

TARGET DETECTION WITH MORPHOLOGICAL

SHARED-WEIGHT NEURAL NETWORK:

DIFFERENT UPDATE APPROACHES

A Thesis

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

YIXUAN YE

James Keller, Thesis Supervisor

MAY 2018

The undersigned, appointed by the dean of the Graduate School, have examined the

thesis entitled

TARGET DETECTION WITH MORPHOLOGICAL

SHARED-WEIGHT NEURAL NETWORK:

DIFFERENT UPDATE APPROACHES

presented by Yixuan Ye,

candidate for the degree of master of science,

and hereby certify that, in their opinion, it is worthy of acceptance.

JAMES KELLER

JIANLIN CHENG

MIHAIL POPESCU

ii

ACKNOWLEDGMENTS

I would like to thank Dr. James Keller for his patient and thorough guidance

throughout this project. His helpful leadership gave me the support I needed to finish

this project. I can always be inspired by his ideas and comments. And I want to thank

Dr. Mihail Popescu and Dr. Jianlin Cheng for being members of my committee.

I also want to thank my colleagues, Shuxian Shen and Anes Ouadou, whose

willingness to discuss the basics of networks and problems in coding was a great help

to me.

iii

TABLE OF COTENT

ACKNOWLEDGMENTS ... ii

ABSTRACT ... xii

LIST OF FIGURES .. vi

LIST OF TABLES .. xi

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW... 4

2.1 Neural Network .. 4

2.1.1 History of Neural Network ... 4

2.1.2 Multi-layer Neural Network ... 6

2.1.3 Backpropagation Algorithm .. 8

2.2 Mathematical Morphology... 10

2.2.1 Binary Morphology ... 10

2.2.2 Grayscale Morphology.. 14

2.3 Evolutionary Algorithm ... 18

2.3.1 History of Evolutionary Algorithm ... 19

2.3.2 Genetic Algorithm and Memetic Algorithm ... 20

2.4 Shared-Weight Neural Network ... 25

2.4.1 Convolutional Neural Network ... 26

2.4.2 Morphological Shared-weight Neural Network .. 30

CHAPTER 3 IMPLEMENTATION .. 32

iv

3.1 Network Structure .. 32

3.1.1 Feature Extraction Stage ... 33

3.1.2 Classification Stage ... 34

3.2 Details of Morphological Shared-weight Neural Network 34

3.2.1 Training Process .. 35

3.2.2 Test process ... 43

3.2.3 Initialization .. 43

3.2.4 Sub-image Generation .. 45

3.2.5 Morphological Operation .. 46

3.2.6 Update Approaches ... 49

3.2.7 Sub-image Replacement Method .. 56

3.2.8 Target Boxes.. 57

CHAPTER 4 RESULTS .. 59

4.1 Dataset.. 59

4.2 Results of Single Morphological Layer Network .. 62

4.2.1 Comparison of Loss Function ... 63

4.2.2 Comparison of Mutation Methods .. 68

4.2.3 Comparison of Initialization methods ... 73

4.2.4 Comparison of Three Update Approaches .. 78

4.2.5 Results of Parallel Morphological Shared-weight Neural Network 88

v

4.3 Results of Multiple Morphological Layer Network... 88

4.3.1 Backpropagation ... 93

4.3.2 Evolutionary Algorithm with Partial Backpropagation 97

4.3.3 Comparisons of Two Morphological Layers Networks 101

4.4 Comparisons Between Networks with Different Structures 103

4.5 Comparisons between MSNN and CNN ... 106

4.5.1 Comparisons of One Layer Networks ... 106

4.5.2 Comparisons of Two Layer Networks .. 112

CHAPTER 5 CONCLUSION.. 120

REFERENCES .. 122

vi

LIST OF FIGURES

Figure 2.1 An example of multi-layer feedforward neural network with one hidden

layer.. 6

Figure 2.2 Neuron j in a typical neural network .. 7

Figure 2.3 Translation and reflection. .. 11

Figure 2.4 An example of erosion .. 12

Figure 2.5 An example of dilation ... 13

Figure 2.6 An example of hit-miss transform ... 14

Figure 2.7 The top or top surface of a set A ... 15

Figure 2.8 The umbra of the top surface of a set A .. 16

Figure 2.9 An example of erosion and dilation of a grayscale image 18

Figure 2.10 An example of CNN architecture ... 26

Figure 2.11 An example of convolution on a binary image ... 28

Figure 2.12 An example of max-pooling ... 29

Figure 3.1 Architecture of morphological shared-weight neural network 32

Figure 3.2 Architecture of a one-layer morphological feature extraction stage 33

Figure 3.3 An example of window 𝑈, and 𝑉 of an input image 45

Figure 3.4 Hit operation. .. 48

Figure 3.5 Architecture of MSNN with two feature extraction layers in the feature

extraction stage and one hidden layer for the neural network 49

file:///C:/Users/ulric/Box%20Sync/research/presentation%20and%20report/Thesis_Yixuan%20Ye_sv_jk_yy.docx%23_Toc511322904
file:///C:/Users/ulric/Box%20Sync/research/presentation%20and%20report/Thesis_Yixuan%20Ye_sv_jk_yy.docx%23_Toc511322908
file:///C:/Users/ulric/Box%20Sync/research/presentation%20and%20report/Thesis_Yixuan%20Ye_sv_jk_yy.docx%23_Toc511322916

vii

Figure 3.6 Detection plane of a test image and the target is a white and black cup with

a terra-cotta soldiers’ pattern. ... 57

Figure 3.7 An example of boxes of target before elimination and after elimination. .. 58

Figure 4.1 Samples from Dataset I ... 60

Figure 4.2 Samples from Dataset II .. 61

Figure 4.3 Samples from Dataset III ... 62

Figure 4.4 An example of output image with one true positive and one false alarm... 65

Figure 4.5 ROC curves of five networks for two different loss functions. 66

Figure 4.6 Vertical average and concatenated ROC curves for two different loss

functions. .. 67

Figure 4.7 ROC curves of three different mutation methods. 70

Figure 4.8 Vertical average and concatenated ROC curves of three different mutation

methods. ... 72

Figure 4.9 Comparisons between three mutation methods. ... 73

Figure 4.10 ROC curves of three different initialization methods. 75

Figure 4.11 Vertical average and concatenated ROC curves of three different

initialization methods. .. 76

Figure 4.12 Comparisons between three initialization methods. 77

Figure 4.13 Results of Dataset I and Dataset II with BP. ... 79

Figure 4.14 Results of Dataset III with BP. ... 80

viii

Figure 4.15 Results of Dataset I and Dataset II with EAPB. 82

Figure 4.16 Results of Dataset III with EAPB ... 83

Figure 4.17 Results of Dataset I and Dataset II with MA. ... 85

Figure 4.18 Results of Dataset III with MA. ... 86

Figure 4.19 Comparisons of the three updated approaches for

Dataset II and Dataset III. .. 87

Figure 4.20 Architecture of a parallel morphological shared-weight neural network. 89

Figure 4.21 Original and zoomed in ROC curves of parallel networks for Dataset I,

Dataset II and Dataset III. .. 90

Figure 4.22 Vertical average and concatenated ROC curves of parallel networks for

Dataset I, Dataset II and Dataset III. .. 91

Figure 4.23 Original and zoomed in ROC curves of two-layer morphological

networks trained by BP for Datasets I–III. .. 95

Figure 4.24 Vertical average and concatenated ROC curves of two morphological

layers networks trained by BP for Datasets I–III 96

Figure 4.25 Original and zoomed in ROC curves of two-layer morphological

networks trained by EAPB for Dataset I, Dataset II and Dataset III. 99

Figure 4.26 Vertical average and concatenated ROC curves of two-layer

morphological networks trained by EAPB for Dataset I, Dataset II and

Dataset III... 100

file:///C:/Users/ulric/Box%20Sync/research/presentation%20and%20report/Thesis_Yixuan%20Ye_sv_jk_yy.docx%23_Toc511322941

ix

Figure 4.27 Comparisons of two-layer morphological networks trained by BP and

networks trained by EAPB for Dataset II and Dataset III. 102

Figure 4.28 Comparison between a two-layer morphological network trained by BP

and a one-layer morphological network trained by EAPB for Dataset II

and Dataset III. ... 104

Figure 4.29 Comparison between cascaded networks and parallel networks for

Dataset II and Dataset III. .. 105

Figure 4.30 Original and zoomed in ROC curves of one-layer MSNN and CNN for

Dataset I. .. 107

Figure 4.31 Vertical average and concatenated ROC curves of one-layer MSNN and

CNN for Dataset I. ... 108

Figure 4.32 Original and zoomed in ROC curves of a one-layer MSNN and CNN for

Dataset II. ... 109

Figure 4.33 Vertical average and concatenated ROC curves of one-layer MSNN and

CNN for Dataset II. .. 110

Figure 4.34 Original and zoomed in ROC curves of one-layer MSNN and CNN for

Dataset III... 111

Figure 4.35 Vertical average and concatenated ROC curves of one-layer MSNN and

CNN for Dataset III. .. 112

x

Figure 4.36 Original and zoomed in ROC curves of two-layer MSNN and CNN for

Dataset I. .. 113

Figure 4.37 Vertical average and concatenated ROC curves of two-layer MSNN

and CNN for Dataset I. .. 114

Figure 4.38 Original and zoomed in ROC curves of two-layer MSNN and CNN for

Dataset II. ... 115

Figure 4.39 Vertical average and concatenated ROC curves of two-layer MSNN and

CNN for Dataset II. .. 116

Figure 4.40 Original and zoomed in ROC curves of two-layer MSNN and CNN for

dataset III. .. 117

Figure 4.41 Vertical average and concatenated ROC curves of two-layer MSNN and

CNN for Dataset III. .. 118

xi

LIST OF TABLES

Table 4.1 Parameters of the single layer morphological network 63

Table 4.2 Parameters of the single layer morphological network 69

Table 4.3 Parameters of the single layer morphological network with BP 78

Table 4.4 Parameters of the single layer morphological network with MA 84

Table 4.5 Parameters of parallel MSNN .. 89

Table 4.6 Parameters of a two layer morphological network trained by BP 94

Table 4.7 Parameters of a two -layer morphological network trained by EAPB 98

xii

TARGET DETECTION WITH MORPHOLOGICAL

SHARED-WEIGHT NEURAL NETWORK:

DIFFERENT UPDATE APPROACHES

Yixuan Ye

Dr. James Keller, Thesis Supervisor

ABSTRACT

Neural networks are widely used for image processing. Of these, the

convolutional neural network (CNN) is one of the most popular. However, the CNN

needs a large amount of training data to improve its accuracy. If training data is

limited, a morphological shared-weight neural network (MSNN) can be a better

choice. In this thesis, two different update approaches based on an evolutionary

algorithm are proposed and compared to each other for target detection based on the

MSNN. Another network training, based on back propagation, is used for

comparisons in this thesis, which was proposed by Yongwan Won and applied by my

colleague and fellow graduate student, Shuxian Shen and Anes Ouadou. Single-layer

and multiple-layer MSNNs are both presented with different approaches. For a

dataset, the author created part of a dataset for this thesis and used another dataset

created by Shen to make comparisons with her network. Results of the MSNN are

compared with CNN results to show the performance. Experiments show that for a

single-layer MSNN, the performance of an evolutionary algorithm with partial

xiii

backpropagation is the best. For a multiple layer MSNN, backpropagation performs

better, although the MSNN still has a better performance than the CNN.

1

CHAPTER 1. INTRODUCTION

Machine learning is a popular topic that a lot of people from different fields

focus on. Many have tried to define machine learning. One definition from Professor

E. Alpaydin of Boğaziçi University defined machine learning as “programming

computers to optimize a performance criterion using example data or past

experience.” [1] Machine learning can be classified into two categories according to

whether or not there is a reference value “label” for each output, i.e., supervised

learning and unsupervised learning [2]. There are a lot of branches of machine

learning, such as classification, regression, and clustering. Object detection is one

application of machine learning, which uses supervised classification techniques [3].

An algorithm is given by a group of images with targets and other nontarget items. To

realize object detection, an algorithm must find a target and label it as the target even

though it is surrounded by other nontarget items and background. Sometimes object

detection also requires algorithms to recognize targets at different distances. It is

harder for an algorithm to recognize targets with different scales.

When developing a neural network, people propose many useful networks to

solve object detection problems. One of the most of the widely used algorithms is the

Convolutional Neural Network (CNN). CNNs are one of the most popular network

architectures in deep learning. They are used for image or video recognition [4],

2

language processing [5] and many other applications. With traditional image

recognition algorithms, filters must be preprocessed manually, but a CNN can update

filters based on input data and required output. It saves a lot of work and makes the

whole processing easier. This is the major advantage of CNNs. Since the first CNN

was introduced in the 1990s, programmers have developed many different structures

of CNN. LeNet-5 is one of the most popular CNNs designed to recognize handwritten

and machine-printed characters. Although CNNs have numerous applications and lots

of advantages, CNNs still has their own disadvantages. One trouble with the CNN is

that this network needs a large amount of training data to become robust and perform

accurately. Another problem is the high computational costs of CNNs because of the

enormous amount of input data. Although we have better central processing units

(CPUs) and graphics processing units (GPUs) today, it is still a heavy task for a

personal computer.

To overcome these kinds of problems, the morphological shared-weight neural

network (MSNN) was introduced. The MSNN is a shared weight neural network

using mathematical morphology [6]. The structure of MSNN is similar to the CNN,

but the feature extraction stage is different. The feature extraction process in MSNN

uses hit-miss transforms instead of convolutional transforms. Besides, the amount of

training data that MSNN needs is less than CNN to achieve the same performance.

3

Moreover, MSNN performs better than other shared-weight neural networks when

applied to target detection [7].

Both MSNNs and CNNs can update their own weights with backpropagation.

Backpropagation is an algorithm which calculates error gradients with respect to

network weights [8]. Although backpropagation is widely used for neural networks, it

still has many disadvantages, such as gradient vanishing and low ability to avoid local

minima. So, in this thesis, an innovative approach is proposed, which combines an

evolutionary algorithm with backpropagation. This thesis also introduces another

memetic algorithm approach.

4

CHAPTER 2. LITERATURE REVIEW

2.1 Neural Network

Artificial Neural Networks (ANNs) are computational algorithms which were

inspired by how the human nervous system processes information. ANN can learn

like the human brain when given input data. In biological neural networks, all

biological neural functions are stored in the neurons and in the connections between

them. So, people think about constructing a simple artificial neural network and train

it to simulate functions of biological neurons. Since ANN was introduced in the

1940s, after several decades of researching, it has undergone many improvements and

has become widely used in computer vision, pattern recognition, voice recognition

and other problems. The next section briefly introduces the history of ANN.

2.1.1 History of Neural Network

Many people have been introduced to the advantages of neural networks in

recent years. However, the first version of the neural network was introduced in 1943

by Warren McCulloch and Walter Pitts [9]. They created a neural network model

based on mathematics and called it a threshold logic. Two approaches appeared based

on this model. One concentrated on biological processes and the other focused on the

application of neural networks.

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts

5

In 1949, D.O. Hebb [10] created a learning hypothesis, which is now known

as Hebbian learning. In 1954, Farley and Clark [11] first used a neural computational

machine (referred to as a calculator) to simulate the Hebbian network. Other

researchers continued to advance these machines and algorithms, which eventually

led to machine learning.

However, in 1969, Minsky and Papert indicated two main issues hindering

Rosenblatt’s perceptions (algorithms developed for pattern recognition) [16] at that

time. The first issue was that perceptrons (algorithms developed for pattern

recognition) were unable to solve exclusive-or circuit problems; and the second

problem was that computers in that era (the late sixties and early seventies) were not

powerful enough to process large neural networks which were needed to meet the

ever-growing computational needs.

Research on neural networks seemed to come to a standstill until Werbos’s

backpropagation algorithm was proposed in 1975 [13]. Multi-layer perceptrons

trained by the backpropagation algorithm solved exclusive-or problem and speeded up

the computation of networks. Neural networks continue to attract researchers’

attention and many experiments have been added to this large body of research.

Many novel structured neural networks have made an impact in recent years. The

recurrent neural network (RNN) was developed by Schmidhuber's research group and

https://en.wikipedia.org/wiki/Donald_O._Hebb
https://en.wikipedia.org/wiki/Artificial_neural_network#cite_note-3
https://en.wikipedia.org/wiki/Hebbian_learning
https://en.wikipedia.org/wiki/Wesley_A._Clark
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber

6

has won several competitions in pattern recognition and machine learning. The

convolutional neural network (CNN), which was developed by Yann LeCun in 1996

[14], has had a remarkable performance in image processing. The morphological

shared-weight neural network created by Y. Won also provide an outstanding network

for image processing [6].

2.1.2 Multi-layer Neural Network

Figure 2.1 An example of multi-layer feedforward neural network with one hidden layer

 A typical neural network consists many layers with many neurons in the

same layer. The simplest neural network only has one input layer and one output

layer, but it can be complicated by adding more hidden layers. Figure 2.1 is an

example of a feedforward neural network with one hidden layer.

A feedforward neural network performs a nonlinear input-output mapping.

Calculation equations between neurons in the network are shown as follows.

… … …

Input layer Hidden Output

https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning

7

In Figure 2.2, a set of function signals are produced by neighbor neurons located

in the left layer, which is the input of neuron j [15].

The input of neuron j is [𝑦0, 𝑦1(𝑘), 𝑦𝑖(𝑘), … 𝑦𝑛(𝑘)]𝑇, where 𝑦0 is the fixed

input related to weight 𝑤j0, which equals the bias 𝑏𝑗 of the neuron j. The weight

related to neuron j is [𝑤j0, 𝑤j1(𝑘), 𝑤𝑗𝑖(𝑘), … 𝑤𝑗𝑛(𝑘)]. The output of neuron is

calculated as

𝑦𝑗(𝑘) = 𝜙𝑗 (𝑣𝑗(𝑘)) (2-1)

and

𝑣𝑗(𝑘) = ∑ 𝑤𝑗𝑖(𝑘)𝑛
𝑖=0 𝑦𝑖(𝑘) (2-2)

…

…

𝑦0 = +1

𝑦𝑖(𝑘)

𝑦1(𝑘)

𝑦𝑛(𝑘)

𝜙 (𝑣𝑗(𝑘))

𝑤𝑗0(𝑘) = 𝑏𝑗(𝑘)

𝑤𝑗1(𝑘)

𝑤𝑗𝑖(𝑘)

𝑤𝑗𝑛(𝑘)

𝑦𝑗(𝑘)

Figure 2.2 Neuron j in a typical neural network

8

where 𝑣𝑗(𝑘) is the activation function of neuron j. Many different activation

functions are available including the popular sigmoid activation function and the

rectified linear unit.

2.1.3 Backpropagation Algorithm

As mentioned in the last section, each neuron in the neural network has their own

associated weights. The network must be trained before using it. Today, the workhorse

of learning methods is backpropagation. Backpropagation can be traced back to 1957.

The perceptron algorithm was invented in 1957 by Frank Rosenblatt, which is

considered as an original form of backpropagation [16]. The basics of

backpropagation were introduced by Kelley in 1960 [17]. In 1975, a general method

was published by Werbos [13]. This method was related to the general version of

backpropagation. In1986, Rumelhart et al. [18], noted that this backpropagation

method is useful, efficient, and better than all other traditional learning methods. Their

advocacy of backpropagation attracted people’s attention, and it became widely used

on neural networks.

With backpropagation, weights are updated by gradient descent, which means

weights of neurons are adjusted by calculating the gradient of the cost function. Cost

function can also be considered as a loss function or error function. In

https://en.wikipedia.org/wiki/Frank_Rosenblatt
http://en.wikipedia.org/wiki/David_Rumelhart

9

backpropagation, a common cost function is to calculate the difference between the

expected label and the real network output.

𝑒𝑗(𝑘) = 𝑑𝑗(𝑘) − 𝑦𝑗(𝑘) (2-3)

where 𝑑𝑗(𝑘) is the expected label and 𝑦𝑗(𝑘) is the actual output of neuron j. Given

the training sample {𝑥(𝑘), 𝑑(𝑘)}, the total error energy of the whole network is

𝐸(𝑘) = ∑ 𝐸𝑗(𝑘)𝑗 =
1

2
∑ 𝑒𝑗

2(𝑘)𝑗 (2-4)

To minimize the total error energy, the backpropagation algorithm applies a

𝛥𝑤𝑗𝑖(𝑘) to 𝑤𝑗𝑖(𝑘). 𝛥𝑤𝑗𝑖(𝑘) can be obtained by calculating the partial derivative

𝜕𝐸(𝑘)

𝜕𝜔𝑗𝑖(𝑘)
. According to the chain rule,

𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
=

𝜕𝐸(𝑘)

𝜕𝑒𝑗(𝑘)

𝜕𝑒𝑗(𝑘)

𝜕𝑦𝑗(𝑘)

𝜕𝑦𝑗(𝑘)

𝜕𝑣𝑗(𝑘)

𝜕𝑣𝑗(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
= −𝑒𝑗(𝑘)𝜙𝑗

′ (𝑣𝑗(𝑘)) 𝑦𝑖(𝑘) (2-5)

and

𝛥𝑤𝑗𝑖(𝑘) = −𝛼
𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
= 𝛼𝛿𝑗(𝑘)𝑦𝑖(𝑘) (2-6)

where

𝛿𝑗(𝑘) = {

𝑒𝑗(𝑘)𝜙𝑗
′ (𝑣𝑗(𝑘)) 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛

𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ 𝛿𝑙(𝑘)𝑤𝑙𝑗(𝑘)

𝑙

 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛

 (2-7)

10

Neuron 𝑙 is an output neuron connected to the hidden neuron 𝑗. And equation 2-6

updates weights based on the delta rule. The delta rule is a gradient descent learning

rule with a backprop foundation, used to update the weights of artificial neurons in the

neural network.

To increase the rate of learning and avoid instability at the same time, a

momentum term was added to the delta rule. So, the update rule becomes

𝛥𝑤𝑗𝑖(𝑘) = 𝛼𝛿𝑗(𝑘)𝑦𝑗(𝑘) + 𝛽𝛥𝑤𝑗𝑖(𝑘 − 1) (2-8)

where 𝛽 is positive and is also a momentum constant [19].

2.2 Mathematical Morphology

Mathematical morphology is an image processing technique, which uses

mathematical theory based on set theory to digital images, graphs, and other spatial

structures [20]. Some of the most widely used morphological operators include

erosion, dilation, opening and closing. At first, mathematical morphology could only

be used on binary images, but it eventually was expanded to grayscale images.

2.2.1 Binary Morphology

In binary morphology, images are viewed as subsets of the integer grid 𝑍𝑑 for

dimension d. The basic operation of binary morphology is to find the binary image

based on a predefined shape, which is called a structuring element (SE). The

structuring element probes the binary image with small patterns. SEs are sets that

11

consist of black and white pixels in a 2-dimensional image. Binary morphology is

about operations on sets. SEs are used to operate on a source image to produce a

destination image.

Before introducing morphological operations of binary images, three basic set

operations should be introduced. Let 𝑍2 be the integer grid, and there are two subsets

A and B of 𝑍2, 𝐴 ⊂ 𝑍2, 𝐵 ⊂ 𝑍2. Let 𝑥 be a point or an element of a set [20].

The translation of A by x is defined as

𝐴 + 𝑥 = {𝑎 + 𝑥: 𝑎 ∈ 𝐴} (2-9)

The reflection of A is defined as

−𝐴 = {−𝑎: 𝑎 ∈ 𝐴} (2-10)

The complement of A is defined as

𝐴𝑐 = {𝑎 ∈ 𝑍2: 𝑎 ∉ 𝐴} (2-11)

Translation and reflection are shown in Figure 2.3.

Figure 2.3 Translation and reflection. (a) Translation of a set A by x and (b) reflection of a binary set.

(a) (b)

12

The erosion of binary image A by structuring element B is defined as [20]

𝐸(𝐴, 𝐵)=𝐴 ⊖ 𝐵={𝑥: 𝐵 + 𝑥 ⊂ 𝐴} (2-12)

Erosion is a morphological operator, which can detect the locations where the

structuring element fits the image. So, 𝐴 ⊖ 𝐵 should be all points 𝑥 whose

translations of B by 𝑥 fits inside image A. An example of binary erosion is shown in

Figure 2.4 [22].

Figure 2.4 An example of erosion

Figure 2.4 shows an example of erosion. Structuring element B is a 2 × 2 image.

The top left point of B is selected as the “center point”. After erosion, all points which

meet the equation are reserved and the rest are eroded. That is why it is called

“erosion.”

The dilation of binary image A by structuring element B is defined as [20]

𝐴 ⊕ 𝐵 = {𝑥: (−𝐵 + 𝑥) ∩ 𝐴 ≠ 𝜙} (2-13)

Original image A 2 × 2 structuring

element B

Eroded image E (A, B)

13

Figure 2.5 An example of dilation

Figure 2.5 is an example of dilation. Structure element B is the same one used in

erosion. With dilation, the structuring element need to be reflected, so the “center

point” is the bottom right point now. After dilation, all points which meet the

equation are dilated. With dilation, the original image is enlarged by the structure

element instead of erosion.

After erosion and dilation, a hit-miss transform is applied for shape detection. It

is defined as

𝐴 ⊗ 𝐵 = 𝐴 ⊗ (𝐸, 𝐹) = (𝐴 ⊖ 𝐸) ∩ (𝐴𝑐 ⊖ 𝐹) (2-14)

where E and F are two disjoint structuring elements. E describes the shape inside the

target, while F describes the shape outside the target, which is the background. Figure

2.6 is an example of hit-miss transform. In the example, E is a structuring element

which tries to find the desired foreground and F is a structuring element which tries to

find background. Using equation 2-14, after intersection, points which match both

structuring elements E and F are our target points.

Original image A Dilated image D (A, B)
2 × 2 structuring

element B

14

2.2.2 Grayscale Morphology

Binary morphology is widely used for image processing. It can help us recognize

a target, detect an outline, reduce noise, and do many other functions. However,

operations only for binary images are not enough. What about color images and

(a)

(b)

(c) (d)

Figure 2.6 An example of hit-miss transform. (a) E and F structuring element with X as the center of the

structuring element, (b) input image, (c) complement of input image, and (d) result of hit-miss

transform.

E F

15

grayscale images? These images are more common than binary images; so, the

morphology techniques were extended to grayscale images. Before introducing

definitions of grayscale morphology, concepts of the surface of a set and the umbra of

a surface should be described. In Euclidean N-space (𝐸𝑁), suppose there is a set A.

The top or top surface of A is a function defined on the projection of A onto its first

(N – 1) coordinates [23]. For the grayscale image, N = 3, and for each 𝑥 in the

coordinate (N − 1), the top surface of A at 𝑥 is the highest value 𝑦 such that (𝑥, 𝑦) ∈

𝐴. Using definitions in [23], let 𝐴 ⊆ 𝐸𝑁 and

𝐹 = {𝑥 ∈ 𝐸𝑁−1| 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ 𝐸, (𝑥, 𝑦) ∈ 𝐴}. The top or top surface of A, donated

by 𝑇(𝐴): 𝐹 → 𝐸, is defined by

𝑇[𝐴](𝑥) = max{𝑦|(𝑥, 𝑦) ∈ 𝐴} (2-15)

Figure 2.7 show the top or top surface of a set A.

Figure 2.7 The top or top surface of a set A

16

Let 𝐹 ⊆ 𝐸𝑁−1 and 𝑓: 𝐹 → 𝐸, the umbra of f, donated by 𝑈(𝑓), 𝑈(𝑓) ⊆ 𝐹 × 𝐸,

is defined by

𝑈(𝑓) = {(𝑥, 𝑦) ∈ 𝐹 × 𝐸|𝑦 ≤ 𝑓(𝑥)} (2-16)

Figure 2.8 is an example of umbra of the top surface of A.

Figure 2.8 The umbra of the top surface of a set A

Based on the top surface and the umbra of the top surface of a set, grayscale

erosion and dilation are proposed.

Let 𝐹 ⊆ 𝐸𝑁−1 and 𝐾 ⊆ 𝐸𝑁−1, Let 𝑓: 𝐹 → 𝐸 and 𝑘: 𝐾 → 𝐸. The erosion of 𝑓

by 𝑘 is denoted by 𝑓 ⊖ 𝑘, 𝑓 ⊖ 𝑘: 𝐹 ⊖ 𝐾 → 𝐸, and is defined by

𝑓 ⊖ 𝑘 = 𝑇[𝑈[𝑓] ⊖ 𝑈[𝑘]] (2-17)

It can also be computed by

(𝑓 ⊖ 𝑘)(𝑥) = 𝑚𝑖𝑛𝑧∈𝐾{𝑓(𝑥 + 𝑧) − 𝑘(𝑧)} (2-18)

17

 Let 𝐹 ⊆ 𝐸𝑁−1 and 𝐾 ⊆ 𝐸𝑁−1, Let 𝑓: 𝐹 → 𝐸 and 𝑘: 𝐾 → 𝐸. The dilation of

𝑓 by 𝑘 is denoted by 𝑓 ⊕ 𝑘, 𝑓 ⊕ 𝑘: 𝐹 ⊕ 𝐾 → 𝐸, and is defined by

𝑓 ⊕ 𝑘 = 𝑇[𝑈[𝑓] ⊕ 𝑈[𝑘]] (2-19)

It can also be computed by

(𝑓 ⊕ 𝑘)(𝑥) = max
𝑧∈𝐾

 𝑥−𝑧∈𝐹

{𝑓(𝑥 − 𝑧) + 𝑘(𝑧)} (2-20)

An example of erosion and dilation of a grayscale image is shown in Figure 2.9.

Values of each pixel of the original grayscale image are between 0 and 255. 0 is black

and 255 is white. The smaller the value is, the darker the pixel is. The structuring

element is a 5-pixel × 5-pixel disk. With erosion equation 2-18, the image after

erosion keeps minimum values, which means it always keeps darker pixels. This is

why the eroded image looks much darker than the original image, like figure 2.9 (c).

And with dilation equation 2-20, it always selects brighter pixels because of

maximum operation. So, the dilated image is brighter than the original image, which

is shown in figure 2.9 (d).

18

(a) Structuring element (b) original image (c) eroded image (d) dilated image

Figure 2.9 An example of erosion and dilation of a grayscale image

2.3 Evolutionary Algorithm

Evolutionary algorithms are metaheuristic optimization approaches inspired by

biological evolution. In the real world, there are many NP (nondeterministic

polynomial time) problems. They take too much time to solve for traditional

algorithms to try each solution one by one. However, an evolution algorithm can find

optimal solutions in a wide range of solutions and it doesn’t need to traverse all

possible solutions. The main process of an evolutionary algorithm is to create a

population of parent individuals, quantify the qualities of the parent individuals with a

fitness function, and then generate new individuals based on the parent individuals

with crossover, mutation and other operations. Finally, evaluate new individuals and

let the best ones take the place old individuals. By repeating this main process, the

individual which optimizes the fitness function will be the best choice for a candidate

19

solution of the original problem. Evolutionary algorithms are widely used in

engineering, natural science, economics and other fields.

2.3.1 History of Evolutionary Algorithm

In this section, the history of the evolutionary algorithm will be introduced [24].

Evolutionary algorithms can be traced back to the 1950s [25]–[28]. However, due to

the lack of powerful computers and the limitations of the initial algorithms,

evolutionary algorithms did not show significant improvement until the1970s. The

current evolutionary algorithm is inspired from three related approaches: genetic

algorithms, evolutionary programming, and evolution strategies. Genetic algorithms

were proposed by Holland [29]–[31], after which many studies were made by other

researchers, such as De Jong [32], [33], Goldberg [34], [35] and Davis [36].

Applications of genetic algorithms mostly focus on function optimization.

Evolutionary programming was developed by Fogel [37], [38] and improved by

Burgin [39], [40], Atmar [41], and others. This succession of work helped to develop

finite state machines (FSM) to predict results on the basis of former observations.

Evolution strategies were introduced by Rechenberg [42], [43] and Schwefel [44],

[45] and were designed for solving difficult parameter optimization problems.

In the1980s, development of computers enhanced the ability of perform large

scale iterative computation. So, evolutionary algorithms were possible to solve

20

complex real-world optimization problems. Then, researchers put their attention on

evolutionary algorithms and more work was done on topics such as genetic algorithms

[46], [47], evolutionary programming [48], and other topics in this field. Now, genetic

algorithms and memetic algorithms are two popular and widely used techniques in

this domain. Details of these two algorithms will be introduced in the next section.

2.3.2 Genetic Algorithm and Memetic Algorithm

As previously mentioned, the genetic algorithm (GA) and memetic algorithm

(MA) are popular now and in this experiment, these two algorithms are used to

generate results. The main reason for the popularity of the GA and MA is that most

existing algorithms for optimization can easily be stopped once they have reached the

local optimum instead of the global optimum. However, a GA or MA can overcome

the local minimum problem.

The following is a general structure of EA in pseudocode [49].

General Structure of Evolutionary Algorithm

Initialize population;

Evaluate the fitness of each population;

Select individuals from populations as parents for first generation;

While termination condition not satisfied DO

21

 Recombine parents;

 Mutate recombined parents to generate offspring;

 Evaluate offspring;

 Select individuals as parents for next generation;

End While

Sometimes for a complex solution domain, an EA was not efficient enough to

search all of a solution space. This has led many to attempt combining different

techniques, which led to the development of the memetic algorithm (MA). The MA

can be considered as a combination of an EA and a local search. It was first proposed

by Moscato [50]. Here is the general structure of MA in pseudocode.

General Structure of Memetic Algorithm

Initialize population;

Evaluate the fitness of each population;

Select individuals from populations as parents for first generation;

While termination condition not satisfied DO

 Recombine parents;

 Mutate recombined parents to generate offspring;

 Do local search on each offspring;

 Evaluate offspring;

22

 Select individuals as parents for next generation;

End While

Designing an evolutionary algorithm requires the determination of representation,

initialization, selection and variation operators [14]. These will be introduced in next

three sections.

2.3.2.1 Representation

Computers cannot directly process real-world problems without transforming

solutions into forms they can deal with. For example, in the traveling salesman

problem, assuming there are four cities, a representation could be

[1 2 3 4]

or another representation with a binary code could be

[001010011100]

with each three-bit related to the index of a city.

Holland [30] believed that the longer representations have more opportunities to

explore the solutions. In fact, there is no best representation for all problems, and

sometimes different representations yield similar results [51].

The following advice should be considered when determining a representation

[14]:

23

1. The representation should provide immediate information about the solution.

2. The representation should be amenable to variation operators that are well

understood for their mathematical properties and can exhibit a gradation of change.

3. Unless the objective is to explore the utility of a novel representation,

utilizing established representations may allow more systematic and meaningful

comparisons.

2.3.2.2 Initialization

After determining the representation of solutions, before training, a population of

candidate solutions should be initialized as parents in first generation. Initialization

ways are also needed to be determined. With different methods of initialization,

results of the same structure in an evolutionary algorithm could be different.

Kazimipour et al. [52] categorized many well-known initialization methods and the

results revealed larger scale problems depending on how sensitive results were to the

initialization methods. Moreover, different initialization methods could improve the

initial quality and give a better starting point for the evolutionary algorithm [53].

2.3.2.3 Selection

In each generation of evolutionary algorithms, an algorithm needs to select

offspring from its population using specific selection methods. Some common

selection methods include plus/comma, proportional, and tournament [14].

24

Plus/comma selection uses notation (µ + 𝜆) and (µ, 𝜆) and these notations refer

to the two different cases. The first case is µ parents creating 𝜆 offspring and then

selecting best µ individuals from µ + 𝜆 individuals as parents in next generation.

This is called plus selection. The second case is µ parents creating 𝜆 offspring and

then selecting best µ individuals only from 𝜆 offspring as parents in next generation.

This is comma selection.

Proportional selection is also called roulette wheel selection. This selection

chooses parents in proportion to their fitness value to create offspring. The probability

of parents to be selected is

𝑝𝑖 = 𝑓(𝑖)/ ∑ 𝑓(𝑗)µ
𝑗=1 (2-21)

where 𝑝𝑖 is the probability of 𝑖th parent to be selected, 𝑓(𝑖) is the fitness value of

𝑖th parent, and µ is the number of parents.

Tournament selection has several different versions, but the most common one is

to randomly select a subset of size q (often q = 2) from the population and then select

the best one of q individuals as one parent of the next generation. Then, repeat this

process until enough parents are generated.

25

2.3.2.4 Variation Operators

Variation operators are used to search improved solutions in the solution space.

Which means generating offspring from parents in evolutionary algorithm. What kind

of operators should be used depends on the representation of the problem, selection

methods, and other factors. There are two typical types of variation operators based

on their arity. First type is a unary variation operator called mutation. With this

operator, an offspring relies on one random selected parent. For example, using

Gaussian mutation operator, an offspring is generated by adding a Gaussian random

variable with desired mean and standard deviation to the random selected parent.

Second type is a binary variation operator called recombination or crossover. This

operator merges information from two parents into one or two offspring. For example,

with the two-points crossover, suppose we have two parents which are [𝑝11, 𝑝12, 𝑝13,

𝑝14, 𝑝15] and [𝑝21, 𝑝22, 𝑝23, 𝑝24, 𝑝25]. Two random indexes between 1 and 5 are

computed. Let the two random indexes be 2 and 4. The offspring of these two parents

should be [𝑝11, 𝑝22, 𝑝23, 𝑝24, 𝑝15] and [𝑝21, 𝑝12, 𝑝13, 𝑝14, 𝑝25].

2.4 Shared-Weight Neural Network

A shared-weight neural network consists of two stages. The first stage is called

the feature extraction stage, which is used to extract the feature maps from input data.

The second stage is the classification stage, which is a fully connected neural

26

network. A common approach to feature extraction is convolution [54]. Another

extraction method is the morphological hit-miss transform [21], which was used in

this thesis research. The output of the first stage is the input of the second stage.

“Shared-weight” refers to those weights that define the feature map as sharing the

same weights. Matrixes consist of these weights are often called kernels or filters. For

example, in a convolutional neural network, each kernel is used to process the entire

input image instead of using different weights for each sub-image. Instead of having

several weights to train, the same weights are used for each sub-image. Thus, the

number of parameters is reduced, which makes networks faster and easier to train.

2.4.1 Convolutional Neural Network

The convolutional neural network (CNN) is in the category of a shared-weight

neural network, which has proven effective in the image processing field. LeNet

architecture was one of the first convolutional neural networks, which propelled deep

learning into mass acceptance. It has three different layers: 1) the convolutional layer,

2) the pooling layer and 3) the fully connected layer as shown in Figure 2.10.

Figure 2.10 An example of CNN architecture [55]

27

2.4.1.1 Convolutional Layer

The purpose of the convolutional layer is to extract features from input data. For

the CNN, inputs are usually images. Convolution maintains the relationship between

pixels by learning features with small squares of input images. A feature map is

obtained by convoluting the input image with a linear filter, adding a bias, and then

applying a nonlinear function. Convolution is a linear operator. But in the real world,

most data for CNNs to learn are nonlinear; thus, a nonlinear function is used to

introduce nonlinearity to the network. If we have the 𝑘th feature map at a given

layer, which is ℎ𝑘, its filters are determined by weights 𝑊𝑘 and bias 𝑏𝑘, after

which, a feature map ℎ𝑘 is obtained as [56]

ℎ𝑖𝑗
𝑘 = 𝜑((𝑤𝑘 ∗ 𝑥)𝑖𝑗 + 𝑏𝑘) (2-22)

where 𝜑(𝑣) is a nonlinear function, such as sigmoid and ReLU functions.

The definition of convolution for a 1D signal is

𝑜[𝑛] = 𝑓[𝑛] ∗ 𝑦[𝑛] = ∑ 𝑓[𝑛]𝑔[𝑛 − 𝑢]

∞

𝑢=−∞

= ∑ 𝑓[𝑛 − 𝑢]𝑔[𝑛]∞
𝑛=−∞ (2-23)

and convolution for a 2D signal is

𝑜[𝑚, 𝑛] = 𝑓[𝑚, 𝑛] ∗ 𝑔[𝑚, 𝑛]

28

= ∑ ∞
𝑢=−∞ ∑ 𝑓[𝑢, 𝑣]𝑔[𝑚 − 𝑢, 𝑛 − 𝑣]∞

𝑣=−∞ (2-24)

Figure 2.11 shows convolution on a binary image. A convolution of a 5 × 5 image

and 3 ×3 filter is computed. The filter is moved 1 pixel per step over the input

image and convolves with the input image to compute convolved features.

Figure 2.11 An example of convolution on a binary image. (a) input binary image. (b) 3 × 3 filter,

and (c) result of convolution [57]

2.4.1.2 Pooling Layer

Pooling layer is used to reduce the dimensionality of feature maps and keep the

valuable information at the same time. Different pooling types include max, average,

and sum. In this thesis, max-pooling is used. So, details of max-pooling are

introduced in this section.

Max-pooling partitions an input image into non-overlapping windows and

outputs the maximum value in these windows. Benefits of pooling are reducing the

size of representation, reducing the number of parameters, and controlling overfitting.

(a) (b) (c)

29

As shown in Figure 2.12, the input of the pooling layer is a 6 × 6 image; thus, the

result of max-pooling with a 2 × 2 filter and a stride of 2 is a 3 × 3 feature map. The

location of each maximum is recorded in a matrix.

Figure 2.12 An example of max-pooling

2.4.1.3 Fully Connected Layer

A fully connected layer is a fully connected neural network. The term “fully

connected” means that every neuron in the previous layer is connected to every

neuron in the next layer. The output from the previous layer is the input of a fully

connected layer. The purpose of this layer is to use these features for classifying the

input image into various classes based on the training dataset. Details of this layer are

the same as a multi-layer neural network.

(a) Input image (b) Feature map (c) Location

30

2.4.2 Morphological Shared-weight Neural Network

The idea of combining mathematical morphology and other networks was

proposed by Wilson [58] in 1989, which was the first time that mathematical

morphology was combined with other networks. Wilson called these networks as

morphological networks. The theory of a morphological network was described by

Davidson [59]. Then, morphological networks began to be used on the image

processing area. Davidson used it to solve template identification and target

classification problems [60], [61]. The literature search conducted in this research

could not find where the structuring elements used in a morphological layer were ever

updated during backpropagation until 1995. Won introduced morphological shared-

weight neural networks (MSNNs) which combines mathematical morphology with

neural networks and developed backpropagation for MSNNs[21]. Won indicated that

MSNN had better performance in the target detection field. Jin detected vehicles with

morphological neural networks [62]. Although some literature has been published

making mention of morphological shared-weight neural networks, the amount of

research in this area is much less than that devoted to other algorithms. This is one of

the reasons the morphological shared-weight neural network is discussed in this

thesis.

The structure of a morphological shared-weight neural network is similar to a

CNN. It still has a pooling layer and a fully connected layer. However, for the first

31

stage, which is the feature extraction stage, the MSNN uses mathematical morphology

instead of convolution. And for each feature map, MSNN has two filters while CNN

has only one filter for each feature map. In the morphology layer, the hit-miss

transform is applied for feature extraction. Furthermore, to compute the hit-miss

transform, erosion and dilation operations need to be calculated first. These operations

will be shown in the later sections.

32

CHAPTER 3. IMPLEMENTATION

3.1 Network Structure

This thesis focuses on an updated approach to the morphological shared-weight

neural network. In this section, the structure of MSNN is introduced. As previously

mentioned, the morphological shared-weight neural network has two stages, which

are similar to the convolutional neural network. The difference between them is that

the feature extraction stage uses hit-miss transform in MSNNs instead of convolution,

which is used by CNNs. A schematic of the MSNN architecture is shown in Figure

3.1.

Figure 3.1 Architecture of morphological shared-weight neural network

 The feature extraction stage extracts feature maps from the input image with hit-

miss transform. After max-pooling, the output of first stage is the input of the

33

classification stage. In classification, a fully-connected neural network recognizes

whether the input is a target or not.

3.1.1 Feature Extraction Stage

 The first stage is the feature extraction stage. In a morphological shared-weight

neural network, the feature extraction stage applies grayscale hit-miss transform. The

layer which computes hit-miss transform is also called the morphological layer. A

morphological layer needs two kernels to compute the hit-miss transform, one for the

hit operator and another one for the miss operator. Then the hit and miss operator

results are combined to generate hit-miss transform. A max-pooling layer is applied to

reduce the dimensionality of data and avoid overfitting. In this thesis, three different

structures of the feature extraction stage are used: 1) the one-morphological-layer

network, 2) the two-morphological-layer network and 3) the parallel morphological

network. Figure 3.2 shows the one-morphological-layer feature extraction stage.

Hit

Miss
Max-pooling Input Image

Figure 3.2 Architecture of a one-layer morphological feature

extraction stage

34

3.1.2 Classification Stage

The classification stage is a fully connected neural network. The output from the

feature extraction stage is a 2-D matrix. However, the input of the classification stage

should be 1-D vector. Thus, the output of the feature extraction stage will be

transferred to a 1-D vector as the input of the classification stage. The architecture of

the classification stage is a multiple-layer neural network with one input layer, one

hidden layer and one output layer. In the output layer, there is only one neuron, and

the output value is between 0 and 1. 0, which represents the input image background,

while 1 represents the input image target.

3.2 Details of Morphological Shared-weight Neural Network

 In this section, details of the morphological shared-weight neural network

(MSNN) are introduced. First, a training process and a test process are proposed. For

the training process, the author uses three different algorithms. They include this

thesis’s novel contribution to MSNN development, i.e., the evolutionary algorithm

with partial backpropagation (EAPB), as well as backpropagation (BP) and the

memetic algorithm (MA). Then, process details are introduced, such as sub-image

generation, morphological operation and update approaches.

35

3.2.1 Training Process

 The purpose of the training process is to settle all weights, which include kernels

in morphological layers and neurons in the fully connected neural network. In this

thesis, three diverse ways are used to train MSNNs.

3.2.1.1 Backpropagation Approach

The first approach, backpropagation, is one of the most popular and traditional

methods, which is widely used to train most kinds of neural networks. In this thesis,

Shen’s backpropagation algorithm is used for MSNN with single morphological layer

[22]. However, the author of this thesis expands it to a multiple morphological layer

MSNN and makes a few small changes; moreover, algorithms are tested on new test

dataset. So, some new details of backpropagation must be introduced to establish a

proper context instead of just referring to Shen’s thesis.

With the backpropagation algorithm, after settling all parameters and initializing

structuring elements and neural network weights, the first step is to generate sub-

images from training images, including target sub-images and background sub-

images. These sub-images are then passed into the network one by one. After the

feature extraction stage, feature maps are generated and input into the classification

stage. Errors are calculated by a loss function of the difference between the actual

output of a fully connected neural network and the expected output label, which is “1”

36

for target sub-images and “0” for background sub-images. Square error function and

cross-entropy function are used as the loss function in this thesis. Then, errors are

backpropagated throughout the network. The weights of the neural network and

structuring elements are updated by these backpropagated errors. When the error of a

sub-image is below a well-trained threshold, the sub-image is replaced by another

sub-image with replacement mechanisms. The pseudocode of this algorithm is shown

as follows [22]:

Backpropagation Algorithm

Read N input image with targets and backgrounds; Epoch = 1; RandSelect = 0;

While (RandSelect < MaxRandSelect & Epoch < MaxEpoch).

For n = 1 : N

Randomly select M target sub-images, Tn1, …, TnM;

Randomly select M background sub-images, Bn1, …, BnM;

End For

RandSelect = RandSelect + 1;

ErrMonitor = 0;

While (Epoch < MaxEpoch & ErrMonitor < ContinueLow).

For sub-image in {Tn1, Bn1, …, TnM, BnM}

Perform forward and backward propagation;

If (PSS < WellTrained)

37

Replace current sub-image with new one;

End If

End For

Epoch = Epoch + 1;

If (RMSE < StopErr)

ErMonitor = ErrMonitor + 1;

Else

ErrMonitor = 0;

End If

End While

End While

3.2.1.2 Evolutionary Algorithm with Partial Backpropagation

 Although backpropagation is a widely-used training algorithm for neural

networks, and its training speed is faster than many randomly searched algorithms,

this algorithm still has many limitations. Backpropagation is not efficient enough to

avoid getting stuck at local minima, and it cannot explore a broad range of a solution

space. This is because when using gradient descent, weights always move toward the

local minima instead of exploring unfamiliar space. Evolutionary algorithms have

been established as efficient enough to avoid local minima and explore broader

38

solution spaces. However, the new evolutionary algorithm lacks speed when training

due to its ability to generate new solutions almost randomly while exploring the

broader solution space. This helps the algorithm to explore more but to converge more

slowly. The author’s solution was to combine the evolutionary algorithm with

backpropagation, which provides the innovative element proposed in this thesis, i.e.,

the evolutionary algorithm with partial backpropagation (EAPB).

With EAPB, weights of structuring elements are put together to form the

chromosome of the evolutionary algorithm. Obviously, they are updated by EA. Thus,

in each generation of EA, the best chromosome settles into the role of the current

kernel; then, the weights of neural network are updated by backpropagation based on

these kernels. That is why this algorithm is known as “partial” backpropagation.

For EAPB, after setting up all parameters, the first step is initializing populations

of kernels and weights in neural network and then generating sub-images, including

target sub-images and background sub-images. These sub-images are then passed into

the feature extraction stage and classification stage one by one. Weights of kernels are

updated by the evolutionary algorithm for one generation. Then, the best chromosome

is selected as current kernels, and the weights of neural network are updated by

backpropagation for one generation. This process repeats until reaching the stop

condition.

39

Evolutionary Algorithm with Partial Backpropagation Algorithm

Read N input image with targets and backgrounds;

Set up Max Epoch, probability of mutation and crossover and other parameters;

Initialize weights of neural networks and initial K parents of structuring elements;

For n = 1 : N

Randomly select M target sub-images, Tn1, …, TnM;

Randomly select M background sub-images, Bn1, …, BnM;

End For

For epoch = 1 : Max Epoch

If epoch = 1

 Evaluate loss of initial parents;

End If

If rem(epoch,10) = 0

 Reselect sub-images;

End If

For j = 1 : K

Select parents with proportional selection;

Generate offspring with mutation and crossover;

40

 End For

For j = 1 : 2*K

 Evaluate parents and offspring;

 Select the best K individuals from all parents and offspring as new parents;

 Select the best individual as the current structuring element which will be

used in backpropagation for the neural network;

End For

For sub-image in {Tn1, Bn1, …, TnM, BnM}

Perform forward and do backward propagation only for the neural

 network part;

If (PSS < WellTrained)

Replace current sub-image with a new one;

End If

End For

End For

3.2.1.3 Memetic Algorithm

With EAPB, the evolutionary algorithm works with backpropagation, and its

results are compared with the results of traditional backpropagation. Then, another

solution comes to mind based on the question: Why not use a memetic algorithm to

41

update all weights including weights of the structuring elements and the fully

connected layer? Notably, the memetic algorithm is a genetic algorithm with local

search capabilities. It can, therefore, be used as the training algorithm in this section

because it converges faster than the traditional genetic algorithm. All weights, which

are the weights of structuring elements and the fully connected layer, are put into the

chromosome and updated by the memetic algorithm. For a local search in MA, one

generation of backpropagation is used.

With a memetic algorithm (MA), the first step is initializing the K populations,

which consist of all the weights in the network. The next step is to generate sub-

images and pass them into the feature extraction stage and the classification stage one

by one. Then, parents are evaluated by loss function, and offspring are generated with

mutation, crossover and local search. The best K populations from parents and

offspring are selected as new parents in the next generation. This process is repeated

until meeting the stop condition.

Memetic Algorithm

Read N input image with targets and backgrounds;

Set up Max Epoch, probability of mutation and crossover and other parameters;

Initialize K parents, which consists of all weights;

For n = 1 : N

42

Randomly select M target sub-images, Tn1, …, TnM;

Randomly select M background sub-images, Bn1, …, BnM;

End For

For epoch = 1 : Max Epoch

If epoch = 1

 Evaluate loss of initial parents;

End If

If rem(epoch,10) = 0

 Reselect sub-images;

End If

For j = 1 : K

Select parents with proportional selection;

Generate offspring with selected parents by mutation and crossover;

Do local search, which is one generation of backpropagation;

End For

For j = 1 : 2*K

 For sub-image in {Tn1, Bn1, …, TnM, BnM}

Perform forward propagation and evaluate the individual;

If (PSS < WellTrained)

Replace current sub-image with new one;

43

End If

End For

 Select best K individuals from all parents and offspring as new parents;

End For

End For

3.2.2 Test process

 In the test process, instead of randomly selecting sub-images, a sliding window is

used to go through the whole test image and sub-images from every location of the

test images are generated by the window. Then these sub-images are passed into the

network one by one, and output values are computed for each position. Thus, a new 2-

D matrix is generated, and output values of each sub-image are settled on each

corresponding location. This 2-D matrix is called the detection plane.

3.2.3 Initialization

In all three training processes, initialization is a common step. Some researchers

found that initialization methods of neural network could affect results significantly

[63], and some effective initialization methods have been proposed for specific neural

network models [64], [65]. So, in this thesis, three different initialization methods are

compared with each other in single morphological layer network. The first

44

initialization method is all zero initialization. As its name indicates, this method

initializes weights with all zeroes. The second initialization method is small random

numbers initialization. All weights are initialized with random numbers generated by

Gaussian distribution with 0 mean and 1 standard deviation.

The third initialization is proposed by the author based on the MSNN. For hit

and miss structuring elements, understanding of the physical meaning of the MSNN

structuring elements allows hit kernel to be initialized by randomly selecting a target

sub-image, which is the same size as the hit kernel. Meanwhile, the miss kernel is

initialized by randomly selecting a sub-image of the background, which is also the

same size as the miss kernel.

3.2.4 Sub-image Generation

Input images are pre-processed by the sub-image generation algorithm before

they are passed into the network. To compare results with Shen’s network, we both

used the same sub-image generation algorithm. With the sub-image generation

algorithm, from each input training image, the M target sub-images with Label 1 and

M background sub-images with Label 0 are generated. Input images are read into the

algorithm with locations of target centers. So, target sub-images are selected randomly

from the input image with centers located in a small window 𝑈 at the target center.

Background sub-images are selected randomly from the input image with centers

located outside of window 𝑉, which includes the entire target. Figure 3.3 is an

45

example of window 𝑈, with the window 𝑉 as an input image. Centers of the target

sub-images are selected from the orange area while centers of background sub-images

are selected from blue area.

Figure 3.3 An example of window 𝑈, and 𝑉 of an input image

The sub-image generation is described as follows: [22]

Sub-image generation algorithm

Data: Training image S, target center C, sub-image size winSize, M sub-images

Result: Target sub-images, background sub-images, labels

Define a small window U centered at the target center C;

Define a large window V which contains the entire target and is centered at the target

center C;

For i = 1 : M

Randomly select a position Pt inside of the window U;

Use position Pt as the sub-image center to cut a target sub-image Tn with the

size winSize;

is the center of target

Window U

Window V

46

Randomly select a position Pb outside of the window V;

Use position Pb as the sub-image center to cut a background sub-image Bn with

the size winSize;

End

Generate labels: target label = 1, background label = 0;

3.2.5 Morphological Operation

In the feature extraction stage, hit-miss transform is computed in the

morphological layer. To calculate hit-miss transform, two morphological operations

are used. One is the hit operation, which applies grayscale erosion on the input image.

Another one is the miss operation, which applies grayscale dilation on the input

image. The final calculation involves a combination of these two operations to

generate the hit-miss operation.

The notations and equations of the morphological operation are defined as [21:]

 𝑎(𝑥): The input to 𝑎 node which is the output of node x

 𝑡𝑦
ℎ(𝑥): Hit structuring element weight associating node y with node x.

 𝑡𝑦
𝑚(𝑥): Miss structuring element weight associating node y with node x.

 𝑛𝑒𝑡𝑦
ℎ: Net input for Hit (erosion) operation.

47

 𝑛𝑒𝑡𝑦
𝑚: Net input for Miss (dilation) operation.

Hit operation: 𝑛𝑒𝑡𝑦
ℎ = min

𝑥∈𝐷[𝑡𝑦]
{𝑎(𝑥) − 𝑡𝑦

ℎ(𝑥)} (3-1)

Miss operation: 𝑛𝑒𝑡𝑦
𝑚 = max

𝑥∈𝐷[𝑡𝑦]
{𝑎(𝑥) − 𝑡𝑦

𝑚(𝑥)} (3-2)

Hit-miss transform: 𝑎(𝑦) = 𝑛𝑒𝑡𝑦 = 𝑛𝑒𝑡𝑦
ℎ − 𝑛𝑒𝑡𝑦

𝑚 (3-3)

 Take hit operation as an example: A structuring element slides onto the input

image one pixel per step. At each position where the structuring element is located,

the hit operation is computed, which is the subtraction between the local area of the

image and the structuring element. This allows the minimum value to be selected.

To realize these operations in the algorithm and speed up the computation, Shen’s

second update mechanism is used [22]. With an input image and a hit structuring

element, we slid the whole input image instead of the structuring element. This is

because sliding the structuring element causes an overlap between steps. Almost all

pixels in the input image are associated with each element in the structuring element,

and they are also subtracted by it. So, all pixels associated with the same element in

the structuring element are put together to form a new 2-D matrix. If the size of the

structuring element is [K, K], 𝐾 × 𝐾 2-D matrixes are generated, and they are

combined together as a 3-D matrix. Each 2-D matrix is subtracted by the associated

element in SE one by one and at the same time, a 2-D location map is generated with

48

a corresponding location of minimum value through all the 2-D matrices. If more than

one location with minimum value appears, only the first location should be recorded.

An example of hit operation is shown in Figure 3.4.

Figure 3.4 Hit operation. (a) A window slides one pixel per step on the input image to generate 2-D

matrices with each matrix corresponding to the same color element in SE and then

subtracts the element from the whole matrix, which has the same color as the element. (b)

The minimum must be found through the 3rd dimension to get the minimum value for the

feature map and to record the location.

The miss operation follows the same process as the hit operation. The only

difference is selecting the maximum value from all the 2-D matrices instead of the

minimum value from all the 2-D matrices.

(a)

Input image Structuring element

Feature map Location map

(b)

49

3.2.6 Update Approaches

As previously mentioned, the three different training approaches for weights are

backpropagation (BP), evolutionary algorithm with partial backpropagation (EAPB)

and memetic algorithm (MA). Each has its own update rules for weights. In this

section, details of the three different update approaches are introduced. All update

rules are based on the MSNN architecture as shown in Figure 3.5.

Figure 3.5 Architecture of MSNN with two feature extraction layers in the feature extraction stage and

one hidden layer for the neural network

3.2.6.1 Backpropagation Approach

With BP, all structuring elements’ weights and fully connected neural networks

are updated by gradient descent. First, let’s review the notations of the MSNN [21]:

 𝑎(𝑥): The input to node 𝑎, which is the output of node x.

50

 𝑡𝑦
ℎ(𝑥): Hit structuring element weight associating node y with node x.

 𝑡𝑦
𝑚(𝑥): Miss structuring element weight associating node y with node x.

 𝑛𝑒𝑡𝑦
ℎ: Net input for Hit (erosion) operation.

 𝑛𝑒𝑡𝑦
𝑚: Net input for Miss (dilation) operation.

For the feature extraction stage, the update rules are expressed as:

𝛥𝑡ℎ
𝑦(𝑥) = 𝜂𝛿𝑦

𝜕𝑛𝑒𝑡𝑦
ℎ

𝜕𝑡𝑦
ℎ(𝑥)

 (3-4)

𝛥𝑡ℎ
𝑚(𝑥) = −𝜂𝛿𝑦

𝜕𝑛𝑒𝑡𝑦
𝑚

𝜕𝑡𝑦
𝑚∗(𝑥)

 (3-5)

𝛿𝑦 = − ∑ (
𝜕𝐸

𝜕𝑎𝑘
.

𝜕𝑎𝑘

𝜕𝑛𝑒𝑡𝑘
.

𝜕𝑛𝑒𝑡𝑘

𝜕𝑎(𝑦)
)

𝑘
 (3-6)

where

𝛿𝑦 = 𝛿(𝑦) = ∑ 𝛿𝑘𝑤𝑘(𝑦)𝑘 (3-7)

For the nodes in the top feature extraction layer

𝛿𝑦 = 𝛿(𝑦) = ∑ 𝛿𝑘(
𝜕𝑛𝑒𝑡𝑘

ℎ

𝜕𝑎(𝑦)
−

𝑘

𝜕𝑛𝑒𝑡𝑘
𝑚

𝜕𝑎(𝑦)
) (3-8)

and for the nodes in other feature extraction layers.

Note that in equation 3-8, the last factor
𝜕𝑛𝑒𝑡𝑘

𝜕𝑎(𝑦)
 will be equal to zero if 𝑦 ≠

arg max
𝑞∈𝐷[𝑡𝑘]

{𝑎(𝑞) − 𝑡𝑘
𝑚∗(𝑞)}. When implementing this algorithm, this fact should be

used to choose the index k over which to form the sum.

51

𝜕𝑛𝑒𝑡𝑦
ℎ

𝜕𝑡𝑦
ℎ(𝑥)

=
𝜕

𝜕𝑡𝑦
ℎ [min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

ℎ(𝑞)}]

= {
−1

0

𝑖𝑓 𝑥 = arg min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

ℎ(𝑞)}

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3-9)

𝜕𝑛𝑒𝑡𝑦
𝑚

𝜕𝑡𝑦
𝑚∗(𝑥)

=
𝜕

𝜕𝑡𝑦
𝑚∗ [min

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

𝑚∗(𝑞)}]

= {
−1

0

𝑖𝑓 𝑥 = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝑞∈𝐷[𝑡𝑦]
{𝑎(𝑞) − 𝑡𝑦

𝑚∗(𝑞)}

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3-10)

and

𝜕𝑛𝑒𝑡𝑘
ℎ

𝜕𝑎(𝑦)
=

𝜕

𝜕𝑎(𝑦)
[min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

ℎ(𝑞)}]

= {
1

0

𝑖𝑓 𝑦 = arg min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

ℎ(𝑞)}

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3-11)

𝜕𝑛𝑒𝑡𝑘
𝑚

𝜕𝑎(𝑦)
=

𝜕

𝜕𝑎(𝑦)
[min

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

𝑚∗(𝑞)}]

= {
1

0

𝑖𝑓 𝑦 = arg max

𝑞∈𝐷[𝑡𝑘]
{𝑎(𝑞) − 𝑡𝑘

𝑚∗(𝑞)}

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3-12)

The neuron network consists of an input layer, a hidden layer and an output layer

with its notations designated as

𝐸𝑗(𝑘): The instantaneous error energy of neuron j.

𝑤𝑗𝑖: The synaptic weight between neuron j and neuron i.

52

𝑣𝑗(𝑘): The input of the activation function associated with neuron j.

𝑦𝑗(𝑘): The output of neuron j.

𝑒𝑗(𝑘): The error signal produced at the output of neuron j.

𝜙𝑗(𝑘): The activation function of neuron j.

Loss function, which is used to calculate the error signal, is the square error loss

function in BP.

𝐸𝑗(𝑘) =
1

2
𝑒𝑗

2(𝑘) (3-13)

So, the total instantaneous error energy of the whole network is

𝐸(𝑘) = ∑ 𝐸𝑗(𝑘)
𝑗

=
1

2
∑ 𝑒𝑗

2(𝑘)
𝑗

 (3-14)

With the chain rule, the correction 𝛥𝑤𝑗𝑖(𝑘) applied to the synaptic weight

connecting neuron i to neuron j is given by

𝛥𝑤𝑗𝑖(𝑘) = {

𝛼𝑒𝑗(𝑘)𝜙𝑗
′ (𝑣𝑗(𝑘)) 𝑦𝑖(𝑘) 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

𝛼𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ (𝑒𝑙𝜙𝑗(𝑣𝑙(𝑘))𝑤𝑙𝑗(𝑘)) 𝑦𝑖(𝑘)

𝑙

 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒

(3-15)

For the activation function of the hidden layer and output layer in the

backpropagation approach with single morphological layer, the sigmoid function is

53

used on both the hidden layer and the output layer. With two morphological layers, a

rectified linear unit (ReLU) function is used on the hidden layer to avoid gradient

vanishing, and the sigmoid function is used on the output layer.

Sigmoid function: 𝜙𝑗 (𝑣𝑗(𝑘)) =
1

1+exp(−𝑎𝑣𝑗(𝑘))
 (3-16)

RuLU function: 𝜙𝑗 (𝑣𝑗(𝑘)) = max (0, 𝑣𝑗(𝑘)) (3-17)

3.2.6.2 Evolutionary Algorithm with Partial Backpropagation

With EAPB, the weights of the neural network are still updated with

backpropagation, so update rules are same as the neural network part of BP, which

includes equation 3-13 to 3-15. However, the weights of the structuring elements are

updated by the evolutionary algorithm. In this section, we will focus on the update

rules of SE.

Take a single morphological layer network as an example. Suppose we have a

pair of structuring elements. One is the hit structuring element [ℎ11, ℎ12 … ℎ1𝑁;

ℎ21, ℎ22 … ℎ2𝑁; … ; ℎ𝑁1, ℎ𝑁2 … ℎ𝑁𝑁] with size [N, N], and another one is the

miss structuring element [𝑚11, 𝑚12 … 𝑚1𝑁; 𝑚21, 𝑚22 … 𝑚2𝑁; … ; 𝑚𝑁1,

𝑚𝑁2 … 𝑚𝑁𝑁] with size [N, N]. Then, we put all 2 × 𝑁2 weights into a vector

considered as the EA chromosome [ℎ11, ℎ12 … ℎ1𝑁, ℎ21, ℎ22 … ℎ2𝑁, … , ℎ𝑁1,

ℎ𝑁2 … ℎ𝑁𝑁, 𝑚11, 𝑚12 … 𝑚1𝑁, 𝑚21, 𝑚22 … 𝑚2𝑁, … , 𝑚𝑁1, 𝑚𝑁2 … 𝑚𝑁𝑁].

This is the representation of our solution, and our goal is to find the best chromosome

54

which can minimize the loss function. After that, we initialize K populations of

chromosome with a selected initialization method and pass them on as initial parents

into the next generations.

For each generation of EA, offspring of parents are generated with crossover and

mutation operators. A two-point crossover is used in EAPB. For example, if we have

two parents which are [𝑝1
1, 𝑝2

1, 𝑝3
1, 𝑝4

1, 𝑝5
1] and [𝑝1

2, 𝑝2
2, 𝑝3

2, 𝑝4
2, 𝑝5

2], then two

random indexes between 1 and 5 are computed. Suppose the two random indexes are

2 and 4. With the two-points crossover, the offspring of these two parents should be

[𝑝1
1, 𝑝2

2, 𝑝3
2, 𝑝4

2, 𝑝5
1] and [𝑝1

2, 𝑝2
1, 𝑝3

1, 𝑝4
1, 𝑝5

2].

For mutation, there are three different versions. The first one adds a small

random number between [−1, 1] to each weight of the chromosome. The second one

adds a random Gaussian distribution number with 0 mean and 1 standard deviation to

each weight of the chromosome. Finally, the last one adds m*loss/160, where m is a

random Gaussian distribution number with 0 mean and one standard deviation and the

loss is the sum of total errors calculated by the loss function.

In the classification stage, the update rules of a multiple-layer neural network

with one input layer, one hidden layer, and one output layer are same as the rules in

the BP approach. The only difference is the loss function. The cross-entropy function

is added to compare with the square error function, which is

55

 𝐸𝑗(𝑘) = −[𝑑𝑗(𝑘)ln𝑦𝑗(𝑘) + (1 − 𝑑𝑗(𝑘)) ln (1 − 𝑦𝑗(𝑘))] (3-18)

where 𝑑𝑗(𝑘) is the desired output of neuron j, and 𝑦𝑗(𝑘) is the actual output of

neuron j.

So, with the chain rule, the correction 𝛥𝑤𝑗𝑖(𝑘) of the cross-entropy function

applied to the synaptic weight connecting neuron i to neuron j is changed to

𝛥𝑤𝑗𝑖(𝑘) = {

𝛼𝑒𝑗(𝑘)𝑦𝑖(𝑘) 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

𝛼𝜙𝑗
′ (𝑣𝑗(𝑘)) ∑ (𝑒𝑙𝑤𝑙𝑗(𝑘)) 𝑦𝑖(𝑘)

𝑙

 𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑠 𝑎 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒

(3-19)

3.2.6.3 Memetic Algorithm

In a memetic algorithm, all weights of the structuring elements and neural

network are put together into the chromosome. The update process is much like the

update process of the feature extraction stage in EAPB. First, initialize the K

populations and pass them into the algorithm. Then, in each generation, generate K

offspring with crossover, mutation and a local search. Here, the local search is the

main technique used in the memetic algorithm to speed up convergence of the

algorithm. After doing crossover and mutation, offspring will do several generations

of backpropagation to slightly update all weights in the offspring. Then these

offspring and parents compare with each other and select the best K populations as

new parents. A local search can be considered an operation of trying to find local

56

minima around each offspring and to then replace these offspring with the local

minima to compare them with each other and thereby find the minimum which is

closest to the global minimum state or is exactly the global minimum state. There is

no backpropagation in this approach.

3.2.7 Sub-image Replacement Method

If there are N training images, for each training image, M target sub-images and

M background sub-images are selected to pass into the algorithm. The number of sub-

images passed into the algorithm is 2 × 𝑀 × 𝑁. In this experiment, M = 40, N =8,

and the size of input training image is [245, 327], which means 640 sub-images were

selected to pass into the algorithm. But for a training image, there are 54,963 sub-

images in total. So, it is not enough to train the network with just 640 sub-images.

This is the reason for a sub-image replacement operation in an algorithm. When the

error of a sub-image is smaller than the well-trained value, which is set up manually,

this sub-image will be replaced by a new sub-image. The new sub-image has the same

label as the replaced one. The sub-image replacement method used in this thesis is

randomly selecting a new sub-image, which is similar to the sub-image generation

process.

57

3.2.8 Target Boxes

The output of MSNN is a detection plane, which is a continuous confidence map.

If the confidence is close to 1, it means the sub-image of the corresponding location

has a high confidence to qualify as the target. If the confidence is close to 0, it means

the sub-image of the corresponding location has a low confidence to be the target,

which indicates that this sub-image has a high confidence, making it a good choice for

the background. Figure 3.6 represents a test image detection plane. The target is a

white and black cup with a terra-cotta soldiers’ pattern.

Figure 3.6 Detection plane of a test image and the target is a white and black cup with a terra-cotta

soldiers’ pattern.

In Figure 3.6, a few bright points in the detection plane are reported based on the

targets in these corresponding sub-images. However, these reported targets come from

the same actual target. When we draw detection boxes, which contain targets based on

these points, too many repeated boxes will appear on the same target. Thus, a method,

called non maximal suppression, to eliminate these repeated boxes is introduced.

(a) Detection

plane

(b) Test image

58

The first step of this method is to find a maximum on the detection plane, record it,

and set its neighbor area to zeros. Then, find another maximum, repeat the first step

until all points with values are recorded points, and the other points are zero. After this

operation, target boxes are eliminated, and important boxes are maintained. An example

of target boxes before and after elimination is shown in Figure 3.7.

 (a) Boxes of target before elimination and (b) boxes of target after elimination

Figure 3.7 An example of boxes of target before elimination and after elimination.

59

CHAPTER 4 RESULTS

4.1 Dataset

In this thesis, three groups of datasets have a white and black cup with a terra-

cotta soldiers’ pattern as target. One group of datasets was created by Shen [22],

which was used to compare our network results with those of Shen. Another two

groups of datasets were created by the author under the advisement of Dr. James

Keller at the University of Missouri-Columbia. We selected a cup as our target and

took a lot of images in different instances and with diverse backgrounds. Afterwards,

these images were resized and converted into grayscale. Then, we set up the centers of

these images manually which were used to locate targets. The size of the images is

[245, 327].

For Dataset I, all images were placed at the same distance from the camera. The

target was a white and black cup with a terra-cotta soldiers’ pattern. Figure 4.1 shows

some samples from Dataset I.

60

Figure 4.1 Samples from Dataset I

This dataset has 10 groups with eight images per group. The background of each

group is different. The background of each image in one group is the same, but the

target has eight different directions in total. This dataset is the “simplest” group for

the algorithm.

Dataset II still has 10 groups with eight images per group. Figure 4.2 shows

some samples from this dataset.

61

Figure 4.2 Samples from Dataset II

All images in this dataset have the same distance as in Dataset I, and all have the

same target as Dataset I. The difference between them is that in Dataset II, most

images have occlusion situations. As shown in Figure 4.2, the target is occluded by

other background items in Groups 1 to 4 and in Groups 7 to 10. In Groups 5 to 10, a

new cup is added to the image and there is no occlusion in Groups 5 and 6. These two

groups are used to test whether the network can identify “the cup” or just cup shapes.

Dataset III is the dataset which Shen created. Figure 4.3 shows some samples

from that dataset. Dataset III has 16 groups of images with eight images in each

group. The target is still the black and white cup.

62

Figure 4.3 Samples from Dataset III

In Dataset III, the three objects in each image are the cup, a tissue box and a

sprayer. None of the items in these images are occluded by any other items. These 16

groups of images have different distances from the camera—both far and near. In each

group, the cup has eight different directions.

All images are split into one training set and three testing sets. Group 9 of

Dataset III is selected as the training set. Dataset I, Dataset II and the rest images of

Dataset III are considered as testing set I, testing set II and testing set III separately.

4.2 Results of Single Morphological Layer Networks

 The experiments of a single morphological layer network are focused on

comparisons between three different update approaches, which are backpropagation

(BP), the evolutionary algorithm with partial backpropagation (EAPB) and the

memetic algorithm (MA). First, with EAPB, which is the main algorithm discussed,

three experiments were conducted for comparisons. The first one compares

performances of updating networks with the square error loss function and the cross-

63

entropy loss function. The second one compares the performances of the different

mutation methods mentioned in Section 3.2.6.2. The third one compares performances

of the different initialization methods mentioned in Section 3.2.3. Then, the results of

the three different update approaches are compared. After one morphological layer

with one pair of kernels trained by three update approaches are compared with each

other, one more pair of kernels is added into the morphological layer. Thus, a parallel

morphological shared-weight neural network is trained to see if the results are better

than the results of the networks with one pair of kernels.

4.2.1 Comparison of Loss Function

 Single morphological layer networks are trained separately by the EAPB

approach with two different loss functions. The first loss function is the square error

loss function, and the second one is the cross-entropy loss function. The parameters of

two networks are shown in Table 4.1.

Table 4.1 Parameters of a single layer morphological network

Iteration 200
N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50╳50

Structuring element size 5╳5

Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

β (momentum constant) 0.1

Well trained 10−5

Learning rate 0.3

Size of population 20

Probability of mutation 0.8

Probability of crossover 0.8

64

Dataset III is used for this comparison. Group 9 of Dataset III is used as training

data, and the remaining images of Dataset III are used as test data. For both loss

functions, we trained each network five times and the only difference between two

networks is different loss functions. These two networks use the same initialization

method, crossover and mutation method. The reason why we trained each network

five times is operations include initialization, crossover and mutation could make

results of the same network different each time because of their randomness. So we

ran each network five times and averaged or concatenated results to make results

more reliable. The accuracy of the network is evaluated by the ROC curve. The y

label of the ROC curve is the true-positive (TP) rate, which is the number of correct

points detected as targets by the algorithm divide the number of total targets. The x

label of the ROC curve is the false-positive (FP) rate, which is the false alarm per

image and the false alarm is the number of wrong points detected as targets. Colors on

the color bar correspond to thresholds from 0 to 1. These thresholds are used to

distinguish targets and backgrounds. For example, we have a detection plane of an

input image, and 0.9 is selected as the threshold. So, the corresponding sub-image of

the point which has a confidence (output) higher than 0.9 on the detection plane is

labeled as 1. The corresponding TP rate and FP rate are calculated based on this

threshold and all information is related to one point on the ROC curve with the

corresponding color of this threshold.

65

 Figure 4.4 is an example output image. There are two green boxes, which are

the bounding boxes where the algorithm indicates a target exists. These boxes are

drawn with centers, which are points with TP rates higher than the threshold, after non

maximal suppression. The red point in the output image is the point which has the

highest confidence as a target. So, the center of the left box has the correct point

detected as a target by the algorithm, and the center of the right box is a false alarm. If

the purpose of those working with this experiment is to find targets with no false

alarms, then the preferred algorithms have ROC curves possessing a higher TP rate

when the false alarm per image is 0. However, if we want to find targets, the more the

better. The target-seeking algorithms can tolerate some false alarms per image, but the

less false alarms, the better. Thus, the preferred algorithms are those with ROC curves

possessing a higher TP rate when false alarms per image are in a desired acceptable

range.

Figure 4.4 An example of output image with one true positive and one false alarm.

 Figure 4.5 shows all ROC curves of the five networks for both functions. The

left column has the results of the cross-entropy loss function, and the right column has

66

the results of the square error loss function. Figure 4.6 shows the vertical average

ROC curve and the concatenated ROC curve of five individual networks for both

functions. Averages of the TP rates are calculated in vertical-average ROC curves to

observe the fluctuation of the network. Moreover, the concatenated ROC curves are

computed by merging all test data together and considering them as one entire test

dataset.

Figure 4.5 ROC curves of five networks for two different loss functions.

(a) ROC curves of cross-

entropy function

(b) ROC curves of square

error function

(c) Zoomed in ROC curves of

cross-entropy function

(d) Zoomed in ROC curves of

square error function

67

Figure 4.6 Vertical average and concatenated ROC curves for two different loss functions.

From the figures, it is obvious that using square error loss function gives a better

performance. Figure 4.6 (e) and (f), show that with the same FP rate, the TP rate of the

(a) Vertical average ROC curve

of cross-entropy function

(b) Vertical average ROC curve

of square error function

(c) Concatenated ROC curve of

cross-entropy function

(d) Concatenated ROC curve of

square error function

(e) Vertical average ROC curves

of two loss functions

(f) Concatenated ROC curves of

two loss functions

68

square error function is always higher than the TP rate of the cross-entropy function.

The reason could be that the cross-entropy function makes the algorithm converge too

fast, and the current weights of neural network could be stuck with the current best

structuring elements. So the chance of finding other better structuring elements may

be lower. With these results, the square error function is clearly better for the EAPB

approach, which is why it was chosen. Its use will be shown later. Samples of

detection results are shown in Appendix Figure A-1 and Appendix Figure A-2.

4.2.2 Comparison of Mutation Methods

 Three different mutation methods are compared with each other. For networks to

be trained, we still use one single morphological layer network trained separately by

EAPB with different mutation methods. The first mutation method adds a small

random number between [−1, 1] to each weight of the chromosome. The second one

adds a random Gaussian distribution number with 0 mean and 1 standard deviation to

each weight of the chromosome, and the third one adds m*loss/160, where m is a

random Gaussian distribution number with 0 mean and 1 standard deviation. Network

parameters are listed as follows:

69

Table 4.2 Parameters of the single-layer morphological network

Iteration 200

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50╳50

Structuring element size 5╳5

Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

β (momentum constant) 0.1

Well trained 10−5

Size of population 20

Probability of mutation 0.8

Probability of cross over 0.8

The dataset used in these comparisons is still Dataset III. Group 9 of Dataset III

is used as training data, which includes eight images. And the rest images of Dataset

III are used as testing data.

70

Figure 4.7 ROC curves of three different mutation methods.

(a) Original ROC curves of

first mutation method

(b) Zoomed in ROC curves of

first mutation method

(c) Original ROC curves of

second mutation method

(d) Zoomed in ROC curves of

second mutation method

(e) Original ROC curves of third

mutation method

(f) Zoomed in ROC curves of third

mutation method

71

Figure 4.7 shows the results of three different mutation methods. Each row of

figures presents the original and zoomed in ROC curves for corresponding mutation

methods.

In Figure 4.8, the vertical average ROC curves and concatenated ROC curves of

three different mutation methods are shown.

In Figure 4.8, we can see that with the second mutation method, which adds a

random Gaussian distribution number with 0 mean and 1 standard deviation to each

weight of the chromosome, results are more stable than those found with the other

two mutation methods, and they have a higher FP rate than the others. To observe

results more clearly, the vertical average ROC curves and the concatenated ROC

curves of three mutation methods are put into Figure 4.9 for comparison.

72

Figure 4.8 Vertical average and concatenated ROC curves of three different mutation methods.

(a) Vertical average ROC curve

of first mutation method

(b) Concatenated ROC curve of

first mutation method

(c) Vertical average ROC curve

of second mutation method

(d) Concatenated ROC curve of

second mutation method

(e) Vertical average ROC curve

of third mutation method

(f) Concatenated ROC curve of

third mutation method

73

Figure 4.9 Comparisons between three mutation methods.

 From the previous figures, it is obvious that the second mutation which adds a

random Gaussian distribution number with 0 mean and 1 standard deviation to each

weight of the chromosome has a better performance than the other two mutation

methods. With the same FP rate, the ROC curve of the second mutation has a higher

TP rate value, which is what we want. So, the second mutation method is selected as

the mutation method for the following experiment. Examples of detections results of

three mutation methods are shown in Appendix Figure A-3 and Appendix Figure A-4.

4.2.3 Comparison of Initialization methods

As mentioned in Section 3.2.3, three initialization methods are compared with

the EAPB update approach. The first initialization method is an all-zero initialization.

The second initialization method is a small random numbers initialization. The third

one is proposed by the author based on the MSNN. For the hit-miss structuring

elements, the hit kernel is initialized by randomly selecting a sub-image of the target,

(a) Vertical average ROC curves of

three mutation methods

(b) Concatenated ROC curves of

three mutation methods

74

which has the same size as the hit kernel, while the miss kernel is initialized by

randomly selecting a sub-image of the background, which also has the same size as

the miss kernel. Dataset III is still used in these comparisons with group 9 as the

training data and the remaining images as testing data. Parameters used in these

networks are the same as parameters in Section 4.2.2.

Original and zoomed in ROC curves are shown in Figure 4.10. Each row of

figures shows ROC curves of the first initialization method, the second initialization

method, and the third initialization method in sequence.

From Figure 4.10, we can see that the performances of the second and third

initialization methods are better than the first initialization methods. We cannot figure

out which one is better among the second and third initialization methods from these

figures, so the vertical average and concatenated ROC curves are shown in Figure

4.11. But from Figure 4.11, there is still no significant distinguishing difference

between them. Then, the vertical average and concatenated ROC curves from the

three initialization methods are put into one figure separately for observing clearly in

Figure 4.12.

file:///D:/æ��é��è¯�å�¸/Dict/7.5.0.0/resultui/dict/

75

Figure 4.10 ROC curves of three different initialization methods.

(a) Original ROC curves of

first initialization method

(b) Zoomed in ROC curves of

first initialization method

(c) Original ROC curves of

second initialization method

(d) Zoomed in ROC curves of

second initialization method

(e) Original ROC curves of third

initialization method

(f) Zoomed in ROC curves of third

initialization method

76

Figure 4.11 Vertical average and concatenated ROC curves of three different initialization methods.

(a) Vertical average ROC curve

of first initialization method

(b) Concatenated ROC curve of

first initialization method

(c) Vertical average ROC curve of

second initialization method

(d) Concatenated ROC curve of

second initialization method

(e) Vertical average ROC curve of

third initialization method

(f) Concatenated ROC curve of

third initialization method

77

Figure 4.12 Comparisons between three initialization methods.

From Figure 4.12, the vertical average ROC curve of the third initialization

method is slightly higher than curve of second initialization method and the

concatenated ROC curve of the third initialization method is also higher than the

curve of the second initialization method between [0.2, 0.8] of the FP rate. The reason

for the different results with different initialization methods is that the initial

chromosomes start at various locations within the solution space, so the closer the

initial chromosomes are to the global minimum, the easier it is for the algorithm to

find the best solution. So, in this case, the third initialization method was selected as

the initialization method used in all experiments for EAPB. Examples of detections

results of three initialization methods are shown in Appendix Figure A-5 and

Appendix Figure A-6.

(a) Vertical average ROC curves of

three initialization methods

(b) Concatenated ROC curves of

three initialization methods

78

4.2.4 Comparison of Three Update Approaches

In this section, three different update approaches are compared with each other.

They are backpropagation (BP), evolutionary algorithm with partial backpropagation

(EAPB) and the memetic algorithm (MA). The network used is MSNN with a single

morphological layer. For the dataset, group 9 Dataset III is selected as the training

data. Dataset I, Dataset II and the remaining images of Dataset III are used as three

groups of test data.

4.2.4.1 Backpropagation (BP)

 First, a single morphological layer network is trained by BP five times to assure

more reliable results. Weights of structuring elements are initialized as zero and

weights of the neural network are initialized with random small numbers between [−1,

1], which are the same as those found in Shen’s networks, so we can easily compare

our results with her results. Parameters for this network are listed in Table 4.3.

Table 4.3 Parameters of the single morphological layer network with BP

Iteration 1000

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50×50

Structuring element size 5×5

Hidden neurons in neural network 20

𝑎1 (parameter in sigmoid function in hidden layer) 0.3

𝑎2 (parameter in sigmoid function in output layer) 0.4

β (momentum constant) 0.2

MaxRandSelect 5

Well trained 10−5

79

Group 9 of Dataset III is selected as training data. After training, these networks

are tested on three groups of test data, which are Dataset I, Dataset II and Dataset III

without group 9. Figure 4.13 shows the test results of Dataset I and Dataset II.

Figure 4.13 Results of Dataset I and Dataset II with BP.

(a) Original ROC curves for Dataset I (b) Original ROC curves for Dataset II

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II

(e) Concatenated ROC curves for Dataset I (f) Concatenated ROC curves for Dataset II

80

From Figure 4.13, it is obvious that test results of Dataset I are exceptional, i.e.,

100 percent accuracy. This means MSNN trained by BP has excellent performance on

test images which have the same distance as training images. For Dataset II results,

which is the dataset with occlusion situations, performance results cannot be

concluded now without comparisons. These results will be compared with two other

update approaches later. Dataset III results are shown in Figure 4.14.

Figure 4.14 Results of Dataset III with BP.

 Figure 4.14 (c) indicates that the results of networks trained by BP are stable.

The reason could be that initialization method of weights were the same in each

(a) Original ROC curves (b) Zoomed in ROC curves

(c) Vertical average ROC curve (d) Concatenated ROC curve

81

network and each network has the same starting point with zero initialization. Thus,

the algorithm search solutions are in the same neighborhood space with

backpropagation.

4.2.4.2 Evolutionary Algorithm with Partial Backpropagation (EAPB)

Five individual networks, which were also trained by EAPB, are featured in this

section. The third initialization method mentioned in Section 3.2.3 and the second

mutation method are used. These networks were trained by group 9 of Dataset III.

Dataset I, Dataset II and the remaining images in Dataset III represent the three

featured groups of test data in this section. Parameters used in this section are the

same as parameters in Table 4.2. Figure 4.15 shows the results of Dataset I and

Dataset II. Figure 4.16 shows results of Dataset III.

82

Figure 4.15 Results of Dataset I and Dataset II with EAPB.

(a) Zoomed in ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset II

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II

(e) Concatenated ROC curves for Dataset I (e) Concatenated ROC curves for Dataset II

83

Figure 4.16 Results of Dataset III with EAPB

 Figure 4.15 (a), (c) and (e) show results of networks trained by EAPB also have

perfect performances on Dataset I, which means networks trained by EAPB can

exactly detect the target from images which have the same distance as the training

images. In figure 4.15 (b), (d) and (f), for test images with occlusion situations, when

false alarm per image is 0, the TP rate reaches 0.6 and when false alarm turns to 1, the

TP rate is around 0.9. Networks trained by EAPB have a great capacity to detect

targets from different distances when we train them with images from only one

distance. But networks trained by EAPB take more time for training. The reason

could point to the evolutionary algorithm part of this approach, which not only

(a) Original ROC curves (b) Zoomed in ROC curves

(c) Vertical average ROC curve (d) Concatenated ROC curve

84

exploits the search space, but also conducts an exploratory search that needs much

more time to expand and search the solution space.

4.2.4.3 Memetic Algorithm (MA)

For the memetic algorithm, a single morphological layer network is trained by

MA. The third initialization method mentioned in Section 3.2.3 and the second

mutation method are used. All weights are put together as one chromosome and a

local search is added to speed up the training process. With a local search, instead of

searching solutions totally at random, each population converges to the nearest local

minimum and compares with each other, which indicates a faster path to the global

minimum. But even with a local search, training networks with MA still requires a lot

of time. Thus, only three individual networks are trained with MA instead of five.

Table 4 lists the parameters used for these networks.

Table 4.4 Parameters of the single morphological layer network with MA

Iteration 100

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50╳ 50

Structuring element size 5╳5

Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

Well trained 10−5

Size of population 10

Probability of mutation 0.8

Probability of crossover 0.8

Figure 4.17 shows the results of Dataset I and Dataset II. The left column shows

figures from Dataset I and the right column shows figures from Dataset II.

85

Figure 4.17 Results of Dataset I and Dataset II with MA.

Figure 4.18 shows test results of Dataset III. The ROC curves of Dataset I show

that networks trained by MA perform poorly compared to the other two update

approaches. When the FP rate is 0, the MA-trained network TP rates cannot always

reach 1. For Dataset II, the highest TP rate is around 70 percent, which is lower than

the others. Results of Dataset III are shown in Figure 4.18. It is obvious that the MA-

3 3

(a) Zoomed in ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset II

(c) Vertical average ROC curves for Dataset I (d) Vertical average ROC curves for Dataset II

(e) Concatenated ROC curves for Dataset I (f) Concatenated ROC curves for Dataset II

86

trained performance of networks is not as good as the other two update approaches.

The reason for this could lie in all weights being put into one chromosome making the

chromosome too complicated, thereby rendering it unable to find the best solution

within the appropriate time.

Figure 4.18 Results of Dataset III with MA.

4.2.4.4 Three update approaches

 Based on the results of the three updated approaches, this section will discuss

their differences. Figure 4.19 compares the approaches for Datasets II and III. No

comparisons are shown on Dataset I due to its superior performance. The left column

(a) Original ROC curves (b) Zoomed in ROC curves

(c) Vertical average ROC curve (d) Concatenated ROC curves

87

compares the vertical average ROC curves and the right column compares

concatenated ROC curves.

Figure 4.19 Comparisons of the three updated approaches for Dataset II and Dataset III.

 Figure 4.19 shows that the performances of networks trained by EAPB are better

than the performances of the other two update approaches. With the same FP rate

value, networks trained by EAPB have a higher TP rate, which means that when

networks have the same number of false alarms per image, the networks trained by

EAPB are better able to detect the target. From Figure 4.19 (a) and (b), the vertical

average of the ROC curve and the concatenated ROC curve of BP for Dataset II are

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II

(c) Vertical average ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III

88

close to the curves of EAPB. The ability of networks trained by EAPB to detect the

target in occlusion situations is slightly better than networks trained by BP, and the

ability of networks trained by EAPB to detect the target from different distances is

much better than networks trained by BP between intervals [0, 0.8]; then, the ROC

curve of BP catches up with the ROC curve of EAPB. What we require for good

networks is the same FP rate; thus, the higher the TP rate is, the better. Based on these

results, networks trained by EAPB were determined to have the best performance, and

networks trained by MA were determined to have the worst performance. Because of

the long computing times and terrible performance of MA, MA will not be considered

as an algorithm from this point on. Examples of detections results of three update

approaches are shown in Appendix Figure A-7 and Appendix Figure A-8.

4.2.5 Results of Parallel Morphological Shared-weight Neural Network

 All results of morphological one-layer networks with just one pair of kernels

have already been posted. At this point, the question that comes to mind is: What

happens when two parallel pairs of kernels work together in one morphological layer?

Will results be better? To answer this question, a parallel morphological shared-

weight neural network was trained with EAPB because of EAPB’s superior network

performance. The structure of this MSNN network is shown in Figure 4.20. Instead of

one pair of kernels, the network has two parallel pair of kernels in its feature

extraction stage. So, there are two feature maps after the hit-miss transform. These

89

feature maps were put together, converted into a one-dimension vector and passed

into the neuron network.

Table 4.5 Parameters of parallel MSNN

Iteration 200

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50×50

1st pair of structuring elements size
2nd pair of structuring elements size

5╳5
5╳5

 Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

β (momentum constant) 0.1

Well trained 10−5

Learning rate 0.2

Size of population 20

Probability of mutation 0.4

Probability of cross over 0.9

The network was trained five times to make results more reliable. These

networks were trained by group 9 of Dataset III and tested on three testing sets, which

consists of Dataset I, Dataset II and the remaining images of Dataset III. Figure 4.21

Hit1

Miss1

Max-pooling

Input Image

Figure 4.20 Architecture of a parallel morphological shared-weight neural network.

Miss2

Hit2

…

90

shows the original ROC curves and zoomed in ROC curves of these networks for

Dataset I–III.

Figure 4.21 Original and zoomed in ROC curves of parallel networks for Dataset I, Dataset II and

Dataset III.

Figure 4.22 shows vertical average ROC curves and concatenated ROC curves of

these networks for Datasets I–III.

(a) Original ROC curves for Dataset I

(c) Original ROC curves for Dataset II

(e) Original ROC curves for Dataset III

(b) Zoomed in ROC curves for Dataset I

(d) Zoomed in ROC curves for Dataset II

(f) Zoomed in ROC curves for Dataset III

91

Figure 4.22 Vertical average and concatenated ROC curves of parallel networks for Dataset I, Dataset

II and Dataset III.

From Figures 4.21 and 4.22, we can find that parallel networks trained by EAPB

perform perfectly on Dataset I, and all networks reached the 1 TP rate for Dataset I.

This means that parallel networks can detect targets correctly from all images with the

(a) Vertical average ROC curve for dataset I

(c) Vertical average ROC curve for dataset II

(e) Vertical average ROC curve for dataset III

(b) Concatenated ROC curve for dataset I

(d) Concatenated ROC curve for dataset II

(f) Concatenated ROC curve for dataset III

92

same distance as the training images. In figure 4.22 (c) and (d), for dataset II, which

are images with occlusion situations, when the FP rate is 0, the TP rate is over 50

percent and the TP rate reaches 80 percent while the FP rate turns to 1. From figure

4.22 (e) and (f), the TP rate turns from 50 percent to 90 percent when the FP rate

changes from 0 to1.

Figure 4.23 Comparisons between parallel networks and networks with one pair of kernels for Dataset

II and Dataset III.

In figure 4.23, results of the parallel network are compared with results of the

single layer networks with one pair of kernels for Dataset II and Dataset III. Figure 4.23

(a) shows that performances of both networks are similar, but the single layer network

with one pair of kernels performs slightly better than the parallel network. From figure

4.23 (b), it is clearly that the parallel network performs better than the single layer

network with one pair of kernels. Examples of detections results of parallel networks

are shown in Appendix Figure A-9.

(a) Vertical average ROC curve for Dataset II (b) Vertical average ROC curve for Dataset

III

93

4.3 Results of Multiple Morphological Layer Network

Deep learning has become a hot topic. Many people believe that the deeper the

better for networks. So, with MSNN, we also considered making it deeper. Instead of

having one pair of kernels in one morphological layer, we used two morphological

layers, and each layer has one pair of kernels. It is a cascaded network. We trained it

with two update approaches: 1) the backpropagation approach and 2) the evolutionary

algorithm with partial backpropagation approach. Our goal was to determine which

update method works best in a cascaded network.

4.3.1 Backpropagation

First, we trained a two-layer morphological network with backpropagation five

times. For training data, we continued to use images from group 9 of Dataset III.

These networks were also tested on Datasets I–III. In the two-layer morphological

networks, there are two morphological layers and after each morphological layer,

there is a max-pooling layer. So, after the feature extraction stage, the feature map of

two-layer morphological networks is much smaller. Parameters used in this network

are listed in Table 4.6.

94

Table 4.6 Parameters of two-layer morphological network trained by BP

Iteration 500

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50×50

1st pair of structuring elements size

2nd pair of structuring elements size

5×5

3×3

 Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

β (momentum constant) 0.2

Well trained 10−5

MaxRandSelect 5

We used all zero initialization for kernels in first and second morphological

layers and initialized all weights of the neuron network with small random numbers in

the range of [−1, 1]. For hidden layers, rectified linear activation function was used to

avoid gradient vanishing. Original and zoomed in ROC curves of two-layer

morphological networks trained by BP are shown in Figure 4.23. Vertical average

ROC curves and concatenated ROC curves are given in Figure 4.24.

95

Figure 4.23 Original and zoomed in ROC curves of two-layer morphological networks trained by BP

for Datasets I–III.

(a) Original ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset I

(c) Original ROC curves for Dataset II (d) Zoomed in ROC curves for Dataset II

(e) Original ROC curves for Dataset III (f) Zoomed in ROC curves for Dataset III

96

Figure 4.24 Vertical average and concatenated ROC curves of two morphological layers networks

trained by BP for Datasets I–III

Figure 4.23 and Figure 4.24 show the performance of a two-layer morphological

network in Dataset I has a slightly inferior performance than that of the other

networks. When the FP rate is 0, the TP rate does not reach 1 every time, but it is still

(a) Vertical average ROC curve for dataset I (b) Concatenated ROC curve for dataset I

(c) Vertical average ROC curves for dataset II (d) Concatenated ROC curve for dataset II

(e) Vertical average ROC curve for dataset III (f) Concatenated ROC curve for dataset III

97

very close to 1; thus, this performance is still satisfying. For Dataset II, the color of

the threshold quickly turns from yellow to blue when the FP rate is around 0.6 or 0.7.

With this turning point, we can use the blue color to set the threshold as 0.7. We can

also get an acceptable performance with a 0.6 false alarm per image and an accuracy

of over 75%, which is an excellent result for an occlusion situation. Figure 4.24 (e)

and (f) show networks with an accuracy of almost 70% when the FP rate is 0, which

means networks can detect 70% of the targets correctly without a false alarm. This has

been the highest accuracy possible when the FP rate equals 0 for Dataset III until now.

Examples of detections results of multiple layer networks trained by BP are shown in

Appendix Figure A-10.

4.3.2 Evolutionary Algorithm with Partial Backpropagation

An evolutionary algorithm (EA) with partial backpropagation performs great

when training a one-layer morphological network. So, we decided to use EA with

partial backpropagation (EAPB) on two-layer morphological networks to test its

performance. With EAPB, instead of putting the weights of one pair of kernels into

the chromosome, we the put the weights of two pairs of kernels into the chromosome

and initialized them with random Gaussian distribution numbers with 0 mean and 1

standard deviation. All other processes were the same as a one-layer morphological

network trained by EAPB. Parameters used are listed in Table 4.7.

98

Table 4.7 Parameters of two-layer morphological network trained by EAPB

Iteration 100

N (number of training images) 8

M (number of sub-images/image) 40

Sub-image size 50×50

1st pair of structuring elements size
2nd pair of structuring elements size

5×5
3×3

 Hidden neurons in neural network 20

a (parameter in sigmoid function in output layer) 0.3

β (momentum constant) 0.1

Well trained 10−5

Size of population 20

Probability of mutation 0.8

Probability of cross over 0.8

 The two-layer morphological network was still trained five times. Training data

came from group 9 of Dataset III images and networks were tested using three test

sets which consist of Datasets I, Dataset II and the remaining images in Dataset III.

Original and zoomed in ROC curves are shown in Figure 4.25. Vertical averages and

concatenated ROC curves are given in Figure 4.26. Each row presents the featured

paired parameters for each dataset in sequence (I–III).

99

Figure 4.25 Original and zoomed in ROC curves of two-layer morphological networks trained by

EAPB for Dataset I, Dataset II and Dataset III.

(a) Original ROC curves for Dataset I (b) Zoomed in ROC curves for Dataset I

(a) Original ROC curves for Dataset I

(c) Original ROC curves for Dataset II (d) Zoomed in ROC curves for Dataset II

(e) Original ROC curves for Dataset III (f) Zoomed in ROC curves for Dataset III

100

Figure 4.26 Vertical average and concatenated ROC curves of two-layer morphological networks

trained by EAPB for Dataset I, Dataset II and Dataset III.

 From Figures 4.25 and 4.26, it is obvious that two morphological neural

networks trained by EAPB performed very poorly compared to other previously

trained networks. In Figure 4.26 (a) and (b), for Dataset I, the TP rate could reach 1

(a) Vertical average ROC curve for dataset I (b) Concatenated ROC curve for dataset I

(c) Vertical average ROC curve for dataset II (d) Concatenated ROC curve for dataset II

(e) Vertical average ROC curve for dataset II (f) Concatenated ROC curve for dataset II

101

before the FP rate reached 1, which means the two-layer morphological neural

networks trained by EAPB cannot detect all targets correctly from test images, which

have the same distance as the training images and have no occlusion situation. In

Figure 4.26 (c)–(f) representing Dataset II and III, in both cases, the two

morphological neural networks trained by EAPB perform unsatisfactorily. When the

false alarm per image is 0, the true positive rates for the two datasets are around 0.3

and 0.2, which is much lower than the true positive rates recorded for the other

networks. Moreover, when the false alarm per image reaches 1, the true positive rates

(TP rate) for two datasets are only around 0.6. Reasons for the terrible performance

could be due to the evolutionary part. We added weights of another pair of kernels

into the chromosome, which made the chromosome more complicated and more

difficult to find in the search. We were unable to find the best initialization method for

the multiple-layer morphological networks, which could have caused the unacceptable

results. Examples of detections results of multiple layer networks trained by EAPB

are shown in Appendix Figure A-10.

4.3.3 Comparisons of Two-layer Morphological Networks

 In this section, we present the results of putting two-layer morphological

networks trained by BP and trained by EAPB together for comparison. Figure 4.27

shows the vertical average and concatenated ROC curves of both updated approaches

for Dataset II and Dataset III.

102

Figure 4.27 Comparisons of two-layer morphological networks trained by BP and networks trained by

EAPB for Dataset II and Dataset III.

 From Figure 4.27, we can see that performance of networks trained by BP is

much better than networks trained by EAPB for both datasets. This is interesting

because the EAPB-trained networks with a one-layer morphological network

performed better than the BP-trained one-layer morphological networks; however,

after adding another morphological layer, the networks trained by EAPB performed

much worse than before, and the networks trained by BP performed better than

before. For EAPB, chromosomes become more complicated after adding another

morphological layer, which makes the solution space much wider and more difficult

(a) Vertical ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II

(c) Vertical ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III

103

to explore. Although the EAPB uses elitism, it cannot guarantee to find the global

minimum each time. Because of random evolutions of generating offspring, the

EAPB has big chances to get rid of the local minimum. But it needs “luck” to make

moves near the global minimum. It could move from a local minimum to another

local minimum with “bad luck”. And if the solution space is too wide, it is difficult

for the EAPB to find the global minimum within the limited generations. Therefore,

results of networks trained by EAPB are not stable. For the two-layer morphological

networks trained by EAPB, we have not yet found an appropriate initialization

method. Initialization methods can visibly affect results. This was confirmed in

Section 4.2.3. Meanwhile, BP, solutions are becoming better and better in each

generation. Although BP cannot avoid the local minimum, BP finds a “minimum”

around the start point at least. This could explain why the two-layer networks trained

by EAPB performed so poorly compared to those trained by BP.

4.4 Comparisons Between Networks with Different Structures

 Now we have all results of one-layer morphological networks, parallel networks

and two-layer morphological networks. This section compares all these networks. The

best update approach for each structure is selected as a representative. So, one-layer

morphological networks trained by EAPB are compared with two-layer

morphological networks trained by BP to see if more layers make the performance

better. Moreover, parallel networks trained by EAPB are compared with two-layer

104

morphological networks trained by BP to observe which performance is better—the

parallel network or cascaded network. We compare results of Dataset II and Dataset

III because all networks performed satisfactorily on Dataset I. Figure 4.28 compares

an EAPB-trained one-layer morphological network with a BP-trained two-layer

morphological network. Figure 4.29 compares a parallel network and a cascaded

network (two-layer morphological networks trained by BP).

Figure 4.28 Comparison between a two-layer morphological network trained by BP and a one-layer

morphological network trained by EAPB for Dataset II and Dataset III.

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II

(c) Vertical average ROC curves for

Dataset III in range [0, 5]

(d) Concatenated ROC curves for

Dataset III in range [0, 2]

105

 From Figure 4.28, we can see that when the FP rate is in the range of [0, 0.3], the

performance of the two-layer morphological network trained by BP is better.

Furthermore, in the preferred range [0.3, 2.5], the FP rate of a one-layer

morphological network is higher, which indicates that if we want 0 false alarm per

image with a higher TP rate, a two-layer morphological network trained by BP is a

better choice. However, if we can accept a false alarm per image in range [0.3, 2.5]

and need the TP rate to be as high as possible, a one-layer morphological network

could better meet our needs.

Figure 4.29 Comparison between cascaded networks and parallel networks for Dataset II and Dataset

III.

(a) Vertical average ROC curves for Dataset II (b) Concatenated ROC curves for Dataset II

(c) Vertical average ROC curves for Dataset III (d) Concatenated ROC curves for Dataset III

106

 From Figure 4.29 (a) and (b), there is no significant difference between

performances of cascade networks and parallel networks for Dataset II. They perform

similarly on images which have an occlusion situation. For Dataset III, which consists

of images with different distances, when we need 0 false alarm per image, the TP rate

of the cascade network is almost 0.7 while the TP rate of the parallel network is

around 0.5, which in this case means that the cascade network is a better choice.

However, if we can accept some false alarms per image, the parallel network could be

preferred.

4.5 Comparisons Between MSNN and CNN

 The convolutional neural network (CNN) is a widely used and popular neural

network used for image processing. In this thesis, the morphological shared-weight

neural network (MSNN) is introduced. A major goal of this research was to compare

MSNNs with CNNs and see which performed better with our datasets. For the

MSNN, there are one-layer morphological networks and two-layer morphological

networks. So, we also have one-layer convolutional networks and two-layer

convolutional networks for CNN.

4.5.1 Comparisons of One-Layer Networks

 First, a convolutional one-layer network is set up to compare with a

morphological one-layer network. In MSNN, a pair of structuring elements is used to

107

compute a one-feature map that corresponds to one convolutional kernel in CNN. We

trained CNN with backpropagation and trained MSNN with EAPB. One group of

images from Dataset III is used as training data and these networks were tested on

Dataset I–III. Figure 4.30 shows the original and zoomed in ROC curves for Dataset I.

Figure 4.31 shows vertical average and concatenated ROC curves for Dataset I.

Figure 4.30 Original and zoomed in ROC curves of one-layer MSNN and CNN for Dataset I.

(a) Original ROC curves for Dataset I (MSNN) (b) Zoomed in ROC curves for Dataset I (MSNN)

(c) Original ROC curves for Dataset I (CNN) (d) Zoomed in ROC curves for Dataset I (CNN)

108

Figure 4.31 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset I.

 Figures 4.30 and 4.31 show the highly unsatisfactory performance of a one-layer

CNN for Dataset I. The TP rate of all CNNs cannot reach 1 and the highest TP rate of

CNN is around 0.8, which means a one-layer convolutional neural network has a

lower ability than a one-layer morphological shared-weight neural network to detect

targets from images, which have the same distance as training images. From Figure

4.31 (c), it is obvious that the results of CNN are unstable. At the same time, MSNN

performed perfectly on Dataset I. When there is 0 false alarm per image, MSNN can

(a) Vertical average ROC curve for

Dataset I (MSNN)

(b) Concatenated ROC curve for

Dataset I (MSNN)

(c) Vertical average ROC curve for

Dataset I (CNN)

(d) Concatenated ROC curve for

Dataset I (CNN)

109

detect all targets with 100 percent accuracy. Results for Dataset II are shown in

Figures 4.32 and 4.33.

Figure 4.32 Original and zoomed in ROC curves of a one-layer MSNN and CNN for Dataset II.

(a) Original ROC curves of MSNN (b) Zoomed in ROC curves of MSNN

(c) Original ROC curves of CNN (d) Zoomed in ROC curves of CNN

110

Figure 4.33 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset

II.

Figures 4.32 and 4.33 for Dataset II shows the CNN performance as much worse

than MSNN on images with occlusion. For the easiest Dataset I, the TP rate of CNN

can reach around 0.8, but when data becomes more different, the highest TP rate of

CNN is only around 0.6. When the false alarm per image is equal to 1, the TP rate of

CNN is only 0.4, which is a very low accuracy rating. CNN cannot efficiently deal

with images that have occlusions.

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN)

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (CNN)

111

Figures 4.34 and 4.35 show results of a one-layer MSNN and CNN for Dataset III.

Figure 4.34 Original and zoomed in ROC curves of one-layer MSNN and CNN for Dataset III.

 From these two figures, it is not surprising to find the CNN performance to be

much worse than the MSNN performance based on prior performances. The poor

CNN performance could be caused by not enough training data. Thus, we can

conclude that CNN needs a lot of training data to make its accuracy higher. Examples

of detections results of single layer networks trained by MSNN and by CNN are

shown in Appendix Figure A-11 and Appendix Figure A-12.

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN)

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN)

112

Figure 4.35 Vertical average and concatenated ROC curves of one-layer MSNN and CNN for Dataset

III.

4.5.2 Comparisons of Two-Layer Networks

 This section compares two-layer networks of the CNN and the MSNN. A two-

layer morphological network trained by BP is used for comparison. For CNN, there

are two convolutional layers and each layer has one convolutional kernel. The update

approach for CNN is still backpropagation. Figure 4.36 - 4.41 show results of two-

layer MSNN and CNN for Datasets I, II, and III.

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN)

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (MSNN)

113

Figure 4.36 Original and zoomed in ROC curves of two-layer MSNN and CNN for Dataset I.

(a) Original ROC curves (MSNN)

(b) Zoomed in ROC curves (MSNN)

(c) Original ROC curves (CNN)

(d) Zoomed in ROC curves (CNN)

114

Figure 4.37 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset

I.

 In Figures 4.36 and 4.37, for Dataset I, the highest FTP values of MSNN and

CNN are 1 and 0.8, respectively. Both networks have a turning point, at which the

threshold quickly turns from 1 to 0.1. So, we can pick 0.5 as our threshold to

distinguish the target. Moreover, with this threshold, MSNN has a top TP rate of 1

with 0.6 false alarm per image. CNN has a top TP rate of 0.8 with 0.4 false alarm per

image. Notably, 0.6 and 0.4 false alarm per image are both acceptable TP rate values,

but with MSNN, the accuracy reaches 100%, which is the optimum goal for our target

(a) Vertical average curve (MSNN) (b) Concatenated curve (MSNN)

(c) Vertical average curve (CNN) (d) Concatenated curve (CNN)

115

detection algorithm. So, for Dataset I, performance of a two-layer MSNN is better

than CNN based on our needs.

Figure 4.38 Original and zoomed in ROC curves of two-layer MSNN and CNN for Dataset II.

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN)

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN)

116

Figure 4.39 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset

II.

 From Figures 4.38 and 4.39, it is obvious that CNN’s performance on Dataset II

is terrible. In Figure 4.39 (c), in the range of [0, 0.05], there is no TP rate, which

means with CNN, false alarms per image cannot be lower than 0.05. Furthermore, this

vertical average ROC curve of CNN for Dataset II has a large blue area which

indicates a large fluctuation of CNN. The TP rate of MSNN can rise to over 90%, but

the TP rate of CNN can only go up to 70%. At the turning point, which is the 0.5

threshold, MSNN has a TP rate which is around 0.75 with a 0.6 false alarm per image,

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN)

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (CNN)

117

while CNN has a TP rate which is 0.5 with a 0.8 false alarm per image. With these

figures, we can conclude that CNNs have a super low ability to detect the target from

images which have occlusion situations. MSNNs do a better job on occlusion-

containing datasets.

Figure 4.40 Original and zoomed in ROC curves of two-layer MSNN and CNN for dataset III.

(a) Original ROC curves (MSNN) (b) Zoomed in ROC curves (MSNN)

(c) Original ROC curves (CNN) (d) Zoomed in ROC curves (CNN)

118

Figure 4.41 Vertical average and concatenated ROC curves of two-layer MSNN and CNN for Dataset

III.

 Figures 4.40 and 4.41 show results of two-layer MSNN and CNN for Dataset III.

From Figure 4.41 (a) and (b), the TP rate of two-layer MSNN turns from 0.7 to 1

when the FP rate turns from 0 to 5. When the TP rate of a two-layer CNN turns from

0.4 to 0.9. the FP rate turns from 0 to 5. In Figure 4.40 (b), the MSNN color of the

threshold changes smoothly; indicating that it is not easy to select a turning point for

MSNN. So, let’s look at the requests in practice. When we request 0 alarm per image

and a higher TP rate, the two-layer MSNN with a 0.7 TP rate is better than a two-layer

(a) Vertical average ROC curve (MSNN) (b) Concatenated ROC curve (MSNN)

(c) Vertical average ROC curve (CNN) (d) Concatenated ROC curve (MSNN)

119

CNN with a 0.45 TP rate. If we need a higher TP rate with an acceptable amount of

false alarm, a MSNN is also better than a CNN because with the same amount of false

alarms per image, the TP rate of a MSNN is always higher than the TP rate of a CNN.

So, for networks with two-layer structures, the MSNN is a better choice for target

detection. Examples of detections results of single layer networks trained by MSNN

and by CNN are shown in Appendix Figure A-13 and Appendix Figure A-14.

120

CHAPTER 5. CONCLUSIONS

Among the three update approaches used to train one-layer MSNNs, the

performance of networks trained by EAPB was the best. Networks trained by MA had

the worst performances. Networks trained by BP had the most stable performances.

Based on comparisons of one-layer MSNNs and two-layer MSNNs, a two-layer

MSNN trained by BP has a better performance if no false alarm per image is

requested. However, if a few false alarms can be accepted, a one-layer MSNN trained

by EAPB would be better. Although a one-layer MSNN trained by EAPB performs

well, it is a surprise when a two-layer MSNN trained by EAPB has a highly

unsatisfactory performance.

With three groups of datasets, when test images have the same distances as

training images, a MSNN can detect all targets correctly with no false alarms, while a

CNN can detect 80% of targets with no false alarm. The CNN’s worst performance in

this research was on test images with occlusion situations among all the datasets

tested. Notably, the MSNN had a good ability to detect the target from its test image

even when the target was occluded by other items. Both MSNN and CNN can detect

targets from images at different distances from the camera. MSNN performed better

than CNN for Dataset III, and MSNN had a higher ability to detect a target from an

image which was at an overly long distance from the camera.

121

Although a convolutional neural network is a popular and widely used neural

network for image processing, there are lots of new networks that challenge it. The

morphological shared-weight neural network introduced in this thesis is a potential

candidate to beat CNNs. According to experiments in this thesis, with a limited

amount of training data, (eight training images in all the experiments), the

performance of the MSNN was much better than the CNN, without consideration of

one-layer or two-layer networks. The reason for MSNN’s superior performance could

be that the MSNN is not only exploitive but also exploratory in its search methods.

Like all things in the real world, MSNN has both a good and bad side. One

disadvantage of MSNN is that when training MSNN with EAPB, it takes longer than

when training with BP because of the MSNN’s exploratory search. If there is a way to

shorten the EAPB training time of MSNN without sacrificing other advantages, the

exploratory search’s drag on timing would be an interesting problem to solve in future

research. As for multiple-layer networks, this author sees a need for a more

appropriate MSNN training methods. This can be done through changing initialization

approaches and variation operators. One research avenue would be to add more layers

and kernels to each layer. Making MSNN deeper is another possibility for future

research.

122

REFERENCES

[1] Alpaydin, E. (2014). Introduction to machine learning. Cambridge (USA): MIT

Press.

[2] Mohri, M., Rostamizadeh, A., & T,alwalkar, A. (2012). Foundations of machine

learning. MIT Press.

[3] Grenander, U. (1998). Foundations of Object Detection and Recognition.

doi:10.21236/ada352287

[4] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification

with deep convolutional neural networks. Communications of the ACM, 60(6),

84-90. doi:10.1145/3065386

[5] Collobert, R., & Weston, J. (2008). A unified architecture for natural language

processing. Proceedings of the 25th international conference on Machine learning

- ICML 08. doi:10.1145/1390156.1390177

[6] Won, Y., Gader, P., & Coffield, P. (1997). Morphological shared-weight networks

with applications to automatic target recognition. IEEE Transactions on Neural

Networks, 8(5), 1195-1203. doi:10.1109/72.623220

[7] Khabou, M., Gader, P., & Keller, J. (n.d.). Morphological shared-weight neural

networks: a tool for automatic target recognition beyond the visible

spectrum. Proceedings IEEE Workshop on Computer Vision Beyond the Visible

Spectrum: Methods and Applications (CVBVS99).

doi:10.1109/cvbvs.1999.781099

[8] Werbos, P. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10), 1550-1560. doi:10.1109/5.58337

[9] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.

doi:10.1007/bf02478259

[10] Hebb, Donald (1949). The Organization of Behavior. New York:

Wiley. ISBN 978-1-135-63190-1.

[11] Farley, B. W. A. C., & Clark, W. (1954). Simulation of self-organizing systems by

digital computer. Transactions of the IRE Professional Group on Information

Theory, 4(4), 76-84.

https://books.google.com/books?id=ddB4AgAAQBAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-135-63190-1

123

[12] Minsky, M., Papert, S. (1969). Perceptrons: An Introduction to Computational

Geometry. MIT Press. ISBN 0-262-63022-2.

[13] Werbos, P.J. (1975). Beyond Regression: New Tools for Prediction and Analysis

in the Behavioral Sciences.

[14] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[15] Keller, J. M., Fogel, D. B., & Liu, D. (2016). Fundamentals of computational

intelligence: neural networks, fuzzy systems and evolutionary computation.

Hoboken: John Wiley & Sons.

[16] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6), 386.

[17] Kelley, Henry J. (1960). "Gradient theory of optimal flight paths". Ars

Journal. 30 (10): 947–954. doi:10.2514/8.5282.

[18] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning

representations by back-propagating errors. nature, 323(6088), 533.

[19] Haykin, S. S. (2011). Neural networks and learning machines. New Dehli: PHI

Learning.

[20] Serra, J. (1982). Image analysis and mathematical morphology. London:

Academic Press.

[21] Won, Y. (1995). Nonlinear correlation filter and morphology neural networks for

image pattern and automatic target recognition (Doctoral dissertation, University

of Missouri - Columbia)

[22] Shen, S. (2017). Multi-scale target detection based on morphological shared-

weight neural network (Thesis, University of Missouri - Columbia).

[23] Haralick, R. M., Sternberg, S. R., & Zhuang, X. (1987). Image analysis using

mathematical morphology. IEEE transactions on pattern analysis and machine

intelligence, (4), 532-550.

[24] Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation:

Comments on the history and current state. IEEE transactions on Evolutionary

Computation, 1(1), 3-17.

https://books.google.com/books?id=z81XmgEACAAJ
https://books.google.com/books?id=z81XmgEACAAJ
https://en.wikipedia.org/wiki/Henry_J._Kelley
http://arc.aiaa.org/doi/abs/10.2514/8.5282?journalCode=arsj
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.2514%2F8.5282

124

[25] Bremermann, H. J. (1962). Optimization through evolution and

recombination. Self-organizing systems, 93, 106.

[26] Friedberg, R. M. (1958). A learning machine: Part I. IBM Journal of Research and

Development, 2(1), 2-13.

[27] Friedberg, R. M., Dunham, B., & North, J. H. (1959). A Learning Machine: Part

II. IBM Journal of Research and Development, 3(3), 282-287.

[28] Box, G. E. (1957). Evolutionary operation: A method for increasing industrial

productivity. Applied statistics, 81-101.

[29] Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of

the ACM (JACM), 9(3), 297-314.

[30] Holland, J. H. (1975). Adaptation in natural and artificial systems: An

introductory analysis with applications to biology, control, and artificial

intelligence. Ann Arbor: University of Michigan Press.

[31] Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive

algorithms. In Pattern-directed inference systems (pp. 313-329).

[32] De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive

systems. Ph.D. dissertation, Univ. of Michigan, Ann Arbor.

[33] De Jong, K. A. (1987). On using genetic algorithms to search program spaces. in

Proc. 2nd Int. Conf. on Genetic Algorithms and Their Applications. Hillsdale, NJ:

Lawrence Erlbaum, pp. 210–216.

[34] Goldberg, D. E. (1985, July). Genetic algorithms and rule learning in dynamic

system control. In Proceedings of the First International Conference on Genetic

Algorithms and Their Applications (pp. 8-15).

[35] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning.

[36] Davis, L. (1991). Handbook of genetic algorithms.

[37] Fogel, Lawrence J. (1962). Autonomous Automata. Industrial Research. 4 (2):

14–19.

[38] Fogel, L.J. (1964) On the Organization of Intellect. Ph.D. Thesis, University of

California, Los Angeles.

125

[39] Burgin, G. (1969). On playing two-person zero-sum games against nonminimax

players. IEEE Transactions on Systems Science and Cybernetics, 5(4), 369-370.

[40] Burgin, G. H. (1973). Systems Identification by Quasilinearization and by

Evolutionary Programming. J. Cybern., vol. 3, no. 2, pp. 56–75, 1973.

[41] Atmar III, J. W. (1976). Speculation on the evolution of intelligence and its

possible realization in machine form. Ph.D. dissertation, New Mexico State Univ.,

Las Cruces, 1976.

[42] Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Stuttgart, Germany: Frommann-

Holzboog.

[43] Rechenberg, I. (1994) Evolutionsstrategie ’94, in Werkstatt Bionik und

Evolutionstechnik. Stuttgart, Germany: Frommann-Holzboog , vol. 1.

[44] Schwefel, H. (1975) Evolutionsstrategie und numerische Optimierung

Dissertation. Technische Universit¨at Berlin, Germany.

[45] Schwefel, H.-P. (1995) Evolution and Optimum Seeking. New York: Wiley,

(Sixth-Generation Computer Technology Series).

[46] Grefenstette, J. J. Ed. (1985) Proc. 1st Int. Conf. on Genetic Algorithms and Their

Applications. Hillsdale, NJ: Lawrence Erlbaum.

[47] Whitley, L. D., Ed. (1993) Foundations of Genetic Algorithms 2. San Mateo, CA:

Morgan Kaufmann.

[48] Fogel, D. B. and Atmar, W. Eds. (1992) Proc 1st Annu. Conf. on Evolutionary

Programming. San Diego, CA: Evolutionary Programming Society.

[49] De Oliveira, H. C. B., Alexandrino, J. L., & De Souza, M. M. (2006, December).

Memetic and genetic algorithms: A comparison among different approaches to

solve vehicle routing problem with time windows. In Hybrid Intelligent Systems,

HIS'06. Sixth International Conference on (pp. 55-55). IEEE.

[50] Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech concurrent computation

program, C3P Report, 826.

[51] Fogel, D. B., & Ghozeil, A. (1997). A note on representations and variation

operators. IEEE Transactions on Evolutionary Computation, 1(2), 159-161.

126

[52] Kazimipour, B., Li, X., & Qin, A. K. (2013, June). Initialization methods for large

scale global optimization. In Evolutionary Computation (CEC), 2013 IEEE

Congress on (pp. 2750-2757). IEEE.

[53] Burke, E. K., Newall, J. P., & Weare, R. F. (1998). Initialization strategies and

diversity in evolutionary timetabling. Evolutionary computation, 6(1), 81-103.

[54] Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A

convolutional neural-network approach. IEEE transactions on neural

networks, 8(1), 98-113.

[55] What is visual recognition? Retrieved February 16, 2018, from

https://www.clarifai.com/technology

[56] Convolutional Neural Networks (LeNet). Retrieved February 16, 2018, from

http://deeplearning.net/tutorial/lenet.html

[57] An Intuitive Explanation of Convolutional Neural Networks. Retrieved February

16, 2018, from https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

[58] Wilson, S. S. (1989, November). Morphological networks. In Visual

Communications and Image Processing IV (Vol. 1199, pp. 483-496). International

Society for Optics and Photonics.

[59] Davidson, J. L., & Ritter, G. X. (1990, July). Theory of morphological neural

networks. In Digital Optical Computing II (Vol. 1215, pp. 378-389). International

Society for Optics and Photonics.

[60] Davidson, J. L., & Hummer, F. (1993). Morphology neural networks: An

introduction with applications. Circuits, Systems and Signal Processing, 12(2),

177-210.

[61] Davidson, J. L. (1992, June). Simulated annealing and morphology neural

networks. In Image Algebra and Morphological Image Processing III (Vol. 1769,

pp. 119-128). International Society for Optics and Photonics.

[62] Jin, X., & Davis, C. H. (2007). Vehicle detection from high-resolution satellite

imagery using morphological shared-weight neural networks. Image and Vision

Computing, 25(9), 1422-1431.

[63] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, February). On the

importance of initialization and momentum in deep learning. In International

conference on machine learning (pp. 1139-1147).

https://www.clarifai.com/technology
http://deeplearning.net/tutorial/lenet.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

127

[64] Yam, J. Y., & Chow, T. W. (2000). A weight initialization method for improving

training speed in feedforward neural network. Neurocomputing, 30(1-4), 219-232.

[65] Kumar, S. K. (2017). On weight initialization in deep neural networks. arXiv

preprint arXiv:1704.08863.

1

APPENDIX

Figure A-1 Samples of detection results of two loss functions (Dataset II). The left column is from the

cross-entropy function, and the right column is from the sqare error function.

2

Figure A-2 Samples of detection results of two loss functions (Dataset III). The left column is from the

cross-entropy function, and the right column is from the sqare error function.

Figure A-1 and Figure A-2 show detection results of the experiment in section

4.2.1, which is the comparison of loss functions. Figure A-1 represents results of two

3

randomly seleted test images in Dataset II, including output images with bounding

boxes and detection planes. Figure A-2 represents results of Dataset III. The left

column images are results of the network using cross-entropy loss function and the

right column images are results of the network using square error loss function.

 Mutation 1 Mutation 2 Mutation 3

Figure A-3 Samples of detection results of three mutation functions (Dataset II).

4

 Mutation 1 Mutation 2 Mutation 3

Figure A-4 Samples of detection results of three mutation functions (Dataset III).

Figure A-3 and Figure A-4 show detection results of the experiment in section

4.2.2, which is the comparison of mutation methods. Figure A-3 represents results of

two randomly seleted test images in Dataset II, including output images with

bounding boxes and detection planes. Figure A-4 represents results of Dataset III.

5

 Initialization 1 Initialization 2 Initialization 3

Figure A-5 Samples of detection results of three initialization methods (Dataset II).

6

 Initialization 1 Initialization 2 Initialization 3

Figure A-6 Samples of detection results of three initialization methods (Dataset III).

Figure A-5 and Figure A-6 show detection results of the experiment in section

4.2.3, which is the comparison of initialization methods. Figure A-5 represents results

of two randomly seleted test images in Dataset II, including output images with

bounding boxes and detection planes. Figure A-6 represents results of Dataset III.

7

 BP EAPB MA

Figure A-7 Samples of detection results of three update approaches (Dataset II).

8

 BP EAPB MA

Figure A-8 Samples of detection results of three update approaches (Dataset III).

Figure A-7 and Figure A-8 show detection results of the experiment in section

4.2.4, which is the comparison of three update approaches. Figure A-7 represents

results of two randomly seleted test images in Dataset II. Figure A-8 represents results

of Dataset III.

9

Figure A-9 Samples of detection results of parallel networks.

Figure A-9 shows detection results of the experiment in section 4.2.5, which is

the results of parallel networks. It represents results of one randomly seleted test

image in Dataset II and another randomly seletcted test image in Dataset III.

Figure A-10 shows detection results of the experiment in section 4.3, which is

the results of multiple morphological layer networks trained by BP and trained by

EAPB. The top two rows represent results of one randomly seleted test image in

Dataset III and the bottom two rows are results of one randomly seletcted test image

in Dataset II.

10

BP EAPB

Figure A-10 Samples of detection results of multiple morphological layer networks.

11

Figure A-11 Samples of detection results of single morphological layer networks trained by MSNN and

CNN (Dataset II).

12

MSNN CNN

Figure A-12 Samples of detection results of single morphological layer networks trained by MSNN and

CNN (Dataset III).

13

Figure A-11 and Figure A-12 show detection results of the experiment in section

4.5.1, which is the comparisons of single morphological layer networks trained by

EAPB and trained by CNN. Figure A-11 represents results of two randomly seleted

test images in Dataset II. Figure A-12 represents results of Dataset III.

14

MSNN CNN

Figure A-13 Samples of detection results of two morphological layer networks trained by MSNN and

CNN (Dataset II).

15

MSNN CNN

Figure A-14 Samples of detection results of two morphological layer networks trained by MSNN and

CNN (Dataset III).

16

Figure A-13 and Figure A-14 show detection results of the experiment in section

4.5.2, which is the comparisons of two morphological layer networks trained by

EAPB and trained by CNN. Figure A-13 represents results of two randomly seleted

test images in Dataset II. Figure A-14 represents results of Dataset III.

