majority of 

cases, we have intentionally provided features to help in the quality control of results to 

encourage their use. With alternative methods of inference, easy to use reanalysis options, 

and bootstrap analysis any non-specialist can scrutinize and test their results easily. Efforts to 

provide useful metadata such as with the ANI clan annotations are also ongoing. For 

example, defining prolific BGC producing clans can help the user to quickly prioritize their 

samples for those that are potentially rich in natural products. Our known databases still 

require further expansion of representative genomes and verified type-strains, but for the de 

novo workflow this is not much of a disadvantage as query trees can be built independent of 

the reference organisms. However we are committed to providing continually updated 

reference genomes for the rapid placement workflow provided. Overall responses to this 

application have been positive and continued feedback from collaborators and public users 

involved in beta testing are helping to finalize a release candidate. In addition to providing 

the public web server we have made all source code freely available 

(https://bitbucket.org/ziemertlab/automlst) so that users can use this interface without 

limits to number of genomes. Setting up a private autoMLST server requires some expertise 

currently, however we are working with collaborators from the Fraunhofer institute to make 

this setup easier. We hope to provide a rapid deployment option using simple container 

technologies when a major release is finished, as is the case with the ARTS server. 

ARTS (Chapter 3) has been live for over a year and remains the only public server to 

perform an extended target directed genome mining analysis. This application showed to 

highlight known clusters with associated self-resistance factors, which is an attractive 

approach to BGC prioritization. This not only helps by enriching predictions for likely 

antibiotic compounds but also guides mechanism of action studies, as the target is identified 

from the start. Utilizing the accelerated phylogeny approach for HGT determination was 
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shown to save several hours of processing time, as we were able to leverage pre-computation 

of over 664 individual genes. Performing a similar analysis manually would limit the amount 

of genomes screened and would be infeasible for large-scale genome mining. As seen in 

other studies (134), the duplication and co-localization criteria screening also offer valuable 

prospects for novel target identification. With the identification of duplicated known targets 

ARTS was applied to genera outside of the reference phylogeny and able to identify all 

positive examples form these genomes. Furthermore, examples using a single cluster without 

genome context were shown to be successful with most of the MiBIG clusters with known 

self-resistance being highlighted. This also demonstrates that fragmented draft genomes may 

also be successfully analyzed, although we encourage high quality complete genome to take 

full advantage of all criteria. The high positively identified cases were also matched with a 

low hit frequency, which on average highlighted 5% or less essential genes (except for HGT 

criteria). We used total hit frequency as a proxy for false positive rate considering the 

unknown status of most of the predictions. This was shown to only have high figures for the 

HGT criteria with approximately 25% of core genes highlighted on average. Although 

similar figures for HGT have been found elsewhere (279) this showed it is important to use 

this measure with multiple criteria for identifying confident hits. Predictions with two or 

more screening criteria showed to highlight a manageable amount of possible leads for most 

cases. The detection frequency study also fails to illustrate the explorative functions available 

to the user for cross-referencing other properties of viable targets, such as ubiquity. 

Considering these features we have allowed for the higher number of predictions to allow 

more educated discrimination by the user. Nevertheless the positive examples showed many 

examples where multiple criteria were highlighted, so quick predictions could also be made 

on this basis, as average hits for three or more criteria were around 1-4 core genes. Efforts to 

improve the HGT prediction and highlighting the most significant predictions, such as those 

originating from other genera, are still ongoing. Besides exploring other methods of tree 

reconciliation we also would like to add bootstrap support of branches into the automated 

prediction to limit any potential HGT inference due to poorly placed branches. A common 

request from users is also the addition of more reference sets, which is also in progress. 

Overall feedback from users has been positive thus far from both industry and public users 

and we hope to integrate these improvements with the next release. 
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7.2 Outlook and concluding remarks 

Genome mining is an attractive avenue for natural products discovery as the cost of 

exploration is significantly reduced compared to traditional cultivation and screening 

practices. These methods also allow for capturing the full potential of chemical space 

indirectly through genomic potential. The detection of BGCs responsible for these 

compounds has matured over the last decade and resulted in efficient identification of a 

variety of classes of production mechanisms. This has resulted in an urgent need for 

prioritizing these clusters and, as demonstrated here, several approaches have been 

automated to accelerate this task. By comparing multiple BGCs using similarity networking, 

high-resolution taxonomic classification, and targeted genome mining we are able to enrich 

for leads with potentially lower likelihoods of rediscovery and a higher chance of desired 

activity. The subsequent expression of these leads can also be aided by improved 

identification of optimal hosts using high-resolution species or strain identification; these 

efforts are also complemented by recent advancements in genome manipulation 

technologies (288) and decreasing costs for synthesis of large DNA scaffolds (289). With the 

intersection of these technologies and the growing number of publicly available sequences 

enabling comparative analysis it seems likely that genome mining has yet to reach its full 

potential and can serve to provide insightful discoveries for natural products research.  

Traditional methods still remain the workhorse of natural products discovery and we 

expect genome mining and comparative analysis will continue to support these endeavors. 

By focusing on new prolific genera for novel compounds to associating BGCs with desired 

products, genome mining methods can further improve discovery efforts, downstream 

analysis, and mode of action studies. This research has also kept in mind that it is important 

to provide tools that encourage widespread use to increase the chances of discovery. 

Considering this we have provided intuitive web interfaces that non-specialist can 

immediately take advantage of. We hope to continue to provide these tools publicly and 

utilize them for furthered antibiotic research so that we may never live in a world without 

effective antibiotics again.  
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9 Contributions 
 

Publication 1 

In the publication “The Antibiotic Resistant Target Seeker (ARTS), an exploration 

engine for antibiotic cluster prioritization and novel drug target discovery “, I performed all 

experiments pertaining to defining a computationally feasible pipeline and testing of various 

tools that can achieve sub-processes of the ARTS application. With the exception of open-

source libraries, frameworks and external applications, I authored all code for the web 

interface, infrastructure maintenance scripts, and analysis pipeline. I also authored scripts for 

easy software distribution as well as the content of software documentation and help pages. 

All authors invested time into validation and bug testing with significant contributions from 

Martina Adamek and myself. We thank our collaborators Dr. Philmus and Dr. Kronmiller 

for valued discussions and additional Hidden Markov Models (HMMs) of known antibiotic 

resistance factors. Discussions with Dr. Weber and Dr. Blin of the antiSMASH project 

helped with a foundational component of BGC identification in ARTS. I authored the final 

manuscript with valued edits and feedback from my advisors, Dr. Ziemert and Dr. Huson. 

Contributions from my advisors on proper phylogeny construction, HGT testing, and 

concept were also integral to the realization of this project. 

 

Publication 2 

I contributed equally to the analysis of the results from experiments and sequencing 

conducted by Dr. Schorn in the publication “Sequencing rare marine actinomycete genomes 

reveals high density of unique natural product biosynthetic gene clusters”. I aided in testing 

alternative genome assembly methods, quality control of genomes, and calculation of 

diversity indices. I preformed the collection of reference BGCs, implementation of high-

throughput similarity scoring, and generation of gene cluster networks. Dr. Schorn wrote the 

manuscript with my contributions to methods.  
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Publication 3 

Martina Adamek wrote the manuscript “Comparative genome mining reveals 

phylogenetic distribution patterns of secondary metabolites in Amycolatopsis” as well as 

performed all experiments. I aided with the generation of gene cluster similarity scoring and 

minor edits to the manuscript.  

 

Publication 4 

The review “The evolution of genome mining in microbes-a review” was written by Dr. 

Ziemert and Dr. Weber. I contributed with the generation of a gene cluster network of 

known BGCs.  

 

Publication 5 

In the paper “Function-related replacement of bacterial siderophore pathways” I 

preformed the Multi Locus Sequence Analysis (MLSA) and generation of a species tree, gene 

trees, and initial HGT assessment. All other experiments and analysis were performed by my 

co-authors. Dr. Burns and Dr. Ziemert wrote the manuscript with contributions to the 

methods from myself. 

 

Publication 6 

In the paper “Identification of a novel aminopolycarboxylic acid siderophore gene 

cluster encoding the biosynthesis of ethylenediaminesuccinic acid hydroxyarginine. 

Metallomics” I carried out a MLSA of related Streptomyces genomes to produce a high-

resolution species tree. All other experiments and writing of the manuscript were performed 

by co-authors with additions to the methods from myself.    

 

Manuscript 1 

In the manuscript “The Automated Multi-Locus Species Tree (autoMLST) enables rapid 

high-resolution bacterial species phylogenies” I developed the workflow and oversaw web 

development. Katharine Steinke authored the front-end code base. I authored analysis and 

infrastructure scripts, excepting open-source libraries and frameworks. Katharine Steinke 

performed the initial validation followed by a large-scale validation by Martina Adamek and 

I. My advisors aided with the concept, resources, and direction of the project.  
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10 Abbreviations 
 
4'PP  4'-phospho-pantethine  
A  Adenylation  
ABC  Atlas of Biosynthetic gene Clusters 
ACP  acyl carrier protein  
ANI  Average Nucleotide 
antiSMASH  antibiotics & Secondary Metabolite AnalysisShell 
ARTS  Antibiotic Resistant Target Seeker  
AT  acyl transferase  
ATP   Adenosine Triphosphate 
autoMLST Automated Multi-Locus Species Tree 
AWS  Amazon Web Services 
BGC  Biosynthetic Gene Cluster 
BLAST Basic Local Alignment Search Tool 
C  Condensation 
CDC  Center for disease control 
CPS  capsular polysaccharides  
CRE  Carbapenem-resistant Enterobacteriaceae  
DH  dehydratase  
DMADP dimethylallyl diphosphate  
DNA  Deoxyribonucleic acid 
EDDS  ethylene diamine disuccinic acid  
ER  enoylreductase  
ETE3  Environment for Tree Exploration 
FAS   Fatty Acid Synthase 
GCF  Gene Cluster Family 
GNPS  Global Natural Product Social Molecular Networking 
HGT  Horizontal Gene Transfer 
HMM  Hidden Markov Model 
Ichip  Isolation chip 
IDP  isopentenyl diphosphate  
IMG  Integrated Microbial Genomes 
JGI  Joint Genome Institute  
KR  ketoreductase  
KS  ketosynthase  
LPS  lipopolysaccharides  
Mbp  Mega-base-pair 
MCL  Markov Cluster Algorithm  
MDR  Multi-Drug Resistant 
MEP   2-C-methyl-D-erythritol-4-phosphate 
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MGB  Multi-Gene-Blast  
MiBIG  Minimum Information about a Biosynthetic Gene cluster 
ML  Maximum Likelihood 
MLS  Macrolide-Lincosamide-Streptogramins 
MLSA  Multi Locous Sequence Analysis 
MT  methyltransferase  
MVA  mevalonate  
NaPDoS Natural Product Domain Seeker 
NCBI   National Center for Biotechnology Information 
NRPS  Non-Ribosomal Peptide Synthetase  
PCP  Peptide Carrier Protein  
PCR  Polymerase Chain Reaction 
Pfam  Protein family 
PKS  Polyketide Synthases  
PRISM Prediction Informatics for Secondary Metabolomes 
RiPP  ribosomally synthesized and post-translationally modified peptides  
RMA  Rare Marine Actinomyces 
RNA  Ribonucleic acid 
SIO  Scripps Institute of Oceanography 
SM  Secondary Metabolite 
TE  thioesterase  
TPS  terpene synthases 
VPS  Virtual Private Server 
WHO  World health Organiszation 
XDR  Extensively Drug Resistant 
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