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1. Summary 

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder and the most common 

form of dementia. Thereby, the abnormal deposition of the amyloid-β (Aβ) peptide into plaques 

is considered to be the primary neuropathological insult in AD. For a small proportion of all 

AD cases it is well known that rare genetic mutations are causative for very early Aβ deposition 

(familial Alzheimer’s disease). However, the vast majority of all AD cases manifest at later 

ages (late-onset Alzheimer’s disease (LOAD)) and are most likely caused by an interplay of 

multiple genetic variants and the environment.  

During the last ten years, genome-wide association studies revealed several risk loci 

that increase the susceptibility for LOAD, and interestingly, many of these genetic variants 

were found to be associated with innate immune functions of which the resident tissue 

macrophages of the brain – the microglia – are prime regulators.    

In general, the innate immune response mediated by the resident tissue macrophages is 

considered protective as it induces the production of inflammatory modulators and enables 

phagocytosis and killing of pathogens to prevent further tissue damage. However in the AD 

brain, the progressive accumulation of Aβ deposits leads to a chronic exposure of microglia to 

Aβ aggregates and induces an excessive neuro-inflammatory response that is thought to 

promote disease progression. 

Interestingly, microglia display a highly plastic phenotype and studies from peripheral 

tissue macrophages reported that a variety of environmental stimuli can determine but also 

reprogram their functional phenotype. To this end, this thesis summarizes three different 

approaches, which aimed to understand but also modulate the myeloid cell immune function 

during AD with regard to their effects on the pathology of cerebral β-amyloidosis. 

To begin with, we examined whether peripheral monocytes, which were previously 

shown to adopt a microglia-like phenotype in the healthy brain, can replace dysfunctional 

microglia in brains of two different mouse models of cerebral β-amyloidosis and may then 

restrict Aβ accumulation. For this purpose, we depleted microglia in APPPS1 and APP23 

transgenic (tg) mice that expressed the herpes simplex virus thymidine kinase (HSVTK) under 

the myeloid-cell specific CD11b promoter; the application of the thymidine kinase substrate 

ganciclovir (GCV), which is converted into a cytotoxic product, then induced microglial death. 

After a two-week ganciclovir treatment, application was discontinued from two weeks up to six 

months to allow the peripheral monocytes to repopulate the brain. Interestingly, during the first 

weeks of repopulation the number of infiltrated monocytes were twice the number of resident 

microglia in control mice, but the engrafted monocytes failed to cluster around Aβ plaques. 
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Consequently, we did not observe alterations in plaque pathology. Also, a pro-longed 

incubation for up to six months did not change Aβ load. However, long-term monocyte 

engraftment for five months induced in pre-depositing APP23 mice enabled the infiltrated 

monocytes to behave most similar to resident microglia: they began clustering around Aβ 

depositions, the cell number was virtually equal to control mice and plaque-associated 

monocytes were TREM2-positive. However, these cells also failed to alter Aβ plaque load. 

This work indicates that the tissue environment in the brain dominates over myeloid cell 

origin and thus reprograms myeloid cells to match the resident microglia population, however 

without prevention of Aβ pathology. 

Recent studies provide evidence that cells of the innate immune system can, similar to 

the adaptive immune cells, acquire immunological memory. In particular, a distinct set of 

primary immune stimuli can either enhance or suppress a subsequent immune response, which 

is referred to as “training” and “tolerance”, respectively. In a second study, we tested the 

applicability of the immune memory concept to microglia and examined if the induction of 

innate immune memory can induce long-lasting changes in the brain’s immune response and 

thereby alter pathology of neurological diseases. To this end, we injected two different doses 

of the endotoxin lipopolysaccharide (LPS) into pre-depositing APP23 mice. Whereas a single 

LPS injection was identified to induce acute training effects, consecutive injections for four 

days induced tolerance effects in microglia. Accordingly, in the brain, we acutely measured 

initially enhanced concentrations of inflammatory cytokines which decreased with further LPS 

injections.  

When we examined the long-lasting effects of the induced immune memory on Aβ 

pathology and cortical ischemia at the later time points, the initial training stimulus increased 

while the tolerance stimulus reduced pathology, which was reflected by changes in Aβ plaque 

load and neuronal damage, respectively.  

Immune memory in macrophages was previously shown to be mediated by epigenetic 

changes in enhancer regions that either stimulate or prevent gene transcription. In accordance, 

we performed chromatin immunoprecipitation sequencing for histone modifications in isolated 

microglia to determine changes in their enhancer landscape. Notably, we identified the active 

enhancer repertoire for hypoxia-inducible factor 1α (HIF-1α), a key modulator for macrophage 

inflammatory responses, to be enriched in microglia after the induction of trained immune 

memory (1xLPS). In contrast, pathways related to phagocytic functions showed an increase in 

active enhancers in the 4xLPS treatment group. Importantly, these epigenetic alterations were 

reflected by expression changes in the respective genes in the isolated microglia population. By 
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this study, we provide first evidence for long-lasting innate immune memory in the brain that 

can shape neurological disease outcome and is driven by epigenetic modifications of the 

microglial enhancer landscape. 

In a last study, we focused on the microglial phagocytic capacity as an important factor 

for the modulation of Aβ plaque pathology, as in vitro experiments have reported that microglia 

can bind to, and engulf Aβ fibrils. However, so far, in vivo studies have not convincingly 

confirmed these results. Therefore, we investigated the role of the soluble milk fat globule-

epidermal growth-factor 8 (MFG-E8) protein, that was recently hypothesized to mediate Aβ 

phagocytosis in AD pathology. To test the in vivo function of MFG-E8, we crossed mice 

expressing a functional knockout variant of Mfge8 (Mfge8-/-) with the APPPS1 and APP23 tg 

mouse models of cerebral β-amyloidosis. 

In contrast to previous reports, our results indicated that the depletion of MFG-E8 has 

no impact on Aβ uptake by microglia or subsequent Aβ degradation processes. However, 

contrary to our expectations, MFG-E8 deficiency reduced Aβ plaque load and Aβ levels in both 

mouse models without affecting amyloid precursor protein (APP) processing. 

When we immunohistochemically analyzed MFG-E8 distribution in the brain we 

observed a strong accumulation of MFG-E8 with congophilic Aβ deposits and co-staining of 

MFG-E8 with Aβ even showed a partial co-localization of both proteins at the sites of Aβ 

plaques. While the mechanism of these effects requires further studies, our results suggests that 

a direct interaction between MFG-E8 and Aβ promotes amyloid aggregation.  

Taken together, these studies examined different ways of modulating the microglial 

immune response during AD pathology. Interestingly, the replacement of dysfunctional 

microglia by peripheral monocytes in the diseased brain did not modify Aβ deposition although 

the infiltrated monocytes adopted features of plaque-associated microglia. However, when we 

applied the concept of innate immune memory to the brain through the remodeling of the innate 

immune response by epigenetic reprogramming of the microglial enhancer repertoire, we 

identified a promising approach to modify Aβ pathology. Especially the induction of a 

microglial tolerance state had beneficial long-term effects on the pathology of cerebral β-

amyloidosis while training aggravated disease outcome. These results provide, for the first time, 

evidence that long-lasting modulation of the innate immune reaction may occur due to 

immunological priming – a mechanism that introduces new targets for dampening Aβ 

pathology in Alzheimer’s disease.  

However, in contrast, a direct modification of microglial Aβ phagocytosis through the 

knockout of Mfge8 is most likely not sufficient to modulate microglia function in AD. 
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2. Preface 

In summer 2013 when I started my PhD my grandfather was sent to hospital because he was 

diagnosed with lung cancer. The clinicians could successfully remove the tumor and in theory 

he was cured. However, the surgery, and also the following weeks where he was confined to 

his bed, weakened his physiological constitution. During the next months, he got several lung 

infections and soon every physical activity became arduous. Finally, his cognitive abilities 

progressively declined. In the beginning, he failed to follow conversations, then he preferred to 

talk about his childhood and currently he sees faces in trees, against which he wants to fight. 

My grandfather became demented; but was it just co-incidence that he started to develop 

dementia or was it a side effect of his former illness? There is emerging evidence that systemic 

inflammation can aggravate the state of a neurological disease by inducing an exaggerated 

inflammatory environment in the brain and thus promote disease onset or speed up disease 

progression (Dunn et al., 2005). Therefore, the modulation of the innate immune system to 

induce an appropriate inflammatory immune response is regarded as a potential therapeutic 

target for neurological diseases. For that reason, this work will focus on the role of the innate 

immune system in Alzheimer’s disease, the most common form of dementia (Holtzman et al., 

2011). 
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3. Synopsis 

3.1 Alzheimer’s disease 
 
3.1.1 An overview on 110 years of Alzheimer’s disease research  
Alzheimer’s disease is a chronic and progressive neurodegenerative disease that, in 90-95 

percent of the cases, affects people above 65 years of age (Harman, 2006). Patients develop 

cognitive dysfunctions, behavioral disturbances and in end stages also difficulties with 

performing activities of daily living. Notably, this disease was first described in the 51-year-

old woman Auguste D. In 1901, she was presented to the physician Alois Alzheimer with 

changes in her personality such as impaired memory, disorientation or erratic behavior (Maurer 

et al., 1997). After her death in 1906, Alzheimer did a histological examination of her brain and 

found an analogous pathology as described in the context of senile dementia: a massive neuron 

loss, the presence of “small miliary foci” (later called senile plaques) of a “peculiar material in 

the cortex” (identified as amyloid-β) and clumps and condensations of intracellular fibrils he 

referred to “neurofibrillary degeneration” (Alzheimer, 1907; Maurer et al., 1997). However, 

when Alzheimer presented his findings at a congress in Tübingen, the audience paid no 

attention to this first description of a case of “pre-senile dementia”. It was four years later, when 

his mentor Emil Kraeplin introduced the eponym „Alzheimer’s disease” (AD) for the very first 

time to distinguish the atypical form of pre-senile dementia from the more common senile 

variant (Kraepelin, 1910). However, for the next decades, AD was regarded as a particularly 

serious form of senile dementia that played only a minor role as a neurological disorder 

(Hodges, 2006). But in the 1960s, when life expectancy started to rise and more elderly people 

were affected by the senile form of dementia, clinical delineation of dementia sub-forms and 

correlation between the abundance of pathology and cognitive decline unified the young onset 

Alzheimer’s disease and the common elderly dementia (Blessed et al., 1968; Roth et al., 1966). 

Finally, it was Katzmann in 1976 who commented on the concern that AD is not only a rare 

disease of younger patients, but also affects the ageing population. He suggested to consistently 

use the term Alzheimer’s disease for the pre-senile but also the common senile form of 

dementia, as both diseases share the same pathology (Katzman, 1976).  

Soon after, first attempts were made to understand the mechanisms of the disease that 

led to the discovery of the two major proteins involved in the pathological lesions, which were 

already described many years ago: the amyloid-β (Aβ) peptide forming the extracellular 

amyloid plaques (Glenner and Wong, 1984b; 1984a; Masters et al., 1985b) and microtubule-

associated protein tau (MAPT) as component of the intracellular filamentous lesions (Kosik et 

al., 1986). Furthermore, amyloid precursor protein (APP) was identified as the precursor protein 
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for Aβ (Kang et al., 1987; Masters et al., 1985a) and finally first studies could assign genetically 

heritable mutations to the pre-senile form of AD (Goate et al., 1991; Sherrington et al., 1995).  

Today, 46.8 million people worldwide are affected by AD and an estimation for 2030 

predicts 74.7 million people living with AD (Prince et al., 2015). As anticipated, AD has 

developed into a major public health challenge and is one of the most economically burdensome 

diseases in the world. According to a Forbes ranking in 2015, the global costs for dementia care 

are 818 billion US dollars annually, corresponding to the 18th largest economy in the world and 

exceeding the market values of Apple or Google (Wimo et al., 2017). The fears that arose 50 

years ago came true, however the consequent effort that was made to understand the disease 

has so far been insufficient to develop a therapy for the devastating disease. Very recently, the 

first approved AD immunotherapeutic drug, the Aβ antibody Solanezumab failed to slow down 

cognitive decline in people with mild AD (Eli Lilly Press Release, 2016). Thus, only 

therapeutics that alleviate the symptoms of AD, such as acetylcholinesterase inhibitors or 

glutamatergic receptor inhibitors – both boosting neurotransmission and thus compensating for 

neuron – loss are available (Fleischhacker et al., 1986; Jorm, 1986; McGleenon et al., 1999; 

van Marum, 2009). Therefore, even more than 110 years after the first case description of a 

patient with “pre-senile dementia” by Alois Alzheimer in Tübingen (Alzheimer, 1906; 1907), 

it is of utmost importance to study the pathogenesis of AD to identify molecular targets or 

pathways that may one day facilitate a pharmacological therapy for AD.  

 

3.1.2 Pathophysiology of Alzheimer’s disease – APP processing 
The principal proteinaceous component of amyloid plaques in AD are aggregates of the Aβ 

peptide (Gorevic et al., 1986; Masters et al., 1985b; Selkoe et al., 1986). Aβ is a small carboxy-

terminal fragment of the amyloid precursor protein (APP) with its size varying between 36 and 

43 amino acids (Goldgaber et al., 1987; Kang et al., 1987; Robakis et al., 1987; Tanzi et al., 

1987). APP is a transmembrane protein with a large amino-terminal extracellular domain and 

a small carboxy-terminal cytoplasmic domain (Dyrks et al., 1988; Weidemann et al., 1989). It 

is expressed in several isoforms with APP695, APP751 and APP770 being the most abundantly 

expressed isoforms (Selkoe et al., 1988). In the brain, APP695 is amply produced in neurons 

(Kang and Müller-Hill, 1990; Rohan de Silva et al., 1997), however after a relatively brief half-

life of around 45-60 min, APP is metabolized very rapidly (Weidemann et al., 1989).

 APP is processed via at least two proteolytic cleavage pathways involving three 

different secretases. APP cleavage can occur either via the non-amyloidogenic pathway, that 

includes alpha-secretase-mediated ectodomain shedding of APP within the Aβ sequence and 

thus precluding the formation of Aβ, or via the amyloidogenic pathway resulting in the release 
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of the Aβ peptide (Zhang et al., 2011). The first critical step in liberating Aβ during 

amyloidogenic processing of APP is the amino-terminal cleavage by the beta-site APP cleaving 

enzyme (BACE1 or β-secretase) that cleaves APP into the soluble APP-β ectodomain-fragment, 

which is released into the extracellular space, and a membrane-bound 99 amino acid carboxy-

terminal fragment (CTF-β) (Seubert et al., 1993). CTF-β is further cleaved by a multi-subunit 

protease complex, the γ-secretase, that consists of the two transmembrane proteins (amongst 

other components), presenilin 1 (PS1) and presenilin 2 (PS2), that provide the catalytic core of 

the secretase (De Strooper et al., 1998; Wolfe et al., 1999). The stepwise processing of the CTF-

β fragment by γ-secretase at several cleavage sites in the carboxy-terminal end of the Aβ 

sequence results in the production of Aβ species with varying lengths ranging between 36 and 

43 amino acids, with Aβ40 and Aβ42 being the most abundant cleavage products (Selkoe, 2001; 

Takami et al., 2009). However, the longer Aβ42 is considered the more pathogenic form as it is 

more prone to aggregate (Jarrett et al., 1993). 

 

3.1.3 Genetic susceptibility to Alzheimer’s disease 
As Alzheimer indicated 110 years ago, there exist two different forms of AD that can be 

distinguished by their age of onset. The rare pre-senile form of AD (familial Alzheimer’s 

disease (FAD)) and the very common form of late-onset AD (LOAD). Genetic studies from 

families, which are affected by the pre-senile form of AD, identified dominantly inherited 

mutations in the APP,  presenilin 1 (PSEN1) and presenilin2 (PSEN2) genes, which could be 

either linked to an increase in total Aβ concentrations or to an elevation of the Aβ42/Aβ40 ratio 

(Citron et al., 1992; Shen and Kelleher, 2007; Szaruga et al., 2017).  

For AD up to date, 52 mutations in the APP gene are known (Alzforum, 2017a), from 

which most cluster around the γ-secretase cleavage site (Weggen and Beher, 2012). However, 

the well-known “Swedish double mutation”, that is commonly used to generate transgenic 

mouse models of AD, is adjacent to the β-secretase-cleavage site and promotes APP β-site 

cleavage by BACE1 (Haass et al., 1995; Mullan et al., 1992).  

For PSEN1 and 2 more than 250 mutations are described (Alzforum, 2017b) and all 

have been shown to consistently increase the relative amounts of the more aggregation prone 

Aβ42 in relation to Aβ40 (Weggen and Beher, 2012). 

A recent study identified a mechanism showing that mutations in APP and PSEN1/2 

cause a less stable enzyme-substrate interaction between γ-secretase and CTF-β resulting in the 

generation of longer more amyloidogenic Aβ species due to less sequential cleavage of Aβ 

(Szaruga et al., 2017). Consequently, in FAD, the majority of the identified mutations in APP 

or PSEN1/2 alter proteolytic processing of APP and thus suggest that the abnormal elevation 
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of Aβ42 relative to Aβ40 is critical for AD pathogenesis. On that basis, the early pathogenic 

protein accumulation of Aβ into extracellular plaques observed in FAD was postulated to be 

causative for AD and thus, the “amyloid cascade hypothesis” became the most accepted model 

for AD pathogenesis and formed the basis for many therapeutic treatment approaches 

(Beyreuther and Masters, 1991; Hardy and Higgins, 1992; Hardy and Allsop, 1991; Selkoe, 

1991).  

However, for LOAD, the disease origin is less well understood as no causative familial 

mutations have been identified. Although a variety of studies identified several different risk 

factors from observational and experimental analyses such as diabetes (Leibson et al., 1997), 

cerebrovascular diseases (Lefrère et al., 1990), hypertension (Davies), smoking or physical 

inactivity (Davies), evidence is still lacking for a definitive cause of LOAD. Thus for a long 

time, ageing was assumed to be the only causative risk factor for LOAD, which was 

corroborated by a study speculating that if life would be twice as long, everyone would develop 

AD (Research1995). In addition, a study demonstrated that ageing increases the expression of 

inflammation-related genes, a process named “inflammaging” (Cribbs et al., 2012). As brain 

inflammation is a hallmark of AD, a predisposition to inflammatory processes may contribute 

to AD with ageing. 

Interestingly in 2004, a twin study indicated that 50 percent of the risk for LOAD may 

be due to genetic factors (Pedersen et al., 2004), which were confirmed by subsequent studies 

to be crucial for LOAD (Lambert et al., 2010; 2009; 2013). Today, it is accepted that the 

interplay between the accumulation of age-related malfunctions, environmental factors and a 

pre-disposing genetic background most likely triggers pathology in LOAD and thus suggests 

to consider LOAD as a multifactorial disease (Borenstein et al., 2006). 

 
3.1.4 Genetic risk factors for LOAD 
Population-based association studies and genetic linkage analysis led to the identification of the 

first genetic risk loci for LOAD, the apolipoprotein (APOE) E4 allele which encodes the 

apolipoprotein E4 isoform (ApoE4) (Blacker et al., 1997; Saunders et al., 1993). Until today, 

APOE-E4 is the most prominent and strongest risk allele associated with LOAD (Corder et al., 

1993).The APOE gene is polymorphic with three major alleles (E2, E3, E4), of which the APOE-

E3 allele is the most common one (79%) (Ghebranious et al., 2005). Physiologically, the protein 

is involved in cholesterol transport and lipid metabolism and is produced primarily in the liver, 

but has also been found in the kidneys, spleen and brain (Mahley, 1988). Whereas the APOE-
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E2 allele is considered to be protective against LOAD (Corder et al., 1994), carriers of two 

copies of the APOE-E4 allele have an eightfold increased risk for AD (Corder et al., 1993). 

Follow up studies in humans and mice investigated the functional impact of the ApoE4 

lipoprotein on AD and found that it can bind to Aβ and influence its aggregation as well as 

impair its metabolism (Castellano et al., 2011; Kim et al., 2009). This can occur by competing 

with Aβ for the low-density lipoprotein receptor-related protein 1 (LRP1), which is known to 

initiate endocytosis of Aβ by astrocytes (Verghese et al., 2013). Additionally, ApoE4 disrupts 

LRP1-mediated efflux of soluble Aβ across the BBB through the redirection of ApoE4-bound 

Aβ to a very-low-density-lipoprotein receptor (VLDLR) that is slower at internalizing Aβ at 

the BBB (Deane et al., 2008).  

During the last decade, novel techniques such as genome wide association studies 

(GWAS), whole genome sequencing and gene-expression network analysis emerged that 

enabled the screening for many more gene networks and genetic variants, which are associated 

with LOAD. These data support LOAD as a disease with polygenic contributions in which the 

identified common disease susceptibility loci have small effects on AD risk (Escott-Price et al., 

2015). A set of these identified genes such as clusterin (CLU), ATP-binding cassette transporter 

7 (ABCA7) or sortilin related receptor 1 (SORL1) are involved in lipid metabolism as shown for 

APOE, and thus support the importance of this pathway in conferring AD risk (Harold et al., 

2009; Hollingworth et al., 2011; Lambert et al., 2009; 2013).  

Another important role was attributed to functions of the innate immune system, which 

represents the first line of immune defense in the brain. Thereby the immune response is 

conducted by microglia, which are immune cells of the myeloid lineage and the brain resident 

tissue-macrophages (Prinz and Priller, 2014). Once activated, microglia can produce a set of 

neurotoxic molecules to trigger an inflammatory response, but also possess the capability to 

engulf pathogens through phagocytosis (a more detailed overview on the microglial immune 

response can be found in section 3.1.5). Numerous of the identified genetic variants associated 

to the innate immune system are either directly expressed by glial cells or are part of the innate 

immune response, for example: triggering receptor expressed on myeloid cells 2 (TREM2), 

complement receptor 1 (CR1), myocyte enhancer factor 2c (MEF2C), and inositol 

polyphosphate-5-phosphatase D (INPP5D) (Fig. 1) (Gjoneska et al., 2015; Guerreiro et al., 

2013; Hollingworth et al., 2011; Jonsson et al., 2013; Lambert et al., 2013; Naj et al., 2011). 

However, the investigation on the functional impact of the identified risk genes on LOAD has 

only recently started and thus our understanding remains limited.  
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Figure 1: Genetic risk factors for Alzheimer’s disease. Apart from rare mutations in the APP, PSEN1 and 

PSEN2 genes, which cause familial Alzheimer’s disease, genetic analysis methods have identified a set of common 

genomic variants that show smaller effects on AD risk. Although, a variety of the genes encode proteins that can 

be related to functions of the innate immune system (highlighted in blue) and are expressed in microglia (encircled 

in red), the ascription of alterations in the biological functions to all detected variants is still on-going.  

The most controversially discussed risk factor is TREM2. Rare coding variants 

identified in the gene locus such as the arginine to histidine amino acid substitution (R47H) 

significantly increase the risk for LOAD by two- to threefold (Guerreiro et al., 2013; Jonsson 

et al., 2013). TREM2 is a V-type immunoglobulin domain that is highly expressed by microglia 

and is suggested to play a role in phagocytosis (Hickman and Khoury, 2014). TREM2 

expression is not restricted to the brain and can also be found on peripheral tissue macrophages 

like osteoclasts (Cella et al., 2003; Humphrey et al., 2006; Paloneva et al., 2003) or alveolar 

macrophages (Ulrich et al., 2017; Wu et al., 2015). The exact ligands that activate TREM2 

signaling are not known but are assumed to include phospholipids, bacterial products or cell 

debris (De Strooper and Karran, 2016). After activation, TREM2 associates with its signaling 

partners, DAP12 (DNAX-activation protein 12/TYROBP) and DAP10 (Peng et al., 2010), 

leading to the initiation of signaling cascades, which promote the anti-inflammatory functions 
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of the immune system such as phagocytosis (Takahashi et al., 2005), the suppression of pro-

inflammatory cytokines and chemokines (Bouchon et al., 2001; Mazaheri et al., 2017), but also 

cell survival (Wang et al., 2015) and proliferation (Otero et al., 2012). Moreover, TREM2 

activation can interfere with toll-like receptors (TLRs)-induced cytokine production by 

macrophages to restrain macrophage activation and thus negatively regulate the inflammatory 

response (Hamerman et al., 2006; Turnbull et al., 2006).  

The linkage between TREM2 and AD is not entirely clear. It remains to be elucidated 

whether genetic variants of TREM2 that are associated with LOAD increase or impair TREM2 

function. Remarkably, loss of function mutations in TREM2, which cause the severe 

neurological disorder Nasu Hakola disease, were also found to increase the risk for AD 

(Guerreiro et al., 2013; Song et al., 2017). This supports a similar impairment of TREM2 

function in AD. Conversely, other mutations (D87N and T96K), which are potentially 

associated with LOAD, increase TREM2 activity (Guerreiro et al., 2013; Song et al., 2017). 

Thus, it seems that an overall disruption of TREM2 homeostasis by several different genetic 

variants may be responsible for the increased risk of LOAD. 

For this reason, the modulation of AD pathology by TREM2 has now started to be 

extensively studied in mouse models in which TREM2 levels were found to be increased in 

plaque-associated myeloid cells (Frank et al., 2008; Melchior et al., 2010) and seem to be 

important for plaque-associated myeloid-cell accumulation (also known as microgliosis) as 

TREM2 deficiency decreased the number of cells that surround Aβ plaques (Jay et al., 2015; 

Wang et al., 2015; 2016). A reduction of microgliosis has also been observed in human post-

mortem brain sections from R47H variant carriers (Yuan et al., 2016). Additionally, gene 

expression analysis revealed that knocking out Trem2 in mouse models for AD results in a 

decrease in inflammation-related genes associated with microglial activation in response to Aβ 

(Ulrich et al., 2014; Wang et al., 2015). Furthermore, TREM2 deficiency was reported to 

suppress the induction of microglial phagocytic pathways and to impair Aβ phagocytosis by 

myeloid cells (Jay et al., 2017; Keren-Shaul et al., 2017). However, the effect of TREM2 

deficiency on Aβ burden is very conflicting and different studies either reported decreased Aβ 

deposition at early diseases stages but conversely exacerbated plaque pathology at later stages 

(Jay et al., 2017) or aggravated pathology restricted to certain brain regions (Wang et al., 2015). 

Ultimately, these results suggest opposing roles for TREM2 at different stages of the disease 

and consequently further studies are required to decipher its definite role in the regulation of 

the inflammatory immune response during AD.  
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Other genetic variants associated with the immune system were identified in the locus 

encoding complement receptor 1 protein (CR1) (Lambert et al., 2009). CR1 is a glycoprotein 

and a component of the complement response that can adhere to particles that are opsonized 

with complement factors C1q or iC3b to initiate phagocytosis. CR1 is predominantly expressed 

in the periphery, but was also identified in cultured human microglia (Walker et al., 1995). CR1 

is also an important regulator of the converting process of the central complement component 

C3 to the active C3b and iC3b complement factors (Krych-Goldberg and Atkinson, 2001; van 

Beek et al., 2003). It was shown that CR1 expression on erythrocytes is involved in the 

peripheral clearance of iC3b-opsonized Aβ from human blood, suggesting that alterations in 

CR1 structure or expression due to genetic polymorphisms could influence Aβ clearance 

(Rogers et al., 2006). Studies also reported a positive correlation between mRNA expression of 

the rs6656401 CR1 variant and Aβ plaque burden (Chibnik et al., 2011; Zhang et al., 2010). 

However, no further study could confirm a correlation of the identified genetic variants in the 

CR1 locus and AD pathology so far (Fonseca et al., 2016). 

Even though the functional association of these genes is still under investigation, the 

understanding for the innate immune response as an important factor driving AD pathology 

impressively increased during the last 20 years and was further reinforced by the identification 

of several genetic variants expressed in genes of the innate immune system reported in 

landmark studies by Lambert et al. in 2009 and 2010 (Fig. 2) (Lambert et al., 2009; 2010). 
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Figure 2: Evolution of the importance for inflammation in Alzheimer’s disease. During the last 20 years, 

research on the contribution of inflammatory processes to the etiology of Alzheimer’s disease grew exponentially 

and was further reinforced by the identification of several genetic variants in immune-related genes by Lambert et 

al. in 2009 and 2010 (Lambert et al., 2009; 2010). The numbers of published papers per year for the term 

“Inflammation” and “Alzheimer’s” were assessed on PubMed Central (26.01.2018). 

 
3.1.5 Microglia – mediators of the innate immune response in AD 
The identification of several risk genes that contribute to innate immune responses in the central 

nervous system (CNS) or are directly encoded by microglia, support the long-standing 

hypothesis that alterations in the innate immune system contribute to the pathology of AD 

(Heneka et al., 2015b; Meyer-Luehmann and Prinz, 2015; Ransohoff and Khoury, 2015). As 

the resident immune cells in the CNS, microglia play an essential role in brain immune 

responses.  

Microglia, as a new cell entity, were first described in 1919 by the Spanish 

neuroscientist Pío del Río Hortega. Through the invention of a new staining method based on 

silver carbonate he was able to visualize the finest morphological details of different brain cells 



Synopsis 
 

 20 

and classified the formerly named “third element” cells into two new cell types: microglia and 

oligodendrocytes (Rezaie and Hanisch, 2014). However, the functional designation of these 

cells was inconclusive for a long period. Today, it is well known that microglia are the tissue 

resident immune cells and the fundamental effectors and regulators of the innate immune 

response in the brain. They account for 5-12 percent of the cells in the CNS (Lawson et al., 

1990). Fate mapping analysis in mice revealed that these cells arise from primitive myeloid 

progenitors of the yolk sac during embryonic development (Ginhoux et al., 2010). In particular, 

before embryonic day 10.5 (E10.5), primitive macrophages exit the yolk sac and invade the 

neuroepithelium where they start to differentiate, expand and colonize the whole CNS. Through 

the closure of the blood brain barrier (BBB) around day E13.5 (Ben-Zvi et al., 2014), the CNS 

is uncoupled from the periphery resulting in a restricted environment that excludes the invasion 

of any peripheral blood-derived monocytes into the healthy brain (Ajami et al., 2011; Ginhoux 

and Jung, 2014; Hagan and Ben-Zvi, 2015). Based on the segregation of the CNS from the 

peripheral macrophage cell pool, it is suggested that microglia maintenance is mediated by self-

renewal via local proliferation that resembles peripheral tissue-resident macrophages in the 

steady-state (Ajami et al., 2007; Hashimoto et al., 2013). However, in contrast to other short-

lived peripheral tissue macrophages, microglia were initially assumed to be extremely long-

lived cells with a turnover rate of 0.05 percent (Lawson et al., 1992), implicating that microglia 

are almost never renewed. However, a recent study revisited the longevity of microglia and 

found a ten times higher turnover rate in mice that estimates the self-renewal of the brain’s 

microglial population every 95 days and questions the view of microglia as a long-lived 

population (Askew et al., 2017; Tay et al., 2017). A similar study with human microglia 

reported an average lifespan for these cells of around four years with an annual turnover rate of 

28 percent implicating multiple cycles of microglial renewal throughout life (Réu et al., 2017). 

Conversely, a recently published study, in which single microglia where imaged in vivo for up 

to 15 months, calculated an average lifetime of adult mouse microglia of 22 months proving 

the longevity of these cells (Füger et al., 2017). 

This relative longevity of microglia makes these cells vulnerable to environmental 

insults or monogenic disorders. Noteworthy, mutations in the gene for colony stimulating factor 

1 receptor (CSF1R), a key regulator of myeloid lineage cells, which controls proliferation, 

differentiation and survival of macrophages (Patel and Player, 2009), causes hereditary diffuse 

leukoencephalopathy with spheroids (HDLS) (Rademakers et al., 2011), a disease of the CNS 

with a variety of neurological symptoms such as dementia, depression or seizures (Axelsson et 

al., 1984; Wider et al., 2009).  
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Under steady-state conditions, microglia execute several functions. They actively scan 

their microenvironment for any tissue disturbances and support neuronal function and survival 

by synapse maintenance and elimination via phagocytosis (Kettenmann et al., 2013; Paolicelli 

et al., 2011; Tremblay et al., 2010). They are further involved in the remodeling of neuronal 

circuits and the release of different trophic factors (Parkhurst et al., 2013; Schafer et al., 2012). 

However, a major part of the microglial role in the brain is the initiation of an immune response. 

Upon sensing of pathogen invasion, tissue damage, toxic proteins or apoptotic cells by pattern 

recognition receptors (PRRs), microglia become activated to undergo morphological 

remodeling. They begin extending their processes towards the lesion and subsequently migrate 

to the site of the injury where they finally mediate the immune response. This includes the 

production of pro- or anti-inflammatory cytokines, chemokines and other neurotoxic factors, 

but also the induction of phagocytic pathways to engulf the invaded pathogens or other toxic 

material (Ransohoff and Perry, 2009). During acute inflammatory events, the microglial 

immune response supports the resolution of the pathological alterations with immediate benefit 

to the environment. However, long-lasting pathological events, can induce a microglia-

mediated non-resolving inflammatory milieu that in turn drives microglia into a persistent 

dysfunctionality with a detrimental outcome for pathology (Heneka et al., 2015a).  

In particular, during AD the recognition of Aβ by microglia is mediated by a repertoire 

of cell-surface innate immune receptors and receptor complexes consisting of scavenger- or 

toll-like receptors (TLRs) (Liu et al., 2005; Paresce et al., 1996; Stewart et al., 2010). Receptor 

ligation triggers the initiation of the microglial innate immune response with the production and 

secretion of pro-inflammatory modulators such as the cytokines IL-1β, IL-6 or tumor necrosis 

factor alpha (TNF-α), reactive oxygen species or nitrogen monoxide (Mogi et al., 1994; 

Morimoto et al., 2011). However, the enduring production and deposition of Aβ during AD 

leads to a sustained exposure of microglia to Aβ and thus to a chronic activation of the cells 

with a permanent production of inflammatory cytokines which can in turn for example 

upregulate BACE1 enzymatic activity for enhanced Aβ production and, subsequently, stimulate 

a positive feedback loop that may induce microglial dysfunction (Sastre et al., 2003). 

Furthermore, it has been reported that the persistent exposure to Aβ or other pro-inflammatory 

molecules impairs Aβ internalization by microglia (Heneka et al., 2013; Krabbe et al., 2013). 

Thus, AD reflects a chronic pathological event that modulates the microglial immune response 

in a detrimental fashion, contributing to disease progression rather than supporting the 

resolution of inflammation. 
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However, several studies on macrophages suggest different experimental approaches to 

alter the macrophage phenotype. In this context, it was reported that the phenotype of already 

differentiated macrophages can be re-programmed by alterations in the local tissue environment 

(Lavin et al., 2014). Moreover, it was also shown that an appropriate immune stimulus to 

macrophages can induce epigenetic changes in these cells that shape the immune response upon 

future immune challenges (Saeed et al., 2014). Finally, the genetic depletion of proteins 

involved in the mediation of the myeloid immune response was utilized to modify the 

phenotype of microglia and concomitantly alleviate cerebral β-amyloidosis and cognitive 

dysfunction in AD mouse models (Berg et al., 2012; Heneka et al., 2013; Yamamoto et al., 

2007). Altogether, these concepts present promising methods to modify the microglial immune 

response in AD and will be comprehensively addressed in relation to the findings of my doctoral 

project in the following sections. 
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3.2 Environmental factors as regulator for myeloid cell function  
In reference to: 
 
Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in 

mouse models of Alzheimer’s disease 

  

Nicholas H. Varvel*, Stefan A. Grathwohl*, Karoline Degenhardt, Claudia Resch, Andrea 

Bosch, Mathias Jucker and Jonas J. Neher 

 

The Journal of Experimental Medicine 2015 Vol. 212, No. 11, 1803-1809, 

doi:10.1084/jem.20150478 

 
3.2.1 Microglia targeting approaches  
The best methods to study microglial function are genetic modification strategies, which enable 

labeling, alteration of gene expression and depletion of microglia. However, although microglia 

are a myeloid cell population that is developmentally and functionally distinguishable from 

other tissue macrophages such as peripheral monocytes, the specific targeting of microglia to 

study their biological function in vivo is difficult (Hoeffel and Ginhoux, 2015; Lavin et al., 

2014). While some putative microglia-specific genes such as P2ry12 or Hexb, Sall1 have been 

identified (Butovsky et al., 2014; Hickman et al., 2013; Koso et al., 2016), both microglia and 

monocytes share a wide range of receptors.  

The in vivo visualization of cells by fluorescent protein expression in mice is a 

commonly used method to analyze cell development, morphology or transcription of specific 

genes (Chudakov et al., 2010). In the brain, the replacement of one allele of the Cx3cr1 gene, 

encoding the fractalkine receptor (CX3CR1), with complementary DNA encoding fluorescent 

proteins (for example: green fluorescence protein (GFP)) (Cx3cr1+/GFP), is the most widely used 

technique to investigate the function of microglia (Jung et al., 2000). However, Cx3cr1 is also 

expressed by other peripheral mononuclear phagocytes and circulating monocytes (Geissmann 

et al., 2003; Jung et al., 2000). Therefore, Cx3cr1+/GFP mouse models would only allow for 

selected targeting and visualization of the CX3CR1-positive immune cells and not specifically 

microglia. This makes it challenging to specifically mark one of these populations, especially 

for the controversial debate under which conditions peripheral monocytes can invade into the 

CNS. 

 However, the insertion of a sequence encoding a Cre recombinase fused to a mutant 

estrogen-binding domain (Cre/ER system) into a microglia-specific gene allows an inducible 
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activation of the Cre recombinase to induce site-specific recombination of loxP-sites flanked 

(floxed) genes upon administration of tamoxifen (Feil et al., 2009; Hayashi and McMahon, 

2002; Yona et al., 2013). In terms of microglia visualization, mice carrying the Cre/ER system 

under the macrophage-specific promoters Cx3cr1 (Goldmann et al., 2013), CD11c (Town et 

al., 2008) or LysM (Dighe et al., 1995), can be crossed to reporter mouse lines such as Rosa26 

(R26-yfp) in which yellow fluorescent protein (YFP) reporter gene activity is induced after 

tamoxifen induced recombinase activation to excise a floxed STOP element preceding the 

reporter gene (Goldmann et al., 2013; Wieghofer et al., 2015). Consequently, this technique 

allows for the specific visualization of the long-lived microglia in Cx3cr1CreER:R26-yfp animals, 

because after tamoxifen-induced recombination the short-lived peripheral monocytes are 

replaced by bone-marrow-derived progenitor cells, which experienced no tamoxifen-induced 

recombinase activity. Thus, a complete microglia-specific labeling was reported to be achieved 

around four weeks after tamoxifen administration (Goldmann et al., 2013; Parkhurst et al., 

2013). 

Additionally, these mouse lines can be used to conditionally delete floxed genes to study 

their impact on microglia function. In order to assess the effect of the microglial mediated 

inflammatory immune response on CNS homeostasis for example, the inducible site-specific 

recombinase technique was used for the dissection of microglia-specific pathways or single 

genes such as the “transforming growth factor (TGF)-β-activated kinase 1” (Tak1), which is a 

kinase known to be involved in the upstream signaling of NF-κB-mediated microglial immune 

response (Sato et al., 2005). The genetic deletion of Tak1 showed that this kinase acts as a key 

regulator of microglia-mediated CNS inflammation, as the inflammatory response was 

mitigated in autoimmune demyelination as well as after acute LPS stimulation in conditional 

Tak1 knockout mice (Goldmann et al., 2013; Wendeln et al., 2018) These results underline the 

unfavorable role of microglia when executing their inflammatory response, both in models of 

multiple sclerosis and AD.   

Another approach to study the role of microglia in brain pathology is to delete the total 

microglia pool. This can be achieved through the insertion of the herpes simplex virus 

thymidine kinase (HSVTK) gene under the CD11b promoter. HSVTK is a “suicide kinase” that 

phosphorylates the antiviral nucleotide analog ganciclovir (GCV), a synthetic analog of 2´-

deoxy-guanosine. Instead of 2´-deoxy-guanosine trisphosphate, phosphorylated GCV is 

incorporated into the DNA leading to strand breaks, which induce apoptosis in CD11b-positive 

cells (Wieghofer et al., 2015). To restrict HSVTK (TK+) expression to the brain, TK+ mice can 

either be lethally irradiated and reconstituted with wildtype bone marrow or GCV can be 
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applied exclusively to the brain by a surgically implanted osmotic pump (Grathwohl et al., 

2009; Heppner et al., 2005; Varvel et al., 2012). In the latter case, intracerebroventricular (i.c.v.) 

administration of GCV ablates up to 90 percent of the microglia within two weeks. The few 

remaining microglia show a hyper-ramified phenotype (Varvel et al., 2012). This approach was 

used to investigate whether microglia are necessary for the formation and maintenance of Aβ 

plaques. However, after two and also four weeks of nearly complete absence of microglia no 

effect on Aβ formation, number and morphology of neurons or dystrophic neurites were 

observed (Grathwohl et al., 2009). In principle, this argues against a significant contribution of 

microglia to AD pathology; however, the period of microglial absence may have been too short 

to reveal any significant effects. 

Interestingly, studies suggest that infiltrating monocytes are the principle cells that 

mediate Aβ plaque-associated gliosis and that its elimination cause a reduction in pathology as 

well as decreased neuroinflammation (Jay et al., 2015). These results posit that, not microglia 

but infiltrating monocytes are involved in the inflammatory milieu that emerges in the brain 

regions where Aβ deposition occurs. 

 

3.2.2 Monocytes – co-workers of microglia? 
In the healthy brain the blood brain barrier (BBB) shields the brain from the invasion and 

differentiation of circulating monocytes into brain macrophages (Geissmann et al., 2010; 

Obermeier et al., 2013). However, engraftment of monocytes into the microglia-populated brain 

during inflammation is controversially discussed and could be promoted by damage of the BBB 

due to age-induced cerebrovascular dysfunctions or during cerebrovascular changes in AD 

pathology (Bell and Zlokovic, 2009; Minogue et al., 2014; Pimentel-Coelho and Rivest, 2012).  

Peripheral circulating blood monocytes express several receptors, which are used for 

classification into different subsets. In mice, there exists the pro-inflammatory (classical) cell 

population (CX3CR1low, CCR2pos, Ly6Chigh) that is recruited to inflamed tissue where it 

differentiates into a monocyte-derived macrophage population to mediate an inflammatory 

response, and an anti-inflammatory (non-classical) cell population (CX3CR1high, CCR2neg, 

Ly6Clow) representing the patrolling monocytes of the blood (Auffray et al., 2009). The 

patrolling monocytes are the longer-lived cells with a half-life of around two days, whereas the 

immune response-mediating CX3CR1low, CCR2pos, Ly6Chigh cells are short-lived, having a 

half-life of about 20 hours (Yona et al., 2013). In humans, the presence of CD14+, CD16- cell 

surface receptors corresponds to the pro-inflammatory (classical) monocyte subpopulation, 

which has a relatively short circulation life span in the blood of one day, but can be recruited to 

sites of infection. In contrast, cells expressing higher levels of CD16 (CD14low, CD16+) have a 
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longer circulation life span of about seven days and represent the patrolling (non-classical) 

monocytes of the vasculature (Passlick et al., 1989; Patel et al., 2017).  

Peripheral monocytes can be targeted by antibodies, liposomes or cell transfer and thus 

display an attractive option for therapeutic manipulation (Biber et al., 2016). For example, the 

induction of experimental autoimmune encephalomyelitis (EAE), a murine model for the 

inflammatory aspects of multiple sclerosis, initiates the production of the monocyte 

chemoattractant protein 1 (MCP-1 or CCL2) in the CNS which is the ligand for C-C chemokine 

receptor type 2 (CCR2) expressed on the surface of monocytes (Dogan et al., 2008). Increased 

levels of CCL2 were shown to affect BBB integrity and to attract the reactive CX3CR1low, 

CCR2pos, Ly6Chigh monocyte population to transmigrate into the brain where they contribute to 

the severity of autoimmunity (Izikson et al., 2000; Mildner et al., 2009; Saederup et al., 2010; 

Stamatovic et al., 2005). In line with this, depletion of CX3CR1low, CCR2pos, Ly6Chigh 

monocytes by application of liposomes containing dichloromethylene diphosphonate induced 

a significant alleviation of the symptoms of experimental autoimmune encephalomyelitis 

(EAE) (Brosnan et al., 1981; Huitinga et al., 1990).  

In AD, however, it remains to be clarified whether a CCL-CCR2-dependent infiltration 

of monocytes occurs and whether this would affect disease outcome. Studies have shown that 

CCL2 concentrations are increased in AD and may be released by microglia and astrocytes in 

response to Aβ deposition (Khoury et al., 2003; Naert and Rivest, 2013; Smits et al., 2002; 

Vukic et al., 2009). This in turn, would induce monocyte extravasation from the blood into the 

brain (Fiala et al., 1998). Interestingly, the genetic deletion of Ccr2 reduced plaque-associated 

cells and increased Aβ deposition as well as intracellular forms of Aβ (Khoury et al., 2007; 

Naert and Rivest, 2011). These studies hypothesize that recruitment of peripheral monocytes 

upon CCL attraction into the brain play a critical role for the etiology of AD. However, none 

of these studies could clearly prove that the aggravation of Aβ pathology was due to a failure 

of the CCL-CCR2-mediated infiltration of peripheral monocytes or caused by secondary effects 

of Ccr2 deletion, because of the lack of a specific marker that enables discrimination between 

invaded monocytes and the resident microglia.  

For that reason, studies made usage of bone marrow irradiation to first eliminate bone 

marrow (BM)-derived monocytes, which were then replaced by GFP-labelled bone marrow 

cells in mouse models of AD. These studies showed a massive infiltration of GFP-positive cells 

into the brain where they associated to Aβ depositions and modulated plaque pathology 

(Mildner et al., 2007; Simard et al., 2006; Stalder et al., 2005). However, total-body irradiation 

was shown to cause artificial damage of the BBB that promotes and thereby obscures the 
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relative contribution of the infiltration of peripheral monocytes (Mildner et al., 2007). This can 

be circumvented by shielding the head of animals during irradiation, which remarkably resulted 

in a lack of GFP-positive monocytes in the brain (Mildner et al., 2011). Similar results were 

seen in a parabiosis study in which the blood circulation of CD45.2+ 5xFAD mice was joined 

with congenic CD45.1+ mice. Analogous to head-shielded mice, the brain of 5xFAD was free 

of BM-derived CD45.1+ monocytes (Wang et al., 2016).  

Another approach to study a possible monocyte infiltration after a potential microglia 

loss or dysfunctionality in disease, is the HSVTK-dependent ablation of microglia in the adult 

brain. Therefore, mice that expressed the CD11b-HSVTK (TK+) construct were crossed to mice 

which carried the gene for red fluorescent protein (RFP) under the Ccr2 promoter (Ccr2+/Rfp). 

Microglia ablation was induced by two weeks of GCV treatment that was shown to deplete >90 

percent of all brain myeloid cells (Grathwohl et al., 2009; Varvel et al., 2012). To examine cell 

repopulation of the brain, the mice were housed for another two weeks until an infiltration of 

cells positive for the cell surface marker CD45 and RFP-labeled CCR2 was observed. These 

cells entered the brain from small blood vessels confirming their peripheral and hematopoietic 

origin. Of note, the CCR2-RFP-positive cells were distributed across the brain as observed for 

the resident microglia in control mice, however their number was highly enriched and 

morphological differences like enlarged cell soma and shorter, asymmetrically orientated 

processes were detected (Varvel et al., 2012). Remarkably, the number of the invaded CCR2-

RFP-positive cells remained stable over a 27-week observation period with a similar rate of 

proliferation as observed in microglia. Furthermore, the engrafted myeloid cells took over 

essential surveillance functions such as covering of the neuropil by their processes or the 

migration towards experimentally induced neuronal damage indicating that under certain 

conditions monocytes can replace dysfunctional microglia and adopt their phenotype. These 

results were further supported by a study in which infiltration of peripheral myeloid cells after 

GCV application was tracked by performing isochronic parabiosis with mice expressing 

enhanced green fluorescent protein (GFP) under the ubiquitously expressed actin promoter 

(Act.GFP). In the TK+ mice, where microglia were depleted, a substantial number of GFP-

positive cells were found in the brain two weeks after GCV discontinuation (Prokop et al., 

2015).  

Contrary to the HSVTK model, another study found that after microglial depletion using 

pharmacological inhibition of colony stimulating factor 1 receptor (CSF1R) signaling that is 

mandatory for microglial survival, the repopulating cells that rapidly infiltrated the brain 

resembled microglia in morphology and cell number (Elmore et al., 2014). However, these cells 
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were assumed to originate from a resident microglia progenitor pool through self-renewal rather 

than being replaced by infiltrating monocytes, as no CCR2-RFP-positive cells could be detected 

(Elmore et al., 2014). The reported controversies for the origin of the repopulating cells could 

be due to the different approaches that were used to deplete the initial microglia pool. It is 

possible that pharmacological CSF1R inhibition leads to a small subset of surviving cells, 

which could be responsible for the rapid self-renewing of phenotypically similar microglia.  

In summary, under special conditions such as a compromised BBB or pharmacological 

microglia ablation the brain becomes repopulated by cells that have the ability to adopt a 

microglial phenotype.  

 

3.2.3 Environment determines macrophage function in the brain 
Based on the findings from Varvel et al. that, upon microglia depletion, invading myeloid cells 

were capable of maintaining tissue homeostasis in a similar way as microglia do (Varvel et al., 

2012), we wanted to examine whether the replacement of dysfunctional microglia by myeloid 

cells in mouse models of cerebral β-amyloidosis alters amyloid deposition and could thus be of 

therapeutic value as already implicated in a mouse model of Rett syndrome (Derecki et al., 

2012). To this end, CD11b-HSVTK (TK+) mice were crossed to two mouse models of AD, 

namely APPPS1 mice which contain human transgenes for mutated APP and PSEN1 with early 

Aβ deposition and APP23 mice which overexpress mutated human APP with late Aβ deposition 

(Radde et al., 2006; Sturchler-Pierrat et al., 1997). Remarkably, in TK+-APPPS1 mice, which 

were analyzed two weeks after discontinuation of GCV treatment to deplete the endogenous 

microglia pool, the infiltrated cells did not cluster around congophilic plaques as observed in 

TK- control mice. In fact, all cells displayed a homogenous phenotype with shorter processes 

and enlarged cell bodies in accordance with what was described by Varvel et al. in wildtype 

animals (Varvel et al., 2012). Interestingly, the lack of clustering around Aβ deposits induced 

no changes in Aβ load. Also, extended ageing time points (up to six months) after GCV 

treatment in the APP23 mouse line did not change plaque pathology. However, after this long-

term brain engraftment, some of the myeloid cells in the TK+ mice were found to cluster around 

Aβ plaques. Furthermore, the initial myeloid cell number in TK+ mice that was determined two 

weeks after discontinuation of GCV application was approximately doubled in comparison to 

TK- mice, but was virtually equal to cell number of age matched TK- controls after long-term 

cell engraftment (Varvel et al., 2015).  

Finally, we tested whether the replacement of microglia before amyloid deposition in 

APP23 mice might be more beneficial in terms of the pathology of cerebral β-amyloidosis. 

Therefore, GCV treatment was started before Aβ plaque deposition allowing the myeloid cells 
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to repopulate the brain before onset of Aβ deposition. Surprisingly, five months after treatment, 

when Aβ plaque pathology was present, myeloid cells of TK+ mice behaved similar to microglia 

of TK- mice. Cells clustered tightly around plaques and those in plaque-free areas reflected a 

more microglia-like morphology, with smaller cell bodies and a ramified appearance. Of note, 

no changes in plaque pathology became apparent. Furthermore, similar to microglia, the 

engrafted plaque-associated cells in the long-term repopulated brain were positive for TREM2, 

whereas myeloid cells that were analyzed shortly after repopulation were TREM2-negative 

(Varvel et al., 2015). Thus, it can be concluded, that Trem2 expression seems to be influenced 

by the local environment and is not strictly cell-specific regulated.  

In line with our findings that monocytes that engraft in the brain become microglia-like 

and adopt essential microglial functions, a study from Lavin et al. could show that bone 

marrow-derived macrophages that arise from transplanted bone marrow after lethal irradiation 

replace the ablated tissue resident macrophages and establish a new but tissue-specific identity 

(Lavin et al., 2014). Additionally, differentiated peritoneal macrophages, which were isolated 

and transferred into the alveolar cavity, showed downregulation of peritoneal-specific markers 

and a parallel upregulation of lung-macrophage specific genes. Overall, in the engrafted 

peritoneal derived macrophages, 70 percent of genes that were differentially expressed in 

peritoneal macrophages compared lung macrophages were switched to resemble lung 

macrophages indicating that the new environment can reprogram the genetic identity of 

macrophages (Lavin et al., 2014). Another study showed that isolated microglia, which were 

only cultured with IL-34, an essential factor for microglia development (Greter et al., 2012; 

Wang et al., 2012), expressed a completely different gene set than observed in vivo (Gosselin 

et al., 2014).  

According to our findings that the AD brain micro-environment shapes monocyte and 

microglial function independent of cell origin, these studies additionally suggest that the 

environmental-induced identities and functions of tissue resident macrophages are regulated 

through the induction of tissue-specific regulatory elements of the transcriptional process that 

modify the enhancer landscapes of the macrophages genes (Lavin et al., 2014).  

However, apart from signals of the micro-environment, systemic alterations during 

lifetime might also be able to influence the genomic profile of tissue resident macrophages and 

could therefore be a potential tool to manipulate these cells.   
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3.3. Modification of CNS pathology by molecular reprogramming of the innate 
immune response  
In reference to:  
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3.3.1 Systemic inflammation as trigger for neurological disease 
The CNS is considered an immune-privileged region as the BBB shields the brain from the 

periphery. However, communication between the periphery and the CNS clearly exists, since 

several peripheral diseases, for example viral infections or sepsis, induce the development of a 

sickness behavior. Sickness behavior describes behavioral changes of the affected individuals 

such as the loss of appetite, lethargy or hyperalgesia, which are accompanied by metabolic 

changes going along with an altered body temperature, increased somnolence and loss of body 

weight, to facilitate the organisms combating of a disease (Hart, 1988). Also, an experimentally-

induced acute systemic infection by infusion of recombinant cytokines or injections of bacterial 

cell wall components such as the endotoxin lipopolysaccharide (LPS) was reported to induce 

sickness behavior (Brydon et al., 2008; Dantzer, 2001; Harrison et al., 2009).  

During systemic infection, inflammatory modulators which are produced by the resident 

immune cells as a local inflammatory response to the infection are transmitted to the brain along 

different humoral and nerve routes without compromising of the BBB (Kent et al., 1992; 

Konsman et al., 2002). In turn, microglia, as the resident immune effector cells in the brain, 

become rapidly activated and induce a robust non-specific but systemic response to the 

infection including the above-mentioned behavioral and metabolic alterations (Dantzer, 2001). 

The duration of sickness behavior upon an acute systemic infection is tightly regulated by the 

production of anti-inflammatory modulators like IL-10, TGF-β or glucocorticoids in the brain 

to dampen the immune response in the periphery but also in the CNS to avoid detrimental 

effects for the brain (Bogdan et al., 1992; Rivest, 2009).  
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Apart, from acute systemic infections that induce a strong release of inflammatory 

mediators, the presence of subclinical but sustained endotoxemia experimentally induced by 

LPS administration was reported to positively correlate with peripheral pathologies such as 

insulin resistance, atherosclerosis or chronic kidney disease mediated by an upregulation of the 

inflammatory immune response (Mehta et al., 2010; Terawaki et al., 2010; Wiesner et al., 

2010).  

Interestingly, an enhanced expression of inflammatory cytokines was also seen in brains 

of animal models of neurodegenerative diseases, a state that is suggested to prime or pre-

activate microglia to become more susceptible to phenotype switching following further 

immune challenges (Betmouni et al., 1996; Cunningham et al., 2002; Depino et al., 2003; Perry 

et al., 2002; 2007; Sly et al., 2001; Walsh et al., 2001). Moreover, increased levels of the pro-

inflammatory IL-6 cytokine, but decreased levels for the anti-inflammatory IL-10 cytokine 

were reported in the brain of aged mice, implying that ageing causes an inflammatory 

environment as already described by the term “inflammaging” (Cribbs et al., 2012; Ye and 

Johnson, 1999; 2001). Remarkably, studies showed that a systemic immune stimulus, when 

administered to aged mice or during chronic neuroinflammation, induced an exaggerated 

inflammatory response with enhanced production of pro-inflammatory cytokines, but also 

increased acute neurodegeneration (Cunningham et al., 2005; Godbout et al., 2005).  

With respect to AD as a chronic neurodegenerative disease, an acute systemic immune 

challenge temporarily increased the production of cytokines such as IL-1β, TNF-α and IL-6, 

Aβ40 levels and tau hyperphosphorylation in transgenic mouse models of AD (Lee et al., 2002; 

Sly et al., 2001). Intriguingly, the exposure to a chronic but localized inflammation exacerbated 

and accelerated neuroinflammation as well as Aβ pathology in APP/PS1 mice (Kyrkanides et 

al., 2011).  

Additionally, several human studies reported similar trends. Thus, people that were 

affected by chronic periodontitis or type 2 diabetes were reported to have a higher risk to be 

affected of AD (Kamer et al., 2008; Rojas-Gutierrez et al., 2017; Sparks Stein et al., 2012). 

Accordingly, patients with mild to severe AD, which suffered from severe infections, show an 

accelerated cognitive decline (Holmes et al., 2011; 2009). Furthermore, a recent study 

examined the relationship between systemic inflammation in midlife and neurodegeneration. 

Interestingly, this longitudinal study could associate heightened inflammatory markers in the 

blood during midlife with lower brain volumes and reduced episodic memory 24 years later 

(Walker et al., 2017). Additional evidence for the influence of systemic inflammation on 

neurological disease outcome comes from a retrospective study that examined patients with 
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incident dementia, in which it was observed that preceding infections episodes increased the 

likelihood for a later dementia diagnosis (Dunn et al., 2005). Consequently, these observations 

suggest that systemic infections may not only exacerbate ongoing neurological diseases, but 

also promote their onset.  

However independently of the exacerbation or promotion of a neurological disease, the 

occurrence of systemic inflammatory events of different severity and duration during or before 

chronic neurodegenerative diseases cause an exaggerated immune response of the CNS. As 

microglia are exclusively sensitive to disturbances in the brain, it is assumed that “microglial 

priming” through the mentioned preceding inflammatory events is the principle process 

inducing an exaggerated secondary immune response towards emerging neurological diseases 

(Perry et al., 2007). Accordingly, microglial priming implicates that the innate immune system 

possesses the capability – following the adaptive immune system – to elicit an exaggerated 

immune reaction in response to subsequent inflammatory insults.  

 

3.3.2 The concept of innate immune memory 
Systemic infections within a host initiate an immune response that is mediated by the innate 

immune system – an evolutionarily old defense strategy and the first line of protection against 

invading pathogens. This form of immunity is found in all classes of plant and animal life as 

well as in fungi and other multicellular eukaryotes (Janeway et al., 2001) and is triggered by 

the sensing of pathogen-derived molecules (pathogen-associated molecular patterns (PAMPs)) 

or endogenous danger signals (damage-associated molecular patterns (DAMPs)) by pattern 

recognition receptors (PRRs), which initiate the synthesis of inflammatory cytokines and 

chemokines by macrophages and other immune cells (C A Janeway, 1989). Upon the generation 

of an inflammatory milieu to restrict spreading of the infection, tissue- resident macrophages 

engulf the pathogenic substance through phagocytosis and recruit monocytes and other 

leucocytes as well as lymphocytes from the blood to rapidly resolve the inflammation. 

Collectively, the innate immune response presents a first, relatively unspecific, line of host 

defense that is, in the later stages of an infection, supported by the adaptive immune system, 

which triggers a very specific but delayed immune reaction (Alberts et al., 2002). 

It was long believed that only the adaptive immune system is able to create an 

immunological memory after exposure to a pathogenic stimulus, which leads to an enhanced 

response in case of a second encounter with the same pathogen(Janeway et al., 2001). First 

evidence for immunological memory of the innate immune system was provided by studies in 

plants and invertebrates, which lack the adaptive immune system. In plants, the phenomenon 

of “systemic acquired resistance” (SAR) describes the heightened immune response towards 
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reinfection by a primary pathogen (Durrant and Dong, 2004; Kachroo and Robin, 2013). 

Invertebrate animals also exhibit a similar form of immune memory; for example, after the first 

exposure to the tapeworm Schistocephalus solidus, the copepod crustacean is protected against 

a reinfection with the same pathogen through a more efficient and specific immune response 

(Kurtz and Franz, 2003). These results point towards a special form of immunity that is gained 

after the first contact with pathogens and intensifies the second immune response; an effect that 

was recently denoted as “trained immunity” (Netea et al., 2011).  

Furthermore, studies in mice, which showed that the animals were protected against a 

lethal infection after the initial exposure and priming with microbial ligands of PRRs such as 

β-glucan, the peptidoglycan component muramyl dipeptide or flagellin, introduced the principle 

of trained immunity to vertebrates (Di Luzio and Williams, 1978; Krahenbuhl et al., 1981; 

Muñoz et al., 2010; Zhang et al., 2014). Moreover, compelling evidence for trained immunity 

was provided by studies conducted in mice that lacked the thymus, the essential organ for T-

cell maturation. In these mice, vaccination with tuberculosis bacillus Calmette Guérin (BCG) 

protected, in a T-cell-independent fashion, against reinfection with Candida albicans or 

Schistosoma manosi (Tribouley et al., 1978; van 't Wout et al., 1992). Importantly, there is also 

evidence for innate immune memory from vaccination studies in humans, in which 

immunization with live but attenuated vaccines such as the BCG or the measles virus turned 

out to be protective against non-targeted diseases (Benn et al., 2013).  

Interestingly, studies in which macrophages were challenged with LPS to examine their 

potential for acquiring memory, it could be shown that macrophages became more or less 

responsive as a result of the initial differential stimulation paradigms with LPS (Foster et al., 

2007). These findings expand the capability of innate immune memory from a priming or 

training effect to a “tolerizing” effect mediated by chronic exposure to LPS. LPS-induced 

tolerance is considered an immune paralysis state characterized by a hypoinflammatory profile 

that can be induced by severe sepsis or experimentally mimicked by continuous or high-dose 

endotoxin challenges possibly as result of receptor desensitization or an imbalance in the 

production of inflammatory mediators (Medvedev et al., 2000; van der Poll and Opal, 2008). 

Accordingly, cultured monocytes, which were exposed for 24 hours to LPS to induce immune-

tolerance, showed a decreased production of pro-inflammatory cytokines such as TNF-α or IL-

6 upon a secondary immune stimulation (Saeed et al., 2014).  

However, it is of importance to distinguish between immune memory and acute 

immunological processes as both include immune cell activation. Whereas immune cell 

activation or differentiation in the context of immunological processes occurs as a direct and 
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acute function of pathogen sensing or changes in the environment, mechanistic studies suggest 

that alterations in macrophage function due to training or tolerizing immune challenges through 

primary pathogen contact are mediated by epigenetic reprogramming that results in persistent 

changes in chromatin marks, which modify the cell-mediated immune response upon further 

stimuli subsequent to the initial insult (Netea et al., 2016).  

So far, persistence of microbial ligand-induced immune memory in vitro, in short-lived 

monocytes or macrophages, was studied only for a limited time period from one to five days 

(Ifrim et al., 2014; Ostuni et al., 2013; Saeed et al., 2014). However recently, long-lived 

epithelial stem cells were also attributed to innate immune memory, as a preceding immune 

stimulus resulted in a more rapid wound healing 180 days after the primary immune stimulus 

(Naik et al., 2017). In line, vaccination studies with BCG in healthy volunteers showed an 

enhanced release of cytokines from blood monocytes for up to three months (Kleinnijenhuis et 

al., 2012), indicating the possibility of a longer-lasting acquirement of trained immunity that 

must take place at the level of progenitor cells, as circulating monocytes have a suggested half-

life in circulation of about one day (Yona et al., 2013).  

 

3.3.3 Epigenetic reprogramming induces immune memory in macrophages 
The DNA of a cell is arranged around histone cores and further structured in nucleosomes, 

which are the primary components of chromatin. Besides other functions, the chromatin 

complex is required to tightly pack DNA but also to control gene expression. Epigenetic 

modification of specific regions in histones, for example by methylation or acetylation of 

certain amino acid residues, can induce changes in the local chromatin structure allowing 

enhanced or repressed transcription of genes. In particular, post-translational methylation of the 

lysine (K) residue 4 and acetylation of K27 at histone 3 (H3) were shown to define active 

enhancer sites, which are positively associated with gene transcription of nearby genes (Fig. 

3C). In contrary, histones that bear H3K9 and H3K27 trimethylation (me3) mark a closed 

chromatin conformation that does not allow gene transcription (Ivashkiv, 2013). Additionally, 

trimethylation of H3K4 (H3K4me3) and acetylation of H3K27 (H3K27ac) are reliable marks 

for active promoter regions where the RNA polymerase II protein complex can easily bind to 

the DNA to catalyze transcription (Fig. 3D). 

Enhancer regions belong to cis-regulatory elements that contain DNA-binding sites for 

transcription factors that, upon binding, can increase the likelihood for transcription of a 

particular gene. Structurally, active enhancer regions are devoid of nucleosomes and the DNA 

is easily accessible for transcription factors. Thereby, the DNA-binding sites are flanked by 

histones characterized through the above mentioned H3K4me1 or H3K27ac modifications. 
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Figure 3: Epigenetic changes in the chromatin landscape of macrophages can occur in response to 

endogenous but also exogenous signals. (A) During macrophage development, lineage determining transcription 

factors bind to enhancer regions of genes that are essential for cell maturation and (B) induce the acquisition of 

histone 3 (H3) lysine residue 4 (K4) monomethylation (me1) (H3K4me1), the main epigenetic signature for 

potentially active enhancers (pre-determined enhancer state). Upon further endogenous or exogenous signals 

H3K4me1 labeled enhancer become activated (C) through the recruitment of stimulus-dependent transcription 

factors that initiate H3K27 acetylation (ac). (D) Active enhancers support the transcription of the required genes 

by promoting gene transcription via RNA polymerase II at interacting promotor sites. (E) Rather than activating 

enhancers, recruitment of stimulus-dependent transcription factors can also induce a suppressed enhancer 

configuration by trimethylation of the H3K9 and H3K27 residues. (F) Developmentally unmarked “latent” 

enhancer regions can become marked via stimulus-dependent transcription factors to induce gene transcription. 

During the process of cell maturation, the binding of lineage determining transcription 

factors (LDTFs) to nucleosomes enables the recruitment of enzymes for H3K4 methylation, 

shifting the marked enhancer regions into a pre-determined poised, active (which is further 

characterized by additional H3K27ac marks (Creyghton et al., 2010; Rada-Iglesias et al., 2011)) 

or repressive state, (Fig. 3A,B (shown is an exemplary representation of a poised enhancer)) 

(Heinz et al., 2010; Ostuni et al., 2013). Studies in primary macrophages have shown that PU.1 

acts as a master LDTF that determines cell specificity of the macrophage lineage (Barozzi et 

al., 2014; Ghisletti et al., 2010; Heinz et al., 2010). 

Upon further macrophage stimulation, due to environmental changes for example, 

stimulus-responsive transcription factors, such as NF-κB, AP-1 or STAT family members, are 

recruited to pre-marked enhancer and promoter regions within the genome. These proteins act, 

similar to LDTFs, as co-activators for enzymes such as the histone acetyltransferase to enable 

histone acetylation (H3K27ac) in enhancer regions of genes whose enhanced transcription is 

required (Fig. 3C, D) (Barozzi et al., 2014; Ghisletti et al., 2010; Heinz et al., 2010; Ramirez-

Carrozzi et al., 2009; 2006; Smale and Natoli, 2014; Smale et al., 2014). On a molecular basis, 

it was shown that histone acetylation leads to the addition of negative charges to the positive 
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lysine residue, which in turn further reduces the interaction between DNA and histones leading 

to improved accessibility of the DNA for other co-regulatory proteins required for the 

transcriptional process (Creyghton et al., 2010; Smale et al., 2014).  

In addition to LDTFs pre-marked enhancer regions, in vitro experiments defined 

“latent” enhancer regions in macrophages, which are epigenetically unmarked and inactivated 

regulatory elements, but can be directly activated in response to distinct environmental stimuli 

and gain H3K4 monomethylation as well as H3K27 acetylation (Fig. 3F) (Kaikkonen et al., 

2013; Ostuni et al., 2013). Notably, histone modifications in such “latent” enhancer regions, 

which were acquired upon LPS or cytokine stimulation, were shown to have different stability 

(Fig. 4A/B). Whereas H3K27ac was lost quickly after the cessation of the stimulation, 

H3K4me1 was maintained leading to a poised enhancer state with an enhanced epigenetic status 

(Fig. 4C). However, upon subsequent re-stimulation histone acetylation was re-established, 

enhanced and in turn induced a faster and stronger induction of genes adjacent to these enhancer 

regions (Fig. 4D) indicating the presence of a short-term transcriptional memory (Ostuni et al., 

2013). 

Interestingly, the identified “latent” enhancer in that study accounted for 15% of all 

LPS-induced activated enhancer and were assigned closer than LDTF-pre-determined enhancer 

to nearby induced genes, suggesting an important role for “latent” enhancer during the LPS-

mediated cellular response (Ostuni et al., 2013). Consequently, it can be assumed that the 

unveiling of “latent” enhancers resembles the in vivo situation, in which the response of 

differentiated tissue macrophages towards microenvironment-specific signals may be mediated 

by the activation of “latent” enhancers as regulators for the induction of an individual 

environment-specific enhancer repertoire (Gosselin et al., 2014; Lavin et al., 2014).  
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Figure 4: A model for the temporary acquisition of histone modifications for latent enhancer. (A, B) During 

macrophage stimulation the binding of stimulus-dependent transcriptions factors, to “latent” enhancer regions 

enables the deposition of H3K4me1 and H3K27ac marks to shift these enhancers into an active state. (C) After 

cessation of the of the primary stimulus, bound transcription factors and H3K27ac marks are lost, whereas 

H3K4me1 modifications are retained (so-called poised enhancers). (D) Upon a secondary immune stimulation, 

“re-activated” enhancer regions can more quickly re-acquire H3K27ac marks, leading to stronger and faster 

activation of the corresponding gene transcription. 

 
3.3.4 The molecular basis of immune memory in macrophages  

Emerging data support that apart from a direct influence on innate immune signaling 

pathways upon acute macrophage activation, changes in metabolic pathways play critical roles 

in the induction of the immune response as well (Ganeshan and Chawla, 2014). Macrophages 

acutely activated by LPS were reported to shift their energy metabolism from oxidative 

phosphorylation to the faster adenosine trisphosphate (ATP) supply via the glycolytic pathway 

in the cytosol. The sudden metabolic switch from oxidative phosphorylation to glycolysis 

increases the mitochondrial membrane potential due to the electron transport chain across the 

mitochondrial membrane being disrupted (Tannahill et al., 2013). Additionally, acute activation 

of macrophages was shown to interfere with the citric acid cycle to enable a sufficient supply 

of the intermediate product succinate. Oxidized succinate (fumarate), in combination with an 

increased mitochondrial membrane potential, is required for the enhanced production of 
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reactive oxygen species (ROS) by reverse electron transport (RET), which in turn alters activity 

of the transcription factor (TF), hypoxia-inducible factor-1α (HIF-1α) (Mills et al., 2016).  

HIF-1α is known to drive gene expression of the pro-inflammatory cytokine IL-1β (Jha 

et al., 2015; Mills et al., 2016; Tannahill et al., 2013). Concurrently, accumulation of fumarate 

decreases the expression of the anti-inflammatory cytokine IL-10 (Mills et al., 2016).  

To pursue the role of cellular metabolism during epigenetic macrophage 

reprogramming, further in vitro studies were performed, in which isolated human or murine 

monocytes were stimulated with a training or tolerizing immune stimulus and incubated for up 

to seven days until a secondary immune stimulus was administered to induce immune memory 

(Cheng et al., 2014; Saeed et al., 2014). Remarkably, the applied inflammatory stimuli largely 

altered cellular metabolism pathways acutely, but also after the prolonged incubation period. 

Specifically, β-glucan stimulation of monocytes, which induced trained immunity, increased 

glucose consumption, lactate production and the ratio of nicotinamide adenine dinucleotide 

(NAD(+)) to its reduced from (NADH) representing a shift to aerobic glycolysis energy 

metabolism upon restimulation of the cells. These alterations indicate that changes in the 

cellular metabolism are crucial for the induction of trained immune memory (Cheng et al., 

2014). Moreover, the glycolysis favored-ATP production induced by training was reported to 

be dependent on the activation of the dectin-1/Akt/mammalian target of rapamycin 

(mTOR)/hypoxia-inducible factor-1α (HIF-1α) (Akt/mTOR/HIF-1α)-pathway (Cheng et al., 

2014).  

So far, it is not completely clear why metabolic circuits are drastically affected during 

the epigenetic formation of immune memory. It is suggested, that metabolic intermediates of 

the respective up- or down-regulated metabolic pathways are co-factors for the regulation of 

histone modifications which, in turn, suppress or activate phenotype-associated genes (Bénit et 

al., 2014; Donohoe and Bultman, 2012; Gut and Verdin, 2013; Saeed et al., 2014). 

Apart from alterations in the cellular metabolism during the induction of training or 

immune tolerance, further signaling pathways were shown to be differentially modified. The 

cyclic adenosine monophosphate (cAMP)-dependent signaling pathway, which is important for 

the cell communication, was also identified as a crucial regulator of trained immunity in 

macrophages (Saeed et al., 2014). Additionally, it was found that immune training of monocytes 

induced phosphorylation of the activating transcription factor 7 (ATF7) which, in turn, reduces 

the repressive histone mark H3K9me2 in regions where genes of the immunological network 

are located (Yoshida et al., 2015). In contrast, LPS-induced tolerance increases levels of 

repressive histone modifications in promoter regions of the inflammatory cytokines IL-1β and 
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TNF-α, which inhibits the transcription of these genes upon subsequent pathogen stimulation 

(Gazzar et al., 2009).  

While there is convincing evidence for innate immune memory in macrophages from in 

vitro studies, none of the studies has examined the consequences of epigenetic remodeling of 

the innate immune response in macrophages on a subsequent pathology in vivo and only a few 

experiments investigated the microglial potential of immune memory (Holtman et al., 2015). 

For that reason, we applied the model of trained- and tolerance-induced immune memory to a 

mouse model of cerebral β-amyloidosis to investigate the effects of immune memory on the 

reflected neurological disease hallmarks of AD pathology. 

 
3.3.5 Innate immune memory in the brain shapes neurological disease hallmarks 
Most of the studies on training and tolerance-induced epigenetic remodeling of the chromatin 

landscape during the establishment of innate immune memory have been done in peripheral 

macrophages or blood-derived monocytes (Cheng et al., 2014; Saeed et al., 2014). For 

microglia, the resident tissue macrophages of the brain, it is generally accepted that these cells 

can adopt altered phenotypes upon different pathogenic stimuli (Norden and Godbout, 2013; 

Perry and Holmes, 2014; Raj et al., 2014). However, the often-described microglial priming is 

only a functional definition as few studies have investigated the transcriptional profile that is 

induced by different priming stimuli. Moreover, priming is normally observed during acute 

inflammatory processes and could therefore not reveal microglial immune memory (Combrinck 

et al., 2002; Cunningham et al., 2005). Therefore, we were interested if LPS-induced 

inflammation in the periphery – a well-established method to prompt a microglial response in 

the brain – can evoke a training or tolerance immune memory effect in microglia, similar to 

what was reported for monocyte-derived macrophages (Saeed et al., 2014). 

In our study, we could show that low dose LPS (500 µg/kg bodyweight) injected 

intraperitoneally (i.p.) on four consecutive days in young adult mice induced acute alterations 

in brain cytokines, reminiscent of immune training and tolerance (Fig. 5A). Thus, after a small 

cytokine response following the first LPS injection, the second LPS injection induced a drastic 

increase in brain cytokine levels (such as IL-1β, IL-6 or TNF-α) indicating a training effect 

induced by the first LPS injection. However, the third and fourth LPS injections abolished 

cytokine production and thus implied a tolerant immune state in the brain. 
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Figure 5: Experimental design to induce immune memory in microglia. (A) To study the acute effects of 

different doses of peripherally applied LPS in the brain and to identify microglia as mediators of the immune 

response, wildtype, APP23 and CX3CR-CreER x Hdac1/2fl/fl as well as CX3CR-CreER x Tak1fl/fl mice, which 

received prior tamoxifen treatment to induce Hdac1/2 and Tak1 depletion, were treated at three months of age 

with different immune challenges (1xLPS, 2xLPS, 3xLPS, 4xLPS), and analyzed 3h after the injections. Thereby, 

a single LPS injection was identified to induce training effects whereas four consecutive LPS injections induced 

immune tolerance. (B) In a second experiment, the long-term effects of LPS treatment on immune memory and 

the consequences for the pathology of cerebral β-amyloidosis in the APP23 mouse model were investigated. After 

six months of incubation, the mice were anesthetized and analyzed for their immune profile and Aβ pathology as 

well as for potential changes in the microglial epigenetic signature of histones and in expression levels of 

corresponding genes.  

To examine whether the observed memory effects were microglia-specific, we used the 

CX3CR1-CreER (Cre) mouse line that was crossed to mice carrying either the loxP flanked 

genes: “transforming growth factor (TGF)-β-activated kinase 1” (Tak1) or “histone 

deacetylases-1 and -2” (Hdac1/2). TAK1 and Hdac1/2 are major regulators of transcriptional 

processes, macrophage inflammatory responses and the epigenetic chromatin architecture 

(Goldmann et al., 2013; Kannan et al., 2013; Sato et al., 2005; Shakespear et al., 2011). In these 

mice, tamoxifen induced Cre recombinase expression results in efficient target gene 

inactivation. After an incubation period of four weeks following tamoxifen application, the loxP 

flanked (floxed; fl) genes: Tak1 and Hdac1/2 are efficiently ablated in the stable microglia 

population but present in the short-lived and continuously replenished peripheral monocytes 

(Fig. 5A) (Goldmann et al., 2013). Consequently, LPS injections into the CX3CR1-CreER x 

Tak1fl/fl and CX3CR1-CreER x Hdac1/2fl/fl mice did not alter the peripheral immune response 

but restricted the amplification of brain cytokines. Thus, we could confirm that the alterations 

in brain cytokine levels after the LPS-induced inflammatory state were mediated predominantly 

by microglia. Based on these observations, a single peripheral LPS stimulus (1xLPS) was 
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identified to elicit a training effect whereas prolonged (four days, 4xLPS) peripheral LPS 

administration induced immune tolerance in microglia.  

After identification of these two different stimulation paradigms, we tested whether the 

induced immune training and tolerance state in microglia can lead to long-term alterations in 

the brain and thereupon modulate the pathology of neurological diseases. Therefore, we 

peripherally injected three-month-old APP23 mice, which develop cerebral β-amyloidosis and 

microgliosis from six months of age (Sturchler-Pierrat et al., 1997), as well as wildtype 

littermate controls and analyzed pathology at an age of nine months (Fig. 5B). Notably, our two 

different microglial stimulation paradigms (1xLPS vs. 4xLPS) significantly influenced Aβ 

pathology in APP23 mice. Thus, a training stimulus resulted in an increased cortical Aβ plaque 

load compared to PBS-treated control APP23 mice. In contrary, the induction of tolerance by 

consecutive injections of LPS for four days, decreased Aβ plaque load significantly. In line 

with these observations, the cytokine production in the brain, but not in the periphery, was 

influenced at that stage of the disease. Immune tolerance suppressed IL-1β production whereas 

training blocked IL-10 production. 

When we tested the immune memory function of microglia in a second mouse model 

of neuropathology, in particular, after the induction of a focal cortical ischemia one month after 

peripheral LPS treatment, we observed also differences in the acute microglial immune 

response. Remarkably, the release of inflammatory cytokines with suppression of IL-10 by 

1xLPS and IL-1β by 4xLPS, but enhancement of IL-1β by 1xLPS was similar to what we 

observed in the APP23 mice with Aβ pathology. Moreover seven days after the ischemic insult, 

4xLPS treatment reduced the volume of neuronal damage and microglia activation indicating 

that the induced immune tolerance can modify stroke pathology through long-term modulation 

of the brain’s immune response. 

In a third approach, we tested whether immune stimuli other than LPS elicit a similar 

immune memory effect in the brain. Therefore, we peripherally injected individual cytokines 

at different concentrations and analyzed mice four weeks later after the administration of an 

acute secondary immune stimulus. In line with the previous results, the measured brain 

cytokines reflected comparable training and tolerance effects that were undetectable in the 

periphery.  

In vitro studies established that immune memory in monocytes can be induced by 

epigenetic reprogramming of the enhancer landscape, which leads to changes in the 

transcription of assigned genes involved in the innate immune response (Ivashkiv, 2013; Saeed 

et al., 2014). To test whether our peripheral immune challenges could induce alterations in the 
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microglial enhancer repertoire in vivo, we analyzed the epigenetic landscape of the microglia 

isolated from the differentially treated APP23 or wildtype mice by the examination of 

H3K4me1 and H3K27ac histone marks, which define active enhancers states (Kaikkonen et al., 

2013; Ostuni et al., 2013). 

To begin with, we analyzed the profile of H3K4me1 histone modifications, which 

should be persistently established in response to the initial stimulus, that is i.p. LPS stimulation 

(compare Fig. 3/4). As expected, H3K4me1 histone marks were established both in wildtype 

and APP23 mice after primary immune stimulation. However, H3K4me1 levels were 

differentially regulated among wildtype and APP23 mice that received either the training or 

tolerant immune stimulus and showed diverse pathway enrichment patterns. In particular, 

H3K4me1 levels that were increased by a single LPS treatment compared to the 4xLPS 

treatment in wildtype mice were almost exclusively enriched for the “thyroid hormone 

signaling pathway”. Strikingly, that pathway includes an enhancer for HIF-1α, which is known 

to be a key modulator of pro-inflammatory gene expression (Cheng et al., 2012; Tannahill et 

al., 2013). Likewise, detected upregulations in H3K4me1 histone modifications in microglia 

from APP23 mice with 1xLPS compared to 4xLPS treatment were found to be enriched for the 

“HIF-1 signaling pathway”. 

Interestingly, the tolerant immune challenge (4xLPS) in APP23 but also wildtype mice 

induced the largest number of differentially expressed H3K4me1 levels and showed enrichment 

in pathways related to phagocytosis (for example: “Ras-related protein 1 (Rap1) signaling 

pathway” or “Endocytosis” pathway). Importantly, neither wildtype nor APP23 microglia from 

mice that received no priming stimulus displayed any pathway enrichment in relation to the 

differentially regulated H3K4me1 state underlining the induction of distinct molecular 

signaling pathways upon varying primary immune stimuli.  

As a second marker for enhancer activation, we analyzed the differential regulation of 

the H3K27ac histone modification among our wildtype and APP23 treatment groups. Here, we 

could detect a high number of differentially activated enhancers among the APP23 groups that 

was rather low in the wildtype groups pointing towards the requirement of an (secondary) acute 

stimulus to induce changes in the H3K27 acetylation pattern (Ostuni et al., 2013). 

 In line with the reported HIF-1α-dependent induced trained immunity in monocytes 

(Cheng et al., 2014) and the observed increase in H3K4me1 levels enriched for the “HIF-1 

signaling pathway”, increased H3K27ac levels in APP23 mice that received a single LPS 

injection showed highest enrichment for the same pathway in microglia compared to APP23 

control mice.  
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Again, in line with the H3K4me1 signature, the identified active H3K27ac enhancers in 

the group of APP23 mice that received the immune tolerance stimulus (4xLPS) were enriched 

for the “Rap1 signaling pathway” in comparison to APP23 control animals without LPS 

stimulation. Interestingly, the “Rap1 signaling pathway” induces the activation of the αMβ2 

integrin receptor on macrophages (complement receptor 3) and thereby enhances phagocytosis 

of C3bi-opsonized targets (Caron et al., 2000).  

Moreover, when we compared the 1xLPS treatment to the 4xLPS treatment in APP23 

mice, it became apparent, that a set of inflammation-related pathways such as the “Toll-like 

receptor signaling pathway” or the “Chemokine signaling pathway” were enriched by the 

highly increased H3K27ac levels observed in the 1xLPS group supporting the induction two 

epigenetically differentially regulated signatures by 1xLPS or 4xLPS.  

Interestingly, acute brain pathology alone was also sufficient to induce a small number 

of differentially regulated H3K27ac levels in untreated APP23 mice compared to the wildtype 

group, which could be related to the “thyroid hormone signaling pathway” as well as the 

“mTOR signaling pathway”. 

Remarkably, microglial mRNA sequencing and subsequent gene expression analysis by 

weighted gene correlation network analysis (WGCNA) to cluster genes into certain modules 

revealed significant correlations between the epigenetically induced alterations in H3K27ac 

levels of enhancer regions and the direction of change in the expression of their nearest genes. 

For example, increased gene expression in the red module that included the “HIF-1 signaling 

pathway” correlated positively with the 1xLPS-treated APP23 animals, in which we detected 

an enrichment in microglial H3K27ac levels for the “HIF-1 signaling pathway”. Furthermore, 

single genes within that module such as Hif1α or Inpp5d were significantly upregulated in the 

1xLPS-treated APP23 group, but downregulated with 4xLPS.  

HIF-1α has been shown to play an essential role in the regulation of pro-inflammatory 

signal molecules, but also in the expression of glycolytic enzymes in inflammatory-stimulated 

macrophages (Cheng et al., 2014; Cramer et al., 2003). In that context, it was interesting to 

note, that the green module, which was enriched for pathways involved in glycolysis, showed 

a positive correlation with the 1xLPS APP23 group. Simultaneously, there was also an 

upregulation of genes included in that module in APP23 versus wildtype control animals, which 

was further increased by 1xLPS and decreased by 4xLPS treatment in APP23 animals.  

Energy generation via glycolysis results in faster energy supply, but also in 

mitochondrial hyperpolarization and lactate production, which has been reported to be 

dependent on HIF-1α signaling (Cheng et al., 2014; Mills et al., 2016). Accordingly, the 
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measured mitochondrial membrane potential in our 1xLPS-treated APP23 animals was strongly 

increased and correlated well with lactate production compared to the untreated and 4xLPS 

APP23 group. Furthermore when we immuno-stained brain sections for HIF-1α, we could 

detect increased HIF-1α protein levels in plaque-associated microglia (which are the cells 

mostly affected by Aβ-pathology), which were even more upregulated in the 1xLPS-treated 

APP23 mice. This finding of differentially regulated HIF-1α signaling and the subsequent 

metabolic switch to glycolysis in response to Aβ-pathology suggests an important function of 

HIF-1α signaling in AD, which can be further enhanced by immune training or alleviated by 

immune tolerance induced in microglia. Interestingly, the Apoe gene, whose E4 allele is 

described as major risk factor for LOAD (Corder et al., 1993), can be found in the same module 

(red) as Hif1a and thus strengthens the assumption of HIF-1α being a modulator of AD 

pathology. 

In contrast to the previous modules, the grey module, which was enriched in pathways 

related to phagocytosis such as the “Rap1 signaling pathway”, showed a positive correlation 

with wildtype control animals but not with APP23 control animals. In line, there was a 

downregulation of genes assigned to that module in the control and 1xLPS APP23 groups. 

However, the 4xLPS-treated APP23 group showed similar levels of gene expression as 

wildtype controls. Accordingly, when we measured microglial phagocytosis by the 

determination of Aβ levels in isolated microglia in APP23 animals we saw an increase in the 

Aβ content after 4xLPS administration compared to the APP23 control and 1xLPS-treated 

groups, which may be responsible for the decrease in cortical Aβ deposition observed in the 

4xLPS APP23 treatment group and provides further functional evidence for the detected 

changes in the microglial gene expression analysis. 

Interestingly, the brown module comprised genes that were recently described to 

distinguish different microglial phenotypes due to their activation state (Keren-Shaul et al., 

2017). These genes characterizing homeostatic but also “disease-associated microglia” were 

significantly upregulated after a single but also repeated LPS stimulation in wildtype as well as 

APP23 microglia implicating once more a change in the microglial phenotype due to 

inflammatory stimuli. 

Taken together, our in vivo study provides first evidence for a long-lasting innate 

immune memory function in a tissue-resident macrophage population, which is sufficient to 

alter the pathology of neurological diseases in response to the induction of a trained or tolerant 

microglial phenotype. Importantly, we show that the training or tolerance induced remodeling 

of the microglial immune response occurs due to epigenetic changes in their enhancer 
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landscape. Although we observed a significant impact of primary immune stimulation on 

secondary pathology, the epigenetic changes were rather small in magnitude. However, data 

obtained by immunohistochemical staining for HIF-1α, a transcription factor that was 

differentially regulated by our training or tolerance immune stimulus, suggest that the observed 

alterations in epigenetic reprogramming and gene expression are mainly mediated by plaque-

associated microglia, which represent the minority of microglia at the examined stage of 

pathology. Thus, for further studies, it would be of great interest to discriminate the microglia 

population into different subgroups based on their localization in the brain in order to examine 

the epigenetic profile of plaque-associated and non-plaque associated microglia individually. 

Furthermore, our two different LPS stimulation paradigms identified a differential 

regulation of the “mTOR signaling pathway” and the transcription factor HIF-1α, which was 

strongest APP23 mice. Interestingly, the “mTOR signaling pathway” as well as HIF-1α are 

known to play a role in AD and interact via the Akt/mTOR/HIF-1α pathway (Cheng et al., 

2014; Ulland et al., 2017; Wang et al., 2014). Since 4xLPS treatment suppressed, but 1xLPS 

treatment enhanced HIF-1α signaling, which occurred in parallel with alleviated or aggravated 

Aβ deposition, we suggest that epigenetic activation of mTOR and the subsequent regulation 

of HIF-1α might induce alterations in AD pathology.  

Even if we provide evidence for an immune memory effect in microglia after the 

induction of systemic inflammation that had detrimental or beneficial consequences for brain 

pathology, it would be misleading to predict preceding peripheral infections as trigger for 

changes in the microglial immune function. Thus, future studies are required to investigate the 

effect of further peripheral pathological conditions on neurological diseases, but also on other 

developmentally distinct macrophage populations as well as to determine the exact duration of 

innate immune memory. 
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3.4 Genetic modification of the microglial phagocytic capacity during AD  
In reference to:  
 

Lack of MFG-E8 reduces pathology in mouse models of cerebral β-amyloidosis 

 

Karoline Degenhardt*, Jessica Wagner*, Konstantina Kapolou, Domenico Del Turco, Thomas 

Deller, Mathias Jucker, Jonas J. Neher 

Manuscript in preparation 

 
3.4.1 Aβ clearance mechanisms in the CNS 
Based on the “amyloid cascade hypothesis”, research suggests that impaired clearance 

mechanisms for soluble or fibrillar Aβ structures contribute to the induction of LOAD 

(Mawuenyega et al., 2010). Under physiological conditions there exist several pathways for Aβ 

clearance and degradation, which maintain a balanced Aβ metabolism. Importantly, Aβ 

transport across the BBB – a process named transcytosis – represents a major systemic 

clearance route from the brain to the plasm (Bell et al., 2006; Deane et al., 2009; 2004; Shibata 

et al., 2000; Storck et al., 2016). Thereby Aβ40 is rapidly cleared by direct binding to the soluble 

lipoprotein receptor-related protein 1 (sLRP1), which is localized in capillaries at the abluminal 

side of the cerebral endothelium (Bell et al., 2006; Deane et al., 2004; Shibata et al., 2000). In 

addition, studies have shown that extracellular chaperons such as ApoE, or ApoJ (clusterin) can 

also stimulate Aβ clearance from the CNS most likely through binding to LRP receptors 

(DeMattos et al., 2004). Especially, Aβ42 binding to ApoJ enhances efflux across the BBB, 

whereas Aβ40/ApoE3 complex formation delays efflux rate (Bell et al., 2006). 

Furthermore, Aβ from the interstitial fluid (ISF) in the brain can be cleared via bulk 

flow into the cerebrospinal fluid (CSF) sink, which comprises the ventricles and subarachnoid 

space (Abbott, 2004). In turn, Aβ in the circulation of CSF can either be absorbed through 

arachnoid villi to cross the blood-cerebrospinal fluid barrier (BCSFB) into the blood (Silverberg 

et al., 2003), or cleared along the perivascular lymphatic drainage pathway, which has recently 

been identified as predominant outflow pathway (Carare et al., 2008; Iliff et al., 2012; Ma et 

al., 2017; Tarasoff-Conway et al., 2015; Weller et al., 2008). However, Aβ that is transported 

along the perivascular drainage route is hypothesized to become entrapped in the perivascular 

basement membranes and impair perivascular clearance as seen in cerebral amyloid angiopathy 

(CAA) (Hawkes et al., 2011; 2014).  
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Consistently, the Aβ clearance rate measured in CSF of human AD patients (>60 years) 

was reduced by ~30 percent compared to healthy individuals and reflects a clear defect in Aβ 

clearance that occurs during AD (Mawuenyega et al., 2010).  

Besides the absorption of Aβ into the peripheral circulation, Aβ uptake by the resident 

glial cells is another important mechanism for Aβ clearance. Aβ degrading enzymes such as 

insulin degrading enzyme (IDE), neprilysin or different matrix-metalloproteinases (MMPs), 

represent a group of proteases, which cleave Aβ into smaller fragments in the brain(Miners et 

al., 2008). These proteases are mainly produced by glial cells and get released into the 

extracellular space via exosomes where they degrade monomeric but also fibrillar Aβ species 

(Saido and Leissring, 2012). Moreover, neprilysin can also degrade intracellular Aβ (Tarasoff-

Conway et al., 2015). 

Furthermore, microglia may also directly internalize and degrade Aβ. In vitro, soluble 

Aβ, for example, is engulfed via fluid phase pinocytosis, while uptake of Aβ fibrils is mediated 

by receptor-mediated endocytosis (Chung, 1999; Mandrekar et al., 2009). Thereby, microglia 

use pattern recognition receptors (PRRs) to sense exogenous pathogen-associated molecular 

patterns (PAMPs) including misfolded and aggregated Aβ (Lucin and Wyss-Coray, 2009). In 

particular, scavenger receptors of class A, a subgroup of PRRs, were shown to be involved in 

the uptake of Aβ by primary murine microglia (Chung et al., 2001; Paresce et al., 1996). 

Conversely, scavenger receptors of class B such as CD36 only produce chemokines for further 

microglia recruitment upon Aβ binding (Coraci et al., 2002). Another group of PRRs are toll-

like-receptors (TLRs), which are also able to bind to Aβ and induce engulfment. In particular, 

TLR2 and 4 in conjunction with the co-receptor CD14 were shown to induce phagocytosis of 

monomeric as well as fibrillar Aβ (Liu et al., 2005; Reed-Geaghan et al., 2009; Tahara et al., 

2006). Accordingly, knockout of Tlr2 in APP/PS1 mice increased levels of Aβ42 (Richard et al., 

2008). 

Furthermore, the complement system, another pathogen defending mechanism of the 

innate immune system, is involved in the uptake of Aβ by microglia. Thus, the deficiency of 

complement 3 (C3) factor, but also the absence of the respective microglial membrane attack 

complex receptor (Mac-1/C3-receptor/CD11b) reduced Aβ uptake in vivo (Fu et al., 2012). 

However, these experiments were done in wildtype mice that received injections of 

fluorescently labeled fibrillar Aβ preparations into the brain and, also, many of the 

aforementioned studies, which presented microglial uptake of Aβ, were conducted under in 

vitro conditions and could not always be confirmed in vivo. Alarmingly, recent studies showed 

that microglia that were cultured in vitro have reduced expression of microglia-specific genes 
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(Gosselin et al., 2017) and, even more important, the addition of serum to microglia cultures 

increases their intrinsic phagocytic capacity (Bohlen et al., 2017). Thus, it is conceivable that 

the capability of microglia to phagocytose Aβ in vivo is very limited. Studies from Grathwohl 

et al., Spangenberg et al. and Dagher et al., which showed that depletion of microglia does not 

impair plaque deposition and Aβ levels, underline the possibility that microglia are unable to 

efficiently phagocytose Aβ (Dagher et al., 2015; Grathwohl et al., 2009; Spangenberg et al., 

2016). However, in vivo studies, in which single Aβ plaques were continuously tracked by two-

photon imaging, reported decreasing plaque sizes when amyloid plaques were surrounded by a 

growing number of microglia (Bolmont et al., 2008). Furthermore, enlarged plaques after 

diphtheria toxin-induced microglia depletion indicate that microglia can regulate plaque size 

(Zhao et al., 2017). 

These results would suggest that microglia are indeed able to phagocytose Aβ. 

However, as already discussed in the previous sections, several environmental factors such as 

the modification of the innate immune system or a developing pathology can influence the 

microglial gene expression profile and thereby determine cell functionality. Accordingly, the 

exposure of microglia to Aβ, was reported to induce a downregulation of microglial Aβ 

phagocytosis receptors and consequently impair microglial Aβ phagocytosis (Hickman et al., 

2008; Krabbe et al., 2013). Following these findings and to gain further insight into the in vivo 

phagocytic capacity of microglia during AD pathology, I will focus on “milk fat globule-

epidermal growth-factor 8” (MFG-E8), a protein that was recently identified to be involved in 

the phagocytosis of Aβ (Boddaert et al., 2010). 
 

3.4.2 MFG-E8-mediated phagocytosis  
Milk fat globule-epidermal growth-factor 8 (MFG-E8) is a bivalent-binding, secretory 

glycoprotein, which was initially identified as a mammary epithelial cell surface protein (Stubbs 

et al., 1990). In mice, the protein consists of an amino-terminal signal peptide, which is required 

for its secretion into the extracellular space, two epidermal growth-factor homologous regions 

(E1, E2) and two carboxy-terminal discoidin regions homologous to coagulation factor-V/VIII 

(C1, C2) (Fig. 6) (Wang, 2014). MFG-E8 is present in two isoforms, with the shorter isoform 

being more abundant but lacking a proline/threonine-rich domain between E2 and C1. MFG-

E8 has been implicated in wound healing, autoimmune disease and cancer. However, the major 

function of the protein is the recognition of apoptotic cells or molecular debris in order to initiate 

its uptake by phagocytes in many different tissues (Hanayama et al., 2002; 2004). Thus, MFG-

E8 acts as an opsonin to mark dead or dying cells for phagocytosis. Thereby, the carboxy-

terminal end of C2 of MFG-E8 has a high binding activity to phosphatidylserine (PS) (Oshima 
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et al., 2002). PS is exposed by apoptotic cells and acts as an “eat me” signal that can be bound 

by MFG-E8 but also other opsonins (Hanayama et al., 2002; Li et al., 2012). Upon binding of 

MFG-E8 to apoptotic cells, an arginyl-glycyl-aspartic acid (RGD)-motif in the E2 domain 

facilitates phagocytic engulfment via the ligation to the vitronectin receptor (αvβ3, αvβ5 integrin 

dimer) expressed on the cell surface of the tissue macrophages. Upon MFG-E8 recognition, the 

αvβ3, αvβ5 integrin induces the CrkII-DOCK180-dependent Rac1 signaling pathway to 

transform the macrophage into a phagocyte (Akakura et al., 2004; Albert et al., 2000). 
 

 
Figure 6: Murine MFG-E8 protein structure. MFG-E8 consists of two amino-terminal EGF-like domains 

(EGF) and two carboxy-terminal discoidin-like domains (C1, C2). In addition, the amino-terminal part harbors a 

signal peptide, which is required for secretion of the protein. In mice, the more abundant, shorter isoform of MFG-

E8 lacks a proline/threonine-enriched domain, which is located between the EGF and C1 domain in the long 

isoform. The cell adhesion RGD-motif, which enables the recognition by macrophages via the αvβ3/5 integrin 

dimer, is positioned in the second EGF domain. N: amino-terminal, C: carboxy-terminal, EGF: epidermal growth-

factor homologous regions, C1/C2: discoidin regions, P/T: proline/threonine-enriched domain, RGD: arginyl-

glycyl-aspartic acid. 

In the brain, the majority of MFG-E8 was shown to be expressed and secreted by 

astrocytes and microglia in order to induce the phagocytosis of apoptotic cells or PS-exposing 

stressed neurons (Boddaert et al., 2010; Fricker et al., 2012; Fuller and Van Eldik, 2008; 

Kawabe et al., 2018; Spittau et al., 2014). Strikingly, one in vitro study showed that addition of 

synthetic Aβ to a mixed neuronal/glial culture induced release of MFG-E8, which in turn, 

mediated engulfment of Aβ by microglia. Interestingly, this study reported a strong 

accumulation of MFG-E8 around synthetic Aβ preparations before internalization (Kawabe et 

al., 2018). This interaction of MFG-E8 and Aβ was further confirmed by the surface plasmon 

resonance technique, which identified a dose-dependent increase in the interaction of the 

recombinant proteins Aβ and MFG-E8 (Boddaert et al., 2010). In accordance, the 
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pharmacological neutralization or genetic deletion of MFG-E8 suppressed phagocytosis of 

synthetic Aβ in murine and human peripheral macrophages indicating an essential contribution 

of MFG-E8 on macrophage-mediated phagocytosis of Aβ (Boddaert et al., 2010). Furthermore, 

it was reported that mRNA as well as protein levels of MFG-E8 in brains of human AD patients 

and Tg2576 mice were altered in comparison to healthy individuals and wildtype mice 

(Boddaert et al., 2010; Fuller and Van Eldik, 2008). Remarkably, MFG-E8 levels were 

dramatically decreased with AD. Nevertheless, MFG-E8 was detectable in brains of AD 

patients where it was mainly found in plaque-free regions indicating that in regions with high 

Aβ levels the protein may be depleted due to its requirement for Aβ phagocytosis (Boddaert et 

al., 2010). However, whether MFG-E8 is indispensable for the microglial-mediated removal of 

Aβ during AD pathology in vivo is unknown, but was addressed in a study presented in the 

following. 

 

3.4.3 Lack of MFG-E8 does not affect microglia-mediated Aβ phagocytosis 
To examine how deficiency of MFG-E8 affects microglial phagocytosis and the pathology of 

cerebral β-amyloidosis, we crossed Mfge8-/- mice to the APPPS1 tg mouse line (Radde et al., 

2006; Silvestre et al., 2005). We used the resulting APPPS1 x Mfge8-/- mouse line, which shows 

rapid amyloid deposition starting at six weeks of age, to investigate possible alterations in 

microglial function as well as Aβ pathology (Radde et al., 2006). 

To begin with, we quantified the number of cortical and plaque-associated microglia in 

APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice at two and four months of age. The number 

of microglia was indistinguishable between the two different genotypes, but showed the 

pathology-induced increase in microgliosis between the two and four-month-old examined age 

groups. 

When we next analyzed the in vivo phagocytic capacity of microglia for Aβ in these 

mice, we observed that deficiency of MFG-E8, in contrast to what was reported for peripheral 

macrophages (Boddaert et al., 2010), had no influence on microglial phagocytosis of Aβ as 

assessed by Methoxy-X04 labeled detection of Aβ in primary isolated microglia by 

fluorescence activated cell sorting and direct Aβ measurements in isolated microglia. Using 

these methods, we neither observed differences in Aβ phagocytosis at early disease stages (two 

months of age) nor during more advanced Aβ pathology (four months of age). Accordingly, 

activation of the phagolysosomal compartments, quantified by immunohistochemical staining 

for CD68, within microglia was unchanged between APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-

/- mice.  
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However interestingly, the microglial production of different inflammatory cytokines 

such as TNF-α or IL-10 was attenuated in four-month-old APPPS1 x Mfge8-/- mice, nonetheless 

indicating that the lack of MFG-E8 influences the inflammatory profile emerging during AD 

pathology, but possibly by a mechanism different from Aβ phagocytosis. We therefore 

quantified Aβ plaque pathology in cortical regions of two- and four-month-old APPPS1 x 

Mfge8+/+ and APPPS1 x Mfge8-/- mice. Unexpectedly, we observed a significant reduction in 

Aβ deposits in APPPS1 x Mfge8-/- mice at two months of age. Correspondingly, total Aβ levels 

assessed by ELISA and Western blot were significantly decreased whereas as the Aβ42/40 ratio 

was only slightly affected. However, at four months of age the reduction in Aβ pathology in 

APPPS1 x Mfge8-/- mice was lost. Thus, the decline we observed in the cytokine levels in four-

month-old APPPS1 x Mfge8-/- primary microglia may be a consequence of the reduced plaque 

load at earlier time points, as Aβ deposition is thought to be causative for the inflammatory 

response. 

To confirm the reduction in Aβ pathology in the absence of MFG-E8, we generated 

APP23 x Mfge8-/- mice, which were analyzed at nine and twelve months of age. In line with the 

APPPS1 x Mfge8-/- mice, we detected a decrease in Aβ levels as well as in the cortical Aβ 

plaque load in the younger APP23 x Mfge8-/- mice, whereas in twelve-month-old mice, which 

show robust Aβ pathology, Aβ plaque load was indistinguishable from the APP23 x Mfge8+/+ 

group. 

When we investigated the brain levels of MFG-E8 in relation to ageing in wildtype but 

also in mouse models of AD pathology (APPPS1 and APP23) we observed an age-dependent 

increase in MFG-E8 levels that was also reported earlier (Fuller and Van Eldik, 2008). 

However, Aβ pathology also altered MFG-E8 levels, which started to dramatically rise with the 

onset of Aβ plaque deposition. Remarkably, immunohistochemical staining of brain sections 

identified MFG-E8 accumulating in close vicinity to Aβ deposits and electron microscopy 

revealed that MFG-E8 was associated to Aβ fibrils. These results support on one hand a recently 

published study showing a strong accumulation of MFG-E8 around freshly prepared Aβ in 

vitro, but are in contrast with the described functional consequences of the Aβ-MFG-E8 co-

localization, as accumulation of MFG-E8 around Aβ in vitro was suggested to regulate Aβ 

uptake, which we were unable to confirm (Kawabe et al., 2018).   

Intriguingly, studies in humans identified a 50-amino acid long amyloidogenic fragment 

named medin in the C2 domain of human MFG-E8 (Häggqvist et al., 1999). Medin forms 

vascular amyloid deposits in the medial layer of arteries in 97 percent of the human population 

>50 years(Häggqvist et al., 1999). However, so far there exists no evidence for a pathological 
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outcome of these deposits. As human and mouse MFG-E8 share 64 percent of their amino acid 

sequence, it is conceivable that medin exists also in mice.  

Of note, in the Mfge8-/- mouse model used in our study, the C2 domain that contains the 

medin sequence, is truncated and thus Mfge8-/- mice potentially lack medin. Furthermore, medin 

was shown to promote the aggregation of Serum amyloid A (AA) into fibrils – another amyloid 

depositing in the vasculature – by a potential cross-seeding mechanism (Larsson et al., 2011). 

Accordingly, we hypothesize that the decrease in Aβ pathology we observed in the APP tg mice 

deficient for MFG-E8 may be due to an effect of MFG-E8 on the Aβ fibril formation process 

that promotes initial Aβ aggregation, but is delayed in the absence of MFG-E8. This hypothesis 

is reinforced by the observation of a reduced number of small-sized, but not medium or large-

sized Aβ plaques in brains of APPPS1 x Mfge8-/- mice. 

Ultimately, this study showed that, in vivo, MFG-E8 is not required for microglial 

phagocytosis of Aβ in mouse models of cerebral β-amyloidosis. However, we identified MFG-

E8 to be strongly associated with aggregated Aβ and hypothesize that MFG-E8 promotes the 

initial process of Aβ fibrillization as absence of MFG-E8 decreased Aβ pathology in APP tg 

mice. 
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3.5 Conclusions 
In this work, we investigated three different strategies to modulate the pathology of cerebral β-

amyloidosis through manipulating the innate immune system in the CNS, which is represented 

by microglia. 

Our initial approach to deplete dysfunctional microglia and to replace them with 

infiltrating monocytes failed to improve Aβ pathology, but confirmed that a new 

microenvironment can induce fundamental changes in the function of engrafted or infiltrated 

macrophage populations. This knowledge will help to further understand the high plasticity of 

myeloid cells during the pathogenesis of AD, which is accompanied by many different disease 

states and molecular changes in the brain.  

Remarkably, in a second study, which examined the modulation of the microglial innate 

immune response, we provide first evidence for experimentally induced immune training and 

tolerance in microglia and confirm the presence of innate immune memory in tissue-resident 

macrophages in vivo. Moreover, we identified epigenetic reprogramming to cause changes in 

the microglial immune response by affecting the expression profile of different immune-related  

genes, which subsequently resulted in alterations of the pathology of cerebral β-amyloidosis. 

Strikingly, we identified the transcription factor HIF-1α to be simultaneously to the observed 

changes in Aβ deposition upregulated by immune training and suppressed by tolerance. Thus, 

we suggest HIF-1α activation as an important modulator of AD, whose inhibition might have 

beneficial effects for pathology.  

Since genetic data have placed inflammatory processes at the center of the etiology of 

LOAD, it would be of great interest to investigate further downstream events of the Aβ cascade 

such as neuronal loss, synaptic dysfunction and finally also cognitive behavior after induction 

of innate immune memory in microglia. Furthermore, having shown that epigenetic and 

functional changes of microglial can last for at least six months, pro-longed experiments could 

help to examine whether epigenetic remodeling of the microglial immune response could last 

for the whole life of microglia or might even be inherited after cell division.  

Recent studies have revealed the transcriptome of certain microglial subsets by single 

cell sequencing approaches and identified differential phenotypes in response to their 

parenchymal environment (Keren-Shaul et al., 2017). The discrimination into these microglial 

subpopulations after the induction of immune memory in microglia would provide further 

information about the effects of epigenetic reprogramming in distinct categories of microglia. 

This would finally allow for the application of customized stimuli in order to effectively shape 

the immune memory function of different microglia populations.  
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Finally, when we investigated whether microglial phagocytosis of Aβ – an important 

function of the microglial immune response – is dependent on MFG-E8, we unexpectedly 

revealed a prominent co-localization between MFG-E8 and aggregated Aβ as well as a 

reduction of cerebral β-amyloidosis upon MFG-E8 deletion, but no obvious alterations in the 

microglial phenotype. These results suggest that MFG-E8 is dispensable for microglial 

phagocytosis. However, the presence of medin amyloid, as a fragment of MFG-E8 has lead us 

to the hypothesis that MFG-E8 may be involved in the formation of Aβ fibrils and thus 

contribute to the progression of AD.  

The here presented results highlight microglia and their innate immune response as an 

essential factor in the pathogenesis of AD. However, importantly, we could show that a set of 

distinct inflammatory events can induce long-term modifications of the microglial innate 

immune response through the induction of epigenetic changes in the enhancer landscape, which 

in turn shaped pathology of cerebral β-amyloidosis. With the identification of innate immune 

memory in microglia induced by preceding peripheral immune stimulation, we suggest a new 

strategy to alter the microglial immune response, which should be considered in future studies 

examining the contribution of the innate immune system on neurological diseases. 
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 27 

Abstract 28 

‘Innate immune memory’ is a vital mechanism of myeloid cell plasticity that occurs in response to 29 

environmental stimuli and alters subsequent immune responses. Two types of immunological 30 

imprinting can be distinguished, training and tolerance, which are epigenetically mediated and 31 

enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in 32 

tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here 33 

we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and 34 

tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident 35 

macrophages, microglia, that persists for at least six months. Strikingly, in a mouse model of 36 

Alzheimer’s pathology, immune training exacerbates cerebral β-amyloidosis while tolerance alleviates 37 

it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results 38 

identify immune memory in the brain as an important modifier of neuropathology.   39 
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Main text 40 

Contrary to the long-held assumption that immunological memory exists only in cells of the adaptive 41 

immune system, recent evidence indicates that myeloid cells also display memory effects1,2. For 42 

example, certain immune stimuli ‘train’ blood monocytes to generate enhanced immune responses to 43 

subsequent immune insults3,4. In contrast, other stimuli induce immune tolerance, i.e. suppression of 44 

inflammatory responses to subsequent stimuli3,5. Innate immune memory lasts for several days in vitro 45 

and for up to three months in circulating monocytes in vivo and is mediated by epigenetic 46 

reprogramming in cultured cells, with chromatin changes also apparent in vivo3,6,7. However, whether 47 

immune memory occurs in long-lived tissue-resident macrophages and whether it alters tissue-specific 48 

pathology remains unknown.  49 

Microglia, the brain-resident macrophages, were recently shown to be very long-lived cells8,9. This 50 

makes them particularly interesting for studying immune memory, as virtually permanent modification 51 

of their molecular profile appears possible. As microglia are also known to significantly affect many 52 

neurological diseases10-12, we investigated whether immune memory occurs in microglia in vivo and 53 

how it affects neuropathology.  54 

 55 

Acute immune memory in the brain 56 

It is well-established that inflammation in the periphery can prompt immune responses in the brain13. 57 

To evaluate whether immune memory is inducible in the brain by peripheral stimulation, mice received 58 

daily intraperitoneal injections of low-dose lipopolysaccharides (LPS) on four consecutive days, 59 

leading to mild sickness behaviour and temporary weight loss (Fig.1a and Extended Data Fig.1a). 60 

Three hours after application, the first LPS injection (1xLPS) led to a pronounced increase of blood 61 

cytokine levels, but only modest increases in brain cytokines. Upon the second injection (2xLPS), the 62 

blood levels of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-12 and IFN-γ were diminished 63 

compared to 1xLPS while IL-10 release occurred at similar levels, indicating peripheral immune 64 

tolerance. In sharp contrast, brain cytokines were dramatically increased with 2xLPS injections, 65 

indicating a brain-specific training effect induced by the first LPS stimulus (Figs.1b/c and Extended 66 

Data Fig.2). Accordingly, a conspicuous morphological change in microglia occurred after 2xLPS, 67 

while activated (GFAP+) astrocytes only increased after 3xLPS (Extended Data Figs.1b-d). 68 

Importantly, 4xLPS virtually abolished TNF-α, IL-1β and IL-6 release in the brain while IL-10 remained 69 

elevated, indicating immune tolerance.  70 
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Next, we examined the contribution of microglia to immune memory in the brain using inducible 71 

CX3CR1-CreER (Cre) mice crossed with mouse lines carrying loxP-flanked genes, where tamoxifen-72 

induced Cre expression results in persistent recombination in long-lived microglia but not in short-lived 73 

myeloid cells, including blood monocytes
14

. We induced microglial knockout of either ‘transforming 74 

growth factor-β-activated kinase 1’ (Tak1), which results in inhibition of NF-κB, JNK and ERK1/2 75 

pathways
14

, or histone deacetylases-1 and -2 (Hdac1/2), two major regulators of epigenetic 76 

reprogramming and macrophage inflammatory responses
15,16

. As expected, tamoxifen-induced 77 

knockout of either Tak1 or Hdac1/2 did not alter the peripheral inflammatory response. Furthermore, 78 

brain cytokine levels were indistinguishable after 1xLPS, but the training effect following 2xLPS 79 

injections was virtually abolished in Cre+ animals. Notably, the cytokines showing the most 80 

pronounced training and tolerance effects (IL-1β, TNF-α, IL-6) were also most affected by microglial 81 

gene knockout (Figs.1b/c and Extended Data Fig.2), indicating that immune memory in the brain is 82 

predominantly microglia-mediated. Moreover, after 1xLPS, Cre+ and Cre– mice showed 83 

indistinguishable weight loss (Extended Data Fig.1a) and sickness behaviour (not shown); however, in 84 

animals with microglial Tak1 knockout, sickness behaviour after 2xLPS was noticeably alleviated 85 

(Supplementary Movie 1).  86 

After intraperitoneal injections, LPS was found in the blood but not in the brain, indicating that neither 87 

significant entry of LPS into the brain nor opening of the blood-brain barrier occurred, corresponding 88 

with previous reports
17

. The latter was confirmed by the absence of blood iron in the brain 89 

parenchyma. Also, using 'type 2 CC chemokine receptor’ (CCR2) reporter mice
18

, no extravasation of 90 

circulating monocytes was found (Extended Data Figs.1e-g), confirming that immune memory was 91 

mediated by brain-resident macrophages alone. 92 

 93 

Immune memory shapes neuropathology 94 

Next, we analysed whether the training- and tolerance-inducing stimuli 1xLPS and 4xLPS, 95 

respectively, could lead to long-term alterations of brain immune responses and thereby modify 96 

disease pathogenesis. APP23 mice are a model of Alzheimer’s disease (AD) pathology, where 97 

plaques of insoluble amyloid-β develop from 6 months of age. Amyloid plaques lead to activation of 98 

microglia
19

, thereby providing a stimulus that should reveal microglial immune memory. We injected 3-99 

month-old APP23 mice with 1x/4xLPS, then analysed pathology 6 months later (Fig.2a). Strikingly, 100 

1xLPS significantly increased while 4xLPS significantly decreased both plaque load and total amyloid-101 
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β levels compared to control animals (Fig.2b), with plaque-associated neuritic damage correlating 102 

directly with plaque size in all treatment groups (Extended Data Figs.3a-c). Also, the protein levels of 103 

amyloid-β precursor protein (APP) and its cleavage products were indistinguishable amongst groups, 104 

indicating equivalent amyloid-β generation (Extended Data Fig.3d). Furthermore, neither the total 105 

number of microglia nor the number of microglia clustering around plaques was altered by LPS 106 

treatments (Fig.2c), while the number of activated (GFAP+) astrocytes decreased slightly both with 1x 107 

and 4xLPS treatment (Extended Data Fig.3e). However, the brain levels of IL-1β, IL-6 and IL-12 were 108 

reduced in 4xLPS-treated APP animals, while in 1xLPS-treated APP mice IL-10 was reduced. In 109 

contrast, brain cytokine levels were not altered in wildtype littermate controls and baseline blood 110 

cytokine levels were unchanged in wildtype and APP animals. Furthermore, an additional LPS 111 

injection at 9 months of age caused indistinguishable peripheral cytokine responses (Fig.2d and 112 

Extended Data Figs.4a-c). Thus, peripheral immune stimuli cause long-term alterations in the brain 113 

immune response and differentially affect AD pathology. 114 

To test for immune memory effects in a second disease model, we injected wildtype animals with 115 

1x/4xLPS and induced focal brain ischemia one month later. One day post-ischemia, neuronal 116 

damage and microglial numbers were indistinguishable amongst treatment groups (Fig.3a), indicating 117 

that the initial ischemic insult was unaffected by 1x/4xLPS. However, the acute inflammatory 118 

response, which is driven by brain-resident cells early after ischemia12, differed, showing increased 119 

levels of IL-1β in 1xLPS- and decreased levels in 4xLPS-treated animals. In contrast, the release of 120 

IL-10 was significantly suppressed by 1xLPS only (Fig.3b), reminiscent of results in APP animals 121 

(Fig.2d). Other brain cytokines and blood cytokine levels were indistinguishable amongst groups 122 

(Extended Data Fig.5). Importantly, seven days after brain ischemia, the volume of neuronal damage 123 

and microglial activation was strongly reduced by 4xLPS but unaffected by 1xLPS (Figs.3c/d). These 124 

results confirm long-term modulation of brain immune responses and suggest persistent modification 125 

of stroke pathology following a tolerizing but not a training stimulus, possibly due to the severity of the 126 

insult preventing its further exacerbation through amplification of the immune response.  127 

 128 

Microglial molecular profiles 129 

In vitro, immune memory in macrophages results from epigenetically-mediated alterations in the 130 

enhancer repertoire, leading to transcriptional changes3,20,21. Since our data indicated that acute 131 

immune memory in the brain is mediated predominantly by microglia, we isolated microglia by cell 132 
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sorting (Extended Data Fig.6) from 9-month-old animals stimulated with 1x/4xLPS at 3 months of age 133 

and performed chromatin immunoprecipitation for mono-methylation at lysine 4 of histone 3 134 

(H3K4me1) and acetylation at lysine 27 of histone 3 (H3K27ac), which define active enhancers20,21. 135 

Thus, we identified 20,241 putative active enhancers across all conditions.  136 

First, we focussed on H3K4me1 marks, which should mark all enhancers activated in response to the 137 

first and/or second immune stimulus (as enhancers may lose H3K27ac after cessation of inflammation 138 

but retain H3K4me1 marks)20,21. Strikingly, H3K4me1 levels differed significantly between control and 139 

LPS treatment groups both in wildtype and APP animals but also between 1x- and 4xLPS-treated 140 

mice (Extended Data Fig.7b; Supplementary Table1). For example, enhancers with increased 141 

H3K4me1 levels in microglia from 1xLPS versus 4xLPS wildtype animals showed enrichment for the 142 

‘thyroid hormone signalling pathway’, including a putative enhancer for hypoxia inducible factor-1α 143 

(HIF-1α). Similarly, enhancers with higher H3K4me1 levels in 1xLPS versus 4xLPS-treated APP mice 144 

were enriched for the ‘HIF-1 signalling pathway’. On the other hand, 4xLPS-treated APP animals 145 

showed increased H3K4me1 levels in putative enhancers related to phagocytic function (Fig.4a). 146 

Importantly, no pathway enrichment was found when comparing H3K4me1 levels in microglia from 147 

APP and wildtype controls (Fig.4a), indicating that H3K4me1 levels were altered predominantly in 148 

response to LPS stimulation.  149 

Next, we analysed enhancer activation by determining differential regulation of H3K27ac levels. In line 150 

with the requirement of an acute stimulus for H3K27ac deposition20, differential enhancer activation 151 

was more pronounced in APP animals (where amyloid plaques activate microglia) than in wildtype 152 

groups (190±18 in APP, 69±5 in wildtype groups; Extended Data Fig.7e; Supplementary Table2). For 153 

example, differentially regulated H3K27ac levels in microglia from 1xLPS-treated versus control APP 154 

animals were enriched for the ‘HIF-1 signalling pathway’, with enhancer regions also being enriched 155 

for HIF-1α binding motifs (Fig.4b and Extended Data Fig.8), in line with changes in H3K4me1 levels 156 

(Fig.4a) and the reported key role of HIF-1α in trained immunity and macrophage inflammatory 157 

responses4,22.  158 

Active enhancers in microglia from 4xLPS-treated versus control APP animals only showed 159 

enrichment for the ‘Rap1 signalling pathway’, a pathway implicated in phagocytosis of opsonized 160 

targets23,24, again matching changes in H3K4me1 levels (Figs.4a/b). Strikingly, the comparison of 161 

microglia from APP animals that received the training- (1xLPS) and tolerance-inducing (4xLPS) 162 

stimuli, showed no pathway enrichment for active enhancers in 4xLPS-treated animals while 163 



Publications 
 

 93 

 6

enhancers in 1xLPS-treated animals were enriched for a large number of inflammation-related 164 

pathways, highlighting the differential effects of the two immune memory states. Finally, the 165 

comparison of microglia from vehicle-treated wildtype and APP animals demonstrated a small number 166 

of differentially activated enhancers with enrichment for the ‘thyroid hormone signalling pathway’ 167 

(including a putative active enhancer for Hif1a) as well as the ‘mTOR signalling pathway’ (Fig.4b), 168 

indicating that microglia are also epigenetically reprogrammed in response to brain pathology alone.  169 

We next examined microglial mRNA levels under the same conditions to determine whether 170 

epigenetic alterations were reflected in gene expression levels (Supplementary Table3). First, we 171 

determined the concordance between 772 enhancers with significantly increased/decreased H3K27ac 172 

levels (Supplementary Table2) and the direction of change in the expression of their nearest gene. 173 

Indeed, there was a significant (albeit modest) concordance between alterations in H3K27ac levels 174 

and gene expression (median concordance of pairwise comparisons =58%, P=0.03). This suggested 175 

that gene expression is directly affected by the microglial active enhancer repertoire. Accordingly, 176 

weighted gene correlation network analysis (WGCNA25) revealed striking parallels to epigenetic 177 

changes (Figs.5a-c and Supplementary Table4). For example, the red module (MEred) contained the 178 

Hif1a gene, showed enrichment for the ‘HIF-1 signalling pathway’ and correlated strongly with the 179 

1xLPS-treated APP group. Furthermore, gene expression in MEred was significantly upregulated in 180 

APP versus wildtype control animals and further increased by 1xLPS but downregulated by 4xLPS 181 

treatment.  182 

HIF-1α activation in inflammatory-stimulated macrophages can occur downstream of mitochondrial 183 

hyperpolarization; enhanced HIF-1α signalling in turn promotes glycolysis, measurable as lactate 184 

release26. Accordingly, the green module (MEgreen), which correlated positively with control and 185 

1xLPS-treated APP groups but negatively with control and 4xLPS-treated wildtype groups, was found 186 

to be enriched in genes of the ‘glycolysis’ pathway. Microglial gene expression in MEgreen was 187 

upregulated in APP versus wildtype control animals and again further increased in APP animals by 188 

1xLPS but decreased by 4xLPS treatment. Therefore, we analysed mitochondrial membrane potential 189 

and lactate release in microglia. Strikingly, microglia from 1xLPS-treated APP animals showed 190 

strongly increased mitochondrial membrane potential, which correlated positively with the release of 191 

lactate (Fig.5d), functionally corroborating the epigenetic and transcriptional alterations in trained 192 

microglia. Additionally, immunostaining confirmed higher protein levels of HIF-1α in plaque-associated 193 

microglia, which were further increased in 1xLPS-treated APP animals (Figs.5e/f). Thus, HIF-1α 194 
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signalling and a metabolic switch to glycolysis are activated in response to cerebral β-amyloid 195 

deposition, and are enhanced by immune training but reduced by immune tolerance in microglia. 196 

In contrast to MEred/green, MEgrey correlated positively with the control wildtype but negatively with 197 

control and 1xLPS-treated APP groups. Compared to wildtype controls, microglial gene expression in 198 

MEgrey was downregulated in APP control animals and further decreased by 1xLPS stimulation, but 199 

showed unchanged levels in 4xLPS-treated APP animals (Figs.5a-c). Importantly, MEgrey was 200 

enriched for phagocytosis-related pathways, including the ‘Rap1 signalling pathway’ (Figs.5a-c), again 201 

reflecting epigenetic changes (Fig.4). We therefore tested whether phagocytosis of Aβ was enhanced 202 

in 4xLPS-treated APP animals. Indeed, microglial Aβ content was increased ~1.75-fold in 4xLPS-203 

treated compared to APP control animals (Fig.5g), providing further functional validation of the 204 

microglial enhancer repertoire and gene expression profiles.  205 

Recent data indicate that context-specific microglial phenotypes exist, e.g. ‘disease-associated 206 

microglia’ (DAM27) and the ‘microglial neurodegenerative phenotype’ (MGnD28). Interestingly, the 207 

brown module (MEbrown), which was significantly upregulated by both LPS treatments in wildtype as 208 

well as in all APP groups, contained a number of homeostatic microglial genes (e.g. Hexb, Cx3cr1, 209 

Csf1r) but also all of the ‘stage 1 DAM’ core-genes except Apoe, as well as 4 of 12 ‘stage 2’ core-210 

genes27 (Fig.5c). Of note, the gene encoding ApoE, which may be crucial for promoting a detrimental 211 

microglial phenotype28,29 was found in the same module as Hif1a (MEred). MEred also contained other 212 

genes genetically linked to AD risk, namely Cd33 and Inpp5d30, suggesting that HIF-1α may also be a 213 

detrimental modulator of AD pathology.  214 

 215 

The epigenetic landscape of microglia has only been described under homeostatic conditions31-33. Our 216 

data now demonstrate epigenetic modifications in microglia in response to peripheral immune 217 

stimulation but also as a result of cerebral β-amyloidosis, including activation of the HIF-1α and mTOR 218 

pathways, and leading to transcriptional and functional alterations. While the global epigenetic and 219 

transcriptional changes were relatively modest, they were likely driven by a small number of microglia 220 

that received the required secondary immune stimulation, as evidenced for example by increased 221 

levels of HIF-1α in plaque-associated microglia (Fig.5). mTOR activation is a well-known event in early 222 

AD34 and was recently shown in microglia, where it activated HIF-1α and glycolysis to sustain 223 

microglial energy demand in AD models35. Our data now indicate that mTOR activation may be 224 

mediated by epigenetic microglial reprogramming in response to cerebral β-amyloidosis and that HIF-225 
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1α signalling downstream of mTOR could be a detrimental event, because augmentation or 226 

suppression of HIF-1α signalling occurred concomitantly with aggravated or alleviated Aβ deposition, 227 

respectively.  228 

We here provide evidence of both immune training and tolerance in microglia and demonstrate their 229 

impact on neuropathology for the first time. While we cannot completely exclude that other cell-types 230 

contribute to immune memory and modulation of pathology in the brain, microglial-specific gene 231 

knockout of Tak1 or Hdac1/2 virtually abolished immune training (Fig.1), indicating that microglia are 232 

likely the major effectors of immune memory. Importantly, in our experiments, immune memory effects 233 

mostly became apparent following a secondary inflammatory stimulus, corroborating the concept of 234 

innate immune memory1,3. However, while in the periphery training may be beneficial due to enhanced 235 

pathogen elimination7,36,37, and tolerance may be detrimental due to higher rates of infection resulting 236 

from immune suppression5, we found that training promotes while tolerance alleviates neuropathology. 237 

This is consistent with the beneficial effects of preventing microglial pro-inflammatory responses in 238 

models of AD pathology and stroke12,38 and the worsening of cerebral β-amyloidosis in response to 239 

pro-inflammatory peripheral stimuli in animal models39. Similarly, immune training has recently been 240 

described in epithelial stem cells, where it promotes wound healing but may also underlie autoimmune 241 

disorders40. Thus, immune memory in the brain could conceivably affect the severity of any 242 

neurological disease that presents with an inflammatory component, but this will need to be studied for 243 

each individual condition.  244 

Our data provide proof-of-principle for innate immune memory in microglia, and while our different LPS 245 

injection paradigms may not necessarily model physiological stimuli, we found that individual cytokines 246 

applied peripherally may also elicit immune memory effects in the brain (Extended Data Fig.9). These 247 

results suggest that a wide variety of immune challenges may induce microglial immune memory and 248 

provide a possible mechanism for LPS-induced immune memory in the brain. It will be crucial to 249 

determine which other stimuli may lead to long-term modulation of microglial responses and thereby 250 

contribute to the severity of many neurological diseases. 251 

 252 
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Materials and Methods 433 

 434 

Animals 435 

For all experiments, 3 month-old hemizygous APP23 transgenic (C57BL/6J-Tg(Thy1-436 

APPK670N;M671L)23), APP23 transgene-negative littermates or C57BL/6J (wildtype) mice (Jackson 437 

Laboratory) were used.  438 

For experiments analysing immune responses after acute LPS and cytokine stimulation (see below), 439 

both male and female mice were used. For microglia-specific gene knockouts, CX3CR1-CreER 440 

animals were crossed with Tak1 fl/fl animals and Cre recombinase expression was induced by 441 

subcutaneous tamoxifen injections as previously described14. Similarly, microglial-specific knockout of 442 

Hdac1/2 was achieved after crossing CX3CR1-CreER animals with a Hdac1/2 fl/fl line15. Both Tak1 fl/fl 443 

and Hdac1/2 fl/fl were injected at 2-3 months of age and were incubated for four weeks without further 444 

treatment. Tamoxifen-injected CX3CR1-Cre negative littermates were used as controls (because 445 

responses in CX3CR1-Cre negative animals were indistinguishable in Hdac1/2 fl/fl and Tak1 fl/fl lines, 446 

pooled data are shown in Fig. 1).  447 

As there is a significant gender effect on the pathology of both brain ischemia and cerebral β-448 

amyloidosis,41,42 only female mice were used for the analyses of brain pathology. APP23 mice express 449 

a transgene consisting of human amyloid-β precursor protein (APP) with the KM670/671NL mutation 450 

under the Thy-1 promoter, and have been backcrossed with C57BL/6J mice for >20 generations. 451 

Female mice develop cerebral β-amyloid lesions in the neocortex around 6 months of age19.  452 

Animals were maintained under specific pathogen-free conditions. All experiments were performed in 453 

accordance with the veterinary office regulations of Baden-Württemberg (Germany) and were 454 

approved by the Ethical Commission for animal experimentation of Tübingen and Freiburg, Germany. 455 

 456 

Peripheral immune stimulation 457 

3-month-old mice were randomly assigned to treatment groups and were injected intraperitoneally 458 

(i.p.) with bacterial lipopolysaccharides (LPS from Salmonella enterica serotype typhimurium, Sigma) 459 

at a daily dose of 500 µg/kg bodyweight. Animals received either four LPS injections on four 460 

consecutive days (4xLPS), a single LPS injection followed by three vehicle injections on the following 461 

three days (1xLPS) or four vehicle injections (PBS). Acute stimulation showed indistinguishable 462 

cytokine responses in wildtype and APP23 transgenic animals; Figure 1 shows the pooled data from 463 
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both genotypes (see Extended Data Fig. 2 for data separated by genotype). Furthermore, as cytokine 464 

responses were indistinguishable in animals treated with 1/2/3/4xPBS, pooled data from all time points 465 

are shown. 466 

For peripheral cytokine treatments, recombinant murine cytokines (TNF-α, IL-10; PeproTech) were 467 

aliquoted as by the manufacturer’s instructions and stored at -80°C until use. To determine whether a 468 

long-term change in the brain’s immune response (training or tolerance) occurred after peripheral 469 

cytokine injection, mice were treated on four consecutive days with 0.1 μg/g bodyweight IL-10 or once 470 

with 0.1/0.2 μg/g bodyweight TNF- α. Control mice received four vehicle injections (PBS). Four weeks 471 

later, cytokine- and control-treated mice received LPS (1 μg/g bodyweight) or PBS, and were prepared 472 

3 hours after the injection. 473 

At the specified time-points, animals were deeply anaesthetised using sedaxylan/ketamine (64 474 

mg/kg//472 mg/kg), blood was collected from the right ventricle of the heart and animals were 475 

transcardially perfused with ice-cold PBS through the left ventricle. The brain was removed and 476 

sagitally separated into the two hemispheres, which were either fixed in 4% paraformaldehyde (PFA) 477 

or fresh-frozen on dry ice. Fresh-frozen hemispheres where homogenised using a Precellys® lysing kit 478 

and machine at 10 or 20% (w/v) in homogenisation buffer (50 mM Tris pH 8, 150 mM NaCl, 5 mM 479 

EDTA) containing phosphatase and protease inhibitors (Pierce). Fixed hemispheres were kept in 4% 480 

PFA for 24h, followed by cryoprotection in 30% sucrose in PBS, subsequently frozen in 2-481 

methylbutane and coronally sectioned at 25 μm using a freezing-sliding microtome (Leica).  482 

 483 

Focal brain ischemia 484 

For the induction of a focal cortical stroke, we modified existing models of endothelin-1 (ET-1)-induced 485 

brain ischemia43 to avoid traumatic injury to the brain. Under anaesthesia and analgesia (Fentanyl, 486 

Midazolam, Medetomidin: 0.05//5//0.5 mg/kg bodyweight), 3-month-old animals were fixed in a 487 

stereotactic frame and a circular piece of skull was removed (5 mm diameter, centred on Bregma; as 488 

described in44). The dura mater was carefully removed with the help of a microhook (Fine Science 489 

Tools) and 5 µl of ET-1 (Bachem; 64 µM) in Hanks Buffered Salt Solution (Invitrogen) or vehicle 490 

solution was topically applied to the cortex and incubated for 10 min. The craniotomy was then 491 

covered with a 5 mm glass coverslip, which was fixed in place with dental cement (Hybond), the skin 492 

was sutured, then the mice received antidote (Flumazenil, Atipamezol: 0.5//2.5mg/kg bodyweight) and 493 

were health-monitored. Control mice underwent the same surgical procedure with application of 494 
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vehicle solution to the cortex. After 4 weeks, animals were deeply anesthetized and prepared as 495 

described above. 496 

 497 

Western Blotting analysis 498 

For Western Blotting, total brain homogenates were sonicated 3x5 seconds (LabSonic, B. Braun 499 

Biotech), protein levels of the brain homogenates were quantified with a microplate bicinchoninic acid 500 

(BCA) assay (Pierce) and adjusted accordingly. Samples were then analysed on NuPage Bis-Tris gels 501 

(Invitrogen) using standard procedures. Proteins were transferred to nitrocellulose membranes, 502 

blocking was performed with 5% milk in PBS containing 0.05% Tween (PBST) for 1h and blots were 503 

incubated with mouse anti-Aβ (6E10; 1:1000, Covance) in PBST overnight at 4°C. Membranes were 504 

then probed with the secondary HRP-labelled antibodies (1:20,000, Jackson ImmunoLaboratories). 505 

Protein bands were detected using chemiluminescent peroxidase substrate (ECL prime, GE 506 

Healthcare). Densitometric values of the protein band intensities were analysed with the software 507 

package Aida v.4.27 and normalised to GAPDH intensities. 508 

 509 

Immunostaining 510 

Immunohistochemical staining was performed on free-floating sections using either Vectastain Elite 511 

ABC kits (Vector laboratories) or fluorescent secondary antibodies (Jackson Immunolaboratories). 512 

Unless otherwise noted, brain sections were blocked for 1h with 5% normal serum of the secondary 513 

antibody species, followed by primary antibody incubation overnight at 4°C. Primary antibodies used 514 

were: rabbit anti-Pu.1 (1:1000, Cell Signalling), rabbit anti-Iba1 (1:1,000; Wako; catalogue no. 019-515 

19741), rabbit anti-GFAP (1:500, Biozol; catalogue no. Z0334), rabbit anti-Aβ (CN3; 1:2,00045), mouse 516 

anti-HIF-1α (1:500; Novus Biologicals, catalogue no. NB100-105, clone H1alpha67), rat anti-CD11b 517 

(1:2000; Millipore, catalogue no. MAB1387Z), rabbit anti-APP (antibody 5313 to the ectodomain of 518 

APP, 1:750; kind gift of Prof. Christian Haas, Munich). Sections were then washed and incubated with 519 

secondary antibodies. Cresylviolet and Congo Red staining was conducted according to standard 520 

procedures. Fluorescent plaque staining was achieved using Methoxy-X04 (4% vol of 10 mg/ml 521 

methoxy-X04 in DMSO, and 7.7% vol CremophorEL in 88.3% vol PBS) for 20 min, RT.  522 

Images were acquired on an Axioplan 2 microscope with Axioplan MRm and AxioVision 4.7 software 523 

(Carl Zeiss). Fluorescent images were acquired using a LSM 510 META (Axiovert 200M) confocal 524 

microscope with an oil immersion 63X/1.4NA objective and LSM software 4.2 (Carl Zeiss), using 525 
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sequential excitation of fluorophores. Maximum-intensity projections were generated using IMARIS 526 

8.3.1 software (Bitmap).  527 

For quantitative comparisons, sections from all groups were stained in parallel and analysed with the 528 

same microscope settings by an observer blinded to the treatment groups. To quantify the intensity of 529 

total microglial HIF-1α staining, high-resolution bright field images were acquired using fixed camera 530 

exposure time and lamp intensity and subsequently analysed with Fiji software. Colour channels were 531 

split and a fixed intensity threshold was applied to the red channel. On each image, the thresholded 532 

area over the total image area was calculated. Area fractions were measured on images of at least 9 533 

plaques and 15 plaque-free regions per animal. To exclude an influence of plaque-size on microglial 534 

HIF-1α levels, plaques of similar size were selected for analysis of HIF-1α levels in the different 535 

treatment groups (average plaque size: PBS i.p.: 1.73±0.15, 1xLPS i.p.: 1.84±0.19, 4xLPS i.p. 536 

2.27±0.39% Congo red area fraction).  537 

For nuclear HIF-1α staining, a modified staining protocol was used. Briefly, sections were blocked with 538 

mouse Ig blocking reagent (Vector laboratories) for 1h, RT, followed by blocking with normal donkey 539 

serum for 1h, RT. Sections were then incubated overnight with mouse anti-HIF1α (clone mgc3, 1:50; 540 

Thermo Fisher Scientific, catalogue no. MA1-516) and rabbit anti-Pu.1 (1:250; New England Biolabs, 541 

catalogue no. 2258S. Clone 9G7), 4°C. To quantify the intensity of nuclear HIF-1α staining, z-stacks 542 

from 3 plaques and plaque-free regions per animal were acquired with the same microscope settings 543 

and subsequently analysed with IMARIS 8.3.1 software. Using the surfaces tool, a mask based on 544 

microglial nuclei was created using staining for Pu.1. A filter for area was applied to exclude 545 

background staining. The created surface was used to mask the HIF-1α channel. The mean masked 546 

HIF-1α intensity was then determined. 547 

To quantify neuronal dystrophy, fluorescent images from 5-10 plaques per animal were acquired with 548 

the same microscope settings and subsequently analysed with Fiji software. Maximum intensity 549 

projections were generated to choose the region of interest consisting of APP-staining and the plaque. 550 

Fluorescence channels were split and intensity thresholds were applied to each channel. For every 551 

plaque, the thresholded area within the region of interest was calculated as a measure of plaque size 552 

and dystrophic area. 553 

 554 

Stereological and morphological quantification 555 
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Stereological quantification was performed by a blinded observer on random sets of every 12
th
 556 

systematically sampled 25 μm thick sections throughout the neocortex. Analysis was conducted using 557 

the Stereologer software (Stereo Investigator 6; MBF Bioscience) and a motorized x-y-z stage coupled 558 

to a video microscopy system (Optronics). For quantification of total Pu.1- and GFAP-positive cells, 559 

the optical fractionator technique was used with three-dimensional dissectors as previously 560 

described
46

. For the quantification of plaque-associated cells, plaques were identified based on Congo 561 

Red staining and cells in their immediate vicinity were counted. Plaque load was determined by 562 

analysing the cortical area covered by Congo Red and/or anti-Aβ staining using the area fraction 563 

fractionator technique
46

. The volume of neuronal damage and microglial activation after brain ischemia 564 

was determined using the Cavalieri estimator technique.  565 

For analysing microglial morphology, three images from three non-consecutive brain sections per 566 

animal were acquired from Iba-1 immunostained sections using identical camera acquisition settings, 567 

at 20X/0.5NA magnification. In order to perform the filament tracing in IMARIS (v.8.3.1), images were 568 

pre-processed in Fiji to optimise their contrast for reconstruction. The image background was 569 

subtracted using the in-built Fiji plugin to obtain an evenly distributed intensity and enhance contrast to 570 

the cells; subsequently the images were sharpened and their intensity was adjusted to the respective 571 

minimum and maximum histogram values. Filaments were then traced in IMARIS using the in-built 572 

Autopath algorithm. Reconstruction parameters were kept constant among all images; each cell was 573 

reconstructed as a 'filament' element in IMARIS, associated with a total length and volume. 574 

 575 

ELISA 576 

For quantification of Aβ by ELISA (Meso Scale Discovery) in brain homogenates or by SIMOA (Single 577 

Molecule Array, Quanterix) in isolated microglial cells, samples were pre-treated with formic acid 578 

(Sigma-Aldrich, final concentration: 70% vol/vol), sonicated for 35 seconds on ice, and centrifuged at 579 

25,000g for 1 hour at 4°C. Neutralization buffer (1 M Tris base, 0.5 M Na2HPO4, 0.05% NaN3 (wt/vol)) 580 

was then added at a 1:20 ratio. Aβ was measured by an observer blinded to the treatment groups 581 

using human (6E10) Aβ triplex assay (Meso Scale Discovery, MSD) in brain homogenates or Simoa 582 

Human Abeta 42 2.0 Kit (Quanterix) in isolated microglia according to the manufacturer’s instructions.  583 

Soluble APPβ containing the Swedish mutations (as present in the APP23 transgene) was measured 584 

using the sw soluble APPβkit (Mesoscale Discovery) following the manufacturer’s instructions after 585 

extraction with 1% Triton-X 100 and ultracentrifugation for 1h, 135,000g, 4 °C.  586 
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For cytokine measurements, brain homogenates were centrifuged at 25,000g for 30 minutes at 4°C. 587 

Supernatants were analysed using the mouse pro-inflammatory panel 1 V-plex plate (Mesoscale 588 

Discovery) according to the manufacturer’s instructions. To determine blood cytokines, serum was 589 

obtained by coagulation of whole blood in Vacuettes (Greiner Bio-One) for 10 min, RT, and 590 

centrifugation for 10 min, 2,000g. Serum samples were diluted 1:2 before measurements. The 591 

investigator was blinded to the treatment groups.  592 

Measurements were performed on a Mesoscale Sector Imager 6000 or a Simoa HD-1 Analyzer. For 593 

analyses of brain homogenates, protein levels were normalised against total protein amount as 594 

measured by BCA protein assay (Pierce).  595 

To determine levels of LPS in blood and brain homogenates, the Limulus Amebocyte Lysate assay 596 

was used according to the manufacturer’s instructions (Pierce LAL Chromogenic Endotoxin 597 

Quantitation Kit). Standards were prepared either in serum or brain homogenate from non-injected 598 

control animals. Serum samples were diluted 1:100 and brain homogenates 1:5 to eliminate matrix 599 

effects. 600 

 601 

Isolation of microglia and fluorescence-activated cell sorting (FACS) analysis 602 

Fluorescence-activated cell sorting of microglia was performed based on CD11bhigh and CD45low as 603 

previously described9 (see also Extended Data Fig.6). 604 

 605 

Assessment of microglial mitochondrial membrane potential and lactate release 606 

To assess the microglial mitochondrial membrane potential, 10k microglia were sorted into 70 μl PBS. 607 

Cells were incubated at 37°C with 3,3'-Dihexyloxacarbocyanine Iodide, DiOC6(3) (Thermo Fisher 608 

Scientific) at a final concentration of 0.2 nM for 20 minutes. At this concentration, mitochondrial dye 609 

accumulation is largely dependent on the mitochondrial membrane potential, with only minor 610 

contributions of the plasma membrane potential47. After incubation, the cell suspension was diluted 611 

with ice-cold PBS and DiOC6(3) fluorescence was immediately acquired with a Sony SH800 612 

instrument.  613 

For the assessment of microglial lactate release, 50k microglia from the same animals as used for 614 

DiOC6(3) staining were plated in 96-well plates with 125 µl of macrophage serum-free medium 615 

(Thermo Fisher Scientific) and incubated for 24h at 37°C, 5% CO2. Lactate concentration in the media 616 

was determined using a Lactate Assay Kit (BioVision) following the manufacturer’s instructions and 617 



Publications 
 

 106  

 20

was correlated to DiOC6(3) fluorescence values from cells of the same animal using IBM SPSS 618 

Statistics 22 software. 619 

 620 

RNA-sequencing 621 

For RNA sequencing, 10k microglia were directly sorted into RNAse-free PCR strips containing 30 μl 622 

of H2O with 0.2% Triton-X and 0.8 U/μl RNAse inhibitor (Clontech) and samples were immediately 623 

frozen on dry ice. RNA was isolated using NucleoSpin RNA XS kit (Macherey-Nagel) according to the 624 

manufacturer’s instructions. 3 ng total RNA was used as input material for cDNA synthesis. cDNA 625 

synthesis and enrichment was performed following the Smart-seq2 v4 protocol as described by the 626 

manufacturer (Clontech). Sequencing Libraries were prepared with 1 ng of cDNA using the Nextera 627 

XT library preparation kit (Illumina) as described48. Multiplexing of samples was achieved using three 628 

different index-primers in each lane. For sequencing, samples from each group (APP and WT) were 629 

pooled to rule out amplification and sequencing biases. Libraries were quality-controlled and quantified 630 

using a Qubit 2.0 Fluorometer (Life Technologies) and Agilent 2100 Bioanalyzer (Agilent 631 

Technologies). Final library concentration of 2 nM was used for sequencing. Sequencing was 632 

performed using a 50 bp single read setup on the Illumina HiSeq 2000 platform.  633 

Base calling from raw images and file conversion to fastq files were achieved by Illumina standard 634 

pipeline scripts (bcl2fastq v.2.18.0). Quality control was then performed using FASTQC (v.2.18.0) 635 

program (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), eliminating one sample which 636 

had less than 20 million reads. Reads were trimmed off for sequencing adaptor and were mapped to 637 

mouse reference transcriptome (mm10) using STAR aligner 2.5.2b with non-default parameters. 638 

Unique read counts were obtained for each sample using HOMER v.4.8 software 639 

(http://homer.salk.edu/homer/) and ‘maketagdirectory -tbp 1’ command, followed by 640 

‘analyzeRepeats.pl rna mm10 -count exons -noadj -condenseGenes’. Raw read counts were imported 641 

into R (v.3.2) and normalized using the Bioconductor (v.3.2) DESeq2 package (v.1.10.1) using default 642 

parameter. After normalization, all transcripts having a maximum overall group mean lower than 10 643 

were removed. Unwanted or hidden sources of variation, such as batch and preparation date, were 644 

removed using the sva package49. The normalized rlog transformed expression values were adjusted 645 

according to the surrogate variables identified by sva using the function removeBatchEffect from the 646 

limma package50. To determine gene clusters associated with wildtype or APP23 animals following i.p. 647 

injections of 1x or 4xLPS at 3 months of age, we then used the 13,627 present genes and applied the 648 
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R implementation of the Weighted Gene Correlation Network Analysis (WGCNA). We then performed 649 

WGCNA clustering using the ‘1-TOMsimilarityFromExpr’ function with the network type "signed 650 

hybrid", a power parameter of 7 (as established by scale free topology network criteria), and a 651 

minimum module size of 50 dissecting the data into 10 modules. Finally, pathway enrichment analysis 652 

of genes within modules was performed using the ‘findmotifs.pl’ function of HOMER. Correction for 653 

multiple comparisons for KEGG pathway analyses was performed using the STATS package of R and 654 

applying Benjamini-Hochberg correction. To focus on the most important molecular pathways, only 655 

pathways with logP ≤ -3 and at least 5 genes were considered. 656 

 657 

Chromatin Immunoprecipitation, library preparation and analysis 658 

For microglia isolation for chromatin purification, 1 mM sodium butyrate, an inhibitor of histone 659 

deacetylases31, was added to the dissection medium and FACS buffers. After staining, microglia were 660 

fixed in 1% PFA for 10 minutes at room temperature, followed by addition of glycine (final 661 

concentration: 125 mM) for 5 minutes and washing in HBSS. Microglia were then sorted into 662 

homogenisation buffer (0.32 M sucrose, 5 mM CaCl2, 5 mM MgAc2, 50 mM HEPES, 0.1 mM EDTA, 1 663 

mM DTT, 0.1% vol/vol Triton-X-100) and centrifuged at 950 g for 5 minutes at 4 °C. The pellet was 664 

resuspended in 100 μl Nelson buffer (50 mM Tris, 150 mM NaCl, 20 mM EDTA, 1% vol/vol Triton-X-665 

100, 0.5% vol/vol NP-40) and frozen on dry ice. 666 

ChIP-sequencing was performed as previously described51, with slight modifications. In brief, two 667 

biological replicates were analysed for each condition and targeted histone modification. Cell lysates 668 

from 8-10 mice were pooled giving a total cell number of approximately 0.8-1 million cells per 669 

replicate. The cross-linked chromatin was sheared for 3x7 cycles (30 sec. On/Off) in a BioruptorPlus 670 

(Diagenode) to achieve an average fragment size of 350 bps. Proper shearing and chromatin 671 

concentration was validated by DNA isolation and quantification using a small amount of each sample 672 

individually. Samples were split in half and 1 µg of ChIP-grade antibody (H3K4me1: Abcam ab8895 or 673 

H3K27ac: Abcam ab4729) was added and incubated overnight at 4ºC. From each sample, 1% of the 674 

total volume was taken as input control prior to antibody binding. Immunoprecipitation was performed 675 

by incubating samples with 30 µl BSA-blocked protein A magnetic beads (Dynabeads, Invitrogen) for 676 

1h at 4ºC. After purifying the precipitated chromatin and isolating the DNA, DNA libraries were 677 

generated using the Next Ultra DNA Library Prep Kit for Illumina and the Q5 polymerase (New 678 

England Biolabs). Multiplexing of samples was done using 6 different index-primers from the Library 679 
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Prep Kit. For each replicate, samples from each condition (genotype and treatment) were pooled to 680 

rule out amplification and sequencing biases within the final data. Input samples were pooled and 681 

processed accordingly. The ideal number of amplification cycles was estimated via RealTime PCR to 682 

avoid over-amplification. Accordingly, samples were amplified for 13-15 cycles and the DNA was 683 

isolated afterwards. Individual libraries were pooled whereby each pool represented one whole batch 684 

of samples for each condition and targeted histone modification and was set to a final DNA 685 

concentration of 2 nM before sequencing (50 bp) on a HiSeq 2000 (Illumina) according to the 686 

manufacturer's instructions. 687 

Base calling from raw images and file conversion to fastq files was achieved by standard Illumina 688 

pipeline scripts. Sequencing reads were then mapped to mouse reference genome (mm10) using rna-689 

STAR aligner v2.3.0 with non-default parameters. Data were further processed using HOMER 690 

software (http://homer.salk.edu/homer/), following two recently published analyses on microglial 691 

epigenetic profiles31,32. Tag directories were created from bam files using ‘makeTagDirectory’ for 692 

individual samples and inputs, and peak calling was performed using ‘findpeaks -style histone’ with 4-693 

fold enrichment over background and input, a Poisson p-value of 0.0001, and a peak width of 500 bp 694 

for H3K4me1 and 250 bp for H3K27ac. Peaks common to both replicates were determined using 695 

‘mergepeaks’ (-prefix) function. To focus analysis on enhancers, peaks within ±2.5 kb of known TSS 696 

were filtered out. Union peak files for H3K4me1 and H3K27ac marks were then created for group-wise 697 

comparisons using ‘mergepeaks’ function. Active enhancers, i.e. genomic regions containing both 698 

H3K4me1 and H3K27ac peaks, were identified using the ‘window’ function of bedtools2 [52], requiring 699 

peaks of both marks to be located within a genomic region of 4 kb. Union peak files of active 700 

enhancers were then used for comparisons amongst groups for both H3K4me1 and H3K27ac marks 701 

using the ‘getDifferentialPeaks’ function (using a fold-change cut-off of 1.5 and a cumulative Poisson 702 

p-value of 0.0001). Finally, differential peaks were annotated using the ‘annotatepeaks.pl’ function, 703 

including gene ontology analysis. Correction for multiple comparisons for KEGG pathway analyses 704 

was performed using the STATS package of R and applying Benjamini-Hochberg correction. To focus 705 

on the most important molecular pathways, only pathways with logP ≤ -3 and at least three genes 706 

were considered. 707 

For the generation of UCSC browser files, the ‘makeUCSCfile’ function was used, including 708 

normalisation to respective input and library size, with a resolution of 10 bp. Files for heatmaps of 24 709 
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kb genomic regions and with a resolution of 250 bp were generated using the ‘annotatePeaks.pl’ 710 

function; clustering was then performed using Gene Cluster 3.0 and visualised using JavaTreeView.  711 

To identify transcription factors involved in the differential activation of enhancers, the 712 

‘findMotifsGenome.pl’ command was used to analyse a region of 500 bp around enhancer peaks (-713 

size 500), as this resulted in more robust identification of motifs for known microglial lineage-714 

determining transcription factors when determining motifs of all identified microglial enhancers 715 

(Extended Data Fig.8). For all active enhancers, motif analysis was performed using the union 716 

H3K27ac peak file and standard background (i.e. random genomic sequence created by HOMER). In 717 

the case of pairwise comparisons amongst conditions, the first condition’s specific H3K27ac peak file 718 

was used as input and the second condition’s peak file as background. Because motif enrichment was 719 

often relatively low, we focussed on the most relevant results by determining transcription factor 720 

(families), whose motifs occurred at least twice in ‘known’ and ‘de-novo’ motifs.  721 

 722 

Comparison between enhancer activation and gene expression 723 

From our 14 pairwise comparisons (Fig.4, Extended Data Fig.7 and Supplementary Table 2), we 724 

analysed 772 differentially activated enhancers and compared increased/decreased H3K27ac levels 725 

with the direction of change in the expression of the nearest gene (difference in z-scores between the 726 

groups used for pairwise comparisons). The 14 concordance values were then statistically compared 727 

to chance level (50%) using a two-tailed Wilcoxon signed rank test. 728 

 729 

Statistics and Reproducibility 730 

Statistical analyses were performed using IBM SPSS Statistics 22 or Prism 5 software. Data were 731 

assessed for normal distribution (Shapiro-Wilk test) and statistical outliers using the ‘explore’ function. 732 

If the normality criterion was met, data were analysed using a one-way ANOVA (for experiments on 733 

single genotypes), followed by pairwise comparison (if P<0.05) with post-hoc Tukey correction (for 734 

samples with non-significant homogeneity of variance Levene’s test) or Dunnett test (if homogeneity of 735 

variances not given). For comparisons across treatments and genotypes (e.g. cytokine analyses in 736 

Fig.2), a two-way ANOVA was performed, followed by posthoc testing with Tukey correction for 737 

significant main effects (P<0.05). As the cytokine data for acute LPS stimulation (Fig.1) showed 738 

inequality of variance as well as skewedness, a non-parametric independent-samples median test was 739 

performed followed by pairwise comparison with correction for multiple comparison.  740 
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All experiments were performed at least twice and in independent batches of animals for key 741 

findings (figures show the pooled data). Due to batch-related variation in some dependent variables, 742 

‘batch’ was added as a random variable to analyses where a significant batch effect was observed. 743 

For data sets with small sample size (e.g. Western Blotting analyses), the Kruskal-Wallis test was 744 

performed, followed by pairwise comparisons if P< 0.05. In the figure legends ‘n’ denotes the number 745 

of animals per treatment group. Minimum sample sizes were determined a priori using power analyses 746 

or as dictated by the methodology (e.g. ChIP-Seq).  747 

 748 

Raw and processed data are provided in the Gene Expression Omnibus (accession number 749 

GSE82170; subseries GSE82168 for ChIP-Seq and GSE104630 for RNA-Seq datasets). Other data 750 

that support the findings of this study are available from the corresponding author upon reasonable 751 

request. 752 

 753 

  754 
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Figure 1: Peripheral immune stimulation evokes immune memory in microglia. 391 
a, Experimental approach. b, White bars: Peripheral cytokine levels in wildtype/APP23 animals 392 
following lipopolysaccharide (LPS) injections. Note that tolerance is induced with repeated injections. 393 
c, Brain cytokine levels: 2xLPS amplifies IL-1β/TNF-α release, demonstrating immune training; 394 
tolerance occurs with 3x/4xLPS. Cytokines return to baseline within 24h (1xLPS,1xPBS/4xLPS+1day). 395 
Grey bars: Microglia-specific knockout of Tak1 or Hdac1/2 selectively prevents immune training in the 396 
brain. In (b/c) n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 from left to right. */**/***P <0.05/ 0.01/0.001 for 397 
independent-samples median test with correction for multiple comparisons. Data are means±s.e.m. 398 
 399 
Figure 2: Cerebral β-amyloidosis is altered after peripheral immune stimulation.  400 
a, Experimental design. b, Analysis of cortical amyloid-β plaque load (n=22,10,10 animals) and protein 401 
levels (n=14,10,10 animals). c, Analysis of total cortical and plaque-associated microglia 402 
(n=7,7,7,14,10,10 animals) and d, cytokine levels of IL-10 and IL-1β in wildtype and APP23 mice 403 
(n=8,8,7 and n=14,10,10 animals). Scale bar: 50 µm. */**/***P <0.05/0.01/ 0.001 for one-way (b) and 404 
two-way ANOVA (c/d) with Tukey correction. Data are means ± s.e.m. 405 
 406 
Figure 3: Stroke pathology is altered after peripheral immune stimulation. 407 
Pathological features of brain ischemia induced one month after intraperitoneal injection with 1x or 408 
4xLPS. a, Neuronal damage (cresylviolet, n=6,6,7,6 animals), microglial numbers (Iba1-positive, 409 
n=6,6,6 animals) and b, cytokine profiles one day post-ischemia (n=5,7,5,5 animals). c, Overview of 410 
microglial activation in the infarct and d, quantification of neuronal damage and microglial activation 411 
seven days post-ischemia (n=3,13,8,9 animals). Scale bar: 500 µm. */**/*** P <0.05/0.01/ 0.001 for 412 
one-way ANOVA with Tukey correction. Data are means ± s.e.m. 413 
 414 
Figure 4: The microglial enhancer repertoire 6 months after immune stimulation.  415 
Pathway enrichment of enhancers (with Benjamini-Hochberg correction) with differentially regulated 416 
H3K4me1 (a) and H3K27ac (b) levels (based on nearest gene; cumulative Poisson P-value <0.0001). 417 
n=2 replicates (8-10 animals/replicate).  418 
 419 
Figure 5: Microglial gene expression and function 6 months after immune stimulation. 420 
a, Weighted gene correlation network analysis (top: correlation coefficient; bottom: P-value; 421 
n=9,9,6,6,5,4 animals). b, Selected KEGG pathways enriched in modules. c, Heatmaps of genes 422 
within modules, z-scores (boxplot whiskers: 5-95th percentile; n=1601,990,949,3543 genes in 423 
modules) and selected genes. d, Microglial mitochondrial membrane potential (left/middle; 424 
n=9,6,6,8,3,4 animals) and Pearson’s correlation with lactate release (right; n=11,10,10 animals). e, 425 
Staining for top: HIF-1α, microglia (CD11b) and amyloid plaques (Methoxy-X04) and bottom: HIF-1α 426 
and microglial nuclei (Pu.1; single confocal plane) in brain sections from 9-month-old animals. Scale 427 
bars: 20/5 µm (top/bottom).  f, Total cellular (n=7,7,7 animals) and nuclear (n=8,8,7 animals) HIF-1α 428 
staining intensity. g, Microglial Aβ content (n=5,11,10,10 animals). */**/*** P<0.05/0.01/0.001 for one-429 
way ANOVA with Tukey correction. Data are means± s.e.m.  430 
 431 
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Figure 1: Peripheral immune stimulation evokes immune memory in microglia. 391 
a, Experimental approach. b, White bars: Peripheral cytokine levels in wildtype/APP23 animals 392 
following lipopolysaccharide (LPS) injections. Note that tolerance is induced with repeated injections. 393 
c, Brain cytokine levels: 2xLPS amplifies IL-1β/TNF-α release, demonstrating immune training; 394 
tolerance occurs with 3x/4xLPS. Cytokines return to baseline within 24h (1xLPS,1xPBS/4xLPS+1day). 395 
Grey bars: Microglia-specific knockout of Tak1 or Hdac1/2 selectively prevents immune training in the 396 
brain. In (b/c) n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 from left to right. */**/***P <0.05/ 0.01/0.001 for 397 
independent-samples median test with correction for multiple comparisons. Data are means±s.e.m. 398 
 399 
Figure 2: Cerebral β-amyloidosis is altered after peripheral immune stimulation.  400 
a, Experimental design. b, Analysis of cortical amyloid-β plaque load (n=22,10,10 animals) and protein 401 
levels (n=14,10,10 animals). c, Analysis of total cortical and plaque-associated microglia 402 
(n=7,7,7,14,10,10 animals) and d, cytokine levels of IL-10 and IL-1β in wildtype and APP23 mice 403 
(n=8,8,7 and n=14,10,10 animals). Scale bar: 50 µm. */**/***P <0.05/0.01/ 0.001 for one-way (b) and 404 
two-way ANOVA (c/d) with Tukey correction. Data are means ± s.e.m. 405 
 406 
Figure 3: Stroke pathology is altered after peripheral immune stimulation. 407 
Pathological features of brain ischemia induced one month after intraperitoneal injection with 1x or 408 
4xLPS. a, Neuronal damage (cresylviolet, n=6,6,7,6 animals), microglial numbers (Iba1-positive, 409 
n=6,6,6 animals) and b, cytokine profiles one day post-ischemia (n=5,7,5,5 animals). c, Overview of 410 
microglial activation in the infarct and d, quantification of neuronal damage and microglial activation 411 
seven days post-ischemia (n=3,13,8,9 animals). Scale bar: 500 µm. */**/*** P <0.05/0.01/ 0.001 for 412 
one-way ANOVA with Tukey correction. Data are means ± s.e.m. 413 
 414 
Figure 4: The microglial enhancer repertoire 6 months after immune stimulation.  415 
Pathway enrichment of enhancers (with Benjamini-Hochberg correction) with differentially regulated 416 
H3K4me1 (a) and H3K27ac (b) levels (based on nearest gene; cumulative Poisson P-value <0.0001). 417 
n=2 replicates (8-10 animals/replicate).  418 
 419 
Figure 5: Microglial gene expression and function 6 months after immune stimulation. 420 
a, Weighted gene correlation network analysis (top: correlation coefficient; bottom: P-value; 421 
n=9,9,6,6,5,4 animals). b, Selected KEGG pathways enriched in modules. c, Heatmaps of genes 422 
within modules, z-scores (boxplot whiskers: 5-95th percentile; n=1601,990,949,3543 genes in 423 
modules) and selected genes. d, Microglial mitochondrial membrane potential (left/middle; 424 
n=9,6,6,8,3,4 animals) and Pearson’s correlation with lactate release (right; n=11,10,10 animals). e, 425 
Staining for top: HIF-1α, microglia (CD11b) and amyloid plaques (Methoxy-X04) and bottom: HIF-1α 426 
and microglial nuclei (Pu.1; single confocal plane) in brain sections from 9-month-old animals. Scale 427 
bars: 20/5 µm (top/bottom).  f, Total cellular (n=7,7,7 animals) and nuclear (n=8,8,7 animals) HIF-1α 428 
staining intensity. g, Microglial Aβ content (n=5,11,10,10 animals). */**/*** P<0.05/0.01/0.001 for one-429 
way ANOVA with Tukey correction. Data are means± s.e.m.  430 
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Figure 1: Peripheral immune stimulation evokes immune memory in microglia. 391 
a, Experimental approach. b, White bars: Peripheral cytokine levels in wildtype/APP23 animals 392 
following lipopolysaccharide (LPS) injections. Note that tolerance is induced with repeated injections. 393 
c, Brain cytokine levels: 2xLPS amplifies IL-1β/TNF-α release, demonstrating immune training; 394 
tolerance occurs with 3x/4xLPS. Cytokines return to baseline within 24h (1xLPS,1xPBS/4xLPS+1day). 395 
Grey bars: Microglia-specific knockout of Tak1 or Hdac1/2 selectively prevents immune training in the 396 
brain. In (b/c) n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 from left to right. */**/***P <0.05/ 0.01/0.001 for 397 
independent-samples median test with correction for multiple comparisons. Data are means±s.e.m. 398 
 399 
Figure 2: Cerebral β-amyloidosis is altered after peripheral immune stimulation.  400 
a, Experimental design. b, Analysis of cortical amyloid-β plaque load (n=22,10,10 animals) and protein 401 
levels (n=14,10,10 animals). c, Analysis of total cortical and plaque-associated microglia 402 
(n=7,7,7,14,10,10 animals) and d, cytokine levels of IL-10 and IL-1β in wildtype and APP23 mice 403 
(n=8,8,7 and n=14,10,10 animals). Scale bar: 50 µm. */**/***P <0.05/0.01/ 0.001 for one-way (b) and 404 
two-way ANOVA (c/d) with Tukey correction. Data are means ± s.e.m. 405 
 406 
Figure 3: Stroke pathology is altered after peripheral immune stimulation. 407 
Pathological features of brain ischemia induced one month after intraperitoneal injection with 1x or 408 
4xLPS. a, Neuronal damage (cresylviolet, n=6,6,7,6 animals), microglial numbers (Iba1-positive, 409 
n=6,6,6 animals) and b, cytokine profiles one day post-ischemia (n=5,7,5,5 animals). c, Overview of 410 
microglial activation in the infarct and d, quantification of neuronal damage and microglial activation 411 
seven days post-ischemia (n=3,13,8,9 animals). Scale bar: 500 µm. */**/*** P <0.05/0.01/ 0.001 for 412 
one-way ANOVA with Tukey correction. Data are means ± s.e.m. 413 
 414 
Figure 4: The microglial enhancer repertoire 6 months after immune stimulation.  415 
Pathway enrichment of enhancers (with Benjamini-Hochberg correction) with differentially regulated 416 
H3K4me1 (a) and H3K27ac (b) levels (based on nearest gene; cumulative Poisson P-value <0.0001). 417 
n=2 replicates (8-10 animals/replicate).  418 
 419 
Figure 5: Microglial gene expression and function 6 months after immune stimulation. 420 
a, Weighted gene correlation network analysis (top: correlation coefficient; bottom: P-value; 421 
n=9,9,6,6,5,4 animals). b, Selected KEGG pathways enriched in modules. c, Heatmaps of genes 422 
within modules, z-scores (boxplot whiskers: 5-95th percentile; n=1601,990,949,3543 genes in 423 
modules) and selected genes. d, Microglial mitochondrial membrane potential (left/middle; 424 
n=9,6,6,8,3,4 animals) and Pearson’s correlation with lactate release (right; n=11,10,10 animals). e, 425 
Staining for top: HIF-1α, microglia (CD11b) and amyloid plaques (Methoxy-X04) and bottom: HIF-1α 426 
and microglial nuclei (Pu.1; single confocal plane) in brain sections from 9-month-old animals. Scale 427 
bars: 20/5 µm (top/bottom).  f, Total cellular (n=7,7,7 animals) and nuclear (n=8,8,7 animals) HIF-1α 428 
staining intensity. g, Microglial Aβ content (n=5,11,10,10 animals). */**/*** P<0.05/0.01/0.001 for one-429 
way ANOVA with Tukey correction. Data are means± s.e.m.  430 
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Figure 1: Peripheral immune stimulation evokes immune memory in microglia. 391 
a, Experimental approach. b, White bars: Peripheral cytokine levels in wildtype/APP23 animals 392 
following lipopolysaccharide (LPS) injections. Note that tolerance is induced with repeated injections. 393 
c, Brain cytokine levels: 2xLPS amplifies IL-1β/TNF-α release, demonstrating immune training; 394 
tolerance occurs with 3x/4xLPS. Cytokines return to baseline within 24h (1xLPS,1xPBS/4xLPS+1day). 395 
Grey bars: Microglia-specific knockout of Tak1 or Hdac1/2 selectively prevents immune training in the 396 
brain. In (b/c) n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 from left to right. */**/***P <0.05/ 0.01/0.001 for 397 
independent-samples median test with correction for multiple comparisons. Data are means±s.e.m. 398 
 399 
Figure 2: Cerebral β-amyloidosis is altered after peripheral immune stimulation.  400 
a, Experimental design. b, Analysis of cortical amyloid-β plaque load (n=22,10,10 animals) and protein 401 
levels (n=14,10,10 animals). c, Analysis of total cortical and plaque-associated microglia 402 
(n=7,7,7,14,10,10 animals) and d, cytokine levels of IL-10 and IL-1β in wildtype and APP23 mice 403 
(n=8,8,7 and n=14,10,10 animals). Scale bar: 50 µm. */**/***P <0.05/0.01/ 0.001 for one-way (b) and 404 
two-way ANOVA (c/d) with Tukey correction. Data are means ± s.e.m. 405 
 406 
Figure 3: Stroke pathology is altered after peripheral immune stimulation. 407 
Pathological features of brain ischemia induced one month after intraperitoneal injection with 1x or 408 
4xLPS. a, Neuronal damage (cresylviolet, n=6,6,7,6 animals), microglial numbers (Iba1-positive, 409 
n=6,6,6 animals) and b, cytokine profiles one day post-ischemia (n=5,7,5,5 animals). c, Overview of 410 
microglial activation in the infarct and d, quantification of neuronal damage and microglial activation 411 
seven days post-ischemia (n=3,13,8,9 animals). Scale bar: 500 µm. */**/*** P <0.05/0.01/ 0.001 for 412 
one-way ANOVA with Tukey correction. Data are means ± s.e.m. 413 
 414 
Figure 4: The microglial enhancer repertoire 6 months after immune stimulation.  415 
Pathway enrichment of enhancers (with Benjamini-Hochberg correction) with differentially regulated 416 
H3K4me1 (a) and H3K27ac (b) levels (based on nearest gene; cumulative Poisson P-value <0.0001). 417 
n=2 replicates (8-10 animals/replicate).  418 
 419 
Figure 5: Microglial gene expression and function 6 months after immune stimulation. 420 
a, Weighted gene correlation network analysis (top: correlation coefficient; bottom: P-value; 421 
n=9,9,6,6,5,4 animals). b, Selected KEGG pathways enriched in modules. c, Heatmaps of genes 422 
within modules, z-scores (boxplot whiskers: 5-95th percentile; n=1601,990,949,3543 genes in 423 
modules) and selected genes. d, Microglial mitochondrial membrane potential (left/middle; 424 
n=9,6,6,8,3,4 animals) and Pearson’s correlation with lactate release (right; n=11,10,10 animals). e, 425 
Staining for top: HIF-1α, microglia (CD11b) and amyloid plaques (Methoxy-X04) and bottom: HIF-1α 426 
and microglial nuclei (Pu.1; single confocal plane) in brain sections from 9-month-old animals. Scale 427 
bars: 20/5 µm (top/bottom).  f, Total cellular (n=7,7,7 animals) and nuclear (n=8,8,7 animals) HIF-1α 428 
staining intensity. g, Microglial Aβ content (n=5,11,10,10 animals). */**/*** P<0.05/0.01/0.001 for one-429 
way ANOVA with Tukey correction. Data are means± s.e.m.  430 
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following lipopolysaccharide (LPS) injections. Note that tolerance is induced with repeated injections. 393 
c, Brain cytokine levels: 2xLPS amplifies IL-1β/TNF-α release, demonstrating immune training; 394 
tolerance occurs with 3x/4xLPS. Cytokines return to baseline within 24h (1xLPS,1xPBS/4xLPS+1day). 395 
Grey bars: Microglia-specific knockout of Tak1 or Hdac1/2 selectively prevents immune training in the 396 
brain. In (b/c) n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 from left to right. */**/***P <0.05/ 0.01/0.001 for 397 
independent-samples median test with correction for multiple comparisons. Data are means±s.e.m. 398 
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(n=7,7,7,14,10,10 animals) and d, cytokine levels of IL-10 and IL-1β in wildtype and APP23 mice 403 
(n=8,8,7 and n=14,10,10 animals). Scale bar: 50 µm. */**/***P <0.05/0.01/ 0.001 for one-way (b) and 404 
two-way ANOVA (c/d) with Tukey correction. Data are means ± s.e.m. 405 
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4xLPS. a, Neuronal damage (cresylviolet, n=6,6,7,6 animals), microglial numbers (Iba1-positive, 409 
n=6,6,6 animals) and b, cytokine profiles one day post-ischemia (n=5,7,5,5 animals). c, Overview of 410 
microglial activation in the infarct and d, quantification of neuronal damage and microglial activation 411 
seven days post-ischemia (n=3,13,8,9 animals). Scale bar: 500 µm. */**/*** P <0.05/0.01/ 0.001 for 412 
one-way ANOVA with Tukey correction. Data are means ± s.e.m. 413 
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Pathway enrichment of enhancers (with Benjamini-Hochberg correction) with differentially regulated 416 
H3K4me1 (a) and H3K27ac (b) levels (based on nearest gene; cumulative Poisson P-value <0.0001). 417 
n=2 replicates (8-10 animals/replicate).  418 
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a, Weighted gene correlation network analysis (top: correlation coefficient; bottom: P-value; 421 
n=9,9,6,6,5,4 animals). b, Selected KEGG pathways enriched in modules. c, Heatmaps of genes 422 
within modules, z-scores (boxplot whiskers: 5-95th percentile; n=1601,990,949,3543 genes in 423 
modules) and selected genes. d, Microglial mitochondrial membrane potential (left/middle; 424 
n=9,6,6,8,3,4 animals) and Pearson’s correlation with lactate release (right; n=11,10,10 animals). e, 425 
Staining for top: HIF-1α, microglia (CD11b) and amyloid plaques (Methoxy-X04) and bottom: HIF-1α 426 
and microglial nuclei (Pu.1; single confocal plane) in brain sections from 9-month-old animals. Scale 427 
bars: 20/5 µm (top/bottom).  f, Total cellular (n=7,7,7 animals) and nuclear (n=8,8,7 animals) HIF-1α 428 
staining intensity. g, Microglial Aβ content (n=5,11,10,10 animals). */**/*** P<0.05/0.01/0.001 for one-429 
way ANOVA with Tukey correction. Data are means± s.e.m.  430 
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Extended Data Figure 1: Acute responses to LPS injections.  755 

a, Weight changes after injection of lipopolysaccharides (LPS) (wildtype animals: n=11,11,11,11,4 for 756 

PBS, n=9,9,9,8,7 for 1xLPS, n=10,10,10,10,7 for 4xLPS; APP animals: n=14,14,14,14,7 for PBS, 757 

n=8,8,8,5,5 for 1xLPS; n=10,10,10,10,10 for 4xLPS; Cre animals n=5,5,4). b/c, Morphological 758 

changes in microglia (n=6,6,6,6,6 animals). Scale bar: 50 µm. d, Numbers of microglia and activated 759 

(GFAP+) astrocytes (microglia n=6,7,8,6,6 animals, astrocytes n=6,8,9,7,5 animals). e, Blood and 760 

brain levels of LPS after daily injections with 500 µg/kg bodyweight (n=4,3,3,3,3 animals). f, 761 

Assessment of iron entry from the blood (detected by Prussian Blue staining) shows positive staining 762 

in an aged (>25 months) APP transgenic animal, but not after repeated intraperitoneal LPS injections 763 

(n=3 mice analysed). g, In mice expressing red fluorescent protein (RFP) under the 'type 2 CC 764 

chemokine receptor’ (Ccr2) promoter, no entry of CCR2-expressing blood monocytes is detected after 765 

repeated LPS injection (staining for RFP; insert shows RFP-positive monocytes in the choroid plexus; 766 

n=3 mice analysed). Scale bar: 100 µm. Data are means±s.e.m. */**/*** P <0.05/0.01/ 0.001 for one-767 

way ANOVA with Tukey correction.  768 

 769 

Extended Data Figure 2: Cytokine response after acute LPS injections. 770 

a, Additional cytokines (cp. Fig.1) analysed in the serum (top) and brain (bottom) 3h after each daily 771 

intraperitoneal lipopolysaccharide (LPS) injection on four consecutive days in 3-month-old mice 772 

(control animals received PBS injections; n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 mice for groups from left 773 

to right). b/c, Cytokine response in the blood only in wildtype (b, n=6,7,8,5,5,3,3 animals) or APP23 (c, 774 

n=10,3,3,3,4,3,3 animals) mice. d/e, Cytokine response in the brain only in wildtype (d, n=6,7,8,5,5,3,3 775 

animals) or APP23 (e, n=10,4,4,4,4,4,4 animals) mice. Data are means± s.e.m. */**/*** 776 

P <0.05/0.01/ 0.001 for independent-samples median test with correction for multiple comparisons. 777 

 778 
Extended Data Figure 3: APP levels and processing, neuritic dystrophy and astrocyte 779 
activation in 9-month-old APP23 animals. 780 
 781 
a/b, Micrograph of fluorescent staining for amyloid plaque (Methoxy-X04; green) and amyloid 782 

precursor protein (APP; red) shows neuritic dystrophy surrounding the amyloid deposit, which is 783 

unchanged by LPS treatments (b; n=5,5,5 animals). c, Overall Pearson’s correlation of plaque size 784 

with neuritic dystrophy (‘APP area’; n=49,39,42 plaques for PBS/1xLPS/4xLPS groups). d, Western 785 

Blotting analysis (for gel source data, see Supplementary Figure 1) of brain homogenates for amyloid 786 

precursor protein (APP) and C-terminal fragment-β (CTFβ; n=7,4,7 animals), and soluble APPβ ELISA 787 

(n=6,6,6 animals). e, Micrograph of activated astrocytes (glial fibrillar acidic protein: GFAP) 788 

surrounding an amyloid plaque (Congo Red) and quantification of the number of plaque-associated 789 

GFAP-positive astrocytes (n=6,6,5 animals). Scale bar: 10 µm in (a), 20 µm in (e). Data are 790 

means±s.e.m. * P <0.05 for one-way ANOVA with Tukey correction. 791 

 792 

Extended Data Figure 4: Cytokine levels in 9-month-old animals  793 

a, Cytokine measurements in brain homogenates of 9-month-old wildtype (n=8,8,7 animals) and 794 

APP23 (n=14,10,10 animals) mice treated i.p. with 1x or 4xLPS at 3 months of age. b, Cytokine 795 

measurements in the serum of 9-month-old wildtype (WT; n=14,9,13 animals) and APP23 (APP; 796 
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brain levels of LPS after daily injections with 500 µg/kg bodyweight (n=4,3,3,3,3 animals). f, 761 
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brain levels of LPS after daily injections with 500 µg/kg bodyweight (n=4,3,3,3,3 animals). f, 761 

Assessment of iron entry from the blood (detected by Prussian Blue staining) shows positive staining 762 

in an aged (>25 months) APP transgenic animal, but not after repeated intraperitoneal LPS injections 763 

(n=3 mice analysed). g, In mice expressing red fluorescent protein (RFP) under the 'type 2 CC 764 

chemokine receptor’ (Ccr2) promoter, no entry of CCR2-expressing blood monocytes is detected after 765 

repeated LPS injection (staining for RFP; insert shows RFP-positive monocytes in the choroid plexus; 766 

n=3 mice analysed). Scale bar: 100 µm. Data are means±s.e.m. */**/*** P <0.05/0.01/ 0.001 for one-767 

way ANOVA with Tukey correction.  768 
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Extended Data Figure 2: Cytokine response after acute LPS injections. 770 

a, Additional cytokines (cp. Fig.1) analysed in the serum (top) and brain (bottom) 3h after each daily 771 

intraperitoneal lipopolysaccharide (LPS) injection on four consecutive days in 3-month-old mice 772 

(control animals received PBS injections; n=16,11,12,9,9,7,7 | 5,13,4,6,9,4,5 mice for groups from left 773 

to right). b/c, Cytokine response in the blood only in wildtype (b, n=6,7,8,5,5,3,3 animals) or APP23 (c, 774 

n=10,3,3,3,4,3,3 animals) mice. d/e, Cytokine response in the brain only in wildtype (d, n=6,7,8,5,5,3,3 775 

animals) or APP23 (e, n=10,4,4,4,4,4,4 animals) mice. Data are means± s.e.m. */**/*** 776 

P <0.05/0.01/ 0.001 for independent-samples median test with correction for multiple comparisons. 777 
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Extended Data Figure 3: APP levels and processing, neuritic dystrophy and astrocyte 779 
activation in 9-month-old APP23 animals. 780 
 781 
a/b, Micrograph of fluorescent staining for amyloid plaque (Methoxy-X04; green) and amyloid 782 

precursor protein (APP; red) shows neuritic dystrophy surrounding the amyloid deposit, which is 783 

unchanged by LPS treatments (b; n=5,5,5 animals). c, Overall Pearson’s correlation of plaque size 784 

with neuritic dystrophy (‘APP area’; n=49,39,42 plaques for PBS/1xLPS/4xLPS groups). d, Western 785 

Blotting analysis (for gel source data, see Supplementary Figure 1) of brain homogenates for amyloid 786 

precursor protein (APP) and C-terminal fragment-β (CTFβ; n=7,4,7 animals), and soluble APPβ ELISA 787 

(n=6,6,6 animals). e, Micrograph of activated astrocytes (glial fibrillar acidic protein: GFAP) 788 

surrounding an amyloid plaque (Congo Red) and quantification of the number of plaque-associated 789 

GFAP-positive astrocytes (n=6,6,5 animals). Scale bar: 10 µm in (a), 20 µm in (e). Data are 790 

means±s.e.m. * P <0.05 for one-way ANOVA with Tukey correction. 791 
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Extended Data Figure 4: Cytokine levels in 9-month-old animals  793 

a, Cytokine measurements in brain homogenates of 9-month-old wildtype (n=8,8,7 animals) and 794 

APP23 (n=14,10,10 animals) mice treated i.p. with 1x or 4xLPS at 3 months of age. b, Cytokine 795 

measurements in the serum of 9-month-old wildtype (WT; n=14,9,13 animals) and APP23 (APP; 796 
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Extended Data Figure 1: Acute responses to LPS injections.  755 
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n=8,8,8,5,5 for 1xLPS; n=10,10,10,10,10 for 4xLPS; Cre animals n=5,5,4). b/c, Morphological 758 

changes in microglia (n=6,6,6,6,6 animals). Scale bar: 50 µm. d, Numbers of microglia and activated 759 

(GFAP+) astrocytes (microglia n=6,7,8,6,6 animals, astrocytes n=6,8,9,7,5 animals). e, Blood and 760 

brain levels of LPS after daily injections with 500 µg/kg bodyweight (n=4,3,3,3,3 animals). f, 761 

Assessment of iron entry from the blood (detected by Prussian Blue staining) shows positive staining 762 

in an aged (>25 months) APP transgenic animal, but not after repeated intraperitoneal LPS injections 763 

(n=3 mice analysed). g, In mice expressing red fluorescent protein (RFP) under the 'type 2 CC 764 

chemokine receptor’ (Ccr2) promoter, no entry of CCR2-expressing blood monocytes is detected after 765 

repeated LPS injection (staining for RFP; insert shows RFP-positive monocytes in the choroid plexus; 766 

n=3 mice analysed). Scale bar: 100 µm. Data are means±s.e.m. */**/*** P <0.05/0.01/ 0.001 for one-767 

way ANOVA with Tukey correction.  768 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 

 802 

Extended Data Figure 5: Cytokine levels after brain ischemia and in blood of 4-month-old 803 

animals. 804 

Three-month-old animals were i.p. injected with 1x or 4xLPS and incubated for 4 weeks before 805 

receiving a stroke. a, Cytokine measurements in brain homogenates 24h after stroke (n=5,7,5,5 806 

animals). b, Cytokine measurements in the serum (n=6,6,6 animals). Data are means±s.e.m. *** 807 

P<0.001 for one-way ANOVA with Tukey correction. 808 

 809 

Extended Data Figure 6: Microglial sorting strategy.  810 

Microglia were sorted as CD11bhigh and CD45low cells (population P4) from 9-month-old APP23 811 

animals or wildtype littermates following i.p. injections of 1x or 4xLPS at 3 months of age.  812 

 813 

Extended Data Figure 7: Analysis of microglial enhancers.  814 

Microglial enhancers were analysed in 9-month-old wildtype and APP23 (APP) mice treated 815 

intraperitoneally with 1x or 4xLPS at 3 months of age. a, Exemplary UCSC browser images of 816 

genomic region around the Hif1a gene (normalised to input and library dimension). b, Numbers of 817 

regions with differentially regulated H3K4me1 levels. c, Heatmaps of H3K4me1 regions (centred on 818 

H3K27ac peaks). d, Pairwise correlations between the two replicates of H3K4me1 read densities in 819 

differentially regulated regions. e-g, Analyses of H3K27ac levels analogous to (b-d) for H3K4me1. n=2 820 

replicates (8-10 animals/replicate); differential enhancers showed a cumulative Poisson P-value 821 

<0.0001; Benjamini-Hochberg correction was applied for pathway enrichment. 822 

 823 

Extended Data Figure 8: Transcription factor motif analysis of active enhancer regions.  824 

Motif analysis was performed for selected conditions to identify transcription factors involved in the 825 

differential activation of enhancers (using putative enhancer regions present in both replicates within 826 

500 bp around enhancer peaks). a, For all active enhancers, motif analysis was performed using the 827 

union H3K27ac peak file and standard background (random genomic sequence). b, Pairwise 828 

comparisons between conditions, using the first condition’s H3K27ac peak file as input and the second 829 

condition’s peak file as background. As motif enrichment was often relatively low, the analysis was 830 

focussed on transcription factor (families), whose motifs occurred at least twice in ‘known’ (black) and 831 

‘de-novo’ motifs (blue). Motifs are identified by HOMER software using hypergeometric testing (no 832 

adjustment for multiple comparisons was made).  833 
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Extended Data Figure 9: Peripherally applied cytokines induce immune memory in the brain. 835 

a, Experimental design. b, Cytokine responses in the brain, four weeks after peripheral cytokine 836 

application (n=17,5,5,21,8,8,15 animals). Note that TNF-α dose-dependently enhances (low dose) or 837 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 
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P<0.001 for one-way ANOVA with Tukey correction. 808 

 809 

Extended Data Figure 6: Microglial sorting strategy.  810 

Microglia were sorted as CD11bhigh and CD45low cells (population P4) from 9-month-old APP23 811 

animals or wildtype littermates following i.p. injections of 1x or 4xLPS at 3 months of age.  812 

 813 

Extended Data Figure 7: Analysis of microglial enhancers.  814 

Microglial enhancers were analysed in 9-month-old wildtype and APP23 (APP) mice treated 815 

intraperitoneally with 1x or 4xLPS at 3 months of age. a, Exemplary UCSC browser images of 816 

genomic region around the Hif1a gene (normalised to input and library dimension). b, Numbers of 817 

regions with differentially regulated H3K4me1 levels. c, Heatmaps of H3K4me1 regions (centred on 818 

H3K27ac peaks). d, Pairwise correlations between the two replicates of H3K4me1 read densities in 819 

differentially regulated regions. e-g, Analyses of H3K27ac levels analogous to (b-d) for H3K4me1. n=2 820 

replicates (8-10 animals/replicate); differential enhancers showed a cumulative Poisson P-value 821 

<0.0001; Benjamini-Hochberg correction was applied for pathway enrichment. 822 

 823 

Extended Data Figure 8: Transcription factor motif analysis of active enhancer regions.  824 

Motif analysis was performed for selected conditions to identify transcription factors involved in the 825 

differential activation of enhancers (using putative enhancer regions present in both replicates within 826 

500 bp around enhancer peaks). a, For all active enhancers, motif analysis was performed using the 827 
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condition’s peak file as background. As motif enrichment was often relatively low, the analysis was 830 

focussed on transcription factor (families), whose motifs occurred at least twice in ‘known’ (black) and 831 

‘de-novo’ motifs (blue). Motifs are identified by HOMER software using hypergeometric testing (no 832 

adjustment for multiple comparisons was made).  833 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 
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Three-month-old animals were i.p. injected with 1x or 4xLPS and incubated for 4 weeks before 805 
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‘de-novo’ motifs (blue). Motifs are identified by HOMER software using hypergeometric testing (no 832 

adjustment for multiple comparisons was made).  833 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 
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n=18,12,14 animals) mice after i.p. stimulation with 1x or 4xLPS at 3 months of age. c, Cytokine 797 

measurements in the serum of wildtype animals stimulated i.p. with 1x or 4xLPS at 3 months of age 798 

and re-stimulated with an additional LPS injection (500 µg/kg) at 9 months of age (n=10,7,10 animals). 799 

Data are means±s.e.m. */** P <0.05/0.01 for two-way ANOVA with Tukey correction. In (b) a 800 

significant main effect for genotype is indicated by bars spanning all conditions of the same genotype.  801 
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condition’s peak file as background. As motif enrichment was often relatively low, the analysis was 830 

focussed on transcription factor (families), whose motifs occurred at least twice in ‘known’ (black) and 831 

‘de-novo’ motifs (blue). Motifs are identified by HOMER software using hypergeometric testing (no 832 

adjustment for multiple comparisons was made).  833 

 834 

Extended Data Figure 9: Peripherally applied cytokines induce immune memory in the brain. 835 

a, Experimental design. b, Cytokine responses in the brain, four weeks after peripheral cytokine 836 

application (n=17,5,5,21,8,8,15 animals). Note that TNF-α dose-dependently enhances (low dose) or 837 

 27

decreases (high dose) certain cytokines. Similar to high dose TNF-α, certain cytokines are also 838 

reduced by peripheral application of IL-10 four weeks earlier. c, Cytokine responses in the periphery 839 

are unaffected (n=8,21,9,5,10 animals). Data are means±s.e.m. */**/*** P<0.05/0.01/0.001 for one-way 840 

ANOVA with Tukey correction. 841 
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Abstract  

The phagocytic removal of amyloid-β (Aβ) in Alzheimer’s disease (AD) may be able to combat 

disease progression and is therefore of therapeutic interest. Previously, it was suggested that 

the protein milk fat globule-EGF factor 8 (MFG-E8) may play a role in the removal of Aβ via 

microglia-mediated phagocytosis. Moreover, altered MFG-E8 levels in the brain of AD patients 

suggest a function of MFG-E8 in the pathology of AD. Here, we report that genetic deletion of 

MFG-E8 in APP transgenic (tg) mice results in significantly reduced Aβ levels and plaque load 

at early stages of cerebral β-amyloidosis, but does not induce alterations in the microglial 

phagocytosis of Aβ nor in inflammatory cytokine production. However, immunostaining for 

MFG-E8 in the brain of APP tg mice showed very strong co-localization with Aβ plaques and 

MFG-E8 levels increased both with age and the extent of cerebral β-amyloidosis. Furthermore, 

electron microscopy confirmed localization of MFG-E8-immunoreactivity to Aβ fibrils. These 

data argue against a beneficial effect of MFG-E8 on Aβ pathology through facilitating the 

removal of Aβ, but suggest a microglia-independent interaction between MFG-E8 and Aβ that 

accelerates Aβ plaque formation. Preventing this detrimental interaction between MFG-E8 and 

Aβ may therefore provide a novel opportunity for therapeutic interference with Aβ deposition. 

  



Publications 
 

 126 

Introduction 

The aggregation and deposition of the amyloid-β (Aβ) peptide in the brain can be a result of 

increased production and/or impaired clearance. For the rare forms of familial Alzheimer’s 

disease (FAD), it is well known that genetic alterations in the APP or PSEN1/2 genes result in 

an overproduction of Aβ1-5. In contrast, for sporadic late-onset AD (LOAD), which accounts 

for >99 percent of all AD cases5, a variety of risk factors such as obesity or type 2 diabetes have 

been reported6,7. In addition, recent genome-wide association studies (GWAS) have revealed 

several new susceptibility genes that are associated with innate immunity and inflammation 

suggesting an immune system dysfunction in LOAD8-10. In the brain, microglia are the main 

immune effector cells; however, for many of the identified risk loci, the exact role in the 

microglia-mediated immune response is still a matter of debate. Therefore, studies that aim to 

understand the overall contribution of the innate immune response to the pathogenesis of AD 

are of great importance to therapeutically target such risk factors.  

Our study focused on milk-fat globule-EGF factor 8 (MFG-E8, also known as 

lactadherin), a bivalent-binding, secretory glycoprotein known for its role in promoting the 

phagocytic removal of apoptotic neurons in the injured brain11. Moreover, MFG-E8 was 

previously reported to directly bind Aβ and initiate its phagocytosis by microglia12. In 

particular, genetic deletion of MFG-E8 was shown to decrease phagocytosis of Aβ by peritoneal 

macrophages12. Furthermore, in human post-mortem AD brains, MFG-E8 staining was found 

to be reduced in areas enriched in Aβ plaques, suggesting that Aβ favors accumulation in areas 

with reduced MFG-E8 production or that MFG-E8 is removed after binding to Aβ. However, 

the exact mechanism how MFG-E8 modifies the pathogenesis of AD remains to be elucidated. 

To study the in vivo contribution of MFG-E8 to Aβ pathology, we generated two 

transgenic mouse models of cerebral β-amyloidosis, APPPS1 and APP23, which were deficient 

for MFG-E8, and analyzed pathological hallmarks. Here we demonstrate that lack of MFG-E8 

has no significant effects on the microglia-mediated immune response to cerebral β-

amyloidosis, including the phagocytosis of Aβ. However, contrary to the hypothesis that MFG-

E8 may be beneficial for AD pathology, the deficiency of MFG-E8 in mouse models of AD 

pathology significantly reduced cortical Aβ plaque burden at early stages of Aβ deposition. 

Thus, our results indicate a critical role for MFG-E8 in the initial process of Aβ aggregation 

and suggest MFG-E8 as a potential candidate for therapeutic intervention of Aβ aggregation.  
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Material and Methods 

Mice 

APPPS1 (C57BL/6J- Tg(Thy1-APPK670N/M671L and Thy1-PS1L166P) and APP23 mice 

(C57BL/6J-Tg(Thy1-APPK670N;M671L) that have been backcrossed with C57BL/6J mice for >20 

generations were bred in-house (APP tg mice)13,14. Mfge8-/- mice (B6.129P2 

Mfge8Gt(KST227)Byg) were obtained from Clotilde Théry, PhD (INSERM U932, Institut 

Curie, France)15. Hemizygous APP tg mice were crossed with Mfge8-/- mice. The resulting APP 

tg x Mfge8+/- males were crossed with Mfge8+/- females to obtain APP tg and non-tg Mfge8+/+ 

and Mfge8-/- animals.  

The mice were maintained under specific pathogen-free conditions. All experiments were 

performed in accordance with the veterinary office regulations of Baden-Württemberg 

(Germany) and were approved by the Ethical Commission for animal experimentation of 

Tübingen, Germany. 

 

Tissue collection 

For brain preparation, mice were deeply anesthetized using sedaxylan/ketamine (64 mg/kg//472 

mg/kg) and killed by transcardial perfusion with phosphate-buffered saline (PBS). Brains were 

removed and hemispheres were separated. One half was freshly frozen on dry ice for 

biochemical analyses, whereas the other half was stored for 24 h in 4 % paraformaldehyde 

(PFA) in PBS and was then transferred to 30 % sucrose for another 48 h. PFA-fixed 

hemispheres were frozen in 2-methyl-butane and coronal sections of 25 µm thickness were cut 

with a freezing sliding microtome (Leica). Cut sections were stored at -20°C in cryoprotectant 

medium. 

 

Microglia isolation 

APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice were deeply anesthetized and perfused as 

described. The cerebellum and brain stem were removed from the brain and discarded. The rest 

of the brain was finely minced in ice-cold Hanks Buffered Salt Solution (HBSS) containing 15 

mM HEPES, 0.54 % D-Glucose and 0.1 % DNase weight/volume (w/v). Minced tissue was 

sequentially homogenized in Dounce and Potter homogenizers to achieve a homogeneous 

solution. Homogenates were filtered through a 70 µm cell strainer and centrifuged at 300 g for 

10 min at 4°C. The resulting pellet was resuspended in 70 % isotonic Percoll solution, overlaid 

with 37 % and 30 % isotonic Percoll layers and centrifuged for 30 min, 800 g, 4°C. Cells were 

recovered from the 70/37 % interphase and washed in fluorescence-activated cell sorting 
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(FACS) buffer (PBS, 2 % fetal calf serum, 10 mM EDTA). Washed cells were resuspended and 

blocked with Fc block (BD Bioscience) for 10 minutes on ice, followed by staining for 15 min 

at 4°C with CD11b-APC (1:200, BioLegend) and CD45-Alexa700 (1:200, Sony). 

CD11bhigh/CD45low microglia were sorted on a Sony SH800 flow cytometer and collected in 

FACS buffer containing 25 mM HEPES. Cells were pelleted at 800 g for 7 min and, supernatant 

was discarded and cells were resuspended in lysis buffer (50 mM Tris pH8, 150 mM NaCl, 5 

mM EDTA, phosphatase and protease inhibitors and 1 % Triton X-100) and snap frozen on dry 

ice. 

 

In vivo phagocytosis assay  

Prior to microglia isolation (24 h), 2-and 4-month-old APPPS1 x Mfge8+/+ and APPPS1 x 

Mfge8-/- mice received an intraperitoneal injection of the amyloid dye Methoxy-X04 (stock: 4 

% vol of 10 mg/ml Methoxy-X04 in DMSO, 7.7 % vol CremophoreEL in 88.3 % vol PBS; 17.5 

µl/g bodyweight). Microglia were isolated as described above and the proportion of Methoxy-

X04-positive microglia was determined by flow cytometry with a MACSQuant® Analyzer 

(Miltenyi Biotec). Microglia from 2-month-old mice were additionally stained with Methoxy-

X04 for 15 min (1:250). Background signals of Methoxy-X04 were eliminated after signal 

subtraction of the analyzed microglia fraction from APPPS1 non-tg mice. Signals of APPPS1 

x Mfge8-/- were normalized to the APPPS1 x Mfge8+/+ group of each experiment. The Methoxy-

X04-positive fraction of APPPS1 x Mfge8+/+ was normalized to the mean of the entire 

experimental group. 

 

Immunostaining 

Immunostainings were performed on free-floating sections either using Vectastain Elite ABC 

kits (Vector laboratories) or fluorescent secondary antibodies. For immunohistochemical (IHC) 

detection, sections were quenched 30 min with H2O2 (0.3 %) prior blocking with the respective 

antiserum for 1 h. The following primary antibodies were applied over night at 4°C: rabbit anti-

Iba1 (WAKO; 1:1,000), rabbit anti-PU.1 (Cell Signaling, 1:1,000 for IHC, 1:250 for 

immunofluorescence staining (IF)), rat-anti CD68 (AbD Serotec, 1:1,000), goat anti-MFG-E8 

(R&D; 1:1,000) and rabbit anti-Aβ (in-house CN6; 1:1,000). Congo-red staining was conducted 

in accordance to standard protocols. Images were acquired on an Axioplan 2 microscope with 

Axioplan MRm and AxioVision 4.7 software (Carl Zeiss).  

For immunofluorescent staining, sections were incubated with the respective fluorophore-

conjugated IgG secondary antibodies (Invitrogen, 1:250). For plaque labeling, Methoxy-X04 
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staining was applied for 15 min (1:10) on brain sections. For staining of the arteries, sections 

were incubated 1-2 min with Alexa Fluor 633 hydrazide (1:1,000)  as previously described16. 

Fluorescent images were acquired using a LSM 510 META (Axiovert 200M) confocal 

microscope with an oil immersion 63X/1.4NA objective and LSM software 4.2 (Carl Zeiss), 

using sequential excitation of fluorophores. 

For CD68 quantification, z-stacks of three plaques per section (3 sections/animal) stained in 

parallel were acquired. Methoxy-X04-positive plaques were randomly and blinded chosen. 

PU.1 staining was used to confirm that CD68 was expressed by microglia. Analysis of signal 

intensity of CD68 around plaques was performed using ImageJ. Quantification of co-

localization of CD68 and Methoxy-X04, as well as reconstruction of 3D images were done with 

Imaris 8.3.1.  

 

Western Blotting 

Fresh frozen hemispheres were homogenized using a Precellys® lysing kit at 10 % (w/v) in 

Tris-HCl buffer (50 mM Tris pH 8, 150 mM NaCl, 5 mM EDTA) containing phosphatase and 

protease inhibitors (Pierce) and sonicated 3x5 seconds (LabSonic, B. Braun Biotech 

International GmbH, 0.5 mm diameter sonotrode, cycle 1, amplitude 80).   

Total protein of the brain homogenates was quantified with a microplate bicinchoninic acid 

(BCA) assay (Pierce Biotechnology) and adjusted to 10-15 µg for Western Blot analysis. 

For APP, CTF-β and Aβ analysis, samples were diluted in NuPAGE® LDS sample buffer 

(Thermo fisher Scientific Inc.) containing 5 % β-mercaptoethanol, heated at 70°C and run on 

NuPage Bis-Tris mini gels (Invitrogen). For MFG-E8 levels, samples were treated with urea 

(final concentration 6 M), diluted in sample buffer (10 % glycerol, 2 % SDS, 2 % β-

mercaptoethanol, 0.1 M Tris-HCl pH 8.6) and loaded on a Tris-Tricine 10-20 % gradient gel 

(Invitrogen). After electrophoresis, gels were transferred to a nitrocellulose membrane in a 

semi-dry blotting system. Transfer was confirmed by Ponceau-S staining and the membrane 

was boiled for 5 min in PBS. Blocking was performed with 5 % milk (APP, CTF-β, Aβ) or 5 

% donkey serum (MFG-E8) in PBS-T for 1 h. Subsequently, membranes were incubated over 

night at 4°C with either mouse anti-Aβ (6E10, 1:1,000, Covance Research Products), anti-CTF-

β (1:2,000, Sigma-Aldrich) or goat anti-MFG-E8 (R&D, 1:1,000) diluted in PBS-T. 

Membranes were then probed with the respective secondary horseradish peroxidase (HRP)-

labelled antibodies (1:20,000, Jackson ImmunoLaboratories). Protein bands were detected 

using a chemiluminescent peroxidase substrate (ECL prime, GE Healthcare). Images of the 

blots were recorded using an ECL imager (Stella 3200, Raytest). Densitometric values of the 
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protein band intensities were analyzed with the software package Aida (or ImageJ for MFG-

E8) and normalized to GAPDH. 

 

ELISA 

For quantification of Aβ by ELISA (Meso Scale Disccovery) in brain homogenates or by 

SIMOA (single Molecule Array, Quanterix) in isolated microglial cells (50 000 cells/sample), 

samples were pre-treated with formic acid (Sigma-Aldrich, final concentration: 70 % vol/vol), 

sonicated for 30 seconds on ice, and centrifuged at 25,000 g for 1 hour at 4°C. Supernatants 

were equilibrated in neutralization buffer (1 M Tris base, 0.5 M Na2HPO4, 0.05 % NaN3 (w/v)). 

Aβ was measured by a commercial human (6E10) Aβ triplex assay (Meso Scale Discovery, 

MSD) in brain homogenates or with the SIMOA Human Aβ42 2.0 Kit (Quanterix) in isolated 

microglia according to the manufacturer’s instructions. Samples and calibrators were measured 

as duplicates. Brain Aβ levels were normalized against total protein amount as measured by 

BCA protein assay.  

For microglial cytokine measurements, cells were diluted in 50 µl Tris-HCl buffer 

containing 1 % Triton X-100 and phosphatase inhibitor (50 mM Tris pH8, 150 mM NaCl, 5 

mM EDTA). Cytokines were recorded in single measurements using the mouse pro-

inflammatory panel 1 V-plex plate (MSD). 

 
Electron microscopy 

Two-month-old APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice were deeply anesthetized 

using sedaxylan/ketamine (64 mg/kg//472 mg/kg) and killed by transcardial perfusion with a 

fixative containing 4 % PFA, 0.1 % glutardialdehyde in sodium cacodylate buffer (0.2 M, pH 

7.4). The brain was removed and post-fixed in 4 % PFA in PBS. Brains were cut with a 

vibratome (50 µm) and washed in PBS. Sections were stained according to standard 3,3' 

diaminobenzidine (DAB) staining protocols. Sections were osmicated (0.5 % OsO4 in PBS), 

dehydrated (70 % ethanol containing 1% uranyl acetate) and embedded between liquid release-

coated slides. Selected sections were re-embedded in blocks and ultrathin sections were 

collected and examined using a Zeiss electron microscope (Zeiss EM 900). 

 

Stereology and plaque number analysis 

Stereological analysis was performed by a blinded observer on sets of every 36th systematically 

sampled 25 µm thick brain section throughout the neocortex using a microscope (Axioskop, 

Zeiss, Germany) equipped with a motorized x-y-z-stage coupled to a video-microscopy system 

(Microfire, Optronics, California, USA). Analysis was conducted using the Stereologer 
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software (Stereo Investigator 6; MBF Bioscience). For the determination of the number of 

microglia per brain, Iba1-positive cells were determined with the optical fractionator technique 

with three dimensional dissectors as previously described17. For the assessment of plaque 

associated PU.1-positive cells the diameter of the Congo red-positive plaques was determined 

and only microglia in the two-fold vicinity of the size of the plaque diameter were counted. 

Plaque load was determined based on Congo red and anti-Aβ staining using the area fraction 

fractionator technique18. 

For the analysis of the plaque number, mosaics of the same brain sections as sampled 

for plaque load were acquired on an Axioplan 2 microscope with Axioplan MRm and 

AxioVision 4.7 software (Carl Zeiss). Plaque number was determined with Fiji software. On 

each brain section, the cortical region was selected and a manually set intensity threshold was 

applied to identify plaques. In the APPPS1 mice, plaques were grouped as < 25 µm2 (very 

small), 25-100 µm2 (small), 100-300 µm2 (medium), 300-600 µm2 (large) and > 600 µm2 (very 

large). In APP23 mice, size groups were the following 10-25 µm2 (very small), 25-100 µm2 

(small), 100-1000 µm2 (medium) and > 1000 µm2 (large).  

 

Statistics 

All values reported are mean ± s.e.m. and a p-value < 0.05 was considered as significant. Test 

for Gaussian distribution of the data was performed with D’Agostino-Pearson normality test. If 

the normality criterion was met, statistical significance of pairwise comparisons of 

experimental groups was tested with Student’s t-test. Data that did not meet normality criterion 

were analyzed using non-parametric Mann-Whitney-U test. For analysis of more than two 

groups Kruskal-Wallis test was performed, if p < 0.05 Dunn’s post hoc test was conducted. For 

comparisons of different plaque sizes multiple t-tests corrected for multiple comparisons, 

(Holm-Sidak) were performed. All analyses were done with Prism 6.0 software. 

 

 

Results 

MFG-E8 is produced by glial cells and can be found in the cerebral vasculature 

Macrophages in a variety of tissues have been shown to express and secrete MFG-E819-21. In 

the brain, RNA sequencing of different central nervous system (CNS)-derived cells 

demonstrated that MFG-E8 is expressed by the resident glia cells, especially by astrocytes, but 

to a lesser degree also by microglia22. Accordingly, immuno-staining after stroke demonstrated 

that MFG-E8 co-localizes with astrocytes and microglia23. By co-staining of MFG-E8 and glial 
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fibrillary acidic protein (GFAP; a marker for astrocytes) in brain sections from wildtype mice, 

we could confirm high protein levels of MFG-E8 in astrocytes (Fig. 1A). Moreover, cerebral 

arteries visualized with an artery-specific dye, Alexa Fluor 633 hydrazide16, which binds to 

elastin fibers, were positive for MFG-E8 (Fig. 1B) indicating its occurrence in vascular cells 

and around vascular structures as previously described24. To confirm staining specificity, we 

used genetically modified mice, in which the genetic insertion of a transmembrane domain 

fused to the β-galactosidase reporter protein (TM-β-geo) into the C2 domain of the Mfge8 gene 

results in the retention of the resulting MFG-E8-β-galactosidase fusion protein within the cell 

(Fig. 1C)24. Retention within the cell leads to a rapid degradation and, therefore, to a loss of 

MFG-E8 function. Accordingly, in mice homozygous for the inserted TM-β-geo construct 

(hereafter referred to as Mfge8-/-), only intracellular, punctate MFG-E8 staining was observed 

confirming the specificity of the MFG-E8 signal (Fig. 1B).  

To evaluate the role of MFG-E8 in the pathology of AD in vivo, we bred two mouse 

models of cerebral β-amyloidosis with Mfge8-/- mice, namely the APPPS1 mouse line that co-

expresses mutated human APP and PSEN1 genes leading to rapid onset of β-cerebral 

amyloidosis at six to eight weeks13 and the APP23 mouse line that overexpresses mutant human 

APP leading to a disease onset of around six to seven months of age14. Western Blotting of 

primary microglia isolated from APPPS1 x Mfge8-/- and APPPS1 x Mfge8+/+ mice, showed the 

presence of the two described different isoforms of the MFG-E8 protein only in APPPS1 x 

Mfge8+/+ microglia, which validates the specificity of MFG-E8 deficiency in the crossed 

APPPS1 mice and further confirms MFG-E8 expression in microglia (Fig. 1D)25.  

 

MFG-E8 levels increase with Aβ pathology 

To determine whether the levels of MFG-E8 change with ageing and/or cerebral β-amyloidosis, 

we analyzed the protein levels of MFG-E8 across different ages and at different stages of 

cerebral β-amyloidosis. In particular, we compared MFG-E8 levels of the shorter but more 

abundant isoform in brain homogenates of young (3-4 months) and aged (20 months) wildtype, 

APPPS1 and APP23 mice by Western Blotting (Fig. 2A). In accordance with published 

findings11, MFG-E8 expression in the brain increased more than threefold in wildtype mice 

with age (Fig. 2A/B). However, in contrast to previous studies indicating that MFG-E8 levels 

decrease in a mouse model of AD pathology and in human AD brain tissue11,12, we found that 

cerebral β-amyloidosis induced a significant increase in MFG-E8 levels both in APPPS1 and 

APP23 lines (Fig. 2A/B). Strikingly, a strong increase in MFG-E8 levels coincided with the 

onset of Aβ deposition. Thus, APPPS1 mice with an onset of plaque deposition at six to eight 
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weeks had 2.5-fold higher MFG-E8 levels at young age compared to wildtype mice. In contrast, 

APP23 mice, which only start to deposit plaques around six to seven months of age, showed no 

consistent increase in MFG-E8 levels in the young age group (Fig. 2A). However, at 20 months 

of age, when Aβ levels in APP23 mice are the highest, MFG-E8 was also drastically elevated 

and even exceeded MFG-E8 levels in APPPS1 mice (Fig. 2A/B).  

The effects of ageing and AD disease progression on MFG-E8 levels were further 

studied in additional age groups of APP23 mice. Similarly, the results showed a steady increase 

in MFG-E8 concentration that mirrored the rise in Aβ (Fig. 2C/D). In particular, the robust 

increase of MFG-E8 between 12 and 20 months of age is also reflected by Aβ levels in the brain 

of APP23 mice (Fig. 2C). 

 

MFG-E8 co-localizes with Aβ deposits in APP transgenic mice 

To determine the origin of the sudden increase in MFG-E8 protein levels in parallel with the 

onset of Aβ plaque pathology in APP transgenic (tg) mice, we stained brain sections of APPPS1 

and APP23 mice with an antibody directed against MFG-E8. In both mouse models, MFG-E8 

was not only present in astrocytes but also co-localized strongly with Congo red-positive 

amyloid plaques. Of note, the absence of MFG-E8 immunoreactivity on plaques, but the 

presence of the intracellular punctate MFG-E8 signal in APPPS1 x Mfge8-/- mice confirmed the 

specificity of the detected signal (Fig. 3A). Since no cellular marker, such as Iba1 or GFAP to 

visualize microglia or astrocytes respectively, showed co-localization with the plaque-

associated MFG-E8 signal (data not shown), the secreted, soluble form of MFG-E8 seems to 

strongly associate with amyloid plaques.  

Immunofluorescent co-staining of MFG-E8 with Aβ and subsequent 3D-reconstruction 

revealed that MFG-E8 was found throughout the entire amyloid plaque and partially co-

localized with Aβ (Fig. 3B). In addition, immuno-electron microscopy of amyloid plaques from 

APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice stained for MFG-E8 confirmed the 

association of secreted MFG-E8 with Aβ fibrils (Fig. 3C). Notably, electron microscopy 

analysis also suggested the presence of less fibrillar material in amyloid plaques of APPPS1 x 

Mfge8-/- mice, indicating that the lack of MFG-E8 influences amyloid aggregation.  

 

The microglial immune response is unaffected in APPPS1 x Mfge8-/- mice 

MFG-E8 may have an immuno-protective function in AD as it has been reported to play a role 

in macrophage-mediated phagocytosis of Aβ12. Thus, we investigated whether the absence of 

the MFG-E8 protein in APPPS1 tg mice would lead to alterations in the microglial immune 
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response during the pathogenesis of cerebral β-amyloidosis. Therefore, we analyzed microglia 

in two- and four-month-old mice reflecting either an early disease state or a robust amyloid 

pathology in the brain. To determine if lack of MFG-E8 affects cortical microglia number, we 

immuno-stained brain sections for the myeloid transcription factor PU.1 and stereologically 

quantified the number of PU.1-positive cells in the cortex of APPPS1 x Mfge8+/+ mice 

compared to APPPS1 x Mfge8-/- mice. Although we observed the expected increase in microglia 

with cerebral Aβ deposition from two to four months of age, no differences in the microglial 

cell number between the age-matched APPPS1 x Mfge8-/- and APPPS1 x Mfge8+/+ animals were 

noticeable (Fig. 4A). Also, the number of plaque-associated microglia was indistinguishable in 

APPPS1 x Mfge8-/- mice compared to APPPS1 x Mfge8+/+ mice (Fig. 4B,C), suggesting that 

MFG-E8 is not required for the induction of microgliosis found around Aβ depositions.  

We next examined whether microglial cytokine production in APPPS1 mice is affected 

by the lack of MFG-E8. For that purpose, we used fluorescence-activated cell sorting (FACS) 

to isolate microglia from APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice, which were 

identified as the CD11bhigh, CD45low cell population. We then determined microglial cytokine 

levels by enzyme linked immunosorbent assay (ELISA). At two months of age the microglial 

production of pro- and anti-inflammatory cytokines was comparable between the genotypes 

(Fig. 4D). However, at four months of age we noticed a general trend towards reduced cytokine 

levels in APPPS1 x Mfge8-/- microglia, with the release of the pro-inflammatory cytokine TNF-

α being significantly reduced by 51 ± 19 percent in APPPS1 x Mfge8-/- mice (P < 0.05; Fig. 4E).  

Suppression of inflammation has been shown to increase phagocytosis of Aβ26, 

therefore we analyzed the phagocytic capacity of microglia in vivo using intraperitoneal 

administration of the amyloid-staining dye Methoxy-X04 in APPPS1 x Mfge8+/+ and APPS1 x 

Mfge8-/- animals. Microglial cells were isolated, identified by flow cytometry and analyzed for 

their Methoxy-X04 signal intensity (Fig. 5A). In accordance with the cytokine levels, the uptake 

of Methoxy-X04-labeled Aβ, was unaffected at two months of age, but unexpectedly also at 

four months of age (Fig. 5B). Interestingly, the direct determination of Aβ42 levels from isolated 

microglia by ELISA showed a trend towards less Aβ42 in APPPS1 x Mfge8-/- at two and also 

four months of age, but did not reach statistical significance (Fig. 5C).  

Since Aβ visualization with Methoxy-X04 and also ELISA measurements cannot 

necessarily distinguish between bound, already engulfed or degraded Aβ, we determined 

whether lack of MFG-E8 influences the intracellular degradation process of Aβ. To this end, 

we additionally analyzed phagocytic activity of plaque-associated microglia by performing 

triple-staining for CD68 (a marker for phagolysosomes), PU.1 and Methoxy-X04 in brain 
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sections of APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice (Supplementary fig. 1A). We then 

quantified immunofluorescence intensity of CD68 levels in plaque-associated microglia in 

three-dimensional reconstructed z-stack images taken by confocal microscopy. However, 

intensity analysis of plaque-associated CD68-immunoreactivity in microglia revealed similar 

levels between genotypes (Supplementary fig. 1B).  

 

Lack of MFG-E8 reduces pathology of cerebral β-amyloidosis in mice  

Given the strong co-localization of MFG-E8 with amyloid plaques and the lack of immune 

modulation in the absence of MFG-E8, we next investigated whether the generation or 

deposition of Aβ may be directly affected in APP transgenic mice. Strikingly, Aβ40+42 levels 

declined by 38 ± 12 percent (P < 0.01) in two-month-old APPPS1 x Mfge8-/- mice in formic 

acid-extracted (Fig. 6A) and by 43 ± 14 percent (P < 0.01) in SDS-soluble fractions of brain 

homogenates (Fig. 6B, E). Of note, these reductions in Aβ levels occurred while amyloid 

precursor protein (APP) and its processing product C-terminal fragment-β (CTF-β) levels were 

unaffected (Fig. 6C, D), indicating that changes in Aβ were not a result of altered APP 

production or cleavage.   

To determine whether the decrease in Aβ levels results in reduced plaque deposition, 

we immuno-stained brain sections of APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice for Aβ 

and Congo red. In line with the reduction in Aβ levels measured by ELISA, stereological 

quantification of the area covered by Ab plaques in the cortical region of APPPS1 x Mfge8-/- 

mice revealed a 39 ± 9 percent reduced plaque load compared to APPPS1 x Mfge8+/+ mice (P 

< 0.001; Fig. 6F/G).  

We confirmed these results by crossing Mfge8-/- mice to the APP23 mouse line, which 

has a slower disease onset with initial plaques occurring at six to seven months of age14. Aβ 

levels in the resulting APP23 x Mfge8-/- mouse line were analyzed at nine months of age, a time 

point reflecting approximately the same time span between the first appearance of cortical Aβ 

plaques and analysis as performed in the APPPS1 mouse line. In accordance with the results 

from the APPPS1 x Mfge8-/- mouse line, APP23 x Mfge8-/- mice had reduced Aβ levels as well 

as less Aβ plaque deposition compared to aged-matched APP23 x Mfge8+/+ mice 

(Supplementary fig. 2A-D). Again, APP processing was unaffected (Supplementary fig. 2C/D).  

Interestingly, when we analyzed plaque deposition in mice at a more advanced disease 

state of four months (APPPS1 x Mfge8-/-) or 12 months of age (APP23 x Mfge8-/-), differences 

in plaque load and Aβ levels were no longer apparent (Supplementary Fig. 2A, B), arguing for 

an early role of MFG-E8 in promoting amyloid plaque deposition. 
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We next quantified the number cortical plaques and grouped them into different size 

categories to determine whether MFG-E8 had an influence on the generation of new plaques or 

plaque growth. We observed a significant increase in small plaques in two- and four-month-old 

APPPS1 x Mfge8+/+ mice (Fig. 6H, Supplementary fig. 3C). However, when we did the same 

analysis in male 12-month-old APP23 mice, the absolute plaque number in the different size 

groups was indistinguishable between Mfge8+/+ and Mfge8-/- genotypes (Supplementary Fig. 

3D). These observations suggest that the initial reduction in Aβ plaque load resulting from the 

lack of MFG-E8 may have been caused by a delay in the early formation of insoluble Aβ 

aggregates. 

 

 

Discussion 

Two studies have previously investigated the possible contribution of MFG-E8 to AD 

pathology and concluded that MFG-E8 can directly interact with Aβ and facilitate its 

phagocytosis by macrophages11,12. This suggested that increasing the levels of MFG-E8 may 

be a valuable tool for the clearance of Aβ. However, our findings provide evidence for a 

detrimental role of MFG-E8 in the pathology of cerebral β-amyloidosis, as we show that the 

absence of MFG-E8 in mouse models of AD pathology reduces Aβ plaque load.  

MFG-E8 was initially identified as a secreted bridging protein that mediates 

phosphatidylserine-dependent phagocytosis in many different tissues by binding to both 

apoptotic cells and macrophages. In brain tissue, several transcriptome-based studies on cells 

of the CNS identified astrocytes as the main source of MFG-E822,27. We confirmed those 

findings by immunofluorescent staining of mouse brain sections with MFG-E8 and GFAP that 

showed strong co-localization throughout most of the cell (Fig. 1A). Interestingly, microglia, 

which are the key players for phagocytosis in the brain, were reported to express only minor 

amounts of MFG-E822. Nevertheless, we detected the two existing isoforms for MFG-E8 in 

primary isolated microglia by Western Blotting and a recent proteomics analysis in a different 

mouse model of AD pathology also found that microglial MFG-E8 levels increased with 

progressing pathology28.  

Apart from MFG-E8-mediated engulfment of apoptotic neurons, it has been reported 

that released MFG-E8 can bind to Aβ and facilitate its removal by peripheral macrophages12, 

which raises the question about its contribution to the pathogenesis of AD. To address this issue, 

we analyzed both the inflammatory immune response and Aβ pathology in two mouse models 

for cerebral β-amyloidosis, APPPS1 and APP23, which were deficient for functional MFG-E8. 
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To our surprise, we found that the lack of MFG-E8 reduced Aβ plaque burden in brains of the 

APPPS1 and APP23 mice at early disease stages with only minor alterations in the immune 

response, including negligible changes in Aβ phagocytosis by microglia. These findings deviate 

from the previously held assumption that MFG-E8 enhances phagocytic removal of Aβ and 

thereby alleviates neuropathology12. In fact, at the time point when plaque load was reduced in 

APPPS1 x Mfge8-/- mice, no alterations in the immune response as determined by microglial 

number, cytokine levels or Aβ phagocytosis, were observed. 

In particular, the unaltered phagocytic uptake of Aβ by microglia in APPPS1 x  

Mfge8-/- mice was not expected but, to our knowledge, this is the first in vivo study that analyzed 

the capability of microglia to phagocytose Aβ in APP transgenic mice deficient for MFG-E8. 

Therefore, it cannot be ruled out that the relatively slow but inexorable Aβ accumulation in vivo 

affects the microglial phagocytic function differently than the rapid addition of high 

concentrations of fibrillar Aβ to cultured microglia used for the reported in vitro studies12. 

Additionally, MFG-E8 may have a different affinity to in vivo formed Aβ fibrils compared to 

recombinant Aβ preparations that were applied to cultivated microglia.  

Since our results point towards a role of MFG-E8 in the Aβ aggregation process rather 

than Aβ clearance, we examined whether MFG-E8 affects the production of Aβ. Although we 

observed the same trend of reduction in SDS-soluble Aβ levels in APPPS1 x Mfge8-/- and 

APP23 x Mfge8-/- mice, both APP production and processing were unaltered by lack of MFG-

E8. These findings, together with the observation that secreted MFG-E8 accumulates and co-

localizes with Aβ depositions, indicate that MFG-E8 is involved in Aβ fibril formation and 

subsequent plaque deposition.  

Similar to our findings of MFG-E8 co-localizing with Aβ plaques, a close association 

with Aβ has also been described for components of the classical complement activation 

pathway, such as C1q or C3b and C429. Moreover, in vitro data on Aβ aggregation analyzed by 

Thioflavin T emission showed enhanced Aβ fibrillation in the presence of nanomolar 

concentration of C1q30. However contrary to the observed reduction in Aβ levels and plaque 

burden in APPPS1 x Mfge8-/- and APP23 x Mfge8-/- mice, lack of C1q did not affect Aβ levels31 

and C3 deficiency accelerated Aβ deposition32,33. Furthermore, absence of these complement 

components was reported to alter the microglial activation state31-33, which was not detectable 

at time points of reduced plaque deposition in APPPS1 x Mfge8-/- mice.  

In contrast to complement factors, the depletion of receptors that are known to bind to 

Aβ such as CD14 or TLR2 induced a reduction in plaque load in APP tg mice, as reported in 

our study34,35. But for both receptors, reduction in Aβ plaque load was accompanied by changes 
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in the microglial immune response as cytokine production or microglia number were altered as 

well. Thus, the underlying mechanisms that lead to the reduction of Aβ in APP tg x Mfge8-/- 

mice appears to differ from those described for other immune-related molecules.  

Interestingly, in wildtype mice, we found that brain levels of MFG-E8 increased with 

ageing. However, in APP23 and APPPS1 mice, an even more robust increase of MFG-E8 levels 

was observed that occurred simultaneously with increased levels of Aβ and the majority of 

MFG-E8 appeared to accumulate around Congo red-positive deposits. Electron microscopy of 

such plaques indicated that the grade of fibrillation was more pronounced in the presence of 

MFG-E8. These findings makes it tempting to speculate that MFG-E8 possesses characteristics 

that particularly promote Aβ aggregation. In line with this hypothesis, we counted a reduced 

number of small-sized cortical Aβ plaques in two- and four-month-old APPPS1 x Mfge8-/- mice, 

but detected no difference in the number of large or medium-sized plaques suggesting that the 

initial plaque formation is impaired by lack of MFG-E8 but not the subsequent plaque growth.  

Interestingly, in humans, MFG-E8 contains a small amyloidogenic fragment named 

medin that is localized within the C2 domain of the full-length protein. Several publications 

describe the presence of medin-amyloid in the arterial vasculature including cranial blood 

vessels36-38. In mice, where the Mfge8 gene shows 64 percent sequence similarity with the 

human gene, medin has not yet been described. However, we found MFG-E8-positive cerebral 

arteries in our mice, which may indicate the presence of medin also in mice. Interestingly, a 

recent study showed that blood-derived Aβ can enter the brain and induce Aβ plaque pathology 

in wildtype mice after parabiosis with APP tg mice39. Since the Mfge8-/- mice used in our study 

lack the entire C2 domain that harbors the amyloidogenic medin fragment, and as the knockout 

of Mfge8 in the examined APPPPS1 and APP23 mice led to reduced Aβ levels, one could 

speculate about a possible cross-seeding effect of blood vessel-derived medin and Aβ.  

During amyloid formation, the nucleation process is the rate limiting step in which 

medin seeds might accelerate the formation of a nucleus which in turn decreases lag time and 

promotes polymerization of amyloid fibrils. Accordingly, absence of medin would not only 

delay the nucleation process but also the initial Aβ deposition as reflected in a decreased plaque 

load in two-month-old APPPS1 x Mfge8-/- and nine-month-old APP23 x Mfge8-/- mice, both 

representing a time point of early plaque deposition. In the further course of the disease, after 

the first plaques are formed, the growth of fibrillar amyloid material increases exponentially 

and possibly overwhelms the changes in plaque load at early disease stages as we did not detect 

changes in Aβ depositions at later disease stages in four-month-old APPPS1 x Mfge8-/- or 12-

month-old APP23 x Mfge8-/- mice. 
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Taken together, the data presented here extend the role of MFG-E8 in AD pathology 

and suggest that MFG-E8 or single fragments of the protein, such as medin, accelerate the 

aggregation and subsequent deposition of Aβ. However, further studies are necessary to 

precisely determine the overall contribution of MFG-E8 to Aβ pathology but also to identify 

and characterize possible fragments of MFG-E8 which might have amyloidogenic 

characteristics and therefore promote cerebral β-amyloidosis. 
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Figures 

 
Figure 1: MFG-E8 is expressed in glia cells and cerebral blood vessels. A, Fluorescent staining for the astrocyte 

marker glial fibrillar acidic protein (GFAP) and MFG-E8 shows co-localization in cortical astrocytes of wildtype 

mice. B, MFG-E8 is present in cerebral arteries, which are visualized with the neocortical artery-specific dye Alexa 

Fluor 633 hydrazide. In Mfge8-/- mice, MFG-E8 staining is intracellular due to the insertion of a transmembrane 

domain. C, Top, Schematic structure of the Mfge8 wildtype gene. Bottom, structure of the knock-in form of 

truncated Mfge8. D, Western Blotting detection of the two isoforms of MFG-E8 in primary microglia isolated 

from APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice.  

 

 
Figure 2: MFG-E8 levels increase with age and cerebral β-amyloidosis. A, Western Blotting analysis of MFG-

E8 and Aβ protein levels in brain homogenates from young (3-4 months of age) and aged (20 months of age) 

wildtype (Wt), APPPS1, and APP23 mice. B, Semi-quantitative analysis of MFG-E8 levels normalized to GAPDH 

levels (n=3 for each group). C, Aβ pathology-dependent increase of MFG-E8 levels in APP23 mice. D, Semi-

quantitative analysis of MFG-E8 levels normalized to GAPDH (n=3,3,3,3). * p<0.05, as determined by Dunn’s 

multiple comparison test.  
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Figure 3: Co-localization of MFG-E8 with 

amyloid plaques in the brain of APPPS1 mice. 

A, Immunohistochemical staining for MFG-E8 

in APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- 

mice. Secreted MFG-E8 is closely associated 

with Congo red-positive amyloid plaques. B, 

3D-reconstruction of an amyloid plaque co-

stained for Aβ and MFG-E8, demonstrating their 

co-localization (bottom right). C, Electron 

micrographs of amyloid plaques stained for 

MFG-E8; arrows indicate MFG-E8 localization 

within the plaque structure (encircled). Please 

note a possible change in the plaque structure, 

with less pronounced fibrils in APPPS1 x Mfge8-

/- animals. Scale bar: low magnification: 1000 

nm, high magnification: 500 nm. 
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Figure 4: Microglia number and cytokine production is unaffected in APPPS1 x Mfge8-/- mice. 

A, Stereological quantification of PU.1-positive cortical cells at 2 and 4 months of age in APPPS1 x Mfge8+/+ and 

APPPS1 x Mfge8-/- mice (2 months: n=9,9; 4 months: n=6,8). B, Micrograph of nuclear PU.1 staining in plaque-

associated microglia. Scale bar: 20 µm. C, Number of plaque-associated PU.1-positive cells in relation to Congo 

red-positive plaque area (2 months: n=9,9; 4 months: n=6,6). D, E, Cytokine measurements in primary microglia 

FACS isolated from APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice at 2 months (D; n=5,5) and 4 months of 

age (E; n=7,5) of age. * p < 0.05, as determined by non-parametric Mann-Whitney test. 
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Figure 5: Microglial phagocytosis of Aβ is unchanged by the lack of MFG-E8. A, Gating strategy. Microglia 

were gated as CD11bhigh and CD45low and analyzed for the fraction of amyloid-containing, Methoxy-X04-positive 

cells (gating was established based on cells from a non-transgenic animal). B, Fraction of Methoxy-X04-positive 

microglia normalized to APPPS1 x Mfge8+/+ Methoxy-X04-positive cells at 2 (n=12,8) and 4 (n=18,15) months 

of age. C, Analysis of microglial Aβ42 content (n2months=5,4) and (n4months=4,3). 
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Figure 6: Genetic deletion of MFG-E8 in 2-month-old APPPS1 mice reduces Aβ levels and plaque load 

without affecting APP processing. A, Formic-acid extracted Aβ levels in brain homogenates measured by 

ELISA. B, Representative Western Blot from brain homogenates for detection of amyloid precursor protein (APP), 

its processing product C-terminal fragment-β (CTF-β) and Aβ. C-E, Densitometric analysis of (C) APP, (D) CTF-

β and (E) Aβ levels normalized to GAPDH protein (n=12,12). F, Micrographs of cortical Ab plaques. Scale bar: 

50 µm. G, Stereological quantification of cortical Aβ plaque load (n=15,15). H, Number of plaques grouped by 

size. Presented as median and 5-95 percentile (n=30,40 values per size group). Wt: APPPS1 x Mfge8+/+, hom: 

APPPS1 x Mfge8-/-. *p < 0.05, **p < 0.01, ***p < 0.001, as determined by Student’s t-test (A,E,G) or multiple t-

tests corrected for multiple comparisons (Holm-Sidak correction) (H). Ctx: cortex. 
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Supplementary figure 1: A, Representative staining for the lysosomal marker CD68 in plaque-associated 

microglia (identified with PU.1 and Methoxy-X04) in brain sections of APPPS1 x Mfge8+/+ (WT), APPPS1 x 

Mfge8-/- (HOM) mice. CD68 staining was minimal in non-plaque associated microglia. B, Intensity quantification 

of the CD68 signal at 4 months of age (n=6,6). 

 

 
Supplementary figure 2: MFG-E8 deficiency in male APP23 mice reduces Aβ plaque deposition. 

A, Stereological quantification of cortical Aβ plaque load at 9 months of age (n=7,7). B, Formic acid-extracted Aβ 

levels measured by ELISA. C, Western Blot from brain homogenates for detection of APP, CTF-β and Aβ. D, 

Densitometric analysis of APP, CTF-β and Aβ levels normalized to GAPDH expression (n=7,7). *p < 0.05, as 

determined by non-parametric Mann-Whitney test. Ctx: cortex. 
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Supplementary figure 3: MFG-E8 does not influence Aβ deposition and size distribution at progressing 

disease states. A, B, Stereological quantification of cerebral Aβ plaque load in (A) APPPS1 x Mfge8+/+ and 

APPPS1 x Mfge8-/- mice at 4 months of age (n=15,19) and (B) in male APP23 x Mfge8+/+ and APP23 x Mfge8-/- 

mice at 12 months of age (n=10,8). C, D, Number of plaques grouped by size. Presented as median and 5-95 

percentile in (C) 4-month-old APPPS1 x Mfge8+/+ and APPPS1 x Mfge8-/- mice (n=30,40 values per size group) 

and (D) 12-month-old APP23 x Mfge8+/+ and APP23 x Mfge8-/- male mice (n=50,40 values per size group). *p < 

0.05, as determined by multiple t-tests corrected for multiple comparisons (Holm-Sidak correction). Ctx: cortex. 
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5. Appendix 

5.1 Abbreviations 

 

 

AA Serum amyloid-A 
ABCA7 ATP binding cassette subfamiliy A member 7 
AD Alzheimer's disease 
ADAM10 A disintegrin and metalloproteinase domain-conatining protein 10 
AP-1 Activator protein 1 
APOE Apolipoprotein E 
APP Amyloid precursor protein 
Aβ Amyloid-beta 
ATP Adenosine trisphosphate 
BACE Beta-secretase 1 
BBB Blood-brain barrier 
BCG Bacillus Calmette-Guérin 
BCSFB Blood-cerebrospinal fluid barrier 
BIN1 Bridging integrator 1 
BM Bone marrow 
CAA Cerebral amyloid angiopathy 
C-terminal Carboxy-terminal 
C3 Complement 3 
cAMP Cyclic adenosine monophosphate 
CASS4 Cas scaffolding protein family member 4 
CCL2 C-C motif chemokine ligand 2 
CCR2 C-C motif chemokine receptor 2 
CD11b Integrin alpha M 
CD2AP CD associated protein 
CD33 Siglec-3 
cDNA complementary deoxyribonucleic acid 
CELF1 CUGBP Elav-like family member 1 
CLU Clusterin 
CNS Central nervous system 
CR1 Complement C3b/C4b receptor 1 
CSF1R Colony stimulating factor 1 receptor 
CTF-β C-terminal fragment beta 
CX3CR1 Fractalkine receptor 
DAMP Damage-associated molecur pattern 
DAP TYRO protein tyrosine kinase binding protein 
DSG2 Desmoglein 2 
EAE Experimental autoimmune encephalomyelitis 
EPHA1 EPH receptor A1 
FAD Familal Alzheimer's disease 
FERMT2 Fermitin family member 2 
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GCV Ganciclovir 
GFP Green fluorescent protein 
GWAS Genome-wide association studies 
Hdac Histone deacetylase 
HDLS Hereditary diffuse leukoencephalopathy with speroids 
Hexb Hexosaminidase subunit beta 
HIF-1α Hypoxia inducible fator 1 alpha 
HSV Herpes simplex virus 
IDE  Insulin-degrading enzyme 
IFN Interferone 
IL-1β Interleukine 1 beta 
iNOS inducible nitric oxide synthase 
INPP5D Inositol polyphosphate-5-phosphatase D 
kDa Kilodalton 
LOAD Late-onset Alzheimer's disease 
LPS Lipopolysaccharide 
LRP1 Low deonsity lipoprotein receptor-related protein 1 
Ly6C Lymphocyte antigen 6 complex 
MAPT Microtubule-associated protein tau 
MCP-1 Monocyte chemoattractant protein 1 (alias CCL2) 
MEF2C  Myocyte enhancer factor 2C 
MFG-E8 Milk-fat globule-EGF factor 8 protein 
MMP Matrix metallopeptidase 
MS4A Membrane spanning 4-domains A 
mTOR Mechanistic traget of Rapamycin 
NAD+ Nicotinamide adenine dunucleotide 
NF-κB Nucler factor kappa B 
NME8 NME/NM23 family member 8 
P2ry12 Purinergic receptor P2Y12 
PAMP Pathogen-associated molecular pattern 
PICALM Phosphatidylinositol binding clathrin assembly protein 
PLD3 Phospholipase D family member 3 
PRR Pattern recognition receptor 
PSEN Presenilin  
PTK2B Protein tyrosine kinase 2 beta 
Rap1 Ras-related protein 1 
RET Reverse electron transport 
RFP Red fluorescent protein 
RGD Arginyl-glycyl-aspartic acid 
RIN3 Ras and rab interactor 3 
RNA Ribonucleic acid 
ROS Reactive oxygen species 
Sall1 Spalt like transcription factor 1 
SAR Systemic acquired resistance 
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SLC4A4 Solute carrier family member 4 
SORL1 Sortilin related receptor 1 
STAT Signal transducer and activator of transcription 
TAK1 Transforming growth factor-beta-activated kinase 1 
TF Transcription factor 
Tg Transgenic 
TK Thymidinkinase 
TLR Toll-like receptor 
TNF-α Tumor necrosis factor alpha 
TREM2 Triggering receptor expressed on myeloid cells like 2 
TYROBP TYRO protein tyrosine kinase binding protein (alias DAP) 
UNC5C Unc-5 netrin receptor 
VLDLR Very-low-density-lipoprotein receptor 
WT Wildtype 
ZCWPW1 Zinc finger CW-type and PWWP domain containing 1 
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