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GENERATING SEQUENCES AND SEMIGROUPS OF VALUATIONS ON
2-DIMENSIONAL NORMAL LOCAL RINGS
Arpan Dutta

Dr. Dale Cutkosky, Dissertation Supervisor

ABSTRACT

In this thesis we develop a method for constructing generating sequences for val-
uations dominating the ring of a two dimensional quotient singularity. Suppose that
K is an algebraically closed field of characteristic zero, K[X,Y] is a polynomial ring
over K and v is a rational rank 1 valuation of the field K(X,Y) which dominates
K[X,Y]xy). Given a finite Abelian group H acting diagonally on K[X,Y], and a
generating sequence of v in K[X, Y] whose members are eigenfunctions for the action
of H, we compute a generating sequence for the invariant ring K[X,Y]#. We use
this to compute the semigroup SEY1 (1) of values of elements of K[X,Y]7. We

further determine when SK¥Y1(1) is a finitely generated SKIXY1” (1)-module.
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Chapter 1

Notations

We denote the natural numbers {0, 1,2, - - - } by N. We denote the positive integers by
Z~( and the positive rational numbers by Q-q. If the greatest common divisor of two
positive integers a and b is d, this is denoted by (a,b) = d. If {7;}x>0 is a set of ra-
tional numbers, we define G(yo, -, Vn) = D_p_oWZ and G(y0, 71, ) = D o0 L.
Similarly we define S(yo, -+ ,7) = > p_o %N and S(y0,71,--+) = X sonN. If a

group G is generated by ¢y, -, gn, we denote this by G =< g1,--- , g, >.



Chapter 2

Introduction

Let R be a local domain with maximal ideal mpr and quotient field L, and v be a
valuation of K which dominates R. Let V, be the valuation ring of v, with maximal
ideal m, and ®, be the valuation group of v. The associated graded ring of R along

the valuation v, defined by Teissier in [14] and [15], is

= P P,(r)/P(R) (2.1)

yed,

where
P,(R)={f € R|v(f) >~} and P (R) = {f € R|v(f) >~}

In general, gr, (R) is not Noetherian. The valuation semigroup of v on R is

SH(w) ={v(f) | f € R\ (0)}. (2.2)

If R/mp = V,/m, then gr,(R) is the group algebra of S(v) over R/mpg, so that
gr,(R) is completely determined by SE(v).

A generating sequence of v in R is a set of elements of R whose classes in gr,(R)
generate gr,(R) as an R/mpg-algebra. An important problem is to construct a gen-
erating sequence of v in R which gives explicit formulas for the value of an arbitrary
element of R, and gives explicit computations of the algebra (2.1) and the semi-

group (2.2). For regular local rings R of dimension 2, the construction of generating
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sequences is realized in a very satisfactory way by Spivakovsky [13] (with the assump-
tion that R/mpg is algebraically closed) and by Cutkosky and Vinh [6] for arbitrary
regular local rings of dimension 2. A consequence of this theory is a simple classifica-
tion of the semigroups which occur as a valuation semigroup on a regular local ring
of dimension 2. There has been some success in constructing generating sequences in
Noetherian local rings of dimension > 3, for instance in [7], [10], [11] and [15], but
the general situation is very complicated and is not well understood.

Another direction is to construct generating sequences in normal 2 dimensional
Noetherian local rings. This is also extremely difficult. In Section 9 of [6], a generating
sequence is constructed for a rational rank 1 non discrete valuation in the ring R =
klu,v, w]/(uv — w?), from which the semigroup is constructed. The example shows
that the valuation semigroups of valuations dominating a normal two dimensional
Noetherian local ring are much more complicated than those of valuations dominating
a two dimensional regular local ring. In this thesis, we develop the method of this
example into a general theory.

If R is a 2 dimensional Noetherian local domain, and v is a valuation of the quotient
field L of R which dominates R, it follows from Abhyankar’s inequality [1] that the
valuation group ®, of v is a finitely generated group, except in the case when the
rational rank of v is 1 (¢, ® Q = Q) and @, is non discrete. As this is the essentially
difficult case in dimension 2, we will restrict to such valuations.

Let K be an algebraically closed field of characteristic 0 and K[X,Y] be a poly-
nomial ring in two variables, which has the maximal ideal m = (z,y). Let a € K be

a primitive m-th root of unity and § € K be a primitive n-th root of unity. Now the



group U, x U, acts on K[X,Y] by K-algebra isomorphisms, where
(", )X = a'X and (o, p)Y = Y.
In Theorem 3.0.2, we give a classification of the subgroups H; ;. of U,, x U,. Let
Aijie = K[X,Y])Hte and n=mnN A,

We say that f € K[X,Y] is an eigenfunction for the action of H;,;, on K[X,Y] if
forall g € H; iz, gf = Agf for some A\, € K.
Let v be arational rank 1 non discrete valuation dominating the local ring KX, Y.

Using the algorithm of [13] or [6], we construct a generating sequence

Qo=X,01=Y,0,... (2.3)

of v in K[X,Y]. Let v* be the restriction of v to the quotient field of A;;;,. In
Theorem 5.0.1, we construct a generating sequence of v* in A, j, ., when the members
of the generating sequence (2.3) are eigenfunctions for the action of H; ;, , on KX, Y].
We give an explicit construction of the valuation semigroups S“#s+=)t(v/) in Theorem
5.0.1.

Suppose that a Noetherian local domain B dominates a Noetherian local domain
A. Let L be the quotient field of A, M be the quotient field of B and suppose
that M is finite over L. Suppose that w is a valuation of L which dominates A
and w* is an extension of v to M which dominates B. We can ask if gr .(B) is a
finitely generated gr_(A)-module or if SB(w*) is a finitely generated S“(w)-module.
In general, gr .(B) is not a finitely generated gr,(A)-algebra, so is certainly not a
finitely generated gr,(A)-module. However, is is shown in Theorem 1.5. [4] that

if A and B are essentially of finite type over a field characteristic zero, then there
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exists a birational extension A; of A and a birational extension By of B such that w*
dominates B, w dominates Ay, By dominates A; and gr .(B;) is a finitely generated
gr,(A;)-module (so SP!(w*) is a finitely generated S (w)-module).

The situation is much more subtle in positive characteristic and mixed character-
istic. In Theorem 1 [5], it is shown that If A and B are excellent of dimension two
and L — M is separable, then there exist birational extension A; of A and B; of B
such that A; and B; are regular, B; dominates A;, w* dominates B; and gr_.(Bj) is
a finitely generated gr, (A;)-algebra if and only if the valued field extension L — M
is without defect. For a discussion of defect in a finite extension of valued fields, see
8].

In this thesis, we completely answer the question of finite generation of SUXYIn (1)
as a S@iste)n(y)-module (and hence of gr, (K[X,Y]n) as a gr,((A; ;2 )a)-module) for
valuations with a generating sequence of eigenfunctions. We obtain the following

results in Chapter 6.

Proposition 2.0.1. Let Ry, = K[X,Y|xy) and H; ;. be a subgroup of Uy, x U,.
Let v be a rational rank 1 non discrete valuation v dominating Ry, with a generating
sequence (2.3) of eigenfunctions for H; ;... Then ST (v) is finitely generated over
the subsemigroup SWiita)n (1) if and only if AN € Zwg such that Q, € A j1. V1 > N.

Further, if Qn € A; jiz, then Qu € Ajj1. VM >N > 1.
Theorem 2.0.2. Let Ry, = K[X,Y|xy) and H; ;. be a subgroup of U,, x U,.
1) 3 a rational rank 1 non discrete valuation v dominating Ry, with a generating
sequence (2.3) of eigenfunctions for H; i, <= (%, %) =t.
2) If (%, ?) =t =1, then S (v) is a finitely generated S(Aivjvtvz)“(u)—module for

5



all rational rank 1 non discrete valuations v which dominate R, and have a

generating sequence (2.3) of eigenfunctions for H; j ..

5) If (%4,%) =t > 1, then SEn (1) is not a finitely generated SAiit=)n(v)-module
for all rational rank 1 non discrete valuations v which dominate Ry, and have

a generating sequence (2.3) of eigenfunctions for H; ;..

In Chapter 7, we show that for the valuations we consider, the restriction of v to
the quotient field of A; ., does not split in K[X,Y],. The failure of non splitting
can be an obstruction to finite generation of S¥"(B) as an S¥(A)-module (Theorem

5 [5]), but our result shows that it is not a sufficient condition.



Chapter 3

Subgroups of U, x U,

Let K be an algebraically closed field of characteristic zero. Let o be a primitive m-th
root of unity, and 3 be a primitive n-th root of unity, in K. We denote U,, =< a >,

and U,, =< 8 >, which are multiplicative cyclic groups of orders m and n respectively.

Lemma 3.0.1 (Goursat). Let A and B be two groups. There is a bijective correspon-

dence between subgroups G < A x B, and 5-tuples {G1, Gy, Gy, G, 0}, where

Gy ﬂG_lgA,GQﬁG_QSB,G:%—)%iS an isomorphism.
1 2

Proof. Let m; and 7y denote the first and second projection maps respectively. Let

11: A— Ax B andiy: B— A X B denote the inclusion maps. Given a subgroup G

of A x B, we construct the elements of the 5-tuple as follows,

0 : & — G is defined by (@) = b, if (a,b) € G.
G Gy

By construction, G; = {a € A|3b € B with (a,b) € G} and G; = {a € A|(a,1) €
G}. Let x € Gy,a € G;. Then (z,1) € G and (a,b) € G for some b € B implies
(a,b)(x,1)(a,b)™' € G = axa™' € G; = G, < G,. Similarly, we have Gy < G.

7



Conversely suppose we are given a 5-tuple {G1, G1, Ga, Go, 0} satisfying the conditions

Gy G

of the theorem. Let p : G1 xGy — % X g:; be the natural surjection. Let Gy < & X

denote the graph of 6. Then G = p~(Gy).

Now we show the bijectivity of the correspondence. First we establish injectivity.
Suppose G # H be two subgroups of A x B, such that the corresponding 5-tuples
are equal, if possible. Thus, {G,, Gy, Gy, Gy, 06} = {Hy, Hy, Hy, Hy,0y}. Now G #
H = 3(a,b) € G — H, without loss of generality. But this contradicts 65 = 0y,
since 0 (@) = b, but (@) # b. So this correspondence is injective.

Now we establish the surjectivity of the correspondence. Given a 5-tuple satisfying
the conditions of the theorem, we construct a subgroup G < A x B. Now, G =
P HGy) = {(g,h)|h =0(9),9 € G1,h € G3}. a € m(G) = (a,b) € G for some b €
B = a € G,. Conversely, a € G; = 0(a) = b for some b € Gy = (a,b) €
p 1 (Gy) = G = a € m1(G). Thus we have shown 71 (G) = G;. Now, a € i; *(G) <=
(a,1) € G=pGy) <= pla,1) = (@,1) EGoy<=0a) =1 a=1<=a € G.
Similarly we show, Gy = mo(G), Gy = iy *(G).

|
Theorem 3.0.2. Given positive integers i, j, t, x satisfying the given conditions
ilm. jln, t]?, t\?, (@t)=1,1<z<t
let
Hijiw={(a™ %) b= ax(mod t)}. (3.1)

Then the H; . are subgroups of U,, x U,. And giwven any subgroup G of U, x U,,
there ewist unique 1, j,t, x satisfying the above conditions such that G = H; ;..
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Proof. We first show that the condition b = ax(mod t) is well defined under the given
conditions on 7, j,¢, . Suppose (a®?, 3%17) = (a2 B%9), that is, ai;i = ai(mod m),
and byj = byj(mod n). Then, 7 | (a1 — az) and 7 | (by — b2). Thus, ¢ | (a1 — az) and
t | (by — bg), hence t | (by — bg) — (a1 — az)z. So, [by — ayz] = [by — asx](mod t).

We now show H, ;. is a subgroup of U, x U,,. Taking a =b =0, we have (1,1) €
H; iz Let (@ %), (o, %) € H; ;. be distinct elements. Then b = az(mod t),
and d = cx(mod t). Hence (b —d) = (a — ¢)z(mod t). So, (@9 go-di) =
(a®, B%)(a, pY)~L H; ... Hence H; ;. is a subgroup.

By Goursat’s Lemma, the subgroups of U,,, x U,, are in bijective correspondence
with the 5-tuples {G1, Gy, Ga, Go,0}, where G; < G < U,,, Gy, < Gy < U, 0 :

~ % Now any subgroup of U,, =< « > is of the form H; =< o' >= Um,
2 1

29

where i|m. Since H; is an abelian group, any subgroup is normal. Any subgroup
of H; is of the form Hy, =< o' >= Um, where t;|%. Similarly, any subgroup of

U, is of the form H; =< 7 >= U%, where jin. And any subgroup of H; is of

. Um Un
the form Hjy, =< /% >= U, where tj|5. Now, g0 = Uy and 5= =~ Uy, So,
J it Ft;
Um Un
0ij : go— = g < t; = tj. Define t = ¢; = ¢;. Thus the subgroups of U, x U,, are
A
in bijective correspondence with the set of 5-tuples,
(<o > <a' > <pf' > <> 04
<d> <pl> (32)

. : mon
where i|m, j|n, t]T, t|; and 6,; : s S g

Any such isomorphism is given by 6;; (af) = (79, where (z,t) =1,1 <z <t and T

<al>

—= or the residue of an element
<a't>?

denotes the residue of an element v €< o' > in

: . </jj>
ve< > 5

If Gy,, denotes the graph of 6;;, then Gy, = {(a™, 3#7)| r € N}. Denoting the natural

9



surjection p < @ > x < I >— S= y SO>

Zais X ogis, We have

pH(Ga,) = {(a®, %) | a® = ™, 8% = 379 for some r € N}
= {(a®, %) |a"™ e< ot >, B0 e< §7 > for some r € N}

= {(a", 8% |a = r(mod t),b = rz(mod t), for some r € N}.
We now show that,
a = r(mod t),b = rz(mod t), for some r € N <= b = ax(mod t). (3.3)

If @ = r(mod t),b = raz(mod t), then a — r = td for some integer d. Then b —
ar =b— (td+r)r = b —rz(mod t) = 0(mod t) = b = ax(mod t). Conversely if
b = az(mod t), and a = r(mod t) for some r, then b = rz(mod t). Thus we have
established (3.3). So, p~'(Gq,,) = {(a™,5%)|b = ax(mod t)}. Thus we have that

any subgroup of U,, x U, is of the form
ai bj _ . . m n
Hijio={(a", 87)]b=ax(mod t); i|m, jln, t|—, t|=, (z,t) =1, 1 <z <t}
? J

We now establish uniqueness. Let (i1, j1,t1,21) and (ig, j2, 2, x2) be two distinct
quadruples satisfying the conditions of the theorem, such that H;, j, +, 1 = Hi, js to,s-

From (3.2), we observe H;, j, 1, o, = Hi, jy .t 2, iMplies

(< @ > <ot > < it > < pit s o)

» Vi1

=(<a®? > <> < pP2 > < g s g2

» Yigj2

Now, < o' >=< a2 >= | <o > | =|<a”? > | = m/iy = m/iy = i1 = iy =
i. And, < o' >=< o2 >= m/it; = m/ity = t; = t, = t. Similarly j = j; = Jo.

10



1 2 1), —= 2) , = —_— —_ . j
Now, 0 = 0 = 61} (a) = 01 (o) = B=7 = 57 in <52 Thus, t | |2; — za].
Since 0 < x1,29 < t, we have |x; — x5 = 0, i.e. 1 = x5. Let x = 21 = z3. Then
(4,4, t,2) = (i1, 1, t1, 71) = (ig, Jo, 2, 72) is unique.

Proposition 3.0.3. Let i, j,t,x be positive integers satisfying the conditions of The-
orem 3.0.2 such that (%, ?) =t. Write % = Mt and ? = Nt where M, N € Z~q and

(M,N)=1. Then |H; .| = MNt.

Proof. Recall, H; ;. = {(a®, %) | b = ax(mod t)}. We observe, as elements of
H;jia, (@™ p29) = (a7, 3%27) if and only if a; = az(mod Mt) and by = by(mod Nt).

Thus every element of H; ;,, has an unique representation,
Hijiw={(a", %) | b=ar(mod t), 0 <a< Mt, 0<b< Nt}. (3.4)
Hence there is a bijective correspondence,

H;jtz+— {(a,b) | b=az(mod t),0 <a< Mt,0<b< Nt,a,beZ}
> {(a,ax + M) |0 < a < Mt, 0 < ax+ A\t < Nt, a,\ € Z}

<—>{(a,/\)|0<a<Mt,0</\+%<N,a,)\€Z}.

Hence there are Mt possible choices for a. And for each choice of a, there are N

possible choices for A. Thus |H; ;.| = MNt. 1
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Chapter 4

Generating Sequences

In this chapter we establish notation which will be used throughout the thesis. Let
R = K[X,Y] be a polynomial ring in two variables over an algebraically closed field
K of characteristic zero. Let m = (X,Y’) be the maximal ideal of R. Then U,, x U,

acts on R by K-algebra isomorphisms satisfying
(o, pY) - (XTY?) = a5 XY, (4.1)

Thus, Riite = {37 ¢, X"Y* € R|a™ (™ =1Y7r,s, Vb= ax(mod t)}.
f € R is defined to be an eigenfunction of H, ;. if (o, %) - f = Ay f for some
Aap € K, for all (%, B%) € H; ;+». The eigenfunctions of H; ;. are of the form
f= ZCT,SX "Y* € R such that o 3% is a common constant Vr, s such that Crs 7
0,Vb TES ax(mod t).

Let v be a rational rank 1 non discrete valuation of K(X,Y) which dominates

Ry. The algorithm of Theorem 4.2 of [6] (as refined in Section (8) of [6]) produces a

generating sequence

Qo=X,01=Y,Qs,-- (4.2)

of elements in R which have the following properties.
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1)

Let v = v(Q)VI > 0 and My = [G(v0,- -+ , ) : G(0,- -+ ,Yi—1)] = min {q €

Zso | qui € G(v0,- -+ ,-1)} VI > 1. Then v > myy VI > 1.

Set d(l) = degy (Q;) V1 € Z~y. Then, Q; = YW 1+Q7(X,Y), where degy (QF (X, Y)) <
d(l). We have that, d(1) = 1, d(I) = [[., Mm% V1 > 2. In particular, 1 < l; <

Every f € R with degy(f) = d has a unique expression
d
£= 310 b XHQ - Q)
m=0 l
where b, € K, 0 < ji(m) <Vl > 1, and degy[ij(m) : --fo(m)] = mVYm.
Writing fr = (32, b XQM™ - QIr™ | we have that v(f,) = v(f,) <

m =n. So, v(f) = min,{v(fm)}

From 3) we have that the semigroup S (v) = {v(f) |0# f € R} =S(yv |1l >

0).

Suppose that v is a rational rank 1 non discrete valuation dominating R,. We

will say that v has a generating sequence of eigenfunctions for H; ;. , if all ); in the

generating sequence (4.2) of Chapter 4 are eigenfunctions for H; j; ..
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Chapter 5

Valuation Semigroups of Invariant
Subrings

Theorem 5.0.1. Let i, j,t, x be positive integers satisfying the conditions of Theorem
3.0.2. Suppose that v is a rational rank 1 non discrete valuation dominating Ry,

where R = K[X,Y], and m = (X,Y). Suppose that v has a generating sequence

(4.2)
Qo=X,01=Y,Q, -

such that each @y € R is an eigenfunction for H; ;... Let notation be as in Chapter
4. Then denoting A; ji. = Rfit= and defining n =m N A; j,. we have
leNreN O e <mpVk=1,---r
St (1) = Iy + 1yt + - + Jo e &zmﬁbjzzzl[jkd(k)] 1
Vb = az(mod t)
(5.1)
Proof. Let 0 # f(X,Y) € R, with degy(f) = d. By (4.1), (a®, g%) . Y™ =

BAmprydm) - Since @Q,, is an eigenfunction of H, ., we conclude that for m > 0,

(aaia Bbj) ) Qm = Bd(m)ijm = Bdng(Qm)ijma v (O‘aiv Bbj) € Hi,jﬂf,x' (52)

We also have, (a®, %) - Qo = (a®, %) - X = a® X,V (a*, %) € H; j;.. Now [ has

14



an expansion of the form 3) of Chapter 4. So,

d
(@ 8- f = (0%, 57) - D[ b XHQP™ - Q1™
m= l

0

_ i[(z al“ibl,le)ﬁijZ;ﬂ[J'k(m)d(k’)]Q{l(m) C Qi)
m= l

0

Now, f € Aiji. = al“iﬁbjzzzl[jk<m)d(k)] = 1,Vb = ax( mod t), VI, such that

bl,m 7& 0.

So,

() 10# f e (Aijradnt ={v()0F# [ € Aijra}
leNreN O <mpVk=1,---,r
- {l% +ant o+ i alaiﬁbjzzzl[jkd(k)] =1 }
Vb= azr(modt)

Conversely, suppose we have [ € N, r € N, 0 < jp < mpVk = 1,--- r such that
Vb = ax(mod t) we have ozl“iﬁbjzzzl[jkd(k)] — 1. Define f(X,Y) = X'QJ" ---QJr €
R. For any (a%, 3%) e H; .. we have, (a®, B%) - f = (o, 3%) . (XZQJI.1 S Q) =
alai g e Ukd(R) X1 . ir = £ that is, f € Ajjrae So v(f) = Io + jim +
coo Gy € SWiite)n (1), Hence we conclude,

lEN, reN,0< j, <mpVk=1,--r
S(Ai,j,t,z)n(y) — Z'YO + j1'71 B jr’Yr alaiﬁbjzzzl[jkd(kﬂ -1
Vb= ax(modt)

15



Chapter 6

Finite and Non-Finite Generation

In this chapter we study the finite and non-finite generation of the valuation semigroup
SEm (1) over the subsemigroup S sl (y). A semigroup S is said to be finitely
generated over a subsemigroup 7T if there are finitely many elements sq,--- ,s, in S
such that S = {s1, -+ ,s,} + T.

At the end of this chapter we will prove the following theorem.
Theorem 6.0.1. Let Ry, = K[X,Y|xy) and H; ;. be a subgroup of U, x U,.

1) 3 a rational rank 1 non discrete valuation v dominating Ry, with a generating

sequence (4.2) of eigenfunctions for H;j, . <= (%, ?) =t.

2) If (%,5) =t =1, then SEw(v) is a finitely generated SAist=)v(v)-module for
all rational rank 1 non discrete valuations v which dominate Ry and have a

generating sequence (4.2) of eigenfunctions for H; ;i ..

5) If (%4,%) =t > 1, then SPn(v) is not a finitely generated SAiit=)n(v)-module
for all rational rank 1 non discrete valuations v which dominate Ry and have

a generating sequence (4.2) of eigenfunctions for H; j; ..
We first introduce some notation. Let ¢(0) = 0 and for all [ > 1, o(l) =
min {j|j > o(l — 1) and m; > 1}. Let P, = Qo) and B, = v(F)) = vy,q) V1 > 0. Let

16



= [G(Bo,--,B) : G(Bo, -+, Bi—1)] = min{q € Z~o | ¢B € G(Po,- -, Bi-1)} VI > 1.
Then 7y = Myqy. ST (v) = S(v0, 71, ++) = S(Bo, 1, -+ ) and {Bi}1=0 form a minimal
generating set of S™(v), that is, m; > 1V > 1.

We first make a general observation. Suppose for some d > 1, j. # 0 and
l,51,- -, jr € N, we have an expression of the form, 8y = [Bo+7161+ - -+ 4.0 Ifr > d
then j,.5, > B, > 4 which is a contradiction. If r < d then g; € G(Bo, - , fa_1) =
ng = 1. This is a contradiction asn; > 1V > 1. Thus, 8, =160+ j161+ -+ 7.0, If
Jr > 1, then j.8, > B,.. If j, =0, then 8, € G(5y,- ,Br—1) = 7, = 1. So, j, = 1.
Since §; > 0V, we then have | = 0,7; = 0Vi # r. Thus, for [,j;,--- ,7, € N and

d>1,
Ba=160o+731b1+ -+ =Ja=11=0,5;=0Vi#d. (6.1)

Proposition 6.0.2. Let R, = K[X,Y]xy) and H;j;, be a subgroup of Uy, x U,.
Let assumptions be as in Theorem 5.0.1. Then ST~ (v) is finitely generated over the
subsemigroup SWiite)(v) if and only if AN € Zsq such that Q, € A;j;.¥r > N.

Further, if Qn € A;jiq, then Qup € A; 1, VM > N > 1.

Proof. We first show that, for any r > 1, 7, € SWistah(v) <= Q, € A ;.. It
is enough to show the implication 7, € SWiital(v) = Q, € A; ;.. From (5.1)
we have, v, € SWiitedn(v) = ~, = lyg + j1y1 + -+ + jsYs, Where [ € N, s € N,
0 < jix < Mg and /@ g% Xi=13xd(k) = 1V b = gz(mod t).

Since [, j1,- -+ ,7Js € N, v <11 Vi > 1 and v > 0V, we have r > s. If r = s, then
Yo =10+ D py TV = JrYr = Y- Since j, # 0 and j, € N we have j, = 1. And
7 > 0Vi implies [ = j; = -+ = j,_1 = 0. Then 8%4") = 1V¥b = az(mod t). So from
(5.2), (@, 8%) - Q, = Q, Vb = ax(mod t), that is, Q, € A; ;..
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If r > s, then v, = Iy + Y 1, Je vk = M, = 1. Since 0 < jij, < My, by Equation
(8) in [6] we have Q, 11 = Q, — AX'Y71 QP ... QI where X\ € K \ {0}. Since each Q,,

is an eigenfunction for H; ;; ., from (5.2) we have, Vb = az(mod t),
ﬁbjd(r+1)Qr+1 _ Bbjd(r)Qr . )\Ctlaiﬁbj Sroa jkd(k)Xlej Qj22 . Qgs

Again by 2) in Chapter 4 we have d(r + 1) = my---m, = my---m,—1 = d(r),

as m, = 1. So, pYNQ, , = pYIQ, — )\alaiﬁbjZ‘Zzljkd(k)leleJQ'z -~ Qs for all
b = az(mod t). Since Q,,; is an eigenfunction, this implies 4" = @@ 3% Xk=1 xd(k)

= 1Vb=ax(mod t). From (5.2), we then have ), € A; ;..

To prove the proposition, we now show Sf=(v) is finitely generated over the sub-
semigroup S“ista)n (1) if and only if AN € Zq such that Vr > N, 7, € SHisealn(y).
Suppose S%= (v) is finitely generated over Sist=)n(v). So, Jxg, - - , 1, € SB(v) such
that S (v) = {zg,--- ,2;} + SWistedn(v). Let L € N be the least natural number
such that S (v) = S(By,--- , Br) + SWistadn (1), where f; = Yo(iy Vi = 0. Suppose,
if possible, 3r > o (L) > 0 such that v, ¢ SWiite)s(v). Choose M such that o(M) <
r < o(M +1). Then o(L) < o(M), that is L < M. So 1 < By < v < By
Now s has an expression 3y, = ZiL:O a;B; +y where y € SWiitedn (1), a; € N. From
(5.1) we have By = ZiL:O a;fB;i + (Ivo + jin + -+ - + Js7s), where 0 < jp < T, and
ol 3 2 k=13kdk) = 1Y b = az(mod t). We observe my = 1 = jp = 0. Thus the

above expression can be rewritten as,

L
Bu =Y _aiBi+ (IBo+ i1+ - + jpBp)
=0

where 0 < jj, < 7y and o/ g0 iy kdesy(P) — 1V = az(mod t). Since L < M,
from (6.1) we obtain jy; = 1l,a; = 0Vi = 0,---,L and jp = OVk # M. Thus
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pbidesy (Pm) = 1V b = az(mod t). From 2) in Chapter 4 we have d(r) = Ty - - -, 1.
And, degy (Py) = d(o(M)) =™y - - - Mo -1. Sincer > o(M) = r—12> o(M)—1,
we thus have degy (Py) | d(r). So, 8% = 1V¥b = azx(mod t). From (5.2) we then
conclude, @, € A, ;.. But this contradicts v, ¢ SAigtaln (1), So, Q, € Aijra VT >
o(L) >0, that is, Q, € A; 1, Vr > N for some N € Z,.

Conversely, we assume S(yn, Yni1,- ) C S@ita)n () for some N € Zwy. Now
vi € QsoVi implies Vi # j, 3d;,d; € Zso such that d;y; = d;y;. We thus have
divi = di yynVi=0,--- , N —1. We will now show that, S (v) = T + SWisealn (1),
where T = {Y V'@, | 0 < @ < di}. Now, v, € SB(1)Vi=10,--- N -1 =

T + SWigeeds (1) € SBn(v). So it is enough to show STm(v) C T + SAistaln(y).

N-1 I
reSt(y) = 1= Z a;; + Zai%

N-1 N-1
:>:c:Z +Zbd2%—|—2a1% where a; = @; + b;d;, 0 <@; < d;, b; €N
i=0 i=0 i=N

N-—1

l
bllﬂ

a_ ; T ZbderYN"i_Zazr}/z
N-1

== r= Z Vi +vy, where y € S(Ai,j,t,z)n(y)‘
i=0

Thus we have shown Sfm(v) C T + SWiite)s(y). Since T is a finite set, we have
Sfm (1) is finitely generated over S(Aista)s(y).

From (5.2), (a®, %) - Qy = BIVQN Vb = ax(mod t). So, Qn € A;jin =
BN = 1¥ b = az(mod t). Again from 2) of Chapter 4 we have d(N) | d(M)VY M >
N > 1. Hence we obtain, Qn € A; 1. = Qum € Aij1. VM = N > 1. So, Sf(v) is
not finitely generated over Sust=)n (1) if and only if Q, ¢ A, e VT =
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Lemma 6.0.3. Let 1,7, t, x be positive integers satisfying the conditions of Theorem
3.0.2. Let assumptions be as in Theorem 5.0.1. Then ST=(v) is not finitely generated

over SWiitaln (1) if and only if j # n and Srd)viz 2.

Proof. Suppose that Sfm(v) is not finitely generated over SAist=)n(1), Then @Q; ¢
Aij12¥1 = 1. From (5.2), if j = n, then (a®, ™) - Q, = p¥™"Q, = Q,, that is
Qi € Ajni, which is a contradiction. So j # n. And, for some | > 2, 7 | d(l) =
n | d(l)j. Then, (o, %) - Q, = Q) = Q,, that is Q; € A; ., which is again a
contradiction. So, % {d(I) VI > 2.

Conversely, suppose j # n and % { d(I)VI > 2, that is, 5 1 d({)Vl > 1. Now,
(z,t) = 1 = axz = 1(mod ¢) for some a € Z, so, (a*,) € H;j;,. From (5.2),

(@@, 87)-@Q; = pUDIQ; # Q; for all I > 1, as n{d(l)j. So we have Q; ¢ A, 1. V1> 1.

Hence S (v) is not finitely generated over SAiite) (1), B

Proposition 6.0.4. Let 7, ], t,x be positive integers satisfying the conditions of The-
orem 3.0.2, such that (%,?) >t > 1. Suppose that v is a rational rank 1 non
discrete valuation dominating Ry, with a generating sequence (4.2) {Q;}1=0, where
Qo= X,Q1 =Y as in Chapter 4. Then {Q;};>0 is not a sequence of eigenfunctions

fOT Hi,j,t,:): .

Proof. Let d = (%,%). Then 1 < ¢ <d < min {7, %}. So, ¢t < Fandt < %. We
recall, H; ;.. = {(a™ BY)|b = ax(mod t)}. Thus (o', 1), (1,8%) € H, ;.. Let
{Qi}1=0 be the generating sequence (4.2) with Qy = X, Q1 =Y. Let v(Q,) =y VI >
0. By Equation (8) in [6], Q2 = Y* — AX", where A € K \ {0}, sy1 = 1, and s =
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min {q € Z~o | ¢71 € WZ}. From (4.1), we have,

(@1)- Q= (a",1) - [Y* = AX"] = Y* — X" X"

(1,B9) - Qa = (L, 3%) - [¥* = AX"] = Y = AX".

If Q)2 was an eigenfunction of H, j;,, then m | rti = r = ri7, where r; € Zs.
Similarly, n | stj = s = sltﬂj, where s; € Z~¢. And, sy, = ryg = 81%’71 = r13:-
So, sldﬂj% = r13:%. Now, d|% implies 81% € Zso. Similarly, r % € Z-o. Thus,
$1 dﬂj% € Y9Z. But t < d implies sldﬂj < 81% = s, and this contradicts the minimality
of s. Thus )2 is not an eigenfunction of H; ;.. So, {Q;}i>0 is not a generating

sequence of eigenfunctions for H; j; .. i

We know, if w is a primitive I-th root of unity in K, then {w* |1 < k <[} is a
complete list of all [-th roots of unity in K, and {w* | 1 <k <[l and (k,l) =1} is a
complete list of all primitive [-th roots of unity in K.

We have, « is a primitive m-th root of unity and [ is a primitive n-th root of unity in
K. Let ¢ be a primitive mn-th root of unity in K. Then " is a primitive m-th root of
unity. Now, S, = {a* | 1 <k <m and (k,m) = 1} is a complete list of all primitive
m-th roots of unity in K. And, Ssn» = {6* | 1 < k < m and (k,m) = 1} is also a
complete list of all primitive m-th roots of unity. Thus, a = §“*" where (wy,m) =

1 and 1 < wy < m. Similarly, 5 = §*>™ where (wy,n) =1 and 1 < wy < 1.

Remark 6.0.5. Let p,q € Z. With the notation introduced above, P = af <

pw2 _ qwi c Z.
n m

Proof. We have, f = §"?"™ and a = §“'", where ¢ is a primitive mn-th root of unity.
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Thus, f7 = af <= 02" = §*"1" <= mn | (womp —wing) <= 22 — L0 c 7. B

Proposition 6.0.6. Let i, j,t, x be positive integers satisfying the conditions of Theo-

rem 3.0.2, such that (%#,%) =t,t > 1. Set % = Mt, and ? = Nt, where M, N € Z~q

i 7
and (M, N) = 1. Suppose that 3 a prime number p such thatp |t but pf N. Suppose
that v is a rational rank 1 non discrete valuation dominating R, with a generating
sequence (4.2) of eigenfunctions for H; ;.. Then ST~ (v) is not finitely generated

over §Wistaln (1),

Proof. Let {Q;}i=0 be the generating sequence (4.2) of the valuation v, where @y =
X,Q1 =Y, and each @ is an eigenfunction for H,;;,. Let v = v(Q;)VI > 0.

Without any loss of generality, we can assume 5 = 1. Since v is a rational valuation,

we can write v, = 22V k > 1, where (ag,br) = 1. We have, p | ¢, and p t N for a
8 by

prime p. So (p, N) = 1. So N; € Z such that NN; = 1(mod p). Let w; and wy be
as in Remark 6.0.5. Now (m,w;) =1 and ¢ | m. So (t,w;) = 1. So (p,w;) = 1. So
Jw € Z such that wiw; = 1(mod p).

We now use induction to show the following VEk > 1,

(6.2)
ax = b, M Nizxwewid(k) (mod p).

We have 1 = 3+, where (a1,b1) = 1. So my = b;. By Equation (8) in [6], we
have Qy = Y? — A\ X® for some \; € K \ {0}. Recall, H; ;. = {(a®, %) |b =
az(mod t)}. So (af, 8%7) € H; ;1. Now, (o, f%) - Qg = BM%Y " — X\ja™i X, Since

()2 is an eigenfunction for H; ;. ,, we have

bl ilfng &12"LU1

BIH = gt = - € Z by Remark 6.0.5
n m
bll"lUQ a1
— 7
Nt Mt -
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— M Nt | [blfMU)Q — alel]

= by M Nyzwywy = aq(mod p) as p | t.

If (p,b1) # 1, then p | by => p | a;. But this contradicts (a;,b;) = 1. So, (p,b1) = 1.

Since Ty = by, we thus have (p,m7) = 1. Thus we have the induction step for k = 1.

Suppose (6.2) is true for k = 1,---,1 — 1. From (5.2) we have (a®, 8%) . Q, =

BRI QY E > 1, V(a®, 8%) € H; .. By Equation (8) in [6] we have, Q1 =
T N XOYas - Q) where Ay € K\ {0}, 0< ¢ <y Vhk=1,---,1—1and

my = 22—210 Ck V-

(Oéi, ij) Qi1 = ijmd(l)Q?Tz_ )\laicoﬁxj[zlt:ll erd(k)] xecoyer Qs - ;Z_—ll' Since Q1 is

an eigenfunction for H, ;; ., we have

gramdl) — gico gailyiy ckd(k)

— geilmid) =3 end(B)] — yico

efmid(l) — 3y crd(R)]ws — cowy
Nt Mt
-1
= MNt | [Mawymd(l) — Mawy Y _ cpd(k) — Negw]
k=1
-1
== | [wagmd(l) — Maxws Z crd(k) — Ncowl]

k=1

€ Z by Remark 6.0.5

-1
—> M Nyxwywy yd(l) = [Mlewgw_lz ced(k) + co](mod D).
k=1

Now, p | Ty = co = A\p — Mlewgw_lz:;;ll ckd(k), where A € Z. Let m; =
pM;, where M; € Zg. So, My, = pMyy = co + S ety ke = Ap + Sy crle —
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By our induction statement, Vk = 1,--- I —1, we have ay = typ+ by M Nyzwowid(k),
where 1 € Z. Thus,

tip + b M Nyzwowrd(k)
b

pMiy = Mp+ ) _ e — MNzw wid(k)] = Ap+p Y _ crtp—

Now (ak, bk) =1 —=— dhy € Zsuchthat hpa, = 1(H10d bk) Let hyap,—1 = Ckbka where
(k €Z. So, - = %}LM_I) = i — G- Then, pMyy, = A\p+p Soh_ ety — Gl

implies

-1

My =X+ Z ity — G € Gy, -, 71-1)-

k=1

But this contradicts the minimality of ;. So p tm;. So (p,my) = 1.
_ - — - — -
Now, My = co + Yy e = e = co + Yy are = Moy [z by =
coB + Bzz;ll ckyE, where B = Hi;:1 be. From the induction hypothesis, :B =

[tkp + bkMlewa_ld(k)]i. So,

-1 -1

B
mia [ [ox = coB+ Y exltup + bkMN1a;wa—lczuc)]E
k=1 k=1
-1 -1

= T H b = [co + Mlewa_IZ cxd(k)]B(mod p).

k=1 k=1

Since, M Nyzwowy myd(l) = [M Nyxwywy Zi:l cxd(k) + co](mod p), we have

-1 l

mya H by = M Nyzwywy myd(1) H br(mod p).
k=1 k=1

Since (p,m;) =1, (p,bx) = 1VEk=1,--- ,I—1, we have a; = M Nyzwowyd(l)b; (mod p).
If p| by, then p | a; which contradicts (a;, b)) = 1. So (p,b;) = 1. Thus we have the

induction step for k£ = [.

In particular, by induction we have (p, ) = 1V k > 1. Since d(k) = Ty - - - g1
(by 2), Chapter 4), we have (p,d(k)) = 1Vk > 2. Sop{dk)Vk > 2 =t ¢
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d(k)Vk > 2= % = Nt{d(k)Vk > 2. Thus by Lemma 6.0.3, we have S%n (1) is not

finitely generated over S ista)s (). m

Proposition 6.0.7. Let i, j,t, x be positive integers satisfying the conditions of The-
orem 3.0.2, such that (¢,%) =t and t > 1. Set %2 = Mt and % = Nt where
M,N € Z-o and (M, N) = 1. Suppose that for any prime number p which divides t,
the number p also divides N. Suppose that v is a rational rank 1 non discrete valu-

ation dominating Ry, with a generating sequence (4.2) of eigenfunctions for H; .

Then ST (v) is not finitely generated over SAuite)n (1),

Proof. Since (z,t) = 1, 3r € Z~o such that rx = 1(mod t). So (r,t) = 1. Recall,
a = 0" B = §"™ where § is a primitive mn-th root of unity, and (w;,m) =
L, (wy,m) =1,1 <w; <mand 1 <wy <n. Now, M | m = (wy, M) = 1. Similarly,
(wg, N) =1, (wy,t) = 1, (wy,t) = 1. So Fwy, Wy € Z~o such that wyw; = 1(mod t)
and wyww; = 1(mod t).

Write N = NN’, where N is the largest factor of N such that (N,z) = 1. If N = 1,
then for any prime p dividing N, we have p | . So in particular p | t = p | .
But this is a contradiction as (t,7) = 1. So N > 1 if N > 1. We will now show
(N, N’) = 1. Suppose the contrary. Then 3 a prime p such that p | N and p | N'.
p| N = (p,r) =1 = (Np,z) = 1. And, NN’ = N = pN | N. This contradicts
the maximality of N. So (N,N’) = 1. Hence (N,z) = (N’,z). We will now show
that (¢, N') = 1. Suppose 3 a prime p such that p | t and p | N'. Thenp | ¢t,p | N and
p{ N. Thus p | t and p | o, which is a contradiction as ¢t and x are coprime. Thus
(t, N') = 1. Also (N,w;) = 1 implies (N, ws) = 1.

Let {Q;}i>0 be the generating sequence (4.2) of the valuation v, where Qy = X, @ =
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Y, and each @); is an eigenfunction for H; ;.. Let v = v(Q;)VI > 0. Without
any loss of generality, we can assume vy = 1. Let 7, = 4, where (a1,b1) = 1. So
m1 = by. By Equation (8) in [6], we have Qo = Y — (; X% for some (; € K \ {0}.
Now,(a?, %) € H, ;.. By (5.2), (a®, BY) . Q) = BWYQ,VEk > 1,V (a%, g%) €
H; iz Now, (af, %) Qq = (af,f%) - [Yb1 — (;X0] = grr#iyd — (jamiX . Since

()2 is an eigenfunction for H; ;. ., we have

bll'UJQ a1y

Nt Mt

B = o = € 7 by Remark 6.0.5
= MNt | [Mbyzw; — Najw)

— M |a; and N | by as (N,wy) =1, (M,w;) =1, (M,N) =1, (N,z) = 1.

Let a; = Md, and by = NU,. Then, MNt | [MNV zwys — NMd,w,] implies ¥, =
1 1 1 1 1

ratw,wyN'(mod t) as ro = 1(mod t) and N = NN’. Now, v, = 8= %Z{l (a1,by) =
1 = (N,d)) = 1, (a},b}) = 1 and (M,b,) = 1. Rename a;, = u and b, = 7.
Then (u, N) = 1. If (u,t) # 1, then 3 a prime p such that p | t and p | u. Thus
p|t, p| Nand pf{ N, since for any prime p dividing ¢, p also divides N. So p |
and p | N'. But we have established earlier that (¢, N') = 1. So (u,t) = 1. And,

" = ruwwy N'(mod t) = r'z = uwwy N’ (mod t). Thus,

M _
T = N—If where (u, N) =1, (u,t) =1, (u,7’) = 1,(M,r") = 1,7 = ruw,;wz N'(mod ).
r
(6.3)
We will now use induction to show that Vk > 2,
MNtA
Ve = Mums -+ -mg_1 + _—i for some A\, € Z
m]_ PR mkj (6‘4)
(t,mx) = 1.
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By Equation (8) in [6] we have, Q3 = QF? — (XY where (, € K\{0}, ¢y €
Z>0, 0 cp < myq. (ai,ﬁf’”) Qg ﬂx]mg lem2 CQOéiCOijqXCOYq. Since Qg is an

eigenfunction for H, ;; ., we have

ﬁijTQW — aicoﬁxjcl s 5xj[W2W1—Cl] — aiCO

x[mymy — 1wy G

N7 i € Z by Remark 6.0.5

= MNt | [MNr'zwymg — Mawyc, — Negw,y] as m; = Nr/

= M|cyand N | c; as (M,N) =1, (M,w;) =1, (N,wp) =1, (N,z) = 1.

Let ¢g = Mcj and ¢; = N¢). Plugging them in the above expression and using (6.3),

we obtain,

MNt | [MNr'zwymg — MawyNé;, — NMcyw|
= r'zwymy = [wicgN' + zwed)](mod t)
— ww My N' = [wicyN' + zwsd) | (mod t)

= r'umy = [r'¢y + uci](mod t).

e I N Mu cpr'teju r'ug+ Aot MNtX
So, Myy2 = co+a1m1 = Mey+ Ny 55 = M7= = M[=2522] = Mumg + =22

for some Ay € Z. Thus, 75 = Mu + 1\174111\7322‘

We will now show (¢,7m3) = 1. Suppose if possible 3 a prime p such that p | ¢t and
p | my. Let iy = pM,. So, 7o = Mu + MNtA2 = Mo :Mu%—i-%f}‘? —
pMoys = pMubly + M+7\2 = 7' Myys = v’ MuMs + M/\gﬁ.

(wy,t) = 1. (N';t) = 1. rz = 1(mod t) implies (r,t) = 1. wows = 1(mod t) implies
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(wz,t) = 1. And, (u,t) = 1 by (6.3). So, ' = ruw,wzaN'(mod t) = (1',t) = 1.
So 3ry; € Z such that r17" = 1(mod t). So in particular, 17/ = 1(mod p)V prime p

dividing t. We then have,

t
7’17”/M2’}/2 = 7’17”IM'LLM2 + 7’1M)\2—
p
t
= (1 + pap)Mays = rir' MuMy + 11 M Ay— for some ps € Z
p

= Myyo + pomay2 € Z C G(v0, 1) = Mav2 € G(70,71)-

But this contradicts the minimality of m3. So for any prime p dividing ¢, we have
p1{mg. Thus (t,73) = 1. We now have the induction step for k = 2.
Suppose (6.4) is true for k = 3, - -+ ,[—1. By Equation (8) in [6] we have, Q41 = Q"' —
GXoYaQs--- Q) where ¢ € K\ {0}, c0 € Zso, 0 < ¢ <mpVhk=1,---,1—1
and Ty = Yoo b cxyk- By 2) of Chapter 4 we have d(I) = [[._, ™z V1 > 2. Again,
1 = Nr' by (6.3). So ¥l > 2, d(l) = Nr'd(l), where d(1) = 42 Thus, V1 > 3,d(l) =
[Tz 7.
Now, (af, %) - Quyy = BEmdDQM — ¢ qieo grility exd®)] xeoyerQ% ... Q! Since
Q141 is an eigenfunction for H; ;;, we have

B:cj[d(m)—z;;ll crd(k)] _ ico

. zwo[d(l+1) — L_:ll cd(k)]  coun
Nt Mt

€ Z by Remark 6.0.5
-1
= MNt | [MzwyNr'd(l + 1) — Mzwycy — MawyNr' chd(k:) — Ncowy]

= M |cpand N |c;as (M,N) =1, (M,w;) =1, (N,z) =1, (N,w,) = 1.

Let co = Mcj and ¢; = N¢|. Plugging them in the above expression, and using (6.3),
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we obtain

-1
MNt | [MawyNv'd(l + 1) — MaxwyNcy — Mzwy,Nv’ Z crd(k) — N Mw;cp)
k=2
=t | [rwar'd(l + 1) — zwqc] — zwor’ Z crd(k) — wicyN']
k=2
-1
= r'zwyd(l + 1) = [cqwi N + djzwy + r'zw, Z crd(k)](mod ¢)
k=2

-1
= r'ud(l + 1) = [r'¢y + dju+ r’uz crd(k)](mod t).
k=2

Now,

-1
mpy = ¢+ + Z CkVk

k=2
-1 =g
—  Mu ——  MNt\,
o / / § :
= MCO + NCIN_T/ + £ Ck[MUd(k) + m] Where Ak - Z

! + cu A+ r'u S epd (k) N Ntb,

_M[ = d(l)] for some 6, € Z
"ud(l + 1 t Nt
:M[TU ( t/)+ﬂl + d(l)l] for some p; € Z
th,ul MNth
= Mud(l +1
A ()
MNtA
= Mud(l +1) ! for some \, € Z
d(l)
MNtA
:>’yl:Mum_2-~ml,1+_—i.
my:---my

By our induction hypothesis, (t,my) = 1Vk =2,--- 1 — 1. So (p,my) = 1 for any

prime p dividing ¢, Vk = 2,--- ;1 — 1, hence, (p,d(l)) = 1. Suppose if possible 3 a

prime p | t such that p | m;. Let my; = pM;. Now, (r',t) =1 = (r',p) = 1. So

(p,7d(l)) = 1. So 3, € Z such that rr’d(l) = 1(mod p). Let rr'd(l) = 1 + pp for
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some j; € Z. Now,

MNt\
v = Mumg - - -y _—L
ml---ml
-1
Mt o
— pMyy = Mumy -+ -y + 'Wl; as m; = pM,, my = N1’ d(l)zHWk
" k=2

t
= rd() My = A Mws -+ T My + M as i = pM

t
= ri’d(l) My, = mr'd(1) Mumg - - -y My + riM X\ — € Z
p
= (14 up)Miy € Z= My, + v € Z C G(y0, -+, Yi-1)

== M€ G(,- ,Yi-1)-

But this contradicts the minimality of ;. So for any prime p dividing ¢, we have
p1my. Thus (t,7;) = 1. We now have the induction step for k = [.

(t,7") =1 = Nt{ Nr' = Nt{ Nr' = 5 1my = % 1d(2). From the induction
we have (t,75) = 1¥k > 2. Thus (¢, [[\,7%) = 1 = (t,d(I)) = 1VI > 3 =
(t,7d(1)) = 1V1 > 3. t1rd()¥1l >3 = Nt Nr'd()V1 > 3 = Nt tmd()V1 >
3= %1d()VIl > 3. So together we have, % 1 d(l)VI > 2. Thus by Lemma 6.0.3,

we have ST (1) is not finitely generated over S(Auiten (1),

|
We are now ready to prove Theorem 6.0.1.

Proof. Let i, 7,t, x be positive integers satisfying the conditions of Theorem 3.0.2 and
suppose that v is a rational rank 1 non discrete valuation dominating R, with a
generating sequence (4.2) of eigenfunctions for H; ;.. By Proposition 6.0.4, we have
t= (%, %). Since t | 7 and t | %, we have (%) = ¢.

Conversely, let 7, j,t, x be positive integers satisfying the conditions of Theorem
3.0.2 and suppose that (2, 2) = t. We will show that 3 a rational rank 1 non discrete

177
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valuation dominating R,, with a generating sequence (4.2) of eigenfunctions for H; ; ; ...

We consider the cases t = 1 and ¢t > 1 separately.

m n
i

Suppose that (2,2) =t = 1. We will construct a rational rank 1 non discrete

valuation v dominating R, with a generating sequence (4.2) of eigenfunctions for
H; . such that Sf(v) is finitely generated over S (1), Let {q}i>2 be an
infinite family of distinct prime numbers, such that (¢, %) = 1, (g, ?) = 1 for all
[ > 2. Let g1 = % Let {¢;}1>1 € Z~o be positive integers such that

c :E_, ¢ = 0(mod E) Vi>1
i i

1> i Vl21, (g, q)=1VI>1

We define a sequence of positive rational numbers {7, };=0 as 0 =1, v = % Vi>1.

We will show m; = ¢, VI > 1, where m; = min {q € Z=o|qn € G(h0, -+ ,Vi-1)}-

I3

)
()

Now, 7, = . Since (%,?) =1, wehavemy =2 =qi. Forl > 2, g =¢ €

2o
<3

7. — 1 <y < q. Suppose q € Z-q such that ¢v, = q% = Zi:o apvE = 22;10 ak;—’;.
Then g | ge; [T, ax, that is, ¢ | qCZ?HZ;lg k- Now, (¢, ) = 1 and (q, %) = 1.
Again, (q,qx) = 1 VEk # [, as they are distinct primes. So, ¢;|¢. Thus we have
my = q V=1 And, myy = v = ¢ < Zfi = v41. Thus we have a sequence
of positive rational numbers {7;};50, such that 1 > M VI > 1. By Theorem
1.2 of [6], since Ry is a regular local ring of dimension 2, there is a valuation v
dominating Ry, such that S%(v) = S(vy,v1,---). v is a rational rank 1 non discrete
valuation by the construction. By Theorem 4.2 of [6], 3 a generating sequence (4.2)
{Qi1}120,Q0 = X, Q1 =Y, - such that v(Q;) = VI > 0.

From the recursive construction of the {v;};>0, we have the generating sequence as
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Qo=X,Q =Y,Q, =Y7 —\X7, where \y € K\ {0}. Foralll > 2, Q. =
Q;“—/\leUYfl e lfl_’ll, where ¢y, = ¢ = fo—l—z 1 feve, 0 < fiy <My Vk > 1. Now,
(ckyqr) = 1Yk > 1, and (g, qn) = 1Vk # h. So, e, = fo+ 34 f’;ck = [, @ =
fo sz L Qe+ —flcl iy + -+ —fl*lcl;ll_rlﬁ“;ll % which implies g, | fxVk > 1. Since

0 < fi < my = q, this implies fr = 0Vk > 1. So we have the generating sequence

as,

Qo=X,Qi=Y, Q=Y = \X7, Q1 =Q —NXVI>2

where \; € K\ {0}VI>1

We now show that each Q; is an eigenfunction for H; ;1. Hij11 = {(a®, %) |
a,b € Z}. For alll > 2, d(l) = Lllm_k = q Q-1 = ?QQ"'Qlfl- We have,
(a®, B%) . Qy = BTV T — \a“TXT = Q,. So, Qs is an eigenfunction. Suppose
Q3, -+ ,Q; are eigenfunctions for H; ;1. We check for Q1. From (5.2), (a®, %) -
Qr = AMQ, V2 < k < 1. Since 2 | ¢ and % | d(l), we have (@, B%) - Qy1 =
BriadDQn — N\ q¥e X = Q,q. Thus Q4 is an eigenfunction. Thus by induction,

{Qi}i>0 is a generating sequence of eigenfunctions for H; ;1 1.

Now we consider the case (% =1t > 1. We will construct a rational rank 1 non

m n)
discrete valuation v dominating R,,, with a generating sequence (4.2) of eigenfunctions
for H; ..

Since (t,z) = 1, there are positive integers r, s such that rz — st = 1. So (r,t) = 1.
From Lemma 3 in §2, Chapter 1] of [12], we have that if r,t are positive integers
such that (r,t) = 1, then there are infinitely many prime numbers of the form r + 6t,
where § € N. Define the family R = {r®};50 as r® = r, #r®) = k-th prime in the

above prime series. Any two elements in the family SR are coprime by construction.
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Also, 7™ = 7 + it = r®) = r(mod t) Vk. Since R is an infinite family such that
any two elements in SR are mutually prime, it follows that there is an infinite ordered
family of distinct prime numbers § = {r;};>1 such that, r, = r(mod t), (7, (tﬂ) =1,
(rl,@) =1, (r,w) =1, (r,ws) = 1¥1 > 1, where w; and wy are as in Remark
6.0.5. Let d = (wy,wy). Thus (%, %) = 1. Define two sequences (a;);>1 and (b;)i>1

of non negative integers as follows,

blz(),'rl]blVl>2,t]blVl>2

by > [r b =t V> 1

a; = @[Tl_l —f- bl]

Wa

vVi>1.
d

Here 7, € §V1 > 1. Define a sequence of positive rational numbers {7;};>¢ as follows

() wy
Yo=1m=—%,
(3) wy
"=
my i1
a = b, w
wz—lz(Z)[—Jr D22 v 9.

o . (%)
G-} (3 ) = 1, (m, /) = Land (57, %) = Limplies (2, m~~F) =
1. Also (%l@) -1, ((?,m ~ 1 and ((?,%) = Limplies (.11 %) =1

Now VI > 2, 1y =a € Z = 1 < my < 1. Suppose J a positive integer ¢ such

that ¢y € G(y0,-++ ,%-1). Then gy = ¢ft = co + o1—— ot Zk 2 Ok, where
r 2

kg € ZVk = 0,---,1 —1. Thus r | qal(])w1 2_:117%. NOW, (rl,(?) = 1, and

(11,7%) = 1V k # [, as they are distinct primes. Also, (r;, %) = 1. So, 1 | qa;. And,
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rn>r=nrf{r=rrt @[Tl_l + b = a; as (r, *2) =1, (r, (m)) =1and r | b.
Thus, r; | . Hence we have my = 7‘1(?% andm; =nr VI >2

Now, b1 > rq[r™' + 0] — VI > 1 and b, = 0 implies by > 7o — r. Thus,
+

&

13

[+ Do) > 1yt =y = 2 > () wy = myy:. For | > 2, we have

CEQ: 9 t 7

o~

Tl+bl+1>7“l+1[7"l_1+bl]:> ; [Tl+bl+1]%>7“l+1(t)[l 1+b]w2 = Vi1 = it

Ti+1

ap = myy;.

Thus we have a sequence of positive rational numbers {7, };50 such that v, >
myy VI > 1. By Theorem 1.2 of [6], since Ry, is a regular local ring of dimension
2, there is a valuation v dominating Ry, such that S (v) = S(vg,v1,--+). v is a
rational rank 1 non discrete valuation by the construction. By Theorem 4.2 of [6], 3 a
generating sequence (4.2) {Q;}i=0, Qo = X, Q1 =Y, -+ such that v(Q;) =~ VI > 0.
From the recursive construction of the {v};>0, we have the generating sequence

b w (m)

a,SQ():X’le}/’QQ:letTI—Al X+ &, Forall I > 2, Q11 = Q) —

g»ﬁ

NXToy ... lfl_’ll, where 0 < fr, < mpVk > 1and ry, = a; = fo + 22;11 frye- So,

= fo+ S L% We observe, from our construction, (g, ;) = 1V k # h. Also,

mp

-1 —— 1—1 —
Thus, a; [T, 7% = fo [1o = g+ el T r%:lmk | L N A AL

mip—1

1. Since 0 < fi < my, we have fp, =0V k > 1. Thus the generating sequence is given

as,

“\3

*) w

(
Qo=X, Q1 =Y, Q2= Yn T AX

-

) wy
d

S

Q1 =Q' — NXUVI>2

where A, € K\ {0}VI>1
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This is a minimal generating sequence as m; > 1VI[ > 1. We now show that each

n

r1bn wy J w1

Q is an eigenfunction for H; ;.. From (4.1), (a® %) - Qy = 7t a Y™ T 4 —

am W

AlaTTX -

=3 Now, Vb = az(mod t), rib = a(mod t), hence, (2b=2)(¥1e2) ¢

wi am
t

Z. Thus by Remark 6.0.5, LR PRV = ax(mod t), that is, @2 is an

eigenfunction for H; ;¢ ..
Suppose Qs, - - - , Q) are eigenfunctions for H; ;; . We check for Q);11. We note d(k) =

¥w7 ri7y - - Tp—1. From (5.2) we have, (a®, 3%)-Q;, = Y4*Q, V1 <

<3

ml--.mk_l —

bnry-ry w1

k<l Now, (a®, 8%)-Qp1 =~ ¢ 4 Q;'—Na X%, Sincery =r(mod t)Vk > 1

rz = 1(mod t) and t | b;, we have

- € ZV b = az(mod t)

t
:>le .t. e a[rll + b € ZVb = azx(mod t)
:>br1 SRUTCIC a[rt=1 +bl](w1w2) € ZYb = az(mod 1)
t d t d
bmﬂlt‘ L (wcll;UQ) - ai(%)[r:l k] (UQZQ) € ZV b = azx(mod t)
:(u%)% — (azal)E € ZV b = ax(mod t).

P e for all b = ax(mod t), and hence Q41

Thus, by Remark 6.0.5,
is an eigenfunction for H;;,,. Thus by induction, {Q;};>o is a minimal generating

sequence of eigenfunctions for H; ;, .. This completes the proof of part 1) of Theorem

6.0.1.

Now we suppose (%, ?) =t =1 and v is a rational rank 1 non discrete valuation
dominating R, with a generating sequence (4.2) of eigenfunctions for H; ;1. Let
v(@Q;) =V eN. Wehave Qy = X, Q1 =Y. By Equation (8) in [6], Q2 = Y*—AX"
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where A € K\ {0}, s71 = 0. Since (%,%) = 1, by Chinese Remainder Theorem
(Theorem 2.1, §2, [9]) we have H; ;1 is a cyclic group, generated by (o', 37). By

(4.1) we have (o, 37) - Q2 = B¥Y* — A" X". Since @, is an eigenfunction, we have

, , Sjwy  Irun
65] — azr S

€ Z by Remark 6.0.5

n m
@

:>T,|rand2|sas (m,wl)zl, (z,wg)zl, (2,2)21-
2 J t J t ]

So, Q2 =Y = AX" € K[X%,Y?] C A;j11. Thus by Proposition 6.0.2, we have part

2) of Theorem 6.0.1.

We observe that the part 3) of Theorem 6.0.1 follows from Propositions 6.0.6 and

6.0.7. This completes the proof of Theorem 6.0.1. B

Corollary 6.0.8. Let m > 1. Let (¢;,m) = 1 and (c2,m) = 1. Let U, acts on
R = K[X,Y] by the diagonal action given by K-algebra isomorphisms satisfying
a- XY = qartesXrYs. Suppose v is a rational rank 1 non discrete valuation
dominating Ry. Let {Qi}1=0 be the generating sequence (4.2) of the valuation v,
where Qg = X, Q1 =Y, and suppose that each Q; is an eigenfunction for U,, under
the diagonal action. Let A = RY and a = AN m. Then SB(v) is not finitely

generated over S“=(v).

Proof. « is a primitive m-th root of unity, and (¢;,m) = (cg,m) = 1. So U,, = < a >
=< o > =< a? >. The subgroup Hi ;1 of U, x U, is given by H;1m1 =
{((a)2, (a2)®) | b= a(mod m)} =< (a®,a®?) >. From (4.1), we have Hj 1,1 acts
on R by K-algebra isomorphisms satisfying (a®,a®) - X"Y*® = @@ 25 X"YS. Thus
we have, a - X"Y?® = (a®,a%?) - X"Y".
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Now let {Q;}i=0 be the generating sequence (4.2) of the valuation v, where @y =
X, Q1 =Y, and each @ is an eigenfunction for U,, under the diagonal action. Hence
each Q) is thus an eigenfunction for Hy,,1. And, A = RV = Rftim1 = Ay, .
Alsoa=ANm=A4;;,,1Nm=n.

We now use the same notation as in Theorem 6.0.1. We havei = 1,5 = 1,¢ = m. Since
m > 1, by Theorem 6.0.1 we have S (1) is not finitely generated over SAt1ma)n(y).
Hence, S (v) is not finitely generated over S4«(v).
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Chapter 7

Non-splitting

Suppose that a local domain B dominates a local domain A. Let L be the quotient
field of A and M be the quotient field of B. Suppose w is a valuation of L which
dominates A. We say that w does not split in B if there is a unique extension w* of
w to M which dominates B.

We use the same notation as in the previous chapters.

Theorem 7.0.1. Let i, j,t, x be positive integers satisfying the conditions of Theorem
3.0.2 such that (%, 7]1) = t. Suppose that v is a rational rank 1 non discrete valuation
dominating Ry, with a generating sequence (4.2) of eigenfunctions for H; ;... Let
U =1|Q,,..) where Q(A;jq.) denotes the quotient field of A; jt.. Then U does not

split in Ry.

Proof. Let {Qk}r=0, {7k }r=0 and {7 }r>1 be as in Chapter 4. Thus @y = X and
(1 =Y. Without any loss of generality, we can assume 7y = 1. Set % = Mt and

% = Nt where M, N € Z>o and (M, N) = 1. From (5.1) we have

leN,reN, 0 jp <mpVk=1---,r
S(Ai,j,t,z)n(]/) = Z'YO + jl’}/l + -4+ jrﬁ)/r a/laiﬁbjzzzl[jkd(kj)] -1
Vb = ax(mod t)

Now, 7 =v |Q(Ai,j,t,a:)’ Thus SWistedn (1) = {v(f) |0 # f € (Aijta)n} = SAitaln (),
The group generated by S(4iite)s(%7) is I', the value group of 7 (1.2, [3]). Thus I'; =

38



{51 — 89| 81,80 € SWAiieedn (1)} Suppose 75 € I'y. Then we have a representation,
Yo = (liyo + Z ha ki) — (loyo + Z hoxve) = (I — l2)y0 + Z(hm — ho )k
k=1 k=1 k=1
where l170 + > r_; hixye € SWistadn (1) and lyyo + > 5y hosrye € SHiatadn (). Thus
Lols €N, reNand 0 < hughoy < TEVE =1, 7. So, [hiy — hoy| < TEVE =
1,---,r. Now (h1, — hor)y € G(yo, - -+ s Yr—1) and |y, — ho,| < Ty, = h1y = hoy.
With the same argument, we have hy , = hy, Vk =1,--- ,r. So in the representation

of 79, we have vg = (I3 — l2)y0 = l1 — Il = 1. Also,

@llaiﬁbjzzzl[hlvkd<k)] 1= alzaiﬂbjzzzl[hzkd(k)]

Since Iy — Iy = 1 and hyp = hopyVk = 1,--- 7, we have a® = 1Vb = ax(mod t).
Thus o' = 1, hence, m | 7, that is, m = i. So we have obtained,
YweElg=—=M=1,t=1. (7.1)
Suppose v; € I';. Then we have a representation,
71 = (Lo + Zjl,ﬂk) — (lavo + ijﬂk) = (L —la)y + Z(jl,k — J2k) Yk
k=1 k=1 k=1
where 170 + Yy Jixve € SWiite)n (1) and lyyo + Y pey Joxyr € SHeatals (1), So,
ll,lg € N, r € Nand 0 < ij,]‘Q,k <mpVk=1,--- , T SO, ’jl,kz —jQ,k‘ < mpVk =
17 e, T NOW, (jl,r - jQ,T)’Yr S G(707 T ;71"71) and |j1,r - j2,r’ <m, = jl,r = j2,r-
With the same argument, we have ji; = jor VE = 2,---7. Thus we have, vy =
(li — )y + (1,1 — Joa)y where 0 < |j11 — joi| < M. Again, Vb = ax(mod t) we
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have

o1ai g2 [T kd(R)] — 1 — eai gid gy [T pd(K)]

Since d(1) = degy (Y) = 1l and ji = jox Vk = 2,--- ,7, we have a1 ~12)ai gbi(j11=72.1) —
1 for all b = az(mod t). So if 7 € I'y, we have a representation
M =1y + jiyn where l € Z, 0 < |j1| < Ty
ol b = 1Y b = ax(mod t).

In the above expression, (1 — j1)y1 = Iy € %Z = 1 | (1 — j1).

And [1—5| <1+l <= |1—5|=00rm;. 1—j51 =0=1=0, j; = 1. From
the above expression we then have, 3% = 1V b = az(mod t) = n = j. Now consider
|1 — 1| = my. If 1 — j; = —my then j; = 1+ my which contradicts |j;| < ™. So
1—ji =y, that is, j1 = 1 —my. And (1—ji)y = Tam = ly. So Qz = Q7" — AX!
where A € K\{0}. (a%, %)-Qq = Y™ Q7" — A X!, Since ), is an eigenfunction,
we have %™ = q%Vb = ax(mod t). Again from the above expression we have,
lgbi = gbimiy b = qz(mod t), as j; = 1 —my. Thus, % = 1V b = az(mod t), and

hence 7 = n. So we have obtained,

meEly= N=1,t=1. (7.2)

Ly
'y

. Since £ is a finite group,

For an element g € T',, let [g] denote the class of g in =

[g] has finite order for each g € T',. Let e = [[', : ['5].

First we suppose vy € I'; and 7, € I'y. From (7.1) and (7.2) we have M = N =
t = 1. From Proposition 3.0.3 we have |H, j; .| = M Nt = 1. Thus, M Nt | e.

Now we suppose 79 ¢ I'y and 7, € I'y. From (7.2) we have N = ¢ = 1. From

Proposition 3.0.3 we have |H; ;.| = MNt = M. Let fy denote the order of [y].
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Thus fyvo € I's. We thus have a representation

foro = (o + > hwwe) = (o + > haw) = (= l)vo + Y (hak — has)

k=1 k=1 k=1

where ll’)/o + 22:1 hl,kf}/k € S(A"*j’t“)" (V), and lQ’}/o + 2221 hg’k’}/k € S(Ai’j’t’ﬁ)“(l/). Thus
ll,lz € N, r € Nand 0 < hl’k,hg,k < m_ka; = 1, ,T. SO, ‘th — h2,k:’ < m_ka; =
1,---,r. With the same arguments as above, we have hyj = hopVk = 1,--- 7.

Thus foyo = (lh — l2)y0 = fo =11 — ls. And, for all b = az(mod t),

all‘nﬁbqul;:l[hl,kd<k)] — 1= algaiﬁbjz;;zl[hg’kd(k)].

So, ali=2)i = qfoi = 1 hence Mt | fy => Mt | e. Thus MNt | e as MNt = M.
Now we suppose 79 € I'y and 7, ¢ 'y, From (7.1) we have M =t = 1.
|Hij1z] = MNt = N. Let f; denote the order of [y], that is fiy1 € I'v. We

have a representation,

fim = (Lo + Zjl,ﬂk) — (v + ij,ﬂk) = (L = )y + Z(jl,k — J2k) Yk
k=1 k=1 k=1

where [;70 + Y p_; jiaye € SWiitadn (1) and lyyo + Y p_; Joxyk € SWiditadn (). So,
li,lo e Nyr e Nand 0 < jig, Jor < MpVhk =1,---,7. S0, |j1x — Jox| < M Vk =
1,---,r. With the same arguments as above, we have j1; = joxVEk = 2,--- 7.
So in the above representation, we have fiyy = (I1 — la)y + (ji1 — j21)y1 Where

0 < [j11 — J2.1| < 1. Again, Vb = ax(mod t) we have

a1ai gti 2o [ kd(R)] — p = ai gid gy [ kd(K)].

Since d(1) = 1 and ji 4 = jox Vk = 2,--- , 7, we have al1=12)aigbilLi=721) = 1 for all

b = ax(mod t). So we have a representation,

fim1 =y + jiys where [ € Z, 0 < |71 <y
ol b = 1Y b = az(mod t).
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(fi =ju)m =l = m1 | (fi —j1). Let fi — j1 = ¢m; where ¢ € Z. Let miy1 = 57
where s € Z~g. Thus fiv1 = ¢sv + jiyn = o = ¢sy. Thus [ = ¢s. Since myy; =
570, we have Qo = QT —AX*® where A € K\{0}. (a®, 8%)-Qy = Y™ QT —Na®* X?.
Since Q5 is an eigenfunction we have, %™ = %V b = ax(mod t). Again, from the

above expression of fi7v;, we have

alaiﬁbj(fl_cm) — 1Vb = al'(mod t)
— q@¥ N = g b = gx(mod t) as | = cs

— YN = 1Vb = az(mod t) = Nt | f = Nt | e.

Thus we have obtained, M Nt | e as MNt = N.

Now we consider the final case, 79 ¢ I'; and v, ¢ T'. Let fy denote the order of
[70] and f; denote the order of [y;] in E—; With the same arguments as before, we
obtain Mt | fo and Nt | fi. Thus we have Mt | e and Nt | e. Now (Mt, Nt) =t. So
the lowest common multiple of Mt and Nt is @ = MNt. Thus, M Nt | e.

Now, K(X,Y) is a Galois extension of Q(A4, ;. .) with Galois group H; ;. (Propo-
sition 1.1.1, [2]). Thus [K(X,Y) : Q(Aijix)] = |Hijiz| = MNt from Proposition
3.0.3. Let v = vy,19,--- , 1, be all the distinct extensions of 7 to K(X,Y). Then

(8§12, Theorem 24, Corollary, [16]),
efr =[K(X,Y): Q(Aijt.)] = MNt.

Since M Nt | e, we have e = MNt,r = 1. So v is the unique extension of 7 to
K(X,Y). Thus 7 does not split in Ry.
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