
Implementing Integrated Services of Networked Home
Appliances Using Service Oriented Architecture ∗

Masahide Nakamura, Hiroshi Igaki, Haruaki Tamada and Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-0192, Japan

{masa-n, hiro-iga, harua-t, matumoto}@is.naist.jp

ABSTRACT
This paper presents a method to implement integrated ser-
vices of networked home electric appliances, which provide
more convenient and comfortable living for home users. The
conventional methods generally employ a home server to
achieve the integrated services. The server controls all the
networked appliances in a centralized manner. However, as
the number of sophisticated appliances increases, the cen-
tralized server suffers from the concentration of load, as well
as a decline in the reliability and interoperability. To cope
with this problem, we adopt the service-oriented architec-
ture (SOA) for the implementation of the integrated ser-
vices. In the proposed framework, the appliances export own
features as services, and autonomously execute the exported
services one another. Thus, the appliances are loosely cou-
pled via the exported services without any centralized home
server, which enables more flexible, balanced and reliable
integrated services. We first present a framework to design
and implement the integrated services based on SOA, and
then illustrate a prototype system developed with Web ser-
vices. We also define three kinds of metrics (i.e., reliability,
workload, and coupling), and conduct a comparative evalu-
ation between the proposed and the previous systems.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.0 [General]: System architectures; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and em-
bedded systems

General Terms
Design

∗This work is partly supported by Grand-in-Aid for COE
(Center Of Excellence) and Encouragement of Young Scien-
tists (No.15700058), from Research of the Ministry of Edu-
cation, Science, Sports and Culture, Japan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

Keywords
Home Network System, Service Oriented Architecture, Im-
plementation, Reliability

1. INTRODUCTION
Recent advancement in processors and networks brings

emerging technologies to network home electric appliances
[3, 4, 9, 16]. Various home appliances, such as televisions,
air-conditioners, DVD players, lights and refrigerators, are
connected with a network at home. This provides many
applications and services for home users, for instance, re-
mote control (outside home), group control, etc. A system
consisting of such networked home appliances is generally
called a Home Network System (HNS, for short). Several
HNS products have already come onto the market [8, 10,
12, 14, 18].

One of the major HNS applications is the integrated ser-
vice of networked home appliances (we simply call integrated
service in the following) [8, 9, 15]. The integrate service is to
orchestrate different home appliances via network in order
to provide more comfortable and convenient living for the
users. Typical integrated service includes:

Coming Home Service: When a user comes home, lights
and an air-conditioner are turned on with appropriate
illumination and temperature based on the current de-
gree.

DVD Theater Service: When a user turns on a DVD
player, lights become dark, 5.1ch speakers are selected
and the volume is automatically adjusted.

The conventional approach to implement the integrated
service adopts the Server Centralized Architecture (SCA),
where a sophisticated server (called home server) plays a
role of a conductor. The home server controls all the net-
worked appliances in a centralized manner, by sending con-
trol commands to the appliances in a certain order [8, 12,
15]. Since the server undertakes all the intelligent tasks of
the orchestration, the structure of SCA is quite simple and
intuitive.

However, as networked appliances get more sophisticated
and diversified, the conventional SCA would suffer from the
following problems:

Reliability, Load Concentration: Since all appliances are
controlled by a centralized server, a crash of the server
makes all the integrated services unavailable. Also, the

number of connected appliances directly reflects heavy
workload of the server.

System Extension: Features of appliances that are not
compatible with the server cannot be used in the in-
tegrated services. This limitation would become an
obstacle to system extension for future appliances.

Interoperability: Since the home server needs to know the
underlying protocols of all networked appliances, im-
plementation of the server middle-ware becomes com-
plex. Also, the server and the appliances are tightly
coupled. Hence, it is hard to guarantee interoperabil-
ity between them, especially when the versions of the
protocols and the appliances are updated.

To cope with these problems, this paper proposes a new
method to implement the integrated services based on the
Service Oriented Architecture (SOA) [7]. The SOA is a sys-
tem architecture to integrate autonomous distributed com-
ponents. The components are loosely coupled with each
other by strictly-typed interfaces and standardized commu-
nication protocols.

In the proposed method, each appliance is divided into
two layers: a service layer and a device layer. In the ser-
vice layer, the appliance exports its control interfaces as a
set of services. If a service is executed, then it sends a con-
trol command to the corresponding device with a propri-
etary protocol. Simultaneously, the service autonomously
executes (uses) other services exported by other appliances.
Thus, the appliances are loosely coupled at the service layer
without any centralized server. This enables more flexible,
robust and load-balanced integrated services.

We first design the SOA-based integrated services with
concrete service scenarios. Based on the design, we propose
an implementation framework, and implement a prototype
system with Web services [2, 24]. We also present a graph-
based evaluation method of the integrated services. With
this, we conduct an comparative evaluation of the proposed
(SOA) and the existing (SCA) architectures, from the view-
points of reliability, workload, and coupling.

2. PRELIMINARIES

2.1 Service Oriented Architecture and Inte-
grated Services

The service oriented architecture (SOA) [7] is a system
architecture to integrate different systems distributed over
a network with a standard procedure. Each system ex-
ports own features to the network as a unit of service (a
set of tasks, which is coarser than an object). The internal
logic and implementation of the service are self-contained
and encapsulated in the system. The system exposes only
interfaces of the service in form of strictly-typed exported
methods.

A service user executes the remote exported method and
gets desired results. This remote procedure call is performed
by a standardized platform-independent framework. Also,
once an exported method is deployed, its interface definition
is not allowed to change. Therefore, the change in the inter-
nal service logic or service implementation platform do not
influence the service user. Thus, the loose coupling between
the user and the service is achieved. Web Services [2, 24]
are widely known as a major SOA framework.

Object

Object

Object

Object

Object

Object

Object

Object

Object

Object

Tight Coupling
Loose Coupling
Tight Coupling
Loose Coupling

Object

Object

E
x
p
o
rte

d

M
e
th
o
d

Object

Client

Service A

Service B

E
x
p
o
rte

d

M
e
th
o
d

Integrated

Service

Figure 1: Service oriented architecture

Figure 1 shows an example of SOA. A service user with
the client application calls an exported method of Service A.
Service A is implemented by tightly-coupled objects, which
internally invoke another exported method of Service B. In
this example, the service user uses an integrated service con-
sisting of services A and B, which is depicted by a bold oval.

2.2 Assumptions on Networked Home Electric
Appliances

For the development of the SOA-based integrated services,
we assume that each networked home electric appliance sat-
isfies the following conditions.

Condition C1: Each appliance has device control inter-
faces that can be accessed by software (e.g., APIs).

Condition C2: Each appliance has a storage to store ap-
plication software (server and device control applica-
tion), a processor to execute the application, and a
network interface.

These conditions do not impose unrealistic assumptions. We
consider that these are standard features for next-generation
home electric appliances. As for Condition C1, there already
exist standards prescribing a detailed object template for
each category of appliances [3, 4]. Condition C2 is justified
by a fact that; the price and size of processors/memories are
becoming reasonable to embed them in home appliances.
Indeed, there already exist some commercial products in-
volving Web applications, so that the users can configure
and control the product from PCs through a Web interface
(e.g.,[17, 21]).

2.3 Scenarios of Integrated Services
For more comprehensive discussion, we introduce exam-

ple scenarios of the integrated services. In this example,
we suppose an HNS consisting the following nine kinds of
appliances (a DVD player, a TV, a speaker, a light, an il-
luminometer, a door (with a sensor), a telephone, an air-
conditioner and a thermometer). We also assume that one
appliance exists for each kind, and that the total nine ap-
pliances are installed in the same room.1

1For multiple appliances in the same kind, we regard them as

Service Layer Device Layer

Proprietary

Protocol Device

I/Fs

Exported

Methods

Generic

Protocol

Service

Scenario

Trigger Other

Appliances

Trigger Other

Appliances

Figure 2: Architecture of each home appliance

We prepare the following eight service scenarios (denoted
by SSi (1 ≤ i ≤ 8)). These scenarios are determined based
on the actual HNS products [8, 18].

SS1: The brightness of the light is automatically adjusted
with the illuminometer based on the current intensity
of illumination.

SS2: If the user enters a room from the door, the light is
turned on.

SS3: When the user turns on the DVD player, the light
becomes dark. Then, the TV and the speaker start in
the DVD mode.

SS4: When the user watches the TV, the speaker is turned
on.

SS5: If the telephone rings while the user is watching the
TV, then the volume of the speaker becomes small.

SS6: The air-conditioning is optimized based on the ther-
mometer.

SS7: If the user enters the room, the air-conditioner starts
and adjusts the temperature to a comfortable degree.

SS8: When the user goes out or goes to bed, all the appli-
ances are shut down, and the door is securely locked
up.

3. DESIGN OF INTEGRATED SERVICES

3.1 Key Idea
Our key idea is to use SOA for achieving the following is-

sues, which are difficult for the conventional server-centralized
HNS.

(A) Standard Communication and Loose Coupling
among Appliances: We export features of each appliances
as a set of exported methods, which makes the features ac-
cessible with the standard protocols in SOA. Thus, the ap-
pliances are loosely coupled. This significantly improves the
interoperability and extendability of the HNS. Achieving
loose-coupling among components with SOA is not a sur-
prising approach. However, our contribution is to use SOA

independent appliances. For example, if there are four lights
in the room, we consider four instances; Light1, Light2,
Light3 and Light4.

User

Illumino

meter

Device

Light

Device

1.1.1.1:ON1.1.1:Illuminometer.ON

1.1:Light.ON

1.1.3:Illuminometer.getIllumination

1.1.3.1:getIllumination

Illuminometer

Light

Service Layer Device layer

1.1.3.2:Light.setIllumination

1.1.2:ON

1.1.3.2.1:setIllumination

Figure 3: Design of service scenario SS1

for the HNS application. For this, we present a concrete
appliance structure and implementation framework.

(B) Autonomous Orchestration without Centralized
Server: Our application of SOA enables direct communica-
tions among appliances without any special servers. There-
fore, the orchestration of the appliances, which has been
undertaken by the conventional home server, can be dis-
tributed to the appliances. We present a method to im-
plement the autonomous collaboration among appliances.
Specifically, when an exported method of an appliance is
executed, the appliance autonomously determines which ex-
ported method should be executed next, and triggers a re-
mote procedure call to the other appliance.

3.2 Appliance Structure
To achieve the issues (A) and (B) in Section 3.1, we need

to implement the following features in each appliances.

(A) Exporting Self-Features: It encapsulates proprietary
device interfaces, and exports the interfaces to a net-
work using a standardized manner.

(B) Controlling Other Appliances: It autonomously in-
vokes interfaces of other appliances, according to a
given service scenario.

To achieve them, we divide each appliance into two layers:
a device layer and a service layer, as shown in Figure 2.

The device layer refers to the hardware portion (includ-
ing middle-ware) of the appliance. According to Condition
C1, each appliance can be controlled by a software appli-
cation via a set of device interfaces. Note that the control
method is based on a proprietary procedure (or protocol)
that the appliance conforms to (e.g., ECHONET for sensors
and lights [4], IEEE1394 or UPnP for digital Audio/Visual
appliances [23]).

On the other hand, the service layer wraps the appliance-
specific device interfaces and exports them to the network.
The service layer is our original contribution for the SOA-
based integrated services. We implement it as a software
application on each appliance conforming Condition C2.

Specifically, we wrap each of the device interfaces (e.g.,
for a light device, there should be interfaces for ON, OFF
and illumination setting) in a method in the service layer.
Then, we export the methods to the network in a generic
manner, which does not depend on appliance-specific proce-
dures or proprietary protocols. For the method exportation,
we use a generic SOA framework such as Web services (with

DVD

Device

TV

Device

Speaker

Device

Service Layer Device Layer

Phone

Device

DVD

TV

Speaker

Light

Illuminometer

Door

AC

Phone

Thermometer

Light

Device

Door

Device

AC

Device

Thermo

meter

Device

User

Illumino

meter

Device

8.1.2.2

8.2.2

3.1.3.2.1,4.1.2.1

8.1.2.2.1

3.1.3.4.1,4.1.4.1,5.1.2.1

3.1.3.3.1,4.1.3.1

1.1.2,2.1.2.2,3.1.4.2

8.2.1

1.1.3.2.1,2.1.2.3.2.1,3.1.4.3.2.1

1.1.1.1,2.1.2.1.1,3.1.4.1.1

8.2.2.1

1.1.3.1,2.1.2.3.1,3.1.4.3.1

1.1

1.1.1,2.1.2.1,3.1.4.1

2.1,7.1,8.3

2.1.2

8.1

3.1.2
3.1.3

3.1.3.3,4.1.33.1.3.2,

4.1.2

3.1.4

4.1

5.1.2

6.1

6.1.1,7.1.2.1

7.1.2

3.1

8.1.2

3.1.3.4,

4.1.4

1.1.3,

2.1.2.3,3.1.4.3

8.2

8.3.2

6.1.2,7.1.2.28.3.3

2.1.1,7.1.1

8.3.1

5.1.1

6.1.3,7.1.2.3

8.3.2.1

6.1.4,7.1.2.4

3.1.1

8.1.1

3.1.2.1,4.1.1

8.1.2.1,

3.1.3.1

6.1.1.1,7.1.2.1.1

8.3.3.1

6.1.2.1,7.1.2.2.1

5.1

1.1.3.2

2.1.2.3.2

3.1.4.3.2

8.3

1.1 Light.ON

1.1.1,2.1.2.1,3.1.4.1 Illuminometer.ON

1.1.1.1,2.1.2.1,3.1.4.1.1 IlluminometerDevice.ON

1.1.3,2.1.2.3,3.1.4.3 Illuminometer.getIllumination

1.1.3.1,2.1.2.3.1,3.1.4.3. IlluminometerDevice.getIllumination

1.1.3.2,2.1.2.3.2,3.1.4.3.Light.setIllumination

1.1.2,2.1.2.2,3.1.4.2 LightDevice.ON

1.1.3.2.1,2.1.2.3.2,3.1.4.LightDevice.setIllumination

2.1,7.1 Door.statusCheck

2.1.1,7.1.1 DoorDevice.statusCheck

3.1 DVD.ON

3.1.1 DVDDevice.ON

3.1.2 TV.ON

3.1.2.1,4.1.1 TVDevice.ON

3.1.3 TV.selectInput

3.1.3.1 TVDevice.selectInput

3.1.3.2,4.1.2 Speaker.ON

3.1.3.2.1,4.1.2.1 SpeakerDevice.ON

3.1.3.3,4.1.3 Speaker.channelSelect

3.1.3.3.1,4.1.3.1 SpeakerDevice.channelSelect

3.1.3.4,4.1.4 Speaker.volumeControl

3.1.3.4.1,4.1.4.1,5.1.2.1 SpeakerDevice.volumeControl

2.1.2 Light.ON

3.1.4 Light.ON

4.1 TV.ON

5.1 Phone.statusCheck

5.1.1 PhoneDevice.statusCheck

5.1.2 Speaker.volumeControl

6.1 AC.ON

6.1.1,7.1.2.1 Thermometer.ON

6.1.1.1,7.1.2.1.1 ThermometerDevice.ON

6.1.2,7.1.2.2 Thermometer.getTemperature

6.1.2.1,7.1.2.2.1 ThermometerDevice.getTemperature

6.1.3,7.1.2.3 ACDevice.ON

6.1.4,7.1.2.4 ACDevice.setTemperature

7.1.2 AC.ON

8.1 DVD.OFF

8.1.1 DVDDevice.OFF

8.1.2 TV.OFF

8.1.2.1 TVDevice.OFF

8.1.2.2 Speaker.OFF

8.1.2.2.1SpeakerDevice.OFF

8.2 Light.OFF

8.2.1 LightDevice.OFF

8.2.2 Illuminometer.OFF

8.2.2.1 IlluminometerDevice.OFF

8.3 Door.Lock

8.3.1 DoorDevice.Lock

8.3.2 AC.OFF

8.3.2.1 ACDevice.OFF

8.3.3 Thermometer.OFF

8.3.3.1 ThermometerDevice.OFF

Figure 4: Design of integrated services using SOA

SOAP/XML and WSDL). Thus, all interfaces are opened
to a network as a set of exported methods (i.e., a service),
which achieves the above (A).

Furthermore, in each exported method, we implement
a mechanism by which the method autonomously triggers
other exported methods provided by other appliances. Thus,
the appliances are orchestrated at the service layer, and the
above (B) is realized. The concrete implementation frame-
work of the service layer will be discussed in the next section.

For instance, we take a light and an illuminometer with
Conditions C1 and C2, and try to design the SS1 (in Sec-
tion 2.1) based on SOA. Figure 3 shows an example of the
design. In the figure, an oval represents a service layer of
an appliance. A device layer is depicted by an icon. A solid
arrow from Service A to Service B with Label L shows Ser-
vice A invokes (uses) method L exported by B. A dotted
arrow represents a control command from a service layer to
a device layer. Also, each method is indexed by a number
which hierarchically specifies its execution order (the nota-
tion follows the one in UML collaboration diagram [5]).

The service scenario starts when the user executes the ex-
ported method Light.ON. Then, Light service invokes other
exported methods ON provided by Illuminometer. Then,
each of Illuminometer and Light services respectively turns
on the device.

Next, Light service invokes Illuminometer.getIllumi

nation, and Illuminometer service internally gets the cur-
rent degree of illumination from the device. Then, Illumino
meter sets the obtained illumination to Light by setIllumi

nation method. Finally, based on the current degree, Light
set the optimized illumination to the light device.

Thus, we can make appliances autonomously orchestrate
at the service layer, which implements the integrated ser-
vices without the centralized home server.

3.3 Service Integration Graph
As shown in Figure 3, an integrated service can be charac-

terized by HNS components (i.e., the user, services, devices,
or a home server) and use/used relationships between the
components. Hence, we introduce a graph-based notation
for the integrated services.

A labeled directed graph G is defined by G = (N, L, E),
where N is a set of nodes, L is a set of labels, and E ⊆ N ×
L×N is a set of labeled directed edges. For a given integrated
service scenario s, a labeled directed graph Gs = (N, L, E)
is called a service integration graph, denoted by SIG(s), iff
Gs satisfies the following conditions:

• N is a set of all HNS components appearing in s,

• L is a set of all methods appearing in s, and

• An edge (p, m, q) exists in E iff p uses method m pro-
vided by q.

Next, we extend the service integration graph to the set
of scenarios. Let s1, s2, ..., sk be a given set of integrated
service scenarios. Suppose that for i (1 ≤ i ≤ k), we have
SIG(si) = (Ni, Li, Ei). Then, we define SIG({s1, s2, ..., sk})
= (∪iNi,∪iLi,∪iEi) If s1, s2, ..., sn are all the scenarios in
the HNS, then we call SIG ({s1, s2, ..., sn}) a full service in-
tegration graph, which is denoted by FSIG. Note that any
SIG is a subgraph of FSIG by definition.

For example, Figure 3 can be regarded as a SIG(SS1) by
mapping each of ovals and icons to a node, an arrow to a
labeled directed edge.

3.4 Designing Integrated Services with Ser-
vice Oriented Architecture (SOA)

Here we design the eight service scenarios presented in
Section 2.3 based on SOA. Figure 4 depicts an example of
a full service integration graph FSIG(= SIG({SS1, SS2,
..., SS8})) containing the scenarios from SS1 to SS8. In the
figure, the number appearing each label corresponds to the
actual method described at the left side. Due to limited
space, directed edges with the same method are represented

3.4,4.2:ON

8.3:OFF

3.5,4.3,5.2:VolumeControl

3.6,4.4:ChannelSelect

1.1,2.2,3.7:ON

8.4:OFF

1.4,2.5,3.10:setIllumination

1.2,2.3,3.8:ON

8.5:OFF,

1.3,2.4,3.9:getIllumination

2.1,7.1:StatusCheck

8.6:Lock

5.1:StatusCheck

6.1,7.2:ON

8.7:OFF

6.4,7.5:setTemperature

3.1:ON

8.1:OFF

3.2,4.1:ON

8.2:OFF

3.3:SelectInput

6.2,7.3:ON

8.8:OFF

6.3,7.4:getTemperature
Home Server

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

User

DVD

Device

TV

Device

Speaker

Device

Phone

Device

Light

Device

Door

Device

AC

Device

Thermo

meter

Device

Illumino

meter

Device

G
a
te
w
a
y

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

A
p
p
lic
a
ti
o
n

Figure 5: Design of integrated services using SCA

by a single arrow. Each label starts with a scenario number i
of SSi (1 ≤ i ≤ 8). The numbers following the scenario num-
ber hierarchically specify the execution order of the method
in SSi.

Take the scenario SS4 for instance. In Figure 4, we can
see a possible design of SS4 by traversing arrows prefixed
by “4.”. When the user first turns on TV (TV.ON), the TV
service autonomously collaborate with the Speaker service,
and sets the speaker volume and channel. Also, we can see
that FSIG in Figure 4 contains SIG(SS1) in Figure 3 as
a subgraph. SS3 can be designed by reusing scenarios SS1

and SS4. The user first turns on DVD by DVD.ON. Then,
the DVD service successively invokes Light.ON and TV.ON.
Next, the Light and TV services respectively execute the
same scenarios as SS1 and SS4, which completes SS3.

In the following, we use HNS-SOA to denote the pro-
posed HNS that extensively exploits SOA to achieve the
autonomous and distributed collaboration of appliances.

3.5 Designing Integrated Services with Server
Centralized Architecture (SCA)

For the comparison purpose, we try to design the inte-
grated services with SCA. In this approach, a home server
sends control commands to the end appliances with the pro-
prietary application and protocol [8, 12]. The home server
directly communicates with the communication interface of
each appliance. Hence, the service layer is not especially
needed for each appliance. Instead, to orchestrate appli-
ances with different network protocols, the home server must
implement a gateway mechanism for the protocol conversion.
Therefore, the implementation of the server tend to be more
complicated.

Figure 5 shows an example design. In this example, each
of SS1 to SS8 is implemented as an application object which
is tightly coupled with the gateway and other objects. Each
object sends/receives control commands through the gate-
way to/from the appliances involved in the scenario. For
example, when the user triggers SS3, the server application
executes the object SS3 to send appropriate control com-
mands to the DVD player, the TV and the speaker.

In the following, we use HNS-SCA to denote the conven-

:Light :Illuminometer

ON()
ON()

HNS::User

getIllumination()

:LightDevice :IlluminometerDevice

ON()

getIllumination()

$DMI

ON()

setIllumination(illumination=$DMI)

setIllumination(illumination)

getIllumination
getIllumination

Figure 6: Sequence diagram for SS1

tional HNS where the centralized home server controls all of
appliances.

4. IMPLEMENTATION

4.1 Implementation Framework for Service Layer
This subsection presents an implementation framework

for the proposed service layer. By definition, a service in-
tegration graph SIG(s) for a scenario s is equivalent to the
UML collaboration diagram. So, it can be described as a se-
quence diagram [5]. For instance, SIG(SS1) in Figure 3 can
be represented by a sequence diagram in Figure 6. In the
figure, we can see that for the autonomous integration of the
service layer, the following two types of method invocations
must be implemented in each exported method.

DMI (Device Method Invocation): DMI refers to pro-
cessing of the service layer to send a device control
command to the corresponding device layer. Accord-
ing to the proposed appliance structure (see Figure 2),
there exists a single DMI for every exported method.
DMI is constantly executed by the exported method
regardless of the service scenario performed.

SMI (Service Method Invocation): SMI refers to pro-
cessing of the service layer to invoke remote methods
exported by other services. Several SMIs are per-
formed before/after the DMI, depending on the cur-
rent service scenario.

In Figure 6, each DMI is represented by a bold arrow,
while each SMI appears as a thin arrow. For instance,
the Light.ON method, which is exported by Light service,
consists of a single DMI (LightDevice.ON), and two SMIs
(Illuminometer.ON, Illuminometer.getIllumination) where
the former is executed before the DMI, the latter is triggered
after the DMI.

Our implementation framework of the service layer is as
follows. For each control interface d of an appliance, we
create an exported method md. Then, we code md so that
md invokes d internally, which implements the DMI. If d has
a return value, we represent the return value by $DMId.

On the other hand, SMI should not be hard-coded in md,
since SMI depends on the service scenarios and can be added
or modified by the user later on. Instead, for each appliance
we prepare a definition file (called SMI definition file) which

Table 1: SMI definition file for SS1

(a) LightService (http://light.myhome.net/service.jws)

Context SSID ServiceURI Pre/Post methodName paramName paramType paramValue

1 http://illuminometer.home.net/service.jws pre ON null null null

1 http://illuminometer.home.net/service.jws post getIllumination null null null

setIllumination() 1 null null null null null null

ON()

(b) IlluminometerService (http://illuminometer.myhome.net/service.jws)

Context SSID ServiceURI Pre/Post methodName paramName paramType paramValue

ON() 1 null null null null null null

getIllumination() 1 http://light.home.net/service.jws post setIllumination illumination int $DMIgetIllumination()

specifies how the SMIs are invoked in each service scenario.
Each appliance dynamically looks up the definition file, and
invokes appropriate SMIs at run time. For the addition or
modification of the service scenarios, we just update the SMI
definition file without modifying the implementation of the
service layer.

Table 1(a)(b) respectively show SMI definition files for
Light and Illuminomter services shown in Figure 6. Each
row corresponds a single SMI, consisting of the following en-
tries: context (local exported method triggering the SMI),
SSID (ID of the service scenario being executed), service
URI (URI of the remote service triggered), pre/post (be-
fore/after the DMI), methodName (name of remote exported
method), paramName (names of parameters of the remote
method), paramType (types of the parameters), paramValue
(values of the parameters). When an (local) exported method
is triggered in SS1, each service looks up the table, then dy-
namically discovers and performs the appropriate SMI. In
this example, the URIs of the two services are assumed to be
http://light.myhome.net/service.jws and http://illuminome
ter.myhome.net/service.jws, respectively.

Based on the discussion above, the service layer for each
appliance can be implemented in accordance with the fol-
lowing implementation template (as shown in Figure 7):

• The service layer has exported methods each of which
corresponds to a control interface in the device layer.

• Each exported method implements deviceMethod()

for the DMI. Moreover, preProcess() and postProcess()

are implemented respectively before and after device

Method(). preProcess() and postProcess() are rou-
tines that dynamically perform SMIs before and after
the DMI according to the SMI definition file. These
are commonly shared by all the exported methods in
the service layer.

For instance, consider Figure 6 and Table 1. When the user
invokes Light.ON() method, it executes preProcess() and
looks up pre-SMI from Table 1(a). As a result, Illuminometer.
ON() is found and executed. Next, Light.ON() sends ON

command to LightDevice as a DMI. After that, it executes
postProcess() and looks up post-SMI from Table 1(b). As
a result, Illuminometer.getIllumination() is invoked.
Illuminometer service performs SMI with Table 1(b).

Illuminometer.ON() has no SMI processing. Illuminometer.
getIllumination() executes a post-SMI Light.setIllumina
tion(). For this, a return value of the DMI ($DMIgetIllumination)
is passed to a parameter illumination. This achieves a ser-

SMI

Definition

DMI

Exported Method3{

preProcess();

deviceMethod();

postProcess();

}

Exported Method2{

preProcess();

deviceMethod();

postProcess();

}

Exported Method1{

preProcess();

deviceMethod1();

postProcess();

}

SMI
Definition

Exported Method3{
preProcess();

deviceMethod();
postProcess();

}

Exported Method2{

preProcess();
deviceMethod();

postProcess();
}

Exported Method1{

preProcess();

deviceMethod();
postProcess();

}

SMI

Definition

Exported Method3{

preProcess();
deviceMethod();

postProcess();

}

Exported Method2{
preProcess();

deviceMethod();
postProcess();

}

Exported Method1{

preProcess();
deviceMethod();

postProcess();
}

SMI

SMI

SMI

Definition

DMI

Exported Method3{

preProcess();

deviceMethod();

postProcess();

}

Exported Method3{

preProcess();

deviceMethod();

postProcess();

}

Exported Method2{

preProcess();

deviceMethod();

postProcess();

}

Exported Method2{

preProcess();

deviceMethod();

postProcess();

}

Exported Method1{

preProcess();

deviceMethod1();

postProcess();

}

Exported Method1{

preProcess();

deviceMethod1();

postProcess();

}

SMI
Definition

Exported Method3{
preProcess();

deviceMethod();
postProcess();

}

Exported Method3{
preProcess();

deviceMethod();
postProcess();

}

Exported Method2{

preProcess();
deviceMethod();

postProcess();
}

Exported Method2{

preProcess();
deviceMethod();

postProcess();
}

Exported Method1{

preProcess();

deviceMethod();
postProcess();

}

Exported Method1{

preProcess();

deviceMethod();
postProcess();

}

SMI

Definition

Exported Method3{

preProcess();
deviceMethod();

postProcess();

}

Exported Method2{
preProcess();

deviceMethod();
postProcess();

}

Exported Method1{

preProcess();
deviceMethod();

postProcess();
}

SMI

Definition

Exported Method3{

preProcess();
deviceMethod();

postProcess();

}

Exported Method3{

preProcess();
deviceMethod();

postProcess();

}

Exported Method2{
preProcess();

deviceMethod();
postProcess();

}

Exported Method2{
preProcess();

deviceMethod();
postProcess();

}

Exported Method1{

preProcess();
deviceMethod();

postProcess();
}

Exported Method1{

preProcess();
deviceMethod();

postProcess();
}

SMI

SMI

Figure 7: Implementation template for the service
layer

vice scenario SS1, which set the illumination of light based
on the current intensity obtained by the illuminometer.

4.2 Prototype System with Web Services
Based on the proposed implementation framework, we

have implemented a prototype system. We exploited Web
Services as a means of service deployment/exportation of
the service layer. The prototype was developed under the
following environment:
Web server: Jakarta Tomcat 4.1.18
SOAP library: Apache-AXIS 1.1
Language: Java2 SDK SE 1.4.1 02

Also, we implemented each device layer as a virtual device.
The class diagrams of the prototype system are shown in
Figure 8. As seen in Figure 8(b), every service commonly
inherits BaseService class, which

1. Interprets the SMI definition file and dynamically de-
termines SMIs processed in preProcess() or postProc
ess(), by using ServiceManager class.

2. Invokes remote WebService for the corresponding SMI,
using DynamicCallerFactory class.

Next, based on the service integration graph shown in Figure
4, we created an SMI definition file for each service, and
uploaded the files to the prototype system. As a result, we
confirmed that all the integrated service scenarios SS1 to
SS8 are executed correctly.

(a) Base classes (b) Service classes

Figure 8: Class diagrams of the prototype system

An SMI definition file for a service s can be automatically
generated by analyzing the given service integration graph,
specifically, incident edges of the node s and their execu-
tion order. If the user wants to add or modify the service
scenario, the user just uploads an updated definition file to
each appliance. For this, there is no need to restart the Web
server. Also, it is not necessary to re-configure or re-compile
the application itself.

4.3 Roles in Proposed Framework
We here discuss the roles of the user and vendors of ap-

pliances in the proposed framework.
First, we assume that the service applications (at the ser-

vice layer) of each appliance should be developed by the
vender, in accordance with the proposed implementation
framework. For this, the vender does not need to concern
how the applications are used by other appliances. Instead,
the vender has to specify strictly-typed exported methods,
and use a generic SOA framework such as Web services for
the service deployment/exportation. With this, appliances
are loosely coupled, which enables flexible extension and
modification of new appliances.

On the other hand, the service scenario development is
supposed to be done by the user (Of course, the vender can
pre-install the typical default scenarios). By our implemen-
tation framework, the service scenarios are completely sep-
arated from the implementation of the service layer. Hence,
the user creates the service integration graph, derives SMI
definition files, and then uploads the files to appliances.
Thus, the user can easily develop integrated services con-
sisting of any combinations of appliances.

On creating the service integration graph, the user needs
to know the detailed definitions of exported methods of ap-
pliances. This can be supported by integrated service cre-
ation environment, which exploits SOA’s service discovery
techniques, such as WSDL and UDDI of Web services. We
are currently developing the tool support for the creation
environment. Figure 9 shows one of our tools - called ser-
vice scenario scripting editor (S3 editor). Using the editor,
the user can edit own service scenarios.

Note that the addition or modification of the service sce-
narios are not easy in the conventional HNS-SCA (see Fig-
ure 5), since the user needs to update the applications of
the home server. It is generally hard for the generic users to
develop the control applications. Only what the users can
do is to configure the setting of the ready-made applications,

Figure 9: Service scenario scripting editor

which significantly limits the flexibility and extendability of
the service scenarios.

5. EVALUATION
In this section, we quantitatively evaluate the proposed

HNS-SOA from several architectural aspects. Specifically,
for the service integration graph presented in Section 3.3,
we define three kinds of metrics: reliability, workload and
coupling. Then, we conduct a comparative study with the
conventional HNS-SCA.

5.1 Reliability
Assuming that each HNS component may fail, we evalu-

ate the system-wide reliability of HNS, from a viewpoint of
the availability of the integrated services. For a given HNS
with integrated service scenarios, we define n-reliability[6] as
the probability that at least n service scenarios are opera-
tional in the HNS. The n-reliability varies depending on the
HNS architecture as well as the reliability of each (single)
component.

To compute n-reliability, we apply the Sum of Disjoint
Products (SDP) approach[6, 19, 22] to the service integration
graph. The SDP is a method to derive the network reliability
based on path-set and cutset of the graph theory. Intuitively,
when a graph G and reliability of each node (and edge) are
given, the SDP method calculates reliability that at least one

of specified set of subgraphs of G is operational, by taking
the overlaps among the subgraphs into account.

As discussed in Section 3.3, each service scenario s can be
characterized by SIG(s), and a SIG is a subgraph of FSIG.
Hence, n-reliability can be computed by SDP in such a way
that some n SIGs are operational in FSIG. For instance, in
Figure 4, 1-reliability is calculated by SDP as a probability
at least one of SIG(SS1), ..., SIG(SS8) is operational. Sim-
ilarly, 2-reliability is derived from SIG({SS1, SS2}), SIG({
SS1, SS3}) , ..., SIG ({SS7, SS8}). Thus, taking all com-
binations from the given set of scenarios, we can compute
n-reliability with the SDP method.

To evaluate the reliability purely relevant to the architec-
tural differences (see Figures 4 and 5), we do not consider
any faults in the network or the device of each appliance.
So, we assume that only the services (in HNS-SOA) and the
home server (in HNS-SCA) may fail. Although it is generally
difficult to estimate the reliability of each HNS component,
we suppose that the reliability of each service in HNS-SOA
is uniformly 0.999. As for HNS-SCA, assuming that the
home server consists of eight tightly-coupled objects, we set
its reliability to be 0.992(= 0.9998) (Actually, the reliability
is expected to be lower than that, since we should consider
the reliability of the gateway, strictly speaking).

We have applied the SDP method to two service integra-
tion graphs in Figures 4 and 5. The result is shown in Figure
10. In the figure, the horizontal axis represents the number
of service scenarios, while the vertical axis plots n-reliability.

From the result, it can be seen that n-reliability for HNS-
SCA becomes equal to the reliability of the home server.
This is because all service scenarios depend on the central-
ized server. In other words, if the home server fails, all the
scenarios become unavailable. On the other hand, in HNS-
SOA, the eight scenarios are executed by the distributed ser-
vices. Hence, even if some services crash, some scenarios can
be partially operational. Thus, the SOA-based integrated
services achieve higher fault tolerance than the SCA-based
ones.

For n = 7, 8, HNS-SCA achieves slightly more reliable
than HNS-SOA. Since HNS-SOA contains more components
than HNS-SCA, the probability that all the components
in HNS-SOA are operational becomes smaller than that of
HNS-SCA. Thus, there exists a trade-off relationship be-
tween the fault-tolerance and the probability that all sys-
tems are green.

n 1 2 3 4 5 6 7 8

SOA 0.99999 0.99999 0.99999 0.99998 0.996 0.99302 0.99104 0.99104

SCA 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992

Architecture

Type

0.99

0.992

0.994

0.996

0.998

1

1 2 3 4 5 6 7 8

of scenarios(=n)

n
-R

e
lia
b
ili
ty

SOA

SCA

Figure 10: n-reliability

5.2 Workload
We try to estimate a workload of each HNS component

(i.e., the service layer in HNS-SOA and the home server in
HNS-SCA) imposed by the integrated services. The work-
load varies depending on the appliances involved in an inte-
grated services and the usage frequency of the scenarios.

Suppose that FSIG = (N, L, E), SIG(si) (1 ≤ i ≤ n)
for scenarios si’s, and usage frequency fi of scenario si are
given. Now we define an appearance function ci : N →
{0, 1} such that for v ∈ N , ci(v) = 1 if v is contained in
SIG(si), otherwise ci(v) = 0. The function ci checks if the
node (component) is used in scenario si. Then, for each
component v ∈ N , the workload of v, denoted by WL(v), is
defined as:

WL(v) =
nX

i=1

fi × ci(v)

To obtain the usage frequency, we interviewed 12 users.
We asked them the estimated usage frequency of SS1 to SS8

per week, and obtained the average number of usage of each
scenario. Based on this, we calculate the workload of the
service layer of each appliance (in HNS-SOA) and the home
server (in HNS-SCA).

Table 2 shows the result. The column shows the workload
imposed to each service layer (or the home server) and the
standard deviation. It can be seen that the workload is con-
centrated on the home server in HNS-SCA. In HNS-SOA,
although Light and Illuminometer services suffer from rel-
atively large workload, it is still smaller than that of the
home server.

Next, we consider the load-balancing schemes. In HNS-
SCA, the load is concentrated on the home server only, the
server itself has to be load-balanced, for instance, by deploy-
ing a secondary server. As a result, the load-balancing is so
global and inefficient that even unused services are load-
balanced. On the other hand, HNS-SOA is more efficient
in the sense that only some services with heavy workload
should be taken care of. For instance, in Table 2, if the
user selects Light and Illuminometer services for the load-
balancing, only these services should be duplicated. Thus,
more flexible and local load-balancing scheme can be applied
to HNS-SOA.

Table 2: Workload
Element WL Element WL

DVD 10.7 Home Server 86.3

TV 26.1 StandardDev 86.3

Speaker 29.8

Light 57.4

Illuminometer 57.4

Door 18.7

Phone 3.7

AC 18.1

Thermometer 18.1

StandardDev 17.925

5.3 Coupling
The coupling is a metric to estimate how strongly an HNS

component relies on (or is relied by) the other components.

If a component v with extremely high coupling is broken or
modified, many other components dependent on v are influ-
enced, which prevents the integrated services from working
correctly.

For a given FSIG = (N, L, E), we define a coupling of
node v ∈ N as the number of nodes connected to/from v.
More specifically, for v ∈ N , let use(v) = |{v′|∃m; (v, m, v′) ∈
E}| (i.e., # of components that v uses), and let used(v) =
|{v′|∃m; (v′, m, v) ∈ E}| ((i.e., # of components that use
v)). Then, the coupling of v is defined by coup(v) = use(v)+
used(v). For example, let us take TV service in Figure 4.
Then, use(TV) = |{Speaker, TV Device}| = 2, and used(TV)
= |{User, DV D}| = 2. Hence, coup(TV) = 4.

We compute the coupling for each component in Figures
4 and 5. Table 3 summarizes the result. It can be seen in
that the coupling values of all services in HNS-SOA are well-
balanced. We can also see that the components in HNS-SCA
are heavily concentrated on the home server. This implies
that the crash of the server is fatal for all integrated services,
which is as discussed in Section 5.1.

Moreover, let us consider the density of each coupling
(i.e., each edge in the service integration graph). In HNS-
SOA, services are loosely coupled. Hence, even if internal
implementation or device control procedures of an appli-
ance change, the other appliances do not have any effect, as
long as the type definition of the exported method does not
change.

However, in HNS-SCA, the home server and each appli-
ances are tightly coupled. Therefore, changes in either the
server or the appliance significantly decline the interoper-
ability. For example, when adding appliances that conform
to a new device protocol to the existing HNS, we have to up-
date the gateway implementation of the home server. This
update significantly influences all the existing appliances,
which is a serious cause to decline the interoperability among
the new and existing appliances. Taking these into account,
it is considered that the coupling is much stronger than the
values in Table 3.

Table 3: Coupling

Element use used

DVD 3 1

TV 2 2

Speaker 1 2

Light 2 3

Illuminometer 1 1

Door 3 1

Phone 2 1

AC 2 2

Thermometer 1 1

HS 9 8

coup

6. DISCUSSION

6.1 Advantage and Limitation
The advantages of the proposed framework are summa-

rized as follows:

(1) Since the appliances are loosely coupled at the service
layer with SOA, the interoperability between appli-
ances is improved. This facilitates addition and mod-
ification of the appliances.

(2) Since the integrated services are realized by the au-
tonomous collaboration among the appliances, the pro-
posed framework does not need the centralized server.
As a result, the integrated services become more fault-
tolerant and load-balanced.

(3) Due to the proposed implementation template, the im-
plementation of the service layer and the service sce-
narios are well separated. Therefore, it is easy for the
user to add or modify the integrated service scenarios.

We examine the relationship between SOA and each of these
advantages. First, the above (1) is achieved by the nature of
SOA, which is not limited to the HNS domain. The above
(2) is due to the proposed service layer which extensively
uses the merit of the loose coupling. We have implemented
mechanisms of the exportation of the self-features as well as
the control of other appliances (see Section 3.2) in the service
layer. This allows us to decentralize the service orchestra-
tion task among appliances themselves. The implementation
template in (3) makes full use of a characteristics of SOA
by which we can use any feature of the appliance uniformly
as an invocation of the exported method. With this, the
service layer for every appliance has a common structure,
where the control of other appliance and the exportation of
the self-features are achieved as SMI and DMI, respectively.
Also, the proposed implementation template looks up the
content of SMI from the external definition file. This allows
the separation of the service scenarios from the implemen-
tation of the service layer.

Of course, the proposed framework is not perfectly supe-
rior to the conventional one. As the drawback in the fully-
distributed control of the appliances with SOA, the following
issues are currently anticipated:

Cost of Appliances: Each appliance must be intelligent
enough to satisfy Condition C2 (see Section 2.2), in or-
der to realize the service layer. This makes the cost of
appliances more expensive than the conventional ones.

Communication Overhead: It is expected that the com-
munication overhead required for the service orches-
tration cannot be ignored. Hence, when applying to
the integrated services that require hard-realtime re-
sponse, we need a careful consideration.

Global Management: Since the service control is fully
distributed, it is hard to manage all the appliance at
once. Hence, it requires more sophisticated mecha-
nisms for detection of faulty appliances and applica-
tion of global security policy, etc [20].

6.2 Related Work
BPEL4WS [1, 26] is known as a standard service orches-

tration framework. It is an XML-based language describ-
ing new services integrating the existing distributed service
components. It might be possible to use BPEL4WS as an
alternative of the service integration graph in the proposed
framework. Indeed, in [11], a service oriented method to
orchestrate intelligent appliances using BPEL4WS is pre-
sented. However, the existing BPEL4WS platform needs the
orchestration server (typically called BPEL engines), which

follows a server centralized architecture. Therefore, the ex-
isting framework cannot be directly used for implementing
the proposed HNS-SOA.

A new language called WS-CDL (Web Services Choreog-
raphy Description Language) [25] is currently being specified
by W3C. The WS-CDL aims to strictly define observable in-
teractions between services from a global point of view. It
adopts π-calculus [13] as a mathematical foundation to deal
with complex ordering and relationships among services.
The application is focused mainly on the on-line transac-
tions among enterprises. The WS-CDL might be used for
modeling the integrated services in our HNS-SOA. However
in practice, it is hard for the end users to define rigorous
relationships among appliances. Also, the current HNS ser-
vices do not require that much complex collaboration. Con-
sidering the convenience of users and the complexity of the
current integrated services, we cannot see so many HNS ap-
plications to make full use of π-calculus and WS-CDL. Inves-
tigation of more sophisticated HNS services and application
of WS-CDL is left to be our future work.

7. CONCLUSION
In this paper, we have proposed a framework to design

and implement the integrated services for home network ap-
pliances with the service oriented architecture (SOA). We
have also conducted a comparative evaluation of the pro-
posed HNS-SOA with the conventional HNS-SCA.

In our future work, we evaluate the limitation of the pro-
posed HNS-SOA from more practical viewpoint. For this,
we are currently extending our prototype systems with more
appliances and more service scenarios. Based on the evalua-
tion, we plan to investigate the management framework and
security schemes which well suit the SOA. Another inter-
esting topic is the feature interaction problem[15, 27], which
is known as functional conflicts among services. It is ex-
pected that many potential interactions exist in the HNS,
since multiple users can activate multiple services simulta-
neously. Hence, detection and resolution of the feature in-
teractions within the SOA framework are important issues.

8. REFERENCES
[1] Business Process Execution Language for Web

Services, Version 1.1: http://www-106.ibm.com/

developerworks/library/ws-bpel/ .

[2] E. Cerami, “Web Services Essentials – First Edition” ,
O’Reilly & Associates Inc., United Stated of America,
2002.

[3] Digital Living Network Alliance -
http://www.dlna.org

[4] ECHONET Consortium -
http://www.echonet.gr.jp/

[5] M. Fowler, K. Scott, “Uml Distilled: A Brief Guide to
the Standard Object Modeling Language”,
Addison-Wesley, Boston, 1999.

[6] S. Hariri, and C. S. Raghavendra, “SYREL:A
Symbolic Reliability Algorithm Based on Path and
Cutset Methods”, IEEE Transactions on Computers,
October, pp.1224-1232, 1987.

[7] H. He, “What is Service-Oriented Architecture?” -
http://webservices.xml.com/pub/a/ws/2003

/09/30/soa.html

[8] Hitachi Home & Life Solutions inc., “horaso network”
- http://www.horaso.com/

[9] iReady - http://www.sharp.co.jp/corporate/news/
031217-2.html

[10] LG Electronics, “Home Network”
http://www.lge.com/products/homenetwork/

homenetwork.jsp

[11] S. W. Loke, “Service-Oriented Device Echology
Workflows”, Proc. of 1st Int’l Conf. on
Service-Oriented Computing (ICSOC2003),
LNCS2910, pp.559-574, Dec. 2003.

[12] Matsushita Electric Industrial Co., Ltd., Kurashi net,
http://national.jp/appliance/product/kurashi-net/

[13] R. Milner, “Communicating and Mobile Systems: the
Pi-Calculus”, Cambridge University Press, 1999.

[14] Mitsubishi Rayon Co., Ltd., “Home network” -
http:// pofeska.com/tec/homenet1/homenet1.htm

[15] Nippon Telegraph and Telephone Corporation, “Home
Service Harmony” - http://www.ntt.co.jp/news/
news04/0403/040308.html

[16] OSGi Alliance - http://www.osgi.org/

[17] PLANEX COMMUNICATIONS Inc., BRC-14V -
http://www.planex.co.jp/product/broadlanner/

brc14v.shtml

[18] Samsung, “Home Network” - http://www.samsung.
com/HomeNetwork/index.htm

[19] S. Soh, and S. Rai, “CAREL: Computer aided
reliability evaluator for distributed computing
networks”, IEEE Trans. Parallel and Distributed
Systems, July, pp.199-213, 1991.

[20] F. Tartanoglu, V. Issarny, N. Levy, and A.
Romanovsky, “Dependability in the Web Service
Architecture”, Proc. of the ICSE Workshop on
Architecting Dependable Systems, Orlando, USA, May
2002.

[21] Toshiba Corporation, “net de navi” -
http://www.rd-style.com/

[22] T. Tsuchiya, T. Kajikawa, and T. Kikuno,
“Parallelizing SDP (Sum of Disjoint Products)
Algorithms for Fast Reliability Analysis”, IEICE
Transactions on Information and Systems, Vol.E83-D,
No.5, May , pp.1183-1186, 2000.

[23] UPnP Forum - http://www.upnp.org/

[24] W3C Web Service Activity -
http://www.w3.org/2002/ws/

[25] W3C, “Web Services Choreography Description
Language, Version 1.0”,
http://www.w3.org/TR/ws-cdl-10/ .

[26] S. Weerawarana, and F. Curbera, “Business process
with BPEL4WS: Understanding BPEL4WS, Part1”,
http://www-106.ibm.com/developerworks/

webservices/library/ws-bpelcol1/ .

[27] M. Weiss, “Feature Interactions in Web Services”,
Proc. of Seventh Int’l. Workshop on Feature
Interactions in Telecommunication Networks and
Distributed Systems (FIW’03), pp.149-156(2003).

