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Abstract

The purpose of this thesis is to find effective algorithms to numerically solve certain

systems of differential equations that arise from standard Newtonian mechanics. Nu-

merical models of elastica has already been well studied. In this thesis we concentrate

on the Kirchhoff problem. The goal is to create an effective and robust numerical

method to model the dynamic behavior of springs that have a prescribed natural

curvature.

In addition to the mathematics, we also provide the implementation details of the

numerical method using the computer language Python 3. We also discuss in detail

the various difficulties of such a software implementation and how certain auxiliary

computations can make the software more effective and robust.
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Chapter 1

Introduction

The purpose of our thesis is to find effective algorithms which solve systems of dif-

ferential equations that arise from standard Newtonian dynamics. The main piece of

mathematics we employ is to introduce algorithms that preserve a discretized version

of the associated Hamiltonian. We will try this out on a number of problems which

have historically been very difficult to solve numerically.

In addition to the Mathematics of these algorithms, a significant part of this

thesis concerns the practical implementation of these algorithms in the computer

programming language Python 3. We in particular make extensive use of the popular

numpy and scipy packages for our implementations. These packages already boast

of highly optimized code that can be readily used for effective matrix computations.

However, the use of such packages in a manner that is useful to our particular case

has to be handled with care.

In practice we have found that it is one thing to have a mathematically correct

algorithm but it is completely another to implement in practice. Many practical

difficulties arise in such implementations and out intention was to discuss these diffi-

culties and how to overcome them using Python 3. For example, for these algorithms

to be practical one needs to be able to provide an analytical Jacobian to the system.
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We discuss extensively how to carry out these computations and implement them in

Python.

In the first part of the thesis we re-implement the numerical algorithm introduced

in [52]. The rational for re-implementation was this. The computer language used for

the implementation was Mathematica. There are many shortcomings in Mathematica

in addition to being expensive and closed source. The syntax is so arcane that is

becomes impossible for anyone other than the original author to read and understand

the code. Also the algorithm it uses to solve non linear systems is also what is called

a black box algorithm in that the source code for the algorithm is not available to

the user. Therefore it is not possible to do any fine tuning if the program somehow

doesn’t do exactly what you would like it to do

We instead implement the algorithm in Python since it is a widely used, inter-

preted high level programming language for general purpose programming. It has

lots of advantages over Mathematica such as availability of highly optimized pack-

ages for numerical computing and a large and helpful user base. It is also worth

noting that the source code for these packages are open source. In fact Python has

now become the most widely used language used in scientific computation throughout

the programming community. In Python it is far easier to write easily maintainable,

scalable and robust code.

In the second part of the thesis we discuss the specific case of the Kirchhoff prob-

lem, that is, creating effective and robust software that models the dynamic behavior

of springs, including springs which are not necessarily helical. These springs are ones

which are thin, inextensible, elastic rods that have a prescribed natural curvature.
2



1.1 The discretized Hamiltonian

The time discretization method we present is designed so that it preserves the en-

ergy of the system. There are lots of literature on energy conserving methods for

Hamiltonian equations. See for example [9, 12, 18, 24, 40, 62, 65–69]. Many of these

explicitly deal with the problems we are attempting in this thesis but from different

perspectives. In particular, these methods seek to preserve the symplectic form of the

motion rather than the Hamiltonian (c.f. [40]). Historically the notion of representing

equations of motion by Hamiltonians came after it was realized that many equations

of motion can be derived from a principle of least action. Let us consider the simple

case where the kinetic energy is quadratic.

E = 1
2
m |v|2 (1.1)

where v = ẋ is the velocity in some m–dimensional space, and potential energy

V = V(x) only depends on the position x. The Hamiltonian approach is to intro-

duce the momentum p = mv, and the Hamiltonian H = E(p/m) + V(x) and see

that the Hamiltonian is conserved as the equations of motions evolve. However, for

prior researchers it has been a difficult task to find effective time discretizations that

preserve the Hamiltonian.

Our approach is to go back to the Euler–Lagrange equations from which the

Hamiltonian equations were historically derived. More precisely we create the action

S(x) =
∫ t2

t1

(−E + V) dt. (1.2)

Then the Hamilton’s principle is that the equations of motion can be found by cal-

culating the stationary point of the action. That is, find the vector x, satisfying the
3



constraints such that for any infinitesimal perturbation δx of x we have,

δS(x) = S(x+ δx)− S(x) = O(|δx|2) (1.3)

It is known that the resulting equations of motion conserve the Hamiltonian

H(t) = E(ẋ) + V(x) (1.4)

We present a time discretization numerical method that computes xn = x(t) for

t = nh such that the discretized Hamiltonian

Hn = E
(
xn+1 − xn

h

)
+

V(xn) + V(xn+1)

2
(1.5)

is conserved.

1.2 Time discretization and the problem of stiff-

ness

A problem which arises in many software solvers for ODEs is the problem of stiffness.

In particular the differential equations we present here has that problem. Roughly

speaking stiffness happens when one part of the solution to the differential equation

evolves faster than another part of the solution. For example when solving the heat

equation, sharp spikes of heat will quickly dissipate, whereas broad regions of low

density heat do not change at all. The problem here is that a very short time step

h is needed, because otherwise the parts that decay fast will overshoot and create

large effects on the final numerical solution. The problem of stiffness has been amply

handled in literature. For example see [27].

However, the equations we present here has a different type of stiffness. The
4



typical stiffness involves linear operators whose eigenvalues are very large, but in the

negative direction. Our equation has large eigenvalues but in the imaginary direction.

This means that instead of fast parts dissipating quickly we have the problem of fast

parts oscillating very quickly. This is the reason for looking for numerical schemes

that preserve the discretized Hamiltonian.

5
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Chapter 2

Problem of Elastica

We will first give a brief yet sufficient overview of the problem. More details including

proofs can be found in [52]. What we do in here is to show in detail the computational

aspects leading up to the software implementation. We also show the actual computer

algorithm which solves this system of differential equations.

2.1 Mathematical description

We assume that the material from which the rod is constructed has two parameters:

ρ which is the mass per unit length of the rod, and ϵ which is the elasticity of the

material from which the rod is made. For the sake of simplicity we will assume

that these quantities are constant throughout the length of the rod. Removing these

assumptions do not necessarily complicate the situation but in this instance we chose

not to. Let us consider a rod of length L.

The action S consists of three parts: the kinetic energy E , the potential energy V
7



and the constraint C multiplied by the Lagrange multiplier α(s). More precisely,

E =

∫ L

0

1
2
ρ |ẋ(s)|2 ds,

V =

∫ L

0

1
2
|x′′(s)|2 ds, (2.1)

C =

∫ L

0

1
2
α(s) |x′(s)|2 ds.

We allow only the following type of boundary conditions: where x(0) and x(L) are

known functions of t and x′(0) and x′(L) are not known functions of t. The steady

state solutions of such systems has been known for a long time. For example one can

find formulas for solutions involving elliptic integrals in [41] and in Love [43].

The equations of motions are found by applying Hamilton’s principle to the action

S. We create the action S as

S(x) =
∫ t2

t1

(−E + V + C) dt (2.2)

and then we calculate the stationary point of the action. More precisely find the

path x(s, t), satisfying the boundary conditions and the constraints, such that for

any infinitesimal perturbation δx of x we have δS(x) = S(x+ δx)−S(x) = O(|δx|2).

Theorem 1. The variation δS = 0 is solved by the equations

ρẍ+ ϵx′′′′ − (αx′)′ = 0 (2.3)

with the additional boundary conditions x′′(0) = x′′(L) = 0. It can be shown that α

satisfies

α′′ − |x′′|2 α = −ρ |ẋ′|2 − ϵ(4x′′′′ · x′′ + 3 |x′′′|2) (2.4)
8



with the boundary conditions

α′(0) = ρẍ(0) · x′(0), α′(L) = ρẍ · x′(L) (2.5)

Similar equations can be found in [59, 60, 74].

Note that the equation for α will have unique solutions if and only if the Sturm-

Louiville operator

− β′′ + |x′′|2 β, β′(0) = β′(L) = 0 (2.6)

does not have zero in its spectrum. The physical interpretation of that is that the

rod isn’t a straight line (i.e., x′′ is not identically zero). In this circumstance the

Sturm-Louiville operator will be positive definite.

2.2 Adding damping terms

Define the Hamiltonian to be

H =

∫ L

0

1
2
ρ |x|2 + 1

2
ϵ |x′′|2 ds (2.7)

Then it can be shown that if (2.3) and

|x′(s)|2 = 1 (2.8)

are satisfied (as well as under suitable boundary conditions) then, Ḣ = 0. i.e., the

Hamiltonian is conserved. In light of this we can imagine that if we introduce damping

terms the new equations will yield Ḣ ≤ 0. We propose that the damped version of

the Hamiltonian to be

Ḣ = −ν

∫ L

0

|ẋ′′|2 ds (2.9)

9



where ν is the damping constant. It suggests that the damped version of this equation

should be

ρẍ+ ϵx′′′′ − νẋ′′′ − (αx′)′ = 0 (2.10)

The physical rationale for this particular damping term is explained in [52].

2.3 Space discretization and cubic splines

We approximate the path of the elastica by a cubic spline. Let N be some positive

integer and set the space mesh size η = L/N . Then define

xj = x(ηj), (0 ≤ j ≤ N) (2.11)

Suppose that x(s) is a cubic spline passing through these points. Let us denote the

first and second derivatives of the spline

x′
j = x′(ηj), x′′

j = x′′(ηj), (0 ≤ j ≤ N) (2.12)

It is well known that these derivatives can be computed using tridiagonal matrices.

(See for example [10]). We obtain (N + 1) × (N + 1) matrices D1 and D2 matrices

such that

x′′ = D2x, x′ = D1x (2.13)
10



We may now discretize the kinetic, potential energies and constraints as

E =
N∑
j=0

wj
1
2
ρ |ẋj|2 = 1

2
ρηẋ⊤Wẋ (2.14)

V =
N∑
j=0

wj
1
2
ϵ
∣∣x′′

j

∣∣2 = 1
2
ϵη(D2x)

⊤WD2x (2.15)

C =
N∑
j=0

wj
1
2
αj

∣∣x′
j

∣∣2 = 1
2
η(D1x)

⊤W(α ∗ D1x), |x′|2 = 1 (2.16)

where the Lagrange multiplier α = [α0, α1, · · · , αN ] and the weight wj is η for j ̸= 0, N

and wj is 1
2
η for j = 0, N . This is according to the trapezoidal rule for numerical

integration, and W is an (N+1)× (N+1) diagonal matrix whose diagonal entries are

1 except for the top and bottom entries which are 1
2
. In here ∗ denotes the pointwise

multiplication of vectors. More explicitly

α ∗ x = [α0x0, α1x1, · · · , αNxN ] (2.17)

x ∗ y = [x0 · y0,x1 · y1 · · · ,xN · y0] (2.18)

We can now apply Hamilton’s principle, and obtain the equations

ρẍ = W−1(−ϵD⊤
2 WD2x+ D⊤

1 W(α ∗ (D1x))) (2.19)

(2.20)

with the restriction that

(D1x) ∗ (D1x) = 13(N+1). (2.21)

For the damped equation we have that

ρẍ = W−1(−ϵD⊤
2 WD2x+ D⊤

1 W(α ∗ (D1x)) + νD⊤
2 WD2ẋ− 6νD⊤

2 WA−1ż). (2.22)

11



2.4 Time discretization that preserves the Hamil-

tonian

The goal here is to apply Hamilton’s principle to find the ODE which solves for the

m-dimensional vector x using kinetic energy, potential energy, and constraints which

are of the following form:

E(x) = 1

2
ẋ⊤Kẋ, (2.23)

V(x) = 1

2
x⊤Vx+ v · x, (2.24)

Ck(x) =
1

2
x⊤Ckx+ ck · x+ χk = 0, 1 ≤ k ≤ M, (2.25)

C(x) =
M∑
k=1

αkCk(x). (2.26)

Remark. Notice here that we have shifted the index on k to start from 1 instead of

at 0.

In here K and V are positive definite matrices and Ck for 1 ≤ k ≤ M are symmetric

matrices. ck for 1 ≤ k ≤ M and v are vectors and χk for 1 ≤ k ≤ M are scalars. All

of these quantities are to be determined.

Hamilton’s principle gives the equation

Kẍ = −∇V(x)−
M∑
k=1

αk∇Ck(x). (2.27)

and a damped version of the equation is

Kẍ = −∇V(x)−
M∑
k=1

αk∇Ck(x)− g(ẋ), (2.28)

12



where

g(ẋ) = G(ẋ) (2.29)

is a damping term that satisfy G is positive semi definite.

We now explicitly describe the full numerical scheme to solve the ODE. Pick some

small time step h, and abusing notation, denote x at t = nh by xn. The idea behind

the time discretization is to find replacements for the gradients, that is, vector valued

functions DV(xn+1,xn−1) and DCk(xn+1,xn−1) so that the identities

(xn+1 − xn−1) ·DV(xn+1,xn−1) = V(xn+1)− V(xn−1) (2.30)

(xn+1 − xn−1) ·DCk(xn+1,xn−1) = Ck(xn+1)− Ck(xn−1) (2.31)

hold with

DV(xn+1,xn−1) = ∇V
(
1
2
(xn+1 + xn−1)

)
+O(h2), (2.32)

DCk(xn+1,xn−1) = ∇Ck
(
1
2
(xn+1 + xn−1)

)
+O(h2). (2.33)

In our case V and Ck are quadratic function and so it can be shown (see [52]) that

the following choices work:

DV(xn+1,xn−1) = V
(
1
2
(xn+1 + xn−1)

)
+ v (2.34)

DCk(xn+1,xn−1) = Ck

(
1
2
(xn+1 + xn−1)

)
+ ck (2.35)

The discrete numerical scheme proposed is the following:
13



K

(
xn+1 − 2xn + xn−1

h2

)
= −DV(xn+1,xn−1)−

M∑
k=1

αkDCk(xn+1,xn−1)

− g

(
xn+1 − xn−1

2h

)
, (2.36)

Ck(xn+1) = 0, 1 ≤ k ≤ M. (2.37)

As for initial conditions on the constraints we assume that Ck(x0) = Ck(x1) = 0

for 1 ≤ k ≤ M . This scheme requires solving M + m non linear equations for

xn+1 ∈ R3(N+1) and (αk)1≤k≤M . Note that M = N + 1 and m = 3(N + 1).

Now if one defines the discrete Hamiltonian by

Hn+1 =
1

2h2
(xn+1 − xn)

⊤K(xn+1 − xn) +
1

2
(V(xn+1) + V(xn)) (2.38)

Theorem 2. The solution to the difference schemes in (2.36) and (2.37) satisfies the

discrete Hamiltonian in (2.38) and is nonincreasing or constant in the case of g = 0.

For a proof of this see [52]. It now follows that the difference scheme stays in a

compact set. Hence the solution will be stable and will not blow up.

Next, we present the computational and implementation aspects of the algorithm.

These computations are necessary for an effective implementation using software.
14



2.5 Computation of matrices V,Ck etc

Energies and constraints are set up as

E(x) =
N∑
j=0

wj
1
2
ρ |ẋj|2 =

1

2
ρηẋ⊤Wẋ (2.39)

V(x) =
N∑
j=0

wj
1
2
ϵ
∣∣x′′

j

∣∣2
=

1

2
ϵη(D2x− 6A−1z)⊤W(D2x− 6A−1z) (2.40)

C(x) =
N∑
j=0

wj
1
2
αj

(∣∣x′
j

∣∣2 − 1
)

=
1

2
η(D1x+ 3CA−1z)⊤W

(
α ∗ (D1x+ 3CA−1z)

)
−

N∑
j=0

wj
1
2
αj (2.41)

In here W is a (N +1)× (N +1) diagonal matrix with top and bottom entries 1
2

and

the rest are 1 and it captures the numerical integration constants that appears in the

trapezoidal rule for numerical integration. (see for example [10]).

Our goals in here is to express the equations in (2.39), (2.40) and (2.41) in the

form

E(x) = 1

2
ẋ⊤Kẋ (2.42)

V(x) = 1

2
x⊤Vx+ v · x (2.43)

Ck(x) =
1

2
x⊤Ckx+ ck · x+ χk, 1 ≤ k ≤ M (2.44)

C(x) =
M∑
k=1

αkCk(x) (2.45)

More precisely our goal now is to find the matrices K, V Ck, ck, v and the scalars χk

for 1 ≤ k ≤ M .
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It is clear that we can set

K = ρηW (2.46)

2.5.1 Computing V and v

Since x′′ = D2 − 6A−1z we can write,

V(x) = 1

2
ϵη
[
(x⊤D⊤

2 − 6z⊤(A⊤)−1)(WD2 − 6WA−1z)
]

=
1

2
ϵη
[
x⊤D⊤

2 WD⊤
2 x− 12z⊤(A⊤)−1WD⊤

2 x+ constant terms
]

(2.47)

=
1

2
x⊤D⊤

2 (ϵηW)D2x− 6z⊤(A⊤)−1(ϵηW)D⊤
2 x+ constant terms (2.48)

Thus, we can now set

V = D⊤
2 (ϵηW)D2 (2.49)

v = −6ϵη(D2WA−1)⊤ (2.50)

Remark. In here we used the elementary fact that (A−1)⊤ = (A⊤)−1.

2.5.2 Computing Ck, ck and χk

From (2.41) we can write

C(x) = 1

2
η(D1 + 3CA−1z)⊤WΓ(D1 + 3CA−1z)−

M∑
k=1

wk
1
2
αk (2.51)

where Γ is a diagonal matrix whose diagonal elements are α1, α2, · · ·αM . i.e.,

Γ = diag(α1, α2, · · ·αM)
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Now denote by WΓ := WΓ. Clearly WΓ is a diagonal matrix such that

WΓ = diag(1
2
α1, α2, · · · , αM−1,

1
2
αM).

We can now re-write (2.51) as follows:

C(x) = 1

2
η
[
x⊤D⊤

1 WΓD1x+ 3x⊤D⊤
1 WΓCA

−1z+ 3z⊤(A⊤)−1C⊤WΓD1x
]

(2.52)

+
9η

2
(CA−1z)⊤WΓ(CA

−1z)−
M∑
k=1

wk
1
2
αk (2.53)

=
1

2
x⊤(D⊤

1 (ηWΓ)D1)x+ 3(CA−1z)⊤(ηWΓ)D1x (2.54)

+
9

2
(CA−1z)⊤(ηWΓ)(CA

−1z)−
M∑
k=1

wk
1
2
αk (2.55)

Notice that we can write

D1(ηWΓ)D1

= ηD⊤
1

[
diag(1

2
α1, 0, · · · , 0) + diag(0, α2, 0, · · · , 0) + · · ·+ diag(0, 0, · · · , 0, 1

2
αM)

]
D1

= ηD⊤
1

(
M∑
k=1

αkWΓk

)
D1 (2.56)

where WΓk
is a series of diagonal matrices whose precise definition is as follows.

WΓk
=


diag(1

2
, 0, 0, · · · , 0) for k = 1

diag(0, 0, · · · , 0, 1, 0, · · · , 0) for 1 < k < M,

diag(0, 0, · · · , 0, 1
2
) for k = M.

Remark. In here the diagonal matrix for the case 1 < k < M is one that has a 1 in
17



its kth position and zeros everywhere else.

We can similarly show that

3(CA−1z)⊤(ηWΓ)D1 = 3η(CA−1z)⊤

(
M∑
k=1

αkWΓk

)
D1 (2.57)

and

9

2
(CA−1z)⊤(ηWΓ)(CA

−1z) =
9η

2
(CA−1z)⊤

(
M∑
k=1

αkWΓk

)
CA−1z (2.58)

Thus, we can now set

Ck = ηD⊤
1 WΓk

D1, (2.59)

ck = 3η(CA−1z)⊤WΓk
D1, (2.60)

χk =
9

2
η(CA−1z)⊤WΓk

(CA−1z)− 1

2
wk, (2.61)

for 1 ≤ k ≤ M . Note that we are now able to write C(x) in the intended summation

form as follows:

C(x) =
M∑
k=1

αk Ck(x) (2.62)

where

Ck(x) =
1

2
x⊤Ckx+ ck · x+ χk for 1 ≤ k ≤ M. (2.63)
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2.6 System of equations and the associated Jaco-

bian

In light of the previous computations we can now write the equations of motion in a

manner that is suitable for computer simulation. Indeed,

K

(
xn+1 − 2xn + xn−1

h2

)
+ 1

2
V(xn+1 + xn−1) + v

+
M∑
k=1

αk

[
1
2
Ck(xn+1 + xn−1) + ck

]
+ G

(
xn+1 − xn−1

2h

)
= 0 (2.64)

1

2
x⊤
n+1Ckxn+1 + c⊤k xn+1 + χk = 0 for 1 ≤ k ≤ M (2.65)

Let us also discuss here the initial conditions. These are normally specified by as-

suming we know x = F and ẋ = G at t = 0 where F and G are given. To guarantee

the method is still order 2 in time the discrete version of these conditions are

x0 = F (2.66)

x1 − x−1 = 2hG (2.67)

Our goal here is to solve for xn+1 the system of equations in (2.64) and (2.65). It is

clear that x0 is immediately known because of (2.66). To find x1 we can substitute

(2.67) in (2.64) and (2.65) with n = 0. To find xn+1 for n = 1, 2, · · · we can use an

iterative algorithm which uses the previous known value for xn to solve for xn+1 at

each iterative step.

Note that at each step we are solving an non linear system of equations of order

2. To effectively use Python programming to carry out this computation we use the

Levenberg-Marquardt algorithm. To make the algorithm converge faster to solutions
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it is important for us to provide an analytical Jacobian rather than let the solver

numerically approximate the Jacobian at each iteration. The reason for this is that

the algorithm uses a least squares method to find the root of the system of equation

and it numerically approximates the Jacobian of at each call to the function. The

downside is that it will make thousands of such calls for computing a single root and

thus making it a computationally expensive process.

The way to make this algorithm more efficient we can instead provide the analyt-

ical Jacobian explicitly. Let J be the Jacobian of the system of equations in (2.64)

and (2.65). Let us denote by f(xn+1, α) = 0 the system of equations in (2.64) and

by g(xn+1, α) = 0 the system of equations in (2.65).Then J is a block matrix of the

form

J =


∂f

∂xn+1

∂f
∂α

∂g
∂xn+1

∂g
∂α


(2.68)

where,

∂f

∂xn+1

=
1

h2
K+

1

2
V +

M∑
k=1

1
2
αkCk +

1

2h
G (2.69)

∂f

∂α
=
[
1
2
Ck(xn+1 + xn−1) + ck

]
1≤k≤M

(2.70)
∂g

∂xn+1

=
[
x⊤
n+1Ck + c⊤k

]
1≤k≤M

(2.71)

∂g

∂α
= 0 (2.72)

It is helpful for computational purposes to explicitly state the dimensions of these

matrix blocks. We have,

• ∂f

∂xn+1

is an 3(N + 1)× 3(N + 1) matrix
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• ∂f

∂α
is an 3(N + 1)× (N + 1) matrix

• ∂g

∂xn+1

is an (N + 1)× 3(N + 1) matrix

• ∂g

∂α
is an (N + 1)× (N + 1) zero matrix

which results in J being a 4(N + 1)× 4(N + 1) matrix as expected.

The complete software re-implementation of this problem written in Python 3 can

be found on the following site. https://github.com/dilanfd/dynamics-of-springs
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Chapter 3

Springs with torsion

3.1 Preliminaries

Beginning this chapter we discuss the dynamic Kirchhoff problem, that is, the be-

havior of general springs that have a natural curvature, and for which the equations

take into account the (mechanical) torsion of the rod. It turns out that the major

contributor to the potential energy stored in the spring is as a result of torsion and

not the side to side twisting of the spring as one might expect. Our goal is to build an

efficient and robust numerical scheme and consequently implement the said scheme

using the computer programming language Python 3.

A complete mathematical description of the Kirchhoff problem can be found in

the work of Love [43]. This work however was done much earlier than when computers

were even invented and so the problem of numerical modeling of such behavior has

not been addressed.

Thomson (the brother of Lord Kelvin) [75] also looked specifically at helical springs

and established geometric relationships between the various spring parameters such

as pitch angle, static load, coil curvature and the radius of the spring helix. Many

later works that model spring behavior [6, 13, 16, 19, 37–39, 57, 63, 73, 77, 78] make
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simplifying assumptions. For example, they usually assume that the springs are in a

helical shape with constant pitch angle and radius of the spring helix and they only

model their static behavior.

3.2 The transported natural curvature and the nat-

ural frame.

The key to the Kirchhoff problem is to find a way to describe the natural curvature

of the dynamic spring.

Let us assume that the equation describing the spring is given by function

x(s) : [0, L] → R3

where,

x(s) = [x1(s), x2(s), x3(s)]
T (3.1)

and L is the arc length of the spring and s is the arc length of the spring along the

rod. Hence the function x(s) satisfies the equation

|x′(s)|2 = x′
1(s)

2 + x′
2(s)

2 + x′
3(s)

2 = 1 (3.2)

In here the prime denotes derivative with respect to the arc length. Note that we

have suppressed the time dependence of the equation. For now we may assume that

the function x is for a fixed time. We will use the usual convention of denoting the

derivative with respect to time by putting a dot over the variable.

We define the curvature of the spring to be the vector x′′(s).

Remark. The traditional definition for the curvature κ of a space curve is defined
24



as

κ =

∣∣∣∣dTds
∣∣∣∣

where Tis the unit tangent vector given by

T =
x′(s)

|x′(s)|
.

By (3.2), we have κ = |x′′(s)|.

The above remark shows that it makes sense for us to define curvature the way

we have defined it. By (3.2) again we have x′(s) · x′(s) = 1. Taking derivatives with

respect to s of this equation gives us x′(s) ·x′′(s) = 0. This shows that x′′(s) is always

perpendicular to the tangent vector x′(s).

When the spring is at rest, and has no forces applied to it, we will denote this

state of the spring x as x0 the path of the spring. (This does not necessarily have

to be the path of the spring at time t = 0). We call the function x′′
0(s) the natural

curvature. Then we try to determine part of the difference in potential energy by

seeing how much x′′(s) differs from x′′
0(s). However we cannot actually compute this

difference because x(s) and x0(s) are at different points.

Thus, in order to have a point of comparison define the concept of transported

natural curvature. Suppose the spring is at rest state and attach to each point on the

spring the curvature vector x′′
0(s).
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Figure 3.1: The natural curvature shown on a spiral spring

This is illustrated in Figure 3.1. We then stretch out the spring until is completely

straight and we do so without introducing any internal twisting or torsion to the rod.

Note that is only a mathematical idealization. In reality such a maneuver will add

internal twisting to the spring.

Figure 3.2: Corresponding natural curvature

We then obtain what is illustrated in Figure 3.2. The curvature vectors we pre-

viously attached to the spring now moves with the points on the spring but they

remain perpendicular to the now straight rod. Let us assume that the point x0(s) is
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transported to the point [s, 0, 0]T , i.e., the spring is stretched out along the positive

x–axis.

Notation. Let κ(s) denote the transported natural curvature at [s, 0, 0].

Observe that only the second and third coordinates of κ(s) are non zero. This is

because for each transported natural curvature vector must have tail coordinates of

the form (s, 0, 0) and its head must have coordinates of the form (s, ys, zs) and so the

direction vector must be of the form [0, ys, zs]. To carry out the straightening of the

rod we introduce the our next subject.

3.3 Natural Frames

A frame is a triple of vectors R = [r1, r2, r3] that are orthonormal. By definition it

follows that the square matrix R is such that RRT = I3 where I3 denotes the 3 × 3

identity matrix. In other words the matrix R is orthogonal and in particular R−1 = RT .

We now introduce the concept of a natural frame. Pick any frame R0(s) attached

to the point x0(s). Suppose now, that we move tangent to the spring to the point

x0(s)with minimal amount of rotation necessary. Denote by R0(s) the frame that’s

been carried to the point x0(s). Once we have chosen R0(0), the frame R0(s) is

uniquely determined. Indeed, for the sake of convenience let us agree that we chose

R0(0) as follows:

R0(0) =


| | |

x′
0(0) m2 m3

| | |


In particular the first column of R0(0) is chosen to be x′

0(0) whereas m2 and m3 are

chosen arbitrarily so long as they adhere to the obvious restriction that R0(0) be a

frame (i.e., orthogonal). A picture of how a natural frame evolves along the frame is

shown in Figure 3.3.
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Figure 3.3: A natural frame moving along a curve

Each column of the natural frame R0(s) can now be computed by solving for r(s)

the differential equation

r′(s) = (x′
0(s)× x′′

0(s))× r(s) (3.3)

where r(s) denotes an element(column) of R0(s). We are of course, using each respec-

tive column of R0(0) as an initial condition in the solution of ((3.3)).

Note that x′(s) is a solution of (3.3). Indeed, if we set r(s) = x′
0(s) on the right

hand side of (3.3) we get,

x′′
0(s) (x

′
0(s) · x′

0(s))− x′
0(s) (x

′
0(s) · x′′

0(s))

= x′′
0(s) (1)− x′

0(s) (0)

= x′′(s)

which is precisely the left hand side of (3.3) with r(s) = x′(s). It is now clear that the

first element(column) of R0(s) will always be x′
0(s). This concept appears in literature

as the so called Fermi–Walker transport in General Relativity. [46].
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We can now write the equation for natural curvature as

κ(s) = R0(s)
−1x′′

0(s) = RT
0 x

′′
0(s) (3.4)

To describe the spring as it is undergoing motion, it is important not only to

decide where each point is, but also how it is oriented there. So we denote by R(s)

the frame consisting of three vectors in R0(s) transported from x0(s). Note that we

must have that the first element of R(s) be x′(s). We are now in a position to see how

the curvature of x and the curvature of x0 differ. We can compare them by using the

frames we have introduced. The difference we need to measure is

R−1x′′ − R−1
0 x′′

0 = R⊤x′′ − κ0.

In here we use the subscript 0 on κ to suggest that it is the natural curvature, the

curvature of the spring at point s at rest. (Note that the rest state does not necessarily

have to be at time t = 0).

For a general spring, the transported natural curvature can easily be computed

numerically. In fact, for a helical spring the transported natural curvature can even

be computed analytically. In the next section we show how this can be done.
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3.4 Helical springs

3.4.1 Notations and preliminaries

First let us introduce some useful notation. For any vector v ∈ R3, where v =

[v1, v2, v3]
T define the anti symmetric matrix

Ωv =


0 −v3 v2

v3 0 −v1

−v2 v1 0


Notice that for any v,w ∈ R3 we have

Ωvw = v ×w

We now prove a couple of useful lemmas.

Proposition 3. For s ∈ R, we have

exp (sΩi) =


1 0 0

0 cos(s) − sin(s)

0 sin(s) cos(s)


where i = [1, 0, 0]T .

Proof. Note that

sΩi =


0 0 0

0 0 −s

0 s 0


Denote M = sΩi and let I denote the 3 × 3 identity matrix. Now note that

M3 = −s2M . Therefore we must have that M2n+1 = (−1)ns2nM and M2n =
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(−1)n−1s2n−2M2 for n ∈ N. Therefore,

exp(M) = I +
∞∑
k=1

Mk

k!

= I +
∞∑
n=0

M2n+1

(2n+ 1)!
+

∞∑
n=1

M2n

(2n)!

= I +
∞∑
n=0

(−1)ns2nM

(2n+ 1)!
+

∞∑
n=1

(−1)n−1s2n−2M2

(2n)!

= I +
M

s

∞∑
n=0

(−1)ns2n+1

(2n+ 1)!
− M2

s2

∞∑
n=1

(−1)ns2n

(2n)!

= I +
sin(s)

s
M +

1− cos(s)

s2
M2

= I + sin(s)Ωi +
1− cos(s)

s2
M2

It now easily follows that exp(sΩi) has the intended matrix form.

Notation. Let SO(3) denote the special orthogonal group of order 3.

Proposition 4. For any r ∈ SO(3) and for i = [1, 0, 0]T we must have

rΩir
−1 = Ωri (3.5)

Proof. The canonical form for any r ∈ SO(3) is

r =


1 0 0

0 p t

0 q u


Also note that since r ∈ SO(3) we have r−1 = rT and det(r) = 1. In particular
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pu− qt = 1. Thus,

rΩir
−1 =


0 0 0

0 0 −pu+ tq

0 −qt+ pu 0



=


0 0 0

0 0 −1

0 1 0


= Ωri

3.4.2 Analytical calculation of transported natural curvature

for a helical spring

Suppose that a helical spring is given by

x0(s) = [αs, β cos(γs), β sin(γs)]T (3.6)

where α2 + β2γ2 = 1. Clearly

x′
0(s) = [α,−γβ sin(γs), γβ cos(γs))] (3.7)

and

x′′
0(s) = [0,−γ2β cos(γs),−γ2β sin(γs)]. (3.8)
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Then,

x′
0(s)× x′′

0(s) = ⟨β2γ3, αβγ2 sin(γs),−αβγ2 cos(γs)⟩

= γi− αγx′
0(s)

= γi− µx′
0(s) (3.9)

where µ = αγ.

For the sake of convenience let us recast (3.3) as a matrix valued differential

equation in the obvious way as follows.

r′0(s) = Ωvr0(s) (3.10)

where v = x′
0(s)× x′′

0(s) and r0(0) = R0(0). Note that,

Ωx′
0(s)×x′′

0 (s)
=


0 αβγ2 cos(γs) αβγ2 sin(γs)

−αβγ2 cos(γs) 0 −β2γ3

−αβγ2 sin(γs) β2γ3 0

 . (3.11)

In light of (3.9), we claim the following.

Proposition 5. The solution to the matrix valued differential equation in (3.10) is

given by

r0(s) = exp(γsΩi)r0(0) exp(−µsΩi) (3.12)

Proof. By definition r0 ∈ SO(3). Taking derivatives with respect to s in (3.12) we
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get,

r′0 = γΩi exp(γsΩi)r0(0) exp(−µsΩi)

− µ exp(γsΩi)r0(0) exp(−µsΩi)Ωi (3.13)

= γΩir0 − µr0Ωi (3.14)

r′0r
−1
0 = γΩi − µ

(
r0Ωir

−1
0

)
(3.15)

= γΩi − µΩr0i (3.16)

Note that r0(s)i is the first column of r0(s) and we know that the first column of r0(s)

must be x′
0(s). Thus, r0(s)i = x′

0(s). It now follows from (3.16) that

r′0r
−1
0 = γ


0 0 0

0 0 −1

0 1 0

− µ


0 −βγ cos(γs) −βγ sin(γs)

βγ cos(γs) 0 −α

βγ sin(γs) α 0



=


0 αβγ2 cos(γs) αβγ2 sin(γs)

−αβγ2 cos(γs) 0 α2γ − γ

−αβγ2 sin(γs) γ − α2γ 0



=


0 αβγ2 cos(γs) αβγ2 sin(γs)

−αβγ2 cos(γs) 0 −β2γ3

−αβγ2 sin(γs) β2γ3 0


= Ωx′

0(s)×x′′
0 (s)

It is now clear that (3.12) is a solution of (3.10).

Proposition 6. The transported natural curvature denoted by κ(s) for the helical
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spring given in (3.6) is given by

κ(s) =
∣∣βγ2

∣∣


0

cos(αγ(s− s0))

sin(αγ(s− s0))

 (3.17)

where s0 depends on the choice of the second and third elements (columns) of R0(0).

Proof. Let us choose r0(0) the following way. First column is x′
0(0), second column

is x′′
0 (0)

|x′′
0 (0)|

and its third column is some arbitrary vector m3. (Actually m3 is not

completely arbitrary we still need to chose it in such a way that r0(0) ∈ SO(3)). Since

κ(0) = r0(0)
Tx′′

0(0) and noticing that x′′
0(0) is a column vector we get,

κ(0) =


x′
0(0) · x′′

0(0)

x′′
0 (0)

|x′′
0 (0)|

· x′′
0(0)

m3 · x′′
0(0)



=


0

|x′′
0(0)|

m3 · x′′
0(0)

 (3.18)

Notice that x′′
0(0) = [0,−γ2β, 0] and so |x′′

0(0)| = |γ2β|. Also notice that m3 ·x′′
0(0) =

m2(−γ2β) where m2 is the j component of vector m3. Since r0(0) is anti–symmetric

we must have that −m2 is equal to the k component of the 2nd row of r0(0) which is

incidentally zero in this case. i.e., m2 = 0. Thus,

κ(0) =


0

|γ2β|

0

 (3.19)

We can now write r0(s)
T = exp(µsΩi)r0(0)

T exp(−γsΩi). Also by explicit computa-
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tion we see that exp(−γsΩi)x
′′
0(s) = x′′

0(0). Thus,

κ(s) = exp(µsΩi)r0(0)
T exp(−γsΩi)x

′′
0(s) (3.20)

= exp(µsΩi)r0(0)
Tx′′

0(0) (3.21)

= exp(µsΩi)κ(0) (3.22)

= exp(µsΩi)


0

|γ2β|

0

 (3.23)

=
∣∣γ2β

∣∣


0

cos(αγs)

sin(αγs)

 (3.24)
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Chapter 4

Dynamic equations of a spring

4.1 Introducing the variables

A spring is described by the two quantities

x(s) and R(s) (4.1)

where s ∈ [0, L] is arc length. Here x ∈ R3 described the curve in 3D space, and R(s)

is the rotation matrix we have introduced earlier. By the manner in which we have

defined the R(s) matrix we know that R(s) ∈ SO(3) and in particular x and R are

related by

x′ = R i (4.2)

Let u = [u1, u2, u3] ∈ R3 and a matrix M ∈ M3×3(R) with columns [m1,m2,m3].
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Definition 1. Define their cross product as follows

u×M := [u×1,u×2,u×3] =


0 −u3 u2

u3 0 −u1

−u2 u1 0

M (4.3)

Since R ∈ SO(3) we have that there exists vectors Ω and T such that

Ṙ = Ω×R (4.4)

R′ = T×R (4.5)

Differentiating (4.2) with respect to time t and arc length s respectively and using

(4.4) and (4.5) we get

ẋ′ = Ω× x′ (4.6)

x′′ = T× x′ (4.7)

Set

ω := Ω · x′ (4.8)

τ := T · x′ (4.9)

We refer to ω as the angular velocity of that piece of spring and τ as the torsion of
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that piece of string.1 By (4.6) and using its cross product with x′ we have,

x′ × ẋ′ = x′ × (Ω× x′)

= Ω(x′ · x′)− x′(x′ ·Ω)

and thus,

Ω = ωx′ + x′ × ẋ′ (4.10)

Similarly taking the cross product of (4.7) with x′ we can show that

T = τx′ + x′ × x′′ (4.11)

Since there is no torsion in the spring at rest, we have the formula

R′
0 = (x′

0 × x′′
0)×R0. (4.12)

Definition 2. Define the transported rest curvature κ to be

κ = RR−1
0 x′′

0. (4.13)

Proposition 7. For all vectors u, v and any invertible matrix R we have,

u×R = v ×R if and only if u = v (4.14)

Proof. Indeed if u × R = v × R then, [u]R = [v]R where [u], [v] are the skew

symmetric matrices associated with u and v as defined in (4.3). Since R is invertible
1Note that this is not the same traditional definition of torsion given in terms of the Frenet–Serret

frame
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it now follows that [u] = [v]. Consequently, u = v since there is a clear one–to–one

identification with the vector u and its associated skew symmetric matrix [u]. The

converse implication is trivial.

Lemma 8. The following identities hold.

Ṫ = Ω′ +Ω×T (4.15)

τ̇ = ω′ + (x′′ × ẋ′) · x′ (4.16)

Proof. Using the fact that ∂
∂t
R′ = ∂

∂s
Ṙ and using (4.4) and (4.5) we have the following

set of equalities.

Ṫ×R + T × (Ω×R) = Ω′ ×R +Ω× (T×R)

Ω× (T×R)−T× (Ω×R) = (Ṫ×R)− (Ω′ ×R)

T(Ω ·R)−R(Ω · T )−Ω(T ·R) +R(T · Ω) = (Ṫ×R)− (Ω′ ×R) (4.17)

T(Ω ·R)−Ω(T ·R) = (Ṫ×R)− (Ω′ ×R)

(Ω× T )×R = (Ṫ×R)− (Ω′ ×R) (4.18)

Thus,

Ṫ×R = (Ω′ ×R) + (Ω×R)×R. (4.19)

Applying proposition (7) we get

Ṫ = Ω′ +Ω×T. (4.20)

On (4.17) and (4.18) we used the Lagrange’s formula for vector triple products. To
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show (4.16) we proceed with the following set of qualities.

τ̇ − ω′ =
∂

∂t
(T · x′)− ∂

∂s
(Ω · x′)

= Ṫ · x′ +T · ẋ′ −Ω′ · x′ −Ω · x′′

= (Ω′ +Ω×T) · x′ +T · ẋ′ −Ω′ · x′ −Ω · x′′

= (Ω×T) · x′ +T · ẋ′ −Ω · x′′ (4.21)

Note that we have x′ ·x′ = 1. Taking derivatives of this equation with respect to time

t we get x′ · ẋ′ = 0 and taking derivatives with respect to s we get x′ · x′′ = 0. Thus,

T · ẋ′ −Ω · x′′ = (τx′ + x′ × x′′) · ẋ′ − (ωx′ + x′ × ẋ′) · x′′

= (x′ × x′′) · ẋ′ − (x′ × ẋ′) · x′′

= x′ · (x′′ × ẋ′)− x′ · (ẋ′ × x′′)

= x′ · (x′′ × ẋ′) + x′ · (x′′ × ẋ′)

= 2x′ · (x′′ × ẋ′) (4.22)

We also have

(Ω×T) · x′ = (x′ × ẋ′)× (x′ × x′′) · x′

= (x′ × ẋ′) · (x′ × x′′)× x′

= (x′ × ẋ′) · [x′′(x′ · x′)− x′(x′ · x′′)]

= (x′ × ẋ′) · x′′ (4.23)
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Collecting the results in (4.21), (4.22) and (4.23) we get

τ̇ − ω′ = (x′ × ẋ′) · x′′ + 2x′ · (x′′ × ẋ′)

= −x′ · (x′′ × ẋ′) + 2x′ · (x′′ × ẋ′)

= x′ · (x′′ × ẋ′)

= (x′′ × ẋ′) · x′. (4.24)
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Chapter 5

Solving a constrained ODE

5.1 Notation

For any matrix a define ω(a) to be the vector

ω(a) = [a23 − a32, a31 − a13, a12 − a21]
T (5.1)

Now notice that v · ω(a) = trace(aΩv). Given two vectors u = [u1, u2, u3] and v =

[v1, v2, v3],we denote by u⊗ v the matrix

(u⊗ v)ij = uivj (5.2)

It now follows that (u⊗ v)w = (u · v)w.

5.2 The space discretization

We approximate the path of the spring by a cubic spline. (This is the same method

that was employed in [52]). Pick some positive integer N and set the space mesh size
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η = L/N . We then define,

xj = x(ηj), for 0 ≤ j ≤ N (5.3)

and suppose that x(s) is a cubic spline passing through these points. In other words

x(s) is piecewise cubic function for jη ≤ s ≤ (j + 1)η for 0 ≤ j ≤ N . Moreover

the cubic spline has a continuous second derivative. Consider the following types of

boundary conditions.

x(0) and x′(0) are known functions of t; or (5.4)

x(0) is a known function t and (5.5)

x′(0) is not a known function of t; or

neither x(0) nor x′(0) are known functions of t (5.6)

and

x(L) and x′(L) are known functions of t; or (5.7)

x(L) is a known function t and (5.8)

x′(L) is not a known function of t; or

neither x(L) nor x′(L) are known functions of t. (5.9)
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Denote the first and second derivatives of the spline

x′
j = x′(ηj), x′′

j = x′′
j (ηj), for 0 ≤ j ≤ N. (5.10)

It can be shown that these derivatives can be computed using the following tridiagonal

matrices. See, for example [10].

A =



A0,0 A0,1 0 0 · · · 0 0

η 4η η 0 · · · 0 0

0 η 4η η · · · 0 0

0 0 η 4η · · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · 4η η

0 0 0 0 · · · AN,N−1 AN,N



(5.11)

where,

A0,0 = 2η, A0,1 = η if boundary conditions in (5.4) holds (5.12)

A0,0 = 1, A0,1 = 0 if boundary conditions in (5.5) or (5.6) holds (5.13)

AN,N = η, AN,N = 2η if boundary conditions in (5.7) holds (5.14)

AN,N−1 = 0, AN,N = 1 if boundary conditions in (5.8) or (5.9) holds. (5.15)
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U =
1

η



U0,0 U0,1 0 0 · · · 0 0

3 −6 3 0 · · · 0 0

0 3 −6 3 · · · 0 0

0 0 3 −6 · · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · −6 3

0 0 0 0 · · · UN,N−1 UN,N



(5.16)

U0,0 = −3, U0,1 = 3 if boundary conditions in (5.4) holds (5.17)

U0,0 = 0, U0,1 = 0 if boundary conditions in (5.5) or (5.6) holds (5.18)

UN,N = 3, UN,N = −3 if boundary conditions in (5.7) holds (5.19)

UN,N−1 = 0, UN,N = 0 if boundary conditions in (5.8) or (5.9) holds. (5.20)

B =
1

η



−1 1 0 0 · · · 0 0

0 −1 1 0 · · · 0 0

0 0 −1 1 · · · 0 0

0 0 0 −1 · · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · −1 1

0 0 0 0 · · · −1 1



(5.21)
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C =
η

3



2 1 0 0 · · · 0 0

0 2 1 0 · · · 0 0

0 0 2 1 · · · 0 0

0 0 0 2 · · · 0 0

... ... ... ... . . . ... ...

0 0 0 0 · · · 2 1

0 0 0 0 · · · −1 −2



(5.22)

From this point forward we use x,x′ and x′′ to denote either the functions [0, L], or

the vectors

x = [x0,x1, · · · ,xN ]
⊤, (5.23)

x′ = [x′
0,x

′
1, · · · ,x′

N ]
⊤, (5.24)

x′′ = [x′′
0,x

′′
1, · · · ,x′′

N ]
⊤. (5.25)

In particular, we can computer the derivatives x′ and x′′ using

x′′ = D2x (5.26)

x′ = D1x (5.27)

where,

D2 = 2A−1U, (5.28)

D1 = B− CA−1U. (5.29)

If x ∈ Rn+1 then denote

x′ = D1x, x′′ = D2x, x† = −D†
1x, x†† = D†

2x (5.30)
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with boundary conditions second derivatives equal to zero.

Definition 3. Let s = (sj)0≤j≤N be a sequence of 3× 2 matrices satisfying sTj sj = i2.

Let η be the unit step in space discretization. Now define the sequence of scalars

τ = (τj)1≤j≤N by

τj j =
(sj−1 + sj)

T

2

(sj − sj−1)

η
=

sTj−1sj − sTj sj−1

2η
(5.31)

where

j =

0 −1

1 0

 (5.32)

and i2 denoting the 2× 2 identity matrix.

In functional terms (5.31) it may be written as

τ j = sT s′. (5.33)

Definition 4. Let

fj(τ, s) = −1

η
(τj+1sj+1 − τjsj−1) (5.34)

for 1 ≤ j ≤ N − 1. Let

f0(τ, s) = −1

η
τ1s1 (5.35)

and let

fN(τ, s) =
1

η
τN sN−1 (5.36)

In functional terms this would be.

f(τ, s) = −τs′ − (τs)′. (5.37)
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In light of these definitions we have the following.

Theorem 9. For any function/sequence τ1 we have,

∫ L

0

2τ1δτds =

∫ L

0

trace
(
f(τ1, s)jδs

⊤) ds (5.38)

and consequently

δ

∫ L

0

τ 2ds =

∫ L

0

trace
(
f(τ, s)jδs⊤

)
ds. (5.39)

Proof. Let I =
∫ L

0
trace

(
f(τ1, s)jδs

⊤) ds. Then,

I =

∫ L

0

trace
(
(−τ1s

′ − (τ1s)
′)j(δs)⊤

)
ds

=

∫ L

0

trace
(
−τ1s

′j(δs)⊤ + τ1sj((δs)
⊤)′
)
ds

=

∫ L

0

trace
(
−τ1s

′j(δs)⊤ + τ1(δs)
′j⊤s⊤

)
ds

=

∫ L

0

trace
(
−τ1s

′j(δs)⊤ − τ1(δs)
′js⊤
)
ds

=

∫ L

0

trace
(
−τ1δ

(
s′js⊤

))
ds

=

∫ L

0

trace
(
−τ1δ(s

⊤s′j)
)
ds

=

∫ L

0

trace (−τ1δ(−τ i2)) ds

=

∫ L

0

2τ1δ(τ)ds

The equality in (5.39) is now immediate since δ(τ 2) = 2τδ(τ).

We can now prove the discrete version of the above theorem.

Theorem 10. Let τ1 = (τj)0≤j≤N+1 be a sequence of values such that τ0 = τN+1 = 0

and (τ1,j)1≤j≤N is a sequence that satisfies (5.31). Consider the space discretization
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given by

τ = τj (5.40)

s⊤ =
(sj−1 + sj)

⊤

2
(5.41)

s′ =
sj − sj−1

η
(5.42)

(τs)′ =
τj+1sj+1 − τjsj

η
(5.43)

then, definition for fj as given in (5.34) may be rewritten in the equivalent form as,

fj(τ, s) = −
[
τj

(
sj − sj−1

η

)
+

(
τj+1sj+1 − τjsj

η

)]
(5.44)

and consequently,
N∑
j=0

2τjδ(τj) =
N∑
j=0

trace
[
fj(τ, s)j(δsj)

⊤] (5.45)

Proof. Let us denote the right hand side of (5.45) as RHS. Then,

RHS =
1

η

N∑
j=0

trace
[
−τj(sj − sj−1)jδ(sj)

⊤ − (τj+1sj+1 − τjsj)j(δsj)
⊤] (5.46)

=
1

η

N∑
j=0

trace
[
−τj(sj − sj−1)j(δsj)

⊤ + τjsj j(δsj − δsj−1)
⊤] (5.47)

=
1

η

N∑
j=0

trace
[
−τj(sj − sj−1)j(δsj)

⊤ − τj(δsj − δsj−1)js
⊤
j

]
(5.48)

=
1

η

N∑
j=0

trace
[
−τjδ

(
(sj − sj−1)js

⊤
j

)]
(5.49)
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We will now discretize s⊤j as (sj + sj−1)
⊤/2. Then,

RHS =
N∑
j=0

trace

[
−τjδ

(
(sj − sj−1)

η
j
(sj + sj−1)

⊤

2

)]
(5.50)

=
N∑
j=0

trace

[
−τjδ

(
(sj + sj−1)

⊤

2
j
(sj − sj−1)

η

)]
(5.51)

=
N∑
j=0

trace
[
−τjδ(τj j

2)
]

(5.52)

=
N∑
j=0

trace [−τjδ(−τj i2)] (5.53)

=
N∑
j=0

2τjδτj (5.54)

Note that on (5.47) we are using summation by parts. On (5.49) we are using the

fact that δ satisfies the Leibniz rule. Indeed this will be true if we used the following

time discretization:

a =
an+1 + an−1

2
(5.55)

δ(a) =
an+1 − an−1

2h
(5.56)

δ(ab) =
an+1bn+1 − an−1bn−1

2h
(5.57)

where h stands for the unit time step and n stands for the nth time. Under this

discretization it is also immediate that δ(τ 2) = 2τδτ also holds. Consequently the

discrete version of (5.39), namely

δ

(
N∑
j=0

τ 2j

)
=

N∑
j=0

trace
[
fj(τ, s)jδ(sj)

⊤] (5.58)

also holds true.

51



Proposition 11. For any sequence/function of matrices t

∫ L

0

trace
(
f(τ, s)jt⊤

)
dt =

∫ L

0

trace
(
f(τ, t)js⊤

)
dt (5.59)

Proof. Let J =
∫ L

0
trace

(
f(τ, s)jt⊤

)
ds. Then,

J =

∫ L

0

trace
(
(−τs′ − (τs)′) jt⊤

)
ds

=

∫ L

0

trace
(
−τs′jt⊤ − (τs)′jt⊤

)
ds

=

∫ L

0

trace
(
−τs′jt⊤ + (τs)j(t′)⊤

)
ds

=

∫ L

0

trace
(
−s′j(τ t)⊤ + τ t′j⊤s⊤

)
ds

=

∫ L

0

trace
(
sj(τ t⊤)′ − τ t′js⊤

)
ds

=

∫ L

0

trace
(
sj(τ ′t⊤ + τ(t′)⊤)− τ t′js⊤

)
ds

=

∫ L

0

trace
(
τ(sj(t′)⊤) + τ ′sjt⊤ − τ t′js⊤

)
ds

=

∫ L

0

trace
(
τ t′j⊤s⊤ + τ ′tj⊤s⊤ − τ t′js⊤

)
ds

=

∫ L

0

trace
(
−τ t′js⊤ − τ ′tjs⊤ − τ t′js⊤

)
ds

=

∫ L

0

trace
(
−τ t′ − (τ ′t+ τ t′)js⊤

)
ds

=

∫ L

0

trace (−τ t′ − (τ t)′) js⊤ds

=

∫ L

0

trace
(
f(τ, t)js⊤

)
ds
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5.3 The transported rest curvature

Suppose the spring at rest is described by the curve x0(s) for 0 ≤ s ≤ L. We calculate

r0(s) of orthogonal matrices by solving the equation

r0(0)i = x′(0) (5.60)

r′0 = Ωx′×x′′r0 (5.61)

Notice that (5.60) specifies that the first column of r0 must be x′
0(0). Notice also

that r0(0)j and r0(0)k are not specified. The only other constraint being that r0(0) is

orthogonal. Further notice that

r0i = x′
0 (5.62)

The transported rest curvature is the vector defined by

κ0 = r−1
0 x′′

0 (5.63)

Notice that κ0 ∈ R3 and that the first component of κ0 is always zero since x′′ ·x′ = 0

and r−1
0 x′

0 = i. Therefore we may consider κ0 ∈ R2 to be a two–dimensional vector

lying in the yz-plane.

Remark. Notice that the sub-index 0 in κ0 denotes that it is the transported natural

curvature at time t = 0. In the following section we abuse notation and use the

sub-index κj to denote space discretization. We will make explicit mention of what is

meant by the sub–index in the appropriate context.
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5.4 Energies and Constraints

We are solving for the curves x(s) of 3-dimensional and r of orthogonal matrices.

Since ri = x′, we write s as the 3 × 2 matrix consisting of the second and third

columns of r. The first column of r is determined by x′. The kinetic energy is

K.E. =
1

2

∫ L

0

ρ|ẋ|2ds (5.64)

The space discretization is

K.E =
1

2

(
1

2
ρ|ẋ0|2 +

N−1∑
j=1

ρ|ẋj|2 +
1

2
ρ|ẋN |2

)
η (5.65)

and the potential energy is

P.E. =
1

2

∫ L

0

(
σ1

∣∣sTx′′ − κ
∣∣2 + 2σ2τ

2
)
ds. (5.66)

The discretization of the potential energy is

P.E. =
η

2

(
1

2
σ1

∣∣sT0 x′′
0 − κ0

∣∣2 + N−1∑
j=1

σ1

∣∣sTj x′′
j − κj

∣∣2 + 1

2
σ1

∣∣sTNx′′
N − κN

∣∣2 + N∑
j=1

2σ2τ
2
j

)
.

(5.67)

In here κj’s denote the space discretizations.

We propose the following boundary conditions and we will eventually show that

these suffice to guarantee equations of motion with a solution.
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Boundary Conditions 1. The proposed boundary conditions are

x(0) and x(L) are given (5.68)

x′′(0) = s(0)κ(0) (5.69)

x′′(L) = s(L)κ(L) (5.70)

τ = sT s′ = 0 at s = 0, L. (5.71)

The fact that r is orthogonal is captured by the constraints

sT s = i2, sTx′ = 0, |x′|2 = 1. (5.72)

Since sT s is symmetric by construction, this provides six constraints per point.

The Lagrange multipliers for these constraints are a symmetric 2×2 matrix valued

a(s) , a 2-vector valued function β(s) for 0 ≤ s ≤ L, a scalar valued function α(s),

and the additional term to the Lagrangian is

Constraint =
1

2

∫ L

0

(
trace(asT s) + 2β · sTx′ + α|x′|2

)
ds (5.73)

in discretized terms,

Constraint =
1

2

(
N∑
j=0

trace(ajs
T
j sj) + 2βj · sTj x′

j + αj

∣∣x′
j

∣∣2) η (5.74)

5.5 The differential equation.

We take the variation of the usual Lagrangian L = K.E− P.E + Constraint and then

apply Hamilton’s principle. Taking variation with respect to x will yield one system

of equations and taking variation with respect to s will yield another set of equations.

More precisely we have the following theorem.
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Theorem 12 (Equations of motion). Let the Lagrangian L be defined as

L = K.E− P.E + Constraint (5.75)

Taking variation of L with respect to x we get

ρẍ = −σ1(x
′′ − sκ)†† − (αx′)

† − (sβ)† (5.76)

and taking variation of L with respect to s gives

− σ1x
′′ ⊗ κ+ σ2f(τ, s)j− x′ ⊗ β − sa = 0. (5.77)

By adding damping to (5.76) we get,

ρẍ = −σ1(x
′′ − sκ)†† − (αx′)

† − (sβ)† − ν1 (ẋ
′′ − ṡκ)

†† (5.78)

Similarly adding a damping term to the right hand side of (5.77) we get,

− σ1x
′′ ⊗ κ+ σ2f(τ, s)j− x′ ⊗ β − sa = (ν1(ẋ

′′ − ṡκ)⊗ κ)− 1
2
ν2f(τ̇ , s)j (5.79)

Proof. Let δx(s, t) be a small perturbation that is zero at the time end points. i.e.,

δx(t = 0) = δx(t = T )
def
= 0 (5.80)
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The variation of the action L with respect to x is

δxL =

∫ T

t=0

∫ L

s=0

ρδẋ · ẋ dsdt−
∫ L

t=0

∫ L

s=0

σ1δx
′′ · (x′′ − sκ) dsdt (5.81)

+

∫ T

t=0

∫ L

s=0

δx′ · ∂

∂x′

(
β⊤s⊤x′) dsdt (5.82)

+

∫ T

t=0

∫ L

s=0

δx′ · (αx′) dsdt (5.83)

=: E1 − E2 + E3 + E4 (5.84)

Let us take a look at each of these terms one at a time. Note here that the variation

of the terms
∫ L

0
trace(as⊤s) ds and

∫ L

0
2σ2τ

2 ds with respect to x are zero because

they do not depend on x.

Interchanging the variable of integration and then using integration by parts (with

respect to time t) we have,

E1 =

∫ T

t=0

∫ L

s=0

ρδẋ · ẋ dsdt

=

∫ L

s=0

∫ T

t=0

ρδẋ · ẋ dtds

=

∫ L

s=0

∫ T

t=0

−ρδx · ẍ dtds +

∫ L

s=0

ρ [δx · ẋ]t=T
t=0 ds (5.85)

=

∫ T

t=0

∫ L

s=0

−ρδx · ẍ dsdt

The boundary term on (5.85) disappear because of (5.80).

For E2 we integrate by parts with respect to s twice to get

E2 =

∫ T

t=0

∫ T

s=0

σ1(x
′′ − sκ)†† · δx dsdt

+

∫ T

t=0

[(x′′ − sκ)δx′]
s=L
s=0 dt (5.86)

−
∫ T

t=0

[
(x′′ − sκ)†δx

]s=L

s=0
dt (5.87)
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The boundary terms on (5.86) disappear because in boundary condition (5.69)

and (5.70) we have chosen the boundary conditions to be x′′(0) = s(0)κ(0) and

x′′(L) = s(L)κ(L). Again from boundary conditions as stated above we have that

x(0) and x(L) are given. Consequently there is no variation at the end points. Thus,

δx(s = 0) = δx(s = L) = 0 and so the terms on (5.87) vanish.

Again for E3 we integrate by parts with respect to s to get

E3 =

∫ T

t=0

∫ L

s=0

−δx · (sβ)† dsdt+
∫ T

t=0

[δx · (sβ)]Ls=0 dt (5.88)

Once again our boundary condition stipulation that there is no variation at the end

points makes the boundary terms on (5.88) disappear. As for the last term E4 yet

again, the boundary conditions that there is no variation at the end points gives

E4 =

∫ T

t=0

∫ L

s=0

−δx · (αx′)† dsdt (5.89)

Consequently,

δxL =

∫ T

t=0

∫ L

s=0

−ρ δx · ẍ− σ1δx · (x′′ − sκ)†† − δx · (αx′)† − δx · (sβ)† dsdt (5.90)

Hamilton’s principle now gives (5.76) as desired.
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Let us now compute the variation of L with respect to s. We get,

δsL = −1

2

∫ T

t=0

∫ L

s=0

σ1
∂

∂s
[(x′′ − sκ) · (x′′ − sκ)] · δs dsdt

− δs

(∫ T

t=0

∫ L

s=0

σ2τ
2 dsdt

)
+

1

2

∫ T

t=0

∫ L

s=0

∂

∂s
trace(as⊤s) · δs dsdt

+

∫ T

t=0

∫ L

s=0

∂

∂s

(
β · s⊤x′) · δs dsdt

=: G1 +G2 +G3 +G4

We have,

(x′′ − sκ) · (x′′ − sκ) = x′′⊤x′′ − 2x′′⊤sκ+ κ⊤(s⊤s)κ

= x′′⊤x′′ − 2x′′⊤sκ+ κ⊤κ

It now follows that

∂

∂s
(x′′ − sκ) · (x′′ − sκ) = −2 (x′′ ⊗ κ)

Thus,

G1 =

∫ T

t=0

∫ L

s=0

σ1(x
′′ ⊗ κ) · δs dsdt

For G2 we proceed as follows. Note that by (5.33) we have τ j2 = s⊤s′j. But j2 = −i2
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and so trace(−τ i2) = trace(s⊤s′j). This shows that τ = −1
2
trace(s⊤s′j). Consequently,

−G2 =

∫ T

t=0

∫ L

s=0

σ1δs(τ
2) dsdt

=

∫ T

t=0

∫ L

s=0

∂

∂s

(
τ 2
)
· δs+ ∂

∂s′
(
τ 2
)
· δs′ dsdt

= −
∫ T

t=0

∫ L

s=0

τ
∂

∂s

(
trace(s⊤s′j)

)
· δs+ τ

∂

∂s′
(
trace(s⊤s′j)

)
· δs′ dsdt

= −
∫ T

t=0

∫ L

s=0

τs′j · δs+ τsj⊤ · δs′ dsdt

=

∫ T

t=0

∫ L

s=0

−τs′j · δs− (τs)′j · δs dsdt+
∫ T

t=0

[τsj · δs]s=L
s=0 (5.91)

=

∫ T

t=0

∫ L

s=0

(−τs′ − (τs)′)j · δs dsdt (5.92)

=

∫ T

t=0

∫ L

s=0

f(τ, s)j · δs dsdt

On (5.91) we used the fact that j⊤ = −j and integration by parts. On (5.92) we used

the boundary condition on (5.71).

Remark. The boundary condition in (5.71) states that s⊤s′ = 0 for s = 0 and s = L.

But then by definition τ j = s⊤s′ in which case we have that τ = 0 for s = 0 and s = L.

To compute G3 and G4 note that ∂
∂s

(
trace(as⊤s)

)
= sa and ∂

∂s
(β · s⊤x′) = x′ ⊗ β.

Thus,

G3 =

∫ T

t=0

∫ L

s=0

(sa)δs dsdt (5.93)

and

G4 =

∫ T

t=0

∫ L

s=0

(x′ ⊗ β)δs dsdt (5.94)
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Putting all of this together we get

δsL =

∫ T

t=0

∫ L

s=0

(−σ1x
′′ ⊗ κ+ σ2f(τ, s)j− x′ ⊗ β − sa)δs dsdt (5.95)

Now Hamilton’s principle gives (5.77) as desired.

To obtain the damping terms we use Rayleigh Dissipation Function as described

in [58, p. 23]. For our purposes the Rayleigh Dissipation Function R may be set up

as,

R = 1
2
ν1

∫ L

s=0

∣∣∣∣ ∂∂t(x′′ − sκ)

∣∣∣∣2 ds+ 1
2
ν2

∫ L

s=0

τ̇ 2 ds. (5.96)

Thus,

∂R

∂ẋ
=

1

2
ν1

∫ L

s=0

∂

∂ẋ

[
(ẋ′′)⊤ẋ′′ − 2(ẋ′′)⊤(ṡκ) + (ṡκ) · (ṡκ)

]
ds

=
1

2
ν1

∫ L

s=0

∂

∂ẋ′′

(
ẋ′′⊤ẋ′′ − 2ẋ′′⊤ṡκ

) ∂ẋ′′

∂ẋ
ds

= ν1

∫ L

s=0

(ẋ′′ − ṡκ)††
∂ẋ

∂ẋ
ds+ 1

2
ν1

[
(ẋ′′ − ṡκ)

∂ẋ′

∂ẋ

]s=L

s=0

(5.97)

− 1
2
ν1

[
(ẋ′′ − ṡκ)†

∂ẋ

∂ẋ

]s=L

s=0

(5.98)

= ν1

∫ L

s=0

(ẋ′′ − ṡκ)†† ds. (5.99)

On (5.97) and (5.98) we used integration by parts and the boundary terms disappear

because of the Boundary Conditions in (5.69) and (5.70).
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We also have,

∂R

∂ṡ
=

1

2
ν1

∫ L

s=0

∂

∂ṡ

[
κ⊤ṡ⊤ṡκ− 2ẋ′′⊤ṡκ+ ẋ′′ · ẋ′′] ds+

1

2
ν1

∫ L

s=0

∂

∂ṡ
τ̇ 2 ds

=: ν1

∫ L

s=0

ṡκκ⊤ − ẋ′′κ⊤ ds+K

= ν1

∫ L

s=0

−(ẋ′′ − ṡκ)⊗ κ ds+K (5.100)

Computing K is a little more subtle and we proceed separately.

Indeed,

K =

∫ L

s=0

τ̇
∂τ̇

∂ṡ
ds

and note that we may write τ = −1
2
trace(s⊤s′j). Consequently we have

τ̇ = −1
2
[trace(ṡ⊤s′j) + trace(s⊤ṡ′j)]

∂τ̇

∂ṡ
= −1

2

[
∂

∂ṡ
trace(ṡ⊤s′j) +

∂

∂ṡ′
trace(s⊤ṡ′j)

∂ṡ′

∂ṡ

]
= −1

2

[
s′j+ sj⊤

∂ṡ′

∂ṡ

]

We can now compute K as follows.

K = −1

2
ν2

∫ L

s=0

[
τ̇s′j− τ̇sj

∂ṡ′

∂ṡ

]
ds (5.101)

= −1

2
ν2

∫ L

s=0

[
τ̇s′j+ (τ̇s)′j

∂ṡ

∂ṡ

]
+

1

2
ν2

[
τ̇sj

∂ṡ

∂ṡ

]s=L

s=0

(5.102)

= ν2

∫ L

s=0

1
2
[−τ̇s′j− (τ̇s)′j] ds (5.103)

= ν2

∫ L

s=0

1
2
f(τ̇ , s)j ds (5.104)

On (5.102) we used integration by parts. On (5.103) we used the Boundary Con-
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dition (5.71). We may now write that

∂R

∂ṡ
= ν1

∫ L

s=0

−(ẋ′′ − ṡκ)†† ds+ ν2

∫ L

s=0

1
2
f(τ̇ , s)j ds.

We note that the damping terms that needs to be added to the equations of motion

are of the form −∂R
∂ẋ

and −∂R
∂ṡ

. See for example in [58, chap. 1] and [47].

Finally (5.78) and (5.79) now follows as desired.

A similar calculation for the discretized τ, s and x case gives the desired formulas

for the discreet case. The precise formulation is as follows.

Theorem 13. Let L be the discrete Lagrangian given by

L =
η

2

N∑
j=0

wjρ |ẋj|2 − σ1wj

∣∣x′′
j − sjκj

∣∣2 − η

2

N∑
j=1

2σ2τ
2
j

+
η

2

N∑
j=0

trace(ajs
⊤
j sj) + 2β⊤

j s
⊤
j x

′
j + αj

∣∣x′
j

∣∣2 (5.105)

where wj is a weight which is 1
2

when j = 0, N and 1 for 1 ≤ j ≤ N − 1. Taking the

variation with respect to x0 gives,

w0ρẍ0 = −(s0β0)
† − (α0x

′
0)

† (5.106)

taking the variation with respect to xj for 1 ≤ j ≤ N − 1 gives

ρwjẍj = −σ1wj(D2xj − sjκj)
†† − (sjβj)

† − (αjx
′
j)

† (5.107)

and variation with respect to xN gives,

ρwN ẍN = −(sNβN)
† − (αNx

′
N)

† (5.108)
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With the addition of the damping terms (5.107) becomes

ρwjẍj = −σ1wj(D2xj − sjκj)
†† − (sjβj)

† − (αjx
′
j)

† − ν1(ẋ
′′
j − ṡjκj)

†† (5.109)

for 1 ≤ j ≤ N − 1. The equations in (5.108) and (5.106) remain unchanged as no

damping terms contribute to it.

Remark. Note that the equations (5.109), (5.108) and (5.106) can be written in the

following compact form without the use of sub–indices as follows:

ρWẍ = −σ1WE(x′′ − sκ)†† − (αx′)† − (sβ)† − ν1E(ẋ
′′ − ṡκ)††. (5.110)

Remark. E is an (N + 1) × (N + 1) diagonal matrix whose diagonal entries are 1

except for the top and bottom entries which are 0 according to the boundary conditions

as stated in Boundary Conditions (1).

Remark. W is an (N + 1) × (N + 1) diagonal weight matrix whose entries are 1

except for the top and bottom entries which are 1
2
.

Theorem 14. Let L be as defined in Theorem (13). Taking variation with respect to

s0 first and then adding damping terms gives

σ2f0(τ, s)j− D1x0 ⊗ β0 − s0a0 = −1
2
ν2f0(τ̇ , s)j (5.111)

and variation with respect to sj for 1 ≤ j ≤ N − 1 gives

− σ1wj(D2xj ⊗ κj) + σ2f0(τ, s)j− D1xj ⊗ βj − sjaj = 0 (5.112)
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with the addition of damping terms (5.112) becomes.

− σ1wj(D2xj ⊗ κj) + σ2fj(τ, s)j− D1xj ⊗ βj − sjaj

= ν1(D2ẋj − ṡjκj)⊗ κj − 1
2
ν2fj(τ̇ , s)j (5.113)

and finally taking the variation with respect to sN and subsequently adding damping

terms gives

σ2fN(τ, s)j− D1xN ⊗ βN − sNaN = −1
2
ν2fN(τ̇ , s)j (5.114)

Remark. We can write the equations in (5.113), (5.111) and (5.114) in compact form

as follows:

− σ1WE(D2x⊗∗ κ) + σ2f(τ, s)j− D1x⊗∗ β − sa

= ν1E(D2ẋ− ṡκ)⊗∗ κ− 1
2
ν2f(τ̇ , s)j (5.115)

where E and W are as described in the remarks preceding Theorem (13).

Remark. Note that we have,

fj(τ, s) =


− 1

η
τ1s1 for j = 0,

− 1
η
[τj+1sj+1 − τjsj−1] for 1 ≤ j ≤ N − 1,

1
η
τN sN−1 for j = N.

(5.116)

and a similar expression holds for fj(τ̇ , s) where each τ is replaced with a τ̇ in (5.116).

Remark. We are using a slight abuse of notation in writing terms such as D1xj.

What it actually means is the following:

[D1]jxj
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where the sub–index on D1 stands for taking the jth triplet of rows from the matrix

D1. For example [D1]0 means take the first three rows and [D1]1 means take the 4th,

5th and 6th rows etc. Since D1 is a 3(N +1)× 3(N +1) matrix, this makes sense for

each 0 ≤ j ≤ N .

5.6 Monotonocity of the Hamiltonian

Before we can prove the monotonicity of the Hamiltonian under the proposed dis-

cretization we need some auxiliary results.

Proposition 15. Let x ∈ R3×1, y ∈ R2×1 and A ∈ R3×2. Then

trace(A⊤(x⊗ y)) = x · (Ay).

In here ⊗ stands for the outer product.

Proof. By definition x⊗ y = xy⊤. Therefore

trace(A⊤(x⊗ y)) = trace(A⊤(xy⊤))

= trace(xy⊤A⊤) (5.117)

= trace(x(Ay)⊤)

= trace(x⊤(Ay)) (5.118)

Notice that trace(x⊤(Ay)) is a scalar and therefore,

trace(x⊤(Ay)) = x⊤Ay

= x · Ay

as required. Note that on (5.117) we are using the fact that trace(AB) = trace(BA)

and on (5.118) we are using the fact that trace(X⊤Y ) = trace(XY ⊤).
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Proposition 16. Let x ∈ R3×1 and A ∈ R3×2. Then,

x ·
(
AA⊤x

)
=
(
A⊤x

)
·
(
A⊤x

)
Proof. Notice that x ·

(
AA⊤x

)
= x⊤(AA⊤x) = x⊤AA⊤x. Also note that (A⊤x) ·

(A⊤x) = x⊤AA⊤x. The required equality now follows.

Proposition 17. Let s be as defined in definition (3) and let κ be as defined in

(5.63). Then

(ṡκ) · (sκ) = 0 (5.119)

Proof. Note that s⊤s = i2 and so ṡ⊤s+ s⊤ṡ = 0. Thus,

(ṡκ) · (sκ) = 1
2
[(ṡκ) · (sκ) + (sκ) · (ṡκ)]

= 1
2

[
κ⊤ṡ⊤sκ+ (κ⊤s⊤ṡκ)

]
= 1

2

[
κ⊤ (ṡ⊤s+ s⊤ṡ

)
κ
]

= 0

as desired.

Proposition 18. Let a be a symmetric matrix and let s be as defined above. then,

trace(ṡ⊤sa) = trace

(
a
∂

∂t
(s⊤s)

)
.

Proof. Note that ṡ⊤s+ s⊤ṡ = 0 as observed previously. It now follows that s⊤ṡ is anti-

symmetric. Consequently we have trace(a(s⊤ṡ)) = 0, since the trace of a symmetric

matrix times an anti-symmetric matrix vanishes. The given identity now follows.

We first prove the continuous version of the fact that the Hamiltonian is monotone
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under the given space discretizations.The discreet version follows immediately because

all of the arguments follows formally the same. Simply replace integration by parts

with summation by parts and use the necessary discreet version of the corresponding

propositions and the discreet versions of the Boundary Conditions 1.

Theorem 19 (Monotonicity of the Hamiltonian). Under the given space discretiza-

tions, the Hamiltonian

H(t) := K.E + P.E

is monotone.

Proof. Note that

∂

∂t
(K.E) = ρ

∫ T

0

1

2

∂

∂t
|ẋ|2 ds = ρ

∫ T

0

(ẋ · ẍ) ds.

Now let us dot product equation (5.78) by ẋ, multiply (5.79) by ṡ⊤ and take the trace,
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add the two equations, and integrate from 0 to L. Then,

∂

∂t
(K.E) =

∫ L

0

ẋ ·
[
−σ1(x

′′ − sκ)†† − (αx′)† − (sβ)†
]
ds

− trace

[∫ L

0

ṡ⊤ (−σ1(x
′′ ⊗ κ) + σ2f(τ, s)j− x′ ⊗ β − sa)

]
ds

+

∫ L

0

ẋ ·
[
−Eν1(ẋ

′′ − ṡκ)††
]
ds

+ trace

[∫ L

0

ṡ⊤
(
−E
(
(−ν1(ẋ

′′ − ṡκ)⊗ κ) + 1
2
ν2f(τ̇ , s)j

))
ds

]
=

∫ L

0

−σ1ẋ
′′ · (x′′ − sκ) + ẋ′ · (αx′) + ẋ′ · (sβ) ds (5.120)

−
∫ L

0

−σ1x
′′ · ṡκ+ σ22τ τ̇ − x′ · (ṡβ)− trace

(
ṡ⊤sa

)
ds (5.121)

− ν1

∫ L

0

ẋ′′ · (ẋ′′ − ṡκ) ds+ ν1

∫ L

0

(ẋ′′ − ṡκ) · (ṡκ)− ν2

∫ L

0

τ̇ 2 ds (5.122)

=
1

2

∂

∂t

∫ L

0

−σ1 |x′′ − sκ|2 − 2σ2τ
2 ds (5.123)

+
1

2

∫ T

0

α
∂

∂t
|x′|2 + 2β · ∂

∂t

(
s⊤x′)+ trace

(
a
∂

∂t

(
s⊤s
))

ds (5.124)

= − ∂

∂t
P.E− ν1

∫ L

0

∣∣∣∣ ∂∂t(x′′ − sκ)

∣∣∣∣2 ds− ν2

∫ L

0

τ̇ 2 ds.

On (5.120) we used integration by parts. For equalities in (5.121) and (5.122) we

used theorem (9) and proposition (15) respectively. On line (5.124) all of the terms

vanish because of the constraints stated in (5.72). For the equality in line (5.123) we

used the following set of equalities:

1

2

∂

∂t
((x′′ − sκ) · (x′′ − sκ)) = ẋ′′ · x′′ − (ẋ′′ · (sκ) + x′′ · (ṡκ)) + (ṡκ) · (sκ)

But then by proposition (17) we have that

(ṡκ) · (sκ) = 0.
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5.7 The time discretization

The time discretization may be done as follows:

y → yn+1 + yn−1

2

ẏ → yn+1 − yn−1

2h

ÿ → yn+1 − 2yn + yn−1

h2

Notation. Let α = [α1, α2, · · · , αN ]
T x = [x1,x2, · · · ,xN ] and S = [s1, s2, · · · , sN ]

with αj ∈ R, xj ∈ R3×1 and sj ∈ R2×3 for 0 ≤ j ≤ N . Then, ∗ is defined as the

context dependent pointwise multiplication given by,

α ∗ x = [α0x0, α1x1, · · · , αNxN ]

S ∗ x = [s1x1, s2x2, · · · , sNxN ].

Let K = [κ1,κ2, · · · ,κN ] with κj ∈ R2×1 for 0 ≤ j ≤ N . Then ⊗∗ is defined as the

pointwise outer product given by,

S⊗∗ K = [s1 ⊗ κ1, s2 ⊗ κ2, · · · , sN ⊗ κN ].

Notation. let s = (sj)0≤j≤N be as defined in Definition 3. Then by sn[j] we mean the

jth space discretization step of sj at the nth time discretization step. τn[j] is similarly

defined.
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The full discretization of (5.78) is as follows:

ρW

(
xn+1 − 2xn + xn−1

h2

)

+WE


σ1


D†

2


D2

(
xn+1 + xn−1

2

)
− 1

2



(sn+1[0] + sn−1[0])κ0[0]

(sn+1[1] + sn−1[1])κ0[1]

...

(sn+1[N ] + sn−1[N ])κ0[N ]









−


D†

1

(
αn+1 ∗ D1

(
xn+1 + xn−1

2

))
+ 1

2
D†

1



(sn+1[0] + sn−1[0])β[0]

(sn+1[1] + sn−1[1])β[1]

...

(sn+1[N ] + sn−1[N ])β[N ]





+ ν1ED
†
2


D2

(
xn+1 − xn−1

2h

)
− 1

2h



(sn+1[0]− sn−1[0])κ0[0]

(sn+1[1]− sn−1[1])κ0[1]

...

(sn+1[N ]− sn−1[N ]κ0[N ])




(5.125)

= 03(N+1)×1 (5.126)
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And the complete discretization of (5.79) is as follows:

WE


−σ1D2

(
xn+1 + xn−1

2

)
⊗∗



κ0[0]

κ0[1]

...

κ0[N ]


+ σ2



f(d)(τ, s)[0]j

f(d)(τ, s)[1]j

...

f(d)(τ, s)[N ]j





−


D1

(
xn+1 + xn−1

2

)
⊗∗



β[0]

β[1]

...

β[N ]


+ 1

2



(sn+1[0] + sn−1[0])a[0]

(sn+1[1] + sn−1[1])a[1]

...

(sn+1[N ] + sn−1[N ])a[N ]





− ν1E


D2

(
xn+1 − xn−1

2h

)
− 1

2h



(sn+1[0]− sn−1[0])κ0[0]

(sn+1[1]− sn−1[1])κ0[1]

...

(sn+1[N ]− sn−1[N ])κ0[N ]




⊗∗



κ0[0]

κ0[1]

...

κ0[N ]


(5.127)

+


1
2
ν2



f(d)(τ̇ , s)[0]j

f(d)(τ̇ , s)[1]j

...

f(d)(τ̇ , s)[N ]j




= 03(N+1)×2 (5.128)

where f(d)(τ, s)[j], and f(d)(τ̇ , s)[j] stands for the full discretization of f terms both

with respect to space and time. Also note that αn+1 = [α0, α1, · · · , αN ] and the

subscript n+ 1 on the left means the set of values for α at time n+ 1.

Remark. We have presented the full discretization here for the sake of completeness.

The computational implementation will be similar to the original equations in (5.78)

and in (5.79).
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5.7.1 Discretization of fj(τ, s) and fj(τ̇ , s)

5.7.1.1 Full discretization of fj(τ, s):

We have that

fj(τ, s) =


− 1

η
τ1s1 for j = 0,

− 1
η
[τj+1sj+1 − τjsj−1] for 1 ≤ j ≤ N − 1,

1
η
τN sN−1 for j = N.

(5.129)

The full discretization of fj(τ, s) is as follows:

f
(d)
j (τ, s) =


− 1

η
τ̄1s̄1 for j = 0,

− 1
η
[τ̄j+1s̄j+1 − τ̄j s̄j−1] for 1 ≤ j ≤ N − 1,

1
η
τ̄N s̄N−1 for j = N.

(5.130)

where

τ̄ =
τn+1 + τn−1

2
(5.131)

s̄ =
sn+1 + sn−1

2
(5.132)

5.7.1.2 Full discretization of fj(τ̇ , s):

For 0 ≤ j ≤ N set,

f
(d)
j (τ̇ , s) = − 1

4ηh
((τn+1[j + 1]− τn−1[j + 1])(sn+1[j + 1] + sn−1[j + 1]))

+
1

4ηh
((τn+1[j]− τn−1[j])(sn+1[j − 1] + sn−1[j − 1])) (5.133)
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for j = 0 set,

f
(d)
j (τ̇ , s) = − 1

4ηh
[(τn+1[1]− τn−1[1])(sn+1[1] + sn−1[1])] (5.134)

and for j = N set,

f
(d)
j (τ̇ , s) =

1

4ηh
[(τn+1[N ]− τn−1[N ])(sn+1[N − 1] + sn−1[N − 1])] . (5.135)

The discretization of fj(τ̇ , s) may be written compactly as follows:

f
(d)
j (τ̇ , s) =


− 1

η
¯̇τ1s̄1 for j = 0,

− 1
η
[¯̇τj+1s̄j+1 − ¯̇τj s̄j−1] for 1 ≤ j ≤ N − 1,

1
η
¯̇τN s̄N−1 for j = N.

(5.136)

where ¯̇τ stands for

¯̇τ =
τn+1 − τn−1

2h
(5.137)

and the superscript (d) suggestively stands for discretized.

We can now write the full discretizations of both equations in a more compact

way as follows. Let

Sn = [sn[0], sn[1], · · · , sn[N ]]⊤,

K0 = [κ0[0],κ0[1], · · · ,κ0[N ]]⊤,

Bn+1 = [β[0],β[1], · · · ,β[N ]]⊤,

An+1 = [a[0], a[1], · · · , a[N ]]⊤,

J = [j, j, · · · , j]⊤,

F(d)(τ, s) = [f
(d)
0 (τ, s), f

(d)
1 (τ, s), · · · , f(d)N (τ, s)]⊤,
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where the sub–index n stands for the nth time step. We can now rewrite (5.126) as

follows. Notice that we are not time discretizing a’s, β’s and α’s.

ρW

(
xn+1 − 2xn + xn−1

h2

)
+WE

[
σ1

(
D†

2

(
D2

(
xn+1 + xn−1

2

)
− 1

2
(Sn+1 + Sn−1) ∗ K0

))]
−
[
D†

1

(
αn+1 ⊙ D1

(
xn+1 + xn−1

2

))
+ 1

2
D†

1 ((Sn+1 + Sn−1) ∗ Bn+1)

]
+ Eν1D

†
2

[
D2

(
xn+1 − xn−1

2h

)
− 1

2h
(Sn+1 − Sn−1) ∗ K0

]
(5.138)

= 03(N+1)×1 (5.139)

In the preceding equation ⊙ stands for the following: The column vector on the right

hand side argument of ⊙ is first sliced into vectors each of which is a 3-vector. Then

take the usual element-wise matrix multiplication with each element from the left

hand side.

We can rewrite (5.128) as follows:

WE

[
−σ1D2

(
xn+1 + xn−1

2

)
⊗∗ K0

]
+ σ2

(
F(d)(τ, s)

)
∗ J

−
[
D1

(
xn+1 + xn−1

2

)
⊗∗ Bn+1 +

1
2
((Sn+1 + Sn−1) ∗ An+1)

]
− Eν1

[(
D2

(
xn+1 − xn−1

2h

)
− 1

2h
(Sn+1 − Sn−1) ∗ K0

)
⊗∗ K0

]
+
[
1
2
ν2F

(d)(τ̇ , s) ∗ J
]
= 03(N+1)×2 (5.140)

5.7.2 Initial Conditions

Let us now discuss the initials conditions. These are normally specified by assuming

we know x = F1, S = F2 and ẋ = G1, Ṡ = G2 at t = 0, where F1,F2,G1 and G2 are

given. To guarantee that the numerical method is still order 2 in time, the discrete
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versions of these conditions are

x0 = F1 (5.141)

S0 = F2 (5.142)

x1 − x−1 = 2hG1 (5.143)

S1 − S−1 = 2hG2 (5.144)

The physical meaning of F1 is that it is the initial state of the spring. F2 is extracted

from the initial frame chosen. Let us assume for now that G1 and G2 are zero.
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Chapter 6

Computing the Jacobian of the

system

6.1 Motivation for computing Jacobian

The software algorithm that we use to model the equations of motion use is the

Levenberg-Marquardt algorithm. This method interpolates between the Gauss-Newton

algorithm and the gradient descent algorithm. In particular it uses the Jacobian of

the system of equations to find the ‘direction’ it needs to descent in order to find

the (local) minimum. Therefore if an analytical Jacobian has not been provided to

the solver it numerically approximates the Jacobian of the system at every iteration.

This calculation happens many thousands of times during this process. Needless to

say, this is a computationally a very inefficient process. The solution for this problem

is to explicitly provide the Jacobian of the system to the solver so that it can look up

the Jacobian instantly rather than approximating it. We have found drastic increases

in performance by providing the Jacobian. The results obtained were also of much

higher accuracy.

It is with this motivation that we embark on computing the Jacobian of the system
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of equations. Even though this calculation has noting to do with the actual math-

ematical analysis of the numerical method it plays an integral part in the software

implementation of the problem. The calculations are rather tedious. But then can

be done with a few results that stem from matrix calculus.

6.2 Notation and simplifications

For the sake of convenience let us denote the system of equations given in (5.139)

as f1 = 0 and the equation given in (5.140) as f2 = 0. We have that αn+1 =

(αn+1[0], αn+1[1], · · · , αn+1[N ]). For simplicity, let us also suppress the time depen-

dence on the right hand side of the preceding equation and write αn+1 = (α0, α1, · · · , αN).

Denote by

diag(αn+1) = diag(α0, α1, · · ·αN)⊗ i3 (6.1)

Let us also agree that the sub index n always denotes time discretization. In particular

n = 0 means the initial state of the system and n ̸= 0 means non initials states of

the system. Note that we need to make this distinction clear in our calculations as

the equations turn out to be different in each case and the computer program needs

to be explicitly made aware of the difference.

6.3 Derivatives of the first equation f1

6.3.1 Computing ∂f1
∂xn+1

:

This computation is fairly straight forward. Indeed for n ̸= 0 we have,

∂f1
∂xn+1

=
1

h2
ρW +

1

2
σ1WED⊤

2 D2 −
1

2
D⊤

1 diag(αn+1)D1 +
ν1
2h

ED⊤
2 D2. (6.2)
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Note that by design diag(αn+1) is an 3(N +1)× 3(N +1) matrix. Thus, ∂f1
∂xn+1

is also

a 3(N + 1)× 3(N + 1) matrix as desired. For n = 0 we have,

∂f1
∂xn+1

=
2

h2
ρW + σ1WED⊤

2 D2 − D⊤
1 diag(αn+1)D1. (6.3)

6.3.2 Computing ∂f1
∂Sn+1

:

To compute this derivative we proceed as follows. Denote K0 = [k0, k1, · · · , kN ]. Then

by definition each kj for 0 ≤ j ≤ N is a 2× 1 vector. Now use the symbol diag(K; i3)

in the following sense.

diag(K0; i3)
def
= diag(k⊤

0 ⊗ i3, k
⊤
1 ⊗ i3, · · · , k⊤

N ⊗ i3)

= diag(k0, k1, · · · , kN)⊤ ⊗ i3

Note that diag(K0; i3) thus defined is a 3(N + 1)× 6(N + 1) matrix.

For n ̸= 0 we now have,

∂f1
∂Sn+1

= −1

2
σ1WED⊤

2 diag(K0; i3)−
1

2
D⊤

1 diag(Bn+1; i3)

− ν1
2h

ED⊤
2 diag(K0; i3). (6.4)

Note that all of the matrices that involve the operator diag(· ; ·) is an 3(N + 1) ×

6(N +1) matrix and so ∂f1
∂Sn+1

is an 3(N +1)×6(N +1) matrix as required. For n = 0

we have

∂f1
∂Sn+1

= −σ1WED⊤
2 diag(K0; i3)− D⊤

1 diag(Bn+1; i3). (6.5)
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6.3.3 Computing ∂f1
∂An+1

Since f1 does not depend on An+1 we have,

∂f1
∂An+1

= 03(N+1)×3(N+1) (6.6)

for all n.

6.3.4 Computing ∂f1
∂Bn+1

For n ̸= 0 we have,

∂f1
∂Bn+1

= −1

2
D⊤

1 diag (Sn+1 + Sn−1) . (6.7)

Equation (6.7) is an 3(N + 1)× 2(N + 1) matrix as required. For n = 0 we have,

∂f1
∂Bn+1

= −D⊤
1 diag (Sn+1) . (6.8)

6.3.5 Computing ∂f1
∂αn+1

Consider the term

y := −1

2
D⊤

1 (αn+1 ⊙ D1(xn+1 + xn−1)) .

Using the notation used in (6.1) we can rewrite this as follows.

y = −1

2
D⊤

1 (diag(α0, α1, · · · , αN)⊗ i3)D1(xn+1 + xn−1) (6.9)
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For n ̸= 0 we have that,

∂f1
∂αi

= −1

2
D⊤

1 (diag[i]⊗ i3)D1(xn+1 + xn−1) (6.10)

and for n = 0,

∂f1
∂αi

= −D⊤
1 (diag[i]⊗ i3)D1(xn+1). (6.11)

In here diag[i] denotes a (N +1)× (N +1) diagonal matrix with 1 in the ith position

and zeros everywhere else for 0 ≤ i ≤ N . Note that ∂f1
∂αi

thus computed is a 3(N+1)×1

matrix. We can now write,

∂f1
∂αn+1

=

[
∂f1
∂α0

,
∂f1
∂α1

, · · · , ∂f1
∂αN

]
3(N+1)×(N+1)

(6.12)

where we take care to use one of (6.10) or (6.11) depending on whether n ̸= 0 or

n = 0.

6.4 Derivatives of the second equation f2

Notation. Let D be an 3(N +1)×3(N +1) matrix. Then note that we can group the

rows of D in to N + 1 groups where each group contain 3 consecutive rows. Denote

by [D]j the jth such group for 0 ≤ j ≤ N . More precisely [D]0 denotes the first three

rows, [D]1 denotes the group consisting of 4th, 5th and 6th rows etc. In particular

[D]j is a 3× 3(N + 1) matrix.

Proposition 20. Let D be a 3(N + 1) × 3(N + 1) matrix and let x ∈ R3(N+1). Let

K0 = [k0, k1, · · · , kN ]⊤ where each ki is a 2× 1 vector. Now consider the expression

y := (Dx)⊗∗ K0 (6.13)
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Then,

∂y

∂x
= [k0 ⊗ [D]0, k1 ⊗ [D]1, · · · , kN ⊗ [D]N ]

⊤ (6.14)

Notice that each ki ⊗ [D]i is an 6 × 3(N + 1) matrix and this results in ∂y
∂x

being a

6(N + 1) × 3(N + 1) matrix.

Proof. We will show the result for the case when N = 1. The general result easily

follows by induction on N . In this case D will be a 6× 6 matrix and x will be a 6× 1

column vector. Let D = (dij) and x = (xi). Let ki = [k
(i)
1 , k

(i)
2 ]⊤. With this notation

y will be of the form

y =




r1 · x

r2 · x

r3 · x


(
k
(0)
1 k

(0)
2

)


r4 · x

r5 · x

r6 · x


(
k
(1)
1 k

(1)
2

)



In here rm, stands for the mth row of the matrix D where 1 ≤ m ≤ 6. We can
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rewrite y as

y =



k
(0)
1 r⊤1 x k

(0)
2 r⊤1 x

k
(0)
1 r⊤2 x k

(0)
2 r⊤2 x

k
(0)
1 r⊤3 x k

(0)
2 r⊤3 x

k
(1)
1 r⊤4 x k

(1)
2 r⊤4 x

k
(1)
1 r⊤5 x k

(1)
2 r⊤5 x

k
(1)
1 r⊤6 x k

(1)
2 r⊤6 x


Note that y is a 6 × 2 matrix. Then our objective is to find the derivative of the

function y : R6 → R12 with respect to x. In other words we have

y : (x1, x2, · · · , x6) 7→ (y1, y2, · · · , y12)

For consistencies sake we choose to (internally) encode y in the following manner:

y =



y1 y4

y2 y5

y3 y6

y7 y10

y8 y11

y9 y12
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We can now compute (the Jacobian),

∂y

∂x
=





k
(0)
1 r1

k
(0)
1 r2

k
(0)
1 r3

k
(0)
2 r1

k
(0)
2 r2

k
(0)
3 r3




k
(1)
1 r4

k
(1)
1 r5

k
(1)
1 r6

k
(1)
2 r4

k
(1)
2 r5

k
(1)
3 r6




We can simplify this representation by using outer product notation as

∂y

∂x
= [k0 ⊗ [D]0, k1 ⊗ [D]1]

⊤.

This is the Jacobian we set out to compute. Note that the preceding expression is an

12× 6 matrix as desired. The general case now follows easily by induction on N .

6.4.1 Computing ∂f2
∂xn+1

:

For ease of notation (and ease of computer implementation) let us denote

[k0 ⊗ [D]0, k1 ⊗ [D]1, · · · , kN ⊗ [D]N ]
⊤ =: K0 ⊗∗ D.
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For n ̸= 0 we get,

∂f2
∂xn+1

= −1

2
σ1K0 ⊗∗ (WED2)−

1

2
Bn+1 ⊗∗ D1 −

ν1
2h

K0 ⊗∗ (ED2) (6.15)

and for n = 0,

∂f2
∂xn+1

= −σ1K0 ⊗∗ (WED2)− Bn+1 ⊗∗ D1. (6.16)

The computed derivative in (6.15) is an 6(N + 1)× 3(N + 1) matrix as expected.

6.4.2 Computing ∂f2
∂Sn+1

.

The following identity is crucial.

Proposition 21. For τj as defined in (5.31) with 1 ≤ j ≤ N , we have

τj =
1

2η
trace(sj(sj−1j)

⊤) (6.17)

Proof. Throughout the following set of equalities we use the fact that j⊤ = −j and

j2 = −i2 without explicit mention. From (5.31) we have,

τj jj
⊤ =

1

2η

(
s⊤j−1sj j

⊤ − s⊤j sj−1j
⊤)

trace (τj jj
⊤) =

1

2η
trace

(
s⊤j−1sj j

⊤ − s⊤j sj−1j
⊤)

2τj =
1

2η

(
trace(s⊤j−1sj j

⊤)− trace(s⊤j sj−1j
⊤)
)

τj =
1

4η

(
trace(sj(sj−1j)

⊤) + trace(s⊤j sj−1j)
)

(6.18)

τj =
1

2η
trace(sj(sj−1j)

⊤). (6.19)

On (6.19) we used the fact that trace(XY ⊤) = trace(X⊤Y ) for matrices X and Y .

On (6.18) we used the cyclic property of the trace operator.
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Theorem 22. Let fj(τ, s) be as defined in (5.34). Then

∂fj(τ, s)j

∂sj
=

1

2η2
(vec(sj+1j)⊗ vec(sj+1j) + vec(sj−1j)⊗ vec(sj−1j)) (6.20)

for 1 ≤ j ≤ N − 1. For the boundary cases where j = 0, N we have

∂fj(τ, s)j

∂sj
=

1

2η2


(vec(s1j)⊗ vec(s1j)) , for j = 0

(vec(sN−1j)⊗ vec(sN−1j)) , for j = N.

(6.21)

In here vec(X) stands for the mn × 1 column vector obtained by stacking the

columns of the m × n matrix X on top of each other(from left to right). Thus, the

equations in (6.20) and (6.21) are all 6× 6 matrices as expected.

Proof. Let us first consider the case 1 ≤ j ≤ N − 1. Using (6.17) we get

τj =
1

2η
trace(sj j

⊤s⊤j−1) = − 1

2η
trace(sj js

⊤
j−1)

and

τj+1 =
1

2η
trace(sj+1(sj j)

⊤) =
1

2η
trace(sj js

⊤
j+1)

Now using the definition of fj(τ, s) in (5.34) we get

fj(τ, s)j = − 1

2η2
[
trace(sj js

⊤
j+1)sj+1j+ trace(sj js

⊤
j−1)sj−1j

]
(6.22)

Let us consider the term Y1 := trace(sj js
⊤
j+1)sj+1j. Note that Y is a 3 × 2 matrix.

We can view this as a function of the form Y1 : R6 → R6 if we vectorize vec(Y1) =

trace(sj js
⊤
j+1) vec(sj+1j). We can use the identity trace(X⊤Y ) = vec(Y )⊤ vec(X) and

the fact that trace(XY ) = trace(Y X) to write,

trace(sj js
⊤
j+1) = trace(sj(sj+1j

⊤)⊤) = vec(sj+1j
⊤)⊤ vec(sj)
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and since we can factor out scalars from vec operator,

vec(Y1) = vec(sj+1j
⊤)⊤ vec(sj) vec(sj+1j).

Therefore
∂ vec(Y1)

∂ vec(sj)
= vec(sj+1j) vec(sj+1j

⊤)⊤.

But note that j⊤ = −j and so

∂ vec(Y1)

∂ vec(sj)
= − vec(sj+1j)⊗ vec(sj+1j).

Similarly if Y2 := trace(sj js
⊤
j−1)sj−1j we can then show that,

∂ vec(Y2)

∂ vec(sj)
= − vec(sj−1j)⊗ vec(sj−1j)

(6.20) now follows. To compute the derivatives of f0 and fN note that we have set

τ0 = τN+1 = 0 as boundary conditions. It is now natural to define

f0(τ, s) = −1

η
(τ1s1)

and

fN(τ, s) = −1

η
(−τN sN−1)

We can now proceed similarly as we did before by noting that

τ1 = − 1

2η
trace(s1js

⊤
0 ),

and

τN = − 1

2η
trace(sN js

⊤
N−1).
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Thus,
∂f0(τ, s)j

∂s0
=

1

2η2
[vec(s1j)⊗ vec(s1j)]

Similarly,
∂fN(τ, s)j

∂sN
=

1

2η2
[vec(sN−1j)⊗ vec(sN−1j)] .

Theorem 23. Let fj(τ, s) be as defined in (5.34). Then,

∂fj(τ, s)j

∂sj+1

= − 1

2η2
[
trace(sj js

⊤
j+1)(j

⊤ ⊗ i3) + vec(sj j)⊗ vec(sj+1j)
]

(6.23)

and

∂fj(τ, s)j

∂sj−1

= − 1

2η2
[
trace(sj js

⊤
j−1)(j

⊤ ⊗ i3) + vec(sj j)⊗ vec(sj−1j)
]

(6.24)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f0(τ, s)j

∂s1
= − 1

2η2
[
trace(s0js

⊤
1 )(j

⊤ ⊗ i3) + vec(s0j)⊗ vec(s1j)
]

(6.25)

and

∂fN(τ, s)j

∂sN−1

= − 1

2η2
[
trace(sN js

⊤
N−1)(j

⊤ ⊗ i3) + vec(sN j)⊗ vec(sN−1j)
]

(6.26)

Proof. Let us first consider derivative of fj with respect to sj+1. From (6.22) (and

product rule) we get,

∂fj(τ, s)j

∂sj+1

= − 1

2η2

[
trace(sj js

⊤
j+1)

∂(sj+1j)

∂sj+1

+
∂(trace(sj js

⊤
j+1))

∂sj+1

(sj+1j)

]
(6.27)

=: − 1

2η2
[E1 + E2] . (6.28)
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Using a bit of matrix calculus (see for example [31] chapter 4),

E1 = trace(sj js
⊤
j+1)(j

⊤ ⊗ i3).

To compute E2 we may proceed using vectorization as we did in Theorem (22) and

we get

E2 = vec(sj j)⊗ vec(sj+1j).

(6.23) now follows. The proofs of (6.24), (6.25) and (6.26) are similar.

The theorems (22) and (23) shows how to compute derivatives of terms that

involve fj(τ, s)j. We will now explicitly show how these computations can be used to

find the derivatives of the discretized f(d)(τ, s).

Corollary 24. Let f(d)j (τ, s) as discretized in (5.130). Then,

Case I: n ̸= 0

∂f
(d)
j (τ, s)j

∂sj
=

1

8η2
[(vec(sj+1j) + vec(sj+1[n− 1]j))⊗ vec(sj+1j)

+ (vec(sj−1j) + vec(sj−1[n− 1]j))⊗ vec(sj−1j)] (6.29)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ, s)j

∂s0
=

1

8η2
[(vec(s1j) + vec(s1[n− 1]j))⊗ vec(s1j)] (6.30)

and

∂f
(d)
N (τ, s)j

∂sN
=

1

8η2
[(vec(sN−1j) + vec(sN−1[n− 1]j))⊗ vec(sN−1j)] (6.31)
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Case II: n = 0

∂f
(d)
j (τ, s)j

∂sj
=

1

2η2
[vec(sj+1j)⊗ vec(sj+1j) + vec(sj−1j)⊗ vec(sj−1j)] (6.32)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ, s)j

∂s0
=

1

2η2
[vec(s1j)⊗ vec(s1j)] (6.33)

and

∂f
(d)
N (τ, s)j

∂sN
=

1

2η2
[vec(sN−1j)⊗ vec(sN−1j)]. (6.34)

Corollary 25. Let f(d)j (τ, s) as discretized in (5.130). Then,

Case I: n ̸= 0

∂f
(d)
j (τ, s)j

∂sj+1

= − 1

4η

[
(τj+1 + τj+1[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2
[(vec(sj+1j) + vec(sj+1[n− 1]j))⊗ vec(sj j)] (6.35)

and

∂f
(d)
j (τ, s)j

∂sj−1

=
1

4η

[
(τj + τj[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2
[(vec(sj−1j) + vec(sj−1[n− 1]j))⊗ vec(sj j)] (6.36)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ, s)j

∂s1
= − 1

4η

[
(τ1 + τ1[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2
[(vec(s1j) + vec(s1[n− 1]j))⊗ vec(s0j)] (6.37)
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and

∂f
(d)
N (τ, s)j

∂sN−1

=
1

4η

[
(τN + τN [n− 1])(j⊤ ⊗ i3)

]
− 1

8η2
[(vec(sN−1j) + vec(sN−1[n− 1]j))⊗ vec(sN j)] (6.38)

Case II: n = 0

∂f
(d)
j (τ, s)j

∂sj+1

= −1

η

[
τj+1(j

⊤ ⊗ i3)
]
− 1

2η2
[vec(sj+1j)⊗ vec(sj j)] (6.39)

and

∂f
(d)
j (τ, s)j

∂sj−1

=
1

η

[
τj(j

⊤ ⊗ i3)
]
− 1

2η2
[vec(sj−1j)⊗ vec(sj j)] (6.40)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ, s)j

∂s1
= −1

η

[
τ1(j

⊤ ⊗ i3)
]
− 1

2η2
[vec(s1j)⊗ vec(s0j)] (6.41)

and

∂f
(d)
N (τ, s)j

∂sN−1

=
1

η

[
τN(j

⊤ ⊗ i3)
]
− 1

2η2
[vec(sN−1j)⊗ vec(sN j)]. (6.42)

We also need to compute derivatives of terms of the form f
(d)
j (τ̇ , s)j. We now

present that. Note that fj(τ̇ , s)j differs from f
(d)
j (τ, s)j only slightly. Therefore slight

adjustments to Corollaries (24) and (25) gives us the desired derivatives. Indeed we

have,

Corollary 26. Let f(d)j (τ̇ , s) be as discretized in (5.136). Then,
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Case I: n ̸= 0

∂f
(d)
j (τ̇ , s)j

∂sj
=

1

h

(
∂f

(d)
j (τ, s)j

∂sj

)
(6.43)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ̇ , s)j

∂s0
=

1

h

(
∂f

(d)
0 (τ, s)j

∂s0

)
(6.44)

and

∂f
(d)
N (τ̇ , s)j

∂sN
=

1

h

(
∂f

(d)
N (τ, s)j

∂sN

)
(6.45)

Case II: n = 0

∂f
(d)
j (τ̇ , s)j

∂sj
=

∂f
(d)
0 (τ̇ , s)j

∂s0
=

∂f
(d)
N (τ̇ , s)j

∂sN
= 06×6 (6.46)

Corollary 27. Let f(d)j (τ̇ , s) be as discretized in (5.136). Then,

Case I: n ̸= 0

∂f
(d)
j (τ̇ , s)j

∂sj+1

= − 1

4ηh

[
(τj+1 − τj+1[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2h
[(vec(sj+1j) + vec(sj+1[n− 1]j))⊗ vec(sj j)] (6.47)

and

∂f
(d)
j (τ̇ , s)j

∂sj−1

=
1

4ηh

[
(τj − τj[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2h
[(vec(sj−1j) + vec(sj−1[n− 1]j))⊗ vec(sj j)] (6.48)
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for 1 ≤ j ≤ N − 1. For j = 0 and j = N we have,

∂f
(d)
0 (τ̇ , s)j

∂s1
= − 1

4ηh

[
(τ1 − τ1[n− 1])(j⊤ ⊗ i3)

]
− 1

8η2h
[(vec(s1j) + vec(s1[n− 1]j))⊗ vec(s0j)] (6.49)

and

∂f
(d)
N (τ̇ , s)j

∂sN−1

=
1

4ηh

[
(τN − τN [n− 1])(j⊤ ⊗ i3)

]
− 1

8η2h
[(vec(sN−1j) + vec(sN−1[n− 1]j))⊗ vec(sN j)] (6.50)

Case II: n = 0

∂f
(d)
j (τ̇ , s)j

∂sj+1

=
∂f

(d)
j (τ̇ , s)j

∂sj−1

=
∂f

(d)
0 (τ̇ , s)j

∂s1
=

∂f
(d)
N (τ̇ , s)j

∂sN−1

= 06×6 (6.51)

Remark. In the preceding corollaries we used a slight abuse of notation for the sake

of simplicity. For each 0 ≤ j ≤ N we used τj instead of τj[n + 1] and sj instead of

sj[n+1]. The absence of a square parenthetical subscript means that the time step at

that point is n+ 1. When the time step at that point is n− 1 we have explicitly used

that.

Also note that if y = sa where s is a 3 × 2 matrix and a is an 2 × 2 symmetric

matrix then

∂y

∂s
= a⊗ i3 (6.52)

Notation. Let us denote the jth component of the function f2 by f2[j] for 0 ≤ j ≤ N .
93



Then we write

f2[j] = σ2f
(d)
j (τ, s)j− 1

2
(sj[n+ 1] + sj[n− 1])aj

+
ν1
2h

(sj[n+ 1]− sj[n− 1])κjκ
⊤
j + 1

2
ν2f

(d)
j (τ̇ , s)j (6.53)

for 1 ≤ j ≤ N − 1. For j = 0 and j = N we write,

f2[0] = σ2f
(d)
0 (τ, s)j− 1

2
(s0[n+ 1] + s0[n− 1])a0 +

1
2
ν2f

(d)
0 (τ̇ , s)j (6.54)

and

f2[N ] = σ2f
(d)
N (τ, s)j− 1

2
(sN [n+ 1] + sN [n− 1])aN + 1

2
ν2f

(d)
N (τ̇ , s)j (6.55)

Note here that we have dropped all of the terms which do not depend on sj since those

vanish after taking derivatives with respect to sj anyway.

We are now in a position to compute ∂f2
∂Sn+1

. Notice that ∂f2
∂Sn+1

is a 6(N + 1) ×

6(N + 1) matrix. Let us call this matrix M. Let us denote the (j, k)th block of M

with Mj,k for 0 ≤ j, k ≤ N . Note that each Mj,k is a 6× 6 matrix.

6.4.2.1 The zeroth row of M.

for n ̸= 0 : M0,0 =
∂f2[0]

∂s0
= σ2

∂f
(d)
0 (τ, s)j

∂s0
− 1

2
(a0 ⊗ i3) +

1
2
ν2
∂f

(d)
0 (τ̇ , s)j

∂s0
(6.56)

for n = 0 : M0,0 = σ2
∂f

(d)
0 (τ, s)j

∂s0
− (a0 ⊗ i3) +

1
2
ν2
∂f

(d)
0 (τ̇ , s)j

∂s0
(6.57)

M0,1 =
∂f2[0]

∂s1
= σ2

∂f
(d)
0 (τ, s)j

∂s1
+ 1

2
ν2
∂f

(d)
0 (τ̇ , s)j

∂s1
(6.58)

M0,k =
∂f2[0]

∂sk
= 06×6, for 2 ≤ k ≤ N. (6.59)
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6.4.2.2 The jth row of M for 1 ≤ j ≤ N − 1.

Mj,j−1 =
∂f2[j]

∂sj−1

= σ2

∂f
(d)
j (τ, s)j

∂sj−1

+ 1
2
ν2
∂f

(d)
j (τ̇ , s)j

∂sj−1

(6.60)

for n ̸= 0 : Mj,j =
∂f2[j]

∂sj

= σ2

∂f
(d)
j (τ, s)j

∂sj
− 1

2
(aj ⊗ i3) +

ν1
2h

((κjκ
⊤
j )⊗ i3) +

1
2
ν2
∂f

(d)
j (τ̇ , s)j

∂sj
(6.61)

for n = 0 : Mj,j =
∂f2[j]

∂sj
= σ2

∂f
(d)
j (τ, s)j

∂sj
− (aj ⊗ i3) +

1
2
ν2
∂f

(d)
j (τ̇ , s)j

∂sj
(6.62)

Mj,j+1 =
∂f2[j]

∂sj+1

= σ2

∂f
(d)
j (τ, s)j

∂sj+1

+ 1
2
ν2
∂f

(d)
j (τ̇ , s)j

∂sj+1

(6.63)

Mj,k = 06×6 for k ̸= j − 1, j, j + 1. (6.64)

6.4.2.3 The Nth row of M

MN,k = 06×6, for 0 ≤ k ≤ N − 2. (6.65)

MN,N−1 =
∂f2[N ]

∂sN−1

= σ2
∂f

(d)
N (τ, s)j

∂sN−1

+ 1
2
ν2
∂f

(d)
N (τ̇ , s)j

∂sN−1

(6.66)

for n ̸= 0 : MN,N =
∂f2[N ]

∂sN
= σ2

∂f
(d)
N (τ, s)j

∂sN
− 1

2
(aN ⊗ i3) +

1
2
ν2
∂f

(d)
N (τ̇ , s)j

∂sN
(6.67)

for n = 0 : MN,N =
∂f2[N ]

∂sN
= σ2

∂f
(d)
N (τ, s)j

∂sN
− (aN ⊗ i3) +

1
2
ν2
∂f

(d)
N (τ̇ , s)j

∂sN
(6.68)

Remark. It is worth noting here that we have explicitly written formulas for the cases

n ̸= 0 and n = 0 only when the equations are different. Whenever there is no explicit

distinction care should be taken in looking up the appropriate equation.

It now follows that the matrix M is an 6(N + 1) × 6(N + 1) block tridiagonal

matrix which has the following form.
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M =



M0,0 M0,1 0 0 0 · · · 0

M1,0 M1,1 M1,2 0 0 · · · 0

0 M2,1 M2,2 M2,3 0 · · · 0

... ... ... ... ... ... ...

0 · · · 0 MN−2,N−3 MN−2,N−2 MN−2,N−1 0

0 · · · 0 0 MN−1,N−2 MN−1,N−1 MN−1,N

0 · · · 0 0 0 MN,N−1 MN,N



6.4.3 Computing ∂f2
∂An+1

We can effectively set

f2[j] = −1
2
(sj[n+ 1] + sj[n− 1])aj

since this is the only term that depend on aj.

Proposition 28. Let y = ta where t = (tij) is a 3 × 2 matrix and a is a 2 × 2

symmetric matrix. Then

∂y

∂a
=



t11 t12 0

t21 t22 0

t31 t32 0

0 t11 t12

0 t21 t22

0 t31 t32


6×3

(6.69)
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Moreover the expression in (6.69) can be written as

∂y

∂a
= (i2 ⊗ t)



1 0 0

0 1 0

0 1 0

0 0 1


=: (i2 ⊗ t)k

Let us denote

for n ̸= 0 : t(j) = −1
2
(sj[n+ 1] + sj[n− 1])

for n = 0 : t(j) = −sj[n+ 1]

with suppressed time dependence. Then t(j) is a 3× 2 matrix. It now follows that

pj =:
∂f2[j]

∂aj
= (i2 ⊗ t(j))k

for 0 ≤ j ≤ N . It is now easy to see that

∂f2
∂An+1

= diag(p0, p1, · · · , pN) (6.70)

The matrix in (6.70) is a 6(N +1)× 3(N +1) block diagonal matrix as expected.

6.4.4 Computing ∂f2
∂Bn+1

We may write f2 = −1
2
D1(xn+1 + xn−1)⊗∗ β.

Proposition 29. Let y = x ⊗ β where x is a 3 × 1 vector and β is a 2 × 1 vector.

Then
∂y

∂β
= i2 ⊗ x
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It is now easy to see that

∂f2
∂Bn+1

= diag(q0, q1, · · · , qN) (6.71)

where

for n ̸= 0 : qj = i2 ⊗ (−1
2
[D1]j(xn+1 + xn−1)) (6.72)

for n = 0 : qj = i2 ⊗ (−[D1]jxn+1) (6.73)

In here we are using the notation [D]j as introduced in Section 6.4. Note that each qj

is an 6× 2 matrix and consequently the equation in (6.71) is a 6(N + 1)× 2(N + 1)

matrix.

6.4.5 Computing ∂f2
∂α

f2 has no α dependence and thus,

∂f2
∂α

= 06(N+1)×(N+1). (6.74)

6.5 Derivatives of constraint equations

We now concentrate on finding the derivatives of the three constraint equations. Note

that we are not discretising the constraints.

f3[j] := (sj[n+ 1])⊤sj[n+ 1]− i2 = 02×2 (6.75)

f4[j] := (sj[n+ 1])⊤[D1]jxn+1 = 02×1 (6.76)

f5[j] := ([D1]jxn+1 · [D1]jxn+1)− 1 = 0 (6.77)
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for 0 ≤ j ≤ N .

6.6 Derivatives of f3

Some preliminaries first.

Definition 5 (Commutation Matrix). Let A be an m× n matrix. Then Km,n is the

mn×mn matrix which transforms vec(A) into vec(A⊤):

Km,nvec(A) = vec(A⊤).

In here vec(A) is the mn× 1 column vector obtained by stacking the columns of A on

top of each other.

Proposition 30. Let f(s) = s⊤s where s is a 3× 2 matrix. Then,

∂f

∂s
= i2 ⊗ s⊤ +K2,2(i2 ⊗ s⊤) (6.78)

For a more detailed discussion of commutation matrix and and matrix calculus in

general see Horn and Johnson [31][p. 267] and/or Magnus and Neudecker [45][pp. 205-

207].

6.6.1 Derivative ∂f3
∂xn+1

The function f3 has no x dependence and therefore

∂f3
∂xn+1

= 03(N+1)×3(N+1) (6.79)

Note here that it is still important to get the dimension of 0 since we need this for

the actual computer implementation.
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6.6.2 Derivative ∂f3
∂Sn+1

In light of Proposition (30) we can write

rj :=
∂f3[j]

∂sj
= (i2 ⊗ s⊤j ) +K2,2(i2 ⊗ s⊤j ) = (i4 +K2,2)(i2 ⊗ s⊤j ) (6.80)

The expression in (6.80) is a 4 × 6 matrix. However the 2nd and 3rd rows of this

matrix are identical since s⊤j sj is symmetric. We need to remove duplicate rows so that

the Jacobian computation is accurate. This row removal can be easily by achieved

pre-multiplying rj with the following matrix:

m :=


1 0 0 0

0 1 0 0

0 0 0 1

 (6.81)

(Note this particular matrix, m removes the third row.) It is now easy to see that

∂f3
∂Sn+1

= diag(mr0,mr1, · · · ,mrN) (6.82)

The equation in (6.82) is now a 3(N + 1)× 6(N + 1) matrix as desired.

6.6.3 Derivatives ∂f3
∂A ,

∂f3
∂B

∂f3
∂α

Once again f3 has no a,β or α dependence and therefore we have

∂f3
∂An+1

= 03(N+1)×3(N+1) (6.83)

∂f3
∂Bn+1

= 03(N+1)×2(N+1) (6.84)

∂f3
∂αn+1

= 03(N+1)×(N+1) (6.85)
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6.7 Derivatives of f4

6.7.1 Derivative ∂f4
∂xn+1

It is clear that
∂f4[j]

∂xn+1

= s⊤j [D1]j (6.86)

for 0 ≤ j ≤ N . The expression in (6.86) yields 2 × 3(N + 1) matrix. It now follows

that
∂f4

∂xn+1

= [s⊤0 [D1]0, · · · , s⊤N [D1]N ]
⊤. (6.87)

Consequently the expression in (6.87) yields a 2(N+1)×3(N+1) matrix as expected.

6.7.2 Derivative ∂f4
∂Sn+1

Proposition 31. Let f(s) = s⊤Dx where s is a 3× 2 matrix, D is an 3× (3(N + 1))

matrix and x is a 3(N + 1)× 1 vector. Then,

∂f

∂s
=
(
(Dx)⊤ ⊗ i2

)
K3,2. (6.88)

It is now easy to see that

uj :=
∂f4[j]

∂sj
=
(
([D1]jxn+1)

⊤ ⊗ i2
)
K3,2. (6.89)

The expression in (6.89) is an 2× 6 matrix. Finally,

∂f4
∂Sn+1

= diag(u0, u1, · · · , uN) (6.90)

which results in a 2(N + 1)× 6(N + 1) matrix as expected.
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6.7.3 Derivatives of ∂f4
∂A ,

∂f4
∂B ,

∂f4
∂α .

Clearly f4 does not depend on any of A,β or α. Thus,

∂f4
∂An+1

= 02(N+1)×3(N+1) (6.91)

∂f4
∂Bn+1

= 02(N+1)×2(N+1) (6.92)

∂f4
∂αn+1

= 02(N+1)×(N+1) (6.93)

6.8 Derivatives of f5

We have that

vj :=
∂f5[j]

∂xn+1

= 2x⊤
n+1

(
[D1]

⊤
j [D1]j

)
(6.94)

which results in a 1× 3(N + 1) row vector. It now easily follows that

∂f5
∂xn+1

= [v0, v1, · · · , vN ]⊤ (6.95)

where the expression in (6.95) results in a (N + 1)× 3(N + 1) matrix as desired. We

also have the following,

∂f5
∂Sn+1

= 0(N+1)×6(N+1) (6.96)

∂f5
∂An+1

= 0(N+1)×3(N+1) (6.97)

∂f5
∂Bn+1

= 0(N+1)×2(N+1) (6.98)

∂f5
∂αn+1

= 0(N+1)×(N+1). (6.99)
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6.9 The Jacobian

For use in the computer implementation we state here the full Jacobian of the system

along with its block sizes. Let us denote the Jacobian by J .

J =



∂f1
∂xn+1

∂f1
∂Sn+1

∂f1
∂An+1

∂f1
∂Bn+1

∂f1
∂αn+1

∂f2
∂xn+1

∂f2
∂Sn+1

∂f2
∂An+1

∂f2
∂Bn+1

∂f2
∂αn+1

∂f3
∂xn+1

∂f3
∂Sn+1

∂f3
∂An+1

∂f3
∂Bn+1

∂f3
∂αn+1

∂f4
∂xn+1

∂f4
∂Sn+1

∂f4
∂An+1

∂f4
∂Bn+1

∂f4
∂αn+1

∂f5
∂xn+1

∂f5
∂Sn+1

∂f5
∂An+1

∂f5
∂Bn+1

∂f5
∂αn+1



(6.100)

The dimensions of each of the blocks are:

• ∂f1
∂xn+1

is an 3(N + 1)× 3(N + 1) matrix.

• ∂f1
∂Sn+1

is an 3(N + 1)× 6(N + 1) matrix

• ∂f1
∂An+1

is an 3(N + 1)× 3(N + 1) matrix.

• ∂f1
∂Bn+1

is an 3(N + 1)× 2(N + 1) matrix.

• ∂f1
∂αn+1

is an 3(N + 1)× (N + 1) matrix.

• ∂f2
∂xn+1

is an 6(N + 1)× 3(N + 1) matrix.

• ∂f2
∂Sn+1

is an 6(N + 1)× 6(N + 1) matrix

• ∂f2
∂An+1

is an 6(N + 1)× 3(N + 1) matrix.

• ∂f2
∂Bn+1

is an 6(N + 1)× 2(N + 1) matrix.
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• ∂f2
∂αn+1

is an 6(N + 1)× (N + 1) matrix.

• ∂f3
∂xn+1

is an 3(N + 1)× 3(N + 1) matrix.

• ∂f3
∂Sn+1

is an 3(N + 1)× 6(N + 1) matrix

• ∂f3
∂An+1

is an 3(N + 1)× 3(N + 1) matrix.

• ∂f3
∂Bn+1

is an 3(N + 1)× 2(N + 1) matrix.

• ∂f3
∂αn+1

is an 3(N + 1)× (N + 1) matrix.

• ∂f4
∂xn+1

is an 2(N + 1)× 3(N + 1) matrix.

• ∂f4
∂Sn+1

is an 2(N + 1)× 6(N + 1) matrix

• ∂f4
∂An+1

is an 2(N + 1)× 3(N + 1) matrix.

• ∂f4
∂Bn+1

is an 2(N + 1)× 2(N + 1) matrix.

• ∂f4
∂αn+1

is an 2(N + 1)× (N + 1) matrix.

• ∂f5
∂xn+1

is an (N + 1)× 3(N + 1) matrix.

• ∂f5
∂Sn+1

is an (N + 1)× 6(N + 1) matrix

• ∂f5
∂An+1

is an (N + 1)× 3(N + 1) matrix.

• ∂f5
∂Bn+1

is an (N + 1)× 2(N + 1) matrix.

• ∂f5
∂αn+1

is an (N + 1)× (N + 1) matrix.

Note that J is a 15(N + 1)× 15(N + 1) matrix.

The complete software implementation of this problem in Python 3 can be found

on https://github.com/dilanfd/dynamics-of-springs
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