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Abstract

Cancer is often considered a disease with, historically, poor survival that affects middle-aged

and elderly individuals. Hodgkin lymphoma (HL) is a lymphatic malignancy that affects both

young and old individuals, with the age-specific incidence curve having its first peak at ages

20-30 years. As survival has improved substantially over the last decades, there is an increasing

number of survivors – some still at a young age. The primary purpose of this thesis was to

address issues related to childbearing and treatment-associated disease among HL survivors.

As a means to investigate these issues, novel statistical methods were developed and applied.

Childbearing in relation to HL

Some HL survivors will be at the beginning, or in the midst, of their childbearing years. Both

pregnancy and HL are associated with changes to the immune system, making it plausible that

pregnancy could affect the progression of the disease. Study I in this thesis aimed to answer if

pregnancy affects the risk of relapse among female patients in remission from HL.

Ever since the introduction of radio- and chemotherapy with the possibility to cure HL, the

negative effects of therapy on fertility have been a concern. Contemporary treatments are

believed to be less gonadotoxic than those previously used, but few studies have compared

childbearing potential between the main treatment regimens administered today (ABVD and

BEACOPP) in a real-world setting. In Study II, temporal trends in childbearing among female

HL patients (of childbearing ages) were investigated, within groups of treatments, and in

comparison with the general population.

Both studies utilized a cohort of women diagnosed between 1992 and 2009, at ages 18-40

years, for whom detailed information on relapse as well as patient and disease characteristics

was available. For the purpose of comparing childbirth rates with the general population, HL

patients were individually matched to HL-free comparators. Childbirth rates were studied

separately within two time windows during follow-up: 0-3 years and 3-7 years, and cumulative

probability of childbirth was calculated in the presence of the competing risks of death and

relapse.

No evidence to support the hypothesis of pregnancy-associated relapse was found. However,

since the absolute risk of relapse is at its highest levels during the first 2-3 years after diagnosis,

female HL patients could, if possible, be advised to delay childbearing to avoid co-occurence.

Childbearing potential improved over calendar time, reflecting reduced toxicity and changes

in counseling. Women treated during recent years had childbirth potential in line with that

of matched comparators three years after diagnosis. Even women treated with BEACOPP, the

most gonadotoxic chemotherapy, had an increasing cumulative probability of having children

after HL. Importantly, no women had children after a relapse within the first seven years af-

ter diagnosis, which motivates a need for fertility advice and counseling at time of HL diagnosis.



Treatment-related disease

Late effects from cancer therapy are becoming increasingly important to quantify as the number

of cancer survivors grows. Chemo- and radiotherapy used to treat HL increases the risk of cardio-

and cerebrovascular diseases, and secondary malignancies (SMs).

In Study III, excess incidence of diseases of the circulatory system (DCS) among HL patients was

investigated to describe temporal trends in DCS morbidity attributable to HL and its treatment.

Data on patients diagnosed with HL between 1985 and 2013 at ages 18-80 years, for whom

information on inpatient DCS records was available, was used. Relative survival methods were

applied to estimate excess incidence rates indirectly from the observed and expected rates of

DCS. Cumulative excess incidence of DCS was calculated in the presence of competing risks.

The treatment-related incidence of DCS declined between the mid-1980s and mid-1990s, after

which no substantial improvements were observed. The risk of a treatment-related DCS persists

for up to 10 years among patients who completed their treatment in the new millennium.

When studying late effects it is important to attempt to capture the additional disease incidence

associated with cancer treatment. Additionally, to gain insight in real-life risks, it is of interest

to study not only time to first event, but continue to follow patients as they experience different

types of late effects before reaching an absorbing state. Doing both of these simultaneously

requires estimating excess transition rates to transient states in a multi-state model framework,

for which no methods have existed. Study IV suggested a way to achieve this, using a recently

developed simulation strategy to predict transition probabilities. As an illustrative example, data

from Study III on HL patients and DCS incidence was used. Combining methods from relative

survival with the multi-state framework enables investigation of complex patient pathways and

can be useful for several applications related to survivorship among cancer patients.
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1. Introduction

Cancer survivorship is conceptually different to cancer patient survival. While the latter is the probability

of surviving up to a certain point after a cancer diagnosis, survivorship incorporates more than just

that probability. Being diagnosed with cancer, undergoing therapy over a potentially long period, and

adjusting oneself to living with a history of cancer, has implications on a physiological as well as a

psychological level. Although every cancer survivor has a different experience of life thereafter, some

feelings are shared by most people, such as an increasing concern over their own and their immediate

family’s health, as well as a higher appreciation of how precious life is.

According to www.cancer.net “cancer survivorship has at least two common meanings: (1) Having no

signs of cancer after finishing treatment and (2) Living with, through, and beyond cancer.” The second

point is the focus of this thesis; studying life beyond cancer among patients in remission from Hodgkin

lymphoma (HL).

Until the middle of the twentieth century, patients diagnosed with HL had very limited chances of

surviving. Irradiation and single agent chemotherapy were the only treatment options, which meant

that patients with disseminated disease were difficult to treat with curative intent. Since then, the

development of efficient therapies and more accurate staging procedures has resulted in large reductions

in HL mortality.

The age-specific incidence of HL has its first peak around ages 20-25 years. With more and more HL

patients being cured from their disease, there is now a large group of relatively young cancer survivors

with many more years left to live. Some of these are yet to start families, and the experience of cancer

may give rise to worries related to childbearing. Will I be able to have children? Can a future pregnancy

result in my cancer coming back? These are two issues that are addressed in this thesis.

In a life-span perspective, HL therapy has been shown to increase the risk of a number of late com-

plications, including cardiovascular disease and secondary malignancies (SMs). While treatments are

continuously being developed to minimize the risk of late effects without jeopardizing the chances of

curing the HL, there is a balance in terms of maximizing the life expectancy among the patients. In

some situations, it might be worth risking late effects of treatment if cure can be reached. It is vital that

real-world (as opposed to clinical trial) evidence on morbidity and mortality from treatment-related

diseases is continuously gathered to support decision making for the treating physicians. It is also im-

portant to partition the risk of such diseases into the component that can be expected in the absence

of HL and the component which is related to the HL and treatment thereof. For this to be possible,

sophisticated statistical methods have been, and are being developed. In this thesis, such methods are

extended and applied to study temporal trends in the excess incidence of circulatory system disease

among HL patients.
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Cancer patient survivors are not only at risk of death due to cancer, or treatment-related cardiac disease,

or SMs. They are at risk of all of these things, all at once. Therefore, these risks should be studied

simultaneously. The last study included in this thesis presents a solution to this analytical problem, by

incorporating estimation of excess morbidity and mortality into a multi-state model.



2. Aims of this thesis

As a result of the vast improvements in survival among HL patients, clinical focus and research has

partly shifted towards improving quality of life after curative treatment and reducing adverse events

potentially caused by the treatment. The studies included in this thesis all concern life after diagnosis

among survivors of HL. The overarching purpose is however twofold, covering both statistical methods

development and clinical application.

The primary aim was to investigate clinically relevant hypotheses concerning childbirth potential after

HL, pregnancy-associated relapse, and incidence of treatment-related DCS. As a notable proportion of

patients are diagnosed at a young age when they have not yet finished their reproductive life, issues

related to fertility and childbearing are of great concern to the survivors and their families. Likewise,

treatment-induced complications are a major problem, especially among younger patients with many

years still to live.

The second aim was to apply and extend novel statistical methods within relative survival and multi-

state modeling to facilitate proper and thorough investigation of the above-mentioned clinically relevant

questions.

More specifically, the aims were to:

• Investigate if pregnancy triggers relapse among women in remission from HL [Study I].

• Describe temporal trends in childbirth patterns among female HL survivors, by clinical charac-

teristics and compared to the general population [Study II].

• Study treatment-related morbidity due to DCS among HL patients [Studies III].

• Incorporate estimation of excess incidence rates and the use of multiple time scales into a multi-

state model framework [Study IV].



3. Background

3.1 Hodgkin lymphoma

Lymphoma is a malignant condition where the tumor cells originate from lymphocytes, a type of white

blood cell that are part of our immune system. Lymphocytes are the main type of cell found in the

lymphatic system but they are also found in the blood. There are three different types of lymphocytes:

T (thymus-derived) cells, NK (natural killer) cells, and B (bone marrow derived) cells. Lymphomas can

arise in either T/NK or B cells, and classification into sub-types is based on the origin of the malignant

cell. According to the World Health Organization (WHO) classification system, there are three main

categories of lymphoma: B cell lymphomas (make up around 80%), T/NK cell lymphomas (10%), and

HL (10%) which also originates from B cells. The two first sub-types together make up the non-Hodgkin

lymphomas (NHL). HL is named after the pathologist Thomas Hodgkin, who in 1832 was the first

to describe the disease post-mortem in seven cases. In 1898, Carl Sternberg claimed that diagnosis

should be based on a histological investigation, and a couple of years later Dorothy Reed described the

malignant cells that are the microscopic hallmark of HL as “giant cells” and further noted that “eight

or ten nuclei have been found in a single cell” [1]. These cells, illustrated in Figure 3.1, are referred to

as Hodgkin Reed-Sternberg (HR-S) cells and are today necessary for a diagnosis of HL. Although HR-S

cells can be low (∼1%) in number, they have a larger mass than other B-cells, and produce factors that

attract inflammatory cells, which in turn makes up the majority of the tumor burden.

There are two main types of HL; Classical HL (CHL), that affects around 95% of the patients, and nodular

lymphocyte predominant HL (the remaining 5%). Classical HL can be further divided into:

• Nodular sclerosis CHL – accounts for 60-80% and is typically seen in young adults.

• Mixed cellularity CHL – accounts for 15-30% and is most commonly seen in elderly patients.

• Lymphocyte-rich CHL – accounts for around 5%.

• Lymphocyte-depleted CHL – rare (less than 1%) and is most commonly seen in advanced stages

and among elderly patients.

For the purpose of this thesis, no separation was done between any of these sub-types.

3.1.1 Signs and symptoms, staging, and prognosis

HL is usually detected due to enlargement of one or more lymph nodes – often in the neck, under the

arm, or in the groin. These are typically described as having a rubbery feeling and are not tender or
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Figure 3.1: Characteristic microscopic picture of a HR-S cell. Source: Terezakis, S. 2015 [2].

painful for the patient. Alternatively, the patient seeks medical care due to heavy night sweats, fever or

unexpected weight loss. This group of symptoms are called B symptoms and are often a sign of more

advanced disease.

Staging of HL is done according to the modified Ann Arbor staging classification[3], which is based on:

1. Number of lymph node regions involved.

2. Location of the affected lymph nodes.

3. Other organ involvement.

4. Whether or not the patient is experiencing B symptoms.

Historically, laparotomy with splenectomy and lymphangiography were used as staging procedures, but

today positron emission tomography (PET) and computed tomography (CT) scans together with biopsies

are primarily used. Figure 3.2 illustrates how stage I-IV disease is defined. Presence of B symptoms is

further denoted with the suffix letter “B” and “A” in the absence of symptoms. Stage IA-IIA is typically

considered limited stage, while IIB-IVB is advanced stage.

Stage of HL is supplemented by an assessment of prognosis. For limited stage patients, the following

factors are associated with an unfavorable prognosis: bulky disease, extra nodal disease, more than

three affected lymph node regions, presence of B symptoms, and an erythrocyte sedimentation rate

(ESR; the rate at which red blood cells sediment) ≥50 mm/hour. For advanced stage patients, prognosis

is determined by seven verified prognostic factors - male sex, age at diagnosis above 45, presenting with

stage IV, hemoglobin (Hb) concentration less than 105 g/l, serum albumin less than 40 g/l, lymphopenia

(lymphs < 600 · 109/l or lymphocyte count <8% of white blood cell count), and leukocytosis (white

blood cell count ≥ 15 · 109/l). These prognostic factors are summarized in the International Prognostic

Score (IPS) score, where presence of each risk factor scores one. After therapy initiation, the most

important negative prognostic factor is not having a PET scan showing complete metabolic remission

after two cycles of treatment.
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Figure 3.2: Classification of staging in HL.

Stage I Stage II Stage III Stage IV

One lymph node
region involved

Two or more lymph
node regions

involved on the
same side of the

diaphragm

Two or more lymph
node regions

involved, on both
sides of the
diaphragm

Widespread disease
outside of the

lymphatic regions

3.1.2 Epidemiology

HL is a rare malignancy, around 200 new cases are diagnosed in Sweden each year constituting ap-

proximately 0.3% of all cancer cases. However, it is one of the most frequently diagnosed malignancies

in young adults. The incidence in high income countries has a bimodal shape by age, as shown in

Figure 3.3. Very few children and adolescents get diagnosed with HL; the first peak in incidence appears

in ages 20-25, and after a decrease among middle-aged people it increases again from age 45-50.

Figure 3.3: Age-specific incidence of HL in Sweden 1970-2016. Source: National board of Health and
Welfare.

Knowledge on established risk factors for HL is scarce. Besides high socioeconomic status and male

sex, familial aggregation has been observed. Individuals with a first degree family member diagnosed
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with HL, or some other type of lymphoma, have a 3- to 7-fold increase in risk [4–6]. Immunodeficiency

increases the risk of HL. Especially, having an infectious mononucleosis (“mono”) caused by the Epstein-

Barr virus (EBV) has been shown to increase the risk of the EBV-positive subtype of HL among young

adults [7]. However, given the high prevalence of EBV in the general public, the etiology is still not

fully understood. HIV (human immunodeficiency virus) infected individuals are also at greater risk of

developing HL.

3.1.3 Treatment principles

Untreated, survival among HL patients is generally short (less than a year) and half a century ago, HL

was associated with a very unfavorable prognosis. Today, advances in chemo- and radiation therapy

have made it possible to cure the majority of both limited and advanced stage patients (even if first-line

treatment fails). Figure 3.4 illustrates the improvements in 5-year relative survival between 1973 and

2009, for patients of different ages.

Figure 3.4: Temporal trends in five-year relative survival for HL patients in Sweden, by age at diagnosis.
Source: Sjöberg, J. et al. 2012 [8].

Before the introduction of effective chemotherapy (CT), HL patients were treated with extended field

radiotherapy (RT), e.g., mantle field (torso) or inverted Y-field (pelvis). For patients with limited stage,

remission rates were fairly high, but relapse was common. Patients with advanced stage invariably had a

fatal outcome. The first attempts to treat HL with CT consisted of single agent drugs – mechlorethamine,

chlorambucil, or vincristine. In 1964, DeVita and colleagues successfully combined four CT drugs

(mechlorethamine, oncovin/vincristine, procarbazine, and prednisone) and could report on the first

cures of advanced stage HL [9]. This therapy is known as the MOPP regimen, and has been extensively

used since. Besides enabling cure of advanced disease patients, this opened up the field of combined

modality treatment (i.e., treatments with a combination of CT and RT) for patients with limited-stage

disease, which in turn further reduced relapse rates among this group of patients. Unfortunately, cure

came at a cost in terms of increased risk of infertility and SMs, especially leukemia and breast cancer.
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Over time, alterations of the MOPP regimen have been suggested, with the primary aim to reduce asso-

ciated toxic effects. In 1975, ABVD (Adriamycin/doxorubicin, bleomycin, vinblastine, and dacarbazine)

was introduced to patients failing MOPP. It was later adopted as first-line treatment since the cure rates

were higher and the side-effects fewer. Combinations and other regimens have also been used over the

years, such as MOPP/ABV (for young patients), and CHOP (cyclophosphamide, doxorubicin, vincristine,

and prednisone) administered to older patients.

In the 1990s, The German Hodgkin Study Group developed the BEACOPP (bleomycin, etoposide, dox-

orubicin, cyclophosphamide, vincristine, procarbazine, and prednisone) CT regimen to address the fact

that approximately 30% of advanced-stage patients treated with ABVD were still not cured [10]. BEA-

COPP has a more severe toxicity profile than ABVD, and in Sweden this therapy has primarily been

used for patients with advanced stage and unfavorable risk factors according to IPS. The trend today

is towards giving BEACOPP initially and de-escalate to ABVD or AVD if the patient has PET negative

disease after two cycles of chemotherapy.

Parallel to advances in multi-agent CT, RT has gone from extended field (mantle/para-aortic/inverted

Y-field/total nodal irradiation) to more targeted (involved field/node). There has also been a shift

towards smaller doses of irradiation (from 40 Gy to 20-30 Gy for patients with limited stage). The

development of standards for HL treatment in Sweden, as recommended by the Swedish Lymphoma

Group, are illustrated in Figure 3.5.

The advances in chemo- and radiotherapy, together with better staging techniques, have made HL a

curable disease with a 10-year relative survival exceeding 90% for patients aged under 65 at diagnosis

[8]. However, still today approximately 2% of patients with classical HL are refractory to first line therapy

and around 13% relapse [11]. These patients are currently treated with high-dose therapy or salvage

chemotherapy and autologous stem cell transplantation. As this therapy is not tolerated by all patients,

and for some not sufficient for cure, alternative treatments are emerging (primarily aimed at refractory

patients). One example is the drug brentuximab vedotin that targets CD30, a molecule found on tumor

cells, and by doing so delivers chemotherapy only to those cells. In a study on pre-treated HL patients

with relapse/refractory disease, 75% responded and 34% achieved complete remission [12]. Another

recent study on advanced stage (III+IV) patients treated with ABVD versus A+AVD (brentuximab vedotin

instead of bleomycin), reported a lower risk of disease progression and death at two years after diagnosis

among those treated with A+AVD [13]. Other novel therapies include PD-1 (programmed cell death

protein 1) inhibitors - in a recent phase II trial of nivolumab among patients with relapsed or progressive

disease who had failed other lines of treatment, 66% of patients responded to treatment and 9% went

into complete remission [14].
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3.2 Childbearing in relation to HL

The first peak in HL incidence precedes and covers the prime childbearing years. This raises several

interesting research topics on pregnancy and childbearing in relation to HL.

3.2.1 Pregnancy as a risk factor for HL

As HL incidence starts to diverge between males and females around the childbearing ages, reproductive

factors (such as parity and age at first birth) have been suggested to have an effect on HL risk. Although

higher parity has been observed to increase the risk for HL [15], more evidence points to a reduced

[16, 17] or no effect on risk at all [18]. Today, the latter is the general belief, and the National Cancer

Institute (NCI) even states that “Pregnancy is not a risk factor for Hodgkin lymphoma“.

3.2.2 Pregnancy and prognosis of HL

A recent childbirth prior to diagnosis does not appear to be an adverse prognostic factor in HL, as

opposed to findings in melanoma and breast cancer [19]. Nor do women diagnosed during pregnancy

have inferior cause-specific survival compared to women diagnosed outside of pregnancy [20, 21].

Nevertheless, a cancer diagnosis during pregnancy is both traumatic for the patient and poses problems

in terms of clinical management. The biggest challenge in the management of HL during pregnancy is

timing of delivery versus treatment initiation. The main goal is to continue the pregnancy to full term

without jeopardizing the safety of the woman. Phase of pregnancy (i.e., trimester), stage of HL, and

whether the disease is slow-growing or not, are the main deciding factors. If HL is diagnosed during

the first trimester and immediate treatment is needed, termination of the pregnancy is recommended

[22]. If HL is diagnosed during the second or third trimester, treatment is either deferred until after

delivery, or antenatal chemotherapy is given. Irrespective of treatment alternative, the most common

complications are induction of labor, PROM (premature rupture of membranes) and Cesarean section

[23]. Several studies have concluded that antenatal CT with standard regimen during the second or

third trimester is safe with regards to both the fetus and the mother’s prospects of remission [22–24].

Data on how a pregnancy among women in remission from HL influences the risk of relapse has been

sparse. A French study from 1988 comprising 12 patients who were pregnant during treatment for HL

or shortly thereafter, found no evidence that pregnancy influences the course of HL [25]. However, as

the study lacked a comparison group the results should be interpreted with caution.

3.2.3 Fertility and childbearing after HL

Since the introduction of curative HL therapy, its negative effect on fertility has been a major concern

and one motivation for the development of new less gonadotoxic treatments.

RT to the pelvic region is particularly toxic among men. The testis are among the most radio-sensitive

tissues, and thus even low doses of pelvic irradiation can cause loss in gonadal function [26]. For women,

the effect is dependent on both dose and age (as the oocyte reserve decreases with increasing age),

but normally small doses (less than 4 Gy) are considered safe. Today, for limited-stage patients with
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subdiaphragmal HL, RT is often replaced with full CT and no RT. However, CT can also have a negative

effect on fertility. In particular, alkylating agents (such as mechlorethamine, included in MOPP, and

procarbazine, included in MOPP and BEACOPP) have been found to induce oligospermia/azoospermia

(low or no sperm count in the semen) in men and amenorrhea (absence of menstruation) in women,

temporary or permanently [26–29]. Men are more likely to experience loss in gonadal function due to

CT compared to women [27].

For adult men, semen cryopreservation (i.e., sperm banking) is easily achieved and therefore stan-

dard procedure. For women, there are less options available in situations when immediate treatment is

needed. If time allows, preservation of in vitro fertilized embryos can be done in adult women. Cryop-

reservation of oocytes and ovarian tissue can also be performed. Another option for women is adjuvant

gonadotropin-releasing hormone analogue treatment. This has been shown to be effective in retaining

ovarian function in some studies [30, 31] but not in others [32], and is not standard in HL patients

today. In the rare cases of adolescents who have not entered puberty when HL therapy is initiated,

fertility preservation becomes more complicated. Cryopreservation of immature testicular tissue among

boys is not yet possible, while for girls, ovarian tissue cryopreservation can be done to fully guarantee

fertility preservation. To maximize the chances of retaining fertility among very young HL patients,

treatments currently used tries to limit the gonadotoxic effects as much as possible.

Whether the possibility of having children differs between HL survivors and people in general has been

somewhat unclear. A small Canadian study showed encouraging results on limited-stage, 3-year relapse-

free HL survivors treated with ABVD, concluding that pregnancy rates among female HL patients who

attempted to become pregnant did not differ from those of matched comparators [33]. A similar pattern

was observed for female survivors of early-stage unfavorable HL in the German Hodgkin Study Group

HD14 trial [30]. A Norwegian study from 2011 reported lower childbirth rates among female but not

male HL patients, compared to controls [34]. Similarly, a slight but significant lower number of children

was seen in female HL survivors treated 1964 to 2004, who had children since before, compared to

controls [35]. A Swedish study from 2013 stated, although not specific to HL survivors, that “cancer

survivors are less likely to give birth compared with the background population” [36].

3.3 Treatment-related mortality and morbidity

HL patients treated with CT and/or RT are at risk of developing a range of treatment-related compli-

cations. These may present shortly after treatment, or many years later. The two most common late

complications, with risk of fatal outcome, are DCS and SMs. Due to its bimodal incidence and vast

improvements in survival, HL is often considered a “model disease” for gaining knowledge about late

effects from CT and RT also applicable to other cancer types. As a consequence, the literature in this field

is extensive, and several excellent reviews have been published that summarize the current knowledge

on late effects [37–40].

3.3.1 Diseases of the circulatory system (DCS)

Both RT and CT may induce damage to the circulatory system. In cases of RT to the chest the risk of

several cardiac sequelae, such as valvular heart disease and heart failure, has been observed to increase

[41–44]. Moreover, a linear relationship between radiation dose (number of Gy) and risk of coronary
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artery disease (CAD) has been reported [45]. In cases where the head and neck have been exposed to

irradiation, damage to the carotid arteries may occur which in turn can lead to stroke [46–48]. As the

mean RT doses have decreased over time, the excess risk of stroke has also been reported to decline

[49].

Table 3.1: Late effects among HL survivors. Relative risk (RR) refers to standardized mortality ratio
(SMR) or corresponding measure of risk in relation to the general population. Absolute excess risk
(AER) is defined as the observed number of deaths minus the number expected, divided by person-time
at risk in the patient cohort.

Author (year) N Diagnosed Outcome RR AER1

Aleman (2003) 1,261 1965-1987 CVD death 6.3 (sign.) 17.8

Hull (2003) 415 1962-1998 CABG 2.4 (1.1-3.7) -

Valve surgery 8.4 (3.2-13.6) -

Aleman (2007) 1,474 1965-1995 CAD 3.2 (2.7-3.7) 61.7

MI 3.6 (2.9-4.4) 35.7

CHF 4.9 (3.6-6.4) 25.6

Swerdlow (2007) 7,033 1967-2000 MI death 2.5 (2.1-2.9) 125.8

Myrehaug (2008) 615 1988-2000 CVD 1.9 (1.2-3.0) 35.6

MI 1.9 (1.0-3.6) 18.2

Andersson (2009) 6,946 1965-1995 CAD 1.62 (1.4-1.8) -

CHF 1.52 (1.2-1.9) -

Kiserud (2010) 557 1971-1991 CVD death 4.9 (3.1-7.9) -

Castellino (2011) 2,633 1970-1986 Heart disease death 12.7 (9.8-16.2) 13.1

Galper (2011) 1,279 1969-1998 CABG 3.2 (2.8-3.5) 18.2

Valve surgery 9.2 (8.1-10.3) 14.1

van Nimwegen (2015) 2,524 1965-1995 CAD 3.2 (3.0-3.5) 70.0

CHF 6.8 (5.9-7.6) 58.0

Abbreviations: N, number of included HL patients; CVD, cardiovascular disease; CABG, coronary artery
bypass grafting; CAD, coronary artery disease; MI, myocardial infarction; CHF, congestive heart failure.

1 Per 10,000 person-years
2 10-19 years after treatment for HL

The cardiac toxicity of chemotherapy is mainly driven by anthracyclines (such as doxorubicin included

in the HL therapy regimen ABVD). However, other anti-cancer drugs (such as alkylating agents) are also

recognized to lead to long-term cardiac sequelae. The clinical manifestation of anthracycline-induced

cardiac toxicity is often arrhythmias or cardiomyopathy, which in turn can lead to congestive heart

failure (sometimes presenting many years after treatment).

While reductions in RT dose has most probably reduced the risk for RT-associated DCS, contemporary

CT treatment still involves high cumulative doxorubicin doses. Most scientific literature addressing the

cardiotoxicity of HL therapy is based on patients treated with a combination of CT and RT. Among the

few studies addressing the toxicity of CT alone, a Mexican study from 2005 showed that patients treated

with epirubicin rather than doxorubicin in ABVD, had better overall survival [57]. Moreover, a Dutch

study on patients diagnosed 1965-1995 reported that, irrespective of RT exposure, the rate of heart

failure increased 3-fold in patients treated with anthracycline CT [58].

Key findings on cardiac morbidity and mortality among HL patients are summarized in Table 3.1. Most

studies are based on patients treated with outdated therapy. As there are many HL survivors still alive
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today who were treated with, e.g., extended field RT and remain at risk of these complications, the

knowledge gained from these studies is highly relevant. However, there is a lack of studies based on

patients treated with contemporary HL therapy investigating whether changes in treatment regimes (i.e.,

the shift towards less RT and more CT, and especially the anthracycline-containing ABVD) has influenced

the incidence of circulatory system diseases. In a Swedish study on patients diagnosed between 1973

and 2006, it was concluded that treatment-related DCS mortality among HL patients have declined

since the mid-1980s and “when accounting for competing causes [...], excess DCS mortality constitutes

a small proportion of the overall mortality among HL patients" [59]. However, a reduction in treatment-

related DCS mortality does not necessarily imply a reduction in treatment-related incidence of DCS, as

improved treatment of DCS could explain the mortality reduction.

3.3.2 Secondary malignancy (SM)

Although not the focus of this thesis, SMs constitute the other group of serious late effects of HL therapy,

and should therefore be covered, albeit in less detail.

SMs in HL patients are traditionally grouped into leukemia, non-Hodgkin lymphoma (NHL), and solid

tumors. The risk of a SM has been shown to peak at five to ten years after HL therapy in cases of

treatment with CT alone [60]. Irrespective of treatment regimen, risks have been observed to remain

increased for more than 25 years [60, 61].

The largest standardized incidence ratios (SIRs) have been observed for leukemia, especially acute

leukemia (SIR=20-30)[62–64]. The increased risk is especially seen among patients treated with alky-

lating agents such as mechlorethamine and procarbazine [61, 65].

HL patients have a 14-16 times higher risk of NHL than the general population [62, 64]. This effect is

of the same magnitude irrespective of treatment and remains approximately the same throughout life

[63]. Due to the close relationship between HL and other malignant lymphomas, it is unlikely that the

HL therapy alone causes the increased risk, other factors such as the underlying biology of lymphoma

and shared risk factors, are probably involved as well.

Solid tumors account for 70% to 80% of all SMs in HL patients [62, 64, 66]. The most common sites

are breast-, lung-, and gastrointestinal (GI) tract cancers [33, 63]. Considering all SMs together, HL

patients experience a 2-3 times higher risk compared to the general population, and the occurrence is

related primarily to RT [61]. In a study on breast cancer risk among female HL survivors it was shown

that reducing the radiation volume (to limit the irradiation to the breast tissue) significantly lowers the

risk, and that gonadotoxic treatments, by inducing early menopause, further reduce the breast cancer

risk (among young patients) [48]. In 2015, Shaapveld et al. reported a 30-year cumulative incidence of

28.5% for all solid cancers combined; breast cancer 16.6%, lower respiratory 7.1%, and GI tract 7.0%

[61].
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4.1 National registers

The studies in this thesis utilized data from several national health and population registers (see Fig-

ure 4.1). The Swedish national registers are held at either the National Board of Health and Welfare

(Socialstyrelsen) or Statistics Sweden (Statistiska Centralbyrån), except for the Swedish lymphoma

register which is managed jointly by six different Regional Cancer Centers (RCCs). The personal identifi-

cation number (PIN, personnummer) unique to all Swedish residents [67, 68] enabled linkage between

different registers.

Figure 4.1: Illustration of the national registers used, and for which years, in Study I-II and III-IV.

Study I, II Study III, IV

IPR
1985-2014

SCR
1992-2009

SLR
2001-2009

National database for HL
1992-2000

CDR
1992-2010

MBR
1973-2010

RTP
1992-2010

SCR
1985-2013

CDR
1985-2014

MGR
1932-2002

RTP
1985-2014

Censuses
1960-1990

OPR
2001-2009

The Swedish Cancer Register (SCR)

In all four studies, the Swedish Cancer Register (SCR) was used to identify incident cases of HL. The

SCR was established in 1958 and contains all newly diagnosed primary cancers in Sweden. Reporting

to the register is done by clinicians, pathologists and cytologists and is mandatory by law. The register

re-codes all diagnoses to the 7th revision of the International Classification of Diseases (ICD). ICD-7

code 201 was used to identify HL. The completeness for HL has been shown to be very high (>95%)

[69].
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The Swedish Lymphoma Register (SLR)

The Swedish Lymphoma Group was formed in 1979 with the main purpose to optimize the care of

lymphoma patients in Sweden. As part of this, the National Database of Hodgkin lymphoma was initiated

in 1992, recording more detailed clinical information (such as stage and treatment) than what could be

found in the SCR. Between 1992 and 1998, all Swedish healthcare regions except Stockholm reported

to the database, and 1999-2000 all six regions were included. The nationwide Swedish Lymphoma

Register (SLR) was established in year 2001, and covers around 95% of all lymphoma cases found in

the SCR [70]. Figure 4.2 shows the region-specific coverage between 2008 and 2013. The SLR was

utilized to link information on clinical characteristics, especially relapse information, to HL patients in

Study I-II.

Figure 4.2: Coverage of the Swedish Lymphoma Register (SLR) between 2008 and 2013 for all types
of lymphoma found in the Swedish Cancer Register (SCR). Source: Svenska lymfomregistret, nationell
kvalitetsrapport för diagnosår 2013 [70].

The Cause of Death Register (CDR)

The Swedish Cause of Death Register (CDR) includes data on all deceased Swedish residents, who die

in Sweden or abroad, since 1961. Both underlying and contributing causes of death are recorded, as

well as date of death. For Study I-II, dates of death were used, and for Study III-IV both dates and the

underlying cause of death were extracted.
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The Medical Birth Register (MBR)

Since 1973, all pregnancies resulting in a live birth in Sweden, and all stillbirths delivered after 28 full

gestational weeks (January 1973 - June 2008) or 22 gestational weeks (from July 2008), are recorded

in the Swedish Medical Birth Register (MBR). The MBR contains information on maternal, pregnancy,

and offspring characteristics. Both actual date of delivery and estimated delivery date based on ultra

sound is recorded. For Study I, the latter was used to estimate date of conception (est. delivery date -

280 days). In Study II, the estimated delivery date was used as the time point of the outcome.

The In- and Outpatient Registers (IPR and OPR)

Six of the Swedish counties started recording inpatient visits in 1964, initiating the Inpatient Register

(IPR). Successively, remaining counties have followed and the register reached national coverage in

1987. However, already in the early 1980s the coverage was around 95%1. For the purpose of this

thesis, the IPR was used to extract hospitalizations for DCS (Study III-IV) from 1985 and onward. At

that time only the counties Kronoberg and Bohus were not reporting, constituting 2% and 3% of the

total population size in 1985, respectively. Since 2001, outpatient visits, including day surgery and

psychiatric care, are recorded in the Outpatient Register (OPR). Information on primary care visits is

not included in any national patient register. The OPR was used in Study II to retrieve infertility- and

fertility preservation diagnoses.

The Multi-Generation Register (MGR)

The Multi-Generation Register (MGR) contains all individuals born in 1932 or later, who have resided in

Sweden at some point since 1961, and their parents. The MGR is useful for creating family structures by

linking index persons to their relatives. However, as the register includes essentially everyone residing

in Sweden, it can also be used to represent the Swedish general population. For Study III-IV, the MGR

was (together with censuses, see below) used for this purpose.

Censuses

To further ensure that the cohort based on the MGR could serve as a representation of the Swedish

general population, individuals included in censuses were added. Between 1860 and 1990, Sweden

conducted population and housing censuses to collect information on population size, educational level,

and occupation, to name a few.

The Register for Total Population (RTP)

Information on emigration from Sweden was extracted from the Register for Total Population (RTP)

initiated in 1968. The RTP holds data on, e.g., number of childbirths and deaths, marriages and divorces,

and is the basis for many official statistics regarding the Swedish population.

1Based on population size data from Statistics Sweden and information on reporting from the National Board
of Health and Welfare.
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4.2 The Social Mobility database

The Social Mobility database includes data from the IPR (1964-2010), the CDR (1961-2010), and the

RTP (1968-2010) for index persons found in either the MGR (1932-2002) or in any of the Swedish

censuses 1960-1990. This database was used in Study III-IV to calculate expected incidence rates of

DCS in a cohort representing the Swedish population.

4.3 Ethical considerations

Using the Swedish national health and population registers for scientific research is governed by law,

and approval from the regional ethical review board is necessary. Except for quality registers, such as

the SLR, individuals included in national registers have no possibility to opt out, and might not even be

aware that they are included in a range of registers and by that several research projects. It is important

to weigh the potential harm (both physical and psychological) versus the benefit of each study.

Although the research included in this thesis has the potential to benefit future HL patients, it does not

necessarily benefit previously diagnosed patients. Thus, we need to make certain that no individuals

included are harmed, that their personal integrity is not breached, and that the research is sufficiently

important to motivate the use of the data. To ensure that data is handled as safe and respectful as

possible, registers are held at Governmental institutions (such as Statistics Sweden and the National

Board of Health and Welfare), and only de-identified data is accessed at the researchers end (i.e., the

personal identification numbers are removed), and small (generally less than 5) cell counts are not

presented in the published reports.
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5.1 Survival Analysis

5.1.1 Key concepts and measures

Survival analysis is a field in statistics dealing with time to event data. Examples include studying time

to discharge after admittance to hospital, or time to death following a diagnosis of cancer. Individuals

are followed over time, for which an underlying time scale (such as time since diagnosis or attained

age) is predefined. One key feature of survival analysis is the presence of incomplete observations in

terms of outcome status. This means that for one reason or another, individuals are not followed long

enough for them all to experience the outcome of interest. This is referred to as (right) censoring, and

requires special statistical concepts and methods. There are other types of censoring, such as left- and

interval-, but they are beyond the scope of this thesis. In case of right censoring, it is only observed that

the individual has not experienced the outcome up until some point in time. It is further assumed that,

conditional on adjusting variables, the individuals who remain under study represent those who were

censored.

Individuals do not necessarily have to be in the study from time zero. This is known as delayed entry.

For example, when attained age is the time scale, and study participants enter at some time point after

birth, this will be the case for the full cohort.

If we denote by TE the time until an event of interest, and TC the censored survival time, we will only

observe T =min(TE , TC ). For each study participant i, data is represented in pairs (t i ,δi) where t i is the

observed value of T for that individual and δi an indicator of whether the outcome occurred (δi = 1)

or not (δi = 0).

The density function, f (t), and cumulative distribution function, F(t), can be used to characterize the

distribution of T . F(t) is simply the integrated f (t) and assuming that the censoring is non-informative2,

it represents the probability of experiencing the outcome before time t. In epidemiological applications

this is sometimes referred to as the cumulative incidence function (CIF) [71, 72]. Two other functions are

considered the corner stones of survival analysis – the survival function, S(t), and the hazard function,

h(t). The survival function is a monotonic decreasing function with S(0) = 1 and limt→∞ S(t) = 0.

It describes the probability of being event free at time t, and has a one-to-one relationship with the

2This assumption will be further covered in Section 5.2.
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cumulative distribution function (and density function):

S(t) = P(T > t) = 1− P(T ≤ t) = 1− F(t) = 1−
∫ t

0

f (u) du. (5.1)

The hazard function is the instantaneous rate of failure, and is defined as:

h(t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

. (5.2)

The term “hazard” is generic and is typically exchanged with incidence or mortality in medical appli-

cations, depending on the outcome. By integrating the hazard function we get the cumulative hazard
function H(t), which is related to the survival function as:

H(t) = − log S(t). (5.3)

The cumulative hazard function describes the accumulated risk up until time t, and although hard to

interpret in itself, it is useful for modeling purposes.

The most commonly used non-parametric estimator of the survival function in medical applications is the

Kaplan-Meier estimator [73]. For testing purposes, the log-rank test (which compares survival curves)

can be applied. Similarly, the Nelson-Aalen estimator of the cumulative hazard function (described, e.g.,

in [74]) is widely used. The studies in this thesis are all observational studies. As opposed to randomized

trials, such studies are typically not balanced with regards to confounding factors. Thus, a modeling

approach is preferred to non-parametric methods.

5.1.2 The Cox proportional hazards model

The Cox model [75] is the best known of all survival models, and is defined as:

h(t;x) = h0(t) · exp(xβ) (5.4)

where h0(t) is the baseline hazard function, and xβ the linear predictor (the covariates and a vector

of coefficients). The model gained popularity due to the fact that no parametric shape needs to be

assumed for the baseline hazard function, avoiding misspecifications. However, this implies that h0(t)
is not estimated, only hazard ratios (HRs) as measures of relative effects. One key assumption of the

standard Cox model defined in Equation 5.4 is the proportional hazards (PH) assumption, meaning

that HRs are assumed constant over follow-up time. However, this assumption is not unique to the Cox

model, but common to many survival models. The PH assumption can be relaxed in several ways, such

as by including interaction terms between covariates and follow-up time.

The Cox proportional hazards model was used in Study I to estimate HRs comparing relapse rates

between women exposed to pregnancy and women unexposed to pregnancy. In Study II, the Cox model

was used to estimate HRs of childbirth between women with different covariate patterns, separately for

two distinct time periods during follow-up (0-3 years and 3-7 years), assuming PH within each period

but allowing the HRs to differ between the two time windows.

During recent years parametric models are becoming increasingly used, as they offer an estimate of the

rates themselves (as opposed to just relative rates). In 1994, even Sir David Cox himself said [76]:



20 5. Statistical methods

“In the light of further results one knows since, I think I would normally want to tackle the problem

parametrically. [. . .] I’m not keen on non-parametric formulations normally.”

5.1.3 The Poisson model

Parametric models enable comparisons between individuals with different covariate pattern on the

absolute scale as well as the relative scale. One commonly used model is the Poisson model, which was

used in Study IV to estimate expected DCS rates using a population incidence file grouped on calendar

year, age, and sex. The Poisson model is defined (on the log scale) as:

log[h(t;x)] = f (t) + xβ . (5.5)

The baseline rate is modeled with f (t), which can take a range of functional forms. Figure 5.1 shows

some common examples of Poisson models (for illustrative purposes, all assume PH).

Figure 5.1: Examples of three commonly used functional forms for the baseline hazard rate in a Poisson
PH model setting in case of two exposure levels. Model (a) assumes a constant rate across follow-up
time, i.e., f (t) = λ. Model (b) is a piece-wise constant rate model, allowing the baseline rate to differ
between the two intervals, but assuming constant rate within each interval. In model (c) the baseline
rate is modeled using restricted cubic splines with three internal knots.
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Unexposed Exposed

Models where the baseline rate is modeled using a data driven flexible function of time, similar to model

(c) in Figure 5.1, are becoming more common. On such model, applied in all studies in this thesis, is

the flexible parametric survival model.

5.1.4 The flexible parametric survival model

The flexible parametric survival model was first introduced by Royston and Parmar in 2002 [77] and

has been further developed since [78]. Modeling is done on the log cumulative hazard scale with the

baseline rate modeled using restricted cubic splines. Splines are mathematical functions defined by piece-

wise polynomials which in turn are based on basis functions of increasing degree (up to order 3 for



5. Statistical methods 21

cubic splines). A restricted cubic spline as a function of x , with K knots (i.e., joining points), can be

written as:

s(x;γ) = γ0 + γ1 · ν1(x) + γ2 · ν2(x) + ...+ γK−1 · νK−1(x) (5.6)

where νi are the basis functions:

νi(x) =

(

x for i = 1

(x − ki)3+ −λi(x − k1)3+ − (1−λi)(x − kK)3+ for i = 2, ..., K − 1

with ki being the ith knot, (x − ki)+ =max(0, x − ki) and λi =
kK−ki
kK−k1

. Before the first (k1) and beyond

the last (kK) knot, the spline function reduces to a linear function, which is the key characteristic of

a restricted spline, providing stability in the tails where data tends to be sparse. The spline function

is furthermore forced to have continuous first and second derivatives at the knots, ensuring a smooth

function.

A proportional hazards model can be written on the log cumulative hazard scale as:

log(H(t;x)) = log(H0(t)) + xβ (5.7)

where H0(t) is the baseline log cumulative hazard function. Expressing this function in terms of a

restricted cubic spline as a function of log time gives the flexible parametric model:

log(H(t;x)) = s(log(t);γ) + xβ (5.8)

As the flexible parametric survival model is a proportional hazards model, the effects of covariates are

interpreted in the same manner as for other PH models. Extending to allow for time-dependent effects,

i.e., relaxing the PH assumption, is easily incorporated using interaction terms in the model.

The main advantage of the flexible parametric survival model, as compared to other parametric models,

is the possibility to predict hazard rates and survival functions without pre-specifying a parametric

shape of the baseline rate. In cases where the underlying rates have a more complex shape, choosing

the appropriate distribution can be difficult. And although it is possible to predict hazard rate from a

Cox model, e.g., by using the method of Kalbfleisch and Prentice [79], the baseline rate is treated as a

nuisance parameter with those methods, and is thus highly erratic.

For Study I-II, the flexible parametric survival model was used to predict relapse and childbirth rates,

respectively. It was the main model underlying all results in Study III, and in Study IV it was used to

model all transitions except the expected DCS rate.

5.2 Statistical methods for competing risks

So far, the term “survival” has been used without further specification. In studies of cancer patient sur-

vival, the entity of interest is often the probability that the patients will die from their cancer. Thus, deaths

due to other causes can be considered competing risks; events that prevents or alters the probability of

the event of interest. Depending on the research question at hand, these deaths are accounted for in

different ways.

If interest lies in studying etiology or making comparisons between different groups of patients, the
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measure of interest is net survival3 – the survival in a hypothetical world where the cancer of interest is

the only possible cause of death. For example, net survival is used in studies comparing cancer patient

survival between countries. As other cause mortality might differ between countries, this will bias the

comparison. Therefore individuals who die due to causes other than cancer are censored from the

analysis, and the survival function is interpreted as the proportion of patients still alive at time t, given

that you can only die due to cancer. Implicitly, this requires the assumption that the time to censoring

(including the deaths due to other causes) is independent of the time to death due to cancer, conditional

on the covariates included in the analysis. This is typically referred to as non-informative censoring, or

the independence assumption.

However, if the study objective is related to risks in a real-world setting where every different cause of

death is present, net survival is not a relevant entity. Examples of this can be studies assessing resource

allocation, or where risk communication is the endpoint. In such situations, competing causes of death

need to be accounted for so that the estimated measures accurately represent the actual survival among

the patients, i.e., in the presence of competing risks. Interpretation of the survival function, S(t), becomes

difficult in such analyses so traditionally the cause-specific cumulative incidence functions (cause-specific

CIFs) are presented. These are also known as the cause-specific cumulative probabilities of an event.

Figure 5.2: Illustration of competing causes of death among cancer patients.

State 1:
Diagnosed
with cancer

State 2:
Cancer death

State 3:
Other death

Figure 5.2 illustrates a typical situation with competing causes of death. Individuals start out alive,

diagnosed with cancer in State 1. They can then either die from their cancer (State 2) or die from

something else (State 3). As you can only die once, the two causes of death prevent each other from

occurring. In a study estimating net survival, patients dying from non-cancer would be censored, and

the survival proportion would typically be presented. In a competing risks study, two cause-specific CIFs

would be presented (the cumulative probability of dying from cancer and non-cancer, respectively).

Similarly, and more relevant for the studies in this thesis, the states in Figure 5.2 do not necessarily have

to be different causes of deaths, but can represent incident cases of some illness as well.

The cumulative probability of dying from cause k in the presence of competing risks can be expressed

as:

CIFk(t) =

∫ t

0

S(u) · hk(u) du k ∈ (1, ..., K) (5.9)

where hk(t) is the cause-specific hazard function and S(t) the probability of not having experienced

any of the K events up until time t, defined as [80]:

S(t) = exp
�

−
K
∑

k=1

Hk(t)
�

. (5.10)

The cause-specific CIFs can be estimated non-parametrically using the Aalen-Johansen formula [81], or

3In the competing risks literature, net survival is sometimes called “marginal survival” [80].
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from modeling. If a modeling approach is taken, one of the methods described next is commonly used

to obtain estimates of the cause-specific CIFs.

One alternative is to model cause-specific4 hazard functions, and from these predict the cause-specific

CIFs. The standard modeling approach is using a Cox regression model for each cause k:

hk(t;x) = h0k(t) · exp(xkβ k) (5.11)

where h0k(t) is the underlying cause-specific baseline rate and xkβ k the linear predictor for cause k. As

the baseline rate function is not explicitly estimated, it is difficult to obtain a smooth estimate of the

cause-specific CIFs. Thus, a parametric model is often preferred. Except for cases where very simplistic

models (i.e., the exponential) have been used, the cause-specific CIFs are not analytically intractable,

so numerical integration [82, 83] or simulation [84] is typically used instead.

Another option is to model the subdistribution hazards using a Fine & Gray model [85]. The difference

here lies in the definition of the risk set. When estimating cause-specific hazard rates, individuals

who experience either of the events are removed from the risk set. However, for estimation of the

subdistribution hazard rates, individuals who experience the competing event remain in the risk set.

The subdistribution hazards (and associated hazard ratios) can be difficult to interpret, but have the

advantage that there is a one-to-one relationship with the cause-specific CIFs.

Recently developed methods also suggest modeling the cause-specific CIFs directly, using flexible para-

metric survival models [86].

Cause-specific CIFs can also be estimated in a relative survival framework, where they are often referred

to as “crude probabilities of death” [87–89]. This will be covered in Section 5.3.2.

5.3 Relative survival

In population-based cancer patient survival, relative survival is the framework of choice for estimating

net survival and the mortality associated with a diagnosis of cancer. The relative survival ratio, R(t), is

defined as [90]:

R(t) =
S(t)
S∗(t)

(5.12)

where S(t) is the observed all-cause survival in the cancer patient group and S∗(t) is the expected

all-cause survival from a comparable group assumed free from the cancer in question. Its analogue on

the hazard scale, the excess mortality rate, denoted λ(t), is

λ(t) = h(t)− h∗(t) (5.13)

where h(t) is the all-cause mortality rate among the cancer patients and h∗(t) is the expected all-cause

mortality rate in a comparable group assumed free from the studied cancer. When the excess mortality

equals zero, the patients are no longer experiencing a mortality above that expected in the absence

of a cancer diagnosis. The expected mortality is typically retrieved from publicly available population

mortality tables (“life tables”) stratified by calendar year, sex and age, which can be found in online

databases such as mortality.org, or via the National Bureau of statistics.

4Sometime referred to as component- or transition-specific.



24 5. Statistical methods

Relative survival has become popular for estimating the mortality associated with cancer as it is does

not require information on cause of death. Thus, besides being insensitive to accurate classifications

of death, it also captures both direct and indirect (e.g., treatment-related) mortality attributable to the

cancer and its treatment.

Several assumptions are made when applying relative survival. One is that the expected mortality,

calculated using life tables, is free from variation (thus treated as a fixed covariate). Moreover, cancer

patients are assumed to be exchangeable with the cancer-free comparison group, conditional on the

stratification variables in the life tables, with respect to non-cancer mortality. There are scenarios where

this assumption does not hold. For example, lung cancer patients differ from the general population in

terms of lifestyle habits (such as smoking), which in turn increase their non-cancer mortality. To apply

relative survival on lung cancer patients, the life tables should be stratified on smoking (and potentially

other lifestyle factors as well). In practice however, due to the high lung cancer mortality, the bias is

negligible even when not doing so [91]. In situations where interest lies in the effect of a specific lifestyle

factor (e.g., smoking) adjusting the life tables becomes more important [92].

Relative survival can be estimated non-parametrically or be modeled using a range of models [89, 93].
For Study III-IV in this thesis, the flexible parametric relative survival model was used to estimate excess

incidence rates of DCS.

5.3.1 Flexible parametric relative survival models

The flexible parametric survival model has been extended to estimate excess mortality in a relative

survival framework, by incorporating the expected hazard into the likelihood [94]. Modeling is done

on the cumulative excess hazards scale. In accordance with Equation 5.13, the cumulative hazard can

be written as a function of the cumulative expected and excess hazard:

H(t) = H∗(t) +Λ(t). (5.14)

The cumulative excess hazard is expressed similarly to the model in Equation 5.8, and the model is

defined as:

log(Λ(t,x)) = log(Λ0(t)) + xβ (5.15)

with

log(Λ0(t)) = s(log(t),γ0). (5.16)

5.3.2 Estimating cause-specific CIFs in relative survival

In the relative survival framework, Cronin et al. showed how cause-specific CIFs can be calculated

non-parametrically using life-tables for population-based cancer patient survival [95]. Their work has

been further extended to modeling by Lambert and colleagues [87]. In 2012, a method for partitioning

the excess mortality rates and corresponding cause-specific (cancer and non-cancer death) CIFs into

components was proposed [88]. The CIF for cancer-specific death in a relative survival framework can

be expressed as:

CIFcancer(t) =

∫ t

0

S∗(u) · R(u) ·λ(u) du (5.17)
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where S(t) in Equation 5.9 has been replaced with S∗(u) · R(u) and h(t) with its excess counterpart,

λ(u). For deaths due to other causes, the CIF is given by:

CIFnon-cancer(t) =

∫ t

0

S∗(u) · R(u) · h∗(u) du. (5.18)

Given partitioning of excess mortality rates, CIFcancer can be divided further into mortality due to,

e.g., cardiovascular disease (CVD) and remaining excess mortality due to cancer. The expression in

Equation 5.17 for cause k becomes:

CIFcancer, k(t) =

∫ t

0

S∗(u) · R(u) ·λk(u) du, k ∈ (CVD, remaining) (5.19)

with λk(t) being the excess mortality rate due to cause k. In the example of CVD and remaining excess

cancer mortality, three CIFs would be predicted: CIFnon-cancer, CIFcancer, CVD, and CIFcancer, remaining.

For the purpose of Study III in this thesis, the CIF of DCS was predicted using the expression in Equa-

tion 5.17.

5.4 Multi-state models

It is natural to imagine how adding more states to the competing risks situation illustrated in Figure 5.2

would be useful to gain a better understanding of patient trajectories. Typically, we consider multi-state

models as a generalization of competing risks models where intermediate states have been introduced.

An example of a multi-state model in its simplest form is the illness-death model depicted in Figure 5.3.

Figure 5.3: Illustration of an illness-death model. The initial “healthy” state is generic in the sense that
it can represent either healthy individuals or patients with a certain disease (such as cancer patients).

Healthy Ill Dead

However, also the very simple situation of following cancer patients over time to death can be viewed as

a multi-state model with two states (namely “cancer” and “dead”). Essentially, multi-state models can be

very simple or extremely complex, depending on the structure and number of states. Before describing

estimation in a multi-state model framework, some notation and definitions need to be introduced.

Let {Y (t), t ≥ 0} be a stochastic process taking on values in the finite state space S = {1, ..., S}. States

are (in broad) classified as either transient (states that you can both enter and exit) or absorbing (states

that you cannot leave, e.g., dead). Transient states that can be re-entered are called recurrent states.

The history of the process until time s,Hs = {Y (u); 0 ≤ u ≤ s}, consists of all previous observations of

the process. The probability of being in state b at time t, given that the process was in state a at time s
and its history until time s (Hs−) is defined as:

P(Y (t) = b|Y (s) = a,Hs−) (5.20)
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where (a, b) ∈ S . This is the transition probability. The expression can be simplified further assuming

that future transitions only depend on the current state of the process (and not its history):

P(Y (t) = b|Y (s) = a,Hs−) = P(Y (t) = b|Y (s) = a). (5.21)

This equality defines the Markov property and is a central part in multi-state modeling. In the special

setting when everyone starts in state a at time s = 0, the transition probability simplifies further into

the state (occupation) probability; the probability of being in state b at time t. The hazard rate of going

from one state to the next is known as the transition intensity, and for a Markovian process it is defined

as:

hab(t) = lim
∆t→0

P(Y (t +∆t) = b|Y (t) = a)
∆t

. (5.22)

The transition intensity essentially has the equivalent interpretation as for survival models in general;

the instantaneous probability of going from state a to state b, given that you were in state a at time t.
The collection of transition intensities, for all possible transitions, governs the multi-state process.

In situations where the Markov assumption is unrealistic, it can be relaxed so that the future of the

process depends not only on the current state, but also on the time point at which the current state was

entered. Such models are known as semi-Markov models, and the transition probability is given by:

P(Y (t) = b|Y (s) = a,Hs−) = P(Y (t) = b|Y (s) = a, Ta) (5.23)

where t is the time since starting state and Ta is the time at which state a was entered. Modeling the

transition rate from state a to b is done in a delayed entry model setting, adjusting for Ta as a fixed

covariate. In practice, it is common to not only take into account the time point at which the current

state was entered, but have time since entry to current state as the time scale. The resulting process is

a Markov renewal, or clock-reset, process with t − Ta as the underlying time scale. This simplification is

often suitable in situations where state a represent a more severe event, such as recurrence of cancer or

events associated with a high initial mortality. As an example, imagine an illness-death model following

cancer patients from diagnosis (“Healthy”) until they suffer from CVD (“Ill”) and/or death (“Dead”).

The mortality rate will depend on not only which state the process is currently in (cancer or CVD), but

also on when the current state was entered. More importantly, if time since CVD diagnosis is believed

to be of greater importance than time since cancer, a clock-reset approach might be appropriate for

estimating the transition from CVD to dead.

More complex alternatives of the semi-Markov model includes modeling one or more transitions with

multiple time scales. In the example above, time since CVD and cancer might both be important for the

mortality rate after CVD. If so, a second time scale can be added to that transition model. Including

more than one underlying time scale is by no means exclusive to multi-state modeling. In case of a

single outcome, modeling with multiple time scales, e.g., adding attained age as a second time scale to

time since diagnosis, is not uncommon.

Although multi-state models can be extremely complex and usually carry specific assumptions related to

the transitions (such as the Markov property), estimation of transition intensities is straight-forward, as

every transition can be viewed as a survival model. This means that the same methods as for competing

risks modeling can be applied. However, it is more complicated to predict transition probabilities.

For some simplistic parametric models, such as a constant or piecewise constant rate model, the transi-

tion probabilities can be calculated analytically using maximum likelihood methods [96]. However, for
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more complex models, this is not possible. Several alternative approaches have been suggested, includ-

ing numerical integration [97, 98] and ordinary differential equations [99]. In more recent papers, a

simulation-based approach together with parametric transition models has been proposed [84, 100].
Simulation methods can be seen as superior to the other alternatives, as they are less computer-intensive

compared to numerical integration in case of complex multi-state models.

Until this point, no implemented methods have existed for combining multi-state modeling with relative

survival to estimate excess transition rates to transient states. Existing methods are somewhat limited

as they only allow for estimating excess mortality rates (i.e., methods for relative survival are applied

on absorbing states alone) [101–103]. The method proposed in Study IV in this thesis incorporates

estimation of excess incidence rates into a multi-state model. Additionally, different time scales can be

applied to different transitions, and it is possible for states to share transition model.
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In summary, the main findings were:

• Among women in remission from HL, pregnancy does not increase the risk of relapse [Study I].

• The prospect of having children after being diagnosed with, and treated for, HL has improved

among female survivors over calendar time, and is comparable with that of the general population

three years after diagnosis [Study II].

• The incidence of treatment-related DCS among Swedish HL patients declined between the mid-

1980s and mid-1990s, but since then small to no improvements have been seen [Study III].

• Incorporating estimation of excess incidence in multi-state models offers a possibility to study

treatment-related morbidity and mortality among cancer survivors simultaneously, which can

enhance the understanding about underlying mechanisms and total burden of disease [Study IV].

6.1 Study I

This was the first scientific study to address if a post-diagnosis childbirth could have an impact on HL

relapse risk. For descriptive purposes, women were classified as either nulliparous (no childbirths before

diagnosis or during follow-up), parous without births during follow-up (meaning that they were parous

already at HL diagnosis), or parous with at least one birth during follow-up. The parity distribution

among the 449 women in the cohort, aged 18-40 at diagnosis, is illustrated in Figure 6.1.

Figure 6.1: Parity status at the end of follow-up.
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For the main analysis, pregnancy was considered a time-varying exposure. Follow-up started six months

after HL diagnosis. All 144 women with a childbirth during follow-up contributed with exposed person-

time during their pregnancies, and for another five years after delivery. Relapses occurring during that
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time window were noted as “pregnancy-associated”. In studies of pregnancy-associated cancer, a time

window of 1-2 years after delivery is commonly used [104]. However, here it was extended to include

long-term effects of the pregnancy and to allow for time to register the relapse. Figure 6.2 gives an

example of exposed and unexposed time windows for a woman with two childbirths during follow-up.

Figure 6.2: Example of pregnancy as a time-varying exposure. Abbreviations: UNEXP, unexposed; EXP,
exposed.

+6 monthsDiagnosis

Pregnancy + 5 years Pregnancy + 5 years

EXP EXPUNEXP UNEXPUNEXP

In total, 47 women had a relapse during follow-up. However, only one woman had her relapse within

the predefined pregnancy exposure window. Under the assumption that women exposed to pregnancy

would experience the same relapse rate as women not exposed to pregnancy, the expected number of

relapses was 3.76. Taken together, this suggests that in relation to risk of relapse, it is safe for female

HL survivors to have children after completed treatment. However, as the absolute risk of relapse is at

its highest level during the first 2-3 years after diagnosis, delaying childbirth is recommended when

possible.

6.2 Study II

This study described trends in childbearing patterns over time among female HL survivors. Childbirth

rates were compared between patients with different clinical characteristics, and between patients and

HL-free women from the general population (“comparators”). Moreover, cumulative probabilities of a

childbirth (i.e., CIFs) were calculated non-parametrically for patients and comparators in the presence

of the competing events of death and/or relapse.

As shown in Figure 6.3, childbirth rates among HL patients varied considerably during follow-up. Due

to the long treatment period (six months to one year), childbirth rates are expected to be low during

the first years following diagnosis. As such, it is not reasonable to assume a constant HR (childbirth

rate among HL patients divided by the rate among comparators) across the entire follow-up. HR’s were

therefore estimated separately for two distinct time periods (0-3 years and 3-7 years) during follow-up.

Childbirth rates and the cumulative probability of having children after a diagnosis of HL increased over

calendar time in this cohort of Swedish female HL survivors. Although rates were generally lower in

relation to matched comparators the first years after completed treatment, no differences were observed

three years or more after HL diagnosis, irrespective of clinical characteristics at diagnosis and treatment.

One objective of this study was to gain insight into the real-world possibilities of having children among

ABVD- versus BEACOPP-treated patients, in the presence of competing risks. Reassuringly, also women

treated with BEACOPP had an increasing cumulative probability of childbirth, albeit at a lower level

than comparators.

During 2001-2009, when information on fertility preservation (from specialist visits in the OPR) could

be linked to the HL patients, the proportion of women with a fertility referral or preservation around
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Figure 6.3: Childbirth rates among comparators and HL patients. Rates were predicted from a flexible
parametric survival model, where the exposure was having a diagnosis of HL, and the effect of being
an HL patient was assumed non-proportional over follow-up.
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the time of diagnosis, was only 6.5%. No woman in the cohort had a childbirth after relapse during

the first seven years after diagnosis, stressing the importance of curative first-line treatment, and that

relapse is an important factor to incorporate in studies of childbirth potential after HL.

6.3 Study III

The purpose of this study was to investigate temporal trends in treatment-related incidence of DCS

among HL patients. Importantly, the risk of DCS was separated into “excess” (related to the HL and its

treatment) and “expected” (in the absence of HL), complementing reports that show high risks of DCS

without disentangling the risk patients would have faced also in the absence of HL.

Methods in relative survival were used to obtain estimates of excess incidence. No publicly available

population incidence file for DCS exist, so this had to be constructed from individually level data. As

expected rates are treated as fixed parameters (implying without variance), they have to be based

on a large number of individuals, preferably the whole population. Therefore, a very large cohort

(n=10,020,379), representing the Swedish population, was followed over time for incident cases of DCS.

Before estimating the rates, data was grouped on calendar year, age, and sex. Rather than incorporating

the empirical rate (essentially the number of events divided with the amount of person-time for each

combination of the year, sex, and age) in the relative survival model a modeling approach was taken.

Three different Poisson models for the expected rate were evaluated:

1. A main effects model where age and calendar year were the time scales (parameterized using

restricted cubic splines).

2. A two-way interactions model, allowing for interactions between age and sex, age and calendar

year, and sex and calendar year.
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3. A three-way interactions model, allowing for all two-way interactions plus one interaction between

all three covariates.

For the final analyses, the second model was chosen. Figure 6.4 shows the temporal trends of expected

rates for the three age groups of HL patients presented in the main results in the study. Expected rates

of DCS declined over calendar time, which is in accordance with official statistics on DCS incidence in

Sweden5.

Figure 6.4: Expected rates of DCS over calendar time for males (right panel) and females (left panel)
aged 25, 40 and 75 years, predicted from a Poisson model with 2-way interaction terms.
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Excess incidence rates, interpreted as treatment-related, of DCS were estimated indirectly from observed

and expected rates using a flexible parametric relative survival model. Treatment-related incidence rates

of DCS declined for patients aged 25 and 60 years at diagnosis between the beginning of the study

period and the mid-1990s. After that point, no further reductions were observed. For elderly patients

(aged 75 years at diagnosis), no improvements were seen. Moreover, the risk of a treatment-related

DCS was seen to persist for up to 10 years among HL patients who completed their treatment in the

new millennium.

6.4 Study IV

Relative survival methods can be used to estimate excess incidence of some disease among cancer

patients, interpreted as the incidence above and beyond that expected in the absence of cancer. Under

certain assumptions, the excess incidence can be interpreted as treatment-related incidence, a measure

that is difficult to capture using other methods. In Study III, treatment-related DCS among HL patients

was investigated. However, the incident DCS state, which in practice is a transient state, was treated

5Based on data from http://www.socialstyrelsen.se/statistik/statistikdatabas
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as an absorbing state. At the time of that study, no methods existed to estimate excess incidence in a

multi-state model framework. Thus, the aim of Study IV was to combine methods in relative survival

with those in multi-state modeling to enable prediction of excess transition probabilities.

Using recently developed simulation-based methods in multi-state modeling, a method incorporating

estimation of excess incidence rates in a multi-state model was suggested. The proposed approach

extended existing methods by (with reference to Figure 6.5 below):

• Including a model with multiple time scales in the multi-state model. (Transition (a)).

• Indirectly, via the observed and the expected transition rates, incorporate estimation of the excess

transition rate. (Transition (b)).

• Let two distinct states share the same transition model. This is necessary, since the transient disease

state contains two theoretical states, each with its own transitions into the state (the expected

and the excess). However, once the patients have entered the state, these two theoretical states

are indistinguishable. (Transition (d)).

• Allowing for different transitions in the multi-state model to have different time scales. (Transition

(a) has calendar time and attained age as time scales, transition (b) and (c) have time since cancer,

and transitions (d) has time since illness).

Figure 6.5: Illustration of a multi-state model with a transient state, partitioned into expected and excess
illness.
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Once the transition models are in place, several measures can be predicted, such as transition probabil-

ities (and function thereof) and length of stay in a certain state.

The example in this study was, for illustrative purposes, modeled with possibly over-simplified transition

models. Thus, interpretation of the predicted transition probabilities presented should be avoided.

All modeling was done in Stata, using the multistate and merlin packages.



7. Discussion and conclusions

7.1 Childbearing in relation to HL

There are several reasons why reproductive factors are interesting to study in relation to HL. By observing

the pattern in Figure 3.3 it is striking to see how the incidence curves for males and females follow

each other closely up until the childbearing ages, after which they start diverging. Additionally, males

have worse prognosis than females (although this is true for most types of cancer [105]). There is also

a plausible link related to the immune system. Immunodeficiency is related to HL risk, and pregnant

women alternate between having a strong and a weak immune system, depending on phase. For example,

during the first trimester, the immune system is lowered to avoid rejection of the fetus.

So what is known about the relationship between childbearing and HL in women? High parity does not

appear to influence the risk of HL, nor does a recent pregnancy affect prognosis. Being diagnosed with

HL during pregnancy can be a complication in terms of treatment strategy, but does not otherwise affect

survival. Given these null findings, there has been a common consensus that a post-diagnosis pregnancy

does not trigger relapse among female HL survivors. However, no scientific evidence had existed prior to

Study I in this thesis. The findings therein confirmed the common impression that in relation to relapse

risk, it is safe to become pregnant after HL. In the latest version of the Swedish clinical guidelines for

HL, information based on these results has been added, providing data for clinicians to rely on when

communicating with their patients.

HL therapy can result in temporary or permanent infertility. The negative effects of HL therapy on fertility

has been one of the motivations for developing new, less toxic, treatments, and contemporary treatments

are considered less harmful than those used historically. Study II showed that the childbearing potential

among female HL survivors was in line with, or close to, that of matched comparators.

One could argue that with this in mind, fertility counseling is both a waste of resources and that it might

even cause unnecessary concern for the patients. However, individuals who have just received a cancer

diagnosis, should get all the facts related to the treatment they are about to undergo. Moreover, fertility

counseling does not necessarily imply referral to a fertility clinic, it can simply be information given by

the oncologist or a well-informed nurse at the oncology clinic. It is also important to stress that, at time

of diagnosis, it is not possible to determine who will relapse and not. Since treatment for relapse carries

such a high risk of infertility, the need for fertility advice remains.

Studying fertility, the capacity to produce offspring, in a register-based setting is a very difficult task.

What can be captured in population registers and compared between groups of women is parity, the

number of children born. Note that, in demography, the definitions are different. In demography, fertility

refers to offspring actually produced whereas capability to produce is termed fecundity. In this thesis, the
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more generally understood definition of fertility is used, i.e., the capacity to produce offspring. For Study

II, differences in childbirth rates between female HL patients does not necessarily reflect differences in

fertility; only conclusions related to actual childbearing should be drawn. It is also worth noting that

studying parity is not without complication. Nulliparous women are a heterogeneous group. Some are

not in a “steady” relationship, some are but do not want to have children, and some have a wish for

children but have not (yet) succeeded.

Information on terminated pregnancies was due to privacy protection of sensitive data not available

for research purposes until recently (October of 2016). This is relevant especially to Study I, where it is

possible that women in early stages of pregnancy who relapse, choose to terminate their pregnancy.

To conclude, pregnancy-associated relapse does not need to be taken into account when counseling

patients on future reproductive plans. If possible, patients could be advised to wait until the risk of

a relapse is lower. The probability of having children after finished HL therapy is in general good.

However, patients should receive information on fertility preservation options and the effects of second

line treatment on fertility.

7.2 Treatment-related morbidity and mortality

Study III in this thesis was not the first attempt to address late effects of HL therapy. Many previous

studies have, based on data with detailed treatment information, showed how the risk of, e.g., CAD

increases with increasing amount of irradiation to the chest. However, there is a gap in knowledge

related to the difference between the observed risk and the risk related to treatment. Imagine that you

follow HL survivors for fifty years – they are more or less bound (due to aging) to experience either

circulatory system disease, a secondary cancer, and/or death. The key question is: how much of the

observed risk can be attributable to the HL therapy? Of course, this is a very difficult outcome to capture.

It is not noted in the patient records whether or not a heart attack is associated with previous cancer

therapy, since it is not possible to separate between different types of heart attacks in that way.

Relative survival is the gold standard for studying population-based cancer patient survival. Recent

methods have enabled estimation of cause-specific CIFs as well. It is natural to extend this methodology

to study excess incidence, as a measure of cancer-related incidence. Study III used sophisticated relative

survival models to estimate excess incidence rate ratios. A user-written Stata package was used to

predict the cumulative probabilities (i.e., CIFs) of treatment-related (“excess”) DCS, and DCS expected

also in the absence of HL (“expected”).

Interpreting excess risk as treatment-related risk should be done with caution. There are two layers of

assumptions that need to be fulfilled. Firstly, when interpreting the excess risk as “the risk above and

beyond that expected in the absence of cancer”, the cancer patients are assumed to be exchangeable

with the general population (on which the expected rates are calculated), conditional on the life table

stratification variables. Secondly, interpreting the excess risk as treatment-related assumes that the

cancer itself is not affecting the risk.

The fact that treatment-related DCS incidence did not decline after the mid-1990s might reflect that

treatment strategies have been more or less unchanged after that point and until the end of the study

period. It could also be a result of a more aggressive strategy along the lines “cure the HL and take

care of the heart disease later”. Taken together, this stresses the importance of continuous follow-up of
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patients treated for HL and primary prevention (stress tests, healthy lifestyle, etc.). Investigating late

effects of HL therapy is an ongoing effort; as new treatments develop, new scientific real-world evidence

of safety is needed.

Related to this is the methods development done in Study IV in this thesis. Development and implemen-

tation of statistical methods in medical research is crucial. As patients are now surviving their cancer

to a greater extent, and are at risk of treatment-related morbidity and mortality, new tools are needed

to study survival and survivorship. The possibility to estimate excess transition rates in a multi-state

model enables studying late effects in the bigger picture where patients are at risk of multiple events.

Importantly, there is one reservation to using the suggested approach. Any estimation of excess hazards

requires an estimate of the expected hazard. To achieve this, an appropriate life table (with information

on incidence or mortality) for a comparable cancer-free group of people is needed. When the outcome

is excess mortality among cancer patients who are still in the starting state of cancer, these are publicly

available. However, if the outcome is excess incidence of a specific disease, they might need to be con-

structed using individual level data which can be difficult to access. The same goes for studying excess

mortality among patients diagnosed with, e.g., DCS. The appropriate life table would in such cases need

to be based on a cohort of all individuals in the country with a diagnosis of DCS, including information

on deaths.

In conclusion, recent improvements in relation to the risk of treatment-related DCS among HL survivors

are absent, calling for continued efforts towards less toxic treatments and primary prevention strategies.

Methods for studying patient trajectories are useful for answering questions related to long-term risks

of treatment-related morbidity and mortality.



8. Future perspective

A lot remains to be done in relation to the questions touched upon in this thesis.

From the findings in Study II, we observe that none of the women who went through second line

treatment after a relapse had children afterwards. Relapse in HL is fairly common, in our cohort 10%

relapsed. It is possible that the follow-up (restricted to the first seven years after diagnosis) was not

long enough to record children born to these women later, at a point where their fertility had recovered.

To re-visit the issue of childbearing among relapsed women could reveal more information on these

women’s possibility to have children. It would also be interesting to take a closer look at the women

who were treated with BEACOPP, potentially with longer follow-up, and more detailed information on

fertility preservation.

I remain intrigued by the difference in incidence between males and females. The effect of reproductive

factors (parity and age at first birth) on HL incidence has been studied before, and the consensus is that

there is no relationship. The most recent study on Swedish data was published twenty years ago, in 1998

[18]. It would be interesting to reproduce those analyses on a larger cohort, possibly including subtype

of HL. Additionally, by analyzing and presenting two characteristics of exposure jointly [106, 107],
comparison of specific covariate patterns (e.g., women with 2 childbirths aged 25 at first birth versus

nulliparous women) is made, which could add to the knowledge on reproductive factors in relation to

HL risk.

Figure 8.1: A multi-state model including transitions to excess and expected: mortality (state ), diseases
of the circulatory system (DCS), secondary malignancies (SM), and mortality after either DCS or SM.
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However, the future work closest to my heart is applying the multi-state model developed in Study IV

to the application that motivated it: late effects among HL patients. As mentioned, HL survivors are



8. Future perspective 37

at risk of a multitude of different complications, all at the same time. Studying these in isolation does

not give a complete picture. Combining different events into composite outcomes (such as incident

plus fatal cases of DCS, or DCS plus SM) is not the solution. Multi-state models offers the possibility

to follow patients through life, via all kinds of different transient states. With the extension suggested

in Study IV in this thesis, such a multi-state model can now capture treatment-related morbidity and

mortality. An additional extension to our proposed model includes partitioning the absorbing state of

death into excess and expected mortality. In the bigger picture, several late effects would be included,

such as SM, all in competition with each other. Combining all of these extensions could result in the

multi-state model illustrated in Figure 8.1. It looks complex, but given the appropriate population life

tables, this is just a collection of survival models.

Final words

While improving cancer patient survival is the first and most important step, improving survivorship is

the natural next step. In the studies included in this thesis, we have shown that, in relation to relapse risk,

it is safe to have children after a diagnosis of HL. And encouragingly, we have seen that the possibility

of a future childbirth among HL survivors has improved over time. The risk of treatment-related disease

persists, but it remains to be studied in a more complex setting to be better understood. Studying

survivorship is a huge and very diverse task, addressing many different measures of quality of life.

Real-world evidence of risks and complications among cancer survivors are vital to find areas that need

improvements. It is my hope that the four studies included in this thesis in some way have contributed

to the knowledge on life after cancer.



9. Sammanfattning på svenska

Det övergripande syftet med denna avhandling var att undersöka och ämna besvara frågor av relevans

för människor som har överlevt Hodgkins lymfom (HL), en typ av blodcancer som uppkommer i lymf-

körtlarna. Till skillnad från många andra cancertyper, är detta en sjukdom som inte bara drabbar äldre

personer, utan även unga män och kvinnor. Runt 200 nya fall diagnosticeras varje år i Sverige, och även

om HL är en ovanlig cancerform i stort, så är den i topp tre av cancer bland unga.

Historiskt sett har överlevnaden i lymfom varit låg. Lyckligtvis har stora framsteg gjorts vad gäller både

strål- och cytostatikabehandling under de senaste femtio åren, och idag botas över 90% av patienter

under 65 år vid diagnos. Detta har resulterat i ett ökat antal unga människor som diagnosticerats med,

behandlats för, och överlevt HL. Därför är frågor relaterade till livet efter cancer, såsom barnafödande

och behandlingsrelaterad sjukdom, mer och mer aktuella.

Studie I syftade till att besvara huruvida en graviditet bland kvinnor som friskförklarats från HL påverkar

risken för recidiv (återfall). Bland de 449 kvinnor som ingick i studien, födde 144 stycken barn under

uppföljningstiden. Totalt sett recidiverade 47 kvinnor, dock var det bara en av dessa kvinnor som fick

sitt recidiv kort efter en graviditet. Resultaten från denna studie pekar därför mot att en graviditet efter

HL ej påverkar risken för recidiv.

I Studie II studerades trender i barnafödande efter behandling för HL, då både cytostatika- och strålbe-

handling kan påverka ens fertilitet. Eftersom det inte alltid är möjligt att genomföra fertilitetsbevarande

åtgärder för kvinnor, är det viktigt att undersöka om chanserna att få barn förbättras i takt med att

nya typer av behandlingar introduceras. Denna studie kunde visa att tre år efter avslutad behandling

har kvinnliga HL-patienter samma takt på barnafödande som kvinnor i allmänhet. Även patienter som

behandlats med en mer toxisk typ av cytostatika hade chans att få barn efter HL.

Studie III undersökte om risken att drabbas av behandlingsrelaterad hjärt-kärlsjukdom minskat över tid

bland svenska HL-patienter. Då strål- och cytostatikabehandling kan öka risken att drabbas av exempelvis

hjärtattack och stroke, har utvecklingen av nya behandlingsmetoder till stor del fokuserat på att minska

allvarliga biverkningar. För att fånga upp hur stor del av sjukdomsrisken som kan antas vara till följd av

behandling för HL, tillämpades avancerade statistiska metoder. Denna studie visar att riskerna minskade

från mitten av 1980-talet och fram till mitten av 1990-talet, men sedan dess har inga större förbättringar

skett.

Canceröverlevare är inte bara vid risk för en, utan flera typer av behandlingsrelaterad sjukdom, samt

död, samtidigt. I Studie IV utvecklades metoder för att studera sannolikheten att drabbas av olika typer

av behandlingsrelaterad sjukdom i en så kallad flertillståndsmodell, där man tar hänsyn till risken för

att dö.
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