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ABSTRACT 

The neural substrates orchestrating a number of social behaviors, including parental behavior 

and aggression, are known to exist in the hypothalamus. Through the control of the pituitary 

gland, the hypothalamus regulates the release of a number of hormones necessary for the 

physiological control of bodily functions and the expression of appropriate behaviors. In recent 

years the neuroscience community has invested large resources in identifying, through 

molecular markers, subsets of neurons whose activity impacts behavioral expression. This 

approach, however, has several weaknesses, among which is the assumption that a neuron’s 

function and output adhere to generalized principles. Consequently, such investigations often 

fail to identify the intricate organization of neural networks, which adapt the neural code in 

order to tune a system’s output to the behavior it modulates. 

The aim of this thesis is to expand on basic neurophysiological concepts regarding the complex 

organization within and among neural groups. Here we addressed the principles of how a set 

of neurons self-tune their activity through the use of their own neurotransmitter, intra- and 

inter-network connectivity designs and spike rate coding of neurotransmitter release. Following 

this interrogation of neural network properties, we attempted to link the activity of these neural 

nodes to behavioral output, where we identified two distinct subsets of neurons driving parental 

behavior and aggression respectively. 

In paper I, we performed a study on the properties of autoregulation in a neural network, and 

identified the ionic mechanisms through which the tuberoinfundibular dopamine (TIDA) 

neurons control their own activity via the use of their own neurotransmitter, dopamine (DA). 

In paper II, we encountered an unexpected species difference in baseline activity and oscillation 

frequency between rat and mouse TIDA neurons. Following an in-depth investigation, we 

attributed this difference to the presence vs complete absence of electrical coupling in the rat 

and mouse TIDA cells respectively. This generated the question of how different modes of 

TIDA neuron activity impact DA release at their terminals, which was addressed in paper III 

where, using fast-scan cyclic voltammetry, we performed the first investigation coupling 

patterns of electrophysiological activity to DA release in the TIDA system. In paper IV we 

addressed the possibility that this discrepancy in TIDA neuron activity has a behavioral impact. 

Following a step-by-step breakdown of the lactotropic axis in the male rat and mouse, we 

ultimately provided a link between TIDA neuron activity and the suppression vs expression of 

paternal behavior in the two species. 

The final part of this thesis includes two studies focusing on aggressive behavior. In paper V, 

we performed a functional interrogation of a subset of ventral premammillary (PMv) neurons 

involved in intermale aggression, while in paper VI we identified that the very same neurons 

are activated by maternal hormones and modulate the expression of maternal aggression in 

lactating female mice. 

Overall, the work presented in this thesis provides a step forward in our understanding of neural 

function and on the neural substrates underlying social behavior. 
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1 INTRODUCTION 

One of the most challenging and beautiful quests to be pursued in science is the development 

of an understanding of the neural substrates driving behavior. From the flick of a tail in the 

escape response of a fish, to the battling of stags during mating season, animal behavior has 

motivated scientists over generations to investigate its origins. Darwin’s theory of evolution 

offered a foundation stone in interpreting behavior, and a universal concept to explain the 

expression and presence of behavioral traits in individuals of a species1-3. An intriguing, 

analogous goal in the field of neuroscience is the formulation of a theory which can globally 

explain the information coding mechanisms utilized by neurons, allowing appropriate output 

of diverse systems engaged in radically different functions. 

This will likely require an advance in knowledge across neuroscience sub-disciplines, 

including neurophysiological, anatomical, computational, and functional investigations of 

network activity in vitro and in vivo. The work in this thesis is an attempt to push the boundaries 

in that direction, looking at the neural substrates of innate behaviors. 

 

1.1 PRINCIPLES OF NEURAL FUNCTION 

Sir Charles Sherrington is considered the most prolific pioneer during the early development 

of the neuroscience field which, through his work, advanced both conceptually and 

methodologically. His landmark studies performed in the dawn of the 20th century include those 

on spinal cord reflexes4-7 and the corticospinal projection8-11, which raised the concepts of 

motor units, flexor-extensor reflex and the law of reciprocal innervation – concepts deeply 

embedded in today’s neuroscience thinking. Following this, the classical work pursued by 

Golgi and Cajal and the formulation of the neuron doctrine12-14 laid down the foundation of the 

neuroscience field. Subsequent original work in the years between 1940 and 1960 defined the 

basic mechanistic principles of neural function. 

Initial work identified that the main currency for communication in the nervous system, the 

action potential (AP), is associated with an increase in membrane conductance15, while in 1939, 

Hodgkin and Huxley performed the first recordings of  APs from inside a nerve fiber. Work 

from John Eccles was instrumental for the development of an understanding of the AP and 

synaptic potentials in the nervous system16-19. Following this, the properties and ionic 

mechanisms governing membrane and action potentials, were investigated in depth20-27. 

Around the same time, Bernard Katz suggested the quantal theory of neurotransmitter release, 

a principle determining the post-synaptic changes in membrane potential28, 29, while the cable 

theory suggested by Wilfrid Rall, corrected previous estimates of the conduction dynamics 

governing neural function30-32. 

From a computational perspective, the pioneering work of McCullock and Pitts in 1943 

suggested the mechanisms through which neurons could connect together to form networks, 

leading to a meaningful system outcome33, 34. Though a simplified version of a biological 
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neuron, the McCulloch and Pitts neuron model (MCP neuron) - composed of a preprocessing 

unit (dendrite), and a processing/commanding unit (the soma) - identified the importance of a 

computational approach for the development of an understanding of the nervous system. 

The identification of these principles facilitated an elaborate understanding of the neuron and 

the pursuit of questions at the neural network level. Yet the circuit organization of a system 

poses many additional challenges on information coding and processing, and among the first 

challenges that a neural network is required to solve is to develop mechanisms of self-control, 

restricting itself from entering inescapable states of quiescence or runaway excitation.  

 

1.2 AUTOREGULATION IN NEURAL SYSTEMS 

Autoregulation is an essential and widespread property found in most biological systems at 

many levels, including the genetic35, 36, neural37-44 and organ45-47 levels. 

Perhaps it is no surprise that, like in other systems, neural networks employ mechanisms to 

control their own activity48-51. Such an example can be found in the raphe nuclei, where the 

serotonin neuron autoregulation properties have been extensively investigated in the hope of 

identifying viable means of pharmacologically modulating their activity for the treatment of 

mood disorders38. For similar reasons, the mechanisms underlying autoregulation of the 

midbrain DA neurons have been in the spotlight of neuroscience research52-55. 

Here, in Paper I, we investigated the autoregulatory properties of the rat tuberoinfundibular 

dopamine (TIDA) neurons in the dorsomedial arcuate nucleus (ARCdm), which exhibit a 

synchronous, robust slow oscillation56. Following the study on TIDA neuron autoregulation, 

their oscillation properties attracted our interest. Such phenomena often rely on gap junction 

coupling, and we next pursued the role of gap junctions in this system. 

 

1.3 GAP JUNCTIONS AND OSCILLATION FREQUENCY 

Communication between neurons occurs in the nervous system in anatomically identifiable 

regions called synapses. The two major modalities mediating synaptic transmission are the 

chemical and the electrical synapses57. While chemical synapses use a mediator (a 

neurotransmitter or neuropeptide) to induce postsynaptic voltage changes, the electrical 

synapses allow charge to flow through specialized membrane pores, known as connexons (the 

functional unit of an electrical synapse). Both synapses are subject to elaborate forms of 

modulation, which can facilitate or depress the amplitude of the postsynaptic effect57. The 

electrical synapse, also known as a gap junction, is a ubiquitous method of intercellular 

communication found in the nervous system of both vertebrate and invertebrate animals58-67. 

Gap junction properties include high speed, bidirectional and reliable communication between 

neurons, while a single gap junction is able to both inhibit and excite a postjunctional target. 

These features represent distinct advantages of gap junctions over chemical synapses68-73. 
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Importantly, electrical synapses offer key features in neural networks including phase locking 

of action potential firing or membrane potential fluctuations74-80. It is in the formation of the 

gap junction, and the connexin protein subtypes which come together to form the connexon, 

that the properties of the electrical synapse are defined69, 81-85. Cellular location and neighboring 

conductances also play a major role on the impact of a gap junction on a cell’s activity. It is 

well established that gap junctions can both synchronize and desynchronize neuronal activity77, 

86-88, and their role in the emergence and frequency of oscillations is controversial and likely 

dependent on each neural system79, 89-92. Therefore, investigating questions of gap junction 

physiology can illuminate the workings of a system, although findings should be interpreted 

with caution when looking into other neural or biological networks. Nevertheless, such 

investigations can identify what is possible when a neural network utilizes gap junctions, and 

their impact on its activity. 

Over the past decades, neuroscientists have struggled to identify the emergent properties gained 

from a neural network upon introduction of electrical synapses. Connexin 36 (Cx36) knock-

out animal models have been instrumental in this effort, yet did not succeed in providing 

conclusive answers93-98. This is due to the upregulation of other connexins in the knock-out 

animals leading to decreased, but not absent, electrical connectivity99, 100. 

The work discussed in Paper II includes, to our knowledge, the first systematic comparison of 

a neural network in the presence of strong Cx36 coupling (up to 0.5 coupling coefficient!), and 

in the complete absence of gap junctions. The findings of this study revive previous questions 

of gap junction physiology and its role on network synchronization and oscillation frequency. 

 

1.4 NEURAL ACTIVITY AND NEUROTRANSMITTER RELEASE 

Since the identification of the action potential in 1939, it has become apparent that information 

processing does not follow a linear function between neurons connected through chemical 

synapses101-104. From the discovery of frequency tuning of terminals to respond to impulses 

arriving at a specific frequency103, 105, to the identification of the packaging of small 

neurotransmitters and neuropeptides in small clear and large dense-core vesicles 

respectively106-111, the list of rules which governs neural communication is longer than 

originally thought or often considered in the field of systems neuroscience. 

The initial investigations looking into the link between AP firing frequency and dopamine 

output, focused on the nigrostriatal system due to its prominent role in health and disease103, 

112-115. In this system, work by Francois Gonon identified the relationship between impulse flow 

and DA release in the striatum116. This seminal work highlighted the importance of gaining 

information at this level in order to understand a system’s output. 

Following this reasoning, we pursued the study presented in Paper III which discusses the 

frequency tuning of neurotransmitter release in TIDA neurons at the level of their terminals in 

the median eminence (ME). 
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1.5 THE HYPOTHALAMUS AS A BRAIN CENTER 

The hypothalamus is a highly conserved part of the brain across taxa117-121. One of the 

interesting features of this unit, is that it provides the interface of communication between the 

brain and the pituitary122, 123 – the “master” endocrine gland responsible for the release of 

numerous hormones necessary for physiological homeostatic regulation124-128. 

Among the neural groups in control of hormone release from the pituitary, this thesis focuses 

on the TIDA neurons, which project to the ME where they release DA129-135. Ambient levels 

of DA inhibit the release of prolactin (Prl) from the Prl-releasing cells in the anterior pituitary, 

the lactotrophs136-141. The role of TIDA neurons in the female is well documented142-152, yet in 

the male it is obscure153-156. 

In addition, large focus is placed on a subset of ventral premammillary nucleus (PMv) neurons, 

whose role in social behavior is investigated. 

 

1.6 NEURAL SUBSTRATES OF PARENTAL BEHAVIOR 

Hypothalamic neurons are involved in numerous behaviors, such as sleep/wakefulness157-170, 

food intake171-181, parental behavior182-186 and aggression187-194. Innate behaviors in particular 

have been shown to be orchestrated by neural ensembles present in the hypothalamus. 

Parental behavior, defined as the dedication of resources from a parent to the offspring195, can 

either be expressed by both parents (biparental strategy)196-201 or, as occurs in most species, 

only by one (uniparental strategy)195, 202. The evolutionary benefits of a uni- vs bi-parental 

strategy are not evident203, 204 and, of interest, is the observation that sister species can fall on 

opposite ends of the spectrum205. 

Several brain areas have been shown to play a role in maternal behavior, including the 

anteroventral periventricular nucleus206-208, medial preoptic area (MPOA)182-184, 202, 209-214, and 

the amygdala183, 212, 214-218. Among these areas the MPOA has attracted a lot of attention, as 

both the activity of its Prl receptor expressing neurons209 and the diverse projections of galanin-

positive neurons of the MPOA202 were recently shown to orchestrate most aspects of maternal 

behavior. 

In the present thesis we suggest discrepant TIDA neuron activity found in the male rat and 

mouse impacts serum Prl levels and tunes activity of the neural circuitry underlying parental 

behavior. This work offers an insight over a mechanism that can enable or not paternal behavior 

in a species, suggesting TIDA cells are a neural toggle unit controlling a species’ parental 

strategy. 
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1.7 NEURAL SUBSTRATES OF AGGRESSION 

In a similar way to parental behavior, aggression is another innate behavior which has been 

shown to be largely controlled via neural groups present in the hypothalamus219-231, while extra-

hypothalamic neurons have been shown to control the valence of aggression232-248. 

Early work using extracellular stimulation defined an area in the hypothalamus that evokes 

aggression both in cats and rodents, and was therefore named the hypothalamic attack area194, 

249-251. Menno Kruk’s elaborate studies, among others, coupled the site of stimulation with the 

precise behavior elicited, such as flank attack, tail rattling, biting, social grooming etc193, 251-258. 

Although this work provided a foundation for the neuroscience aggression field, it was prone 

to criticism due to the methodology utilized to gain this understanding. Electrical stimulation 

could stimulate fibers of passage and, therefore, it could not be excluded that the neural 

substrates underlying aggression are extra-hypothalamic. 

Elaborate immediate early gene studies provided additional evidence implicating hypothalamic 

cell groups in aggression190. Following this, in vivo optogenetics allowed the selective 

activation of defined neural populations, most often in the rodent brain, and a functional 

interrogation of those sets of neurons in animal behavior259-262. 

In the present thesis we provide two in-depth investigations on the role of the PMv in intermale 

and maternal aggression. Additionally, we explore features of aggressive behavior which, 

while they have been previously discussed, they lack a mechanistic understanding. These 

include a neural basis of hysteresis in aggression190, 261, 263, 264, a site in the aggression circuit 

responsible for conferring a positive valence to aggressive behavior265-269, and a node which 

upon activation elicits maternal aggression and is activated by maternal hormones270-274. 
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2 AIMS 

In its first section (Papers I-III) this thesis aims to deliver answers on neurophysiological 

principles governing neural function, while in the second section (Papers IV-VI) it aims to 

address the influence of genetically defined neural clusters in animal behavior. 

Specifically, the aims of the first section include the identification of: 

 the autoregulation principles used by a group of hypothalamic neurons, which tune their 

electrophysiological behavior to echoes of their own activity (Paper I). 

 

 the role of gap junctions in setting oscillation frequency and a network’s 

electrophysiological activity (Paper II). 

 

 the link between firing patterns in the neuroendocrine TIDA neurons and DA release 

at their terminals (Paper III). 

 

The material included in the second section aims to answer: 

 how a difference in the electrical coupling of a neural network impacts on the network’s 

output and the expression of a species parental strategy (Paper IV). 

 

 the neural network dynamics underlying intermale aggression and hierarchy 

(Paper V). 

 

 how maternal hormones act upon the neural circuit orchestrating aggression and induce 

maternal aggression in lactating dams (Paper VI). 
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3 METHODS 

All methods are described in detail in the individual papers (I-VI). Below is a brief summary 

of the core methods that were used in this thesis. 

 

3.1 TRANSGENIC ANIMALS AND VIRUSES 

While the use of wild-type outbred animals in neurophysiology and behavior provides an 

obvious benefit since it takes into consideration the genetic variability found in a natural 

population and therefore serves as a more faithful model for human conditions, transgenic 

inbred animals have become an indispensable tool in neuroscience research. The development 

of a powerful genetic toolbox has enabled tissue-specific transgene expression, with timing and 

location control275-280, making inbred mouse lines a dominant animal model.  

The toolbox largely rests on genetic recombination methods identified in non-mammalian 

genomes such as the one in bacteriophages281 and the baker’s yeast282, 283, Saccharomyces 

cerevisiae. The Cre-lox system (identified in bacteriophage P1 which infects Escherichia coli) 

is such an example, and is one of the core tools that enabled the findings discussed in the present 

thesis. In short, the Cre protein is a recombinase that recognizes a 34 base pair DNA sequence, 

named as the loxP sites. What enables a large degree of versatility in the Cre-lox system is that 

based on the location of the loxP sites, the gene of interest can be arranged in a number of ways. 

Firstly, if the loxP sites are on the same DNA strand and in opposite orientations, this will result 

in an inversion of the gene between the loxP sites. This is the primary method that was used in 

this thesis to enable transgene expression. Breeding a DAT-Cre homozygote mouse line with 

a floxed-tdTomato mouse line or a floxed-GCaMP3 mouse line, led to the expression of the 

orange fluorophore (tdTomato) only in cells in which the DA transporter (DAT) promoter was 

endogenously active. This approach, while it requires no effort from the experimenter into 

acquiring brain slices with genetically tagged neurons, has the drawback that transient 

expression of the DAT promoter developmentally will tag neurons permanently, and therefore, 

as a method, is prone to false positive neural tagging. 

Apart from inversion of a gene of interest, the Cre-lox system can also enable deletion or 

translocation of a gene of interest. If the loxP sites are on the same strand of DNA facing the 

same direction, the Cre recombinase will excise the piece of DNA between the loxP sites and 

it will not be maintained. Such an approach is very useful in identifying the influence of a 

particular gene of interest in genetically tagged neurons, and the gene’s role in animal 

physiology and behavior. Lastly, the Cre-lox system can also enable gene translocation events, 

a strategy which can be employed by placement of the loxP sites in separate DNA strands. 

Of particular importance in this thesis, was the use of the Cre-lox system in combination with 

viral strategies to induce transgene expression in a subpopulation of genetically tagged neurons 

with precision both at the temporal and stereotactic coordinate level. 
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The approach using adeno-associated viruses (AAV) as the carrier of the transgene, flanked by 

loxP sites to allow its inversion from the anti-sense to the sense configuration in Cre-positive 

neurons, allowed us to tag the neurons of interest with both fluorophores (eYFP or tdTomato) 

and/or rhodopsins (ChR2 or eNpHR3). Using the DAT-Cre mouse line and the viral approach 

mentioned above, we performed functional and anatomical studies of the DAT-Cre positive 

neurons residing in the arcuate nucleus, shedding light on their function in the control of Prl 

secretion and their network properties. The same methodology was utilized on a separate set 

of hypothalamic neurons, a subpopulation of PMv cells which are tyrosine hydroxylase 

negative but DAT positive which, therefore, can be tagged via the DAT promoter and identified 

in the DAT-Cre mouse line. 

 

3.2 SLICE PATCH CLAMP ELECTROPHYSIOLOGY  

The present thesis contains datasets acquired through patch clamp electrophysiology, offering 

new insights into neural network function in regard to the TIDA and DAT positive PMv 

neurons (PMvDAT). 

The development of the patch clamp technique by Erwin Neher and Bert Sakmann in the late 

1970s-early 1980s284-287 enabled mechanistic investigations of ion channel physiology and the 

development of an in-depth understanding of what mediates electrical events and 

communication between electrogenic cells such as neurons, myocytes and endocrine cells. 

Patch clamp electrophysiology was performed in rat or mouse brain slices of 200-400 μm 

thickness, depending on the experimental question. Both juvenile (p21-28) and adult (2-8 

months of age) rodents were used. Current and voltage clamp recordings were acquired using 

Axon instruments (Multiclamp 700B and Digidata 1440A) and were analyzed using custom 

written Matlab routines. 

 

3.3 FAST-SCAN CYCLIC VOLTAMMETRY (FSCV) 

One of the main methods employed in this thesis, allowing us to couple electrophysiological 

activity with neurotransmitter release at the level of the TIDA terminals, was FSCV. FSCV 

allows electrochemical measurements at high sampling rate for the acquisition of a 

voltammogram, which is used to identify the precise nature and concentration of a molecule or 

neurotransmitter such as DA288-296. This makes FSCV a superior method in comparison to other 

techniques utilized for the same purpose, like amperometry, since it not only allows the 

recording and quantification of a neurotransmitter’s concentration, but also permits its chemical 

identification297. 

While FSCV has been used both in vitro and in vivo, in this thesis its application is restricted 

to brain slice recordings. Additionally, while FSCV can reliably identify most monoamines, in 
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this thesis we used FSCV for the purpose of recording stimulation-evoked DA release. Cre-

dependent ChR2 expression was induced in TIDA neurons following injection of a ChR2-

containing AAV one month prior to the recording. 

Acquisition of FSCV recordings was performed using a DAGAN CHEM-CLAMP and a 

custom made digitizer. Tar Heel and HDCV software were used for data acquisition and HDCV 

and custom made Matlab routines were used for analysis. 

    

3.4 OPTOGENETICS AND BEHAVIOR 

Behavioral measurements were central to our investigations, and the advent of optogenetics298, 

299 allowed us to pursue several exciting questions. 

In vivo optogenetics experiments were performed following the placement of optic fibers at the 

appropriate stereotactic coordinates using the Franklin and Paxinos mouse brain atlas300. Cre-

dependent expression of eYFP, tdTomato, mCherry, ChR2, eNpHR3, diphtheria toxin subunit 

A, or taCasp3, was induced through stereotactic injection of an AAV vector. All AAVs were 

purchased from the UPENN and UNC vector cores. Optogenetics-related hardware was 

acquired from Thorlabs, CNI lasers, and Doric. Custom made digitizers were made using 

Arduino boards and Labview-based custom written software was developed for 

photostimulation control. 

Behavioral assays including the resident intruder (RI) test, real-time place preference or 

aversion, sociability test, pup retrieval test (PRT), elevated plus maze, open field test, hierarchy 

corridor test (HCT), and conditioned place preference were used for addressing relevant 

questions. The HCT represents a custom adaptation to the widely used test for assessing 

hierarchy in rodents, the tube test301, 302, a necessary modification to allow the use of in vivo 

optogenetic manipulation.   
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4 RESULTS AND DISCUSSION 

The first question addressed in this thesis is how a neural network can use its own 

neurotransmitter to tune its activity. In this work we used the TIDA network as a model system 

to gain an insight into autoregulation properties that may be relevant to other biological cell 

networks. 

4.1 PAPER I: DOPAMINE AUTORECEPTOR REGULATION OF A HYPOTHALA-

MIC DOPAMINERGIC NETWORK  

Rat TIDA neurons exhibit a distinct electrophysiological activity, with the expression of robust, 

high-amplitude oscillations at 0.05 Hz at room temperature56 and ca 0.17 Hz in near-

physiological (34oC) temperature. We first examined whether TIDA neurons respond to their 

own neurotransmitter, DA. Application of DA – or D2R agonists - decreased the oscillation 

frequency, having a distinct impact on phases 1 and 3 of the oscillation (Fig. 1).  

Interestingly, application of D2-type DA receptor blockers led to abolishment of the oscillation, 

while DAT blockade recapitulated the exogenous DA bath-application effect. DA was found 

to have both pre- and post-synaptic effects, with part of the latter mediated via a decrease in 

high-voltage Ca2+ currents (Fig. 2).  

In summary, this study describes the 

neurophysiological mechanisms util-

ized by the TIDA network to tune its 

own activity using perisomatic release 

of DA.   

Figure 1. Dopamine decreases oscillation frequency of the TIDA neuron oscillation. A. The TIDA neuron oscillation 

frequency can be broken down in four phases. B. TIDA neuron oscillation frequency during baseline and following application 

of DA. 

Figure 2. D2-type dopamine receptor activation 

decreases Ca2+ currents through N- and L-type 

Ca2+ currents. A. DA decreases Ca2+ currents in 

TIDA neurons. B. DA decreases Ca2+ currents in 

the presence of an L-type Ca2+ channel blocker. C. 

DA decreases Ca2+ currents in the presence of an 

N-type Ca2+ channel blocker. D. DA does not alter 

Ca2+ currents in the presence of L- and N-type Ca2+ 

channel blockers. 
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The second question addressed in this thesis deals with the characterization of a neural network 

in the presence vs absence of electrical coupling. This is used to gain an understanding of the 

emergent properties acquired by a network when electrically coupled. 

4.2 PAPER II: NETWORK OSCILLATION RULES IMPOSED BY SPECIES-

SPECIFIC ELECTRICAL COUPLING  

Here we came across an unexpected finding, with the discovery that TIDA neuron oscillations 

are fast in the male mouse and slow in the male rat (Fig. 3). 

Figure 3. TIDA neuron activity in the male rat and mouse. A-C. Rat TIDA neuron electrophysiology in the rat ARCdm. D-

F. Mouse TIDA neuron electrophysiology in the mouse ARCdm. 

Following an in-depth electrophysiological interrogation of the membrane properties and 

electrical connectivity, we identified strong gap junction coupling in rat vs the complete 

absence of gap junctions in mouse TIDA neurons. Lastly, we identified that gap junctions give 

rise to a slower oscillation frequency assumed collectively by the TIDA neuron population 

while, in an uncoupled state, these cells oscillate at a faster frequency (Fig. 4). 

This study is the first to our knowledge to 

experimentally address the impact of 

electrical connectivity in a neural network 

in the presence of strong electrical 

coupling and in its complete absence. As 

such, it provides a new answer to a long-

standing debate over the role of gap 

junctions in neural oscillations and their 

relevance in the activity of biological 

systems88, 94, 303-307. 

This study also raised the question of how 

the distinct electrophysiological activity 

impacts release at the TIDA neuron 

terminals. The study discussed in 4.3 was 

designed to address this point.   

Figure 4. Gap junction resonance dictates network oscillation 

frequency. A. Schematic of experimental design. B. Raw data 

measurements. C-F. Pre- and post-junctional resonance frequency, 

raw data (C and D) and quantification (E and F). 
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Following the identification of different electrophysiological patterns in male rat vs mouse 

TIDA neurons, we pursued an examination of the impact of distinct firing patterns and 

frequencies at the level of DA release at the TIDA terminals in the ME. 

4.3 PAPER III: DOPAMINE RELEASE DYNAMICS IN THE TUBEROINFUNDIBU-

LAR DOPAMINE SYSTEM  

Firstly, we aimed to identify the baseline levels of DA released in the ME, since both rat and 

mouse TIDA neurons are spontaneously active. However, recordings of DA release in the ME 

in baseline conditions yielded no evidence for spontaneous DA release in this preparation, 

likely due to a severed axonal path between ARCdm and ME. However, following transduction 

of TIDA neurons with ChR2, optically evoked DA release was found to be stable over time 

(Fig. 5), allowing the use of this model to address the relationship between firing frequency 

and DA release in TIDA neurons. 

Following the identification of the TIDA ChR2 expressing terminals in the ME as a reliable 

model to study DA release dynamics, we used a photostimulation paradigm to investigate the 

impact of firing frequency on neurotransmitter release. Here we found that in the TIDA system, 

optimal release following a brief (3 s) bout of activity, occurs at 10 Hz (Fig. 6). This contrasts 

other systems such as, for example, the nigrostriatal projections with optimal DA release 

dynamics at 40 Hz308, 309. 

In addition, we found that endogenous firing of mouse TIDA 

neurons in vitro occurs at 10 Hz, and firing frequencies higher 

than 20 Hz were never recorded (n=100 TIDA neurons). 

Furthermore, we provide evidence of a functional DAT at the 

level of the TIDA terminals in the ME, and identified that TIDA 

neurons can release DA at the perisomatic level in the ARCdm.  

This study provides a mechanistic interrogation of the DA 

release dynamics in the TIDA system, and enables an 

understanding of how distinct firing patterns can impact the 

system’s output.  

Figure 5. Optogenetically evoked DA release in the ME is stable over time. A. ChR2 expression in TIDA neurons in a 

DAT-tdTomato mouse line, and in their terminals in the ME. B. FSCV recordings at t=0 min and at t=30 min. C, D. 

Quantification of evoked DA release following different photostimulation intervals. 

 

Figure 6. Optimal DA release from  

ME terminals occurs at 10 Hz. A. 

Quantification of DA release vs 

photostimulation frequency and pulse 

width. 
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In the last study focused on understanding the TIDA system in this thesis, we provide a link 

between the distinct TIDA electrophysiological activity patterns in the male rat and mouse, and 

paternal behavior in each species. 

4.4 PAPER IV: NEUROHORMONAL BASIS OF PATERNAL BEHAVIOR 

Following the identification of different activity patterns in the TIDA system in the male rat 

and mouse (Paper II), we now examined the link between oscillation frequency and DA release. 

Using FSCV, we found that the rat frequency (0.2 Hz) can sustain DA release over time, in 

striking contrast with the mouse oscillation frequency (0.4 Hz) which leads only to transient 

DA release (Fig. 7).  

 This finding inspired a follow-up experiment in which we identified that the in vivo serum Prl 

concentrations differ in the male rat and mouse, as predicted by the finding in Fig. 7. 

Additionally, the low vs high Prl levels found in the male rat and mouse respectively correlated 

to low vs high Prl receptor activation in the MPOA. MPOA has been implicated in parental 

behavior202, 208, 209, 212, 310 and, following this link, we identified that rats and mice fall at opposite 

ends of the parental behavior spectrum (Fig. 8). 

To establish a causal link, mouse TIDA neuron activity was 

controlled using optogenetics, where application of the 0.2 

Hz (rat) oscillation frequency resulted in a decrease of Prl 

levels in mouse sires and impairment of the expression of 

paternal behavior. Meanwhile i.p. injection of Prl induced 

aspects of paternal behavior in rat sires, similar to previous 

observations311. 

In summary, this work identifies neural and endocrine 

mechanisms that determine a rodent species’ parental 

strategy. It remains to be tested if the same mechanism is 

utilized universally to determine parental strategy in other 

mammalian species.  

Figure 7. A slow 0.2 Hz TIDA oscillation can sustain DA release over time, in contrast to faster oscillation frequencies. 

A. Schematic of experimental design. B. ChR2 expression at the TIDA terminals. C-F. Investigation of DA release in 

comparison to oscillation frequency. 

 

Figure 8. Paternal behavior as exhibited 

by rat and mouse sires. A. Example 

snapshots of the pup retrieval test at the 

beginning (0 min) and end of the test (60 

min). Note that only mouse sires have 

performed pup retrieval and nesting. 
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The following study presents a switch of gear in the present thesis, as it involves the 

investigation of a group of hypothalamic neurons in control of aggressive behavior – the 

PMvDAT cells.  

4.5 PAPER V: A NEURAL NETWORK FOR INTERMALE AGGRESSION TO 

ESTABLISH SOCIAL HIERARCHY 

An observation that attracted our interest was the expression of DAT in a subset of PMv 

tyrosine hydroxylase-negative cells (Fig. 1A-C). Following previous indications of the role of 

the PMv in aggression190, 312, we pursued in vitro and in vivo experiments to test the role of 

PMvDAT cells in mouse social behavior. The use of a RI conditioning paradigm together with 

the RI test, led to our first observation, with immediate early gene studies indicating activation 

of PMvDAT cells following episodes of aggression (Fig. 9D, E). 

Photoactivation of PMvDAT neurons 

initiated attack, whereas photoinhibi-

tion stopped ongoing aggressive 

episodes. Importantly, PMvDAT cells 

were found to have membrane 

properties and network connectivity 

which permits feedforward excitation. 

Distinct glutamatergic projections of 

PMvDAT neurons to the ventromedial 

hypothalamus and supramammillary 

nucleus were found to drive an 

aggressive and rewarding component respectively, implicating the PMv as a neural structure 

which can simultaneously drive multiple aggression-related behaviors. 

Lastly, to test the role of PMvDAT 

neurons in a functional aggression 

context, we showed that manipulation 

of these neurons’ activity in males 

competing for social status led to an 

irreversible switch of the hierarchy 

between them, an effect lasting up to 

the maximal tested period of two 

weeks (Fig. 10A-E). 

These data identify a prominent role of 

PMvDAT neurons in aggression, and 

add an important node in the neural 

circuit in control of aggressive 

behavior. 

Figure 9. PMvDAT neurons are activated during aggression. A-C. A 

subset of PMv cells express DAT. D. RI conditioning paradigm 

employed in this study. E. c-Fos immunoreactivity in PMv following an 

aggression episode. 

 

Figure 10. PMvDAT neuron activity manipulation leads to a long-

lasting switch in intermale hierarchy. A-C. Experimental design of the 

HCT. D. Collective results following a switch in the hierarchical pattern. 

E. Quantification of social rank in the HCT test during the test period of 

two weeks. 
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The last study included in this thesis was inspired by the identification of PMvDAT cells in 

intermale aggression, which opened up the possibility of a role of PMvDAT neurons in maternal 

aggression. The influence of maternal hormones on these cells was also examined in depth.  

4.6 PAPER VI: CONTROL OF MATERNAL AGGRESSION VIA MATERNAL-

HORMONE SENSITIVE HYPOTHALAMIC NEURONS 

Similarly to what was found with immediate early gene studies following an intermale 

aggression episode in PMvDAT neurons, here we identified that PMvDAT cells in the dam are 

also activated following the expression of maternal aggression (Fig. 11). 

Transfecting PMvDAT neurons with ChR2, enabled 

us to initiate aggressive episodes in lactating dams 

against both male and female intruders, whereas 

photoinhibition via eNpHR3 stopped ongoing 

episodes. 

Additionally, a genetically mediated cell ablation 

using Cre-dependent taCasp3 expression in 

PMvDAT cells led to a decrease in the expression 

of maternal aggression (Fig. 12). 

Importantly, using 

slice electrophysiol-

ogy, PMvDAT neurons 

were found to be 

responsive to maternal 

hormone bath applica-

tion. Both Prl and 

oxytocin were shown 

to depolarize PMvDAT 

neurons, likely through 

similar conductances. 

 

To test the involvement of these neurons in other maternal behaviors, such as maternal care, 

we used the PRT and photoactivation with ChR2. Surprisingly, photostimulation during the 

PRT impaired maternal care, suggestive of the role of these cells towards promoting aggressive 

behavior rather than a collective maternal repertoire. 

This study provides insights into the neural correlates of maternal aggression, and identifies the 

PMvDAT cells as a site of maternal hormone action to induce aggressive behavior in the female.  

Figure 11. PMvDAT neurons are activated in maternal 

aggression. A. c-Fos immunoreactivity in PMv and 

PMvDAT cells following the RI test, using lactating dams 

as residents. 

 

Figure 12. PMvDAT neuron lesion leads to a decrease in the expression of maternal 

aggression. A. Schematic of the experimental design. B. Representative PMv confocal 

images injected with control and DIO-taCasp3 virus. C. Behavioral raster plots in control 

and PMv-lesioned conditions. D. Quantification of aggression parameters. E. Quantification 

of the extent of the PMvDAT neuron lesion. 
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5 CONCLUSION AND FUTURE PERSPECTIVES 

The initial part of this thesis (Papers I-III) aimed at increasing our understanding of neural 

function at the cellular, ion channel and neurotransmitter release level, and this effort amounted 

to the identification of novel principles of autoregulation, gap junction physiology and DA 

release properties in the TIDA system. Such an approach is essential in the continuous effort 

of the neuroscience community to gain insights into neural function, and highlights that a 

neuron’s output is subject to multiple concurrent neurobiological rules and not merely a linear 

reflection of AP frequency. 

The second part of the thesis (Papers IV-VI) then attempts to establish a link between TIDA 

neurons and parental behavior (Paper IV), while Papers V and VI identify a prominent role of 

PMvDAT neurons in the circuit underlying multiple forms of aggression. 

The work discussed in Paper IV discusses a mechanistic interrogation of the lactotropic axis 

and its role in paternal behavior. Given that most mammalian species are maternally 

uniparental195, and sister species can be found to follow opposite parental strategies205, this 

work provides an understanding of how TIDA cell activity can tilt the parental circuit in a 

species towards high or low activation, ultimately having an impact on a rodent’s parental 

behavior. It would be of great interest to identify the TIDA network activity in other uni- and 

biparental mammals, and to investigate whether gap junctions are the core variable influencing 

TIDA neuron activity and parental strategy in species other than rodents. Paper IV provides a 

conceptual advance in which, if our findings can be extrapolated, evolution can tilt a species 

parental strategy to increase its fitness based on environmental needs simply through the 

control of a single gene in TIDA neurons – that of Cx36. Rodents previously used in behavioral 

neuroscience such as the California mouse, the prairie and mountain vole would be excellent 

models to pursue these questions313-318. 

The experiments presented in Paper V implicate PMvDAT cells in intermale aggression and 

hierarchy. Importantly, they identify the PMv as an important node in the aggression circuit 

and highlight its interconnectivity with neural nodes previously associated with aggression or 

reward. A unique part of this work is the identification of PMvDAT cells in a functional 

aggression context, using an intermale competition test for social rank (the HCT). In addition 

to demonstrating the initiation or termination of aggression episodes using in vivo 

photostimulation, we provide insights into the temporal aspects that follow the establishment 

and re-establishment of intermale hierarchy. We show that, following the reversal of 

hierarchical status between two competing males, hierarchy remains inversed for the maximal 

tested period of two weeks. In nature following the establishment of hierarchy between two 

males, the individuals often do not challenge each other for large periods of time, usually 

defined by the initiation of the next breeding season319-324. An exciting future experiment, with 

the use of the HCT paradigm as performed in Paper V, is to identify the neural mechanisms 

that enable “storage” of the information with regard to an individual’s social rank, and those 

that underlie the temporal aspects that accompany the decision making underlying challenging 

and attempting the gain of hierarchical status. 
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The project recounted in Paper VI identifies the influence of maternal hormones (Prl and 

oxytocin) in activating PMvDAT cells. Additionally, we show that optogenetic photoactivation 

or photoinhibition of these neurons can induce or stop maternal aggression, while it impairs 

other maternal behaviors. These findings pinpoint how maternal hormones can activate a 

“dormant” neural circuit, allowing the conditional expression of aggressive behavior in female 

mice. Such a mechanism is of great interest since it involves neural plasticity in adulthood in a 

neural circuit that permits the expression of an innate behavior with minimal influence of 

learning from conspecifics. 

In summary, this thesis attempts to introduce and develop concepts on what drives 

physiological neural network activity and meaningful behavioral outcome. In our view, this is 

a necessary step prior to an attempt towards tackling pathophysiology in the human brain, a 

goal that for every generation of neuroscientists is getting closer to becoming tangible.  
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