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GENERATING SEQUENCES AND SEMIGROUPS OF VALUATIONS ON

2-DIMENSIONAL NORMAL LOCAL RINGS

Arpan Dutta

Dr. Dale Cutkosky, Dissertation Supervisor

ABSTRACT

In this thesis we develop a method for constructing generating sequences for val-

uations dominating the ring of a two dimensional quotient singularity. Suppose that

K is an algebraically closed field of characteristic zero, K[X, Y ] is a polynomial ring

over K and ν is a rational rank 1 valuation of the field K(X, Y ) which dominates

K[X, Y ](X,Y ). Given a finite Abelian group H acting diagonally on K[X, Y ], and a

generating sequence of ν in K[X, Y ] whose members are eigenfunctions for the action

of H, we compute a generating sequence for the invariant ring K[X, Y ]H . We use

this to compute the semigroup SK[X,Y ]H (ν) of values of elements of K[X, Y ]H . We

further determine when SK[X,Y ](ν) is a finitely generated SK[X,Y ]H (ν)-module.
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Chapter 1

Notations

We denote the natural numbers {0, 1, 2, · · · } by N. We denote the positive integers by

Z>0 and the positive rational numbers by Q>0. If the greatest common divisor of two

positive integers a and b is d, this is denoted by (a, b) = d. If {γk}k>0 is a set of ra-

tional numbers, we define G(γ0, · · · , γn) =
∑n

k=0 γkZ and G(γ0, γ1, · · · ) =
∑

k>0 γkZ.

Similarly we define S(γ0, · · · , γn) =
∑n

k=0 γkN and S(γ0, γ1, · · · ) =
∑

k>0 γkN. If a

group G is generated by g1, · · · , gn, we denote this by G =< g1, · · · , gn >.
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Chapter 2

Introduction

Let R be a local domain with maximal ideal mR and quotient field L, and ν be a

valuation of K which dominates R. Let Vν be the valuation ring of ν, with maximal

ideal mν and Φν be the valuation group of ν. The associated graded ring of R along

the valuation ν, defined by Teissier in [14] and [15], is

grν(R) =
⊕
γ∈Φν

Pγ(R)/P+
γ (R) (2.1)

where

Pγ(R) = {f ∈ R | ν(f) > γ} and P+
γ (R) = {f ∈ R | ν(f) > γ}.

In general, grν(R) is not Noetherian. The valuation semigroup of ν on R is

SR(ν) = {ν(f) | f ∈ R \ (0)}. (2.2)

If R/mR = Vν/mν then grν(R) is the group algebra of SR(ν) over R/mR, so that

grν(R) is completely determined by SR(ν).

A generating sequence of ν in R is a set of elements of R whose classes in grν(R)

generate grν(R) as an R/mR-algebra. An important problem is to construct a gen-

erating sequence of ν in R which gives explicit formulas for the value of an arbitrary

element of R, and gives explicit computations of the algebra (2.1) and the semi-

group (2.2). For regular local rings R of dimension 2, the construction of generating
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sequences is realized in a very satisfactory way by Spivakovsky [13] (with the assump-

tion that R/mR is algebraically closed) and by Cutkosky and Vinh [6] for arbitrary

regular local rings of dimension 2. A consequence of this theory is a simple classifica-

tion of the semigroups which occur as a valuation semigroup on a regular local ring

of dimension 2. There has been some success in constructing generating sequences in

Noetherian local rings of dimension > 3, for instance in [7], [10], [11] and [15], but

the general situation is very complicated and is not well understood.

Another direction is to construct generating sequences in normal 2 dimensional

Noetherian local rings. This is also extremely difficult. In Section 9 of [6], a generating

sequence is constructed for a rational rank 1 non discrete valuation in the ring R =

k[u, v, w]/(uv − w2), from which the semigroup is constructed. The example shows

that the valuation semigroups of valuations dominating a normal two dimensional

Noetherian local ring are much more complicated than those of valuations dominating

a two dimensional regular local ring. In this thesis, we develop the method of this

example into a general theory.

If R is a 2 dimensional Noetherian local domain, and ν is a valuation of the quotient

field L of R which dominates R, it follows from Abhyankar’s inequality [1] that the

valuation group Φν of ν is a finitely generated group, except in the case when the

rational rank of ν is 1 (Φν ⊗Q ∼= Q) and Φν is non discrete. As this is the essentially

difficult case in dimension 2, we will restrict to such valuations.

Let K be an algebraically closed field of characteristic 0 and K[X, Y ] be a poly-

nomial ring in two variables, which has the maximal ideal m = (x, y). Let α ∈ K be

a primitive m-th root of unity and β ∈ K be a primitive n-th root of unity. Now the
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group Um × Un acts on K[X, Y ] by K-algebra isomorphisms, where

(αi, βj)X = αiX and (αi, βj)Y = βjY.

In Theorem 3.0.2, we give a classification of the subgroups Hi,j,t,x of Um × Un. Let

Ai,j,t,x = K[X, Y ]Hi,j,t,x and n = m ∩ Ai,j,t,x.

We say that f ∈ K[X, Y ] is an eigenfunction for the action of Hi,j,t,x on K[X, Y ] if

for all g ∈ Hi,j,t,x, gf = λgf for some λg ∈ K.

Let ν be a rational rank 1 non discrete valuation dominating the local ringK[X, Y ]m.

Using the algorithm of [13] or [6], we construct a generating sequence

Q0 = X,Q1 = Y,Q2, . . . (2.3)

of ν in K[X, Y ]. Let ν∗ be the restriction of ν to the quotient field of Ai,j,t,x. In

Theorem 5.0.1, we construct a generating sequence of ν∗ in Ai,j,t,x, when the members

of the generating sequence (2.3) are eigenfunctions for the action of Hi,j,t,x on K[X, Y ].

We give an explicit construction of the valuation semigroups S(Ai,j,t,x)n(ν) in Theorem

5.0.1.

Suppose that a Noetherian local domain B dominates a Noetherian local domain

A. Let L be the quotient field of A, M be the quotient field of B and suppose

that M is finite over L. Suppose that ω is a valuation of L which dominates A

and ω∗ is an extension of ν to M which dominates B. We can ask if grω∗(B) is a

finitely generated grω(A)-module or if SB(ω∗) is a finitely generated SA(ω)-module.

In general, grω∗(B) is not a finitely generated grω(A)-algebra, so is certainly not a

finitely generated grω(A)-module. However, is is shown in Theorem 1.5. [4] that

if A and B are essentially of finite type over a field characteristic zero, then there
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exists a birational extension A1 of A and a birational extension B1 of B such that ω∗

dominates B1, ω dominates A1, B1 dominates A1 and grω∗(B1) is a finitely generated

grω(A1)-module (so SB1(ω∗) is a finitely generated SA1(ω)-module).

The situation is much more subtle in positive characteristic and mixed character-

istic. In Theorem 1 [5], it is shown that If A and B are excellent of dimension two

and L → M is separable, then there exist birational extension A1 of A and B1 of B

such that A1 and B1 are regular, B1 dominates A1, ω∗ dominates B1 and grω∗(B1) is

a finitely generated grω(A1)-algebra if and only if the valued field extension L → M

is without defect. For a discussion of defect in a finite extension of valued fields, see

[8].

In this thesis, we completely answer the question of finite generation of S[K[X,Y ]m(ν)

as a S(Ai,j,t,x)n(ν)-module (and hence of grν(K[X, Y ]m) as a grν((Ai,j,t,x)n)-module) for

valuations with a generating sequence of eigenfunctions. We obtain the following

results in Chapter 6.

Proposition 2.0.1. Let Rm = K[X, Y ](X,Y ) and Hi,j,t,x be a subgroup of Um × Un.

Let ν be a rational rank 1 non discrete valuation ν dominating Rm with a generating

sequence ( 2.3) of eigenfunctions for Hi,j,t,x. Then SRm(ν) is finitely generated over

the subsemigroup S(Ai,j,t,x)n(ν) if and only if ∃N ∈ Z>0 such that Qr ∈ Ai,j,t,x ∀ r > N .

Further, if QN ∈ Ai,j,t,x, then QM ∈ Ai,j,t,x ∀M > N > 1.

Theorem 2.0.2. Let Rm = K[X, Y ](X,Y ) and Hi,j,t,x be a subgroup of Um × Un.

1) ∃ a rational rank 1 non discrete valuation ν dominating Rm with a generating

sequence ( 2.3) of eigenfunctions for Hi,j,t,x ⇐⇒ (m
i
, n
j
) = t.

2) If (m
i
, n
j
) = t = 1, then SRm(ν) is a finitely generated S(Ai,j,t,x)n(ν)-module for
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all rational rank 1 non discrete valuations ν which dominate Rm and have a

generating sequence ( 2.3) of eigenfunctions for Hi,j,t,x.

3) If (m
i
, n
j
) = t > 1, then SRm(ν) is not a finitely generated S(Ai,j,t,x)n(ν)-module

for all rational rank 1 non discrete valuations ν which dominate Rm and have

a generating sequence ( 2.3) of eigenfunctions for Hi,j,t,x.

In Chapter 7, we show that for the valuations we consider, the restriction of ν to

the quotient field of Ai,j,t,x does not split in K[X, Y ]m. The failure of non splitting

can be an obstruction to finite generation of Sω
∗
(B) as an Sω(A)-module (Theorem

5 [5]), but our result shows that it is not a sufficient condition.
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Chapter 3

Subgroups of Um × Un

Let K be an algebraically closed field of characteristic zero. Let α be a primitive m-th

root of unity, and β be a primitive n-th root of unity, in K. We denote Um =< α >,

and Un =< β >, which are multiplicative cyclic groups of orders m and n respectively.

Lemma 3.0.1 (Goursat). Let A and B be two groups. There is a bijective correspon-

dence between subgroups G 6 A×B, and 5-tuples {G1, G1, G2, G2, θ}, where

G1 E G1 6 A , G2 E G2 6 B , θ :
G1

G1

→ G2

G2

is an isomorphism.

Proof. Let π1 and π2 denote the first and second projection maps respectively. Let

i1 : A→ A×B and i2 : B → A×B denote the inclusion maps. Given a subgroup G

of A×B, we construct the elements of the 5-tuple as follows,

G1 = π1(G), G1 = i−1
1 (G)

G2 = π2(G), G2 = i−1
2 (G)

θ :
G1

G1

→ G2

G2

is defined by θ(a) = b, if (a, b) ∈ G.

By construction, G1 = {a ∈ A | ∃b ∈ B with (a, b) ∈ G} and G1 = {a ∈ A | (a, 1) ∈

G}. Let x ∈ G1, a ∈ G1. Then (x, 1) ∈ G and (a, b) ∈ G for some b ∈ B implies

(a, b)(x, 1)(a, b)−1 ∈ G =⇒ axa−1 ∈ G1 =⇒ G1 E G1. Similarly, we have G2 E G2.
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Conversely suppose we are given a 5-tuple {G1, G1, G2, G2, θ} satisfying the conditions

of the theorem. Let p : G1×G2 → G1

G1
×G2

G2
be the natural surjection. Let Gθ <

G1

G1
×G2

G2

denote the graph of θ. Then G = p−1(Gθ).

Now we show the bijectivity of the correspondence. First we establish injectivity.

Suppose G 6= H be two subgroups of A × B, such that the corresponding 5-tuples

are equal, if possible. Thus, {G1, G1, G2, G2, θG} = {H1, H1, H2, H2, θH}. Now G 6=

H =⇒ ∃(a, b) ∈ G − H, without loss of generality. But this contradicts θG = θH ,

since θG(a) = b, but θH(a) 6= b. So this correspondence is injective.

Now we establish the surjectivity of the correspondence. Given a 5-tuple satisfying

the conditions of the theorem, we construct a subgroup G 6 A × B. Now, G =

p−1(Gθ) = {(g, h) |h = θ(g), g ∈ G1, h ∈ G2}. a ∈ π1(G) =⇒ (a, b) ∈ G for some b ∈

B =⇒ a ∈ G1. Conversely, a ∈ G1 =⇒ θ(a) = b for some b ∈ G2 =⇒ (a, b) ∈

p−1(Gθ) = G =⇒ a ∈ π1(G). Thus we have shown π1(G) = G1. Now, a ∈ i−1
1 (G)⇐⇒

(a, 1) ∈ G = p−1(Gθ)⇐⇒ p(a, 1) = (a, 1) ∈ Gθ ⇐⇒ θ(a) = 1⇐⇒ a = 1⇐⇒ a ∈ G1.

Similarly we show, G2 = π2(G), G2 = i−1
2 (G).

Theorem 3.0.2. Given positive integers i, j, t, x satisfying the given conditions

i|m, j|n, t|m
i
, t|n

j
, (x, t) = 1, 1 6 x 6 t

let

Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t)}. (3.1)

Then the Hi,j,t,x are subgroups of Um × Un. And given any subgroup G of Um × Un,

there exist unique i, j, t, x satisfying the above conditions such that G = Hi,j,t,x.
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Proof. We first show that the condition b ≡ ax(mod t) is well defined under the given

conditions on i, j, t, x. Suppose (αa1i, βb1j) = (αa2i, βb2j), that is, a1i ≡ a2i(mod m),

and b1j ≡ b2j(mod n). Then, m
i
| (a1 − a2) and n

j
| (b1 − b2). Thus, t | (a1 − a2) and

t | (b1 − b2), hence t | (b1 − b2)− (a1 − a2)x. So, [b1 − a1x] ≡ [b2 − a2x](mod t).

We now show Hi,j,t,x is a subgroup of Um×Un. Taking a = b = 0, we have (1, 1) ∈

Hi,j,t,x. Let (αai, βbj), (αci, βdj) ∈ Hi,j,t,x be distinct elements. Then b ≡ ax(mod t),

and d ≡ cx(mod t). Hence (b − d) ≡ (a − c)x( mod t). So, (α(a−c)i, β(b−d)j) =

(αai, βbj)(αci, βdj)−1 ∈ Hi,j,t,x. Hence Hi,j,t,x is a subgroup.

By Goursat’s Lemma, the subgroups of Um × Un are in bijective correspondence

with the 5-tuples {G1, G1, G2, G2, θ}, where G1 E G1 6 Um , G2 E G2 6 Un , θ :

G1

G1
' G2

G2
. Now any subgroup of Um =< α > is of the form Hi =< αi >= Um

i
,

where i|m. Since Hi is an abelian group, any subgroup is normal. Any subgroup

of Hi is of the form Hiti =< αiti >= U m
iti

, where ti|mi . Similarly, any subgroup of

Un is of the form Hj =< βj >= Un
j
, where j|n. And any subgroup of Hj is of

the form Hjtj =< βjtj >= U n
jtj

, where tj|nj . Now,
Um
i

U m
iti

' Uti and
Un
j

U n
jtj

' Utj . So,

θij :
Um
i

U m
iti

'
Un
j

U n
jtj

⇐⇒ ti = tj. Define t = ti = tj. Thus the subgroups of Um × Un are

in bijective correspondence with the set of 5-tuples,

(< αit >,< αi >,< βjt >, < βj >, θij)

where i|m, j|n, t|m
i
, t|n

j
and θij :

< αi >

< αit >
' < βj >

< βjt >
.

(3.2)

Any such isomorphism is given by θij(αi) = βxj, where (x, t) = 1, 1 6 x 6 t, and v

denotes the residue of an element v ∈< αi > in <αi>
<αit>

, or the residue of an element

v ∈< βj > in <βj>
<βjt>

.

If Gθij denotes the graph of θij, then Gθij = {(αri, βrxj)| r ∈ N}. Denoting the natural
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surjection p :< αi > × < βj >−→ <αi>
<αit>

× <βj>
<βjt>

, we have

p−1(Gθij) = {(αai, βbj) |αai = αri, βbj = βrxj, for some r ∈ N}

= {(αai, βbj) |α(a−r)i ∈< αit >, β(b−rx)j ∈< βjt >, for some r ∈ N}

= {(αai, βbj) | a ≡ r(mod t), b ≡ rx(mod t), for some r ∈ N}.

We now show that,

a ≡ r(mod t), b ≡ rx(mod t), for some r ∈ N⇐⇒ b ≡ ax(mod t). (3.3)

If a ≡ r(mod t), b ≡ rx(mod t), then a − r = td for some integer d. Then b −

ax = b − (td + r)x ≡ b − rx(mod t) ≡ 0(mod t) =⇒ b ≡ ax(mod t). Conversely if

b ≡ ax(mod t), and a ≡ r(mod t) for some r, then b ≡ rx(mod t). Thus we have

established (3.3). So, p−1(Gθij) = {(αai, βbj) | b ≡ ax(mod t)}. Thus we have that

any subgroup of Um × Un is of the form

Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t) ; i|m, j|n, t|m
i
, t|n

j
, (x, t) = 1, 1 6 x 6 t}.

We now establish uniqueness. Let (i1, j1, t1, x1) and (i2, j2, t2, x2) be two distinct

quadruples satisfying the conditions of the theorem, such that Hi1,j1,t1,x1 = Hi2,j2,t2,x2 .

From (3.2), we observe Hi1,j1,t1,x1 = Hi2,j2,t2,x2 implies

(< αi1t1 >,< αi1 >,< βj1t1 >,< βj1 >, θ
(1)
i1j1

)

=(< αi2t2 >,< αi2 >,< βj2t2 >,< βj2 >, θ
(2)
i2j2

).

Now, < αi1 >=< αi2 >=⇒ | < αi1 > | = | < αi2 > | =⇒ m/i1 = m/i2 =⇒ i1 = i2 =

i. And, < αit1 >=< αit2 >= m/it1 = m/it2 = t1 = t2 = t. Similarly j = j1 = j2.

10



Now, θ
(1)
ij = θ

(2)
ij =⇒ θ

(1)
ij (αi) = θ

(2)
ij (αi) =⇒ βx1j = βx2j in <βj>

<βtj>
. Thus, t | |x1 − x2|.

Since 0 < x1, x2 6 t, we have |x1 − x2| = 0, i.e. x1 = x2. Let x = x1 = x2. Then

(i, j, t, x) = (i1, j1, t1, x1) = (i2, j2, t2, x2) is unique.

Proposition 3.0.3. Let i, j, t, x be positive integers satisfying the conditions of The-

orem 3.0.2 such that (m
i
, n
j
) = t. Write m

i
= Mt and n

j
= Nt where M,N ∈ Z>0 and

(M,N) = 1. Then |Hi,j,t,x| = MNt.

Proof. Recall, Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t)}. We observe, as elements of

Hi,j,t,x, (αa1i, βb1j) = (αa2i, βb2j) if and only if a1 ≡ a2(mod Mt) and b1 ≡ b2(mod Nt).

Thus every element of Hi,j,t,x has an unique representation,

Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t), 0 6 a < Mt, 0 6 b < Nt}. (3.4)

Hence there is a bijective correspondence,

Hi,j,t,x ←→ {(a, b) | b ≡ ax(mod t), 0 6 a < Mt, 0 6 b < Nt, a, b ∈ Z}

←→ {(a, ax+ λt) | 0 6 a < Mt, 0 6 ax+ λt < Nt, a, λ ∈ Z}

←→ {(a, λ) | 0 6 a < Mt, 0 6 λ+
ax

t
< N, a, λ ∈ Z}.

Hence there are Mt possible choices for a. And for each choice of a, there are N

possible choices for λ. Thus |Hi,j,t,x| = MNt.
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Chapter 4

Generating Sequences

In this chapter we establish notation which will be used throughout the thesis. Let

R = K[X, Y ] be a polynomial ring in two variables over an algebraically closed field

K of characteristic zero. Let m = (X, Y ) be the maximal ideal of R. Then Um × Un

acts on R by K-algebra isomorphisms satisfying

(αx, βy) · (XrY s) = αrxβsyXrY s. (4.1)

Thus, RHi,j,t,x = {
∑

r,s cr,sX
rY s ∈ R |αraiβsbj = 1∀ r, s, ∀ b ≡ ax(mod t)}.

f ∈ R is defined to be an eigenfunction of Hi,j,t,x if (αai, βbj) · f = λabf for some

λab ∈ K, for all (αai, βbj) ∈ Hi,j,t,x. The eigenfunctions of Hi,j,t,x are of the form

f =
∑
r,s

cr,sX
rY s ∈ R such that αraiβsbj is a common constant ∀ r, s such that cr,s 6=

0,∀ b ≡ ax(mod t).

Let ν be a rational rank 1 non discrete valuation of K(X, Y ) which dominates

Rm. The algorithm of Theorem 4.2 of [6] (as refined in Section (8) of [6]) produces a

generating sequence

Q0 = X,Q1 = Y,Q2, · · · (4.2)

of elements in R which have the following properties.
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1) Let γl = ν(Ql)∀ l > 0 and ml = [G(γ0, · · · , γl) : G(γ0, · · · , γl−1)] = min {q ∈

Z>0 | qγl ∈ G(γ0, · · · , γl−1)} ∀ l > 1. Then γl+1 > mlγl ∀ l > 1.

2) Set d(l) = degY (Ql)∀ l ∈ Z>0. Then, Ql = Y d(l)+Q∗l (X, Y ), where degY (Q∗l (X, Y )) <

d(l). We have that, d(1) = 1, d(l) =
∏l−1

k=1 mk ∀ l > 2. In particular, 1 6 l1 6

l2 =⇒ d(l1) | d(l2).

3) Every f ∈ R with degY (f) = d has a unique expression

f =

d∑
m=0

[(
∑
l

bl,mX
l)Q

j1(m)
1 · · ·Qjr(m)

r ]

where bl,m ∈ K, 0 6 jl(m) < ml ∀ l > 1, and degY [Q
j1(m)
1 · · ·Qjr(m)

r ] = m∀m.

Writing fm = (
∑

l bl,mX
l)Q

j1(m)
1 · · ·Qjr(m)

r , we have that ν(fm) = ν(fn) ⇐⇒

m = n. So, ν(f) = minm{ν(fm)}.

4) From 3) we have that the semigroup SRm(ν) = {ν(f) | 0 6= f ∈ R} = S(γl | l >

0).

Suppose that ν is a rational rank 1 non discrete valuation dominating Rm. We

will say that ν has a generating sequence of eigenfunctions for Hi,j,t,x if all Ql in the

generating sequence (4.2) of Chapter 4 are eigenfunctions for Hi,j,t,x.

13



Chapter 5

Valuation Semigroups of Invariant
Subrings

Theorem 5.0.1. Let i, j, t, x be positive integers satisfying the conditions of Theorem

3.0.2. Suppose that ν is a rational rank 1 non discrete valuation dominating Rm,

where R = K[X, Y ], and m = (X, Y ). Suppose that ν has a generating sequence

( 4.2)

Q0 = X,Q1 = Y,Q2, · · ·

such that each Ql ∈ R is an eigenfunction for Hi,j,t,x. Let notation be as in Chapter

4. Then denoting Ai,j,t,x = RHi,j,t,x, and defining n = m ∩ Ai,j,t,x we have

S(Ai,j,t,x)n(ν) =

lγ0 + j1γ1 + · · ·+ jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r
αlaiβbj

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

(5.1)

Proof. Let 0 6= f(X, Y ) ∈ R, with degY (f) = d. By (4.1), (αai, βbj) · Y d(m) =

βd(m)bjY d(m). Since Qm is an eigenfunction of Hi,j,t,x, we conclude that for m > 0,

(αai, βbj) ·Qm = βd(m)bjQm = βdegY (Qm)bjQm , ∀ (αai, βbj) ∈ Hi,j,t,x. (5.2)

We also have, (αai, βbj) ·Q0 = (αai, βbj) ·X = αaiX , ∀ (αai, βbj) ∈ Hi,j,t,x. Now f has
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an expansion of the form 3) of Chapter 4. So,

(αai, βbj) · f = (αai, βbj) ·
d∑

m=0

[(
∑
l

bl,mX
l)Q

j1(m)
1 · · ·Qjr(m)

r ]

=

d∑
m=0

[(
∑
l

αlaibl,mX
l)βbj

∑r
k=1[jk(m)d(k)]Q

j1(m)
1 · · ·Qjr(m)

r ].

Now, f ∈ Ai,j,t,x ⇐⇒ αlaiβbj
∑r

k=1[jk(m)d(k)] = 1, ∀ b ≡ ax( mod t), ∀ l, such that

bl,m 6= 0.

So,

{ν(f) | 0 6= f ∈ (Ai,j,t,x)n} = {ν(f) | 0 6= f ∈ Ai,j,t,x}

⊂

lγ0 + j1γ1 + · · ·+ jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r
αlaiβbj

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax( mod t )

 .

Conversely, suppose we have l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r such that

∀ b ≡ ax(mod t) we have αlaiβbj
∑r

k=1[jkd(k)] = 1. Define f(X, Y ) = X lQj1
1 · · ·Qjr

r ∈

R. For any (αai, βbj) ∈ Hi,j,t,x we have, (αai, βbj) · f = (αai, βbj) · (X lQj1
1 · · ·Qjr

r ) =

αlaiβbj
∑r

k=1[jkd(k)]X lQj1
1 · · ·Qjr

r = f , that is, f ∈ Ai,j,t,x. So ν(f) = lγ0 + j1γ1 +

· · ·+ jrγr ∈ S(Ai,j,t,x)n(ν). Hence we conclude,

S(Ai,j,t,x)n(ν) =

lγ0 + j1γ1 + · · ·+ jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r
αlaiβbj

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax( mod t )

 .
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Chapter 6

Finite and Non-Finite Generation

In this chapter we study the finite and non-finite generation of the valuation semigroup

SRm(ν) over the subsemigroup S(Ai,j,t,x)n(ν). A semigroup S is said to be finitely

generated over a subsemigroup T if there are finitely many elements s1, · · · , sn in S

such that S = {s1, · · · , sn}+ T .

At the end of this chapter we will prove the following theorem.

Theorem 6.0.1. Let Rm = K[X, Y ](X,Y ) and Hi,j,t,x be a subgroup of Um × Un.

1) ∃ a rational rank 1 non discrete valuation ν dominating Rm with a generating

sequence ( 4.2) of eigenfunctions for Hi,j,t,x ⇐⇒ (m
i
, n
j
) = t.

2) If (m
i
, n
j
) = t = 1, then SRm(ν) is a finitely generated S(Ai,j,t,x)n(ν)-module for

all rational rank 1 non discrete valuations ν which dominate Rm and have a

generating sequence ( 4.2) of eigenfunctions for Hi,j,t,x.

3) If (m
i
, n
j
) = t > 1, then SRm(ν) is not a finitely generated S(Ai,j,t,x)n(ν)-module

for all rational rank 1 non discrete valuations ν which dominate Rm and have

a generating sequence ( 4.2) of eigenfunctions for Hi,j,t,x.

We first introduce some notation. Let σ(0) = 0 and for all l > 1, σ(l) =

min {j | j > σ(l − 1) and mj > 1}. Let Pl = Qσ(l) and βl = ν(Pl) = γσ(l) ∀ l > 0. Let
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nl = [G(β0, · · · , βl) : G(β0, · · · , βl−1)] = min{q ∈ Z>0 | qβl ∈ G(β0, · · · , βl−1)} ∀ l > 1.

Then nl = mσ(l). S
Rm(ν) = S(γ0, γ1, · · · ) = S(β0, β1, · · · ) and {βl}l>0 form a minimal

generating set of SRm(ν), that is, nl > 1 ∀ l > 1.

We first make a general observation. Suppose for some d > 1, jr 6= 0 and

l, j1, · · · , jr ∈ N, we have an expression of the form, βd = lβ0+j1β1+· · ·+jrβr. If r > d

then jrβr > βr > βd which is a contradiction. If r < d then βd ∈ G(β0, · · · , βd−1) =⇒

nd = 1. This is a contradiction as nl > 1∀ l > 1. Thus, βr = lβ0 + j1β1 + · · ·+ jrβr. If

jr > 1, then jrβr > βr. If jr = 0, then βr ∈ G(β0, · · · , βr−1) =⇒ nr = 1. So, jr = 1.

Since βi > 0 ∀ i, we then have l = 0, ji = 0 ∀ i 6= r. Thus, for l, j1, · · · , jr ∈ N and

d > 1,

βd = lβ0 + j1β1 + · · ·+ jrβr =⇒ jd = 1, l = 0, ji = 0∀ i 6= d. (6.1)

Proposition 6.0.2. Let Rm = K[X, Y ](X,Y ) and Hi,j,t,x be a subgroup of Um × Un.

Let assumptions be as in Theorem 5.0.1. Then SRm(ν) is finitely generated over the

subsemigroup S(Ai,j,t,x)n(ν) if and only if ∃N ∈ Z>0 such that Qr ∈ Ai,j,t,x ∀ r > N .

Further, if QN ∈ Ai,j,t,x, then QM ∈ Ai,j,t,x ∀M > N > 1.

Proof. We first show that, for any r > 1, γr ∈ S(Ai,j,t,x)n(ν) ⇐⇒ Qr ∈ Ai,j,t,x. It

is enough to show the implication γr ∈ S(Ai,j,t,x)n(ν) =⇒ Qr ∈ Ai,j,t,x. From (5.1)

we have, γr ∈ S(Ai,j,t,x)n(ν) =⇒ γr = lγ0 + j1γ1 + · · · + jsγs, where l ∈ N, s ∈ N,

0 6 jk < mk and αlaiβbj
∑s
k=1 jkd(k) = 1∀ b ≡ ax(mod t).

Since l, j1, · · · , js ∈ N, γi < γi+1 ∀ i > 1 and γi > 0 ∀ i, we have r > s. If r = s, then

γr = lγ0 +
∑r

k=1 jkγk > jrγr > γr. Since jr 6= 0 and jr ∈ N we have jr = 1. And

γi > 0∀ i implies l = j1 = · · · = jr−1 = 0. Then βbjd(r) = 1 ∀ b ≡ ax(mod t). So from

(5.2), (αai, βbj) ·Qr = Qr ∀ b ≡ ax(mod t), that is, Qr ∈ Ai,j,t,x.
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If r > s, then γr = lγ0 +
∑s

k=1 jkγk =⇒ mr = 1. Since 0 6 jk < mk, by Equation

(8) in [6] we have Qr+1 = Qr − λX lY j1Qj2
2 · · ·Qjs

s where λ ∈ K \ {0}. Since each Qm

is an eigenfunction for Hi,j,t,x, from (5.2) we have, ∀ b ≡ ax(mod t),

βbjd(r+1)Qr+1 = βbjd(r)Qr − λαlaiβbj
∑s
k=1 jkd(k)X lY j1Qj2

2 · · ·Qjs
s .

Again by 2) in Chapter 4 we have d(r + 1) = m1 · · ·mr = m1 · · ·mr−1 = d(r),

as mr = 1. So, βbjd(r)Qr+1 = βbjd(r)Qr − λαlaiβbj
∑s
k=1 jkd(k)X lY j1Qj2

2 · · ·Qjs
s for all

b ≡ ax(mod t). Since Qr+1 is an eigenfunction, this implies βbjd(r) = αlaiβbj
∑s
k=1 jkd(k)

= 1 ∀ b ≡ ax(mod t). From (5.2), we then have Qr ∈ Ai,j,t,x.

To prove the proposition, we now show SRm(ν) is finitely generated over the sub-

semigroup S(Ai,j,t,x)n(ν) if and only if ∃N ∈ Z>0 such that ∀ r > N, γr ∈ S(Ai,j,t,x)n(ν).

Suppose SRm(ν) is finitely generated over S(Ai,j,t,x)n(ν). So, ∃x0, · · · , xl ∈ SRm(ν) such

that SRm(ν) = {x0, · · · , xl} + S(Ai,j,t,x)n(ν). Let L ∈ N be the least natural number

such that SRm(ν) = S(β0, · · · , βL) + S(Ai,j,t,x)n(ν), where βi = γσ(i) ∀ i > 0. Suppose,

if possible, ∃ r > σ(L) > 0 such that γr /∈ S(Ai,j,t,x)n(ν). Choose M such that σ(M) 6

r < σ(M + 1). Then σ(L) < σ(M), that is L < M . So βL < βM 6 γr < βM+1.

Now βM has an expression βM =
∑L

i=0 aiβi + y where y ∈ S(Ai,j,t,x)n(ν), ai ∈ N. From

(5.1) we have βM =
∑L

i=0 aiβi + (lγ0 + j1γ1 + · · · + jsγs), where 0 6 jk < mk and

αlaiβbj
∑s
k=1 jkd(k) = 1∀ b ≡ ax(mod t). We observe mk = 1 =⇒ jk = 0. Thus the

above expression can be rewritten as,

βM =
L∑
i=0

aiβi + (lβ0 + j1β1 + · · ·+ jpβp)

where 0 6 jk < nk and αlaiβbj
∑p
k=1 jkdegY (Pk) = 1 ∀ b ≡ ax(mod t). Since L < M ,

from (6.1) we obtain jM = 1, ai = 0 ∀ i = 0, · · · , L and jk = 0 ∀ k 6= M . Thus
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βbjdegY (PM ) = 1 ∀ b ≡ ax(mod t). From 2) in Chapter 4 we have d(r) = m1 · · ·mr−1.

And, degY (PM) = d(σ(M)) = m1 · · ·mσ(M)−1. Since r > σ(M) =⇒ r−1 > σ(M)−1,

we thus have degY (PM) | d(r). So, βbjd(r) = 1 ∀ b ≡ ax(mod t). From (5.2) we then

conclude, Qr ∈ Ai,j,t,x. But this contradicts γr /∈ S(Ai,j,t,x)n(ν). So, Qr ∈ Ai,j,t,x ∀ r >

σ(L) > 0, that is, Qr ∈ Ai,j,t,x ∀ r > N for some N ∈ Z>0.

Conversely, we assume S(γN , γN+1, · · · ) ⊂ S(Ai,j,t,x)n(ν) for some N ∈ Z>0. Now

γi ∈ Q>0 ∀ i implies ∀ i 6= j, ∃ di, dj ∈ Z>0 such that diγi = djγj. We thus have

diγi = di,NγN ∀ i = 0, · · · , N − 1. We will now show that, SRm(ν) = T +S(Ai,j,t,x)n(ν),

where T = {
∑N−1

i=0 aiγi | 0 6 ai < di}. Now, γi ∈ SRm(ν)∀ i = 0, · · · , N − 1 =⇒

T + S(Ai,j,t,x)n(ν) ⊂ SRm(ν). So it is enough to show SRm(ν) ⊂ T + S(Ai,j,t,x)n(ν).

x ∈ SRm(ν) =⇒ x =
N−1∑
i=0

aiγi +
l∑

i=N

aiγi

=⇒ x =
N−1∑
i=0

aiγi +
N−1∑
i=0

bidiγi +
l∑

i=N

aiγi where ai = ai + bidi, 0 6 ai < di, bi ∈ N

=⇒ x =
N−1∑
i=0

aiγi +
N−1∑
i=0

bidi,NγN +
l∑

i=N

aiγi

=⇒ x =
N−1∑
i=0

aiγi + y, where y ∈ S(Ai,j,t,x)n(ν).

Thus we have shown SRm(ν) ⊂ T + S(Ai,j,t,x)n(ν). Since T is a finite set, we have

SRm(ν) is finitely generated over S(Ai,j,t,x)n(ν).

From (5.2), (αai, βbj) · QN = βd(N)bjQN ∀ b ≡ ax(mod t). So, QN ∈ Ai,j,t,x ⇐⇒

βd(N)bj = 1∀ b ≡ ax(mod t). Again from 2) of Chapter 4 we have d(N) | d(M)∀M >

N > 1. Hence we obtain, QN ∈ Ai,j,t,x =⇒ QM ∈ Ai,j,t,x ∀M > N > 1. So, SRm(ν) is

not finitely generated over S(Ai,j,t,x)n(ν) if and only if Qr /∈ Ai,j,t,x ∀ r > 1.
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Lemma 6.0.3. Let i, j, t, x be positive integers satisfying the conditions of Theorem

3.0.2. Let assumptions be as in Theorem 5.0.1. Then SRm(ν) is not finitely generated

over S(Ai,j,t,x)n(ν) if and only if j 6= n and n
j
- d(l)∀ l > 2.

Proof. Suppose that SRm(ν) is not finitely generated over S(Ai,j,t,x)n(ν). Then Ql /∈

Ai,j,t,x ∀ l > 1. From (5.2), if j = n, then (αai, βbn) · Ql = βd(l)bnQl = Ql, that is

Ql ∈ Ai,n,t,x, which is a contradiction. So j 6= n. And, for some l > 2, n
j
| d(l) =⇒

n | d(l)j. Then, (αai, βbj) · Ql = βd(l)bjQl = Ql, that is Ql ∈ Ai,j,t,x, which is again a

contradiction. So, n
j
- d(l)∀ l > 2.

Conversely, suppose j 6= n and n
j
- d(l)∀ l > 2, that is, n

j
- d(l)∀ l > 1. Now,

(x, t) = 1 =⇒ ax ≡ 1(mod t) for some a ∈ Z, so, (αai, βj) ∈ Hi,j,t,x. From (5.2),

(αai, βj) ·Ql = βd(l)jQl 6= Ql for all l > 1, as n - d(l)j. So we have Ql /∈ Ai,j,t,x ∀ l > 1.

Hence SRm(ν) is not finitely generated over S(Ai,j,t,x)n(ν).

Proposition 6.0.4. Let i, j, t, x be positive integers satisfying the conditions of The-

orem 3.0.2, such that (m
i
, n
j
) > t > 1. Suppose that ν is a rational rank 1 non

discrete valuation dominating Rm, with a generating sequence ( 4.2) {Ql}l>0, where

Q0 = X,Q1 = Y as in Chapter 4. Then {Ql}l>0 is not a sequence of eigenfunctions

for Hi,j,t,x.

Proof. Let d = (m
i
, n
j
). Then 1 6 t < d 6 min {m

i
, n
j
}. So, t < m

i
and t < n

j
. We

recall, Hi,j,t,x = {(αai, βbj) | b ≡ ax(mod t)}. Thus (αti, 1), (1, βtj) ∈ Hi,j,t,x. Let

{Ql}l>0 be the generating sequence (4.2) with Q0 = X, Q1 = Y . Let ν(Ql) = γl ∀ l >

0. By Equation (8) in [6], Q2 = Y s − λXr, where λ ∈ K \ {0}, sγ1 = rγ0, and s =
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min {q ∈ Z>0 | qγ1 ∈ γ0Z}. From (4.1), we have,

(αti, 1) ·Q2 = (αti, 1) · [Y s − λXr] = Y s − λαrtiXr.

(1, βtj) ·Q2 = (1, βtj) · [Y s − λXr] = βstjY s − λXr.

If Q2 was an eigenfunction of Hi,j,t,x, then m | rti =⇒ r = r1
m
ti

, where r1 ∈ Z>0.

Similarly, n | stj =⇒ s = s1
n
tj

, where s1 ∈ Z>0. And, sγ1 = rγ0 =⇒ s1
n
tj
γ1 = r1

m
ti
γ0.

So, s1
n
dj
γ1 = r1

m
di
γ0. Now, d | n

j
implies s1

n
dj
∈ Z>0. Similarly, r1

m
di
∈ Z>0. Thus,

s1
n
dj
γ1 ∈ γ0Z. But t < d implies s1

n
dj
< s1

n
tj

= s, and this contradicts the minimality

of s. Thus Q2 is not an eigenfunction of Hi,j,t,x. So, {Ql}l>0 is not a generating

sequence of eigenfunctions for Hi,j,t,x.

We know, if ω is a primitive l-th root of unity in K, then {ωk | 1 6 k 6 l} is a

complete list of all l-th roots of unity in K, and {ωk | 1 6 k 6 l and (k, l) = 1} is a

complete list of all primitive l-th roots of unity in K.

We have, α is a primitive m-th root of unity and β is a primitive n-th root of unity in

K. Let δ be a primitive mn-th root of unity in K. Then δn is a primitive m-th root of

unity. Now, Sα = {αk | 1 6 k 6 m and (k,m) = 1} is a complete list of all primitive

m-th roots of unity in K. And, Sδn = {δkn | 1 6 k 6 m and (k,m) = 1} is also a

complete list of all primitive m-th roots of unity. Thus, α = δw1n where (w1,m) =

1 and 1 6 w1 6 m. Similarly, β = δw2m where (w2, n) = 1 and 1 6 w2 6 n.

Remark 6.0.5. Let p, q ∈ Z. With the notation introduced above, βp = αq ⇐⇒

pw2

n
− qw1

m
∈ Z.

Proof. We have, β = δw2m and α = δw1n, where δ is a primitive mn-th root of unity.
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Thus, βp = αq ⇐⇒ δw2mp = δw1nq ⇐⇒ mn | (w2mp− w1nq)⇐⇒ pw2

n
− qw1

m
∈ Z.

Proposition 6.0.6. Let i, j, t, x be positive integers satisfying the conditions of Theo-

rem 3.0.2, such that (m
i
, n
j
) = t, t > 1. Set m

i
= Mt, and n

j
= Nt, where M,N ∈ Z>0

and (M,N) = 1. Suppose that ∃ a prime number p such that p | t but p - N . Suppose

that ν is a rational rank 1 non discrete valuation dominating Rm with a generating

sequence ( 4.2) of eigenfunctions for Hi,j,t,x. Then SRm(ν) is not finitely generated

over S(Ai,j,t,x)n(ν).

Proof. Let {Ql}l>0 be the generating sequence (4.2) of the valuation ν, where Q0 =

X,Q1 = Y , and each Ql is an eigenfunction for Hi,j,t,x. Let γl = ν(Ql)∀ l > 0.

Without any loss of generality, we can assume γ0 = 1. Since ν is a rational valuation,

we can write γk = ak
bk
∀ k > 1, where (ak, bk) = 1. We have, p | t, and p - N for a

prime p. So (p,N) = 1. So ∃N1 ∈ Z such that NN1 ≡ 1(mod p). Let w1 and w2 be

as in Remark 6.0.5. Now (m,w1) = 1 and t | m. So (t, w1) = 1. So (p, w1) = 1. So

∃w1 ∈ Z such that w1w1 ≡ 1(mod p).

We now use induction to show the following ∀ k > 1,

(p,mk) = 1, (p, bk) = 1

ak ≡ bkMN1xw2w1d(k) (mod p).

(6.2)

We have γ1 = a1
b1

, where (a1, b1) = 1. So m1 = b1. By Equation (8) in [6], we

have Q2 = Y b1 − λ1X
a1 , for some λ1 ∈ K \ {0}. Recall, Hi,j,t,x = {(αai, βbj) | b ≡

ax(mod t)}. So (αi, βxj) ∈ Hi,j,t,x. Now, (αi, βxj) ·Q2 = βb1xjY b1 − λ1α
a1iXa1 . Since

Q2 is an eigenfunction for Hi,j,t,x, we have

βb1xj = αa1i =⇒ b1xjw2

n
− a1iw1

m
∈ Z by Remark 6.0.5

=⇒ b1xw2

Nt
− a1w1

Mt
∈ Z
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=⇒MNt | [b1xMw2 − a1Nw1]

=⇒ b1MN1xw2w1 ≡ a1(mod p) as p | t.

If (p, b1) 6= 1, then p | b1 =⇒ p | a1. But this contradicts (a1, b1) = 1. So, (p, b1) = 1.

Since m1 = b1, we thus have (p,m1) = 1. Thus we have the induction step for k = 1.

Suppose (6.2) is true for k = 1, · · · , l − 1. From (5.2) we have (αai, βbj) · Qk =

βd(k)bjQk ∀ k > 1, ∀ (αai, βbj) ∈ Hi,j,t,x. By Equation (8) in [6] we have, Ql+1 =

Qml
l − λlXc0Y c1Qc2

2 · · ·Q
cl−1

l−1 where λl ∈ K \ {0}, 0 6 ck < mk ∀ k = 1, · · · , l − 1 and

mlγl =
∑l−1

k=0 ckγk.

(αi, βxj) ·Ql+1 = βxjmld(l)Qml
l − λlαic0βxj[

∑l−1
k=1 ckd(k)]Xc0Y c1Qc2

2 · · ·Q
cl−1

l−1 . Since Ql+1 is

an eigenfunction for Hi,j,t,x, we have

βxjmld(l) = αic0βxj[
∑l−1
k=1 ckd(k)]

=⇒βxj[mld(l)−
∑l−1
k=1 ckd(k)] = αic0

=⇒x[mld(l)−
∑l−1

k=1 ckd(k)]w2

Nt
− c0w1

Mt
∈ Z by Remark 6.0.5

=⇒MNt | [Mxw2mld(l)−Mxw2

l−1∑
k=1

ckd(k)−Nc0w1]

=⇒p | [Mxw2mld(l)−Mxw2

l−1∑
k=1

ckd(k)−Nc0w1]

=⇒MN1xw2w1mld(l) ≡ [MN1xw2w1

l−1∑
k=1

ckd(k) + c0](mod p).

Now, p | ml =⇒ c0 = λp − MN1xw2w1

∑l−1
k=1 ckd(k), where λ ∈ Z. Let ml =

pMl, where Ml ∈ Z>0. So, mlγl = pMlγ1 = c0 +
∑l−1

k=1 ckγk = λp +
∑l−1

k=1 ck[γk −

MN1xw2w1d(k)].
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By our induction statement, ∀ k = 1, · · · , l−1, we have ak = tkp+bkMN1xw2w1d(k),

where tk ∈ Z. Thus,

pMlγl = λp+
l−1∑
k=1

ck[
tkp+ bkMN1xw2w1d(k)

bk
−MN1xw2w1d(k)] = λp+p

l−1∑
k=1

cktk
1

bk
.

Now (ak, bk) = 1 =⇒ ∃hk ∈ Z such that hkak ≡ 1(mod bk). Let hkak−1 = ζkbk, where

ζk ∈ Z. So, 1
bk

= hkak−(hkak−1)
bk

= hkγk−ζk. Then, pMlγl = λp+p
∑l−1

k=1 cktk[hkγk−ζk]

implies

Mlγl = λ+
l−1∑
k=1

cktk[hkγk − ζk] ∈ G(γ0, · · · , γl−1).

But this contradicts the minimality of ml. So p - ml. So (p,ml) = 1.

Now, mlγl = c0 +
∑l−1

k=1 ckγk =⇒ ml
al
bl

= c0 +
∑l−1

k=1 ck
ak
bk

=⇒ mlal
∏l−1

k=1 bk =

c0B + B
∑l−1

k=1 ck
ak
bk

, where B =
∏l

k=1 bk. From the induction hypothesis, ak
bk
B =

[tkp+ bkMN1xw2w1d(k)]B
bk

. So,

mlal

l−1∏
k=1

bk = c0B +
l−1∑
k=1

ck[tkp+ bkMN1xw2w1d(k)]
B

bk

=⇒ mlal

l−1∏
k=1

bk ≡ [c0 +MN1xw2w1

l−1∑
k=1

ckd(k)]B(mod p).

Since, MN1xw2w1mld(l) ≡ [MN1xw2w1

∑l−1
k=1 ckd(k) + c0](mod p), we have

mlal

l−1∏
k=1

bk ≡MN1xw2w1mld(l)
l∏

k=1

bk(mod p).

Since (p,ml) = 1, (p, bk) = 1 ∀ k = 1, · · · , l−1, we have al ≡MN1xw2w1d(l)bl (mod p).

If p | bl, then p | al which contradicts (al, bl) = 1. So (p, bl) = 1. Thus we have the

induction step for k = l.

In particular, by induction we have (p,mk) = 1 ∀ k > 1. Since d(k) = m1 · · ·mk−1

(by 2), Chapter 4), we have (p, d(k)) = 1∀ k > 2. So p - d(k)∀ k > 2 =⇒ t -
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d(k)∀ k > 2 =⇒ n
j

= Nt - d(k)∀ k > 2. Thus by Lemma 6.0.3, we have SRm(ν) is not

finitely generated over S(Ai,j,t,x)n(ν).

Proposition 6.0.7. Let i, j, t, x be positive integers satisfying the conditions of The-

orem 3.0.2, such that (m
i
, n
j
) = t and t > 1. Set m

i
= Mt and n

j
= Nt where

M,N ∈ Z>0 and (M,N) = 1. Suppose that for any prime number p which divides t,

the number p also divides N . Suppose that ν is a rational rank 1 non discrete valu-

ation dominating Rm with a generating sequence ( 4.2) of eigenfunctions for Hi,j,t,x.

Then SRm(ν) is not finitely generated over S(Ai,j,t,x)n(ν).

Proof. Since (x, t) = 1, ∃ r ∈ Z>0 such that rx ≡ 1(mod t). So (r, t) = 1. Recall,

α = δw1n, β = δw2m, where δ is a primitive mn-th root of unity, and (w1,m) =

1, (w2, n) = 1, 1 6 w1 6 m and 1 6 w2 6 n. Now, M | m =⇒ (w1,M) = 1. Similarly,

(w2, N) = 1, (w1, t) = 1, (w2, t) = 1. So ∃w1, w2 ∈ Z>0 such that w1w1 ≡ 1(mod t)

and w2w2 ≡ 1(mod t).

Write N = NN ′, where N is the largest factor of N such that (N, x) = 1. If N = 1,

then for any prime p dividing N , we have p | x. So in particular p | t =⇒ p | x.

But this is a contradiction as (t, x) = 1. So N > 1 if N > 1. We will now show

(N,N ′) = 1. Suppose the contrary. Then ∃ a prime p such that p | N and p | N ′.

p | N =⇒ (p, x) = 1 =⇒ (Np, x) = 1. And, NN ′ = N =⇒ pN | N . This contradicts

the maximality of N . So (N,N ′) = 1. Hence (N, x) = (N ′, x). We will now show

that (t, N ′) = 1. Suppose ∃ a prime p such that p | t and p | N ′. Then p | t, p | N and

p - N . Thus p | t and p | x, which is a contradiction as t and x are coprime. Thus

(t, N ′) = 1. Also (N,w2) = 1 implies (N,w2) = 1.

Let {Ql}l>0 be the generating sequence (4.2) of the valuation ν, where Q0 = X,Q1 =
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Y, and each Ql is an eigenfunction for Hi,j,t,x. Let γl = ν(Ql)∀ l > 0. Without

any loss of generality, we can assume γ0 = 1. Let γ1 = a1
b1

, where (a1, b1) = 1. So

m1 = b1. By Equation (8) in [6], we have Q2 = Y b1 − ζ1X
a1 for some ζ1 ∈ K \ {0}.

Now,(αi, βxj) ∈ Hi,j,t,x. By (5.2), (αai, βbj) · Qk = βd(k)bjQk ∀ k > 1, ∀ (αai, βbj) ∈

Hi,j,t,x. Now, (αi, βxj) · Q2 = (αi, βxj) · [Y b1 − ζ1X
a1 ] = βb1xjY b1 − ζ1α

a1iXa1 . Since

Q2 is an eigenfunction for Hi,j,t,x, we have

βb1xj = αa1i =⇒ b1xw2

Nt
− a1w1

Mt
∈ Z by Remark 6.0.5

=⇒MNt | [Mb1xw2 −Na1w1]

=⇒M | a1 and N | b1 as (N,w2) = 1, (M,w1) = 1, (M,N) = 1, (N, x) = 1.

Let a1 = Ma′1 and b1 = Nb′1. Then, MNt | [MNb′1xw2 − NMa′1w1] implies b′1 ≡

ra′1w1w2N
′(mod t) as rx ≡ 1(mod t) and N = NN ′. Now, γ1 = a1

b1
=

Ma′1
Nb′1

. (a1, b1) =

1 =⇒ (N, a′1) = 1, (a′1, b
′
1) = 1 and (M, b′1) = 1. Rename a′1 = u and b′1 = r′.

Then (u,N) = 1. If (u, t) 6= 1, then ∃ a prime p such that p | t and p | u. Thus

p | t, p | N and p - N , since for any prime p dividing t, p also divides N . So p | t

and p | N ′. But we have established earlier that (t, N ′) = 1. So (u, t) = 1. And,

r′ ≡ ruw1w2N
′(mod t) =⇒ r′x ≡ uw1w2N

′(mod t). Thus,

γ1 =
Mu

Nr′
where (u,N) = 1, (u, t) = 1, (u, r′) = 1, (M, r′) = 1, r′ ≡ ruw1w2N

′(mod t).

(6.3)

We will now use induction to show that ∀ k > 2,

γk = Mum2 · · ·mk−1 +
MNtλk
m1 · · ·mk

for some λk ∈ Z

(t,mk) = 1.

(6.4)
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By Equation (8) in [6] we have, Q3 = Qm2
2 − ζ2X

c0Y c1 where ζ2 ∈ K\{0}, c0 ∈

Z>0, 0 6 c1 < m1. (αi, βxj) · Q3 = βxjm2m1Qm2
2 − ζ2α

ic0βxjc1Xc0Y c1 . Since Q3 is an

eigenfunction for Hi,j,t,x, we have

βxjm2m1 = αic0βxjc1 =⇒ βxj[m2m1−c1] = αic0

=⇒ x[m2m1 − c1]w2

Nt
− c0w1

Mt
∈ Z by Remark 6.0.5

=⇒MNt | [MNr′xw2m2 −Mxw2c1 −Nc0w1] as m1 = Nr′

=⇒M | c0 and N | c1 as (M,N) = 1, (M,w1) = 1, (N,w2) = 1, (N, x) = 1.

Let c0 = Mc′0 and c1 = Nc′1. Plugging them in the above expression and using (6.3),

we obtain,

MNt | [MNr′xw2m2 −Mxw2Nc
′
1 −NMc′0w1]

=⇒ r′xw2m2 ≡ [w1c
′
0N
′ + xw2c

′
1](mod t)

=⇒ uw1m2N
′ ≡ [w1c

′
0N
′ + xw2c

′
1](mod t)

=⇒ r′um2 ≡ [r′c′0 + uc′1](mod t).

So, m2γ2 = c0 +c1γ1 = Mc′0 +Nc′1
Mu
Nr′

= M [
c′0r
′+c′1u

r′
] = M [ r

′um2+λ2t
r′

] = Mum2 + MNtλ2
m1

for some λ2 ∈ Z. Thus, γ2 = Mu+ MNtλ2
m1m2

.

We will now show (t,m2) = 1. Suppose if possible ∃ a prime p such that p | t and

p | m2. Let m2 = pM2. So, γ2 = Mu + MNtλ2
m1m2

=⇒ m2γ2 = Mum2 + MNtλ2
m1

=⇒

pM2γ2 = pMuM2 + Mtλ2
r′

=⇒ r′M2γ2 = r′MuM2 +Mλ2
t
p
.

(w1, t) = 1. (N ′, t) = 1. rx ≡ 1(mod t) implies (r, t) = 1. w2w2 ≡ 1(mod t) implies
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(w2, t) = 1. And, (u, t) = 1 by (6.3). So, r′ ≡ ruw1w2N
′(mod t) =⇒ (r′, t) = 1.

So ∃ r1 ∈ Z such that r1r
′ ≡ 1(mod t). So in particular, r1r

′ ≡ 1(mod p)∀ prime p

dividing t. We then have,

r1r
′M2γ2 = r1r

′MuM2 + r1Mλ2
t

p

=⇒ (1 + µ2p)M2γ2 = r1r
′MuM2 + r1Mλ2

t

p
for some µ2 ∈ Z

=⇒M2γ2 + µ2m2γ2 ∈ Z ⊂ G(γ0, γ1) =⇒M2γ2 ∈ G(γ0, γ1).

But this contradicts the minimality of m2. So for any prime p dividing t, we have

p - m2. Thus (t,m2) = 1. We now have the induction step for k = 2.

Suppose (6.4) is true for k = 3, · · · , l−1. By Equation (8) in [6] we have, Ql+1 = Qml
l −

ζlX
c0Y c1Qc2

2 · · ·Q
cl−1

l−1 where ζl ∈ K \ {0}, c0 ∈ Z>0, 0 6 ck < mk ∀ k = 1, · · · , l − 1

and mlγl =
∑l−1

k=0 ckγk. By 2) of Chapter 4 we have d(l) =
∏l−1

k=1mk ∀ l > 2. Again,

m1 = Nr′ by (6.3). So ∀ l > 2, d(l) = Nr′d(l), where d(l) = d(l)
m1

. Thus, ∀ l > 3, d(l) =∏l−1
k=2mk.

Now, (αi, βxj) · Ql+1 = βxjmld(l)Qml
l − ζlα

ic0βxj[
∑l−1
k=1 ckd(k)]Xc0Y c1Qc2

2 · · ·Q
cl−1

l−1 . Since

Ql+1 is an eigenfunction for Hi,j,t,x we have

βxj[d(l+1)−
∑l−1
k=1 ckd(k)] = αic0

=⇒ xw2[d(l + 1)−
∑l−1

k=1 ckd(k)]

Nt
− c0w1

Mt
∈ Z by Remark 6.0.5

=⇒MNt | [Mxw2Nr
′d(l + 1)−Mxw2c1 −Mxw2Nr

′
l−1∑
k=2

ckd(k)−Nc0w1]

=⇒M | c0 and N | c1 as (M,N) = 1, (M,w1) = 1, (N, x) = 1, (N,w2) = 1.

Let c0 = Mc′0 and c1 = Nc′1. Plugging them in the above expression, and using (6.3),
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we obtain

MNt | [Mxw2Nr
′d(l + 1)−Mxw2Nc

′
1 −Mxw2Nr

′
l−1∑
k=2

ckd(k)−NMw1c
′
0]

=⇒ t | [xw2r
′d(l + 1)− xw2c

′
1 − xw2r

′
l−1∑
k=2

ckd(k)− w1c
′
0N
′]

=⇒ r′xw2d(l + 1) ≡ [c′0w1N
′ + c′1xw2 + r′xw2

l−1∑
k=2

ckd(k)](mod t)

=⇒ r′ud(l + 1) ≡ [r′c′0 + c′1u+ r′u

l−1∑
k=2

ckd(k)](mod t).

Now,

mlγl = c0 + c1γ1 +
l−1∑
k=2

ckγk

= Mc′0 +Nc′1
Mu

Nr′
+

l−1∑
k=2

ck[Mud(k) +
MNtλk
d(k + 1)

] where λk ∈ Z

= M [
c′0r
′ + c′1u+ r′u

∑l−1
k=2 ckd(k)

r′
+
Ntθl
d(l)

] for some θl ∈ Z

= M [
r′ud(l + 1) + µlt

r′
+
Ntθl
d(l)

] for some µl ∈ Z

= Mud(l + 1) +
MNtµl
m1

+
MNtθl
d(l)

= Mud(l + 1) +
MNtλl
d(l)

for some λl ∈ Z

=⇒ γl = Mum2 · · ·ml−1 +
MNtλl
m1 · · ·ml

.

By our induction hypothesis, (t,mk) = 1∀ k = 2, · · · , l − 1. So (p,mk) = 1 for any

prime p dividing t, ∀ k = 2, · · · , l − 1, hence, (p, d(l)) = 1. Suppose if possible ∃ a

prime p | t such that p | ml. Let ml = pMl. Now, (r′, t) = 1 =⇒ (r′, p) = 1. So

(p, r′d(l)) = 1. So ∃ rl ∈ Z such that rlr
′d(l) ≡ 1(mod p). Let rlr

′d(l) = 1 + µlp for
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some µl ∈ Z. Now,

γl = Mum2 · · ·ml−1 +
MNtλl
m1 · · ·ml

=⇒ pMlγl = Mum2 · · ·ml +
Mtλl

r′d(l)
as ml = pMl, m1 = Nr′, d(l) =

l−1∏
k=2

mk

=⇒ r′d(l)Mlγl = r′d(l)Mum2 · · ·ml−1Ml +Mλl
t

p
as ml = pMl

=⇒ rlr
′d(l)Mlγl = rlr

′d(l)Mum2 · · ·ml−1Ml + rlMλl
t

p
∈ Z

=⇒ (1 + µlp)Mlγl ∈ Z =⇒Mlγl + µlmlγl ∈ Z ⊂ G(γ0, · · · , γl−1)

=⇒Mlγl ∈ G(γ0, · · · , γl−1).

But this contradicts the minimality of ml. So for any prime p dividing t, we have

p - ml. Thus (t,ml) = 1. We now have the induction step for k = l.

(t, r′) = 1 =⇒ Nt - Nr′ =⇒ Nt - Nr′ =⇒ n
j
- m1 =⇒ n

j
- d(2). From the induction

we have (t,mk) = 1∀ k > 2. Thus (t,
∏l−1

k=2mk) = 1 =⇒ (t, d(l)) = 1∀ l > 3 =⇒

(t, r′d(l)) = 1∀ l > 3. t - r′d(l)∀ l > 3 =⇒ Nt - Nr′d(l)∀ l > 3 =⇒ Nt - m1d(l)∀ l >

3 =⇒ n
j
- d(l)∀ l > 3. So together we have, n

j
- d(l)∀ l > 2. Thus by Lemma 6.0.3,

we have SRm(ν) is not finitely generated over S(Ai,j,t,x)n(ν).

We are now ready to prove Theorem 6.0.1.

Proof. Let i, j, t, x be positive integers satisfying the conditions of Theorem 3.0.2 and

suppose that ν is a rational rank 1 non discrete valuation dominating Rm with a

generating sequence (4.2) of eigenfunctions for Hi,j,t,x. By Proposition 6.0.4, we have

t > (m
i
, n
j
). Since t | m

i
and t | n

j
, we have (m

i
, n
j
) = t.

Conversely, let i, j, t, x be positive integers satisfying the conditions of Theorem

3.0.2 and suppose that (m
i
, n
j
) = t. We will show that ∃ a rational rank 1 non discrete
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valuation dominating Rm with a generating sequence (4.2) of eigenfunctions for Hi,j,t,x.

We consider the cases t = 1 and t > 1 separately.

Suppose that (m
i
, n
j
) = t = 1. We will construct a rational rank 1 non discrete

valuation ν dominating Rm, with a generating sequence (4.2) of eigenfunctions for

Hi,j,t,x such that SRm(ν) is finitely generated over S(Ai,j,t,x)n(ν). Let {ql}l>2 be an

infinite family of distinct prime numbers, such that (ql,
m
i
) = 1, (ql,

n
j
) = 1 for all

l > 2. Let q1 = n
j
. Let {cl}l>1 ∈ Z>0 be positive integers such that

c1 =
m

i
, cl ≡ 0(mod

m

i
) ∀ l > 1

cl+1 > ql+1cl ∀ l > 1, (cl, ql) = 1 ∀ l > 1.

We define a sequence of positive rational numbers {γl}l>0 as γ0 = 1, γl = cl
ql
∀ l > 1.

We will show ml = ql ∀ l > 1, where ml = min {q ∈ Z>0 | qγl ∈ G(γ0, · · · , γl−1)}.

Now, γ1 = c1
q1

=
(m
i

)

(n
j

)
. Since (m

i
, n
j
) = 1, we have m1 = n

j
= q1. For l > 2, qlγl = cl ∈

Z =⇒ 1 6 ml 6 ql. Suppose q ∈ Z>0 such that qγl = q cl
ql

=
∑l−1

k=0 akγk =
∑l−1

k=0 ak
ck
qk

.

Then ql | qcl
∏l−1

k=1 qk, that is, ql | qcl nj
∏l−1

k=2 qk. Now, (ql, cl) = 1 and (ql,
n
j
) = 1.

Again, (ql, qk) = 1 ∀ k 6= l, as they are distinct primes. So, ql | q. Thus we have

ml = ql ∀ l > 1. And, mlγl = qlγl = cl <
cl+1

ql+1
= γl+1. Thus we have a sequence

of positive rational numbers {γl}l>0, such that γl+1 > mlγl ∀ l > 1. By Theorem

1.2 of [6], since Rm is a regular local ring of dimension 2, there is a valuation ν

dominating Rm, such that SRm(ν) = S(γ0, γ1, · · · ). ν is a rational rank 1 non discrete

valuation by the construction. By Theorem 4.2 of [6], ∃ a generating sequence (4.2)

{Ql}l>0, Q0 = X,Q1 = Y, · · · such that ν(Ql) = γl ∀ l > 0.

From the recursive construction of the {γl}l>0, we have the generating sequence as
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Q0 = X, Q1 = Y, Q2 = Y
n
j − λ1X

m
i , where λ1 ∈ K \ {0}. For all l > 2, Ql+1 =

Qql
l −λlXf0Y f1 · · ·Qfl−1

l−1 , where qlγl = cl = f0+
∑l−1

k=1 fkγk, 0 6 fk < mk ∀ k > 1. Now,

(ck, qk) = 1∀ k > 1, and (qk, qh) = 1∀ k 6= h. So, cl = f0 +
∑l−1

k=1
fkck
qk

=⇒ cl
∏l−1

k=1 qk =

f0

∏l−1
k=1 qk +

f1c1
∏l−1
k=1 qk
q1

+ · · · + fl−1cl−1
∏l−1
k=1 qk

ql−1
, which implies qk | fk ∀ k > 1. Since

0 6 fk < mk = qk, this implies fk = 0∀ k > 1. So we have the generating sequence

as,

Q0 = X, Q1 = Y, Q2 = Y
n
j − λ1X

m
i , Ql+1 = Qql

l − λlX
cl ∀ l > 2

where λl ∈ K \ {0} ∀ l > 1.

We now show that each Ql is an eigenfunction for Hi,j,1,1. Hi,j,1,1 = {(αai, βbj) |

a, b ∈ Z}. For all l > 2, d(l) =
∏l−1

k=1mk = q1 · · · ql−1 = n
j
q2 · · · ql−1. We have,

(αai, βbj) · Q2 = βbj
n
j Y

n
j − λ1α

aim
i X

m
i = Q2. So, Q2 is an eigenfunction. Suppose

Q3, · · · , Ql are eigenfunctions for Hi,j,1,1. We check for Ql+1. From (5.2), (αai, βbj) ·

Qk = βbjd(k)Qk ∀ 2 6 k 6 l. Since m
i
| cl and n

j
| d(l), we have (αai, βbj) · Ql+1 =

βbjqld(l)Qql
l − λlαaiclXcl = Ql+1. Thus Ql+1 is an eigenfunction. Thus by induction,

{Ql}l>0 is a generating sequence of eigenfunctions for Hi,j,1,1.

Now we consider the case (m
i
, n
j
) = t > 1. We will construct a rational rank 1 non

discrete valuation ν dominating Rm, with a generating sequence (4.2) of eigenfunctions

for Hi,j,t,x.

Since (t, x) = 1, there are positive integers r, s such that rx− st = 1. So (r, t) = 1.

From Lemma 3 in §2, Chapter III of [12], we have that if r, t are positive integers

such that (r, t) = 1, then there are infinitely many prime numbers of the form r+ θt,

where θ ∈ N. Define the family R = {r(k)}k>0 as r(0) = r, r(k) = k-th prime in the

above prime series. Any two elements in the family R are coprime by construction.
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Also, r(k) = r + θkt =⇒ r(k) ≡ r(mod t) ∀ k. Since R is an infinite family such that

any two elements in R are mutually prime, it follows that there is an infinite ordered

family of distinct prime numbers F = {rl}l>1 such that, rl ≡ r(mod t), (rl,
(m
i

)

t
) = 1,

(rl,
(n
j

)

t
) = 1, (rl, w1) = 1, (rl, w2) = 1∀ l > 1, where w1 and w2 are as in Remark

6.0.5. Let d = (w1, w2). Thus (w1

d
, w2

d
) = 1. Define two sequences (al)l>1 and (bl)l>1

of non negative integers as follows,

b1 = 0, rl | bl ∀ l > 2, t | bl ∀ l > 2

bl+1 > rl+1[rl−1 + bl]− rl ∀ l > 1

al =
(m
i
)

t
[rl−1 + bl]

w2

d
∀ l > 1.

Here rl ∈ F∀ l > 1. Define a sequence of positive rational numbers {γl}l>0 as follows

γ0 = 1, γ1 =

(m
i

)

t
w2

d

r1
(n
j

)

t
w1

d

,

γl =
al
rl

=
(m
i
)

t
[
rl−1 + bl

rl
]
w2

d
∀ l > 2.

We will show m1 = r1
(n
j

)

t
w1

d
and ml = rl ∀ l > 2, where ml = min {q ∈ Z>0 | qγl ∈

G(γ0, · · · , γl−1)}. (w1

d
, w2

d
) = 1, (r1,

w2

d
) = 1 and (

(n
j

)

t
, w2

d
) = 1 implies (w2

d
, r1

(n
j

)

t
w1

d
) =

1. Also, (
(m
i

)

t
,

(n
j

)

t
) = 1, (

(m
i

)

t
, r1) = 1 and (

(m
i

)

t
, w1

d
) = 1 implies (

(m
i

)

t
, r1

(n
j

)

t
w1

d
) = 1.

Thus, (w2

d

(m
i

)

t
, r1

(n
j

)

t
w1

d
) = 1, hence m1 = r1

(n
j

)

t
w1

d
.

Now ∀ l > 2, rlγl = al ∈ Z =⇒ 1 6 ml 6 rl. Suppose ∃ a positive integer q such

that qγl ∈ G(γ0, · · · , γl−1). Then qγl = q al
rl

= c0 + c1
a1

r1
(nj )

t
w1
d

+
∑l−1

k=2 ck
ak
rk

, where

ck ∈ Z∀ k = 0, · · · , l − 1. Thus rl | qal
(n
j

)

t
w1

d

∏l−1
k=1 rk. Now, (rl,

(n
j

)

t
) = 1, and

(rl, rk) = 1∀ k 6= l, as they are distinct primes. Also, (rl,
w1

d
) = 1. So, rl | qal. And,
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rl > r =⇒ rl - r =⇒ rl -
(m
i

)

t
[rl−1 + bl]

w2

d
= al as (rl,

w2

d
) = 1, (rl,

(m
i

)

t
) = 1 and rl | bl.

Thus, rl | q. Hence we have m1 = r1
(n
j

)

t
w1

d
and ml = rl ∀ l > 2.

Now, bl+1 > rl+1[rl−1 + bl] − rl ∀ l > 1 and b1 = 0 implies b2 > r2 − r. Thus,

a2 =
(m
i

)

t
[r + b2]w2

d
> r2

(m
i

)

t
w2

d
=⇒ γ2 = a2

r2
>

(m
i

)

t
w2

d
= m1γ1. For l > 2, we have

rl + bl+1 > rl+1[rl−1 + bl] =⇒ (m
i

)

t
[rl + bl+1]w2

d
> rl+1

(m
i

)

t
[rl−1 + bl]

w2

d
=⇒ γl+1 = al+1

rl+1
>

al = mlγl.

Thus we have a sequence of positive rational numbers {γl}l>0 such that γl+1 >

mlγl ∀ l > 1. By Theorem 1.2 of [6], since Rm is a regular local ring of dimension

2, there is a valuation ν dominating Rm, such that SRm(ν) = S(γ0, γ1, · · · ). ν is a

rational rank 1 non discrete valuation by the construction. By Theorem 4.2 of [6], ∃ a

generating sequence (4.2) {Ql}l>0, Q0 = X,Q1 = Y, · · · such that ν(Ql) = γl ∀ l > 0.

From the recursive construction of the {γl}l>0, we have the generating sequence

as Q0 = X, Q1 = Y, Q2 = Y r1
(nj )

t
w1
d − λ1X

(mi )

t
w2
d . For all l > 2, Ql+1 = Qrl

l −

λlX
f0Y f1 · · ·Qfl−1

l−1 , where 0 6 fk < mk ∀ k > 1 and rlγl = al = f0 +
∑l−1

k=1 fkγk. So,

al = f0 +
∑l−1

k=1
fkak
mk

. We observe, from our construction, (mk,mh) = 1∀ k 6= h. Also,

(mk, ak) = 1∀ k > 1.

Thus, al
∏l−1

k=1mk = f0

∏l−1
k=1mk +

f1a1
∏l−1
k=1mk
m1

+ · · ·+ fl−1al−1
∏l−1
k=1mk

ml−1
=⇒ mk | fk ∀ k >

1. Since 0 6 fk < mk, we have fk = 0∀ k > 1. Thus the generating sequence is given

as,

Q0 =X, Q1 = Y, Q2 = Y r1
(nj )

t
w1
d − λ1X

(mi )

t
w2
d

Ql+1 = Qrl
l − λlX

al ∀ l > 2

where λl ∈ K \ {0} ∀ l > 1.
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This is a minimal generating sequence as ml > 1∀ l > 1. We now show that each

Ql is an eigenfunction for Hi,j,t,x. From (4.1), (αai, βbj) · Q2 = β
r1bn
t

w1
d Y r1

(nj )

t
w1
d −

λ1α
am
t
w2
d X

(mi )

t
w2
d . Now, ∀ b ≡ ax(mod t), r1b ≡ a(mod t), hence, ( r1b−a

t
)(w1w2

d
) ∈

Z. Thus by Remark 6.0.5, β
r1bn
t

w1
d = α

am
t
w2
d ∀ b ≡ ax(mod t), that is, Q2 is an

eigenfunction for Hi,j,t,x.

Suppose Q3, · · · , Ql are eigenfunctions for Hi,j,t,x. We check for Ql+1. We note d(k) =

m1 · · ·mk−1 =
(n
j

)

t
w1

d
r1r2 · · · rk−1. From (5.2) we have, (αai, βbj) ·Qk = βbjd(k)Qk ∀ 1 6

k 6 l. Now, (αai, βbj)·Ql+1 = β
bnr1···rl

t
w1
d Qrl

l −λlαaialXal . Since rk ≡ r(mod t)∀ k > 1,

rx ≡ 1(mod t) and t | bl, we have

br1 · · · rl
t

− arl−1

t
∈ Z∀ b ≡ ax(mod t)

=⇒br1 · · · rl
t

− a[rl−1 + bl]

t
∈ Z∀ b ≡ ax(mod t)

=⇒br1 · · · rl
t

(
w1w2

d
)− a[rl−1 + bl]

t
(
w1w2

d
) ∈ Z∀ b ≡ ax(mod t)

=⇒bnr1 · · · rl
t

(
w1w2

dn
)−

ai(m
i
)[rl−1 + bl]

t
(
w1w2

dm
) ∈ Z∀ b ≡ ax(mod t)

=⇒(
bnr1 · · · rl

t

w1

d
)
w2

n
− (aial)

w1

m
∈ Z∀ b ≡ ax(mod t).

Thus, by Remark 6.0.5, β
bnr1···rl

t
w1
d = αaial for all b ≡ ax(mod t), and hence Ql+1

is an eigenfunction for Hi,j,t,x. Thus by induction, {Ql}l>0 is a minimal generating

sequence of eigenfunctions for Hi,j,t,x. This completes the proof of part 1) of Theorem

6.0.1.

Now we suppose (m
i
, n
j
) = t = 1 and ν is a rational rank 1 non discrete valuation

dominating Rm with a generating sequence (4.2) of eigenfunctions for Hi,j,1,1. Let

ν(Ql) = γl ∀ l ∈ N. We have Q0 = X,Q1 = Y . By Equation (8) in [6], Q2 = Y s−λXr
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where λ ∈ K \ {0}, sγ1 = rγ0. Since (m
i
, n
j
) = 1, by Chinese Remainder Theorem

(Theorem 2.1, §2, [9]) we have Hi,j,1,1 is a cyclic group, generated by (αi, βj). By

(4.1) we have (αi, βj) ·Q2 = βsjY s − λαirXr. Since Q2 is an eigenfunction, we have

βsj = αir =⇒ sjw2

n
− irw1

m
∈ Z by Remark 6.0.5

=⇒ sw2

(n
j
)
− rw1

(m
i
)
∈ Z

=⇒ m

i
| r and

n

j
| s as (

m

i
,w1) = 1, (

n

j
, w2) = 1, (

m

i
,
n

j
) = 1.

So, Q2 = Y s− λXr ∈ K[X
m
i , Y

n
j ] ⊂ Ai,j,1,1. Thus by Proposition 6.0.2, we have part

2) of Theorem 6.0.1.

We observe that the part 3) of Theorem 6.0.1 follows from Propositions 6.0.6 and

6.0.7. This completes the proof of Theorem 6.0.1.

Corollary 6.0.8. Let m > 1. Let (c1,m) = 1 and (c2,m) = 1. Let Um acts on

R = K[X, Y ] by the diagonal action given by K-algebra isomorphisms satisfying

α · XrY s = αc1r+c2sXrY s. Suppose ν is a rational rank 1 non discrete valuation

dominating Rm. Let {Ql}l>0 be the generating sequence ( 4.2) of the valuation ν,

where Q0 = X,Q1 = Y, and suppose that each Ql is an eigenfunction for Um under

the diagonal action. Let A = RUm and a = A ∩ m. Then SRm(ν) is not finitely

generated over SAa(ν).

Proof. α is a primitive m-th root of unity, and (c1,m) = (c2,m) = 1. So Um = < α >

= < αc1 > = < αc2 >. The subgroup H1,1,m,1 of Um × Um is given by H1,1,m,1 =

{((αc1)a, (αc2)b) | b ≡ a(mod m)} =< (αc1 , αc2) >. From (4.1), we have H1,1,m,1 acts

on R by K-algebra isomorphisms satisfying (αc1 , αc2) ·XrY s = αc1r+c2sXrY s. Thus

we have, α ·XrY s = (αc1 , αc2) ·XrY s.
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Now let {Ql}l>0 be the generating sequence (4.2) of the valuation ν, where Q0 =

X,Q1 = Y , and each Ql is an eigenfunction for Um under the diagonal action. Hence

each Ql is thus an eigenfunction for H1,1,m,1. And, A = RUm = RH1,1,m,1 = A1,1,m,1.

Also a = A ∩m = A1,1,m,1 ∩m = n.

We now use the same notation as in Theorem 6.0.1. We have i = 1, j = 1, t = m. Since

m > 1, by Theorem 6.0.1 we have SRm(ν) is not finitely generated over S(A1,1,m,1)n(ν).

Hence, SRm(ν) is not finitely generated over SAa(ν).
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Chapter 7

Non-splitting

Suppose that a local domain B dominates a local domain A. Let L be the quotient

field of A and M be the quotient field of B. Suppose ω is a valuation of L which

dominates A. We say that ω does not split in B if there is a unique extension ω∗ of

ω to M which dominates B.

We use the same notation as in the previous chapters.

Theorem 7.0.1. Let i, j, t, x be positive integers satisfying the conditions of Theorem

3.0.2 such that (m
i
, n
j
) = t. Suppose that ν is a rational rank 1 non discrete valuation

dominating Rm with a generating sequence ( 4.2) of eigenfunctions for Hi,j,t,x. Let

ν = ν |Q(Ai,j,t,x) where Q(Ai,j,t,x) denotes the quotient field of Ai,j,t,x. Then ν does not

split in Rm.

Proof. Let {Qk}k>0, {γk}k>0 and {mk}k>1 be as in Chapter 4. Thus Q0 = X and

Q1 = Y . Without any loss of generality, we can assume γ0 = 1. Set m
i

= Mt and

n
j

= Nt where M,N ∈ Z>0 and (M,N) = 1. From (5.1) we have

S(Ai,j,t,x)n(ν) =

lγ0 + j1γ1 + · · ·+ jrγr

∣∣∣∣∣∣
l ∈ N, r ∈ N, 0 6 jk < mk ∀ k = 1, · · · , r
αlaiβbj

∑r
k=1[jkd(k)] = 1

∀ b ≡ ax(mod t)

 .

Now, ν = ν |Q(Ai,j,t,x). Thus S(Ai,j,t,x)n(ν) = {ν(f) | 0 6= f ∈ (Ai,j,t,x)n} = S(Ai,j,t,x)n(ν).

The group generated by S(Ai,j,t,x)n(ν) is Γν , the value group of ν (1.2, [3]). Thus Γν =
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{s1 − s2 | s1, s2 ∈ S(Ai,j,t,x)n(ν)}. Suppose γ0 ∈ Γν . Then we have a representation,

γ0 = (l1γ0 +
r∑

k=1

h1,kγk)− (l2γ0 +
r∑

k=1

h2,kγk) = (l1 − l2)γ0 +
r∑

k=1

(h1,k − h2,k)γk

where l1γ0 +
∑r

k=1 h1,kγk ∈ S(Ai,j,t,x)n(ν), and l2γ0 +
∑r

k=1 h2,kγk ∈ S(Ai,j,t,x)n(ν). Thus

l1, l2 ∈ N, r ∈ N and 0 6 h1,k, h2,k < mk ∀ k = 1, · · · , r. So, |h1,k − h2,k| < mk ∀ k =

1, · · · , r. Now (h1,r − h2,r)γr ∈ G(γ0, · · · , γr−1) and |h1,r − h2,r| < mr =⇒ h1,r = h2,r.

With the same argument, we have h1,k = h2,k ∀ k = 1, · · · , r. So in the representation

of γ0, we have γ0 = (l1 − l2)γ0 =⇒ l1 − l2 = 1. Also,

αl1aiβbj
∑r

k=1[h1,kd(k)] = 1 = αl2aiβbj
∑r

k=1[h2,kd(k)]

=⇒ α(l1−l2)aiβbj
∑r
k=1[(h1,k−h2,k)d(k)] = 1∀ b ≡ ax(mod t).

Since l1 − l2 = 1 and h1,k = h2,k ∀ k = 1, · · · , r, we have αai = 1∀ b ≡ ax(mod t).

Thus αi = 1, hence, m | i, that is, m = i. So we have obtained,

γ0 ∈ Γν =⇒M = 1, t = 1. (7.1)

Suppose γ1 ∈ Γν . Then we have a representation,

γ1 = (l1γ0 +
r∑

k=1

j1,kγk)− (l2γ0 +
r∑

k=1

j2,kγk) = (l1 − l2)γ0 +
r∑

k=1

(j1,k − j2,k)γk

where l1γ0 +
∑r

k=1 j1,kγk ∈ S(Ai,j,t,x)n(ν), and l2γ0 +
∑r

k=1 j2,kγk ∈ S(Ai,j,t,x)n(ν). So,

l1, l2 ∈ N, r ∈ N and 0 6 j1,k, j2,k < mk ∀ k = 1, · · · , r. So, |j1,k − j2,k| < mk ∀ k =

1, · · · , r. Now, (j1,r − j2,r)γr ∈ G(γ0, · · · , γr−1) and |j1,r − j2,r| < mr =⇒ j1,r = j2,r.

With the same argument, we have j1,k = j2,k ∀ k = 2, · · · r. Thus we have, γ1 =

(l1 − l2)γ0 + (j1,1 − j2,1)γ1 where 0 6 |j1,1 − j2,1| < m1. Again, ∀ b ≡ ax(mod t) we
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have

αl1aiβbj
∑r

k=1[j1,kd(k)] = 1 = αl2aiβbj
∑r

k=1[j2,kd(k)].

Since d(1) = degY (Y ) = 1 and j1,k = j2,k ∀ k = 2, · · · , r, we have α(l1−l2)aiβbj(j1,1−j2,1) =

1 for all b ≡ ax(mod t). So if γ1 ∈ Γν , we have a representation

γ1 = lγ0 + j1γ1 where l ∈ Z, 0 6 |j1| < m1

αlaiβbjj1 = 1∀ b ≡ ax(mod t).

In the above expression, (1− j1)γ1 = lγ0 ∈ γ0Z =⇒ m1 | (1− j1).

And |1−j1| 6 1+ |j1| 6 m1 =⇒ |1−j1| = 0 or m1. 1−j1 = 0 =⇒ l = 0, j1 = 1. From

the above expression we then have, βbj = 1∀ b ≡ ax(mod t) =⇒ n = j. Now consider

|1 − j1| = m1. If 1 − j1 = −m1 then j1 = 1 + m1 which contradicts |j1| < m1. So

1− j1 = m1, that is, j1 = 1−m1. And (1− j1)γ1 = m1γ1 = lγ0. So Q2 = Qm1
1 − λX l

where λ ∈ K\{0}. (αai, βbj) ·Q2 = βbjm1Qm1
1 −λαailX l. Since Q2 is an eigenfunction,

we have βbjm1 = αail ∀ b ≡ ax(mod t). Again from the above expression we have,

αailβbj = βbjm1 ∀ b ≡ ax(mod t), as j1 = 1−m1. Thus, βbj = 1∀ b ≡ ax(mod t), and

hence j = n. So we have obtained,

γ1 ∈ Γν =⇒ N = 1, t = 1. (7.2)

For an element g ∈ Γν , let [g] denote the class of g in Γν
Γν

. Since Γν
Γν

is a finite group,

[g] has finite order for each g ∈ Γν . Let e = [Γν : Γν ].

First we suppose γ0 ∈ Γν and γ1 ∈ Γν . From (7.1) and (7.2) we have M = N =

t = 1. From Proposition 3.0.3 we have |Hi,j,t,x| = MNt = 1. Thus, MNt | e.

Now we suppose γ0 /∈ Γν and γ1 ∈ Γν . From (7.2) we have N = t = 1. From

Proposition 3.0.3 we have |Hi,j,t,x| = MNt = M . Let f0 denote the order of [γ0].
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Thus f0γ0 ∈ Γν . We thus have a representation

f0γ0 = (l1γ0 +
r∑

k=1

h1,kγk)− (l2γ0 +
r∑

k=1

h2,kγk) = (l1 − l2)γ0 +
r∑

k=1

(h1,k − h2,k)γk

where l1γ0 +
∑r

k=1 h1,kγk ∈ S(Ai,j,t,x)n(ν), and l2γ0 +
∑r

k=1 h2,kγk ∈ S(Ai,j,t,x)n(ν). Thus

l1, l2 ∈ N, r ∈ N and 0 6 h1,k, h2,k < mk ∀ k = 1, · · · , r. So, |h1,k − h2,k| < mk ∀ k =

1, · · · , r. With the same arguments as above, we have h1,k = h2,k ∀ k = 1, · · · , r.

Thus f0γ0 = (l1 − l2)γ0 =⇒ f0 = l1 − l2. And, for all b ≡ ax(mod t),

αl1aiβbj
∑r

k=1[h1,kd(k)] = 1 = αl2aiβbj
∑r

k=1[h2,kd(k)].

So, α(l1−l2)i = αf0i = 1, hence Mt | f0 =⇒Mt | e. Thus MNt | e as MNt = M .

Now we suppose γ0 ∈ Γν and γ1 /∈ Γν . From (7.1) we have M = t = 1.

|Hi,j,t,x| = MNt = N . Let f1 denote the order of [γ1], that is f1γ1 ∈ Γν . We

have a representation,

f1γ1 = (l1γ0 +
r∑

k=1

j1,kγk)− (l2γ0 +
r∑

k=1

j2,kγk) = (l1 − l2)γ0 +
r∑

k=1

(j1,k − j2,k)γk

where l1γ0 +
∑r

k=1 j1,kγk ∈ S(Ai,j,t,x)n(ν), and l2γ0 +
∑r

k=1 j2,kγk ∈ S(Ai,j,t,x)n(ν). So,

l1, l2 ∈ N, r ∈ N and 0 6 j1,k, j2,k < mk ∀ k = 1, · · · , r. So, |j1,k − j2,k| < mk ∀ k =

1, · · · , r. With the same arguments as above, we have j1,k = j2,k ∀ k = 2, · · · , r.

So in the above representation, we have f1γ1 = (l1 − l2)γ0 + (j1,1 − j2,1)γ1 where

0 6 |j1,1 − j2,1| < m1. Again, ∀ b ≡ ax(mod t) we have

αl1aiβbj
∑r

k=1[j1,kd(k)] = 1 = αl2aiβbj
∑r

k=1[j2,kd(k)].

Since d(1) = 1 and j1,k = j2,k ∀ k = 2, · · · , r, we have α(l1−l2)aiβbj(j1,1−j2,1) = 1 for all

b ≡ ax(mod t). So we have a representation,

f1γ1 = lγ0 + j1γ1 where l ∈ Z, 0 6 |j1| < m1

αlaiβbjj1 = 1∀ b ≡ ax(mod t).
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(f1 − j1)γ1 = lγ0 =⇒ m1 | (f1 − j1). Let f1 − j1 = cm1 where c ∈ Z. Let m1γ1 = sγ0

where s ∈ Z>0. Thus f1γ1 = csγ0 + j1γ1 =⇒ lγ0 = csγ0. Thus l = cs. Since m1γ1 =

sγ0, we have Q2 = Qm1
1 −λXs where λ ∈ K\{0}. (αai, βbj)·Q2 = βbjm1Qm1

1 −λαaisXs.

Since Q2 is an eigenfunction we have, βbjm1 = αais ∀ b ≡ ax(mod t). Again, from the

above expression of f1γ1, we have

αlaiβbj(f1−cm1) = 1∀ b ≡ ax(mod t)

=⇒ αcsaiβbjf1 = βbjcm1 ∀ b ≡ ax(mod t) as l = cs

=⇒ βbjf1 = 1∀ b ≡ ax(mod t) =⇒ Nt | f1 =⇒ Nt | e.

Thus we have obtained, MNt | e as MNt = N .

Now we consider the final case, γ0 /∈ Γν and γ1 /∈ Γν . Let f0 denote the order of

[γ0] and f1 denote the order of [γ1] in Γν
Γν

. With the same arguments as before, we

obtain Mt | f0 and Nt | f1. Thus we have Mt | e and Nt | e. Now (Mt,Nt) = t. So

the lowest common multiple of Mt and Nt is MtNt
t

= MNt. Thus, MNt | e.

Now, K(X, Y ) is a Galois extension of Q(Ai,j,t,x) with Galois group Hi,j,t,x (Propo-

sition 1.1.1, [2]). Thus [K(X, Y ) : Q(Ai,j,t,x)] = |Hi,j,t,x| = MNt from Proposition

3.0.3. Let ν = ν1, ν2, · · · , νr be all the distinct extensions of ν to K(X, Y ). Then

(§12, Theorem 24, Corollary, [16]),

efr = [K(X, Y ) : Q(Ai,j,t,x)] = MNt.

Since MNt | e, we have e = MNt, r = 1. So ν is the unique extension of ν to

K(X, Y ). Thus ν does not split in Rm.
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