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TARGET DETECTION WITH MORPHOLOGICAL 

SHARED-WEIGHT NEURAL NETWORK: 

DIFFERENT UPDATE APPROACHES  

Yixuan Ye 

Dr. James Keller, Thesis Supervisor 

ABSTRACT 

Neural networks are widely used for image processing. Of these, the 

convolutional neural network (CNN) is one of the most popular. However, the CNN 

needs a large amount of training data to improve its accuracy. If training data is 

limited, a morphological shared-weight neural network (MSNN) can be a better 

choice. In this thesis, two different update approaches based on an evolutionary 

algorithm are proposed and compared to each other for target detection based on the 

MSNN. Another network training, based on back propagation, is used for 

comparisons in this thesis, which was proposed by Yongwan Won and applied by my 

colleague and fellow graduate student, Shuxian Shen and Anes Ouadou. Single-layer 

and multiple-layer MSNNs are both presented with different approaches. For a 

dataset, the author created part of a dataset for this thesis and used another dataset 

created by Shen to make comparisons with her network. Results of the MSNN are 

compared with CNN results to show the performance. Experiments show that for a 

single-layer MSNN, the performance of an evolutionary algorithm with partial 
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backpropagation is the best. For a multiple layer MSNN, backpropagation performs 

better, although the MSNN still has a better performance than the CNN. 
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CHAPTER 1. INTRODUCTION 

Machine learning is a popular topic that a lot of people from different fields 

focus on. Many have tried to define machine learning. One definition from Professor 

E. Alpaydin of Boğaziçi University defined machine learning as “programming 

computers to optimize a performance criterion using example data or past 

experience.” [1] Machine learning can be classified into two categories according to 

whether or not there is a reference value “label” for each output, i.e., supervised 

learning and unsupervised learning [2]. There are a lot of branches of machine 

learning, such as classification, regression, and clustering. Object detection is one 

application of machine learning, which uses supervised classification techniques [3]. 

An algorithm is given by a group of images with targets and other nontarget items. To 

realize object detection, an algorithm must find a target and label it as the target even 

though it is surrounded by other nontarget items and background. Sometimes object 

detection also requires algorithms to recognize targets at different distances. It is 

harder for an algorithm to recognize targets with different scales. 

When developing a neural network, people propose many useful networks to 

solve object detection problems. One of the most of the widely used algorithms is the 

Convolutional Neural Network (CNN). CNNs are one of the most popular network 

architectures in deep learning. They are used for image or video recognition [4], 
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language processing [5] and many other applications. With traditional image 

recognition algorithms, filters must be preprocessed manually, but a CNN can update 

filters based on input data and required output. It saves a lot of work and makes the 

whole processing easier. This is the major advantage of CNNs. Since the first CNN 

was introduced in the 1990s, programmers have developed many different structures 

of CNN. LeNet-5 is one of the most popular CNNs designed to recognize handwritten 

and machine-printed characters. Although CNNs have numerous applications and lots 

of advantages, CNNs still has their own disadvantages. One trouble with the CNN is 

that this network needs a large amount of training data to become robust and perform 

accurately. Another problem is the high computational costs of CNNs because of the 

enormous amount of input data. Although we have better central processing units 

(CPUs) and graphics processing units (GPUs) today, it is still a heavy task for a 

personal computer. 

To overcome these kinds of problems, the morphological shared-weight neural 

network (MSNN) was introduced. The MSNN is a shared weight neural network 

using mathematical morphology [6]. The structure of MSNN is similar to the CNN, 

but the feature extraction stage is different. The feature extraction process in MSNN 

uses hit-miss transforms instead of convolutional transforms. Besides, the amount of 

training data that MSNN needs is less than CNN to achieve the same performance. 
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Moreover, MSNN performs better than other shared-weight neural networks when 

applied to target detection [7].  

Both MSNNs and CNNs can update their own weights with backpropagation. 

Backpropagation is an algorithm which calculates error gradients with respect to 

network weights [8]. Although backpropagation is widely used for neural networks, it 

still has many disadvantages, such as gradient vanishing and low ability to avoid local 

minima. So, in this thesis, an innovative approach is proposed, which combines an 

evolutionary algorithm with backpropagation. This thesis also introduces another 

memetic algorithm approach. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Neural Network 

Artificial Neural Networks (ANNs) are computational algorithms which were 

inspired by how the human nervous system processes information. ANN can learn 

like the human brain when given input data. In biological neural networks, all 

biological neural functions are stored in the neurons and in the connections between 

them. So, people think about constructing a simple artificial neural network and train 

it to simulate functions of biological neurons. Since ANN was introduced in the 

1940s, after several decades of researching, it has undergone many improvements and 

has become widely used in computer vision, pattern recognition, voice recognition 

and other problems. The next section briefly introduces the history of ANN. 

2.1.1 History of Neural Network 

Many people have been introduced to the advantages of neural networks in 

recent years. However, the first version of the neural network was introduced in 1943 

by Warren McCulloch and Walter Pitts [9]. They created a neural network model 

based on mathematics and called it a threshold logic. Two approaches appeared based 

on this model. One concentrated on biological processes and the other focused on the 

application of neural networks.  

  

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts


 

5 

 

In 1949, D.O. Hebb [10] created a learning hypothesis, which is now known 

as Hebbian learning. In 1954, Farley and Clark [11] first used a neural computational 

machine (referred to as a calculator) to simulate the Hebbian network. Other 

researchers continued to advance these machines and algorithms, which eventually 

led to machine learning.  

However, in 1969, Minsky and Papert indicated two main issues hindering 

Rosenblatt’s perceptions (algorithms developed for pattern recognition) [16] at that 

time. The first issue was that perceptrons (algorithms developed for pattern 

recognition) were unable to solve exclusive-or circuit problems; and the second 

problem was that computers in that era (the late sixties and early seventies) were not 

powerful enough to process large neural networks which were needed to meet the 

ever-growing computational needs. 

Research on neural networks seemed to come to a standstill until Werbos’s 

backpropagation algorithm was proposed in 1975 [13]. Multi-layer perceptrons 

trained by the backpropagation algorithm solved exclusive-or problem and speeded up 

the computation of networks. Neural networks continue to attract researchers’ 

attention and many experiments have been added to this large body of research. 

Many novel structured neural networks have made an impact in recent years. The 

recurrent neural network (RNN) was developed by Schmidhuber's research group and 

https://en.wikipedia.org/wiki/Donald_O._Hebb
https://en.wikipedia.org/wiki/Artificial_neural_network#cite_note-3
https://en.wikipedia.org/wiki/Hebbian_learning
https://en.wikipedia.org/wiki/Wesley_A._Clark
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
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has won several competitions in pattern recognition and machine learning. The 

convolutional neural network (CNN), which was developed by Yann LeCun in 1996 

[14], has had a remarkable performance in image processing. The morphological 

shared-weight neural network created by Y. Won also provide an outstanding network 

for image processing [6]. 

2.1.2 Multi-layer Neural Network  

Figure 2.1 An example of multi-layer feedforward neural network with one hidden layer 

    A typical neural network consists many layers with many neurons in the 

same layer. The simplest neural network only has one input layer and one output 

layer, but it can be complicated by adding more hidden layers. Figure 2.1 is an 

example of a feedforward neural network with one hidden layer. 

A feedforward neural network performs a nonlinear input-output mapping. 

Calculation equations between neurons in the network are shown as follows. 

… … … 

Input layer Hidden Output 

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning
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In Figure 2.2, a set of function signals are produced by neighbor neurons located 

in the left layer, which is the input of neuron j [15].   

The input of neuron j is [𝑦0,  𝑦1(𝑘),  𝑦𝑖(𝑘), … 𝑦𝑛(𝑘)]𝑇, where 𝑦0 is the fixed 

input related to weight 𝑤j0, which equals the bias 𝑏𝑗 of the neuron j. The weight 

related to neuron j is [𝑤j0,  𝑤j1(𝑘),  𝑤𝑗𝑖(𝑘), … 𝑤𝑗𝑛(𝑘)]. The output of neuron is 

calculated as 

𝑦𝑗(𝑘) = 𝜙𝑗 (𝑣𝑗(𝑘))                       (2-1) 

and 

𝑣𝑗(𝑘) = ∑ 𝑤𝑗𝑖(𝑘)𝑛
𝑖=0 𝑦𝑖(𝑘)                   (2-2) 

… 

… 

𝑦0 = +1 

𝑦𝑖(𝑘) 

𝑦1(𝑘) 

𝑦𝑛(𝑘) 

𝜙 (𝑣𝑗(𝑘)) 

𝑤𝑗0(𝑘) = 𝑏𝑗(𝑘) 

𝑤𝑗1(𝑘) 

𝑤𝑗𝑖(𝑘) 

𝑤𝑗𝑛(𝑘) 

𝑦𝑗(𝑘) 

Figure 2.2 Neuron j in a typical neural network 
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where 𝑣𝑗(𝑘) is the activation function of neuron j. Many different activation 

functions are available including the popular sigmoid activation function and the 

rectified linear unit.  

2.1.3 Backpropagation Algorithm 

As mentioned in the last section, each neuron in the neural network has their own 

associated weights. The network must be trained before using it. Today, the workhorse 

of learning methods is backpropagation. Backpropagation can be traced back to 1957. 

The perceptron algorithm was invented in 1957 by Frank Rosenblatt, which is 

considered as an original form of backpropagation [16]. The basics of 

backpropagation were introduced by Kelley in 1960 [17]. In 1975, a general method 

was published by Werbos [13]. This method was related to the general version of 

backpropagation. In1986, Rumelhart et al. [18], noted that this backpropagation 

method is useful, efficient, and better than all other traditional learning methods. Their 

advocacy of backpropagation attracted people’s attention, and it became widely used 

on neural networks. 

With backpropagation, weights are updated by gradient descent, which means 

weights of neurons are adjusted by calculating the gradient of the cost function. Cost 

function can also be considered as a loss function or error function. In 

https://en.wikipedia.org/wiki/Frank_Rosenblatt
http://en.wikipedia.org/wiki/David_Rumelhart
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backpropagation, a common cost function is to calculate the difference between the 

expected label and the real network output.  

𝑒𝑗(𝑘) = 𝑑𝑗(𝑘) − 𝑦𝑗(𝑘)                          (2-3) 

where 𝑑𝑗(𝑘) is the expected label and 𝑦𝑗(𝑘) is the actual output of neuron j. Given 

the training sample {𝑥(𝑘), 𝑑(𝑘)}, the total error energy of the whole network is 

𝐸(𝑘) = ∑ 𝐸𝑗(𝑘)𝑗 =
1

2
∑ 𝑒𝑗

2(𝑘)𝑗                     (2-4) 

To minimize the total error energy, the backpropagation algorithm applies a 

𝛥𝑤𝑗𝑖(𝑘) to 𝑤𝑗𝑖(𝑘). 𝛥𝑤𝑗𝑖(𝑘) can be obtained by calculating the partial derivative 

𝜕𝐸(𝑘)

𝜕𝜔𝑗𝑖(𝑘)
. According to the chain rule, 

𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑒𝑗(𝑘)

𝜕𝑒𝑗(𝑘)

𝜕𝑦𝑗(𝑘)

𝜕𝑦𝑗(𝑘)

𝜕𝑣𝑗(𝑘)

𝜕𝑣𝑗(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
= −𝑒𝑗(𝑘)𝜙𝑗

′ (𝑣𝑗(𝑘)) 𝑦𝑖(𝑘)       (2-5) 

and 

𝛥𝑤𝑗𝑖(𝑘) = −𝛼
𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
= 𝛼𝛿𝑗(𝑘)𝑦𝑖(𝑘)                (2-6) 

where  

𝛿𝑗(𝑘) = {

𝑒𝑗(𝑘)𝜙𝑗
′ (𝑣𝑗(𝑘))                                  𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛

𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ 𝛿𝑙(𝑘)𝑤𝑙𝑗(𝑘)

𝑙

            𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛 
 

   (2-7) 
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Neuron 𝑙 is an output neuron connected to the hidden neuron 𝑗. And equation 2-6 

updates weights based on the delta rule. The delta rule is a gradient descent learning 

rule with a backprop foundation, used to update the weights of artificial neurons in the 

neural network.  

To increase the rate of learning and avoid instability at the same time, a 

momentum term was added to the delta rule. So, the update rule becomes 

𝛥𝑤𝑗𝑖(𝑘) = 𝛼𝛿𝑗(𝑘)𝑦𝑗(𝑘) + 𝛽𝛥𝑤𝑗𝑖(𝑘 − 1)              (2-8) 

where 𝛽 is positive and is also a momentum constant [19]. 

2.2 Mathematical Morphology 

Mathematical morphology is an image processing technique, which uses 

mathematical theory based on set theory to digital images, graphs, and other spatial 

structures [20]. Some of the most widely used morphological operators include 

erosion, dilation, opening and closing. At first, mathematical morphology could only 

be used on binary images, but it eventually was expanded to grayscale images.  

2.2.1 Binary Morphology 

In binary morphology, images are viewed as subsets of the integer grid 𝑍𝑑 for 

dimension d. The basic operation of binary morphology is to find the binary image 

based on a predefined shape, which is called a structuring element (SE). The 

structuring element probes the binary image with small patterns. SEs are sets that 
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consist of black and white pixels in a 2-dimensional image. Binary morphology is 

about operations on sets. SEs are used to operate on a source image to produce a 

destination image. 

Before introducing morphological operations of binary images, three basic set 

operations should be introduced. Let 𝑍2 be the integer grid, and there are two subsets 

A and B of 𝑍2, 𝐴 ⊂ 𝑍2, 𝐵 ⊂ 𝑍2. Let 𝑥 be a point or an element of a set [20]. 

The translation of A by x is defined as  

𝐴 + 𝑥 = {𝑎 + 𝑥: 𝑎 ∈ 𝐴}                   (2-9) 

The reflection of A is defined as  

−𝐴 = {−𝑎: 𝑎 ∈ 𝐴}                    (2-10) 

The complement of A is defined as  

𝐴𝑐 = {𝑎 ∈ 𝑍2: 𝑎 ∉ 𝐴}                   (2-11) 

Translation and reflection are shown in Figure 2.3. 

Figure 2.3 Translation and reflection. (a) Translation of a set A by x and (b) reflection of a binary set. 

(a) (b) 
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The erosion of binary image A by structuring element B is defined as [20]  

𝐸(𝐴, 𝐵)=𝐴 ⊖ 𝐵={𝑥: 𝐵 + 𝑥 ⊂ 𝐴}                  (2-12) 

Erosion is a morphological operator, which can detect the locations where the 

structuring element fits the image. So, 𝐴 ⊖ 𝐵 should be all points 𝑥 whose 

translations of B by 𝑥 fits inside image A. An example of binary erosion is shown in 

Figure 2.4 [22].  

 

 

 

 

 

Figure 2.4 An example of erosion 

Figure 2.4 shows an example of erosion. Structuring element B is a 2 × 2 image. 

The top left point of B is selected as the “center point”. After erosion, all points which 

meet the equation are reserved and the rest are eroded. That is why it is called 

“erosion.”  

The dilation of binary image A by structuring element B is defined as [20] 

𝐴 ⊕ 𝐵 = {𝑥: (−𝐵 + 𝑥) ∩ 𝐴 ≠ 𝜙}                (2-13) 

Original image A 2 × 2 structuring 

element B 

Eroded image E (A, B) 
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Figure 2.5 An example of dilation 

Figure 2.5 is an example of dilation. Structure element B is the same one used in 

erosion. With dilation, the structuring element need to be reflected, so the “center 

point” is the bottom right point now. After dilation, all points which meet the 

equation are dilated. With dilation, the original image is enlarged by the structure 

element instead of erosion.  

After erosion and dilation, a hit-miss transform is applied for shape detection. It 

is defined as  

𝐴 ⊗ 𝐵 = 𝐴 ⊗ (𝐸, 𝐹) = (𝐴 ⊖ 𝐸) ∩ (𝐴𝑐 ⊖ 𝐹)             (2-14) 

where E and F are two disjoint structuring elements. E describes the shape inside the 

target, while F describes the shape outside the target, which is the background. Figure 

2.6 is an example of hit-miss transform. In the example, E is a structuring element 

which tries to find the desired foreground and F is a structuring element which tries to 

find background. Using equation 2-14, after intersection, points which match both 

structuring elements E and F are our target points. 

Original image A Dilated image D (A, B) 
2 × 2 structuring 

element B 
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2.2.2 Grayscale Morphology 

Binary morphology is widely used for image processing. It can help us recognize 

a target, detect an outline, reduce noise, and do many other functions. However, 

operations only for binary images are not enough. What about color images and 

(a) 

(b) 

(c) (d) 

Figure 2.6  An example of hit-miss transform. (a) E and F structuring element with X as the center of the 

structuring element, (b) input image, (c) complement of input image, and (d) result of hit-miss 

transform. 

E F 
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grayscale images? These images are more common than binary images; so, the 

morphology techniques were extended to grayscale images. Before introducing 

definitions of grayscale morphology, concepts of the surface of a set and the umbra of 

a surface should be described. In Euclidean N-space (𝐸𝑁), suppose there is a set A. 

The top or top surface of A is a function defined on the projection of A onto its first  

(N – 1) coordinates [23]. For the grayscale image, N = 3, and for each 𝑥 in the 

coordinate (N − 1), the top surface of A at 𝑥 is the highest value 𝑦 such that (𝑥, 𝑦) ∈

𝐴. Using definitions in [23], let 𝐴 ⊆ 𝐸𝑁  and                                      

𝐹 = {𝑥 ∈ 𝐸𝑁−1| 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ 𝐸, (𝑥, 𝑦) ∈ 𝐴}. The top or top surface of A, donated 

by 𝑇(𝐴): 𝐹 → 𝐸, is defined by 

𝑇[𝐴](𝑥) = max{𝑦|(𝑥, 𝑦) ∈ 𝐴}                 (2-15) 

Figure 2.7 show the top or top surface of a set A. 

 

 

 

 

Figure 2.7 The top or top surface of a set A 
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Let 𝐹 ⊆ 𝐸𝑁−1 and 𝑓: 𝐹 → 𝐸, the umbra of f, donated by 𝑈(𝑓), 𝑈(𝑓) ⊆ 𝐹 × 𝐸, 

is defined by  

𝑈(𝑓) =  {(𝑥, 𝑦) ∈ 𝐹 × 𝐸|𝑦 ≤ 𝑓(𝑥)}              (2-16) 

Figure 2.8 is an example of umbra of the top surface of A. 

 

Figure 2.8 The umbra of the top surface of a set A 

Based on the top surface and the umbra of the top surface of a set, grayscale 

erosion and dilation are proposed.  

Let 𝐹 ⊆ 𝐸𝑁−1 and 𝐾 ⊆ 𝐸𝑁−1, Let 𝑓: 𝐹 → 𝐸 and 𝑘: 𝐾 → 𝐸. The erosion of 𝑓 

by 𝑘 is denoted by 𝑓 ⊖ 𝑘, 𝑓 ⊖ 𝑘: 𝐹 ⊖ 𝐾 → 𝐸, and is defined by  

𝑓 ⊖ 𝑘 = 𝑇[𝑈[𝑓] ⊖ 𝑈[𝑘]]                  (2-17) 

It can also be computed by 

(𝑓 ⊖ 𝑘)(𝑥) = 𝑚𝑖𝑛𝑧∈𝐾{𝑓(𝑥 + 𝑧) − 𝑘(𝑧)}           (2-18) 
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    Let 𝐹 ⊆ 𝐸𝑁−1 and 𝐾 ⊆ 𝐸𝑁−1, Let 𝑓: 𝐹 → 𝐸 and 𝑘: 𝐾 → 𝐸. The dilation of 

𝑓 by 𝑘 is denoted by 𝑓 ⊕ 𝑘, 𝑓 ⊕ 𝑘: 𝐹 ⊕ 𝐾 → 𝐸, and is defined by  

𝑓 ⊕ 𝑘 = 𝑇[𝑈[𝑓] ⊕ 𝑈[𝑘]]                  (2-19) 

It can also be computed by 

(𝑓 ⊕ 𝑘)(𝑥) = max
𝑧∈𝐾

 𝑥−𝑧∈𝐹

{𝑓(𝑥 − 𝑧) + 𝑘(𝑧)}            (2-20) 

An example of erosion and dilation of a grayscale image is shown in Figure 2.9. 

Values of each pixel of the original grayscale image are between 0 and 255. 0 is black 

and 255 is white. The smaller the value is, the darker the pixel is. The structuring 

element is a 5-pixel × 5-pixel disk. With erosion equation 2-18, the image after 

erosion keeps minimum values, which means it always keeps darker pixels. This is 

why the eroded image looks much darker than the original image, like figure 2.9 (c). 

And with dilation equation 2-20, it always selects brighter pixels because of 

maximum operation. So, the dilated image is brighter than the original image, which 

is shown in figure 2.9 (d). 
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(a) Structuring element  (b) original image   (c) eroded image      (d) dilated image 

Figure 2.9 An example of erosion and dilation of a grayscale image 

2.3 Evolutionary Algorithm 

Evolutionary algorithms are metaheuristic optimization approaches inspired by 

biological evolution. In the real world, there are many NP (nondeterministic 

polynomial time) problems. They take too much time to solve for traditional 

algorithms to try each solution one by one. However, an evolution algorithm can find 

optimal solutions in a wide range of solutions and it doesn’t need to traverse all 

possible solutions. The main process of an evolutionary algorithm is to create a 

population of parent individuals, quantify the qualities of the parent individuals with a 

fitness function, and then generate new individuals based on the parent individuals 

with crossover, mutation and other operations. Finally, evaluate new individuals and 

let the best ones take the place old individuals. By repeating this main process, the 

individual which optimizes the fitness function will be the best choice for a candidate 
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solution of the original problem. Evolutionary algorithms are widely used in 

engineering, natural science, economics and other fields.  

2.3.1 History of Evolutionary Algorithm 

In this section, the history of the evolutionary algorithm will be introduced [24]. 

Evolutionary algorithms can be traced back to the 1950s [25]–[28]. However, due to 

the lack of powerful computers and the limitations of the initial algorithms, 

evolutionary algorithms did not show significant improvement until the1970s. The 

current evolutionary algorithm is inspired from three related approaches: genetic 

algorithms, evolutionary programming, and evolution strategies. Genetic algorithms 

were proposed by Holland [29]–[31], after which many studies were made by other 

researchers, such as De Jong [32], [33], Goldberg [34], [35] and Davis [36]. 

Applications of genetic algorithms mostly focus on function optimization. 

Evolutionary programming was developed by Fogel [37], [38] and improved by 

Burgin [39], [40], Atmar [41], and others. This succession of work helped to develop 

finite state machines (FSM) to predict results on the basis of former observations. 

Evolution strategies were introduced by Rechenberg [42], [43] and Schwefel [44], 

[45] and were designed for solving difficult parameter optimization problems.  

In the1980s, development of computers enhanced the ability of perform large 

scale iterative computation. So, evolutionary algorithms were possible to solve 
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complex real-world optimization problems. Then, researchers put their attention on 

evolutionary algorithms and more work was done on topics such as genetic algorithms 

[46], [47], evolutionary programming [48], and other topics in this field. Now, genetic 

algorithms and memetic algorithms are two popular and widely used techniques in 

this domain. Details of these two algorithms will be introduced in the next section.  

2.3.2 Genetic Algorithm and Memetic Algorithm 

As previously mentioned, the genetic algorithm (GA) and memetic algorithm 

(MA) are popular now and in this experiment, these two algorithms are used to 

generate results. The main reason for the popularity of the GA and MA is that most 

existing algorithms for optimization can easily be stopped once they have reached the 

local optimum instead of the global optimum. However, a GA or MA can overcome 

the local minimum problem. 

The following is a general structure of EA in pseudocode [49].  

 

 

General Structure of Evolutionary Algorithm 

 

Initialize population; 

Evaluate the fitness of each population; 

Select individuals from populations as parents for first generation; 

While termination condition not satisfied DO 
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     Recombine parents; 

     Mutate recombined parents to generate offspring; 

     Evaluate offspring; 

     Select individuals as parents for next generation; 

End While 

 

Sometimes for a complex solution domain, an EA was not efficient enough to 

search all of a solution space. This has led many to attempt combining different 

techniques, which led to the development of the memetic algorithm (MA). The MA 

can be considered as a combination of an EA and a local search. It was first proposed 

by Moscato [50]. Here is the general structure of MA in pseudocode.  

 

General Structure of Memetic Algorithm 

 

Initialize population; 

Evaluate the fitness of each population; 

Select individuals from populations as parents for first generation; 

While termination condition not satisfied DO 

     Recombine parents; 

     Mutate recombined parents to generate offspring; 

     Do local search on each offspring; 

     Evaluate offspring; 
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     Select individuals as parents for next generation; 

End While 

 

Designing an evolutionary algorithm requires the determination of representation, 

initialization, selection and variation operators [14]. These will be introduced in next 

three sections.  

2.3.2.1 Representation 

Computers cannot directly process real-world problems without transforming 

solutions into forms they can deal with. For example, in the traveling salesman 

problem, assuming there are four cities, a representation could be 

[1 2 3 4] 

or another representation with a binary code could be 

[001010011100] 

with each three-bit related to the index of a city.  

Holland [30] believed that the longer representations have more opportunities to 

explore the solutions. In fact, there is no best representation for all problems, and 

sometimes different representations yield similar results [51].  

The following advice should be considered when determining a representation 

[14]: 
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1. The representation should provide immediate information about the solution. 

2. The representation should be amenable to variation operators that are well 

understood for their mathematical properties and can exhibit a gradation of change. 

3. Unless the objective is to explore the utility of a novel representation, 

utilizing established representations may allow more systematic and meaningful 

comparisons. 

2.3.2.2 Initialization 

After determining the representation of solutions, before training, a population of 

candidate solutions should be initialized as parents in first generation. Initialization 

ways are also needed to be determined. With different methods of initialization, 

results of the same structure in an evolutionary algorithm could be different. 

Kazimipour et al. [52] categorized many well-known initialization methods and the 

results revealed larger scale problems depending on how sensitive results were to the 

initialization methods. Moreover, different initialization methods could improve the 

initial quality and give a better starting point for the evolutionary algorithm [53].  

2.3.2.3 Selection 

In each generation of evolutionary algorithms, an algorithm needs to select 

offspring from its population using specific selection methods. Some common 

selection methods include plus/comma, proportional, and tournament [14].  
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Plus/comma selection uses notation (µ + 𝜆) and (µ, 𝜆) and these notations refer 

to the two different cases. The first case is µ parents creating 𝜆 offspring and then 

selecting best µ individuals from µ + 𝜆 individuals as parents in next generation. 

This is called plus selection. The second case is µ parents creating 𝜆 offspring and 

then selecting best µ individuals only from 𝜆 offspring as parents in next generation. 

This is comma selection.  

Proportional selection is also called roulette wheel selection. This selection 

chooses parents in proportion to their fitness value to create offspring. The probability 

of parents to be selected is  

𝑝𝑖 = 𝑓(𝑖)/ ∑ 𝑓(𝑗)µ
𝑗=1                     (2-21) 

where 𝑝𝑖 is the probability of 𝑖th parent to be selected, 𝑓(𝑖) is the fitness value of 

𝑖th parent, and µ is the number of parents.  

Tournament selection has several different versions, but the most common one is 

to randomly select a subset of size q (often q = 2) from the population and then select 

the best one of q individuals as one parent of the next generation. Then, repeat this 

process until enough parents are generated. 
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2.3.2.4 Variation Operators 

Variation operators are used to search improved solutions in the solution space. 

Which means generating offspring from parents in evolutionary algorithm. What kind 

of operators should be used depends on the representation of the problem, selection 

methods, and other factors. There are two typical types of variation operators based 

on their arity. First type is a unary variation operator called mutation. With this 

operator, an offspring relies on one random selected parent. For example, using 

Gaussian mutation operator, an offspring is generated by adding a Gaussian random 

variable with desired mean and standard deviation to the random selected parent. 

Second type is a binary variation operator called recombination or crossover. This 

operator merges information from two parents into one or two offspring. For example, 

with the two-points crossover, suppose we have two parents which are [𝑝11, 𝑝12, 𝑝13, 

𝑝14, 𝑝15] and [𝑝21, 𝑝22, 𝑝23, 𝑝24, 𝑝25]. Two random indexes between 1 and 5 are 

computed. Let the two random indexes be 2 and 4. The offspring of these two parents 

should be [𝑝11, 𝑝22, 𝑝23, 𝑝24, 𝑝15] and [𝑝21, 𝑝12, 𝑝13, 𝑝14, 𝑝25]. 

2.4 Shared-Weight Neural Network 

A shared-weight neural network consists of two stages. The first stage is called 

the feature extraction stage, which is used to extract the feature maps from input data. 

The second stage is the classification stage, which is a fully connected neural 
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network. A common approach to feature extraction is convolution [54]. Another 

extraction method is the morphological hit-miss transform [21], which was used in 

this thesis research. The output of the first stage is the input of the second stage. 

“Shared-weight” refers to those weights that define the feature map as sharing the 

same weights. Matrixes consist of these weights are often called kernels or filters. For 

example, in a convolutional neural network, each kernel is used to process the entire 

input image instead of using different weights for each sub-image. Instead of having 

several weights to train, the same weights are used for each sub-image. Thus, the 

number of parameters is reduced, which makes networks faster and easier to train. 

2.4.1 Convolutional Neural Network 

The convolutional neural network (CNN) is in the category of a shared-weight 

neural network, which has proven effective in the image processing field. LeNet 

architecture was one of the first convolutional neural networks, which propelled deep 

learning into mass acceptance. It has three different layers: 1) the convolutional layer, 

2) the pooling layer and 3) the fully connected layer as shown in Figure 2.10. 

 

Figure 2.10 An example of CNN architecture [55] 
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2.4.1.1 Convolutional Layer 

The purpose of the convolutional layer is to extract features from input data. For 

the CNN, inputs are usually images. Convolution maintains the relationship between 

pixels by learning features with small squares of input images. A feature map is 

obtained by convoluting the input image with a linear filter, adding a bias, and then 

applying a nonlinear function. Convolution is a linear operator. But in the real world, 

most data for CNNs to learn are nonlinear; thus, a nonlinear function is used to 

introduce nonlinearity to the network.  If we have the 𝑘th feature map at a given 

layer, which is ℎ𝑘, its filters are determined by weights 𝑊𝑘 and bias 𝑏𝑘, after 

which, a feature map ℎ𝑘 is obtained as [56] 

ℎ𝑖𝑗
𝑘 = 𝜑((𝑤𝑘 ∗ 𝑥)𝑖𝑗 + 𝑏𝑘)                   (2-22) 

where 𝜑(𝑣) is a nonlinear function, such as sigmoid and ReLU functions.  

The definition of convolution for a 1D signal is 

𝑜[𝑛] = 𝑓[𝑛] ∗ 𝑦[𝑛] = ∑ 𝑓[𝑛]𝑔[𝑛 − 𝑢]

∞

𝑢=−∞

 

= ∑ 𝑓[𝑛 − 𝑢]𝑔[𝑛]∞
𝑛=−∞                    (2-23) 

and convolution for a 2D signal is  

𝑜[𝑚, 𝑛] = 𝑓[𝑚, 𝑛] ∗ 𝑔[𝑚, 𝑛] 
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= ∑  ∞
𝑢=−∞ ∑ 𝑓[𝑢, 𝑣]𝑔[𝑚 − 𝑢, 𝑛 − 𝑣]∞

𝑣=−∞             (2-24) 

Figure 2.11 shows convolution on a binary image. A convolution of a 5 × 5 image 

and 3 ×3 filter is computed. The filter is moved 1 pixel per step over the input 

image and convolves with the input image to compute convolved features.  

 

 

Figure 2.11 An example of convolution on a binary image. (a) input binary image. (b) 3 × 3 filter, 

and (c) result of convolution [57] 

2.4.1.2 Pooling Layer 

Pooling layer is used to reduce the dimensionality of feature maps and keep the 

valuable information at the same time. Different pooling types include max, average, 

and sum. In this thesis, max-pooling is used. So, details of max-pooling are 

introduced in this section.  

Max-pooling partitions an input image into non-overlapping windows and 

outputs the maximum value in these windows. Benefits of pooling are reducing the 

size of representation, reducing the number of parameters, and controlling overfitting. 

(a) (b) (c) 
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As shown in Figure 2.12, the input of the pooling layer is a 6 × 6 image; thus, the 

result of max-pooling with a 2 × 2 filter and a stride of 2 is a 3 × 3 feature map. The 

location of each maximum is recorded in a matrix. 

            

 

Figure 2.12 An example of max-pooling 

2.4.1.3 Fully Connected Layer 

A fully connected layer is a fully connected neural network. The term “fully 

connected” means that every neuron in the previous layer is connected to every 

neuron in the next layer. The output from the previous layer is the input of a fully 

connected layer. The purpose of this layer is to use these features for classifying the 

input image into various classes based on the training dataset. Details of this layer are 

the same as a multi-layer neural network.  

 

 

(a) Input image (b) Feature map (c) Location 
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2.4.2 Morphological Shared-weight Neural Network 

The idea of combining mathematical morphology and other networks was 

proposed by Wilson [58] in 1989, which was the first time that mathematical 

morphology was combined with other networks. Wilson called these networks as 

morphological networks. The theory of a morphological network was described by 

Davidson [59]. Then, morphological networks began to be used on the image 

processing area. Davidson used it to solve template identification and target 

classification problems [60], [61]. The literature search conducted in this research 

could not find where the structuring elements used in a morphological layer were ever 

updated during backpropagation until 1995. Won introduced morphological shared-

weight neural networks (MSNNs) which combines mathematical morphology with 

neural networks and developed backpropagation for MSNNs[21]. Won indicated that 

MSNN had better performance in the target detection field. Jin detected vehicles with 

morphological neural networks [62]. Although some literature has been published 

making mention of morphological shared-weight neural networks, the amount of 

research in this area is much less than that devoted to other algorithms. This is one of 

the reasons the morphological shared-weight neural network is discussed in this 

thesis.  

The structure of a morphological shared-weight neural network is similar to a 

CNN. It still has a pooling layer and a fully connected layer. However, for the first 
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stage, which is the feature extraction stage, the MSNN uses mathematical morphology 

instead of convolution. And for each feature map, MSNN has two filters while CNN 

has only one filter for each feature map. In the morphology layer, the hit-miss 

transform is applied for feature extraction. Furthermore, to compute the hit-miss 

transform, erosion and dilation operations need to be calculated first. These operations 

will be shown in the later sections.  
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CHAPTER 3. IMPLEMENTATION 

3.1 Network Structure 

This thesis focuses on an updated approach to the morphological shared-weight 

neural network. In this section, the structure of MSNN is introduced. As previously 

mentioned, the morphological shared-weight neural network has two stages, which 

are similar to the convolutional neural network. The difference between them is that 

the feature extraction stage uses hit-miss transform in MSNNs instead of convolution, 

which is used by CNNs. A schematic of the MSNN architecture is shown in Figure 

3.1. 

 

Figure 3.1 Architecture of morphological shared-weight neural network 

   The feature extraction stage extracts feature maps from the input image with hit-

miss transform. After max-pooling, the output of first stage is the input of the 
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classification stage. In classification, a fully-connected neural network recognizes 

whether the input is a target or not.  

3.1.1 Feature Extraction Stage 

    The first stage is the feature extraction stage. In a morphological shared-weight 

neural network, the feature extraction stage applies grayscale hit-miss transform. The 

layer which computes hit-miss transform is also called the morphological layer. A 

morphological layer needs two kernels to compute the hit-miss transform, one for the 

hit operator and another one for the miss operator. Then the hit and miss operator 

results are combined to generate hit-miss transform. A max-pooling layer is applied to 

reduce the dimensionality of data and avoid overfitting. In this thesis, three different 

structures of the feature extraction stage are used: 1) the one-morphological-layer 

network, 2) the two-morphological-layer network and 3) the parallel morphological 

network. Figure 3.2 shows the one-morphological-layer feature extraction stage. 

 

 

  

Hit 

Miss 
Max-pooling Input Image 

Figure 3.2 Architecture of a one-layer morphological feature 

extraction stage 
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3.1.2 Classification Stage 

The classification stage is a fully connected neural network. The output from the 

feature extraction stage is a 2-D matrix. However, the input of the classification stage 

should be 1-D vector. Thus, the output of the feature extraction stage will be 

transferred to a 1-D vector as the input of the classification stage. The architecture of 

the classification stage is a multiple-layer neural network with one input layer, one 

hidden layer and one output layer. In the output layer, there is only one neuron, and 

the output value is between 0 and 1. 0, which represents the input image background, 

while 1 represents the input image target. 

3.2 Details of Morphological Shared-weight Neural Network     

    In this section, details of the morphological shared-weight neural network 

(MSNN) are introduced. First, a training process and a test process are proposed. For 

the training process, the author uses three different algorithms. They include this 

thesis’s novel contribution to MSNN development, i.e., the evolutionary algorithm 

with partial backpropagation (EAPB), as well as backpropagation (BP) and the 

memetic algorithm (MA). Then, process details are introduced, such as sub-image 

generation, morphological operation and update approaches. 
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3.2.1 Training Process 

    The purpose of the training process is to settle all weights, which include kernels 

in morphological layers and neurons in the fully connected neural network. In this 

thesis, three diverse ways are used to train MSNNs. 

3.2.1.1 Backpropagation Approach 

The first approach, backpropagation, is one of the most popular and traditional 

methods, which is widely used to train most kinds of neural networks. In this thesis, 

Shen’s backpropagation algorithm is used for MSNN with single morphological layer 

[22]. However, the author of this thesis expands it to a multiple morphological layer 

MSNN and makes a few small changes; moreover, algorithms are tested on new test 

dataset. So, some new details of backpropagation must be introduced to establish a 

proper context instead of just referring to Shen’s thesis. 

With the backpropagation algorithm, after settling all parameters and initializing 

structuring elements and neural network weights, the first step is to generate sub-

images from training images, including target sub-images and background sub-

images. These sub-images are then passed into the network one by one. After the 

feature extraction stage, feature maps are generated and input into the classification 

stage. Errors are calculated by a loss function of the difference between the actual 

output of a fully connected neural network and the expected output label, which is “1” 
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for target sub-images and “0” for background sub-images. Square error function and 

cross-entropy function are used as the loss function in this thesis. Then, errors are 

backpropagated throughout the network. The weights of the neural network and 

structuring elements are updated by these backpropagated errors. When the error of a 

sub-image is below a well-trained threshold, the sub-image is replaced by another 

sub-image with replacement mechanisms. The pseudocode of this algorithm is shown 

as follows [22]: 

 

Backpropagation Algorithm 

 

Read N input image with targets and backgrounds; Epoch = 1; RandSelect = 0;  

While (RandSelect < MaxRandSelect & Epoch < MaxEpoch).  

For n = 1 : N  

Randomly select M target sub-images, Tn1, …, TnM;  

Randomly select M background sub-images, Bn1, …, BnM;  

End For  

RandSelect = RandSelect + 1;  

ErrMonitor = 0;  

While (Epoch < MaxEpoch & ErrMonitor < ContinueLow).  

For sub-image in {Tn1, Bn1, …, TnM, BnM}  

Perform forward and backward propagation;  

If (PSS < WellTrained)  
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Replace current sub-image with new one;  

End If  

End For  

Epoch = Epoch + 1; 

If (RMSE < StopErr)  

ErMonitor = ErrMonitor + 1;  

Else  

ErrMonitor = 0;  

End If  

End While  

End While 

 

3.2.1.2 Evolutionary Algorithm with Partial Backpropagation 

    Although backpropagation is a widely-used training algorithm for neural 

networks, and its training speed is faster than many randomly searched algorithms, 

this algorithm still has many limitations. Backpropagation is not efficient enough to 

avoid getting stuck at local minima, and it cannot explore a broad range of a solution 

space. This is because when using gradient descent, weights always move toward the 

local minima instead of exploring unfamiliar space. Evolutionary algorithms have 

been established as efficient enough to avoid local minima and explore broader 
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solution spaces. However, the new evolutionary algorithm lacks speed when training 

due to its ability to generate new solutions almost randomly while exploring the 

broader solution space. This helps the algorithm to explore more but to converge more 

slowly. The author’s solution was to combine the evolutionary algorithm with 

backpropagation, which provides the innovative element proposed in this thesis, i.e., 

the evolutionary algorithm with partial backpropagation (EAPB).  

With EAPB, weights of structuring elements are put together to form the 

chromosome of the evolutionary algorithm. Obviously, they are updated by EA. Thus, 

in each generation of EA, the best chromosome settles into the role of the current 

kernel; then, the weights of neural network are updated by backpropagation based on 

these kernels. That is why this algorithm is known as “partial” backpropagation.  

For EAPB, after setting up all parameters, the first step is initializing populations 

of kernels and weights in neural network and then generating sub-images, including 

target sub-images and background sub-images. These sub-images are then passed into 

the feature extraction stage and classification stage one by one. Weights of kernels are 

updated by the evolutionary algorithm for one generation. Then, the best chromosome 

is selected as current kernels, and the weights of neural network are updated by 

backpropagation for one generation. This process repeats until reaching the stop 

condition.  
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Evolutionary Algorithm with Partial Backpropagation Algorithm 

 

Read N input image with targets and backgrounds; 

Set up Max Epoch, probability of mutation and crossover and other parameters; 

Initialize weights of neural networks and initial K parents of structuring elements; 

For n = 1 : N  

Randomly select M target sub-images, Tn1, …, TnM;  

Randomly select M background sub-images, Bn1, …, BnM;  

End For  

For epoch = 1 : Max Epoch 

If epoch = 1 

    Evaluate loss of initial parents; 

End If 

If rem(epoch,10) = 0 

    Reselect sub-images; 

End If 

For j = 1 : K 

Select parents with proportional selection; 

Generate offspring with mutation and crossover; 
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    End For 

For j = 1 : 2*K 

    Evaluate parents and offspring; 

    Select the best K individuals from all parents and offspring as new parents; 

       Select the best individual as the current structuring element which will be 

used in backpropagation for the neural network; 

End For 

For sub-image in {Tn1, Bn1, …, TnM, BnM} 

Perform forward and do backward propagation only for the neural 

 network part;  

If (PSS < WellTrained)  

Replace current sub-image with a new one;  

End If  

End For  

End For 

 

3.2.1.3 Memetic Algorithm 

With EAPB, the evolutionary algorithm works with backpropagation, and its 

results are compared with the results of traditional backpropagation. Then, another 

solution comes to mind based on the question: Why not use a memetic algorithm to 
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update all weights including weights of the structuring elements and the fully 

connected layer? Notably, the memetic algorithm is a genetic algorithm with local 

search capabilities. It can, therefore, be used as the training algorithm in this section 

because it converges faster than the traditional genetic algorithm. All weights, which 

are the weights of structuring elements and the fully connected layer, are put into the 

chromosome and updated by the memetic algorithm. For a local search in MA, one 

generation of backpropagation is used. 

With a memetic algorithm (MA), the first step is initializing the K populations, 

which consist of all the weights in the network. The next step is to generate sub-

images and pass them into the feature extraction stage and the classification stage one 

by one. Then, parents are evaluated by loss function, and offspring are generated with 

mutation, crossover and local search. The best K populations from parents and 

offspring are selected as new parents in the next generation. This process is repeated 

until meeting the stop condition. 

 

Memetic Algorithm 

 

Read N input image with targets and backgrounds; 

Set up Max Epoch, probability of mutation and crossover and other parameters; 

Initialize K parents, which consists of all weights; 

For n = 1 : N  
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Randomly select M target sub-images, Tn1, …, TnM;  

Randomly select M background sub-images, Bn1, …, BnM;  

End For  

For epoch = 1 : Max Epoch 

If epoch = 1 

    Evaluate loss of initial parents; 

End If 

If rem(epoch,10) = 0 

    Reselect sub-images; 

End If 

For j = 1 : K 

Select parents with proportional selection; 

Generate offspring with selected parents by mutation and crossover; 

Do local search, which is one generation of backpropagation; 

End For 

For j = 1 : 2*K 

    For sub-image in {Tn1, Bn1, …, TnM, BnM} 

Perform forward propagation and evaluate the individual;  

If (PSS < WellTrained)  

Replace current sub-image with new one;  
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End If  

End For  

    Select best K individuals from all parents and offspring as new parents; 

End For 

End For 

 

3.2.2 Test process 

    In the test process, instead of randomly selecting sub-images, a sliding window is 

used to go through the whole test image and sub-images from every location of the 

test images are generated by the window. Then these sub-images are passed into the 

network one by one, and output values are computed for each position. Thus, a new 2-

D matrix is generated, and output values of each sub-image are settled on each 

corresponding location. This 2-D matrix is called the detection plane. 

3.2.3 Initialization 

In all three training processes, initialization is a common step. Some researchers 

found that initialization methods of neural network could affect results significantly 

[63], and some effective initialization methods have been proposed for specific neural 

network models [64], [65]. So, in this thesis, three different initialization methods are 

compared with each other in single morphological layer network. The first 
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initialization method is all zero initialization. As its name indicates, this method 

initializes weights with all zeroes. The second initialization method is small random 

numbers initialization. All weights are initialized with random numbers generated by 

Gaussian distribution with 0 mean and 1 standard deviation. 

The third initialization is proposed by the author based on the MSNN. For hit 

and miss structuring elements, understanding of the physical meaning of the MSNN 

structuring elements allows hit kernel to be initialized by randomly selecting a target 

sub-image, which is the same size as the hit kernel. Meanwhile, the miss kernel is 

initialized by randomly selecting a sub-image of the background, which is also the 

same size as the miss kernel. 

3.2.4 Sub-image Generation 

Input images are pre-processed by the sub-image generation algorithm before 

they are passed into the network. To compare results with Shen’s network, we both 

used the same sub-image generation algorithm. With the sub-image generation 

algorithm, from each input training image, the M target sub-images with Label 1 and 

M background sub-images with Label 0 are generated. Input images are read into the 

algorithm with locations of target centers. So, target sub-images are selected randomly 

from the input image with centers located in a small window 𝑈 at the target center. 

Background sub-images are selected randomly from the input image with centers 

located outside of window 𝑉, which includes the entire target. Figure 3.3 is an 
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example of window 𝑈, with the window 𝑉 as an input image. Centers of the target 

sub-images are selected from the orange area while centers of background sub-images 

are selected from blue area. 

 

 

 

 

 

Figure 3.3 An example of window 𝑈, and 𝑉 of an input image 

The sub-image generation is described as follows: [22] 

 

Sub-image generation algorithm 

 

Data: Training image S, target center C, sub-image size winSize, M sub-images 

Result: Target sub-images, background sub-images, labels  

Define a small window U centered at the target center C;  

Define a large window V which contains the entire target and is centered at the target 

center C;  

For i = 1 : M  

Randomly select a position Pt inside of the window U;  

Use position Pt as the sub-image center to cut a target sub-image Tn with the 

size winSize;  

 

is the center of target 

Window U 

Window V 
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Randomly select a position Pb outside of the window V;  

Use position Pb as the sub-image center to cut a background sub-image Bn with 

the size winSize;  

End  

Generate labels: target label = 1, background label = 0; 

 

3.2.5 Morphological Operation 

In the feature extraction stage, hit-miss transform is computed in the 

morphological layer. To calculate hit-miss transform, two morphological operations 

are used. One is the hit operation, which applies grayscale erosion on the input image. 

Another one is the miss operation, which applies grayscale dilation on the input 

image. The final calculation involves a combination of these two operations to 

generate the hit-miss operation. 

The notations and equations of the morphological operation are defined as [21:] 

 𝑎(𝑥): The input to 𝑎 node which is the output of node x 

 𝑡𝑦
ℎ(𝑥): Hit structuring element weight associating node y with node x. 

 𝑡𝑦
𝑚(𝑥): Miss structuring element weight associating node y with node x. 

 𝑛𝑒𝑡𝑦
ℎ: Net input for Hit (erosion) operation. 
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 𝑛𝑒𝑡𝑦
𝑚: Net input for Miss (dilation) operation. 

Hit operation: 𝑛𝑒𝑡𝑦
ℎ = min

𝑥∈𝐷[𝑡𝑦]
{𝑎(𝑥) − 𝑡𝑦

ℎ(𝑥)}             (3-1) 

Miss operation: 𝑛𝑒𝑡𝑦
𝑚 = max

𝑥∈𝐷[𝑡𝑦]
{𝑎(𝑥) − 𝑡𝑦

𝑚(𝑥)}           (3-2) 

Hit-miss transform: 𝑎(𝑦) =  𝑛𝑒𝑡𝑦 =  𝑛𝑒𝑡𝑦
ℎ − 𝑛𝑒𝑡𝑦

𝑚        (3-3) 

    Take hit operation as an example: A structuring element slides onto the input 

image one pixel per step. At each position where the structuring element is located, 

the hit operation is computed, which is the subtraction between the local area of the 

image and the structuring element. This allows the minimum value to be selected.  

To realize these operations in the algorithm and speed up the computation, Shen’s 

second update mechanism is used [22]. With an input image and a hit structuring 

element, we slid the whole input image instead of the structuring element. This is 

because sliding the structuring element causes an overlap between steps. Almost all 

pixels in the input image are associated with each element in the structuring element, 

and they are also subtracted by it. So, all pixels associated with the same element in 

the structuring element are put together to form a new 2-D matrix. If the size of the 

structuring element is [K, K], 𝐾 × 𝐾 2-D matrixes are generated, and they are 

combined together as a 3-D matrix. Each 2-D matrix is subtracted by the associated 

element in SE one by one and at the same time, a 2-D location map is generated with 
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a corresponding location of minimum value through all the 2-D matrices. If more than 

one location with minimum value appears, only the first location should be recorded. 

An example of hit operation is shown in Figure 3.4. 

 

 

 

 

 

 

 

 

Figure 3.4 Hit operation. (a) A window slides one pixel per step on the input image to generate 2-D 

matrices with each matrix corresponding to the same color element in SE and then 

subtracts the element from the whole matrix, which has the same color as the element. (b) 

The minimum must be found through the 3rd dimension to get the minimum value for the 

feature map and to record the location. 

The miss operation follows the same process as the hit operation. The only 

difference is selecting the maximum value from all the 2-D matrices instead of the 

minimum value from all the 2-D matrices.  

(a) 

Input image Structuring element 

 

Feature map Location map 

(b) 
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3.2.6 Update Approaches 

As previously mentioned, the three different training approaches for weights are 

backpropagation (BP), evolutionary algorithm with partial backpropagation (EAPB) 

and memetic algorithm (MA). Each has its own update rules for weights. In this 

section, details of the three different update approaches are introduced. All update 

rules are based on the MSNN architecture as shown in Figure 3.5.  

 

Figure 3.5 Architecture of MSNN with two feature extraction layers in the feature extraction stage and 

one hidden layer for the neural network 

3.2.6.1 Backpropagation Approach 

With BP, all structuring elements’ weights and fully connected neural networks 

are updated by gradient descent. First, let’s review the notations of the MSNN [21]: 

 𝑎(𝑥): The input to node 𝑎, which is the output of node x. 
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 𝑡𝑦
ℎ(𝑥): Hit structuring element weight associating node y with node x. 

 𝑡𝑦
𝑚(𝑥): Miss structuring element weight associating node y with node x. 

 𝑛𝑒𝑡𝑦
ℎ: Net input for Hit (erosion) operation. 

 𝑛𝑒𝑡𝑦
𝑚: Net input for Miss (dilation) operation. 

For the feature extraction stage, the update rules are expressed as: 

𝛥𝑡ℎ
𝑦(𝑥) = 𝜂𝛿𝑦

𝜕𝑛𝑒𝑡𝑦
ℎ

𝜕𝑡𝑦
ℎ(𝑥)

                    (3-4) 

𝛥𝑡ℎ
𝑚(𝑥) = −𝜂𝛿𝑦

𝜕𝑛𝑒𝑡𝑦
𝑚

𝜕𝑡𝑦
𝑚∗(𝑥)

                  (3-5) 

𝛿𝑦 = − ∑ (
𝜕𝐸

𝜕𝑎𝑘
.

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
.

𝜕𝑛𝑒𝑡𝑘

𝜕𝑎(𝑦)
)

𝑘
               (3-6) 

where 

𝛿𝑦 = 𝛿(𝑦) = ∑ 𝛿𝑘𝑤𝑘(𝑦)𝑘                  (3-7) 

For the nodes in the top feature extraction layer  

𝛿𝑦 = 𝛿(𝑦) = ∑ 𝛿𝑘(
𝜕𝑛𝑒𝑡𝑘

ℎ

𝜕𝑎(𝑦)
−

𝑘

𝜕𝑛𝑒𝑡𝑘
𝑚

𝜕𝑎(𝑦)
)            (3-8) 

and for the nodes in other feature extraction layers. 

Note that in equation 3-8, the last factor 
𝜕𝑛𝑒𝑡𝑘

𝜕𝑎(𝑦)
 will be equal to zero if 𝑦 ≠

arg max
𝑞∈𝐷[𝑡𝑘]

{𝑎(𝑞) − 𝑡𝑘
𝑚∗(𝑞)}. When implementing this algorithm, this fact should be 

used to choose the index k over which to form the sum. 
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𝜕𝑛𝑒𝑡𝑦
ℎ

𝜕𝑡𝑦
ℎ(𝑥)

=
𝜕

𝜕𝑡𝑦
ℎ [ min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

ℎ(𝑞)}] 

= {
−1 

  
0    

   
𝑖𝑓 𝑥 = arg min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

ℎ(𝑞)} 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(3-9) 

𝜕𝑛𝑒𝑡𝑦
𝑚

𝜕𝑡𝑦
𝑚∗(𝑥)

=
𝜕

𝜕𝑡𝑦
𝑚∗ [ min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

𝑚∗(𝑞)}]    

= {
−1 

  
0    

   
𝑖𝑓 𝑥 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

𝑚∗(𝑞)} 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(3-10) 

and  

𝜕𝑛𝑒𝑡𝑘
ℎ

𝜕𝑎(𝑦)
=

𝜕

𝜕𝑎(𝑦)
[ min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

ℎ(𝑞)}] 

= {
1 
  
0 

  
𝑖𝑓 𝑦 = arg min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

ℎ(𝑞)} 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(3-11) 

𝜕𝑛𝑒𝑡𝑘
𝑚

𝜕𝑎(𝑦)
=

𝜕

𝜕𝑎(𝑦)
[ min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

𝑚∗(𝑞)}] 

= {
1 
  
0 

  
𝑖𝑓 𝑦 = arg max

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

𝑚∗(𝑞)} 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(3-12) 

The neuron network consists of an input layer, a hidden layer and an output layer 

with its notations designated as  

𝐸𝑗(𝑘):  The instantaneous error energy of neuron j. 

𝑤𝑗𝑖: The synaptic weight between neuron j and neuron i. 
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𝑣𝑗(𝑘): The input of the activation function associated with neuron j. 

𝑦𝑗(𝑘): The output of neuron j. 

𝑒𝑗(𝑘): The error signal produced at the output of neuron j. 

𝜙𝑗(𝑘): The activation function of neuron j. 

Loss function, which is used to calculate the error signal, is the square error loss 

function in BP. 

𝐸𝑗(𝑘) =
1

2
𝑒𝑗

2(𝑘)                     (3-13) 

So, the total instantaneous error energy of the whole network is 

𝐸(𝑘) = ∑ 𝐸𝑗(𝑘)
𝑗

=
1

2
∑ 𝑒𝑗

2(𝑘)
𝑗

            (3-14) 

With the chain rule, the correction 𝛥𝑤𝑗𝑖(𝑘) applied to the synaptic weight 

connecting neuron i to neuron j is given by 

𝛥𝑤𝑗𝑖(𝑘) = {

𝛼𝑒𝑗(𝑘)𝜙𝑗
′ (𝑣𝑗(𝑘)) 𝑦𝑖(𝑘)      𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

𝛼𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ (𝑒𝑙𝜙𝑗(𝑣𝑙(𝑘))𝑤𝑙𝑗(𝑘)) 𝑦𝑖(𝑘)

𝑙

   𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒
 

(3-15) 

For the activation function of the hidden layer and output layer in the 

backpropagation approach with single morphological layer, the sigmoid function is 
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used on both the hidden layer and the output layer. With two morphological layers, a 

rectified linear unit (ReLU) function is used on the hidden layer to avoid gradient 

vanishing, and the sigmoid function is used on the output layer.  

Sigmoid function:    𝜙𝑗 (𝑣𝑗(𝑘)) =
1

1+exp(−𝑎𝑣𝑗(𝑘))
           (3-16) 

RuLU function:      𝜙𝑗 (𝑣𝑗(𝑘)) = max (0, 𝑣𝑗(𝑘))          (3-17) 

3.2.6.2 Evolutionary Algorithm with Partial Backpropagation 

With EAPB, the weights of the neural network are still updated with 

backpropagation, so update rules are same as the neural network part of BP, which 

includes equation 3-13 to 3-15. However, the weights of the structuring elements are 

updated by the evolutionary algorithm. In this section, we will focus on the update 

rules of SE.  

Take a single morphological layer network as an example. Suppose we have a 

pair of structuring elements. One is the hit structuring element [ℎ11, ℎ12 …  ℎ1𝑁; 

ℎ21, ℎ22 … ℎ2𝑁; … ; ℎ𝑁1, ℎ𝑁2 … ℎ𝑁𝑁] with size [N, N], and another one is the 

miss structuring element [𝑚11, 𝑚12 …  𝑚1𝑁; 𝑚21, 𝑚22 … 𝑚2𝑁; … ; 𝑚𝑁1, 

𝑚𝑁2 … 𝑚𝑁𝑁] with size [N, N]. Then, we put all 2 × 𝑁2 weights into a vector 

considered as the EA chromosome [ ℎ11, ℎ12 …  ℎ1𝑁, ℎ21, ℎ22 … ℎ2𝑁, … , ℎ𝑁1, 

ℎ𝑁2 … ℎ𝑁𝑁, 𝑚11, 𝑚12 …  𝑚1𝑁, 𝑚21, 𝑚22 … 𝑚2𝑁, … , 𝑚𝑁1, 𝑚𝑁2 … 𝑚𝑁𝑁 ]. 

This is the representation of our solution, and our goal is to find the best chromosome 
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which can minimize the loss function. After that, we initialize K populations of 

chromosome with a selected initialization method and pass them on as initial parents 

into the next generations.  

For each generation of EA, offspring of parents are generated with crossover and 

mutation operators. A two-point crossover is used in EAPB. For example, if we have 

two parents which are [𝑝1
1, 𝑝2

1, 𝑝3
1, 𝑝4

1, 𝑝5
1] and [𝑝1

2, 𝑝2
2, 𝑝3

2, 𝑝4
2, 𝑝5

2], then two 

random indexes between 1 and 5 are computed. Suppose the two random indexes are 

2 and 4. With the two-points crossover, the offspring of these two parents should be 

[𝑝1
1, 𝑝2

2, 𝑝3
2, 𝑝4

2, 𝑝5
1] and [𝑝1

2, 𝑝2
1, 𝑝3

1, 𝑝4
1, 𝑝5

2].  

For mutation, there are three different versions. The first one adds a small 

random number between [−1, 1] to each weight of the chromosome. The second one 

adds a random Gaussian distribution number with 0 mean and 1 standard deviation to 

each weight of the chromosome. Finally, the last one adds m*loss/160, where m is a 

random Gaussian distribution number with 0 mean and one standard deviation and the 

loss is the sum of total errors calculated by the loss function.  

In the classification stage, the update rules of a multiple-layer neural network 

with one input layer, one hidden layer, and one output layer are same as the rules in 

the BP approach. The only difference is the loss function. The cross-entropy function 

is added to compare with the square error function, which is 
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 𝐸𝑗(𝑘) = −[ 𝑑𝑗(𝑘)ln𝑦𝑗(𝑘) + (1 − 𝑑𝑗(𝑘)) ln (1 − 𝑦𝑗(𝑘)) ]     (3-18) 

where 𝑑𝑗(𝑘) is the desired output of neuron j, and 𝑦𝑗(𝑘) is the actual output of 

neuron j. 

So, with the chain rule, the correction 𝛥𝑤𝑗𝑖(𝑘) of the cross-entropy function 

applied to the synaptic weight connecting neuron i to neuron j is changed to 

𝛥𝑤𝑗𝑖(𝑘) = {

𝛼𝑒𝑗(𝑘)𝑦𝑖(𝑘)      𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

𝛼𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ (𝑒𝑙𝑤𝑙𝑗(𝑘)) 𝑦𝑖(𝑘)

𝑙

   𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒  

(3-19) 

3.2.6.3 Memetic Algorithm 

In a memetic algorithm, all weights of the structuring elements and neural 

network are put together into the chromosome. The update process is much like the 

update process of the feature extraction stage in EAPB. First, initialize the K 

populations and pass them into the algorithm. Then, in each generation, generate K 

offspring with crossover, mutation and a local search. Here, the local search is the 

main technique used in the memetic algorithm to speed up convergence of the 

algorithm. After doing crossover and mutation, offspring will do several generations 

of backpropagation to slightly update all weights in the offspring. Then these 

offspring and parents compare with each other and select the best K populations as 

new parents. A local search can be considered an operation of trying to find local 
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minima around each offspring and to then replace these offspring with the local 

minima to compare them with each other and thereby find the minimum which is 

closest to the global minimum state or is exactly the global minimum state. There is 

no backpropagation in this approach. 

3.2.7 Sub-image Replacement Method 

If there are N training images, for each training image, M target sub-images and 

M background sub-images are selected to pass into the algorithm. The number of sub-

images passed into the algorithm is 2 × 𝑀 × 𝑁. In this experiment, M = 40, N =8, 

and the size of input training image is [245, 327], which means 640 sub-images were 

selected to pass into the algorithm. But for a training image, there are 54,963 sub-

images in total. So, it is not enough to train the network with just 640 sub-images. 

This is the reason for a sub-image replacement operation in an algorithm. When the 

error of a sub-image is smaller than the well-trained value, which is set up manually, 

this sub-image will be replaced by a new sub-image. The new sub-image has the same 

label as the replaced one. The sub-image replacement method used in this thesis is 

randomly selecting a new sub-image, which is similar to the sub-image generation 

process.  
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3.2.8 Target Boxes 

The output of MSNN is a detection plane, which is a continuous confidence map. 

If the confidence is close to 1, it means the sub-image of the corresponding location 

has a high confidence to qualify as the target. If the confidence is close to 0, it means 

the sub-image of the corresponding location has a low confidence to be the target, 

which indicates that this sub-image has a high confidence, making it a good choice for 

the background. Figure 3.6 represents a test image detection plane. The target is a 

white and black cup with a terra-cotta soldiers’ pattern.  

 

Figure 3.6 Detection plane of a test image and the target is a white and black cup with a terra-cotta 

soldiers’ pattern. 

In Figure 3.6, a few bright points in the detection plane are reported based on the 

targets in these corresponding sub-images. However, these reported targets come from 

the same actual target. When we draw detection boxes, which contain targets based on 

these points, too many repeated boxes will appear on the same target. Thus, a method, 

called non maximal suppression, to eliminate these repeated boxes is introduced.  

(a) Detection 

plane 

(b) Test image 
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The first step of this method is to find a maximum on the detection plane, record it, 

and set its neighbor area to zeros. Then, find another maximum, repeat the first step 

until all points with values are recorded points, and the other points are zero. After this 

operation, target boxes are eliminated, and important boxes are maintained. An example 

of target boxes before and after elimination is shown in Figure 3.7. 

 

 (a) Boxes of target before elimination and (b) boxes of target after elimination 

Figure 3.7 An example of boxes of target before elimination and after elimination. 
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CHAPTER 4 RESULTS 

4.1 Dataset 

In this thesis, three groups of datasets have a white and black cup with a terra-

cotta soldiers’ pattern as target. One group of datasets was created by Shen [22], 

which was used to compare our network results with those of Shen. Another two 

groups of datasets were created by the author under the advisement of Dr. James 

Keller at the University of Missouri-Columbia. We selected a cup as our target and 

took a lot of images in different instances and with diverse backgrounds. Afterwards, 

these images were resized and converted into grayscale. Then, we set up the centers of 

these images manually which were used to locate targets. The size of the images is 

[245, 327]. 

For Dataset I, all images were placed at the same distance from the camera. The 

target was a white and black cup with a terra-cotta soldiers’ pattern. Figure 4.1 shows 

some samples from Dataset I.  
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Figure 4.1 Samples from Dataset I 

This dataset has 10 groups with eight images per group. The background of each 

group is different. The background of each image in one group is the same, but the 

target has eight different directions in total. This dataset is the “simplest” group for 

the algorithm. 

Dataset II still has 10 groups with eight images per group. Figure 4.2 shows 

some samples from this dataset. 

 

 

 



 

61 

 

    

    

    

Figure 4.2 Samples from Dataset II 

All images in this dataset have the same distance as in Dataset I, and all have the 

same target as Dataset I. The difference between them is that in Dataset II, most 

images have occlusion situations. As shown in Figure 4.2, the target is occluded by 

other background items in Groups 1 to 4 and in Groups 7 to 10. In Groups 5 to 10, a 

new cup is added to the image and there is no occlusion in Groups 5 and 6. These two 

groups are used to test whether the network can identify “the cup” or just cup shapes.  

Dataset III is the dataset which Shen created. Figure 4.3 shows some samples 

from that dataset. Dataset III has 16 groups of images with eight images in each 

group. The target is still the black and white cup. 
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Figure 4.3 Samples from Dataset III 

In Dataset III, the three objects in each image are the cup, a tissue box and a 

sprayer. None of the items in these images are occluded by any other items. These 16 

groups of images have different distances from the camera—both far and near. In each 

group, the cup has eight different directions.  

All images are split into one training set and three testing sets. Group 9 of 

Dataset III is selected as the training set. Dataset I, Dataset II and the rest images of 

Dataset III are considered as testing set I, testing set II and testing set III separately.  

4.2 Results of Single Morphological Layer Networks 

    The experiments of a single morphological layer network are focused on 

comparisons between three different update approaches, which are backpropagation 

(BP), the evolutionary algorithm with partial backpropagation (EAPB) and the 

memetic algorithm (MA). First, with EAPB, which is the main algorithm discussed, 

three experiments were conducted for comparisons. The first one compares 

performances of updating networks with the square error loss function and the cross-
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entropy loss function. The second one compares the performances of the different 

mutation methods mentioned in Section 3.2.6.2. The third one compares performances 

of the different initialization methods mentioned in Section 3.2.3. Then, the results of 

the three different update approaches are compared. After one morphological layer 

with one pair of kernels trained by three update approaches are compared with each 

other, one more pair of kernels is added into the morphological layer. Thus, a parallel 

morphological shared-weight neural network is trained to see if the results are better 

than the results of the networks with one pair of kernels. 

4.2.1 Comparison of Loss Function 

    Single morphological layer networks are trained separately by the EAPB 

approach with two different loss functions. The first loss function is the square error 

loss function, and the second one is the cross-entropy loss function. The parameters of 

two networks are shown in Table 4.1. 

Table 4.1 Parameters of a single layer morphological network 

Iteration 200 
N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50╳50 

Structuring element size 5╳5 

Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

β (momentum constant)  0.1 

Well trained 10−5 

Learning rate 0.3 

Size of population 20 

Probability of mutation 0.8 

Probability of crossover 0.8 
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Dataset III is used for this comparison. Group 9 of Dataset III is used as training 

data, and the remaining images of Dataset III are used as test data. For both loss 

functions, we trained each network five times and the only difference between two 

networks is different loss functions. These two networks use the same initialization 

method, crossover and mutation method. The reason why we trained each network 

five times is operations include initialization, crossover and mutation could make 

results of the same network different each time because of their randomness. So we 

ran each network five times and averaged or concatenated results to make results 

more reliable. The accuracy of the network is evaluated by the ROC curve. The y 

label of the ROC curve is the true-positive (TP) rate, which is the number of correct 

points detected as targets by the algorithm divide the number of total targets. The x 

label of the ROC curve is the false-positive (FP) rate, which is the false alarm per 

image and the false alarm is the number of wrong points detected as targets. Colors on 

the color bar correspond to thresholds from 0 to 1. These thresholds are used to 

distinguish targets and backgrounds. For example, we have a detection plane of an 

input image, and 0.9 is selected as the threshold. So, the corresponding sub-image of 

the point which has a confidence (output) higher than 0.9 on the detection plane is 

labeled as 1. The corresponding TP rate and FP rate are calculated based on this 

threshold and all information is related to one point on the ROC curve with the 

corresponding color of this threshold. 
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 Figure 4.4 is an example output image. There are two green boxes, which are 

the bounding boxes where the algorithm indicates a target exists. These boxes are 

drawn with centers, which are points with TP rates higher than the threshold, after non 

maximal suppression. The red point in the output image is the point which has the 

highest confidence as a target. So, the center of the left box has the correct point 

detected as a target by the algorithm, and the center of the right box is a false alarm. If 

the purpose of those working with this experiment is to find targets with no false 

alarms, then the preferred algorithms have ROC curves possessing a higher TP rate 

when the false alarm per image is 0. However, if we want to find targets, the more the 

better. The target-seeking algorithms can tolerate some false alarms per image, but the 

less false alarms, the better. Thus, the preferred algorithms are those with ROC curves 

possessing a higher TP rate when false alarms per image are in a desired acceptable 

range. 

 

Figure 4.4 An example of output image with one true positive and one false alarm. 

 Figure 4.5 shows all ROC curves of the five networks for both functions. The 

left column has the results of the cross-entropy loss function, and the right column has 
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the results of the square error loss function. Figure 4.6 shows the vertical average 

ROC curve and the concatenated ROC curve of five individual networks for both 

functions. Averages of the TP rates are calculated in vertical-average ROC curves to 

observe the fluctuation of the network. Moreover, the concatenated ROC curves are 

computed by merging all test data together and considering them as one entire test 

dataset.  

 

 

 

 

Figure 4.5 ROC curves of five networks for two different loss functions.  

(a) ROC curves of cross-

entropy function 

(b) ROC curves of square 

error function 

(c) Zoomed in ROC curves of 

cross-entropy function 

(d) Zoomed in ROC curves of 

square error function 
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Figure 4.6 Vertical average and concatenated ROC curves for two different loss functions.  

From the figures, it is obvious that using square error loss function gives a better 

performance. Figure 4.6 (e) and (f), show that with the same FP rate, the TP rate of the 

(a) Vertical average ROC curve 

of cross-entropy function 

(b) Vertical average ROC curve 

of square error function 

(c) Concatenated ROC curve of 

cross-entropy function 

(d) Concatenated ROC curve of 

square error function 

(e) Vertical average ROC curves 

of two loss functions 

(f) Concatenated ROC curves of 

two loss functions 
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square error function is always higher than the TP rate of the cross-entropy function. 

The reason could be that the cross-entropy function makes the algorithm converge too 

fast, and the current weights of neural network could be stuck with the current best 

structuring elements. So the chance of finding other better structuring elements may 

be lower. With these results, the square error function is clearly better for the EAPB 

approach, which is why it was chosen. Its use will be shown later. Samples of 

detection results are shown in Appendix Figure A-1 and Appendix Figure A-2. 

4.2.2 Comparison of Mutation Methods 

    Three different mutation methods are compared with each other. For networks to 

be trained, we still use one single morphological layer network trained separately by 

EAPB with different mutation methods. The first mutation method adds a small 

random number between [−1, 1] to each weight of the chromosome. The second one 

adds a random Gaussian distribution number with 0 mean and 1 standard deviation to 

each weight of the chromosome, and the third one adds m*loss/160, where m is a 

random Gaussian distribution number with 0 mean and 1 standard deviation. Network 

parameters are listed as follows: 
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Table 4.2 Parameters of the single-layer morphological network 

Iteration 200 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50╳50 

Structuring element size 5╳5 

Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

β (momentum constant)  0.1 

Well trained 10−5 

Size of population 20 

Probability of mutation 0.8 

Probability of cross over 0.8 

The dataset used in these comparisons is still Dataset III. Group 9 of Dataset III 

is used as training data, which includes eight images. And the rest images of Dataset 

III are used as testing data. 
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Figure 4.7 ROC curves of three different mutation methods.  

(a) Original ROC curves of 

first mutation method 

(b) Zoomed in ROC curves of 

first mutation method 

(c) Original ROC curves of 

second mutation method 

(d) Zoomed in ROC curves of 

second mutation method 

(e) Original ROC curves of third 

mutation method 

(f) Zoomed in ROC curves of third 

mutation method 
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Figure 4.7 shows the results of three different mutation methods. Each row of 

figures presents the original and zoomed in ROC curves for corresponding mutation 

methods.      

In Figure 4.8, the vertical average ROC curves and concatenated ROC curves of 

three different mutation methods are shown. 

In Figure 4.8, we can see that with the second mutation method, which adds a 

random Gaussian distribution number with 0 mean and 1 standard deviation to each 

weight of the chromosome, results are more stable than those found with the other 

two mutation methods, and they have a higher FP rate than the others. To observe 

results more clearly, the vertical average ROC curves and the concatenated ROC 

curves of three mutation methods are put into Figure 4.9 for comparison.  
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Figure 4.8 Vertical average and concatenated ROC curves of three different mutation methods.  

(a) Vertical average ROC curve 

of first mutation method 

(b) Concatenated ROC curve of 

first mutation method 

(c) Vertical average ROC curve 

of second mutation method 

(d) Concatenated ROC curve of 

second mutation method 

(e) Vertical average ROC curve 

of third mutation method 

(f) Concatenated ROC curve of 

third mutation method 
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Figure 4.9 Comparisons between three mutation methods. 

    From the previous figures, it is obvious that the second mutation which adds a 

random Gaussian distribution number with 0 mean and 1 standard deviation to each 

weight of the chromosome has a better performance than the other two mutation 

methods. With the same FP rate, the ROC curve of the second mutation has a higher 

TP rate value, which is what we want. So, the second mutation method is selected as 

the mutation method for the following experiment. Examples of detections results of 

three mutation methods are shown in Appendix Figure A-3 and Appendix Figure A-4. 

4.2.3 Comparison of Initialization methods 

As mentioned in Section 3.2.3, three initialization methods are compared with 

the EAPB update approach. The first initialization method is an all-zero initialization. 

The second initialization method is a small random numbers initialization. The third 

one is proposed by the author based on the MSNN. For the hit-miss structuring 

elements, the hit kernel is initialized by randomly selecting a sub-image of the target, 

(a) Vertical average ROC curves of 

three mutation methods 

(b) Concatenated ROC curves of 

three mutation methods 
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which has the same size as the hit kernel, while the miss kernel is initialized by 

randomly selecting a sub-image of the background, which also has the same size as 

the miss kernel. Dataset III is still used in these comparisons with group 9 as the 

training data and the remaining images as testing data. Parameters used in these 

networks are the same as parameters in Section 4.2.2.  

Original and zoomed in ROC curves are shown in Figure 4.10. Each row of 

figures shows ROC curves of the first initialization method, the second initialization 

method, and the third initialization method in sequence.  

From Figure 4.10, we can see that the performances of the second and third 

initialization methods are better than the first initialization methods. We cannot figure 

out which one is better among the second and third initialization methods from these 

figures, so the vertical average and concatenated ROC curves are shown in Figure 

4.11. But from Figure 4.11, there is still no significant distinguishing difference 

between them. Then, the vertical average and concatenated ROC curves from the 

three initialization methods are put into one figure separately for observing clearly in 

Figure 4.12. 
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Figure 4.10 ROC curves of three different initialization methods.  

 

(a) Original ROC curves of 

first initialization method 

(b) Zoomed in ROC curves of 

first initialization method 

(c) Original ROC curves of 

second initialization method 

(d) Zoomed in ROC curves of 

second initialization method 

(e) Original ROC curves of third 

initialization method 

(f) Zoomed in ROC curves of third 

initialization method 
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Figure 4.11 Vertical average and concatenated ROC curves of three different initialization methods.  

(a) Vertical average ROC curve 

of first initialization method 

(b) Concatenated ROC curve of 

first initialization method 

(c) Vertical average ROC curve of 

second initialization method 

(d) Concatenated ROC curve of 

second initialization method 

(e) Vertical average ROC curve of 

third initialization method 

(f) Concatenated ROC curve of 

third initialization method 
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Figure 4.12 Comparisons between three initialization methods.  

From Figure 4.12, the vertical average ROC curve of the third initialization 

method is slightly higher than curve of second initialization method and the 

concatenated ROC curve of the third initialization method is also higher than the 

curve of the second initialization method between [0.2, 0.8] of the FP rate. The reason 

for the different results with different initialization methods is that the initial 

chromosomes start at various locations within the solution space, so the closer the 

initial chromosomes are to the global minimum, the easier it is for the algorithm to 

find the best solution. So, in this case, the third initialization method was selected as 

the initialization method used in all experiments for EAPB. Examples of detections 

results of three initialization methods are shown in Appendix Figure A-5 and 

Appendix Figure A-6. 

 

 

(a) Vertical average ROC curves of 

three initialization methods 

(b) Concatenated ROC curves of 

three initialization methods 
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4.2.4 Comparison of Three Update Approaches 

In this section, three different update approaches are compared with each other. 

They are backpropagation (BP), evolutionary algorithm with partial backpropagation 

(EAPB) and the memetic algorithm (MA). The network used is MSNN with a single 

morphological layer. For the dataset, group 9 Dataset III is selected as the training 

data. Dataset I, Dataset II and the remaining images of Dataset III are used as three 

groups of test data.  

4.2.4.1 Backpropagation (BP) 

    First, a single morphological layer network is trained by BP five times to assure 

more reliable results. Weights of structuring elements are initialized as zero and 

weights of the neural network are initialized with random small numbers between [−1, 

1], which are the same as those found in Shen’s networks, so we can easily compare 

our results with her results. Parameters for this network are listed in Table 4.3. 

Table 4.3 Parameters of the single morphological layer network with BP 

Iteration 1000 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50×50 

Structuring element size 5×5 

Hidden neurons in neural network 20 

𝑎1 (parameter in sigmoid function in hidden layer)  0.3 

𝑎2 (parameter in sigmoid function in output layer) 0.4 

β (momentum constant)  0.2 

MaxRandSelect  5 

Well trained 10−5 
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Group 9 of Dataset III is selected as training data. After training, these networks 

are tested on three groups of test data, which are Dataset I, Dataset II and Dataset III 

without group 9. Figure 4.13 shows the test results of Dataset I and Dataset II. 

 

 

 

Figure 4.13 Results of Dataset I and Dataset II with BP.  

(a) Original ROC curves for Dataset I (b) Original ROC curves for Dataset II 

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II 

(e) Concatenated ROC curves for Dataset I (f) Concatenated ROC curves for Dataset II 
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From Figure 4.13, it is obvious that test results of Dataset I are exceptional, i.e., 

100 percent accuracy. This means MSNN trained by BP has excellent performance on 

test images which have the same distance as training images. For Dataset II results, 

which is the dataset with occlusion situations, performance results cannot be 

concluded now without comparisons. These results will be compared with two other 

update approaches later. Dataset III results are shown in Figure 4.14.  

 

 

 

Figure 4.14 Results of Dataset III with BP. 

    Figure 4.14 (c) indicates that the results of networks trained by BP are stable. 

The reason could be that initialization method of weights were the same in each 

(a) Original ROC curves (b) Zoomed in ROC curves 

(c) Vertical average ROC curve (d) Concatenated ROC curve 
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network and each network has the same starting point with zero initialization. Thus, 

the algorithm search solutions are in the same neighborhood space with 

backpropagation. 

4.2.4.2 Evolutionary Algorithm with Partial Backpropagation (EAPB) 

Five individual networks, which were also trained by EAPB, are featured in this 

section. The third initialization method mentioned in Section 3.2.3 and the second 

mutation method are used. These networks were trained by group 9 of Dataset III. 

Dataset I, Dataset II and the remaining images in Dataset III represent the three 

featured groups of test data in this section. Parameters used in this section are the 

same as parameters in Table 4.2. Figure 4.15 shows the results of Dataset I and 

Dataset II. Figure 4.16 shows results of Dataset III. 
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Figure 4.15 Results of Dataset I and Dataset II with EAPB.  

(a) Zoomed in ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset II 

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II 

(e) Concatenated ROC curves for Dataset I (e) Concatenated ROC curves for Dataset II 
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Figure 4.16  Results of Dataset III with EAPB 

    Figure 4.15 (a), (c) and (e) show results of networks trained by EAPB also have 

perfect performances on Dataset I, which means networks trained by EAPB can 

exactly detect the target from images which have the same distance as the training 

images. In figure 4.15 (b), (d) and (f), for test images with occlusion situations, when 

false alarm per image is 0, the TP rate reaches 0.6 and when false alarm turns to 1, the 

TP rate is around 0.9. Networks trained by EAPB have a great capacity to detect 

targets from different distances when we train them with images from only one 

distance. But networks trained by EAPB take more time for training. The reason 

could point to the evolutionary algorithm part of this approach, which not only 

(a) Original ROC curves (b) Zoomed in ROC curves 

(c) Vertical average ROC curve (d) Concatenated ROC curve 
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exploits the search space, but also conducts an exploratory search that needs much 

more time to expand and search the solution space. 

4.2.4.3 Memetic Algorithm (MA) 

For the memetic algorithm, a single morphological layer network is trained by 

MA. The third initialization method mentioned in Section 3.2.3 and the second 

mutation method are used. All weights are put together as one chromosome and a 

local search is added to speed up the training process. With a local search, instead of 

searching solutions totally at random, each population converges to the nearest local 

minimum and compares with each other, which indicates a faster path to the global 

minimum. But even with a local search, training networks with MA still requires a lot 

of time. Thus, only three individual networks are trained with MA instead of five. 

Table 4 lists the parameters used for these networks. 

Table 4.4 Parameters of the single morphological layer network with MA 

Iteration 100 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50╳ 50 

Structuring element size 5╳5 

Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

Well trained 10−5 

Size of population 10 

Probability of mutation 0.8 

Probability of crossover 0.8 

Figure 4.17 shows the results of Dataset I and Dataset II. The left column shows 

figures from Dataset I and the right column shows figures from Dataset II.  
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Figure 4.17 Results of Dataset I and Dataset II with MA. 

Figure 4.18 shows test results of Dataset III. The ROC curves of Dataset I show 

that networks trained by MA perform poorly compared to the other two update 

approaches. When the FP rate is 0, the MA-trained network TP rates cannot always 

reach 1. For Dataset II, the highest TP rate is around 70 percent, which is lower than 

the others. Results of Dataset III are shown in Figure 4.18. It is obvious that the MA-

3 3 

(a) Zoomed in ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset II 

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II 

(e) Concatenated ROC curves for Dataset I (f) Concatenated ROC curves for Dataset II 
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trained performance of networks is not as good as the other two update approaches. 

The reason for this could lie in all weights being put into one chromosome making the 

chromosome too complicated, thereby rendering it unable to find the best solution 

within the appropriate time. 

 

 

Figure 4.18 Results of Dataset III with MA. 

4.2.4.4 Three update approaches 

    Based on the results of the three updated approaches, this section will discuss 

their differences. Figure 4.19 compares the approaches for Datasets II and III. No 

comparisons are shown on Dataset I due to its superior performance. The left column 

(a) Original ROC curves (b) Zoomed in ROC curves 

(c) Vertical average ROC curve (d) Concatenated ROC curves 
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compares the vertical average ROC curves and the right column compares 

concatenated ROC curves.  

 

 

Figure 4.19 Comparisons of the three updated approaches for Dataset II and Dataset III.  

    Figure 4.19 shows that the performances of networks trained by EAPB are better 

than the performances of the other two update approaches. With the same FP rate 

value, networks trained by EAPB have a higher TP rate, which means that when 

networks have the same number of false alarms per image, the networks trained by 

EAPB are better able to detect the target. From Figure 4.19 (a) and (b), the vertical 

average of the ROC curve and the concatenated ROC curve of BP for Dataset II are 

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II 

(c) Vertical average ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III 
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close to the curves of EAPB. The ability of networks trained by EAPB to detect the 

target in occlusion situations is slightly better than networks trained by BP, and the 

ability of networks trained by EAPB to detect the target from different distances is 

much better than networks trained by BP between intervals [0, 0.8]; then, the ROC 

curve of BP catches up with the ROC curve of EAPB. What we require for good 

networks is the same FP rate; thus, the higher the TP rate is, the better. Based on these 

results, networks trained by EAPB were determined to have the best performance, and 

networks trained by MA were determined to have the worst performance. Because of 

the long computing times and terrible performance of MA, MA will not be considered 

as an algorithm from this point on. Examples of detections results of three update 

approaches are shown in Appendix Figure A-7 and Appendix Figure A-8. 

4.2.5 Results of Parallel Morphological Shared-weight Neural Network 

    All results of morphological one-layer networks with just one pair of kernels 

have already been posted. At this point, the question that comes to mind is: What 

happens when two parallel pairs of kernels work together in one morphological layer? 

Will results be better? To answer this question, a parallel morphological shared-

weight neural network was trained with EAPB because of EAPB’s superior network 

performance. The structure of this MSNN network is shown in Figure 4.20. Instead of 

one pair of kernels, the network has two parallel pair of kernels in its feature 

extraction stage. So, there are two feature maps after the hit-miss transform. These 
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feature maps were put together, converted into a one-dimension vector and passed 

into the neuron network. 

 

Table 4.5 Parameters of parallel MSNN 

Iteration 200 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50×50 

1st pair of structuring elements size 
2nd pair of structuring elements size 

 

5╳5 
5╳5 

 Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

β (momentum constant)  0.1 

Well trained 10−5 

Learning rate 0.2 

Size of population 20 

Probability of mutation 0.4 

Probability of cross over 0.9 

The network was trained five times to make results more reliable. These 

networks were trained by group 9 of Dataset III and tested on three testing sets, which 

consists of Dataset I, Dataset II and the remaining images of Dataset III. Figure 4.21 

 

  

Hit1 

Miss1

Max-pooling 

Input Image 

Figure 4.20 Architecture of a parallel morphological shared-weight neural network. 

  

  
Miss2 

Hit2 
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shows the original ROC curves and zoomed in ROC curves of these networks for 

Dataset I–III.  

 

 

 

 

Figure 4.21 Original and zoomed in ROC curves of parallel networks for Dataset I, Dataset II and 

Dataset III.  

Figure 4.22 shows vertical average ROC curves and concatenated ROC curves of 

these networks for Datasets I–III. 

(a) Original ROC curves for Dataset I 

(c) Original ROC curves for Dataset II 

(e) Original ROC curves for Dataset III 

(b) Zoomed in ROC curves for Dataset I 

(d) Zoomed in ROC curves for Dataset II 

(f) Zoomed in ROC curves for Dataset III 
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Figure 4.22 Vertical average and concatenated ROC curves of parallel networks for Dataset I, Dataset 

II and Dataset III.  

From Figures 4.21 and 4.22, we can find that parallel networks trained by EAPB 

perform perfectly on Dataset I, and all networks reached the 1 TP rate for Dataset I. 

This means that parallel networks can detect targets correctly from all images with the 

(a) Vertical average ROC curve for dataset I 

(c) Vertical average ROC curve for dataset II 

(e) Vertical average ROC curve for dataset III 

(b) Concatenated ROC curve for dataset I 

(d) Concatenated ROC curve for dataset II 

(f) Concatenated ROC curve for dataset III 
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same distance as the training images. In figure 4.22 (c) and (d), for dataset II, which 

are images with occlusion situations, when the FP rate is 0, the TP rate is over 50 

percent and the TP rate reaches 80 percent while the FP rate turns to 1. From figure 

4.22 (e) and (f), the TP rate turns from 50 percent to 90 percent when the FP rate 

changes from 0 to1.  

 

Figure 4.23 Comparisons between parallel networks and networks with one pair of kernels for Dataset 

II and Dataset III. 

In figure 4.23, results of the parallel network are compared with results of the 

single layer networks with one pair of kernels for Dataset II and Dataset III. Figure 4.23 

(a) shows that performances of both networks are similar, but the single layer network 

with one pair of kernels performs slightly better than the parallel network. From figure 

4.23 (b), it is clearly that the parallel network performs better than the single layer 

network with one pair of kernels. Examples of detections results of parallel networks 

are shown in Appendix Figure A-9. 

 

(a) Vertical average ROC curve for Dataset II (b) Vertical average ROC curve for Dataset 

III 
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4.3 Results of Multiple Morphological Layer Network 

Deep learning has become a hot topic. Many people believe that the deeper the 

better for networks. So, with MSNN, we also considered making it deeper. Instead of 

having one pair of kernels in one morphological layer, we used two morphological 

layers, and each layer has one pair of kernels. It is a cascaded network. We trained it 

with two update approaches: 1) the backpropagation approach and 2) the evolutionary 

algorithm with partial backpropagation approach. Our goal was to determine which 

update method works best in a cascaded network. 

4.3.1 Backpropagation 

First, we trained a two-layer morphological network with backpropagation five 

times. For training data, we continued to use images from group 9 of Dataset III. 

These networks were also tested on Datasets I–III. In the two-layer morphological 

networks, there are two morphological layers and after each morphological layer, 

there is a max-pooling layer. So, after the feature extraction stage, the feature map of 

two-layer morphological networks is much smaller. Parameters used in this network 

are listed in Table 4.6. 
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Table 4.6 Parameters of two-layer morphological network trained by BP 

Iteration 500 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50×50 

1st pair of structuring elements size 

2nd pair of structuring elements size 

 

5×5 

3×3 

 Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

β (momentum constant)  0.2 

Well trained 10−5 

MaxRandSelect 5 

We used all zero initialization for kernels in first and second morphological 

layers and initialized all weights of the neuron network with small random numbers in 

the range of [−1, 1]. For hidden layers, rectified linear activation function was used to 

avoid gradient vanishing. Original and zoomed in ROC curves of two-layer 

morphological networks trained by BP are shown in Figure 4.23. Vertical average 

ROC curves and concatenated ROC curves are given in Figure 4.24. 
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Figure 4.23 Original and zoomed in ROC curves of two-layer morphological networks trained by BP 

for Datasets I–III.  

(a) Original ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset I 

(c) Original ROC curves for Dataset II (d) Zoomed in ROC curves for Dataset II 

(e) Original ROC curves for Dataset III (f) Zoomed in ROC curves for Dataset III 
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Figure 4.24 Vertical average and concatenated ROC curves of two morphological layers networks 

trained by BP for Datasets I–III 

Figure 4.23 and Figure 4.24 show the performance of a two-layer morphological 

network in Dataset I has a slightly inferior performance than that of the other 

networks. When the FP rate is 0, the TP rate does not reach 1 every time, but it is still 

(a) Vertical average ROC curve for dataset I (b) Concatenated ROC curve for dataset I 

(c) Vertical average ROC curves for dataset II (d) Concatenated ROC curve for dataset II 

(e) Vertical average ROC curve for dataset III (f) Concatenated ROC curve for dataset III 
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very close to 1; thus, this performance is still satisfying. For Dataset II, the color of 

the threshold quickly turns from yellow to blue when the FP rate is around 0.6 or 0.7. 

With this turning point, we can use the blue color to set the threshold as 0.7. We can 

also get an acceptable performance with a 0.6 false alarm per image and an accuracy 

of over 75%, which is an excellent result for an occlusion situation. Figure 4.24 (e) 

and (f) show networks with an accuracy of almost 70% when the FP rate is 0, which 

means networks can detect 70% of the targets correctly without a false alarm. This has 

been the highest accuracy possible when the FP rate equals 0 for Dataset III until now. 

Examples of detections results of multiple layer networks trained by BP are shown in 

Appendix Figure A-10. 

4.3.2 Evolutionary Algorithm with Partial Backpropagation 

An evolutionary algorithm (EA) with partial backpropagation performs great 

when training a one-layer morphological network. So, we decided to use EA with 

partial backpropagation (EAPB) on two-layer morphological networks to test its 

performance. With EAPB, instead of putting the weights of one pair of kernels into 

the chromosome, we the put the weights of two pairs of kernels into the chromosome 

and initialized them with random Gaussian distribution numbers with 0 mean and 1 

standard deviation. All other processes were the same as a one-layer morphological 

network trained by EAPB. Parameters used are listed in Table 4.7. 
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Table 4.7 Parameters of two-layer morphological network trained by EAPB 

Iteration 100 

N (number of training images) 8 

M (number of sub-images/image) 40 

Sub-image size 50×50 

1st pair of structuring elements size 
2nd pair of structuring elements size 

 

5×5 
3×3 

 Hidden neurons in neural network 20 

a (parameter in sigmoid function in output layer)  0.3 

β (momentum constant)  0.1 

Well trained 10−5 

Size of population 20 

Probability of mutation 0.8 

Probability of cross over 0.8 

    The two-layer morphological network was still trained five times. Training data 

came from group 9 of Dataset III images and networks were tested using three test 

sets which consist of Datasets I, Dataset II and the remaining images in Dataset III. 

Original and zoomed in ROC curves are shown in Figure 4.25. Vertical averages and 

concatenated ROC curves are given in Figure 4.26. Each row presents the featured 

paired parameters for each dataset in sequence (I–III). 
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Figure 4.25 Original and zoomed in ROC curves of two-layer morphological networks trained by 

EAPB for Dataset I, Dataset II and Dataset III.  

(a) Original ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset I 

(a) Original ROC curves for Dataset I 

(c) Original ROC curves for Dataset II (d) Zoomed in ROC curves for Dataset II 

(e) Original ROC curves for Dataset III (f) Zoomed in ROC curves for Dataset III 
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Figure 4.26 Vertical average and concatenated ROC curves of two-layer morphological networks 

trained by EAPB for Dataset I, Dataset II and Dataset III.  

    From Figures 4.25 and 4.26, it is obvious that two morphological neural 

networks trained by EAPB performed very poorly compared to other previously 

trained networks. In Figure 4.26 (a) and (b), for Dataset I, the TP rate could reach 1 

(a) Vertical average ROC curve for dataset I (b) Concatenated ROC curve for dataset I 

(c) Vertical average ROC curve for dataset II (d) Concatenated ROC curve for dataset II 

(e) Vertical average ROC curve for dataset II (f) Concatenated ROC curve for dataset II 
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before the FP rate reached 1, which means the two-layer morphological neural 

networks trained by EAPB cannot detect all targets correctly from test images, which 

have the same distance as the training images and have no occlusion situation. In 

Figure 4.26 (c)–(f) representing Dataset II and III, in both cases, the two 

morphological neural networks trained by EAPB perform unsatisfactorily. When the 

false alarm per image is 0, the true positive rates for the two datasets are around 0.3 

and 0.2, which is much lower than the true positive rates recorded for the other 

networks. Moreover, when the false alarm per image reaches 1, the true positive rates 

(TP rate) for two datasets are only around 0.6. Reasons for the terrible performance 

could be due to the evolutionary part. We added weights of another pair of kernels 

into the chromosome, which made the chromosome more complicated and more 

difficult to find in the search. We were unable to find the best initialization method for 

the multiple-layer morphological networks, which could have caused the unacceptable 

results. Examples of detections results of multiple layer networks trained by EAPB 

are shown in Appendix Figure A-10. 

4.3.3 Comparisons of Two-layer Morphological Networks 

    In this section, we present the results of putting two-layer morphological 

networks trained by BP and trained by EAPB together for comparison. Figure 4.27 

shows the vertical average and concatenated ROC curves of both updated approaches 

for Dataset II and Dataset III.  
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Figure 4.27 Comparisons of two-layer morphological networks trained by BP and networks trained by 

EAPB for Dataset II and Dataset III.  

    From Figure 4.27, we can see that performance of networks trained by BP is 

much better than networks trained by EAPB for both datasets. This is interesting 

because the EAPB-trained networks with a one-layer morphological network 

performed better than the BP-trained one-layer morphological networks; however, 

after adding another morphological layer, the networks trained by EAPB performed 

much worse than before, and the networks trained by BP performed better than 

before. For EAPB, chromosomes become more complicated after adding another 

morphological layer, which makes the solution space much wider and more difficult 

(a) Vertical ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II 

(c) Vertical ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III 
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to explore. Although the EAPB uses elitism, it cannot guarantee to find the global 

minimum each time. Because of random evolutions of generating offspring, the 

EAPB has big chances to get rid of the local minimum. But it needs “luck” to make 

moves near the global minimum. It could move from a local minimum to another 

local minimum with “bad luck”. And if the solution space is too wide, it is difficult 

for the EAPB to find the global minimum within the limited generations. Therefore, 

results of networks trained by EAPB are not stable. For the two-layer morphological 

networks trained by EAPB, we have not yet found an appropriate initialization 

method. Initialization methods can visibly affect results. This was confirmed in 

Section 4.2.3. Meanwhile, BP, solutions are becoming better and better in each 

generation. Although BP cannot avoid the local minimum, BP finds a “minimum” 

around the start point at least. This could explain why the two-layer networks trained 

by EAPB performed so poorly compared to those trained by BP. 

4.4 Comparisons Between Networks with Different Structures 

    Now we have all results of one-layer morphological networks, parallel networks 

and two-layer morphological networks. This section compares all these networks. The 

best update approach for each structure is selected as a representative. So, one-layer 

morphological networks trained by EAPB are compared with two-layer 

morphological networks trained by BP to see if more layers make the performance 

better. Moreover, parallel networks trained by EAPB are compared with two-layer 



 

104 

 

morphological networks trained by BP to observe which performance is better—the 

parallel network or cascaded network. We compare results of Dataset II and Dataset 

III because all networks performed satisfactorily on Dataset I. Figure 4.28 compares 

an EAPB-trained one-layer morphological network with a BP-trained two-layer 

morphological network. Figure 4.29 compares a parallel network and a cascaded 

network (two-layer morphological networks trained by BP).  

 

 

 

Figure 4.28 Comparison between a two-layer morphological network trained by BP and a one-layer 

morphological network trained by EAPB for Dataset II and Dataset III.  

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II 

(c) Vertical average ROC curves for 

Dataset III in range [0, 5] 

(d) Concatenated ROC curves for 

Dataset III in range [0, 2] 
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    From Figure 4.28, we can see that when the FP rate is in the range of [0, 0.3], the 

performance of the two-layer morphological network trained by BP is better. 

Furthermore, in the preferred range [0.3, 2.5], the FP rate of a one-layer 

morphological network is higher, which indicates that if we want 0 false alarm per 

image with a higher TP rate, a two-layer morphological network trained by BP is a 

better choice. However, if we can accept a false alarm per image in range [0.3, 2.5] 

and need the TP rate to be as high as possible, a one-layer morphological network 

could better meet our needs. 

 

 

 

Figure 4.29 Comparison between cascaded networks and parallel networks for Dataset II and Dataset 

III.  

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II 

(c) Vertical average ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III 
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    From Figure 4.29 (a) and (b), there is no significant difference between 

performances of cascade networks and parallel networks for Dataset II. They perform 

similarly on images which have an occlusion situation. For Dataset III, which consists 

of images with different distances, when we need 0 false alarm per image, the TP rate 

of the cascade network is almost 0.7 while the TP rate of the parallel network is 

around 0.5, which in this case means that the cascade network is a better choice. 

However, if we can accept some false alarms per image, the parallel network could be 

preferred.  

4.5 Comparisons Between MSNN and CNN 

    The convolutional neural network (CNN) is a widely used and popular neural 

network used for image processing. In this thesis, the morphological shared-weight 

neural network (MSNN) is introduced. A major goal of this research was to compare 

MSNNs with CNNs and see which performed better with our datasets. For the 

MSNN, there are one-layer morphological networks and two-layer morphological 

networks. So, we also have one-layer convolutional networks and two-layer 

convolutional networks for CNN. 

4.5.1 Comparisons of One-Layer Networks 

     First, a convolutional one-layer network is set up to compare with a 

morphological one-layer network. In MSNN, a pair of structuring elements is used to 
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compute a one-feature map that corresponds to one convolutional kernel in CNN. We 

trained CNN with backpropagation and trained MSNN with EAPB. One group of 

images from Dataset III is used as training data and these networks were tested on 

Dataset I–III. Figure 4.30 shows the original and zoomed in ROC curves for Dataset I. 

Figure 4.31 shows vertical average and concatenated ROC curves for Dataset I. 

 

 

Figure 4.30 Original and zoomed in ROC curves of one-layer MSNN and CNN for Dataset I.  

(a) Original ROC curves for Dataset I (MSNN) (b) Zoomed in ROC curves for Dataset I (MSNN) 

(c) Original ROC curves for Dataset I (CNN) (d) Zoomed in ROC curves for Dataset I (CNN) 
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Figure 4.31 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset I.  

    Figures 4.30 and 4.31 show the highly unsatisfactory performance of a one-layer 

CNN for Dataset I. The TP rate of all CNNs cannot reach 1 and the highest TP rate of 

CNN is around 0.8, which means a one-layer convolutional neural network has a 

lower ability than a one-layer morphological shared-weight neural network to detect 

targets from images, which have the same distance as training images. From Figure 

4.31 (c), it is obvious that the results of CNN are unstable. At the same time, MSNN 

performed perfectly on Dataset I. When there is 0 false alarm per image, MSNN can 

(a) Vertical average ROC curve for 

Dataset I (MSNN) 

(b) Concatenated ROC curve for 

Dataset I (MSNN) 

(c) Vertical average ROC curve for 

Dataset I (CNN) 

(d) Concatenated ROC curve for 

Dataset I (CNN) 
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detect all targets with 100 percent accuracy. Results for Dataset II are shown in 

Figures 4.32 and 4.33. 

 

 

 

Figure 4.32 Original and zoomed in ROC curves of a one-layer MSNN and CNN for Dataset II.  

 

(a) Original ROC curves of MSNN (b) Zoomed in ROC curves of MSNN 

(c) Original ROC curves of CNN (d) Zoomed in ROC curves of CNN 
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Figure 4.33 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset 

II.  

Figures 4.32 and 4.33 for Dataset II shows the CNN performance as much worse 

than MSNN on images with occlusion. For the easiest Dataset I, the TP rate of CNN 

can reach around 0.8, but when data becomes more different, the highest TP rate of 

CNN is only around 0.6. When the false alarm per image is equal to 1, the TP rate of 

CNN is only 0.4, which is a very low accuracy rating. CNN cannot efficiently deal 

with images that have occlusions.  

 

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN) 

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (CNN) 
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Figures 4.34 and 4.35 show results of a one-layer MSNN and CNN for Dataset III. 

 

 

Figure 4.34 Original and zoomed in ROC curves of one-layer MSNN and CNN for Dataset III.  

    From these two figures, it is not surprising to find the CNN performance to be 

much worse than the MSNN performance based on prior performances. The poor 

CNN performance could be caused by not enough training data. Thus, we can 

conclude that CNN needs a lot of training data to make its accuracy higher. Examples 

of detections results of single layer networks trained by MSNN and by CNN are 

shown in Appendix Figure A-11 and Appendix Figure A-12.  

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN) 

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN) 
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Figure 4.35 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset 

III.  

4.5.2 Comparisons of Two-Layer Networks 

    This section compares two-layer networks of the CNN and the MSNN. A two-

layer morphological network trained by BP is used for comparison. For CNN, there 

are two convolutional layers and each layer has one convolutional kernel. The update 

approach for CNN is still backpropagation. Figure 4.36 - 4.41 show results of two-

layer MSNN and CNN for Datasets I, II, and III.  

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN) 

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (MSNN) 
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Figure 4.36  Original and zoomed in ROC curves of two-layer MSNN and CNN for Dataset I. 

 

 

 

 

 

(a) Original ROC curves (MSNN) 

 

(b) Zoomed in ROC curves (MSNN) 

(c) Original ROC curves (CNN) 

 

(d) Zoomed in ROC curves (CNN) 
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Figure 4.37 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset 

I.  

    In Figures 4.36 and 4.37, for Dataset I, the highest FTP values of MSNN and 

CNN are 1 and 0.8, respectively. Both networks have a turning point, at which the 

threshold quickly turns from 1 to 0.1. So, we can pick 0.5 as our threshold to 

distinguish the target. Moreover, with this threshold, MSNN has a top TP rate of 1 

with 0.6 false alarm per image. CNN has a top TP rate of 0.8 with 0.4 false alarm per 

image. Notably, 0.6 and 0.4 false alarm per image are both acceptable TP rate values, 

but with MSNN, the accuracy reaches 100%, which is the optimum goal for our target 

(a) Vertical average curve (MSNN) (b) Concatenated curve (MSNN) 

(c) Vertical average curve (CNN) (d) Concatenated curve (CNN) 
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detection algorithm. So, for Dataset I, performance of a two-layer MSNN is better 

than CNN based on our needs.  

 

 

Figure 4.38 Original and zoomed in ROC curves of two-layer MSNN and CNN for Dataset II.  

 

 

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN) 

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN) 
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Figure 4.39 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset 

II.  

    From Figures 4.38 and 4.39, it is obvious that CNN’s performance on Dataset II 

is terrible. In Figure 4.39 (c), in the range of [0, 0.05], there is no TP rate, which 

means with CNN, false alarms per image cannot be lower than 0.05. Furthermore, this 

vertical average ROC curve of CNN for Dataset II has a large blue area which 

indicates a large fluctuation of CNN. The TP rate of MSNN can rise to over 90%, but 

the TP rate of CNN can only go up to 70%. At the turning point, which is the 0.5 

threshold, MSNN has a TP rate which is around 0.75 with a 0.6 false alarm per image, 

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN) 

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (CNN) 
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while CNN has a TP rate which is 0.5 with a 0.8 false alarm per image. With these 

figures, we can conclude that CNNs have a super low ability to detect the target from 

images which have occlusion situations. MSNNs do a better job on occlusion-

containing datasets.  

 

 

 

Figure 4.40 Original and zoomed in ROC curves of two-layer MSNN and CNN for dataset III.  

 

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN) 

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN) 
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Figure 4.41 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset 

III.  

    Figures 4.40 and 4.41 show results of two-layer MSNN and CNN for Dataset III. 

From Figure 4.41 (a) and (b), the TP rate of two-layer MSNN turns from 0.7 to 1 

when the FP rate turns from 0 to 5. When the TP rate of a two-layer CNN turns from 

0.4 to 0.9. the FP rate turns from 0 to 5. In Figure 4.40 (b), the MSNN color of the 

threshold changes smoothly; indicating that it is not easy to select a turning point for 

MSNN. So, let’s look at the requests in practice. When we request 0 alarm per image 

and a higher TP rate, the two-layer MSNN with a 0.7 TP rate is better than a two-layer 

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN) 

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (MSNN) 
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CNN with a 0.45 TP rate. If we need a higher TP rate with an acceptable amount of 

false alarm, a MSNN is also better than a CNN because with the same amount of false 

alarms per image, the TP rate of a MSNN is always higher than the TP rate of a CNN. 

So, for networks with two-layer structures, the MSNN is a better choice for target 

detection. Examples of detections results of single layer networks trained by MSNN 

and by CNN are shown in Appendix Figure A-13 and Appendix Figure A-14. 
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CHAPTER 5. CONCLUSIONS 

Among the three update approaches used to train one-layer MSNNs, the 

performance of networks trained by EAPB was the best. Networks trained by MA had 

the worst performances. Networks trained by BP had the most stable performances. 

Based on comparisons of one-layer MSNNs and two-layer MSNNs, a two-layer 

MSNN trained by BP has a better performance if no false alarm per image is 

requested. However, if a few false alarms can be accepted, a one-layer MSNN trained 

by EAPB would be better. Although a one-layer MSNN trained by EAPB performs 

well, it is a surprise when a two-layer MSNN trained by EAPB has a highly 

unsatisfactory performance.  

With three groups of datasets, when test images have the same distances as 

training images, a MSNN can detect all targets correctly with no false alarms, while a 

CNN can detect 80% of targets with no false alarm. The CNN’s worst performance in 

this research was on test images with occlusion situations among all the datasets 

tested. Notably, the MSNN had a good ability to detect the target from its test image 

even when the target was occluded by other items. Both MSNN and CNN can detect 

targets from images at different distances from the camera. MSNN performed better 

than CNN for Dataset III, and MSNN had a higher ability to detect a target from an 

image which was at an overly long distance from the camera. 
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Although a convolutional neural network is a popular and widely used neural 

network for image processing, there are lots of new networks that challenge it. The 

morphological shared-weight neural network introduced in this thesis is a potential 

candidate to beat CNNs. According to experiments in this thesis, with a limited 

amount of training data, (eight training images in all the experiments), the 

performance of the MSNN was much better than the CNN, without consideration of 

one-layer or two-layer networks. The reason for MSNN’s superior performance could 

be that the MSNN is not only exploitive but also exploratory in its search methods. 

Like all things in the real world, MSNN has both a good and bad side. One 

disadvantage of MSNN is that when training MSNN with EAPB, it takes longer than 

when training with BP because of the MSNN’s exploratory search. If there is a way to 

shorten the EAPB training time of MSNN without sacrificing other advantages, the 

exploratory search’s drag on timing would be an interesting problem to solve in future 

research. As for multiple-layer networks, this author sees a need for a more 

appropriate MSNN training methods. This can be done through changing initialization 

approaches and variation operators. One research avenue would be to add more layers 

and kernels to each layer. Making MSNN deeper is another possibility for future 

research. 
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APPENDIX 

 

 

 

 

Figure A-1 Samples of detection results of two loss functions (Dataset II). The left column is from the 

cross-entropy function, and the right column is from the sqare error function. 
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Figure A-2 Samples of detection results of two loss functions (Dataset III). The left column is from the 

cross-entropy function, and the right column is from the sqare error function. 

Figure A-1 and Figure A-2 show detection results of the experiment in section 

4.2.1, which is the comparison of loss functions. Figure A-1 represents results of two 
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randomly seleted test images in Dataset II, including output images with bounding 

boxes and detection planes. Figure A-2 represents results of Dataset III. The left 

column images are results of the network using cross-entropy loss function and the 

right column images are results of the network using square error loss function. 

 

 

 

 

          Mutation 1                  Mutation 2                  Mutation 3 

Figure A-3 Samples of detection results of three mutation functions (Dataset II). 
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          Mutation 1                  Mutation 2                  Mutation 3 

Figure A-4 Samples of detection results of three mutation functions (Dataset III).  

Figure A-3 and Figure A-4 show detection results of the experiment in section 

4.2.2, which is the comparison of mutation methods. Figure A-3 represents results of 

two randomly seleted test images in Dataset II, including output images with 

bounding boxes and detection planes. Figure A-4 represents results of Dataset III.  
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        Initialization 1               Initialization 2                 Initialization 3 

Figure A-5 Samples of detection results of three initialization methods (Dataset II).  
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        Initialization 1               Initialization 2                 Initialization 3 

Figure A-6 Samples of detection results of three initialization methods (Dataset III).  

Figure A-5 and Figure A-6 show detection results of the experiment in section 

4.2.3, which is the comparison of initialization methods. Figure A-5 represents results 

of two randomly seleted test images in Dataset II, including output images with 

bounding boxes and detection planes. Figure A-6 represents results of Dataset III.  
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        BP                           EAPB                         MA 

Figure A-7 Samples of detection results of three update approaches (Dataset II). 
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        BP                           EAPB                         MA 

Figure A-8 Samples of detection results of three update approaches (Dataset III).  

Figure A-7 and Figure A-8 show detection results of the experiment in section 

4.2.4, which is the comparison of three update approaches. Figure A-7 represents 

results of two randomly seleted test images in Dataset II. Figure A-8 represents results 

of Dataset III.  
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Figure A-9 Samples of detection results of parallel networks. 

Figure A-9 shows detection results of the experiment in section 4.2.5, which is 

the results of parallel networks. It represents results of one randomly seleted test 

image in Dataset II and another randomly seletcted test image in Dataset III.  

Figure A-10 shows detection results of the experiment in section 4.3, which is 

the results of multiple morphological layer networks trained by BP and trained by 

EAPB. The top two rows represent results of one randomly seleted test image in 

Dataset III and the bottom two rows are results of one randomly seletcted test image 

in Dataset II.  
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BP                                 EAPB 

Figure A-10 Samples of detection results of multiple morphological layer networks. 
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Figure A-11 Samples of detection results of single morphological layer networks trained by MSNN and 

CNN (Dataset II). 
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MSNN                          CNN 

Figure A-12 Samples of detection results of single morphological layer networks trained by MSNN and 

CNN (Dataset III). 
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Figure A-11 and Figure A-12 show detection results of the experiment in section 

4.5.1, which is the comparisons of single morphological layer networks trained by 

EAPB and trained by CNN. Figure A-11 represents results of two randomly seleted 

test images in Dataset II. Figure A-12 represents results of Dataset III.  
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MSNN                          CNN 

Figure A-13 Samples of detection results of two morphological layer networks trained by MSNN and 

CNN (Dataset II). 
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MSNN                          CNN 

Figure A-14 Samples of detection results of two morphological layer networks trained by MSNN and 

CNN (Dataset III). 
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Figure A-13 and Figure A-14 show detection results of the experiment in section 

4.5.2, which is the comparisons of two morphological layer networks trained by 

EAPB and trained by CNN. Figure A-13 represents results of two randomly seleted 

test images in Dataset II. Figure A-14 represents results of Dataset III.  

 


