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Regular covers of complete graphs whose fibre-preserving au-
tomorphism groups act 2-arc-transitively are investigated. 
Such covers have been classified when the covering trans-
formation groups K are cyclic groups Zd for an integer 
d ≥ 2, metacyclic abelian groups Z2

p, or nonmetacyclic abelian 
groups Z3

p for a prime p (see S.F. Du et al. (1998) [5] for 
the first two metacyclic group cases and see S.F. Du et al. 
(2005) [3] for the third nonmetacyclic group case). In this pa-
per, a complete classification is achieved of all such covers 
when K is any metacyclic group.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper graphs are finite, simple and undirected. For the group- and 
graph-theoretic terminology we refer the reader to [13,14]. For a graph X, let V (X), 
E(X), A(X), and AutX denote the vertex set, edge set, arc set, and the full automor-
phism group of X, respectively. For an arc (u, v) ∈ A(X), we denote the corresponding 
undirected edge by uv. An s-arc of X is a sequence (v0, v1, . . . , vs) of s + 1 vertices such 
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that (vi, vi+1) ∈ A(Y ) and vi �= vi+2, and X is said to be 2-arc-transitive if AutX acts 
transitively on the set of 2-arcs of X.

Let X be a graph, and let P be a partition of V (X) into independent sets of equal 
size m. The quotient graph Y := X/P is the graph with vertex set P and two vertices 
P1 and P2 of Y are adjacent if there is at least one edge between a vertex of P1 and a 
vertex of P2 in X. We say that X is an m-fold cover of Y if the edge set between P1 and 
P2 in X is a matching whenever P1P2 ∈ E(Y ). In this case Y is called the base graph of 
X and the sets Pi are called the fibres of X. An automorphism of X which maps a fibre 
to a fibre is said to be fibre-preserving. The subgroup K of all those automorphisms of 
X which fix each of the fibres setwise is called the covering transformation group. It is 
easy to see that if X is connected then the action of K on the fibres of X is necessarily 
semiregular; that is, Kv = 1 for each v ∈ V (X). In particular, if this action is regular on 
each fibre we say that X is a regular cover of Y .

By [20, Theorem 4.1], the class of finite 2-arc-transitive graphs can be divided into 
the following two subclasses: (i) the 2-arc-transitive graphs with the property that every 
normal subgroup N of a 2-arc-transitive subgroup G of AutX has at most two orbits on 
vertices; (ii) the 2-arc-transitive regular covers of the graphs given in case (i).

A finite connected 2-arc-transitive graph X is bipartite if and only if AutX has a 
normal subgroup N having two orbits on vertices. If every nontrivial normal subgroup of 
AutX is transitive on vertices, then AutX is said to be quasiprimitive. In particular, all 
primitive groups are quasiprimitive. During the past ten years, a lot of papers regarding 
the primitive, quasiprimitive or bipartite 2-arc-transitive graphs have appeared, see [6–8,
15–17,20,21]. However, the known results concerning the 2-arc-transitive covers are very 
few. To the best knowledge of the authors, even for complete graphs it is very difficult 
to determine all their 2-arc-transitive covers.

In [5], the covers of a complete graph whose fibre-preserving automorphism groups 
act 2-arc-transitively and whose covering transformation groups are either a cyclic group 
Zd or Z2

p, p a prime, have been classified, and the classification has been extended in [3]
to the case when the covering transformation group is Z3

p, p a prime. Note that these 
covering transformation groups are all abelian. In this paper, the same problem as in [5]
is considered, where the covering transformation groups are metacyclic. Though Zd and 
Z2
p are metacyclic, most of metacyclic groups are nonabelian. For other papers related 

to covers of complete graphs, see [9–11].
Any metacyclic group can be presented by

K =
〈
a, b

∣∣ ad = 1, bm = at, ab = ar
〉

where rm ≡ 1 (mod d), t(r − 1) ≡ 0 (mod d). If d is even, m = 2, r = −1 and t = d/2, 
then K ∼= Q2d, the so-called generalized quaternion group of order 2d; if m = 2, r = −1
and t = 0, then K ∼= D2d, the dihedral group of order 2d. Note that Q4 ∼= Z4 and 
D4 ∼= Z2 × Z2.
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A purely combinatorial description of a covering can be introduced through a voltage 
graph, see the next section. To state the main result, we need to define a couple of covers 
of Kn.

First we define two covers of K4 with respective covering transformation group K =
〈a, b〉 ∼= D6 and Q12, where V (K4) = {1, 2, 3, 4}:

(1) ATD(4, 6) = K4 ×f D6, with the voltage assignment f : A(K4) → D6 defined by

f1,2 = b, f1,3 = ba, f1,4 = ba−1, f2,3 = ba−1, f2,4 = ba, f3,4 = b;

(2) ATQ(4, 12) = K4 ×f Q12, with the voltage assignment f : A(K4) → Q12 defined by

f1,2 = b, f1,3 = ba2, f1,4 = ba4, f2,3 = b, f2,4 = ba3, f3,4 = b.

Secondly, we define one cover of K5 with the covering transformation group K =
〈a, b〉 ∼= D6, where V (K5) = {1, 2, 3, 4, 5}:

(3) ATD(5, 6) = K5 ×f D6, with the voltage assignment f : A(K5) → D6 defined by

f1,2 = ab, f1,3 = b, f1,4 = ba, f1,5 = b, f2,3 = ba,

f2,4 = b, f2,5 = b, f3,4 = ab, f3,5 = b, f4,5 = b.

Next, let GF(q) be the field of order q where q is odd, and let GF(q)∗ = 〈θ〉. We 
identify the vertex set of the complete graph K1+q with the projective line PG(1, q) =
GF(q) ∪ {∞}. Then we define two families of arc-transitive covers of K1+q with the 
respective covering transformation groups K = 〈a, b〉 ∼= Q2d and D2d:

(4) ATQ(1 + q, 2d) = K1+q ×f Q2d, where d | q − 1 and d � 1
2 (q − 1);

(5) ATD(1 + q, 2d) = K1+q ×f D2d, where d | 1
2 (q − 1) and d ≥ 2,

and for both covers, the voltage assignments f : A(K1+q) → K are given by:

f∞,i = b; fi,j = bah if j − i = θh for i, j �= ∞.

Now we are ready to state the main result of this paper, see Section 3 for its proof.

Theorem 1.1. Let X be a connected regular cover of the complete graph Kn (n ≥ 4) whose 
covering transformation group K is nontrivial metacyclic, and whose fibre-preserving 
automorphism group acts 2-arc-transitively on X. Then X is isomorphic to one of the 
following covers:

(1) The canonical double cover Kn,n − nK2 with K ∼= Z2;
(2) n = 4, ATD(4, 6) with K ∼= D6;
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(3) n = 4, ATQ(4, 12) with K ∼= Q12;
(4) n = 5, ATD(5, 6) with K ∼= D6;
(5) n = 1 + q ≥ 4, ATQ(1 + q, 2d) with K ∼= Q2d, where d | q − 1 and d � 1

2 (q − 1);
(6) n = 1 + q ≥ 6, ATD(1 + q, 2d) with K ∼= D2d, where d | 1

2(q − 1) and d ≥ 2.

For the case when the covering transformation group K is nontrivial cyclic or is 
isomorphic to Z2

p, we have the following corollary, which is in fact the main result of [5].

Corollary 1.2. Suppose that X is a connected regular cover of the complete graph Kn

(n ≥ 4) whose covering transformation group K is either nontrivial cyclic or Z2
p, and 

whose fibre-preserving automorphism group acts 2-arc-transitively on X. Then X is 
isomorphic to one of Kn,n − nK2 with K ∼= Z2; ATQ(1 + q, 4) with K ∼= Z4 and 
q ≡ 3 (mod 4); or ATD(1 + q, 4) with K ∼= Z2

2 and q ≡ 1 (mod 4). Moreover, by
[19, Theorem 5.3], Aut(ATi(1 + q, 4))/K ∼= PΓL(2, q), where i ∈ {Q, D}.

Remark 1.3. The smallest graph in the family ATQ(1 + q, 2d) is ATQ(4, 4) of order 16; 
and the smallest graph in the family ATD(1 + q, 2d) is ATD(6, 4) of order 24.

2. Preliminaries

In this section we introduce some preliminary results needed in proving Theorem 1.1.
First we introduce some notation. The elementary abelian p-group of order pn and 

the complete graph of order n will be denoted, respectively, by Zn
p and by Kn. Let q be a 

prime power. Then the finite field of order q and its corresponding multiplicative group 
will be denoted, respectively, by GF(q) and by GF(q)∗. An n-dimensional vector space 
over GF(q) will be denoted by V (n, q). Let G be a group and H a subgroup of G. Then 
we use G′, CG(H) and NG(H) to denote the derived subgroup of G, the centralizer and 
the normalizer of H in G, respectively. Let M and N be two groups. Then we use M�N

to denote a semidirect product of M and N , in which M is a normal subgroup.
A purely combinatorial description of a covering was introduced through a voltage 

graph by Gross and Tucker [12,13]. Let Y be a graph and K a finite group. A voltage 
assignment (or, K-voltage assignment) on the graph Y is a function f : A(Y ) → K with 
the property that f(u, v) = f(v, u)−1 for each (u, v) ∈ A(Y ). For convenience, we denote 
f(u, v) by fu,v. The values of f are called voltages, and K is the voltage group. The 
derived graph Y ×f K from a voltage assignment f has as its vertex set V (Y ) ×K and as 
its edge set E(Y ) ×K, so that an edge (e, g) of Y ×f K joins a vertex (u, g) to (v, fu,vg)
for (u, v) ∈ A(Y ) and g ∈ K, where e = uv. Clearly, the graph Y ×f K is a covering 
of the graph Y with the first coordinate projection p : Y ×f K → Y , which is called 
the natural projection. For each u ∈ V (Y ), {(u, g) | g ∈ K} is a fibre of u. Moreover, by 
defining (u, g′)g := (u, g′g) for any g ∈ K and (u, g′) ∈ V (Y ×f K), K can be identified 
with a subgroup of Aut(Y ×f K) fixing each fibre setwise and acting regularly on each 
fibre. Therefore, p can be viewed as a K-covering. Conversely, each connected regular 
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cover X of Y with the covering transformation group K can be described by a derived 
graph Y ×f K from some voltage assignment f . Given a spanning tree T of the graph Y , 
a voltage assignment f is said to be T -reduced if the voltages on the tree arcs are the 
identity. Gross and Tucker [12] showed that every regular cover X of a graph Y can 
be derived from a T -reduced voltage assignment f with respect to an arbitrary fixed 
spanning tree T of Y . Moreover, the voltage assignment f naturally extends to walks 
in Y . For any walk W of Y , let fW denote the voltage of W . Finally, we say that an 
automorphism α of Y lifts to an automorphism α of X if αp = pα, where p is the covering 
projection from X to Y .

The following two propositions show an information of a lifting of an automorphism 
of the base graph with respect to a voltage assignment.

Proposition 2.1. (See [18].) Let X = Y ×f K be a regular cover of a graph Y derived from 
a voltage assignment f with covering transformation group K. Then an automorphism α
of Y lifts to an automorphism of X if and only if, for each closed walk W in Y , fW = 1
implies fWα = 1.

Proposition 2.2. (See [3].) Let K be a finite group, and let X = Y ×f K be a connected 
regular cover of a graph Y derived from a voltage assignment f with the voltage group K. 
If α ∈ AutY is an automorphism one of whose lifting α̃ centralizes K, considered as 
the covering transformation group, then for any closed walk W in Y , there exists k ∈ K

such that fWα = kfW k−1. In particular, if K is abelian, fWα = fW for any closed walk 
W of Y .

The next proposition deals with a basic group-theoretic result.

Proposition 2.3. (See [14, Satz 4.5].) Let H be a subgroup of a group G. Then CG(H)
is a normal subgroup of NG(H), and the quotient NG(H)/CG(H) is isomorphic with a 
subgroup of AutH.

The following result may be deduced from the classification of doubly transitive groups 
(see [1] and [2, Corollary 8.3]).

Proposition 2.4. Let G be a 3-transitive permutation group of degree n � 4. Then one of 
the following cases occurs.

(1) The symmetric group G = S4, with n = 4;
(2) The affine group G = Zm

2 �GL(m, 2) with m ≥ 3 and n = 2m, or G = Z4
2 �A7 with 

n = 16;
(3) G is an almost simple group, and the socle of G is either 3-transitive, or PSL(2, q)

acting 2-transitively on the projective line, of degree n = q + 1, where q ≥ 5 is an 
odd prime power.
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Finally, we quote a property of PSL(2, q) acting on the projective line PG(1, q).

Proposition 2.5. (See [5].) Let q = rs be an odd prime power, and let PG(1, q) be the 
projective line over GF(q). Then, for any three distinct points x, y, z in PG(1, q) there 
exists an element of PSL(2, q) which maps an ordered triple (x, y, z) to an ordered triple 
(x, z, y) if and only if q ≡ 1 (mod 4).

3. Proof of Theorem 1.1

Now we prove Theorem 1.1. Let n ≥ 4 and let p : X → Kn be a connected regular 
covering projection with a cover X = Kn ×f K of Kn and a nontrivial metacyclic 
covering transformation group K. We assume that the fibre-preserving automorphism 
group A acts 2-arc-transitively on X. Let F be the set of fibres. Then A is the largest 
subgroup of AutX having F as an imprimitive block system, and K is the kernel of 
the action of A on F . Hereafter, let A = A/K. Since A acts 2-arc-transitively on X, 
A acts 2-arc-transitively on Kn. This forces A to be a 3-transitive permutation group on 
V (Kn), and so it is one of the groups listed in Proposition 2.4. Choose a vertex p(F ) in 
Kn for a fixed fibre F ∈ F and take a star having the base vertex p(F ) as a spanning 
tree T in Kn. We assume that the voltage assignment f is T -reduced.

We divide the proof into the following three subsections: some preliminary lemmas in 
Section 3.1; the two cases when K is abelian or nonabelian are considered separately in 
Sections 3.2 and 3.3.

3.1. Some lemmas

First we introduce two pure group-theoretical lemmas.

Lemma 3.1. For any positive integers t1 and t2, Aut(Zt1 × Zt2) does not contain a 
nonabelian simple subgroup.

Proof. G = 〈a〉 ×〈b〉, where |a| = t1 and |b| = t2. Clearly, the conclusion is true provided 
one of t1 and t2 is 1. Now we assume t1, t2 ≥ 2.

First, assume that t1 = p�1 and t2 = p�2 , where p is a prime, and �1, �2 ≥ 1. Let 
G1 = 〈ap, bp〉. Then G1 is a characteristic subgroup of G and so AutG induces an au-
tomorphism action on G/G1 ∼= Z2

p. Let L be the kernel of this action. Then (AutG)/L
can be viewed as a subgroup of Aut(G/G1) ∼= GL(2, p) and so it does not contain a non-
abelian simple subgroup by [5, Lemma 2.7]. Moreover, L consists of all automorphisms 
σ of G of the form: aσ = a1+ipbjp and bσ = ai1pb1+j1p for integers 1 ≤ i, i1 ≤ p�1−1 and 
1 ≤ j, j1 ≤ p�2−1. Hence |L| = p2(�1+�2−2) and so L is a p-group which is solvable. Suppose 
that AutG contains a nonabelian simple group H. Then H cannot be contained in L. 
Since H ∩L is normal in H and since H is simple, we have H ∩L = 1. Since HL/L ∼= H, 
we obtain a nonabelian simple subgroup HL/L of (AutG)/L, a contradiction.
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Now for any positive integers t1 and t2, write G = P1 × P2 × · · · × Ph as a prod-
uct of Sylow pi-subgroups Pi of G, where h ≥ 2. Then for each i, AutPi does not 
contain any nonabelian simple subgroup by the above arguments. Moreover, AutG ∼=
AutP1 × AutP2 × · · · × AutPh. Suppose that AutG contains a nonabelian simple sub-
group, say M , whose component on AutPj is nontrivial for some j. Let φ be the natural 
homomorphism from AutG to AutPj . Then φ(M) is a nonabelian simple subgroup of 
AutPj , a contradiction. �

A section of a group G is a quotient group of a subgroup of G.

Lemma 3.2. For any nonabelian metacyclic group G,

(1) if Aut(G/G′) is solvable, then AutG is solvable;
(2) if G/G′ is cyclic, then no section of AutG can be isomorphic to S4.

Proof. It is well known that every nonabelian metacyclic group G can be presented as 
follows:

G =
〈
a, b

∣∣ ad = 1, bm = at, b−1ab = ar
〉
,

where t(r− 1) ≡ 0 (mod d), rm ≡ 1 (mod d) and r �≡ 1 (mod d). Note that G′ = 〈ar−1〉.
(1) Since G′ is a nontrivial characteristic subgroup of G, AutG induces an automor-

phism action on G/G′ with the kernel, say N . Since N fixes 〈a〉 setwise, it induces an 
automorphism action on 〈a〉 with the kernel, say L. For any integer �, define a map σ�

on G by (aibj)σ� = ai(ba�(r−1))j for any 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ m − 1. It is easy 
to see that σ1 ∈ L and as a map we have σ� = (σ1)� for any integer �. Since L consists 
of maps σ� for any integer �, L = 〈σ1〉, a cyclic group. Since N/L is isomorphic to a 
subgroup of Aut〈a〉, it is abelian, and so N is solvable. Suppose Aut(G/G′) is solvable. 
Since (AutG)/N is isomorphic to a subgroup of Aut(G/G′), it is also solvable, which 
forces that AutG is solvable.

(2) Suppose that G/G′ is cyclic. Because both (AutG)/N and N/L are abelian, 
(AutG)′ ≤ N and N ′ ≤ L. Hence, (AutG)′′ ≤ N ′ ≤ L and so (AutG)′′ is cyclic. Take 
any section H/J of AutG. Since (H/J)′′ = H ′′J/J ∼= H ′′/(H ′′∩J) is cyclic and S′′

4
∼= Z2

2, 
we have H/J � S4. �

Under the assumption and notation of Theorem 1.1, we have the following lemma.

Lemma 3.3. Let A and K be as defined in the beginning of Section 3, with the covering 
projection p : X → Kn. Then the group CA(K) cannot be contained in K under one of 
any following conditions:

(1) K is isomorphic to Zt1 × Zt2 for some positive integers t1 and t2, and n ≥ 5.
(2) K is nonabelian, K/K ′ is cyclic, and n = 4.
(3) K is nonabelian, K/K ′ is either cyclic or isomorphic to Z2

2, and n ≥ 5.
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Proof. First note that A/K is one of 3-transitive groups listed in Proposition 2.4. In 
particular, A/K is S4 if n = 4, and it contains a nonabelian simple subgroup if n ≥ 5. 
By way of contradiction, suppose that CA(K) ≤ K.

As the first case, let K be isomorphic to Zt1 ×Zt2 for some positive integers t1 and t2, 
and let n ≥ 5. Since K is abelian, CA(K) = K. Therefore, A/CA(K) is a 3-transitive 
group, and so it contains a nonabelian simple subgroup. This forces that AutK contains 
a nonabelian simple subgroup, which contradicts Lemma 3.1.

Next, let K be nonabelian and K/K ′ is as in case (2) or in case (3). By Lemma 3.2, 
AutK is solvable, and it does not contain any section isomorphic to S4 in case (2). Since 
A/CA(K) is isomorphic to a subgroup of AutK, the same holds for A/CA(K), that is, 
A/CA(K) is also solvable and it does not contain any section isomorphic to S4 in case (2). 
Now, the relation A/K ∼= (A/CA(K))/(K/CA(K)) implies that A/K is solvable, which 
forces that case (3) cannot occur; and it does not contain any section isomorphic to S4
in case (2), which forces that case (2) cannot occur, too. �
3.2. K is abelian

Throughout this subsection, we assume that K is abelian. The following lemma claims 
that K must be a 2-group.

Lemma 3.4. Suppose that the covering transformation group K is abelian metacyclic. 
Then K is isomorphic to Z2, Z4, or Zs·2� × Z2� , where � ≥ 1 and s ∈ {1, 2, 4}. In 
particular, K is a 2-group.

Proof. Suppose that K is cyclic. Then K ∼= Z2 or Z4 by Corollary 1.2. In what follows, 
suppose that K is an abelian group of rank 2, and set K = 〈a, b〉 where |b| | |a|.

Let r be any prime divisor of |K|, and set K1 = 〈ar, br〉. Then K1 is a characteristic 
subgroup of K, and either K/K1 ∼= Zr for r � |b|; or K/K1 ∼= Z2

r for r | |b|. Now by the 
group K1, the projection X → Kn is factorized as X → Y → Kn, where Y → Kn is 
a cover with the covering transformation group either Zr or Z2

r. By Corollary 1.2, we 
know that the cover Y is isomorphic to Kn,n − nK2 with the covering transformation 
group Z2 or ATD(1 + q, 4) with the covering transformation group Z2

2. Therefore, r = 2. 
In other words, K should be a 2-group.

Now, set |a| = 2�1 and |b| = 2�2 , where �1 ≥ �2 ≥ 1. Suppose that �1 �= �2. Let 
K2 = 〈a2�1−�2

, b〉 ∼= Z2�2 ×Z2�2 . Then K2 is a characteristic subgroup of K, and K/K2 ∼=
Z2�1−�2 . Now by the group K2, the projection X → Kn is factorized as X → Z → Kn, 
where Z is a cyclic cover of Kn. By Corollary 1.2, we know that K/K2 ∼= Z2 or Z4. Thus 
we prove the lemma by setting s ∈ {1, 2, 4}, �2 = � and 2�1 = s · 2� ≥ 1. �
Lemma 3.5. If CA(K)/K is 3-transitive on V (Kn), then K ∼= Z2.

Proof. First note that every automorphism in CA(K)/K has a lifting which is contained 
in CA(K). Now, suppose that CA(K)/K is 3-transitive on V (Kn). Then all the triangles 
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in Kn have the same voltage by Proposition 2.2. Moreover, the voltage assignment f is 
assumed to be T -reduced. Hence all the cotree arcs have the same voltage, say w. In 
particular, w = fu,v = f−1

v,u = w−1 for any cotree edge uv. Since X is assumed to be 
connected, w generates K. Hence K ∼= Z2. �

The following lemma shows that if the covering transformation group K is any abelian 
metacyclic group, then the 2-arc-transitive covers exist if and only if K ∼= Z2, Z4, or Z2

2.

Lemma 3.6. Suppose that the covering transformation group K is abelian metacyclic. 
Then the covering graph X is isomorphic to one of Kn,n−nK2 with K ∼= Z2, ATQ(1 +q, 4)
with K ∼= Z4, or ATD(1 + q, 4) with K ∼= Z2

2, defined in Section 1.

Proof. Suppose that the covering transformation group K is isomorphic to Zd or Z2
p, then 

by Corollary 1.2, we already know that the cover X is isomorphic to one of Kn,n − nK2

with K ∼= Z2, ATQ(1 + q, 4) with K ∼= Z4, or ATD(1 + q, 4) with K ∼= Z2
2. Therefore, in 

what follows let K be any abelian group of rank 2 but K � Z2
p. Moreover, by Lemma 3.4

we may set K = 〈a〉 × 〈b〉, where |a| = s2�, |b| = 2� and s ∈ {1, 2, 4}, and if � = 1 then 
s �= 1.

Let K1 = 〈a2, b2〉. Then K1 is a characteristic subgroup of K, and K/K1 ∼= Z2
2. As 

before, by the group K1 the projection X → Kn is factorized as X → Y → Kn, where 
Y is a cover of Kn with the covering transformation group Z2

2.
Now, we prove the lemma following the three possibilities for A = A/K, as one of the 

3-transitive permutation groups listed in Proposition 2.4.

(1) Assume A = S4 with the degree n = 4. By Corollary 1.2, we know that if K/K1 ∼=
Z2×Z2, then Y ∼= ATD(1 +q, 4) and n = q+1, where q ≡ 1 (mod 4). This contradicts 
n = 4. Hence this case is impossible: A cannot be S4.

(2) As the second possible case, let A = Zm
2 � GL(m, 2) with m ≥ 3 or A = Z4

2 � A7. 
By Lemmas 3.3 and 3.5, we know that CA(K) �= K, and CA(K)/K cannot be 
3-transitive on V (Kn). Since A has the unique nontrivial normal subgroup Zm

2 , 
we have CA(K)/K = Zm

2 . Hence, A/(CA(K)/K) is isomorphic to GL(m, 2) or 
to A7, which are both simple. On the other hand, A/(CA(K)/K) ∼= A/CA(K), and 
A/CA(K) is isomorphic to a subgroup of AutK. This forces that AutK contains a 
nonabelian simple subgroup, which is also impossible by Lemma 3.1.

(3) Finally suppose that A is an almost simple group. Then CA(K)/K contains the socle 
of A. By Lemmas 3.3 and 3.5 again, we know that CA(K) �= K, and CA(K)/K cannot 
be 3-transitive on V (Kn). Hence, the only possibility is that socA = PSL(2, q) acting 
on the projective line PG(1, q) = {∞, 0, 1, . . . , q − 1} and PSL(2, q) ≤ CA(K)/K ≤
PΓL(2, q). Hence every element of PSL(2, q) has a lifting in CA(K). Now, let n = 1 +q

and identify V (K1+q) with PG(1, q). Choose a star having the base vertex ∞ as a 
spanning tree T of K1+q, and assume f∞,x = 1 for any x ∈ GF(q), as a T -reduced 
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voltage assignment. Now, we discuss the two subcases related to the congruence class 
of q modulo 4 separately.
(3.1) Assume q ≡ 3 (mod 4). In this case, PSL(2, q) has two orbits acting on the 

ordered triples of V (K1+q). By Proposition 2.5, for any three distinct vertices 
x, y, z in V (K1+q), two ordered triples (x, y, z) and (x, z, y) belong to distinct 
orbits of PSL(2, q). Hence PSL(2, q) is transitive on the unordered triples of 
V (K1+q). By considering all the triangles W of the form (∞, i, j, ∞), one can 
see from Proposition 2.2 that fW = fi,j = w or w−1 for any cotree arc (i, j)
and a fixed w ∈ K. This forces that K is cyclic, contradicting our hypothesis.

(3.2) Assume that q ≡ 1 (mod 4). As in (3.1), PSL(2, q) has two orbits acting on 
the ordered triples of V (K1+q). But by Proposition 2.5, for any three distinct 
vertices x, y, z in V (K1+q), the triples (x, y, z) and (x, z, y) are in the same orbit 
of PSL(2, q). This forces that every voltage on cotree arcs is an involution and 
so K ∼= Z2 or Z2

2, contradicting our hypothesis, too. �
3.3. K is nonabelian

In this subsection, we assume that K is a nonabelian metacyclic group with a presen-
tation

K =
〈
a, b

∣∣ ad = 1, bm = at, b−1ab = ar
〉
,

where t(r− 1) ≡ 0 (mod d), rm ≡ 1 (mod d) and r �≡ 1 (mod d). Since K is nonabelian, 
we have d � 3.

Under the notation given in the beginning of Section 3, the next two lemmas state 
some properties of the covering transformation group K.

Lemma 3.7. Let the covering graph X be ATQ(1 +q, 4) or ATD(1 +q, 4) with the respective 
covering transformation group K ∼= Z4 or Z2

2 respectively. Then K contains at least one 
central involution of Aut(X).

Proof. Recall that the base graph K1+q of the covering graph X has the vertex set 
which is identified with the projective line PG(1, q), and Aut(X)/K ∼= PΓL(2, q) is the 
automorphism group of PG(1, q), see Corollary 1.2. First, consider X = ATQ(1 + q, 4)
with the cyclic group K ∼= Z4, say K = 〈a〉. Then a2 is a (unique) involution in K, and 
one can see that a2 belongs to the center of Aut(X) by noting K � Aut(X).

Next, let X = ATD(1 + q, 4) with K ∼= Z2
2. Set A1 = Aut(X). Take a subgroup 

T of A1 such that K ≤ T ≤ A1 and T/K ∼= PSL(2, q). By Proposition 2.3, we get 
(A1/K)/(CA1(K)/K) ∼= A1/CA1(K) � Aut(K) ∼= S3. Since the symmetric group S3 is 
solvable, one may get T/K ≤ CA1(K)/K, that is, T ≤ CA1(K). Let τ be the automor-
phism of PSL(2, q) induced by the field automorphism j �→ jp of order � in Aut(GF(q)), 
where q = p�, and let z ∈ PGL(2, q) \PSL(2, q) be any element. Then, by using the facts 
PΓL(2, q) = PGL(2, q) � 〈τ〉 and PGL(2, q)/ PSL(2, q) ∼= Z2, one can see that
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A1/T ∼= (A1/K)/(T/K) = PΓL(2, q)/PSL(2, q) =
〈
z PSL(2, q), τ PSL(2, q)

〉 ∼= Z2 × Z�.

Considering the conjugacy action of A1 on the set of three involutions of K ∼= Z2
2, one can 

see that A1/CA1(K) ≤ S3. On the other hand, A1/CA1(K) ∼= (A1/T )/(CA1(K)/T ) is a 
quotient of an abelian group Z2×Z�, and hence A1/CA1(K) is isomorphic to 1, Z2 or Z3
with 3 | �. By Lemma 3.5, we know that CA1(K)/K cannot be 3-transitive on V (K1+q). 
Since 〈T/K, z〉 ∼= PGL(2, q) is 3-transitive on V (K1+q), every lift z′ of the automorphism 
z cannot be contained in CA1(K), which implies that Z2 ∼= 〈z′CA1(K)〉 ≤ A1/CA1(K), 
and thus A1/CA1(K) ∼= Z2. Therefore, A1 should fix an involution, which is then a 
central involution of A1 = Aut(ATD(1 + q, 4)). �
Lemma 3.8. If K is nonabelian, then one of the following two cases occurs:

(1) K contains a cyclic subgroup N of index 2 such that N � A;
(2) K = 〈a, b | ad = b4 = 1, ab = ar〉, where d is odd, r4 ≡ 1 (mod d), r2 �≡ 1 (mod d)

and (d, r − 1) = 1.

Proof. Note that K ′ = 〈ar−1〉 is a nontrivial characteristic subgroup of K and so it is 
normal in A. Define a quotient graph Z of X induced by K ′ such that V (Z) is the set 
of K ′-orbits on V (X), and two K ′-orbits are adjacent if there exist some edges between 
these two K ′-orbits in X. Then Z is a connected cover of the complete graph Kn, whose 
covering transformation group is an abelian metacyclic group K/K ′, and one of whose 
fibre-preserving automorphism subgroup A/K ′ acts 2-arc-transitively. By Lemma 3.6, 
we know that K/K ′ is isomorphic to one of Z2, Z4 or Z2

2. If K/K ′ ∼= Z2, then we get 
case (1) of the lemma by taking N = K ′. Hence, in what follows, we deal with other two 
cases.

Case i: K/K ′ ∼= Z2 × Z2.

Suppose K/K ′ ∼= Z2×Z2. Then K ′ = 〈ar−1〉 = 〈a2〉, which implies that (d, r−1) = 2
and m = 2. Since r2 ≡ 1 (mod d) and t(r − 1) ≡ 0 (mod d), one may get r + 1 ≡
0 (mod d/2), and t is either 0 or d/2, which forces that |b| = 2 or 4. In what follows, we 
divide our proof into two subcases according to whether d > 4 or d = 4.

(a) d > 4: Let aibj be an arbitrary element in K \〈a〉, where 0 ≤ i ≤ d −1 and j ∈ {1, 3}. 
Since (r+ 1) | (rj + 1), we have d | 2(rj + 1) and then (aibj)4 = a2(rj+1)i = 1, which 
means |aibj | ≤ 4. Therefore, 〈a〉 is the unique cyclic subgroup of order d, noting 
d > 4, which should be characteristic in K and so normal in A. Hence we get 
case (1) of the lemma.

(b) d = 4: Noting that in this case, r+1 ≡ 0 (mod 2), and K is nonabelian, we get that 
r = −1, from which either K ∼= D8, a dihedral group, or Q8, the quaternion group. 
The conclusion is clearly true for K ∼= D8.
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Now suppose that K ∼= Q8. Then let us consider the quotient graph Z induced by 
K ′ defined above. Then Z is a connected cover of Kn, with the covering transformation 
group K/K ′ ∼= Z2×Z2, and one of whose fibre-preserving automorphism subgroup A/K ′

acts 2-arc-transitively. Therefore, by Corollary 1.2, Z ∼= ATD(1 + q, 4). By Lemma 3.7, 
K/K ′ contains a central involution of A/K ′, in other words, K contains a cyclic subgroup 
N of order 4 such that N � A, that is case (1) of the lemma.

Case ii: K/K ′ ∼= Z4.

In this case, we have that either K ′ = 〈a2〉 or K ′ = 〈a〉.

(a) K ′ = 〈a2〉: It is easy to get that

(d, r − 1) = 2, t = d/2 or 0.

As K/K ′ = 〈aK ′, bK ′〉 ∼= Z4, it should be that b2K ′ = aK ′, which forces that 
m = 2, t is odd, and then t = d/2 is odd, while d > 4. From r2 ≡ 1 (mod d) and 
(d, r− 1) = 2, we get that r = −1, that is, ab = a−1. It is easy to see that the order 
of any element in K \ 〈a〉 is 4. Hence, 〈a〉 is the unique cyclic subgroup of order d, 
which is normal in A, again.

(b) K ′ = 〈a〉: It is easy to get that K ′ = 〈a〉, and

m = 4, (d, r − 1) = (d, r) = 1, t = 0, d | (r + 1)
(
r2 + 1

)
.

Hence, K = 〈a, b | ad = b4 = 1, ab = ar〉, where |K| = 4d and d is odd.

If r2 ≡ 1 (mod d), then 〈ab2〉 is the unique subgroup of order 2d, which is normal in 
A again.

Suppose that r2 �≡ 1 (mod d). Then (d, r2 +1) �= 1. Now for j = 1, 3 and 0 ≤ i ≤ d −1, 
we have

(
aibj

)4 = a
i r−4j−1

r−j−1 = 1,
(
aib2

)2 = ai(1+r2).

Then |aibj | ≤ 4 for j = 1, 3, and |aib2| < 2d, in other words, there exists no cyclic 
subgroup N of K of index 2. Now we are exactly in case (2) of the lemma. �

By Lemma 3.8, we divide the proof into two subsections.

3.3.1. Case (1) of Lemma 3.8

Lemma 3.9. Suppose that there exists a cyclic subgroup N of K of index 2 such that 
N�A. Then X is the cyclic regular cover of Kn,n−nK2 with the covering transformation 
group N , whose fibre (N -orbits) preserving automorphism group acts 2-arc-transitively.



66 W. Xu et al. / Journal of Combinatorial Theory, Series B 111 (2015) 54–74
Proof. Suppose that there exists a cyclic subgroup N of K of index 2 such that N �A. 
Then Z2 ∼= K/N � A/N , and the quotient graph induced by N is a regular cover 
of Kn, with the covering transformation group K/N ∼= Z2. By Corollary 1.2, we get 
X ∼= Kn,n − nK2, and X is a regular cover of Kn,n − nK2, with the cyclic covering 
transformation group N . Clearly, as a cover of Kn,n−nK2, the fibre (N -orbits) preserving 
automorphism group of X acts 2-arc-transitively. �

In [22], all cyclic regular covers of Kn,n − nK2 have been classified when the fibre-
preserving automorphism groups act 2-arc-transitively. The main result of [22] is the 
following:

Proposition 3.10. Let X be a connected regular cover of Kn,n − nK2 (n ≥ 4) with a 
nontrivial cyclic covering transformation group Zd whose fibre-preserving automorphism 
group acts 2-arc-transitively. Then one of the following holds:

(1) n = 4 and X is isomorphic to the unique Zd-cover, where d = 2, 3, 6;
(2) n = 5 and X is isomorphic to the unique Z3-cover;
(3) n = q + 1 ≥ 5 and X ∼= K2d

1+q, defined just below.

Definition 3.11. Graphs K2d
1+q: For q = p� where p is an odd prime, let GF(q)∗ = 〈θ〉. Let 

Y = K1+q,1+q − (1 + q)K2, whose vertex set is two copies of the projective line PG(1, q), 
where the missing matching consists of all pairs [i, i′], i ∈ PG(1, q). For any d | q− 1 and 
d ≥ 2, define a voltage graph K2d

1+q = Y ×f N , where N = 〈a〉 ∼= Zd and

f∞′,i = f∞,j′ = 1 for i, j �= ∞; fi,j′ = ah if j − i = θh for i, j �= ∞.

Actually, the graph K2d
1+q was first defined in [4], which gave a classification of 2-arc-

transitive Cayley graphs on dihedral groups.
In what follows, we continue our proof according to n = 4, n = 5 and n � 5. We 

already know the voltage assignment of X as a cover of Kn,n − nK2, and now all we 
should do is to find the voltage assignment of X as a cover of Kn. Suppose that n = 4
and d = 2. Then K is an abelian group of order 4 and thus X ∼= ATQ(4, 4), as discussed 
in the abelian Section 3.2. Hence, here we just let d = 3 or 6 when n = 4, and d = 3
when n = 5.

Lemma 3.12. Suppose that n = 4. Then X is isomorphic to ATD(4, 6) or ATQ(4, 12).

Proof. By Lemma 3.9, X is a regular cover of Kn,n, − nK2, with the covering trans-
formation group N ∼= Zd, and the fibre preserving automorphism group A acts 2-arc-
transitively. Suppose that n = 4. Then by Proposition 3.10, the regular cyclic cover 
of K4,4 − 4K2 is isomorphic to the unique Zd-cover, where d = 2, 3, 6. As mentioned 
above, we only need to consider d = 3 and d = 6, separately. Equivalently, |K| = 6 and 
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|K| = 12. Since there exists a unique Zd-cover of K4,4 − 4K2 satisfying our condition 
with d = 3 or 6, it suffices to define a 2d-fold cover of K4 directly, which also satisfies 
our condition and is a Zd-cover of K4,4 − 4K2.

Case 1: |K| = 6.

Let N = 〈a〉 ∼= Z3 and K = 〈a, b〉 ∼= D6. Let A = K � S4, where

[A4,K] = 1, [S4, b] = 1, as = a−1

for any s ∈ S4 \A4. Moreover, in S4 set

d1 = (12)(34), d2 = (14)(23), d3 = (13)(24).

Set H = 〈(123)a, (12)〉 ∼= S3 and D = Hd1bH. We shall prove that the coset graph 
X ′ := X(A; H, D) is a connected regular cover of K4 with the covering transformation 
group K, whose fibre preserving automorphism group A acts 2-arc-transitively. With 
this conclusion, X ′ is clearly a connected regular cover of K4,4 − 4K2 with the cover-
ing transformation group N ∼= Z3, whose fibre preserving automorphism group A acts 
2-arc-transitively.

In fact, as (d1b)2 = 1, we get D−1 = D, that is, X ′ is undirected. Since (Hd1b)t =
Hd1b, it follows that the length of the orbit of H containing the vertex Hd1b is 3, which 
means that X ′ is of valency 3. To show that X ′ is connected, we need to prove A = 〈D〉.

Now 〈D〉 = 〈H, d1b〉 = 〈(123)a, (12), d1b〉. From (d1b)(123)a = d2ba
−1 ∈ 〈D〉 and 

(d2ba
−1)(123)a = d3ba ∈ 〈D〉, we get (d1b)(d2ba

−1) = d3a
−1 ∈ 〈D〉, which implies that 

(d3a
−1)(d3ba) = ab ∈ 〈D〉, and then (d1b)(ab) = d1a

−1 ∈ 〈D〉. From ((123)a)d1b =
(142)a−1 ∈ 〈D〉 and ((123)a)d1a

−1 = (142)a ∈ 〈D〉, we get (142)a−1(142)a = (124) ∈
〈D〉, which in turn implies a ∈ 〈D〉, and then (123) ∈ 〈D〉. Now, we have S4 =
〈(124), (123), (12)〉 ≤ 〈D〉, and then b ∈ 〈D〉. Finally, we get A = 〈D〉, as desired.

Since the normal subgroup K of A has four orbits on V (X ′), that is, {Hxk | k ∈ K}, 
where x ∈ {1, d1, d2, d3} and the quotient graph is K4, the graph X ′ is a cover of K4. 
Since A/K ∼= S4, A acts 2-arc-transitively on X ′. In what follows, we show that X ′ ∼=
ATD(4, 6).

Since the neighbor of H corresponds to the double coset D = Hd1bH, we know that 
H is adjacent to the following three points

{
Hd1b,Hd1b(123)a,Hd1b(132)a−1} =

{
Hd1b,Hd2ba

−1, Hd3ba
}
.

Hence, Hd1 is adjacent to

{
Hd1bd1, Hd2ba

−1d1, Hd3bad1
}

=
{
Hb,Hd3ba

−1, Hd2ba
}
;

Hd2 is adjacent to
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{
Hd1bd2, Hd2ba

−1d2, Hd3bad2
}

=
{
Hd3b,Hba−1, Hd1ba

}
;

Hd3 is adjacent to

{
Hd1bd3, Hd2ba

−1d3, Hd3bad3
}

=
{
Hd2b,Hd1ba

−1, Hba
}
.

Define τ : V (X ′) → V (ATD(4, 6)) by the rule

τ(Hk) = (1, k), τ(Hd1k) = (2, k),

τ(Hd2k) = (4, k), τ(Hd3k) = (3, k),

for k ∈ K. It follows from the definition of the two graphs that τ is an isomorphism from 
the graph X ′ to ATD(4, 6).

Case 2: |K| = 12.

Let N = 〈a〉 ∼= Z6 and K = 〈a, b〉 ∼= Q12. In GL(2, 3), set

x =
(

1 1
0 1

)
, y =

(
0 1
−1 0

)
, c =

(
1 0
0 −1

)
, e =

(
−1 0
0 −1

)
.

Let A = K GL(2, 3) = K(SL(2, 3) � 〈c〉), where

K ∩ GL(2, 3) = e,
[
SL(2, 3),K

]
= 1, cb = ce, ac = a−1.

Set H = 〈xa2, c〉 ∼= S3 and D = HybH. In what follows, we shall prove that the 
coset graph X ′ := X(A; H, D) is a connected regular cover of K4 with the covering 
transformation group K, whose fibre preserving group A acts 2-arc-transitively.

As (yb)2 = 1, we get D−1 = D, and then X ′ is undirected. Since

Hybc = Hycbb = Hyceb = Hcy
−1
eyb = Hcyb = Hyb,

it follows that the length of the orbit of H containing the vertex Hyb is 3, which means 
that X ′ is of valency 3. To show that X ′ is connected, we need to prove A = 〈D〉.

As 〈D〉 = 〈H, yb〉 = 〈xa2, c, yb〉, by computation we have

(
xa2)yb(xa2)2(xa2)yb = xe ∈ 〈D〉, xa2(xe)−1 = a−1 ∈ 〈D〉.

Thus, a, x, e ∈ 〈D〉, and then xyb = xy ∈ 〈D〉. Now SL(2, 3) = 〈x, xy〉 ≤ 〈D〉, which 
implies b ∈ 〈D〉. Hence A = 〈D〉, as desired.

Similarly as in Case 1, the graph X ′ is a cover of K4 and A acts 2-arc-transitively 
on X ′. In what follows, we show that X ′ ∼= ATQ(4, 12).
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Since the neighbor of H corresponds to the double coset D = HybH, we have that H
is adjacent to

{
Hyb,Hyxba2, Hyx2ba4}.

Hence, the neighbors of Hy, Hyx and Hyx2 are respectively

{
Hbe,Hyx2ba3, Hyxb

}
,

{
Hba−1, Hyba3, Hyx2b

}
,

{
Hba,Hyxba3, Hyb

}
.

Define η: V (X ′) → V (ATQ(4, 12)) by the rule

η(Hk) = (1, k), η(Hyk) = (2, k),

η(Hyxk) = (3, k), η
(
Hyx2k

)
= (4, k),

for k ∈ K. It follows from the definition of the two graphs that η is an isomorphism from 
the graph X ′ to ATQ(4, 12). �
Lemma 3.13. Suppose that n = 5. Then X is isomorphic to ATD(5, 6).

Proof. Similarly as in Lemma 3.12, we define a 6-fold cover of K5 directly, which satisfies 
our condition and is a Z3-cover of K5,5 − 5K2.

Let K = 〈a, b〉 ∼= D6, where a3 = b2 = 1, ab = a−1. Let A = K ×A5. Moreover, in A5
set

d1 = (12)(34), d2 = (13)(24), d3 = (15)(24), d4 = (234).

Suppose that H = 〈d1, d2〉 � 〈d4a〉 and D = Hd3bH. Next, we shall prove that the 
coset graph X ′ := X(A; H, D) is a connected regular cover of K5 with the covering 
transformation group K, whose fibre preserving group A acts 2-arc-transitively.

Since (d3b)2 = 1, we get D−1 = D, which means that X ′ is undirected. Furthermore, 
we have

Hd3bd4a = Hd3bd4a(d3b)−1d3b = Hbabdd3
4 d3b = Ha−1d−1

4 d3b = Hd3b,

that is, the length of the orbit containing the vertex Hd3b is 4. Thus, X ′ is of valency 4. 
Now, we show that X ′ is connected, which is equivalent to show A = 〈D〉.

As 〈D〉 = 〈H, d3b〉 = 〈d1, d2, d4a, d3b〉, by computation, we have the following equa-
tions:

d3b(d4a)d1d2 = (15324)ba,
(
(15324)ba

)2 = (13452), (d3b)(13452) = (15)(23)b,

d3b(15)(23)b = (243), (243)d4a = a, dd3b
1 = (23)(45).
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Since A5 = 〈(23)(45), (12)(34), (234)〉, it follows that A5 ≤ 〈D〉, and thus K ≤ 〈D〉. 
Hence A = 〈D〉, as desired.

Since the normal subgroup K of A has five orbits on V (X ′), that is, {Hxk | k ∈ K}, 
where x ∈ {1, d3, d3d1, d3d2, d3d1d2}, and the quotient graph is K5, the graph X ′ is a 
cover of K5. Since A/K ∼= A5, A acts 2-arc-transitively on X ′. In what follows, we show 
that X ′ ∼= ATD(5, 6).

Since the neighbor of H corresponds to the double coset D = Hd3bH, we know that 
H is adjacent to the following four points

{Hd3b,Hd3d1b,Hd3d2b,Hd3d1d2b}.

Hence, Hd3 is adjacent to

{Hb,Hd3d1ab,Hd3d2b,Hd3d1d2ba};

Hd3d1 is adjacent to

{Hb,Hd3ab,Hd3d2ba,Hd3d1d2b};

Hd3d2 is adjacent to

{Hb,Hd3b,Hd3d1ba,Hd3d1d2ab};

Hd3d1d2 is adjacent to

{Hb,Hd3ba,Hd3d1b,Hd3d2ab}.

Define ζ: V (X ′) → V (ATD(5, 6)) by the rule

τ(Hk) = (5, k), τ(Hd3k) = (1, k),

τ(Hd3d1k) = (2, k), τ(Hd3d2k) = (3, k),

τ(Hd3d1d2k) = (4, k),

for k ∈ K. It follows from the definition of the two graphs that ζ is an isomorphism from 
the graph X ′ to ATD(5, 6). �
Lemma 3.14. Suppose that n � 5. Then X is isomorphic to ATQ(1 + q, 2d) or ATD(1 +
q, 2d), where d ≥ 3.

Proof. By Lemma 3.9, X is a regular cover of Kn,n, − nK2 with the covering transfor-
mation group N ∼= Zd, and X ∼= K2d

1+q, defined in Definition 3.11. It has been proved 
in [22, Theorem 2.9] that for this cover, PΓL(2, q) × 〈σ〉 lifts, where σ is an involution 
exchanging i and i′ for any i ∈ PG(1, q). It is shown in [22] that all the covers such 
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that one of the minimal 3-transitive subgroups of PΓL(2, q) × 〈σ〉 lifts is all isomorphic 
to K2d

1+q. Therefore, we may pick up a fibre-preserving subgroup A which is a lift of 
PGL(2, q) × 〈σ〉.

Let L be a lift of PSL(2, q). According to the proof in [22, Subsection 3.2], we need to 
deal with the following two cases:

L ∩N = Z2, where d | q − 1 and d � q−1
2 ; and

L ∩N = 1, where d | q−1
2 and d ≥ 2.

(i) L ∩N = Z2, where d | q − 1 and d � q−1
2 :

In this case, L ∼= SL(2, q) and we shall identify L with SL(2, q). In GL(2, q), set

e =
(
−1 0
0 −1

)
, ti =

(
1 i

0 1

)
, x =

(
θ 0
0 1

)
,

c =
(
θ 0
0 θ−1

)
, y =

(
0 1
−1 0

)
,

where q = rl and i ∈ GF(q). Let Q = 〈ti | i ∈ GF(q)〉 ∼= Z�
r ≤ L. Let N = 〈a〉 ∼= Zd.

Define the group

A =
(
(LN)〈z〉

)
〈b〉,

with defining relations:

|a| = d, [t, a] = 1, z2 = ca, tz = tx, az = a,

b2 = e, tb = t, ab = a−1, zb = z−1c,

for any t ∈ L. Set K = 〈a, b〉. Then Q2d ∼= K � A. Set H = Q � 〈z〉 and D = HybH. 
Then we get that the coset graph X := X(A; H, D) ∼= K2d

1+q has the vertex set

{Hk | k ∈ K} ∪
{
Hytik

∣∣ i ∈ GF(q), k ∈ K
}

and the edge-set
{
{Hk,Hytibk}

∣∣ k ∈ K, i ∈ GF(q)
}

∪
{{

Hytik,Hytjba
hk

} ∣∣ i, j ∈ GF(q), j − i = θh, k ∈ K
}
.

Define a map η: V (X) → V (ATQ(1 + q, 2d)) by the rule

Hk → (∞, k), Hytik → (i, k),

for any k ∈ K. Then η gives an isomorphism from X to ATQ(1 + q, 2d).
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(ii) L ∩N = 1, where d | q−1
2 and d ≥ 2:

In this case, we shall identify L with PSL(2, q). In PGL(2, q), set

ti =
(

1 i

0 1

)
, x =

(
0 θ

−1 0

)
, y =

(
0 1
−1 0

)
,

where i ∈ GF(q).
Let Q = 〈ti | i ∈ Fq〉 ∼= Zl

r and Q ≤ T be the lift of Q. Acting on PG(1, q), we have 
PGL(2, q)∞ = Q� 〈yx〉, and the other points i ∈ PG(1, q) \{∞} correspond to the coset 
PGL(2, q)∞yti. Let N = 〈a〉 ∼= Zd. Then define the group

A = (L×N)〈z, b〉 =
(
PSL(2, q) � 〈z〉

)
〈b〉,

with defining relations:

|a| = d, [a, t] = 1, z2 = a, tz = tx, b2 = 1,

tb = t, ab = a−1, zb = z−1,

for any t ∈ L. Set K = 〈a, b〉. Then D2d ∼= K � A. Set H = Q � 〈yz−1〉 and D =
HybH. Then with exactly the same arguments as in (i), we get that the coset graph 
X = X(A; H, D) is isomorphic to ATD(1 + q, 2d). �
Remark 3.15. Note that for the case n = 4 we have K ∼= Z4, and X ∼= ATQ(4, 4) belongs 
to case (i) of Lemma 3.14, that is, d = 2.

3.3.2. Case (2) of Lemma 3.8

Lemma 3.16. Case (2) of Lemma 3.8 cannot occur.

Proof. Suppose that

K =
〈
a, b

∣∣ ad = b4 = 1, ab = ar
〉
,

where d is odd, r4 ≡ 1 (mod d), r2 �≡ 1 (mod d) and (d, r − 1) = 1. Then it is easy to 
check that Z(K) = 1.

Let T be a lift of PSL(2, q), that is, T/K ∼= PSL(2, q). By Proposition 2.3, T/CT (K)
is isomorphic to a subgroup of Aut(K), which is solvable by Lemma 3.2. It follows 
that CT (K) �= 1. Since Z(K) = 1, we have CT (K) ∩ K = 1. Then 1 �= CT (K) ∼=
CT (K)K/K � T/K, a nonabelian simple group, that is, T = CT (K) ×K. Therefore,

T/K ′ =
(
CT (K)K ′/K ′)× (

K/K ′) ∼= PSL(2, q) × Z4. (1)
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As in Lemma 3.8, let Z be the quotient graph of X induced by K ′. Then Z is the 
regular Z4-cover of Kn, with the covering transformation group K/K ′ ∼= Z4 such that 
A/K ′ lifts. In particular, (T/K ′)/(K/K ′) ∼= PSL(2, q) lifts. All such covers have been 
determined: these are ATQ(1 +q, 4), where q ≡ 3 (mod 4). From the proof of Lemma 3.14
and Remark 3.15 (for the case n = 4) we know that PGL(2, q) is lifted to

(
SL(2, q)〈z〉

)
〈b〉, where K/K ′ = 〈b〉,

with the following defining relations

|a| = d, [t, a] = 1, z2 = ca, tz = tx, az = a, τ2
2 = e,

tb = t, ab = a−1, zb = z−1c.

In particular, PSL(2, q) is lifted to SL(2, q)〈b〉, that is,

T/K ′ = SL(2, q)〈b〉 ∼= SL(2, q)Z4. (2)

The contradiction between Eq. (1) and Eq. (2) shows that case (ii) of Lemma 3.8 is 
impossible. �

Combining Lemmas 3.6, 3.12, 3.13, 3.14 and 3.16, we complete a proof of Theorem 1.1.

Acknowledgments

The authors thank the referee for the helpful comments and suggestions. The first 
two authors are partially supported by the National Natural Science Foundation of 
China (11271267) and the Natural Science Foundation of Beijing (1132005) and the
National Research Foundation for the Doctoral Program of Higher Education of China 
(20121108110005); the second and fourth authors are partially supported by the Na-
tional Natural Science Foundation of China (11371259); and the third author is partially 
supported by the National Research Foundation of Korea (2012007478).

References

[1] P.J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc. 13 (1981) 
1–22.

[2] P.J. Cameron, W.M. Kantor, 2-transitive and antiflag transitive collineation groups of finite projec-
tive spaces, J. Algebra 60 (1979) 384–422.

[3] S.F. Du, J.H. Kwak, M.Y. Xu, On 2-arc-transitive covers of complete graphs with covering trans-
formation group Z3

p, J. Combin. Theory Ser. B 93 (2005) 73–93.
[4] S.F. Du, A. Malnic, D. Marusic, Classification of 2-arc-transitive dihedrants, J. Combin. Theory 

Ser. B 98 (2008) 1349–1372.
[5] S.F. Du, D. Marušič, A.O. Waller, On 2-arc-transitive covers of complete graphs, J. Combin. Theory 

Ser. B 74 (1998) 276–290.
[6] X.G. Fang, G. Havas, C.E. Praeger, On the automorphism groups of quasiprimitive almost simple 

graphs, J. Algebra 222 (1999) 271–283.

http://refhub.elsevier.com/S0095-8956(14)00104-X/bib43616Ds1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib43616Ds1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib434Bs1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib434Bs1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444B58s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444B58s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444D4Ds1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444D4Ds1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444441s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444441s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib464850s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib464850s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444B58s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib444B58s1


74 W. Xu et al. / Journal of Combinatorial Theory, Series B 111 (2015) 54–74
[7] X.G. Fang, C.E. Praeger, Finite two-arc-transitive graphs admitting a Suzuki simple group, Comm. 
Algebra 27 (1999) 3727–3754.

[8] X.G. Fang, C.E. Praeger, Finite two-arc-transitive graphs admitting a Ree simple group, Comm. 
Algebra 27 (1999) 3755–3769.

[9] A. Gardiner, C.E. Praeger, Topological covers of complete graphs, Math. Proc. Cambridge Philos. 
Soc. 123 (1998) 549–559.

[10] C.D. Godsil, A.D. Hensel, Distance regular covers of the complete graph, J. Combin. Theory Ser. B 
56 (1992) 205–238.

[11] C.D. Godsil, R.A. Liebler, C.E. Praeger, Antiposal distance transitive covers of complete graphs, 
European J. Combin. 19 (1992) 455–478.

[12] J.L. Gross, T.W. Tucker, Generating all graph coverings by permutation voltage assignments, Dis-
crete Math. 18 (1977) 273–283.

[13] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley–Interscience, New York, 1987.
[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[15] A.A. Ivanov, C.E. Praeger, On finite affine 2-arc-transitive graphs, European J. Combin. 14 (1993) 

421–444.
[16] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307–317.
[17] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4, Trans. 

Amer. Math. Soc. 353 (2001) 3511–3529.
[18] A. Malnič, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998) 203–218.
[19] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003) 162–196.
[20] C.E. Praeger, An O’Nan–Scott theorem for finite quasiprimitive permutation groups and an appli-

cation to 2-arc transitive graphs, J. Lond. Math. Soc. 47 (1993) 227–239.
[21] C.E. Praeger, On a reduction theorem for finite, bipartite, 2-arc-transitive graphs, Australas. J. 

Combin. 7 (1993) 21–36.
[22] W.Q. Xu, S.F. Du, 2-arc-transitive cyclic covers of Kn,n − nK2, J. Algebraic Combin. 39 (2014) 

883–902.

http://refhub.elsevier.com/S0095-8956(14)00104-X/bib465032s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib465032s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib465033s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib465033s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4750s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4750s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4748s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4748s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib474C50s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib474C50s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib475431s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib475431s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4754s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib487570s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4950s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4950s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4C6931s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4C6932s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4C6932s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4D616Cs1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib4D6172s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib507261s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib507261s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib50726131s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib50726131s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib5844s1
http://refhub.elsevier.com/S0095-8956(14)00104-X/bib5844s1

	2-Arc-transitive metacyclic covers of complete graphs
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1
	3.1 Some lemmas
	3.2 K is abelian
	3.3 K is nonabelian
	3.3.1 Case (1) of Lemma 3.8
	3.3.2 Case (2) of Lemma 3.8


	Acknowledgments
	References


