
 

 

   奈良先端科学技術⼤学院⼤学 学術リポジトリ 
 

Nara Institute of Science and Technology Academic Repository: naistar 
 

Title Bug or Not? Bug Report Classification Using N-Gram IDF 

Author(s) 
Terdchanakul, Pannavat; Hata, Hideaki; Phannachitta, Passakorn; 

Matsumoto, Kenichi 

Citation 
ICSME 2017 : 2017 IEEE International Conference on Software 

Maintenance and Evolution, 17-22 Sept. 2017, Shanghai, China 

Issue Date 2017 

Resource Version author 

Rights 

© 2017 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component 

of this work in other works. 

DOI 10.1109/ICSME.2017.14 

URL http://hdl.handle.net/10061/12722 

 



Bug or Not?
Bug Report Classification using N-Gram IDF

Pannavat Terdchanakul1, Hideaki Hata1, Passakorn Phannachitta2, and Kenichi Matsumoto1

1Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
2College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand

1{pannavat.terchanakul.pp5, hata, matumoto}@is.naist.jp
2passakorn.p@cmu.ac.th

Abstract—Previous studies have found that a significant num-
ber of bug reports are misclassified between bugs and non-
bugs, and that manually classifying bug reports is a time-
consuming task. To address this problem, we propose a bug
reports classification model with N-gram IDF, a theoretical
extension of Inverse Document Frequency (IDF) for handling
words and phrases of any length. N-gram IDF enables us to
extract key terms of any length from texts, these key terms
can be used as the features to classify bug reports. We build
classification models with logistic regression and random forest
using features from N-gram IDF and topic modeling, which is
widely used in various software engineering tasks. With a publicly
available dataset, our results show that our N-gram IDF-based
models have a superior performance than the topic-based models
on all of the evaluated cases. Our models show promising results
and have a potential to be extended to other software engineering
tasks.
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I. INTRODUCTION

Bug reports are used for various software development
tasks, such as priority and severity assignment [1], and bug
triaging [2]. The quality and reliability of these activities
highly depends on the information of bug reports. However,
previous studies showed the problem of bug reports can lead
to tasks that produce unreliable results. Bettenburg et al.
[3] investigated the quality of bug reports and found that
reports often come with incomplete and incorrect information.
As a consequence, developers take much effort on the error
inspection process. Antoniol et al. [4] studied the bug reports
misclassification problem; i.e., reports which are labeled as
bugs, but actually are non-bug issues. This problem occurs
due to the misuse of the bug tracking system (BTS). BTS
is used to manage issues related to bugs, and is also used
for managing issues of other software activities, e.g. request
for a new feature, performance improvement, source code
refactoring and so on. Due to these various usages of BTS,
bug reports are more likely to be misclassified.

Separating bugs from other request is challenging because
each report needs an independent inspection to identify the
incorrectness of report. A number of studies [4–6] spent much
time on manually classify bug reports. Herzig et al. spent 90
days to manually classify over 7,000 bug reports. They found
that about one-third of inspected bug reports are actually not

the bugs [6]. According to their research, manual inspection
is difficult and need a lot of effort to be done. For this reason,
a technique to automatically classify bug reports is needed.

Several studies have attempted to tackle the misclassification
of bugs problem. For example, Antoniol et al. [4] proposed a
word-based automatic classification technique and got decent
classification results. Recent studies proposed classification
models based on topic modeling techniques; Latent Dirich-
let Allocation (LDA) [7] and Hierarchical Dirichlet Process
(HDP) [8]. Their proposed techniques are comparable with
each other and both of them outperform word-based models
in almost all of evaluated cases.

Topic modeling has been regarded as the state-of-the-art
Information Retrieval technique and has been applied to var-
ious software engineering tasks, such as document cluster-
ing, concept/feature location, evolution analysis, uncovering
traceability links, defect prediction, searching, and so on. [9].
However, it is widely known that although the topic modeling
performance strongly depends on model parameters, there is
no single recommended method for selecting the number of
topics to model [10, 11].

In this paper, we propose to apply an alternative technique
to classify bug reports, namely, N-gram IDF, a theoretical
extension of Inverse Document Frequency (IDF) [12]. IDF
is a numerical statistic of how much information the word
provides, that is, IDF is a measure of the rareness of term.
It is often used as a weighting factor in information retrieval.
However, IDF cannot handle N-grams for N > 1; i.e., phrases
that are composed of two or more words. N-gram IDF is
capable of handling words and phrases of any length. We can
extract all of valid N-gram words and select dominant N-grams
by comparing the weight of word and phrases.

We compare N-gram IDF-based models and topic modeling-
based models on three open-source software projects including
HTTPClient, Jackrabbit, and Lucene, presented in the previous
study [6].

The contribution of this paper can be summarized as follows

– We propose an automatic classification model based on
N-gram IDF-based technique.

– We evaluate the performance of N-gram IDF-based clas-
sification models compared with topic-based models.



Fig. 1. Overview of our automatic bug reports classification model

II. METHODOLOGY

A. Overview

Figure 1 shows the overall structure of our classification
model building process. To construct the automatic classifica-
tion model, firstly, we parse and pre-process the retrieved bug
reports files. We then apply the N-gram IDF to the corpora of
pre-processed bug report files. The output of this process is a
list of all valid N-gram key terms. For each bug report, we then
count the raw frequency of each N-gram word and keep the
frequency value as a collection of membership vectors. Then,
with the retrieved vectors, we combine them with the dataset
containing the correct bug report type for each bug report file.
Lastly, we use these combined vectors as inputs to train our
classification model. We explain more detail in the following
subsections.

B. Text Processing

This step has a big impact in optimizing the classification
step and data noise removal. With the retrieved bug reports
files, we remove some characters related to the programming
syntax (e.g., “==”, “+”, “–”). These steps are taken to ensure
the quality of our classification models since they carry less
meaningful context.

C. Applying N-gram IDF

By applying N-gram IDF, we can obtain dominant N-gram
among overlapping one and extract key terms of any length
from a corpus of documents. In this research, we use an
N-gram Weighting Scheme tool 1. This tool uses enhanced
suffix array [13] to enumerate valid N-grams. The output after
applying N-gram IDF tool to the pre-processed data is an N-
gram dictionary, which is a list of all valid N-gram key terms.

D. Feature Extraction

After we get the N-gram dictionary, we filter out N-gram
words that appeared in only one bug report. We then create

1https://github.com/iwnsew/ngweight

a feature vector space from the bug report corpus and the
N-gram dictionary. For each bug report, we count the raw
frequency of each N-gram word and create a vector element
based on the raw frequency value. Finally, each vector element
contains bug report ID and raw frequency values of all N-
gram words that were occurred in the documents. These vector
elements will be utilized as features for the next classification
phase.

E. Feature Vector Pre-Processing

Before building classification model, we use the following
two feature selection methods to filter out N-gram words that
are found to have less impact on classification models.

1) Correlation-based feature selection: CFS selects a subset
of features that are highly correlated with classification
while uncorrelated to each other. We use CFS as a feature
selection method on 10-fold cross-validation setup by
using Weka2.

2) Chi-squared stats: A statistical method assessing the
goodness of fit between features and classification. We
use Chi-squared stats as a feature selection method on
training - testing setup by using Python library scikit-
learn3.

F. Building Classifier Model

As we focus on comparing the performance between N-
gram IDF and topic modeling. We separately build up clas-
sification models. Each model is constructed from a different
combination of text processing techniques and data classifica-
tion techniques. For the data classification techniques, we use
two techniques, Logistic Regression and Random Forest.

TABLE I
DETAILS OF STUDY SUBJECTS

Project # of Reports # of Bugs # of Other Requests

HTTPClient 745 305 440

Jackrabbit 2,402 938 1,464

Lucene 2443 173 1,746

Cross Project 5,590 1,940 3,650

III. EXPERIMENTAL DESIGN

A. Study Subjects

Our research makes use of training data from a previous
study [6]4. The datasets we gathered are three open-source
software projects that use JIRA as an issue tracking system,
the name of projects are HTTPClient, Jackrabbit, and Lucene.
Each dataset has three fields, i.e. report ID, original type, and
its corrected type. We utilize the bug report ID containing in
the dataset to retrieve bug report files from software project
repository and use corrected type of bug reports as our

2http://www.cs.waikato.ac.nz/ml/weka/
3http://scikit-learn.org/stable/index.html
4http://www.st.cs.uni-saarland.de/softevo//bugclassify/



TABLE II
F-MEASURE COMPARISON TABLE BETWEEN TOPIC-BASED AND N-GRAM IDF-BASED CLASSIFICATION MODELS BY 10-FOLD CROSS-VALIDATION

Logistic Regression Random Forest
HTTPClient Jackrabbit Lucene Cross Project HTTPClient Jackrabbit Lucene Cross Project

Topic-based 0.739 0.744 0.766 0.724 0.721 0.717 0.756 0.712
N-gram IDF-based 0.805 0.805 0.884 0.814 0.814 0.771 0.823 0.792

TABLE III
F-MEASURE COMPARISON TABLE BETWEEN TOPIC-BASED AND N-GRAM IDF-BASED CLASSIFICATION MODELS BY TRAINING - TESTING SETUP

Logistic Regression Random Forest
HTTPClient Jackrabbit Lucene Cross Project HTTPClient Jackrabbit Lucene Cross Project

Topic-based 0.516 0.511 0.562 0.592 0.494 0.514 0.566 0.542
N-gram IDF-based 0.687 0.646 0.731 0.658 0.673 0.628 0.685 0.674

evaluation baseline. In addition to three open-source software
projects datasets, we also created a new dataset by combining
all of the bug reports from those three datasets into only one
dataset. We call the new dataset as the Cross Project dataset.
The number of examined bug report files for each project in
this study is represented in Table I. We made our final feature
vectors dataset available5.

B. Evaluation Settings

In this study, we adopt a F-measure score as a performance
evaluation metric to evaluate our classification models. For
our evaluation, we prepare two setups to validate the models.
First is 10-fold cross-validation. The idea behind 10-fold cross-
validation is that dataset is randomly partitioned into 10 equal
size subsets. From these 10 subsets, nine subsets are used as a
training data while the other part is retained as a testing data.
The process is then repeated 10 times, with all of the subsets
are used as a testing data once. We report the average value of
F-measure after 10 runs of cross-validation. The other method
is a training set and testing set. The idea behind this method
is to include a time factor into our classification models to
make a scenario more practical, therefore, we split the dataset
into a training set and testing set based on reported date of
bug reports. The oldest 90% of bug reports are utilized as a
training set while the newest 10% of bug reports are utilized
as a testing set. We also report the value of F-measure from
this testing method.

We compare the classification performance between N-
gram IDF-based models and topic-based models. To build
topic-based classification models, we follow the methodology
conducted on the previous study [7]. We build a collection
of topic membership vectors with 50 as a number of topics,
which achieved the highest performance in the previous study.

IV. RESULTS

In this section, we report the classification performance of
proposed N-gram IDF-based models on two testing environ-
ments; 10-fold cross-validation and training-testing setups.

In this study, the numbers of N-gram words in the dictionary
vary between 58,000 to 530,000. After applying the feature
selection methods, the numbers of remaining N-gram words

5https://github.com/sefield/BugReportClassificationWithNgramIDFDataset

that are used as the features for classification models vary from
40 to 200.

A. 10-Fold Cross-Validation Setup

Table II shows the evaluation result on 10-fold cross-
validation setup. The first column indicates the text processing
technique that was used to train the models. For the other
columns, four consecutive columns are grouped into a set
of study projects. Each set reports the performance of a
classification model that employed one of the two classifier
algorithms. As we see in Table II, N-gram IDF-based models
outperform topic-based models in all of cases with the F-
measure score varies between 0.80 - 0.81, 0.77 - 0.80, 0.82
- 0.88, and 0.79 - 0.81 for HTTPClient, Jackrabbit, Lucene,
and Cross Project respectively.

B. Training - Testing Setup

Table III shows the evaluation result on training - testing
setup. The first column indicates the text processing technique
that was used to train the models. For the other columns, four
consecutive columns are grouped into a set of study projects.
Each set reports the performance of a classification model
that employed one of the two classifier algorithms. As we
see in Table III, N-gram IDF-based models perform better
than the topic-based models with the F-measure score varies
between 0.67 - 0.69, 0.62 - 0.65, 0.68 - 0.73, and 0.65 -
0.67 for HTTPClient, Jackrabbit, Lucene, and Cross Project
respectively.

According to Arcuri and Briand [14], it is recommended to
use a high number of runs to assess the results of randomized
algorithms because we get a different result on every run
while applying the algorithms to the same problem instance.
Following the study guideline [14], we conducted 1,000 runs
of random forest for both N-gram IDF-based and topic-based
models.

Figure 2 shows the results of the 1,000 runs of random
forest on the training - testing setup. For each study project,
boxplots of the value of F-measure for N-gram IDF-based
model and topic-based model are shown. In all study projects,
N-gram IDF-based models achieved higher performance than
topic-based models. The Mann-Whitney U-test was applied
to detecting statistical differences between N-gram IDF-based



(a) HTTPClient (b) Jackrabbit

(c) Lucene (d) Cross Project

Fig. 2. Boxplots of N-gram IDF-based models and Topic-based models. F-
measure value on a 1,000 times run of Random Forest

model and topic-based model. We found that in all of the study
projects, the differences are statistically significant (p-value <
0.001).

V. DISCUSSION

A. Why N-gram IDF Works Well?

Table IV shows examples of N-gram words that were
identified and used as features for classification process, along
with their implication, global term frequency (gtf, an amount
of occurred N-gram word in all of document.) and document
frequency (df, amount of documents that have the N-gram
word.). Since N-gram IDF can extract all of valid N-gram
words of any length, it is capable of capturing the text structure
in a sequential order. As we see in Table IV, the N-gram
IDF can extract the key terms that vary in both contexts
and lengths. For example, nullpointerexception and how to
reproduce intuitively indicate BUG, while improvement infers
that the report is not related to BUG. Therefore, these key
terms extracted from N-gram IDF can be used as the features
that contribute to the efficiency of our classification models.
With the strong point of N-gram IDF, we believe that our
proposed N-gram IDF classification technique can be further
developed not only to be used on the bug report classification
task, but also on the other software engineering tasks, such as
duplicate bug report detection and bug localization by linking
code and bug reports.

Technically, a time that our technique take to create and
train a classification model depends on the size of document
corpus. However, in a case of all required tools and dataset are

TABLE IV
EXAMPLE OF EXTRACTED N-GRAMS ON CROSS PROJECT DATASET (GTF =

GLOBAL TERM FREQUENCY, DF = DOCUMENT FREQUENCY)

N-gram Implication gtf df

nullpointerexception Reports with a null pointer
exception error is related to BUG. 252 140

how to reproduce Reports with reproduce step
should related to BUG. 17 14

improvement Improvement discussion
should not related to BUG. 464 295

demonstrate the
problem

Discussion with demo of problem
should related to BUG 11 9

performance test Performance test discussion
should not related to BUG 50 32

provided with all of the necessary variables, we can complete
the whole process starting from the scratch within a few hours.
Therefore, our technique can help developers to accelerate
their development process by reducing their time on bug
reports inspection process as they do not need to waste much
effort and time on the manual bug report classification process.

B. Threats to Validity

Labeled dataset depends on the previous study. This is
a threat to construct validity. Although the data are inspected
with fixed rules, errors might still occur. Moreover, the rules
for manual classification also depend on an individual perspec-
tive. If the different rules were employed, our classification
models would produce different results.

Study subjects are only open source projects. This
limitation is a threat to external validity. All bug reports in
our datasets are written in Java and use the JIRA bug tracker,
which might not be generalized to the projects that are written
in other programming languages or using other bug tracking
systems.

VI. RELATED WORK

Bug reports are essential software artifacts for software
projects, especially in open-source software projects. Accord-
ing to bug-report analysis survey paper [15], many amounts
of research have been conducted on bug-report analysis from
many aspects due to an availability of a lot of bug reports,
such as predicting the severity of bug reports [1], and bug
reports triaging [2]. With these kinds of tasks, quality of bug
reports is important and begin normally concerned. Among a
number of studies so far, there are some of them that focus
on the issue of misclassification of bug reports [4, 6–8].

Antoniol et al. [4] first introduced the bug reports mis-
classification problem. They found that less than half of bug
reports are actually related to bugs. This shows the complex
usage of Bug Tracking System, which causes bug reports
misclassification. They also proposed a text-based automated
classification method. They concluded that the information
contained in bug reports can be indeed used to classify bugs
from other activities. Herzig et al. [6] manually inspected
7,401 issue reports to learn the percentage of bug reports that
have been misclassified and found that “Every third bug is
not a bug.” They indicated the possible impacts and bias in



bug report prediction models occurred from the misclassifi-
cation problem. However, manual inspection process needs
high effort. Pingclasai et al. [7] addressed the issue and
proposed another approach to automatically classifying bug
reports by using one of topic modeling techniques; Latent
Dirichlet Allocation (LDA). According to their results, naive
Bayes classifier is the most efficient classification model
when applying LDA. Limsettho et al. [8] also addressed the
issue and proposed another automated classification method
by applying another topic modeling techniques; Hierarchical
Dirichlet Process (HDP). They found that HDP performance
is comparable with the previous study, but without parameter
tuning. Zhou et al. [16] also address the issue and proposed
a hybrid approach by combining both text mining and data
mining techniques via a technique called data grafting. In
this work, we address the bug reports misclassification issue
and propose alternative automated classification approach by
applying N-gram IDF.

VII. CONCLUSIONS

In this paper, we propose a method for automatically
classifying bug reports based on textual information contained
in each report. N-gram IDF was adopted to extract key
terms from corpora of bug reports. Our technique aims to
reduce time and effort required for manual inspection. Our
experiment conducted on three open-source software projects
(HTTPClient, Jackrabbit, and Lucene). We built classification
models separately from two classification algorithms, i.e. lo-
gistic regression and random forest. Based on the results, we
conclude that

– Collection of key N-gram words extracted from a corpus
of bug reports by applying N-gram IDF is able to
separate bugs from another request on other software
activities. Our classification models have an F-measure
score between 0.62 and 0.88.

– Both logistic regression and random forest model have
similar performance range. Both seem to have an oppor-
tunity to be further developed to achieve higher classifi-
cation performance.

Moreover, we also compare classification performance be-
tween N-gram IDF-based model and topic-based model. The
result shows that N-gram IDF-based model outperforms topic-
based model in all of the evaluated cases.

For future work, We plan to improve the performance of
current classification method. We also plan to extend our
work into the classification model of multiclass label corpus.
We also want to generalize our result by experimenting on
different BTS and other software projects written in other pro-
gramming languages. Lastly, we aim to conduct an experiment
not only on bug reports classification but also on other software
engineering activities.
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